
Coleman, Damian Alan (2001) The energetics of competitive road race cycling. 
 Doctor of Philosophy (PhD) thesis, University of Kent. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94280/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94280

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It 

was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open 

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line 

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ... 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/94280/
https://doi.org/10.22024/UniKent/01.02.94280
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


The Energetics of Competitive Road Race Cycling

By

Damian Alan Coleman

Canterbury Christ Church University College

Thesis submitted to the University of Kent at Canterbury for the Degree of
Doctor of Philosophy

October 2001

►

i



f  I i  2012

/ KE"r\/  \■ TEMPLEMAi*.LIBRARY



Abstract
One of the roles of the sport scientist is to ascertain the demands of a competitive event, and establish 
training regimes for success in the chosen event. The aim of this thesis was to establish the relative 
demands, and establish the physiological responses to road race cycling.

Study 1 - Physiological Responses of Competitive Road Race Cyclists.
Research has shown that the Kingcycle (EDS Portaprompt Ltd, High Wycombe, UK.) maximal minute 
power (MMP) test correlates strongly to performance during endurance time trial cycling events 
(Davison et al., 1997). The aim of this study was to evaluate the test as a method of ascertaining a 
relative exercise intensity in a homogenous population of racing cyclists.
Eleven male trained cyclists consented to participate in this study. Following familiarisation, subjects 
underwent two MMP tests, followed by a further six 10-minute submaximal Kingcycle trials at relative 
exercise intensities (60, 65, 70, 75, 80, 85% MMP).
The coefficient of variation for maximal minute power output between MMP tests was 1.72% (SEE 
2.6%). Submaximal test data revealed that subjects had similar lactate inflection point (68.9 ± 2.2% 
MMP). Thus it appears the figures derived from MMP are reliable, and the figures attained reflect 
lactate kinetics thus explaining the high correlation between MMP and performance.

Study 2 - Data Collection from Competitive British Cycling Federation Events.
Previous research has used heart rate data to assess the demands of road cycling by establishing a heart 
rate:power relationship in the laboratory and extrapolating the laboratory data to heart rate data 
recorded in the field (Palmer et al., 1994). The development of a portable powermeter (SRM, Julich, 
Welldorf, Germany.) allows for the simultaneous recording of power and heart rate in the field. The 
aim of this study was to use the SRM powermeter to evaluate this method of heart rate analysis during 
competitive cycling competition.
Nine male subjects participated in this study. Following familiarisation, subjects underwent MMP 
testing ± 7 days of a road race in which subjects competed and recorded the race with an SRM 
powermeter. Power output, pedal cadence, heart rate and speed/distance were recorded from the 
competitive races at 1 second resolution. Five subjects also underwent Wingate testing in the laboratory 
during the same time period.
Mean power output from the races was 264 watts, mean heart rate was 169 beats min'1, which was 
significantly higher (11 beats.min'1, p<0.05) than the predicted heart rate from laboratory tests similar to 
Palmer et al. (1994). The data also revealed road race cycling to be highly intermittent in nature, with 
high power outputs (>MMP) recorded during hill climbing. The findings therefore question i) the 
methods used by Palmer et al., (1994), and, ii) the ecological validity of the previous studies that have 
attempted to simulate road race cycling (Brouns et al., 1989, Palmer et al., 1997).

Study 3 - Correlates of Cycling Hill Climb Ability.
Study 2 revealed the importance of hill climbing to the road race cyclist. Hill climbing during road race 
cycling generally involves seated and standing cycling, the aim of this study was to evaluate the 
simulated hill climbing ability of competitive cyclists relative to standard stationary seated ergometer 
testing (Kingcycle).
Following familiarisation, eight trained cyclists undertook Kingcycle MMP, Wingate and simulated 
climbing (Woodway treadmill, Guhb, Germany.) tests. Two simulated climbs were conducted, the first 
at a 6% gradient for 6 km, and the second at a 12% gradient for 1 km.
Subjects sustained 92.6 % of MMP during the 6 km climb, despite recording the same % of maximum 
heart rate, and lower blood lactate concentration (BfLac'j) than when exercising at 85% in study 1. 
MMP test data and Wingate mean power both significantly correlated to performance time when data 
were expressed relative to body mass (r2 >0.79). These findings indicate that seated stationary 
ergometer testing can predict hill climb ability, and that when riding on a gradient the relationship 
between power, heart rate, and B[Lac ] is different when compared to level cycling.

Study 4 - The Effect of Gradient on Cardio Respiratory Measures during Submaximal Cycling.
Study 3 revealed that riders can sustain higher power outputs on a gradient than when compared to level 
cycling, this could be attributed to the changes in cycling position during hill climb performance testing. 
The aim of this study was to evaluate the submaximal cardio respiratory responses to level and graded 
seated cycling.

ii



Six trained cyclists undertook MMP testing followed by two submaximal trials at (60% of MMP) on a 
motorised treadmill (Woodway). Submaximal trials consisted of a level (0%) and graded (6%) 
condition.
There was no significant difference for power output, heart rate, RER and gross mechanical efficiency 
between level and graded cycling (p>0.05). Significantly lower oxygen consumption (V02), 
Ventilation (VE), and carbon dioxide production (VC02) values were recorded during graded cycling. 
These results indicate that respiratory measures during submaximal cycling are lower during graded 
cycling, possibly explaining the high power outputs sustained during field and laboratory hill climb 
performance.

Study 5 - The Effect of Glucose Polymer Supplementation on Simulated Road Race and Even 
Power Cycling.
The data from study 2 indicates potential limitations with the method of evaluation of road cycling by 
Palmer et al. (1994), and the previous attempts to simulate road race cycling (Brouns et al., 1989, 
Palmer et al., 1997). The aim of this study was to construct a valid road race laboratory simulation 
protocol, and compare the effects of glucose polymer ingestion and the physiological responses to even 
power and simulated road race cycling.
Six male trained cyclists undertook MMP testing followed by two even power, and two simulated road 
race trials. Each condition consisted of a glucose polymer (Tekno fuel, Medway, UK) and a placebo 
trial. The trials were two hours in duration. The mean power output equated to 60% of MMP. The 
trials were followed by a 2 km hill climb performance test at a 6% gradient. A fresh performance test 
was also completed by all subjects.
There were no significant differences between even power and simulated road race cycling for mean 
power, heart rate, V 02, ammonia (NH3), urea, economy, or efficiency values during the trials (p>0.05). 
Significantly higher B[Lac ], and VC02 production were observed during simulated road race cycling 
(p<0.05). Glucose polymer ingestion improved post even power (5.3%) and post simulated road race 
(6.01%) cycling performance. Power output sustained during the performance test was significantly 
lower following the simulated road race trial when compared to fresh and even power trials. Better 
relative performance following simulated road race cycling was found in riders with lower plasma NH3 
and urea concentrations (r>0.81), and in those riders with the higher B[Lac'] following the performance 
test (r=-0.81). These factors did not significantly correlate to post even power performance.
These results indicate there are specific physiological demands of intermittent road race cycling when 
compared to performance following even power cycling.

The findings from this study highlight the specific demands of road race cycling, the potential problems 
of interpreting heart rate data in the field, and the physiological responses of trained cyclists during hill 
climbing in the field or simulated in the laboratory.
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There are two distinct disciplines in the world of competitive road cycling, massed start road race cycling, 

and individual time trial cycling. Within each discipline there are variations in the distance of each event, 

the type of course/track where competition takes place, and the category of the competitive riders taking 

part in the races.

One of the roles of the sport scientist is to ascertain the demands of a competitive event, and establish 

training regimes for success in that event. Olds et al. (1995) indicated that the physical requirements of a 

rider undertaking competitive cycling are going to be dependent upon the specific discipline involved in the 

competition.

The major difference between these two cycling disciplines is the use of drafting. During time trial cycling 

the riders start alone at timed intervals, with no drafting of other competitors allowed. In massed start road 

race cycling drafting is a key component of the sport. Drafting causes reductions in the energy cost of 

cycling for a given speed (McCole et al., 1990) thus performance outcomes involve both physical and 

tactical ability.

Cycling exercise is a popular method of assessment in the laboratory. Many studies have specifically 

looked at laboratory simulated time trials, or have used laboratory simulated time trials as a performance 

test following intervention (Balmer et al., 2000, Coleman et al., 1995, Davison et al., 1997, Lindsay et al., 

1996, Loftin and Warren, 1994). However, there is limited published research on road race cycling, giving 

the sport scientist limited reviewed evidence to base training regimes, and appropriate laboratory assessment 

of this discipline.

The majority of published research on road race cycling has documented descriptive characteristics of the 

road race cyclist (Burke et al., 1977, Sjogaard, 1984, Tanaka et al., 1993). There has been limited research 

on the simulation of this discipline in the laboratory (Brouns et al., 1989, Palmer et al., 1997). Burke et al. 

(1977) speculated that the demands of road racing involved sprinting, hill climbing and breaking away from 

other drafting riders. Incorporating these activities into laboratory simulations would be important in the 

study of the sport. The papers that have attempted to simulate road race cycling have not incorporated these 

demands into their protocols, therefore a degree of caution is required when interpreting the results of these 

studies.

The present study aimed to assess the demands of competitive road race cycling, thus providing data for the 

construction of an appropriate laboratory simulation of this discipline, which would further the current body 

of knowledge that exists on road race cycling.

Chapter 1. Introduction

1



The aim of this chapter is to review the current research on the energy demands of cycling and the factors 

associated with the fatigue accompanying this type of exercise. According to Kyle (1991), the energy 

requirements of cycling are to overcome external frictional forces; which are predominantly wind resistance 

and equipment inefficiencies. Kyle (1991) also indicated that decreases in the energy required for a given 

speed during cycling were possible through modification of the riders’ technique, position, equipment and 

physiology.

During this chapter it is intended to focus upon the demands of (i) time trial/even power cycling, and, (ii) 

the contrasting requirements of variable intensity road race cycling. The major difference between these 

two cycling disciplines is that during time trial cycling the riders start alone at timed intervals, with no 

drafting of other riders allowed. Drafting is allowed in massed start road race cycling, which causes 

reductions in the energy cost of cycling for a given speed (McCole et al., 1990) thus performance outcomes 

involve both physical and tactical ability.Coyle et al. (1991) reported some specific physiological factors 

that predicted performance in time trial events. In comparing two groups of riders they reported that ‘elite 

national class’ riders had a larger proportion of slow twitch muscle fibres, increased muscle capillary 

density, higher citrate synthase activity and lower lactate dehydrogenase (LDH) activity compared to the 

‘good state class rider’. Time trial cycling in terms of power output is essentially a steady state discipline, 

with mathematical calculations by Swain (1987) indicating that the fastest rides on flat courses (with no 

wind) would be rides at an even power, with small deviations ± 5% on climbs and descents on hillier 

courses. Both road race cycling and time trialing events are predominantly endurance based, with time trial 

efforts ranging from 10 miles (17-35 minutes in duration) to 12 and 24 hour rides, and road races ranging 

from 45 minutes in British criterium races to over 7 hours in European ‘Classics’. Therefore aerobic 

metabolism would appear critical in the outcome of all of these events.

According to McArdle et al. (1991), the three major requirements for aerobic energy metabolism are

i) To have substrate available to donate electrons.

ii) To have an adequate Oxygen (0 2) supply, iii) To have available the enzymes and ‘metabolic machinery’ 

to enable reactions to occur.

2.1 Substrate availability

Fatigue during steady state cycling lasting over one hour in duration has often been shown to coincide with 

the depletion of muscle glycogen stores, and a fall in blood glucose supply (Bergstrom and Hultman, 1967). 

Studies have shown dependence upon muscle, and blood borne glucose concentrations at intensities varying 

from 50% V 0 2max to 85% V 02max during cycling exercise (Massicote et al., 1985. Coggan and Coyle, 

1989). It appears that adequate glucose availability is critical to the performance of the time trial cyclist 

even for races as short as one hour in duration (Below et al., 1995). As muscle glycogen levels become
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depleted, there is a gradual shift to blood borne glucose as substrate for metabolism. Glycogenolysis in the 

liver maintains blood glucose levels if the rate of extraction by the exercising muscle mass is equal to the 

rate of glucose production by the liver (Coggan and Coyle, 1989). Flynn et al. (1987) reported a critical 

blood glucose level <3.5mmol.l'1, below which exercise will be significantly impeded with fatigue 

approaching. Glucose supplementation has been shown to prolong endurance during steady state cycling. 

Supplementation provides an additional source of carbohydrate (CHO), which allows CHO metabolism to 

continue at a higher rate (compared to water trials) later in exercise (Coggan and Coyle, 1988). Another 

potential source of CHO to fuel muscle contraction is the utilisation of blood lactate (BLac') as a substrate. 

During brief intense contractions, and during steady state cycling, under conditions of low CHO 

availability, B[Lac"] has been reported to be lower when compared to a CHO loaded state (Neville et al., 

1993). The lower B[Lac‘] under conditions of low CHO availability could be explained by the inhibition of 

glycolysis due to the obvious reduction in available substrate, plus it has also been speculated that the 

reduced B[Lac'] are the result of lactate (Lac") oxidisation within the muscle (Anderson and Rhodes, 1991). 

Boulay et al. (1997), indicated a further possible reason for reduced B[Lac‘] (which they reported during 90 

minutes of endurance cycling), could be due to muscles shifting from being net releasers of Lac", to 

removers of Lac" from the blood therefore net uptake by that muscle. The oxidative slow twitch fibres are 

believed to have the greatest affinity for the conversion of Lac" back into pyruvic acid. It is also believed 

that Lac" uptake by the resting fibres will also occur during periods of Lac" production, and they use it as 

substrate for general cellular function (Anderson and Rhodes, 1991). BLac" is also believed to contribute to 

the production of liver glycogen, or directly converted into glucose in the liver and released into the blood 

stream (MacDougall et al., 1977). Bergstrom and Hultman (1967) observed this to be the case where not 

only was there a large uptake of BLac" by the liver, but also a larger O2 extraction required in this region to 

oxidise the BLac'. This extra metabolism required because of the elevated B[Lac"] could result in increased 

aerobic demand, placing more demands upon the cardiovascular system. This has important implications 

during variable intensity exercise. Bergstrom and Hultman (1967) reported that resting fibres were still 

glycogen loaded at fatigue, indicating that resting muscle fibres cannot donate glucose to the active muscles. 

Therefore, the oxidisable substrate that has been converted into lactate in the working muscle cell has been 

transported away from the active muscle mass, into a cell that has ample glycogen reserves and oxidised.

Depletion of muscle glycogen will lead to a reduced rate of CHO oxidisation, if blood glucose supply is not 

adequate to maintain the rate of CHO utilisation. If this occurs, a reduction in blood glucose concentrations 

occurs which has been seen in many studies. Coggan and Coyle (1987) have speculated on the effects of 

reduced adenosine triphosphate (ATP) availability and fatigue during prolonged exercise. Decreased levels 

of blood glucose have been shown to stimulate the release of glucagon from the alpha cells of the pancreas, 

(thought to be due to reduced glucose perfusion of the pancreas. Galbo, 1975). Glucagon is believed to have 

a gluconeogenic effect (converting amino acids and glycerol into glucose), thereby increasing the utilisation 

of these substrates for oxidisation in contrast to glycogen. Lemon and Mullin (1980) reported the effects of

3



depleted CHO stores on substrate utilisation during exercise. They compared a carbohydrate-depleted trial 

(CHOd) to a CHO loaded condition (CHOJ. During the CHOD trial there was an increase in energy derived 

from protein sources during a 1-hour ride at 61% V 02max, (CHOD 10.4%, CHOL 4.4% of energy from 

protein). The reduced rates of ATP availability during CHOD according to Lemon and Mullin (1980) 

hindered the cell’s ability to synthesise phospholipids, causing a reduction in the cell’s ability to maintain 

the cell membrane. The authors speculated that increased enzyme efflux into the blood may have occurred; 

these enzymes were then degraded down into amino acids and then deaminated, increasing plasma levels of 

ammonia and serum urea. This has also been reported by Brouns et al. (1990), where under conditions of 

CHO availability, less ammonia accumulation occurred. Costill and Hargreaves (1992), speculated that 

increased ammonia and Inosine monophosphate (IMP) concentrations were due to CHO depletion and the 

breakdown into component parts of adenosine monophosphate (AMP) in the donation of its phosphate to 

adenosine diphosphate (ADP) in the rephosphorylation of ATP. Brouns et al. (1990) also reported 

progressive elevations in ammonia concentrations as glycogen stores became depleted and a correlation 

between incidents of muscle cramp and high ammonia levels. Ammonia has also been associated with 

peripheral fatigue and central nervous system dysfunction (Urhausen and Kindermann, 1992). The 

implications of ammonia accumulation are discussed in chapter four. Muscle, liver and blood glucose 

sources appear critical to the endurance athlete’s performance during sub maximal exercise. However the 

relationship during high intensity exercise is less clear. During road race cycling it is likely that there will 

be periods of increased intensity where tactical attacks will be made, and/or breakaway groups will form at 

the front of the race, with sprints and hill climbing (Burke et al., 1977). To be a successful road race cyclist 

it is important to be able to react and have the physical capacity to respond to such moves. Jenkins et al. 

(1994) noted that at intensities above the anaerobic threshold, electrolyte displacement, intramuscular 

acidosis, and failure of the calcium pumps to return calcium to the sarcoplasmic recticulum have been 

indicated as major factors in fatigue. Hargreaves et al. (1984) reported that glycogen depletion significantly 

reduced anaerobic performance, however, Symonds and Jacobs, (1989) found no significant difference 

between glycogen reserves and high intensity performance (50 maximal knee extensions on an isokinetic 

bench), indicating that factors other than energy reserves may influence the rider’s ability during intense 

exercise. Jacobs (1981) reported that there is a lower muscle glycogen limit (40 mmol.kg'1) below which 

anaerobic performance will be hindered thus possibly explaining the equivocal findings. Some of the studies 

looking into high intensity performance have not depleted muscle glycogen to this extent, and therefore it 

would be unlikely to affect the anaerobic performer. This was acknowledged by Symonds and Jacobs 

(1989). Their experimental group (low CHO) had muscle glycogen reserves of 153 mmol.kg'1 d.w 

remaining at the onset of anaerobic exercise. This was compared to muscle glycogen levels of 427 

mmol.kg'1 d.w for the control group. This has further been illustrated by Drabbs and Maud (1997) who 

reported improved peak power output during the Wingate cycling test post (compared to pre) V 02max 

testing (5 minute recuperation between tests) where some glycogen depletion would have occurred, but not
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to extreme levels. However, due to the associated endurance component of road cycling also taxing limited 

glycogen reserves, plus the implications of high demands upon muscle glycogen which have been reported 

during high intensity sprinting (Boobis et al, 1982), glycogen availability may be a limiting factor in both 

sustained aerobic, and the intense sprinting requirements of road race cycling.

During repeated sprint type exercise, PCr has been implicated as a major contributor to the maintenance of 

power output, (Balsom et al., 1992). Tzintzas et al. (1998) reported that reductions in muscle glycogen at 

the end of an endurance run have also been shown to correlate significantly with reductions in 

phosphocreatine (PCr). They concluded that carbohydrate availability spared PCr, reflecting a greater 

supply of energy from the oxidative system, rather than depleting this ‘alactic’ phosphagen system to supply 

energy requirements. Therefore reductions in muscle glycogen could limit road race cycling performance 

due to an inability to sustain work output anaerobically. The relationship between glycogen depletion and 

time has been studied by Bergstrom and Hultman (1967), they revealed a non linear response, with 

glycogen depletion following a ‘semi-logarithmic’ pattern. They noted the greatest depletion occurring 

during the first 15 minutes of cycling (intensity 155 watts), followed by a tailing off in depletion when the 

residues of muscle glycogen fell to low values (O.lg per lOOg wet muscle). They noted that it was at this 

point that blood borne glucose began to play a greater role in CHO oxidisation within the muscle. Due to 

the limited stores of CHO, research into altering blood glucose levels with CHO feeding have been 

extensive, with the majority showing increased endurance anchor performance improvements, although the 

mechanisms by which CHO feeding improves performance have yet to be fully documented. Nassis et al. 

(1998) suggested that possible improvements in performance were due to the prevention of hypoglycaemia, 

and also the ability to maintain a high rate of CHO oxidisation. CHO ingestion before endurance cycling at 

‘anaerobic threshold’ intensities for one hour has also been shown to improve performance (Below et al., 

1995), however, in events of shorter duration (26-30 minutes), pre exercise carbohydrate feeding has been 

shown to have no beneficial effect on performance (Palmer et al., 1998); this is understandable as it would 

be unlikely that carbohydrate stores would be inadequate over this shorter time period.

The majority of research in this area has been carried out on lower intensity endurance exercise. Coggan 

and Coyle (1989) fed subjects 3g.kg'' CHO (or a placebo) 30 minutes before the anticipated time of fatigue 

at 70 % V 02max, and showed an increase in endurance time by 21% following CHO ingestion. It is 

unlikely that any glycogen sparing would have occurred up to the point of ingestion as both groups were fed 

only water up until CHO or placebo ingestion. This confirms the findings of Bergstrom and Hultman 

(1967) who reported a gradual shift from muscle glycogen degradation when these stores were low. They 

reported a switch to blood borne CHO, which improved performance by enabling continued CHO 

oxidisation. It is generally believed that the major benefits from CHO feeding occur by blood glucose 

providing and alternative source of energy for contraction in the latter stages of exercise (Hargreaves and 

Briggs, 1988). Nassis et al. (1998), also indicated that glycogen sparing due to CHO feeding was another 

possible reason for improved performance during CHO feeding, but data from muscle biopsy studies were
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not conclusive. Two studies that have found spared muscle glycogen with CHO feeding throughout 

exercise are Hargreaves et al. (1984) and Yaspelkis et al. (1993) who both used intermittent protocols for 

their studies. These authors speculated that during periods of lower intensity, glycogen resynthesis could 

have occurred in previously recruited fibres (fibres that were utilised during the intense periods of the 

exercise protocols), (Hargreaves and Briggs, 1988). It is possible therefore that glucose feeding during an 

intermittent trial could promote the maintenance of muscle glycogen through the resynthesis during 

recovery periods, in which case there are possible endurance/performance benefits.

2.2 Enzyme activity, muscle structure and function

It has been reported by Coyle et al. (1991) that elite class time trial riders in the USA had a higher 

proportion of slow twitch muscle fibres, compared to lower ranked riders. Increased proportions of slow 

twitch muscle fibre could potentially be beneficial to the time trial rider. Coyle et al. (1991), suggested that 

those riders with particularly high slow twitch fibre composition would be activating highly oxidative fibre 

types, which are more efficient during endurance exercise. This would support the findings of Jenkins and 

Quigley (1990) that endurance athletes use a large proportion of their capacity without lactic acidosis 

occurring, hinting that they have the ‘metabolic machinery’ available to prevent acidosis (McArdle et al., 

1991).

The laboratory measurement of lactic acidosis during incremental testing has been shown to predict 

endurance performance in trained cyclists by Davison et al, (1997) who reported elevations in B[Lac'] at an 

exercise intensity of 61.4 ± 3.9% of maximum minute power recorded on a Kingcycle ergometer. This 

exercise intensity is slightly higher than the 50% of V 02max indicated by Spurway, (1992). The observed 

increases in B[Lac] during incremental exercise are due to metabolic adjustments required to maintain ATP 

production (Spurway, 1992). It is believed that the appearance of BLac' is due to reductions in P 0 2, which 

results in elevated intramitochondrial levels of NADH in order to maintain the required electron flux (ATP 

production) (Spurway, 1992). With elevations in intramitochondrial NADH, the concentrations within the 

cytoplasm also rise as NADH is shuttled across the mitochondrial membrane, subsequently pyruvate is then 

converted into Lac' in the presence of NADH and lactate dehydrogenase (LDH).

However, the initial and subsequent reductions in P 0 2 do not limit ATP production, as ATP production 

continues to rise as exercise intensity increases. Indeed it has been indicated by Connett et al. (1990) that 

the P 0 2 would have to drop to below 10% of the observed P 0 2 in maximally working muscle for it to limit 

ATP production.

A further cause of the rises in B[Lac'] has been attributed to the recruitment of type 2B muscle fibres. 

Activation of 2B muscle fibre is likely to result in the production of Lac' due to the sparse number of 

mitochondria within this particular type of fibre (Spurway, 1992).

Therefore those riders with particularly high percentages of slow twitch muscle fibres are less likely to 

produce and accumulate Lac', which is a key determinant of elite performance (Coyle et al. 1991).
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Essen et al. (1977) reported only slow twitch fibres recruited during a 60 minute trial at 55% VCfmax. 

During an intermittent trial (15 seconds 100% VChmax, 15 seconds rest), both fast twitch and slow twitch 

fibres were recruited, consequently only 28% of energy was derived from FFA during this trial, compared 

to 40% during a continuous trial, indicating a greater reliance on CHO for metabolism. As it appears that 

resting fibres play no part in glycogen donation to active fibres, thus the types of fibres recruited for a given 

activity seem likely to be critical due to their specific metabolic capabilities, and fuel utilisation patterns.

For the road race cyclist, it may be beneficial to possess a significant proportion of fast twitch muscle fibre, 

as it is generally the intense anaerobic efforts where important tactical moves are made in the race. Fatigue, 

and the ability to continue these types of efforts may be linked to a variety of factors. High intensity efforts 

have been shown to place large demands upon muscle glycogen stores, with one six-second cycle sprint 

recording a decrease in muscle glycogen of 14% (Boobis et al., 1982)

According to Essen et al. (1977), during very brief intense exercise, the energy is derived from ATP and 

PCr stores (34%), lactate and myoglobin, (22% and 44%) depending upon training status, muscle groups 

used and the exact profile of power output.

Hultman et al. (1987) list four possible metabolic limitations during intense contraction, with fatigue being 

linked to:-

1) Decreased pH.

2) Increased Inorganic Phosphate (P[).

3) Increased Magnesium (Mg2+).

4) Inhibition of sodium (Na+) and Potassium (K+) transporting ATPase.

It has been observed that intramuscular pH tends to be lower than blood pH, (Hermansen and Osnes, 1972) 

and it is low muscle pH that is cause of fatigue rather than blood pH during intense contraction (Brookes, 

1987). Decreased pH has been shown to decrease maximal force production when muscle pH falls from 7.0 

to 6.2 in electrically stimulated frog skeletal muscle fibres (Robertson and Kerrick, 1979). A pH value of 

6.6 has been reported in the muscle fibres extracted from the quadriceps femoris immediately following a 

cycle test to exhaustion in man (Sahlin, 1978).

The hydrolysis of ATP and the release of Pj is also believed to play a part in the fatigue process during 

intense contraction (Hultman et al., 1987). Increases in Pj have been associated with decreases in tension 

within the muscle (White and Thorson, 1972).

The above review of factors that have been associated with fatigue during high intensity exercise suggests 

that they are likely to be the result of insufficient ATP production rather than reduced fuel availability. 

Burke et al. (1977), reported the need for the road race cyclist to cope with periods of high intensity
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exercise, during climbing, breaking away, and during sprinting. Previous data has been reported in the 

literature of this variable pattern during road race cycling (Palmer et al., 1994), using heart rate recordings, 

and single case study of ‘smoothed’ data reports by Jeukendrup and VanDieman (1998) using SRM power 

crank technology. Both of these studies have their limitations due to ‘smoothed’ data (heart rate or power) 

possibly not indicating the true demands of competition, to date there has been no power data reported from 

road racing with a higher resolution of 10 seconds per data point. Therefore the demands placed upon 

different energy systems is open to speculation.



Chapter Three. Euhydration During Exercise.

Euhydration is the term used when the body contains the required amounts of water and it is distributed to 

the various water compartments according to their needs (Tortora and Agnostakos, 1988).

Water plays a critical role in bodily functions, dissolving the majority of substrates ingested or produced, it 

is involved in the transportation of dissolved molecules, temperature regulation, and provides a medium for 

cellular reactions to occur, water also plays a major role in the shock absorption and cushioning of joints 

and organs of the body (Pivamik and Palmer, 1994). Therefore the availability of water is crucial to the 

intracellular and the extracellular functioning of the human body.

The regulatory control of euhydration is a function of hormonal control (primarily aldosterone and anti 

diuretic hormone (ADH)), hydrostatic pressures within compartments, and osmotic pressures influenced by 

the concentrations of electrolyte solutes within the various fluid compartments. According to Pivamik and 

Palmer, (1994), exercise, and in particular endurance exercise pushes the regulatory mechanisms to their 

limits. This chapter aims to review literature investigating endurance events, as well as high intensity 

exercise, that could give an indication of the implications for the road race cyclist.

3.1 The Movement Of Body Fluids

The major body fluid compartments in the body are the intracellular compartment, the intravascular 

compartment, and between them the interstitial compartment. Separating the three compartments there are 

semi-permeable membranes that allow the passage of fluids between them, depending upon the pressures 

between compartments.

The volumes of the intracellular and the intravascular compartments are kept to within very precise limits 

(Scanlon and Sanders, 1991). For the intracellular compartment, it is crucial that there is enough water 

available for essential cellular function, but it must also have sufficient control over the upper limit of water 

entering the cell to prevent the rupturing of the cell membrane (Carlsson, 1991). The major regulation of 

the intracellular compartment is controlled by the tonicity of the interstitial compartment (Carlsson, 1991), 

and under normal resting conditions the intracellular electrolyte concentrations are isotonic (in terms of 

osmotic forces) with the interstitial compartment.

The intravascular volume must also be regulated to maintain blood pressure within the vascular system, to 

prevent the pooling of blood, and ensure oxygenation for the extremities via normal circulation. The 

intravascular compartment must also regulate against high blood pressures, and its associated capillary 

damage.

The regulatory control mechanism for the vascular system enables the vasodilation/vasoconstriction of 

small veins and arteries that can increase or decrease the space through which the blood is flowing 

(Carlsson, 1991). However, this is a limited facility, and to compensate for this, fluid exchange can occur
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across the semi permeable membranes of the capillaries, depending upon the requirements of the vascular 

volume.

Although the volume of the interstitial fluid is not closely regulated, the solute concentrations of this 

compartment are closely controlled, as its concentration will depend on whether the other compartments 

have a net gain (or loss) of fluid.

3.2 Exercise and Fluid Shifts

The majority of research has concentrated upon fluids in the vascular volume, due to the difficulty in 

measuring other fluid compartments within the exercise setting.

At the onset of exercise, capillary dilation occurs as blood pressure increases and the demand increases for 

the blood supply to the working muscle (Hudlika et al., 1982). According to Senay and Pivarnik (1985), 

the dilation not only aids in the maintenance of blood pressure but also increases the surface area for 

diffusion through the capillary wall.

The normal exchange that occurs during exercise is the driving out of fluids from the vascular volume by 

filtration pressures into the interstitial spaces. According to Greenleaf et al. (1977), as exercise commences, 

the initial fluid losses from this compartment are isotonic to the vascular fluid. The volume of vascular 

fluid has been shown to decrease proportionally to work load, due to the proportional increase in blood 

pressure with workload (Pivamik and Palmer, 1994). However Wilkerson et al. (1977) found that this was 

not the case for all exercise intensities. Exercise intensity up to 65% V 0 2max showed the classic linear 

reduction in plasma volume, however at intensities of 65% and above, plasma volume losses were elevated 

and disproportional to the exercise intensity. Wilkerson et al. (1977) concluded that this was because 65% 

VOzmax was the point at which significant B[Lac‘] accumulation first occurred. Collins et al. (1989) 

reported that BLac" reductions post exercise mirrored the plasma volume replenishment, and concluded it is 

possible that BLac' levels are at least part responsible for the decrease in plasma volume. However, during 

submaximal efforts, with a steady B[Lac"], Van Beaumont et al. (1981) reported an 8-15% reduction in 

plasma volume depending upon the 30 minute submaximal cycle intensity (40-70% V 02max), and 

McMurray (1983), found a 17% decrease in plasma volume during steady state exercise at 70% of 

maximum heart rate). The majority of plasma volume decrements were seen during the first 10 minutes of 

exercise, therefore, it is possibly filtration pressures, and muscle lactate levels that exert influence over the 

removal of fluid out of the vascular space due to initial rises in B[Lac'] at the onset of exercise.

Plasma volume losses usually occur at the onset of exercise, after approximately 15 minutes, an equilibrium

is met where the pressures in the interstitium matches the capillary pressures (Smith et al., 1976). Greenleaf

et al. (1977) also reported this initial plasma volume loss during the first 10 minutes of exercise, however

they reported a gradual replacement back into the vascular volume for the remaining 50 minutes of a 60

minute effort (although not back up to initial plasma volume concentrations), at exercise intensities

corresponding to 23%, 43% and 63% V 02max. The initial loss of plasma volume as stated before was
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isotonic with the vascular volume, but as exercise progressed, Greenleaf et al. (1977) reported a gradual 

hypotonic shift leaving the vascular volume with a greater concentration of solutes remaining. The gradual 

fluid shill back into the vascular volume could be the reason for some of the equivocal results found during 

ultra endurance events. If a progressive shift back into the vascular volume occurred, then the difference in 

plasma volume for pre race and at the end of a 56 km foot race (Irving et al., 1990) may not be statistically 

significant. Other studies on endurance events have noted significant changes during the early stages of 

events, Myhre et al. (1977) noted that plasma volume changes had occurred after 6 km of a 42.2 km 

marathon, although Irving et al. (1990) concluded that plasma volume remained stable, a progressive return 

may have occurred. Greenleaf et al. (1977) concluded that once the reduction in outward filtration occurred, 

greater concentrations of solutes, in particular vascular proteins maintained, or attracted fluid back into this 

compartment.

Although during exercise it has been shown that plasma proteins have increased in number (Maughan, 

1985), decreased in number (Harrison et al., 1975), and remained the same (Ekblom et al., 1970) it is 

generally accepted that protein concentrations in the vascular volume are negatively correlated to the 

volume of fluid that leaves this compartment, and the equivocal findings in the above studies may be due to 

variations in the dehydration status of subjects, the subject training status, and the temperature of the 

exercise setting. According to Senay et al. (1977) the route taken by the interstitial proteins into the 

vascular volume is via the lymphatic system. Senay and Pivamik (1985) reported increased lymph flow 

during exercise, which with the massaging action of the muscles aided the passage of protein, and in 

particular albumin (Maughan, 1985) into the vascular space. The increased protein concentration of the 

vascular space will aid in attracting water back into the vascular volume, and will also enhance the buffering 

capabilities of the blood (Astrand and Rodahl, 1986).

During maximal cycling exercise, plasma volume has been shown to decrease, Poortmans, (1971) 11.9%, 

Wilkerson et al. (1977) 14%, Senay (1980) 15-18%, Van Beaumont et al. (1981) 15.6%, although again 

equivocal results for changes in plasma protein concentrations have been reported, Poortmans (1971) 

reported decreased concentrations during steady state exercise.

Depending upon the intensity of the exercise, the ambient temperatures and the dehydration status of 

subjects, it appears that plasma volume decreases during exercise. Once the fluid has left the vascular space 

it enters the interstitial compartment, diluting the solutes within this compartment. As the fluid initially 

does not appear to move back into the vascular volume due to filtration pressures, some fluid will move via 

osmosis into the intracellular compartment (Sjogaard and Saltin, 1982), with the increase in B[Lac'] this will 

increase the osmotic forces aiding the flow of water to this compartment. Sjogaard and Saltin (1982) 

extracted fluid samples from the muscle cells of subjects during exercise, their results showed that the 

decrease in plasma volume was almost fully accounted for by a 15% increase in muscle fluid content if all 

of the active muscle mass was accounted for, the authors did concede however, that as muscle fibres/groups
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were working to different intensities, this could influence the amounts of intracellular fluid expansion. The 

concentration of other electrolytes within the body fluid compartments is also of importance for the fluid 

balance during exercise, as with proteins and Lac' they have the ability to draw water between 

compartments through osmotic pressures. Hence another important feature of fluid balance is the regulation 

of electrolyte concentrations, which are monitored, and depending upon their concentrations, will conserve 

or excrete water via the renal system (Scanlon and Sanders, 1991). At rest the three major fluid 

compartments are isotonic, each compartment contains a similar fluid to solute ratio (Scanlon and Sanders, 

1991). Although the solute numbers are the same, the individual electrolyte numbers vary between 

compartments, although a Cation-Anion balance does exist (Herbert. 1983). The major cation of the 

intracellular environment is potassium (K+), and anion phosphate (HP04'2). In the extracellular fluid,

sodium (Na+) is the major cation and chloride (Cl') is the major anion, the major difference between the 

interstitial volume and the intravascular compartment is that the vascular volume contains a greater 

proportion of cations in the form of protein (Scanlon and Sanders, 1991). The major reason for the 

difference between intra and extracellular concentrations of electrolytes is to maintain the required 

membrane potential, this is required for nerve impulse transmission, this is achieved via the sodium - 

potassium ATPase pumps, and a semi permeable membrane. At rest the membrane potential is -88mv 

(Cunningham et al. 1971), depolarisation requires a shift of potassium extracellularly, and sodium 

intracellularly, reversing the potential and sending the electrical charge throughout the cell. If electrolyte 

concentrations (intra or extracellularly) are not maintained any further shift of solutes may inhibit the 

passage of an action potential. As previously mentioned, the solute concentration of the electrolytes will 

exert osmotic forces, so it is necessary to retain the solutes within the compartments to prevent the loss of 

fluids. A decrease in electrolyte concentrations will decrease the cell’s ability to hold water, and will 

therefore decrease its ability to perform routine cellular function (Pivamik and Palmer, 1994).

As exercise will exert further pressures upon the electrolyte balance, with increased nerve and muscle

impulse transmission, the buffering of H+ ions, transportation of glucose across membranes, storage of 

glycogen (muscle and liver), protein synthesis, elimination of electrolytes in sweat, (Lehninger, 1975), the 

balance of electrolytes is crucial for exercise continuation.

Research into electrolyte balance and exercise has again centred upon the plasma concentrations for 

accessible data collection. Greenleaf et al. (1977) reported that during 60 minutes (63% V 02max) cycling, 

increased plasma concentrations of Na+, Cl' and Ca2+ were found, with less change in K ’, and plasma 

proteins. For longer term endurance events, (Hillier et al., 1985, Irving et al., 1990, Rocker et al., 1989), 

similar findings have been reported, with increased Na+, Cl', but it appears that K+ is also increased 

extracellularly following exhaustive ultra endurance running. Spurway (1992) noted that elevations in 

plasma K+ occur following a ‘barrage’ of electrical activity, and also under conditions where elevated ADP

and Pi inhibit Na/K-ATPase. . During exercise, elevations in aldosterone levels (associated with Na+
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retention), are believed to increase the renal secretion of K+, via the blood stream, to the kidneys, which in 

turn helps maintain the membrane potential. Endurance exercise is thought to increase the extracellular

concentrations of K+, and if concentrations are pushed to their limit, (extracellular concentrations of 8.0

rnEq-l'l) it inhibits the maintenance of a resting potential across the cell membrane, and is a factor that is 

believed to have been responsible for fatalities in endurance events (Dennis 1992).

The loss of fluids from the body via sweating occurs due to the heat dissipation requirements of the body. 

Maughan (1991), reported that the volume of fluid lost from the plasma will depend upon 

training/acclimatisation status of individuals. Thermal dehydration has been shown to decrease plasma 

volume by approximately twice the fraction of body fluid loss (Dill and Costill, 1974), this however is a 

smaller contribution in terms of fluid volume than losses from interstitial and intracellular compartments. 

Upsetting the fluid balance of the plasma volume (i.e. dehydration) will affect performance. During 

exercise the blood flow to the muscles must be maintained, there is also a need to remove heat at the skin’s 

surface by convection (Herbert, 1983) thus there is competition for the blood supply, which is less of a 

problem during euhydration. Therefore maintenance of the plasma volume (and intracellular hydration) is 

required for peak performance. The benefits of fluid intake has been shown in a thermoneutral 

environment to enhance the endurance performance of athletes exercising at 70% V 02max to volitional 

exhaustion, (Fallowfield et al., 1994). Interestingly, the authors reported increased glycogen oxidisation, 

suppressed fat oxidisation, and elevated B[Lac‘], as a consequence of restricted fluid intake. Moquin and 

Mazzeo (2000) reported elevated epinephrinfe concentrations during mild dehydration, which has been 

associated with elevated muscle glycogenolysis (Amall et al., 1986). These studies further highlight the 

need for fluid intake for optimum fluid balance.

3.3 Water Addition During Exercise

Apart from the obvious intake of fluid through drinking during events, other activities occur that add fluid 

to the body. The addition of metabolic water, (formed from hydrogen and oxygen during exercise) has been 

shown to increase with the intensity of exercise, however, this is offset by respiratory fluid losses which 

account for losses of approximately 75% of the metabolic water added (Pivamik and Palmer, 1994), but 

there is still an addition to the body fluid.

The other addition to the body fluid levels is the addition of water liberated through the splitting of 

glycogen, approximately 3-4g of water is stored with each gram of glycogen, (Olsson and Saltin, 1970), this 

again increases in proportion to the intensity of exercise.

3.4 Recovery after Exercise

The shift of fluid is reversed when exercise is ended, where filtration pressures were initially increased by 

the raised hydrostatic pressure, the drop in filtration pressures that accompanies the cessation of exercise 

will allow the filtration of fluid back into the vascular volume (Irving et al., 1990). The osmotic forces will 

also act in a manner that will raise the plasma volume. As the plasma fluid loss was hypotonic to the
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concentration of the vascular volume the solute concentration of the blood would have been raised during 

exercise, and if an influx of proteins into the vascular space occurs, then the ability to attract volumes of 

fluids back into the vascular volume will be increased by osmotic forces (Irving et al., 1990).

During a longer recovery period, the plasma volume has been shown to expand, Irving et al. (1990) showed 

a progressive plasma volume increase 1-3 days after exercise, (peak 12.5%), this was attributed to an 

increased protein concentration and concluded that muscle damage was responsible for the increased 

vascular protein concentration). Brouns et al. (1989) also found significant plasma volume increases during 

rest days of a ‘Tour de France’ simulation study. Kargotich et al. (1998) indicated that plasma volume 

expansion post exercise were beneficial, as the expansion increases stroke volume, increases 

thermoregulatory efficiency, and decreases blood viscosity.

3.5 Fluid Balance During a Road Race Effort

No study has been carried out looking specifically at fluid balance during a road race type effort. However, 

using the current literature available, it is possible to make a few assumptions about the fluid movement 

during this type of exercise.

The intensity varies during road race cycling, previous simulations by Palmer et al. 1997, Schabort et al. 

(1998) and Brouns et al. (1990) have recognised this in their laboratory road race simulation protocols. 

They speculated that these increased bursts might utilise more glycogen, therefore the metabolic water 

released might be greater during the road race cycling compared to steady state cycling.

The filtration pressures out of the vascular volume are influenced by hydrostatic pressure, it has been shown 

by Palmer et al. (1994) that the road race type effort involves fluctuations in heart rate response. This 

would indicate a possible rise in filtration during the high intensity efforts, and a reduction in filtration and 

vascular return of fluids during the recovery/less intense periods of the race. During steady state cycling 

(Duration 1 hour), Greanleaf et al. (1977) showed an initial decrease in plasma volume, followed by a trend 

of repletion of this volume, in their study, the majority of depletion occurred during the first 10 minutes of 

exercise, and the degree of depletion has been shown to increase as the intensity rises (Wilkerson et al., 

1977). During a road race changes in intensity could be a limiting step via the control and the adjustment of 

the vascular volume during the switch from low to higher intensity exercise, and likewise the return to lower 

intensity exercise.

Intracellularly the build up of Lac' needs also to be addressed, during the brief periods of intense effort, H+ 

build up will occur, which will be buffered by electrolytes, the build up of Lac' will increase the osmolality 

of the intracellular environment, which will increase the osmotic pressure to take fluid into the cell, and the 

removal of lactate from the cell.

Fluid intake has been shown to influence substrate metabolism during exercise (Fallowfield et al., 1994). 

This is of considerable importance to the road race cyclist, with large demands upon glycogen stores
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(Palmer et al., 1997). Fallowfield et a!. (1994) reported glycogen sparing (both liver and muscle) due to 

fluid intake, making glycogen available for the latter stages of exercise.
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Chapter Four. Ammonia Accumulation During Exercise

The aim of this chapter is to outline the pathways of ammonia (NH3) production, the causes of accumulation 

during exercise, and the possible consequences of NH3 accumulation and relate them to previous findings to 

the current literature on road race cycling.

Ammonia can be formed either through the break down of amino acids as fuel for exercise, or through the 

purine nucleotide cycle.

4.1 Protein utilisation

During exercise the substrates for muscle contraction are primarily fat and carbohydrate. Many 

investigators have shown a relatively small contribution of protein to the supply of energy to the working 

muscle, which has previously been assumed to play a minor role in energy provision (Astrand and Rodahl, 

1986). Although relative to the energy derived from fat and carbohydrate the supply of ATP from protein 

catabolism may be lower, during endurance exercise where substrate is potentially a limiting factor, the 

supply of 5-10% (Lemon and Mullin, 1980) of energy from protein could have a significant effect on 

performance. However, it is not only the relatively small utilisation of protein which is implicated with 

possible performance outcomes, but the associated metabolic bi-products that have been associated with 

fatigue (Brouns et al., 1990).

4.1.1 The Source of Protein Utilised during Exercise

Dohm et al. (1987) reported that by monitoring markers of protein catabolism it appears that it is non- 

contractile protein that is available for substrate for muscle contraction, and contractile proteins are not 

utilised as substrate during exercise. It appears that liver and intramuscular protein sources provide the 

amino acids that are degraded during exercise. Kasperek et al. (1982) reported that during 2-3 hours of 

treadmill running, a reduction in overall liver protein of 25% occurred in rodents.

As the intramuscular free pool of amino acids is very small when compared to the large efflux of amino 

acids from the muscle during exercise, this provides evidence that intramuscular protein sources contribute 

to protein utilisation during muscle contraction. As much as 75% of the total pool of free amino acids are 

found intramuscularly, however this pool is relatively small and can only account for approximately 1% of 

protein catabolised during exercise. Therefore endogenous protein breakdown must largely account for the 

increased amino acid utilisation during exercise.

Research has raised questions about the role and supply of amino acids to working muscles, and especially 

the branched chain amino acids (Leucine, isoleucine, valine,) which are the predominant group of amino 

acids that can be oxidised by skeletal muscle, (Graham et al., 1995). The branched chain amino acids 

(BCAA) supply tricarboxylic acid cycle (TCA cycle) intermediates acetyl CoA (from leucine) and Succinyl 

CoA (from valine and isoleucine). However, the pathway of BCAA oxidisation by skeletal muscle has NH3 

as a potential bi-product.
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4.1.1.1 Branched Chain Amino Acid Metabolism

During exercise the BCAA’s are released from the splanchic bed and are transported via the bloodstream to 

the working muscles. The working muscles transaminate the BCAA to glutamate and can be converted 

further to alanine, aspartate or glutamine. Deamination is also a fate of glutamate with the production of 

NH3 in the working muscle (figure 4.1).

Figure 4.2 (From Graham et al., 1995) shows the primary pathway of deamination of BCAA in more detail.

BCAA’s are supplied either from the small intramuscular pool or delivered via the blood supply to the 

working muscle. Coupled with alpha ketogluterate, the NH3 group from the BCAA is converted into 

glutamate and branched chain oxo acid (BCOA) in the presence of branched chain amino acid amino 

transferase (BCAAT). BCOA can efflux out of the cell for oxidation in the liver, however the predominant 

fate is the degradation of the carbon skeleton by branched chain oxo acid dehydrogenase (BCOADH) into 

TCA intermediates. In the presence of Glutamate dehydrogenase (GDH), glutamate can be deaminated with 

the release of NH3 and alpha ketogluterate. In the presence of alanine aminotransferase, glutamate can also 

be converted into alanine, and likewise in the presence of aspartate aminotransferase, and glutamine 

aminotransferase, aspartate and glutamine are produced (Figure 4.1). As GDH and BCOADH are both 

located within the mitochondria, oxidative slow twitch muscle fibres with the highest mitochondrial content 

have the greatest potential to oxidise BCAA’s.

Figure 4.1- Schematic representation of transaminase and transdeaminase reactions within skeletal

muscle.
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Figure 4.2 -  Transamination and transdeaniination of BCAA
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4.1.1.2 Bi-Products of BCAA Metabolism

The fate of the carbon skeleton is oxidisation through the TCA cycle, the amino groups released however, 

have different fates.

4.1.1.2.1 Aspartate

Aspartate is an essential component of the purine nucleotide cycle (PNC). (Figure 4.3). The principle role 

of the PNC is to prevent excessive accumulation of AMP. Under conditions where ATP cannot be 

resynthesised by aerobic respiration, there is an accumulation of ADP. In the presence of adenylate kinase, 

some of the ADP is used to form ATP and AMP. AMP can be degraded down into Inosine monophosphate 

(IMP) and NH3. If aspartate is available, it will convert IMP into adenylosuccinate. In the conversion of 

adenylosuccinate to AMP, fumarate is produced, which is used to replenish the TCA cycle.

If aspartate is not available, IMP is converted into inosine and eventually hypoxanthine, which will have the 

consequence of net purine nucleotide loss from the cell. As de novo nucleotide synthesis is a time 

consuming energetic process, (Graham et al., 1995), maintaining nucleotide status could possibly reduce 

energetic availability within the cell.

Previous road cycling simulations by Brouns et al. (1990) and Palmer et al. (1997) have simulated race 

intensities to vary between 30 and 90% of maximum aerobic power. Aside from the acceleration required
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to match higher aerobic workloads, the role of IMP accumulation and removal may not be an issue to 

consider. The Brouns et al. (1990), and Palmer et al. (1997) papers studied road cycling for 2+ hours in 

duration, and it may be that the mechanism of the purine nucleotide cycle has a more predominant role in 

preserving adenosine nucleotide status in shorter, more intense events.

Figure 4.3 -  The purine nucleotide cycle

AMP

4.1.1.2.2 Glutamine

Both glutamine and alanine are amino carriers that leave the muscle cell for deamination in the liver and 

gut. Essentially glutamine and alanine are temporary stores of nitrogen with reduced toxicity compared to 

NH3 (Houston, 1995). Glutamine is formed if glutamate is not oxidised within the muscle. At rest 

glutamine is released from the muscle, Eriksson et al. (1985) reported resting plasma concentrations of 538 

pm ol.r1 in healthy subjects. During three 15 minute bouts of cycling they also reported a near linear 

increase with exercise intensity measured up to 80% V 02max (Figure 4.4). Upon deamination of 

glutamine, the TCA cycle intermediate alpha ketoglutaric acid is formed. Glutamine formation is believed 

to play a role in minimising the formation of NH3 within the cell, preventing a toxic accumulation, and 

allowing transport to the liver for removal.

This raises the issue of possible differences in limitation depending upon the duration of races. The ability 

to continually supply TCA intermediates without the NH3 accumulation in the muscle could be implicated 

in fatigue. Longer races where energy substrate availability may become taxed may reduce the rate of 

glutamine release due to an ATP requirement in the process of glutamate deamination. If this occurs there 

is a possibility that greater NH3 will be produced with the associated toxicity.
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4.1.1.2.3 Alanine

Alanine (and alpha ketogluterate) is formed through the conversion of glutamate in the presence of alanine 

aminotransferase and pyruvate. Once transported to the liver via the bloodstream it is dcaminated forming 

pyruvic acid. Pyruvic acid is then used as a gluconeogenic precursor, and once converted to glucose, is 

released by the liver and taken up by the exercising muscle. This is known as the glucose-alanine cycle. 

Eriksson et al. (1985) reported a rise in alanine with an increase in exercise intensity (figure 4.4). Wahren et 

al. (1973) reported that during recovery 9% of the gluconeogenic precursor came from alanine compared to 

6% in the resting state. These are similar figures to Hultman (1978) who reported that 8% of the glucose 

production in the liver is due to alanine, which actually reduces to 1% during heavier workloads. Like 

glutamine, the release of alanine essentially reduces the volume of NH3 produced within the muscle, by 

passing it to the liver for deamination.

Figure 4.4 - Net release of alanine, glutamine and NH3 at different exercise intensities. (Eriksson et al.

1985).
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The major role of alanine is not as a precursor for glucose however, its major role is as an amino carrier 

(Hultman, 1978). Like the formation of glutamine, alanine formation requires energy (in the form of 

pyruvate). Again if substrate was limited, alanine formation may be reduced causing an increase in NH3 

and toxicity. If NH3 concentrations are indicative of a lack of mainstream fuel (CHO and fat) for exercise, 

then an endurance athlete’s ability to utilise fat as substrate instead of utilising CHO would be beneficial. 

Reductions of CHO utilisation have been shown to increase amino acid metabolism (Haralambie and Berg, 

1976), if CHO is spared there is a possible sparing of the amino carriers of Nitrogen for the later stages of 

exercise, possibly reducing the toxicity of NH3 within the muscle cell.
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4.1.1.2.4 Ammonia Release

Ammonia plays a specific role in the cell as a buffer for H+. The formation of ammonia comes from the 

non-permeable ion ammonium that has consumed H+ and can leave the muscle cell via concentration 

gradients (Graham et al. 1997). NH, is produced under conditions that activate the purine nucleotide cycle 

and also BCAA degradation.

The pattern of NH3 release during exercise depends upon the exercise duration and intensity, which 

essentially governs the direction of ammonia flow due to the concentration gradient between tissue and 

blood. Conditions that favour NH3 release by the purine nucleotide cycle are possibly going to be different 

to those that favour BCAA breakdown.

The production of NH3 through the purine nucleotide cycle is regulated by AMPD activity, during exercise 

AMPD binds to myosin, which maintains the production of ATP under conditions of intense muscle 

contraction. Activity of AMPD is highest in fast twitch muscle, and is possibly due to the fact that reduced 

inhibition of AMPD occurs in the presence of H+, which is more likely to occur in fast twitch fibres 

compared to the more oxidative slow twitch fibres. Likewise the production of NH3 through the breakdown 

of BCAA is likely to be predominantly a slow twitch mitochondrial rich fibre process due to the 

mitochondrial bound GDH. Pages et al. (1994) reported that during high intensity exercise [NH3] and 

B[Lac'] significantly correlated. This is possibly due to activation of the pathway of the purine nucleotide 

cycle (NH3 production) and glycolysis being activated during intense muscle contraction. In contrast during 

endurance exercise they reported no correlation between NH3 and B[Lac'], and during a triathlon, decreases 

in B[Lac‘] over time were reported despite rises in NH3. Due to reduced acidosis, it is unlikely that 

activation of fast twitch fibre and purine nucleotide cycling were responsible for the rise in NH3 therefore 

the source of production would be likely to come from BCAA degradation. This could also be due to 

reductions in other N carriers that require energy for formation, leaving toxic NH3 to leave the cell.

In terms of exercise intensity and endurance performance, Itoh and Ohkowa (1990) reported that during 

steady state treadmill running at 50, 70, and 100% V 02max, and at a supra maximal cycling intensity 

(Maximal for 60 seconds) there was a correlation between B[Lac'] and [NH3]. Using all of the B[Lac'] and 

[NH3] across all of the exercise intensities measured, significant correlation coefficients for both sprint 

athletes (r=0.78), and endurance athletes (i=0.82) were attained. Interestingly there were quite dramatic 

differences at different individual exercise intensities between the two types of athletes, that possibly reflect 

their training status/muscle fibre type make up. At the two higher work rates there were weaker correlations 

for the sprint athletes compared to the endurance athletes, possibly reflecting reductions in NH3 

accumulation with sprint training, whereas maximal B[Lac'] can increase with sprint training. In the 

endurance trained athlete the increased anaerobic metabolism appears to have been reflected by increased 

B[Lac] and NH3. At the 75% maximum heart rate workload (which would be likely to be activating slow 

twitch fibre), any NH3 formation from the endurance-trained athlete is possibly coming from BCAA
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utilisation, with minimal Lac' formation. The sprint athlete with a larger cross section of fast twitch fibre 

would possibly have to activate these fibres at this lower work rate (although possibly not the lowest work 

rate), causing small rises in B[Lac'] and [NH3], In theory the subjects in this study were working at the 

same relative exercise intensity, however depending upon training status there appears to be differences in 

not only the plasma concentrations of metabolites, but also the relationship between these metabolites.

Within the literature there are authors who appear to limit their views on NH3 production to simply being a 

factor of the purine nucleotide cycle without any mention of BCAA catabolism (e.g. Lutoslawska et al., 

1992). This is despite research monitoring endurance exercise and supporting the findings of Pages et al. 

(1994) of uncoupled kinetics between plasma Lac' and NH3 concentrations. Head et al. (1996) is another 

study that ignores the potential source of NH3 from BCAA breakdown, they concluded that at an exercise 

intensity of 55% V 02max the purine nucleotide cycle was in action. Using beta blockade of fat as a fuel for 

exercise (Metoprolol and Propranolol) significant increases in plasma NH3 were reported (Head et al., 

1996). However without isolating the potential source of NH3 from BCAA breakdown these conclusions 

have their limitations.

4.2 Ammonia release during endurance exercise.

A methodological concern is that by sampling plasma concentrations the pattern of increase may be simply 

a reflection of changes in blood flow to the liver for removal of NH3 and concurrent conversion to urea. 

Eriksson et al. (1985) reported that despite reductions in liver blood flow during exercise there were similar 

rates of removal during exercise compared to resting values, therefore the rises seen during exercise were 

representative of NH3 release by the muscle. Broberg and Saltin (1989) reported release of ammonia from 

the working muscles was gradually increased in the first few minutes of exercise. Their calculations were 

based on the arterial venous difference of the working muscle group. Brooks (1987b) reported no increased 

rate of urea formation during exercise, and Eriksson et al. (1985) concluded that small changes in plasma 

urea during exercise reflected this process, as essentially there was no increase in NH3 removal for the 

conversion to urea during exercise. Graham et al. (1995) reported resting concentrations of NH3 to be 

between 20-60 pmol.l'1. This is due to the ongoing process of degradation and synthesis of skeletal muscle. 

During endurance exercise concentrations of over 250 pmol.l'1 have been reported in the literature (Brouns 

et al., 1990), although values o f -180 pmol.l'1 are more typically seen at exhaustion. Brouns et al. (1990) 

have reported the consequences to be a potential instigator of cramp. During endurance exercise one of the 

major considerations is the availability of substrate to supply energy for repeated muscle contraction. Rises 

in NH3 were reported by Brouns et al. (1990) at fixed work intensities (70% of power required to achieve 

V 0 2max), and intermittent intensities (30-90% of power required to achieve V 0 2max). (Figure 4.5). They 

concluded that due to greater activation of fast twitch muscle fibres during exhaustive endurance exercise 

the purine nucleotide cycle produced the NH3 in the latter stages of the trials.
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Data from highly trained cyclists reported by Wagenmakers el al. (1991) would question Brouns el al. 

(1990) conclusions, as they reported no breakdown of AMP or hypoxanthine in either a carbohydrate 

depleted or loaded state. It is likely therefore that during steady state endurance exercise the predominant 

source of NH3 is likely to come from protein catabolism, with the synthesis of TCA intermediates for 

oxidisation.

Despite the possible consequences of increased NH3 formation that have been linked to fatigue, altered 

central nervous system function, lethargy, convulsions, changes in intracellular pH, and alterations in intra 

and extra cellular electrolytes (Graham et al., 1995) the specific role and implications for fatigue during 

exercise are not fully understood. Ahlborn et al. (1992) administered NH3 to rats prior to prolonged 

submaximal treadmill running, and found a significant dose dependant reduction in time to fatigue in his 

population, elsewhere however elevations of NH3 through the administration of BCAA’s has produced 

equivocal results. Madsen et al. (1996) and Calders et al. (1997) have not shown negative consequences 

from this procedure. Madsen et al. (1996) reported that during laboratory simulated 100km cycling, 

performance was not significantly altered (p>0.05), despite plasma NH3 levels being significantly higher 

during the BCAA trial compared to the control trial. Calders et al. (1997) reported that during a treadmill 

run to exhaustion, with increased plasma NH3 concentrations due to BCAA supplementation, endurance 

time improved in rats, suggesting NH3 did not play a role in fatigue, with the task lasting 99 minutes in the 

BCAA trial and 76 minutes in the control trial.

Figure 4.5 - NH3 concentrations during intermittent and steady state exercise (Brouns et al., 1990).

— _  intermittent 
- - - - steady state

If performance is improved with increased levels of plasma NH3 during BCAA supplementation, then 

possibly another explanation is that elevated NH3 during normal endurance exercise represents depleted 

substrate as amino carriers. Despite elevations in NH3, BCAA supplementation will possibly continue to 

supply intermediates for the TCA cycle, whereas under normal circumstances there is possibly a carbon 

drain on the TCA cycle intermediates.
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4.2.1 The Role of Ammonia in Lactate formation and endurance exercise.

Pages et al. (1994) reported that Lac' and NH3 kinetics were not coupled during endurance exercise, 

however, this is possibly due to the different processes of NH3 formation during endurance compared to 

high intensity exercise. During exercise of increasing intensity the process of both protein catabolism and 

AMP deamination may be the source of NH3 released by the muscle. Banister et al. (1983) reported that 

during a ramp test to exhaustion all subjects in their study showed significant rises in NH3 at 40-50% 

V 02max, and hinted that NH3 may be a primary toxin in exhaustive exercise. They hypothesised that rapid 

NH3 accumulation in the muscle could in theory induce glycolysis via early excessive pyruvate 

accumulation, as NH3 affected oxidative pathways. Early pyruvate accumulation would in theory then lead 

to the formation of Lac'. Banister et al. (1983) reported NH3 accumulation at a lower intensity of exercise 

than had previously been reported. Wilkerson et al. (1977) reported significant elevations only above 70% 

V 02max, Meyer (1980) reported increases at intensities above 80% V 0 2max. Lowenstein (1972) indicated 

that possibly NH3 interfered with oxidative metabolism at the mitochondrial level, promoting pyruvate and 

associated B[Lac'] accumulation.

In terms of monitoring the physiological markers of endurance training, the onset of blood lactic acid 

accumulation test is possibly the best predictor of endurance performance, with a rightward shift in the 

accumulation of BLac' with training (Coyle et al. 1991). If NH3 is implicated in the stimulation of Lac' 

production then what are the possible reasons behind a rightward shift? Firstly endurance training 

increases the relative cross sectional area of slow twitch muscle fibres, reducing the size of fast twitch fibres 

that have been associated with greater NH3 releases due to increased AMPD activity in fast twitch muscle 

(Itoh and Ohkuwa, 1990). The development of slow twitch fibres with endurance training may also 

increase the size and number of mitochondria, essentially reducing the load upon individual mitochondria 

(Holloszy and Coyle 1984) and reducing the need to rely upon the purine nucleotide cycle to maintain 

cellular energy charge. Associated with an increased concentration of mitochondria is an increase in the 

enzymes BCAADH, glutamate dehydrogenase and alanine aminotransferase which have been reported with 

training (Graham et al., 1985). This opens the possibility of an increase in amino group carriers without the 

deamination within the muscle, but passed via the bloodstream to the liver. Einspar and Tharp (1989) 

reported increased plasma alanine concentrations with training after intense exercise. Other authors have 

speculated that the major role of alanine is to serve as an amino carrier (Felig, 1975), thereby reducing 

nitrogen concentrations and possibly [Lac'] (Holloszy 1975). Wagenmakers et al. (1991) reported that the 

efflux of alanine and glutamine are dependant upon substrate supply within the muscle. Using ‘highly’ 

trained subjects (maximum aerobic power 411 watts) a 2-hour intermittent test protocol was employed 

analysing plasma concentrations of alanine and glutamine, during two trials carbohydrate loaded (CHOJ, 

and carbohydrate depleted (CHOD). Due to increased concentrations of plasma glutamine and alanine 

during CHOL they concluded that substrate is of ‘primary’ importance in amino carrier transfer to the liver. 

This is because alanine requires substrate for formation (pyruvate) and glutamine requires ATP for
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formation. Lemon and Mullin (1980) reported that due to the energy requirements to maintain the 

phospholipid barrier of the cell membrane, reduced substrate availability could promote leakage, resulting 

in degradation and eventually NH3 formation. It could also be possible that the pathway of pyruvate to 

alanine reduced the process of pyruvate conversion to Lac' (Poortmans 1988). Wagenmakers et al. (1991) 

also reported that two subjects who fatigued early (prior to 2 hours) they had the lowest concentrations of 

plasma glutamine, possibly associating reduced glutamine levels with fatigue. Raubottom et al. (1997) also 

indicated that glutamine (amino carrier) release may possibly influence performance and reported in trained 

triathletes that lower glutamine concentrations were indicative of overtraining, and increased performance 

was seen in this longitudinal study with increased plasma glutamine levels. However Green et al. (1991) 

were unsure whether the drop in NH3 formation was due to decreased release and/or increased removal rates 

of NH3, alanine and glutamine. Alanine and glutamine concentrations have also been studied by Babji et al. 

(1983). During cycling exercise that consisted of 10 minute bouts at 25, 50, 75 and 100% V 02max they 

reported similarities in the exponential rises of both NH3 and Lac' in healthy subjects. However the NH3 

concentrations in the plasma only rose three fold compared to a ten-fold rise in Lac'. They reported a linear 

increase in glutamine (similar to the findings of Eriksson et al., 1985) with concentrations rising to 734 

p.mol.1"1. Graham and McLean (1998) reported that although glutamine differences were highly variable 

amongst individuals, the pattern of release into the plasma (calculated from arterial - venous differences) 

progressively increased with exercise intensity. Babji et al. (1983) reported a gentle exponential rise in 

alanine as work intensity increased, which is a different pattern compared to the linear efflux rate with 

exercise intensity reported by Eriksson et al. (1985).

Therefore at intensities that increase B[Lac"], amino acid metabolism is also possibly induced, with the 

requirement of transporting NH3 out of the cell. Therefore N carrier availability could play a major role if 

intensity increases in the latter stages of a race, the cyclist requires a buffering capacity to maintain 

homeostasis.

4.2.2 Ammonia formation during high intensity exercise.

The predominant source of NH3 during high intensity exercise is likely to come from the purine nucleotide 

cycle. However there is some evidence that increased protein catabolism occurs during acidosis, and may 

contribute to the rise in NH3 during repeated intense muscle contraction (England and Ross-Price, 1995).

Research on athletes with differing backgrounds by Itoh and Ohkuwa (1990) reported significantly higher 

blood NH3 concentrations in sprinters compared to endurance athletes. They concluded that athletes with 

reduced fast twitch muscle fibres and significantly higher mitochondrial content may not posses the NH3 

generating steps from the purine nucleotide cycle. This possible limitation of the endurance athlete may 

have negative consequences upon competitive performance. For example, decreased ability to produce 

ATP through the purine nucleotide cycle may inhibit performance if a sprint finish or attacks are required. 

A lower [AMPD] may also facilitate net loss of adenosine from the muscle. In trained subject groups
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participating in intense exercise Balsom et al. (1992) also reported net adenosine loss post 15 x 40 metre 

sprints and during sprints of differing duration. Balsom et al. (1992) reported minimal increases in 

hypoxanthine with the shorter sprints suggesting that the ATP formation was achieved from other sources 

possibly phosphocreatine availability. Creatine supplementation (20g.day'' for 5 days) has been shown to 

increase the rates of ADP rephosphorylation, and reduce adenosine deaminase activity, therefore reducing 

the accumulation of hypoxanthine and IMP, in other words enabling ATP supply to be maintained through 

an alternate source rather than AMP and IMP formation. The results reported by Balsom et al. (1992) 

where longer sprints generated greater plasma hypoxanthine concentrations led them to conclude the 

acidosis that occurs during longer sprints requiring the activation of glycolysis may interfere with creatine 

rephosphorylation resulting in the need for longer recovery periods between longer sprints, and, due to 

increased rates of fatigue during longer sprints, it is a possibility that the products of AMP degradation 

possibly influence repeated sprint ability.

Again previous research has not acknowledged the need for intense sprinting during simulated road cycling, 

however, the requirement to continually change work rates may induce acidosis and affect rates of recovery 

during variable intensity activity. Bangsbo (1994) reported higher plasma concentrations of NH3, IMP, 

hypoxanthine and uric acid during competition. One could hypothesise that during this type of repeated 

sprint that the removal and disposal of these products could also influence the ability to produce further 

work of a high intensity nature. Therefore during repeated sprint type activity, recovery periods to remove 

these bi products could significantly influence the condition that players are in at the end of competition.

Lutoslawska et al. (1992) reported that rowing for five minutes at 50, 70, 85% of maximum power 

(calculated from a 2 km maximal performance test) with rest periods of 5 minutes between sessions, 

significantly elevated NH3 over steady state exercise. Lutoslawska concluded that there are different 

metabolic demands during intermittent exercise, and referenced the findings of Essen et al. (1977) who 

concluded that a greater muscle mass was utilised during an intermittent cycling exercise protocol compared 

to a steady state condition, possibly due to the increased demands of accelerating up to the desired power 

outputs, during an intermittent condition.

Exercise of a high intensity nature but with an endurance component has also been shown to produce a 

significant correlation between B[Lac'] and plasma NH3 (r=0.66). Rowing performance (2 km) lasting 405 

seconds for male athletes caused significant rises in plasma NH3 from 44.5 to 215 pmol.l'1, and B[Lac'] 1.8 

to 15.1 mmol.l"1, and according to Lutoslowska (1996) indicative of greater reliance on anaerobic pathways 

during the test protocol.

This again raises questions about an ‘ideal’ muscle fibre type, or their training practice to develop an ideal 

profile. The trade off is between the ability to produce higher powers when sprinting or climbing hills 

(Burke et al., 1977) with its associated bi product accumulation, verses the less powerful but more oxidative 

slow twitch muscle fibre.
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4.3 Removal of Ammonia

Due to its possible implications for performance, the ability to remove NH3 from the plasma, convert it to 

urea in the liver and the remove it in sweat or urine (Lemon, (1987) reported 85% of the nitrogen from 

protein catabolism is excreted in the urine as urea) could also play a role in reducing the toxicity of this 

compound during exercise. Again questions need to be asked regarding an actual increase in urea 

concentration as opposed to apparent rises due to haemoconcentration, or reduced removal rates. Indeed the 

largest increases in serum urea are found during recovery post exercise. This is thought to be due to a 

significant reduction in sweating post exercise, resulting in the prevention of urea excretion by this method 

(Lemon and Mullin 1980). The increases in serum urea that have been reported are relatively small, and is 

not a major mechanism that operates during exercise, this is reportedly due to relatively small changes in the 

removal rates of NH3 during exercise that have been reported by Eriksson et al. (1985). Therefore if there is 

only a small increase in NH3 uptake during exercise then it is possible that there will only be small increases 

in the conversion to urea, and the increases seen post exercise may in part be due to both the decrease in 

sweat rates and the increase in blood flow to the liver post exercise delivering more NH3 for conversion.

Typically reported resting urea concentrations are in the region of 6 mmol.l'1 (Rauwbottom et al., 1997). 

Some exercise studies however have found significant changes in the urea concentration in both plasma and 

sweat. Cerny (1975) reported a 20% rise in plasma urea concentration during exercise at 60-65% V 02max 

after one hour in duration. Decombaz (1979) reported a 44% increase in serum urea during a 70-90 km 

cross-country skiing event, but not all studies have found this. Lemon and Mullin (1980) reported that with 

increased exercise intensity there is an increase in urea excretion, which is possibly linked to increased 

sweat rates at higher exercise intensities. Rattu et al. (1996) reported a significant reduction in serum urea 

during a laboratory simulated 25-mile time trial using experienced cyclists as subjects. They also reported 

that during glucose supplementation there was an even greater reduction in serum urea and concluded that 

there was less reliance on amino acids during the glucose trial. The absolute reductions in plasma urea 

concentrations could be due to high sweat rates removing urea. As water supplementation has been shown 

to significantly affect performance in a one hour endurance time trial, it might be the result of maintaining 

high sweat production and hence urea removal. Lemon and Mullin (1980) reported findings along similar 

lines, they reported a more significant rise in urine and sweat urea concentrations in a carbohydrate depleted 

trial compared to a loaded trial (18.97 vs 10.25 mmol.l'1 - a 154.2 fold increase in the depleted state verses 

65.6 fold increase in the loaded state). Lemon and Mullin then used this data and calculated the rate of 

energy derived from protein catabolism during their exercise protocol which consisted of 60 minutes at 75% 

V 0 2max (10.4% in the depleted condition verses 4.4% in the loaded trial).

Lemon et al. (1989) reported increases in serum urea (252% 4.6-11.6 mmol.l'1) during a 62-minute swim at 

an even paced intensity (-70% V 02max). They calculated that decreases in blood flow to the kidneys could 

only account for the 34% of the rise in serum urea. Therefore the amino acid contribution to energy supply

resulted in the observed increase in serum urea. Haralambie and Berg (1976) reported that serum urea
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increased linearly with exercise duration after an initial plateau for 60-70 minutes. They monitored a 

variety of athletes competing in running, skiing, marching, or cycling events. The tasks also varied in 

duration and lasted from 15-765 minutes. They concluded that the rise in serum urea was indicative of liver 

glycogen depletion and also occurs at a point where muscle glycogen is becoming depleted, with the theory 

that accelerated protein utilisation will occur at this juncture. Novak (1986) reported findings of an initial 

rise, an apparent drop followed by a second rise. However the exercise was of 24 hours in duration. Novak 

(1986) also reported a similar pattern of response of serum uric acid, which represents the oxidisation of 

hypoxanthine for disposal. Uric acid has been used as a marker of training status by Rauwbottom et al. 

(1997). They reported a negative correlation coefficient between uric acid and performance, during triathlon 

exercise.

Like Novak (1986), Irving et al. (1989) investigated sustained endurance activity of a 24 hour run. They 

concluded that the increase in urea levels from resting values of 5 pmoLl'1 to 8-9 mmol.I-1 was the result of 

increased amino acid utilisation as a fuel for gluconeogenisis during exercise. Likewise Farber et al. (1987) 

concluded that inadequate carbohydrate intake during an ironman triathlon (over 9 hours in duration) 

resulted in increased serum urea in their study.

From these findings CHO supplementation appears to reduce the amount of energy derived from protein 

during steady state exercise (Lemon and Mullin 1980). However variable intensity exercise could elicit 

different metabolic demands. Higher intensity bursts may increase sweat rates, which is one of the major 

elimination pathways for urea, however lower intensity periods could possibly do the reverse. During 

steady state exercise it has been hypothesised that the rises in urea may simply reflect fuel status within the 

muscle, however the pattern of urea formation during variable intensity exercise has yet to be fully 

documented.
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During steady state endurance laboratory ‘performance’ tests, physiological factors have been shown to 

correlate with maximum work rate for that given period of time, and have been shown to have a close 

relationship with field performance (Coyle et al., 1991). However, the energy cost for that sustained work 

rate, (or efficiency of movement) may also have a bearing upon success in endurance events (Cavanagh and 

Kram, 1995). In simplified terms, if an athlete has used less energy for the same work accomplished than 

an opponent with similar energy stores, then discrepancies in endurance performance between two athletes 

matched with maximum physiological variables could possibly be explained. The aim of this chapter is to 

analyse the findings from research into the economy of movement, and efficiency during steady state 

exercise, and attempt to apply it to the demands of variable intensity road race cycling.

5.1 Definitions of Efficiency

Efficiency equations are used to calculate the amount of energy required to perform a given amount of 

external work. Calculations require steady state exercise for accuracy in gaining accurate calculations of 

energy expenditure. There are four main calculations that are used widely in the literature, (Cavanagh and 

Kram, 1985, Coyle et al., 1992) each have their limitations, and affect the final percentage of energy 

consumed: work done calculation. The most commonly used equation is gross mechanical efficiency 

(equation 5.1).

Chapter Five. Efficiency during Cycling.

Equation 5.1 - Gross mechanical efficiency.

Work Accomplished
C  T 7  l l X 100 Energy Expended

The calculation of gross mechanical efficiency is the division of work accomplished by total energy cost. 

Calculation of gross mechanical efficiency according to Cavanagh and Kram (1985), is limited as it fails to 

account for the energy required to maintain the body at rest (respiration, circulation, ion transport etc.). As 

this energy requirement is not deducted the figures for gross mechanical efficiency are believed to 

underestimate the efficiency of movement.Net efficiency calculation subtracts a resting value of energy 

expenditure (equation 5.2)

Equation 5.2 - Net efficiency

Work Accomplished
Energy Expended 
Above that at Rest
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In analysing this method of calculating efficiency, Cavanagh and Kram, (1985), concluded further 

deductions need to be made from the energy cost of movement. They reported that the energy cost of 

movement in an unloaded state has to be taken into account for calculations to be valid. For example a 

subject can pedal on an unloaded cycle ergometer with the work output being recorded as zero. As this will 

cause an increase in energy cost over resting values, according to Cavanagh and Kram (1985), it should be 

taken into account during efficiency calculations. In other words, the expenditure of limb movement with 

no load must be deducted as a requirement before load is applied to the ergometer. The calculation of work 

efficiency takes this into account (5.3). Work efficiency specifically calculates the energy cost of 

overcoming the resistive forces applied by the ergometer, by deducting resting and zero load cycling. 

However, the calculation of the zero work load is difficult, Gasser and Brookes (1975) tried to gain zero 

baseline by switching their electronically braked cycle ergometer off, but failed to get a satisfactory baseline 

measure. If the zero load energy cost figure is wrong then it will distort the results from the loaded cycling 

protocol. Another reported way to calculate the energy cost of limb movement is to plot a regression line 

through the data points if it is assumed that the relationship between calorific expenditure and work load is 

linear (Gaesser and Brookes, 1975).

Equation 5.3 - Work efficiency

Work Accomplished
“ E--------c------—  X 100Energy Expended

Above that in Cycling 
Without a load

To overcome the problems of calculating a zero limb movement, the delta efficiency equation, gives a 

floating baseline measure from the physiological and external energy cost of the exercise (Gaesser and 

Brookes, 1975). The measurement of increased work accomplished over a previous lower work rate, 

divided by the increased energy cost minus the previous energy cost at the lower work rate (equation 5.4).

Equation 5.4 - Delta efficiency

Delta Work Accomplished 
Delta Energy Expended X 100

According to Coyle et al. (1992) delta efficiency is the most valid estimate of efficiency as the calculation 

eliminates energy expenditure that does not contribute to the work output.
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Gross mechanical efficiencies during cycling have been reported to be between 18 and 26% in 19 well 

trained male competitive cyclists (V 02max ~69ml kg 'min '), (Coyle et al., 1992). However, for a given 

work rate, factors that raise or lower physiological stress upon an athlete will affect efficiency calculations. 

The majority of studies into efficiency and cycling have centred their research around the energetic 

minimum of movement.

5.2.1 Effect of Work Rate

A major criticism of many studies into efficiency and cycling is the low absolute work rates that the subjects 

are required to sustain for a period of time. Gaesser and Brookes (1975), reported that V 02 at higher work 

rates to be proportionally less than at lower work rates. Therefore gross mechanical efficiency, net 

efficiency, and work efficiency all increase as the workload increases. They reported that at relatively low 

work rates between 31-123W there was initially a very rapid rise in gross mechanical efficiency and net 

efficiency as work rate increased the percentage efficiency began to plateau. These are low values for work 

rates for trained cyclists, and would probably play a minor role in the outcome of road race cycling. Coast 

et al. (1996) reported gross mechanical efficiency calculations to range from 19.4%, to 21.2% at an exercise 

intensity of 85% V 02max (—240 W). Another major criticism of efficiency studies is that they have not 

used competitive trained cyclists as subjects for the studies (Davison and Flynn, 1997). Nickleberry and 

Brooks (1996) concluded that there were no significant differences between competitive and recreational 

cyclists at work rates from rest to 250 W, for energy input (V 02), gross mechanical efficiency, or delta 

efficiency. If this is the case, and training status is not an important factor determining efficiency, then 

there is possibly a genetic link determining a cyclist’s efficiency during cycling ergometer exercise. Coyle 

et al. (1992) reported a significant correlation between % slow twitch muscle fibre and % gross and delta 

efficiency, discussed later in this chapter.

If conclusions to be drawn here are that the elite cyclist has no advantage over sub elite riders in terms of 

energy input then the findings from running exercise studies (intersubject differences of 12-15%) appear not 

to follow the same trend during cycling exercise. If this is the case, elite cyclists performing at higher work 

outputs than sub elite riders, must possess mechanisms capable of producing higher forces, and/or are less 

susceptible to fatigue.

5.2.2 Effect of Pedal Cadence

Pedal cadence has been widely researched in the literature as a factor that can significantly alter 

physiological stress upon a cyclist under laboratory conditions. Coast et al. (1986) reported that a rider 

could be disadvantaged by 5-10% by selecting the wrong combination of pedal cadence and work rate. 

Numerous studies analysing pedal cadence in cycling have been performed, with the aim of using efficiency 

calculation to determine an optimal pedal cadence, as minimal rate of energy expenditure for a given work 

rate (Sanderson, 1991). Cycling is different from many other sports in that there can be a large difference in

5.2 Factors Affecting Efficiency
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rate of limb movements to create the same external power output (Hagberg et al., 1981), and it appears that 

there is a possible trade off between efficiency and power output. Trained cyclists typically use pedal 

cadences in excess of 90 revolutions per minute (rev min'1). Marsh and Martin (1995), reported preferred 

cadence in experience cyclists to be 95.3 revmin"1, however the literature related to cadence and efficiency 

has appeared equivocal in terms of physiological and metabolic stress. For the same power output, a 

cadence of 90 rev min'1 has been shown to cause significantly greater rises in ventilatory and heart rate 

responses than a cadence at 60 revmin'1 (Hagan et al., 1992). Suzuki et al. (1979), and Jordan et al. (1979) 

reported similar findings in that delta efficiency was maximised at 60 revmin'1 versus higher cadences (100- 

135 rpm).Coast et al. (1986) reported an optimal cadence of between 60 and 80 revmin'1, as gross 

mechanical efficiency calculations above and below that figure produced an inverted U type pattern for 

physiological responses. Hagberg et al. (1981) adopted a slightly different approach to collecting and 

analysing their data. Using seven highly trained competitive cyclists (mean V 02max ~67ml kg'1 min'1), 

Hagberg et al. (1981) reported the physiological responses relative to the riders’ preferred cycling cadence. 

The B[Lac'] revealed a ‘U’ shape response with the lowest point equating to ~20 revmin'1 lower than 

preferred cadence. This is a similar finding to Buchanan and Weltman (1985), who found the power output 

for fixed B[Lac ] criteria (4 mmol.I'1) for threshold determination to be higher at 60 rpm than at any of the 

higher cadences measured (90 and 120 rev min'1) i.e. a shift to the left with higher cadences. Buchanan and 

Weltman (1985), also reported significantly higher B[Lac'] values at 120 revmin'1 at work rates above the 

lactate threshold. However, as V 02 values were higher for the same power output, it is feasible that the 

elevated V 02 (relative exercise intensity) would be responsible for the elevated lactate response. The other 

variables measured followed a similar pattern in that optimal cadence appeared to be below the preferred 

choice of the riders. Davison and Flynn (1997), using a Kingcycle test rig and trained (maximum minute 

power 394 ± 45 W) experienced (8.4 ± 6.5 years) cyclists, reported that gross mechanical efficiency was 

maximised at 90 revmin'1, as opposed to 80, 100 and 120 revmin'1 conditions. However, conflicting 

findings have been reported by Jordan et al. (1979) on national/world class cyclists using a Monark 

ergometer. Their results showed the lowest oxygen cost of cycling on a Monark ergometer occurring at 60 

rev min'1, and a 5 % increase in V 02 from 85 rev min'1 (the preferred cadence of the road time triallists) to 

115 rev min'1 (the preferred cadence of the track pursuiters). This conflict may be due top the type of 

ergometer used since the Kingcycle test rig is claimed to mimic the rolling characteristics of a cyclist on the 

road, by incorporating high inertial loads (Keen at al., 1991).

Merrill and White (1984), offered a possible explanation for competitive riders selecting high cadences due 

to peer group and coaching pressure, with cadence depending upon cycling discipline (track, road, time 

trial).These findings have implications for the road race cyclist. As previously mentioned preferred cadence 

has been documented to be around 95 rev min'1 (Marsh and Martin, 1995). This cadence has been shown to 

result in an elevated B[Lac'], indicating increased production, and/or decreased removal, and/or increased
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efflux rates. This is also magnified by cyclists having to change cadence with alterations in movement of 

the peleton, which again would alter B[Lac']. If prolonged periods are spent at inefficient cadences, 

inducing a higher relative exercise intensity, increased glycogen would be used for glycolitic energy 

production. However the time spent at ‘efficient’ and/or ‘inefficient’ cadences, and mean cadences of road 

race cyclists have yet to be reported. In the literature changes in B[Lac'] have been attributed to changes in 

blood flow with cadence. Coast et al. (1986) concluded that as higher force contractions have been shown 

to occlude blood flow, differences in B[Lac'] during 60 versus 120 rev min'1 conditions could therefore be 

attributed to the facilitation of venous return by the muscle pump mechanism. This may indicate that the 

skeletal muscle pump (venous return) is more effective at higher cadences, resulting in increased perfusion 

(Gotshall et al., 1996). The resulting increase in blood flow may account for an increased washout of Lac' 

(from the muscle into the blood), which could possibly explain the choice of higher cadence amongst 

competitive cyclists despite a higher oxygen cost of exercise (Gotshall et al., 1996).

5.2.2.1 Pedal Cadence and Muscle Fibre Type

Suzuki et al. (1979) reported that subjects with a high percentage of slow twitch muscle fibre content of the 

quadriceps femoris were more delta efficient at 60 revmin"1 compared to 100 revmin'1 (23.3 vs 19.6%), and 

subjects with a higher fast twitch muscle fibre content of the quadriceps femoris were more delta efficient at 

100 revmin'1 compared to 60 revmin'1 (25.3 vs 28.8%). The conclusion was that more resistance was 

offered to cross bridge cycling at 100 rev min'1 for the slow twitch group as the shortening velocity was too 

high, hence using more energy for contraction (Barany, 1967). Suzuki et al. (1979), concluded that as RER 

values were similar between groups at 100 rev min'1 this suggests that the slow twitch fibre group recruited 

less economical fast twitch fibres, possibly resulting in higher glycogen utilisation. Crowley et al. (1996) 

reported that due to an increased Lac' and epinephrine response, more fast twitch fibres were recruited at 95 

vs 55 rev min'1. In contrast to Suzuki (1979) they concluded that increases in delta efficiency at 95 revmin" 

were due to contraction velocities which were better matched to the optimal efficiency of recruited fibres.

Coyle et al. (1991) reported significant differences between % slow twitch muscle fibres of elite and sub

elite riders (66.5 vs 59.9%). However they did not report any findings on pedal cadence during a 40 km 

laboratory performance trial where subjects were able to alter their pedalling dynamics. Theoretically the 

elite cyclists would have ridden at a lower cadence maintaining the efficiency of their higher slow twitch 

fibre content (nearer to the force velocity optimum for slow twitch fibres) than the sub elite cyclist who 

possessed a higher % fast twitch muscle fibre content. In theory, this could result in a difference in B[Lac'], 

with the sub elite riders recruiting fast twitch fibres with the tendency for higher glycolitic capacity, 

however no significant differences in B[Lac ] were observed during this study (7.1 vs 7.4 mmol.l'1 in elite 

and sub-elite athletes). Coyle et al. (1992) in following up the 1991 study, calculated gross mechanical and 

delta efficiency during 5 minute work bouts at 50, 60 and 70% V 0 2max. Significant correlations were 

found for % slow twitch muscle fibre and gross mechanical efficiency (r=0.75, P<0.001) and for % slow 

twitch muscle fibre and delta efficiency (r=0.85, PO.OOl).
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Takaishi et al. (1996) reported similar patterns of metabolic stress during 15 minutes at 85% V 02max at 

cadences from 40-100 revmin'1 in collegiate cyclists. Different patterns of response to pedal cadence were 

found regarding neuromuscular fatigue at different pedal rates, they found for normalised data the minimal 

values of EMG (muscle recruitment) occurred between 70 and 80 rev min“1 for trained and untrained 

subjects. Increasing the pedal cadence however showed a different response pattern between the two 

subject groups. Trained cyclists had a much smaller increase of EMG activity at the higher cadences, 

compared to the untrained subjects who showed a steep rise in EMG activity. Takaishi et al. (1996) 

speculated that the increased EMG activity was in response to a reduction in force production caused by 

peripheral fatiguing factors, such as Lac' increase, potassium homeostasis, and changes in calcium removal 

from the contractile material. Takaishi et al. (1996), concluded that experience/training status could affect 

neuromuscular fatigue, and speculated that the cadence at which minimal EMG may be higher in elite 

national class cyclists, compared to the riders of 3-4 years experience that were used in their study.

It appears therefore that the muscle fibre type of an individual plays a role in the selection of pedal cadence, 

their individual efficiency, and consequently their metabolic response to the exercise. This has major 

implications for the assessment of cyclists in the laboratory, which is discussed later in this chapter.

5.2.2.2 Pedal Cadence and Ratings of Perceived Exertion

Ratings of perceived exertion (RPE) could possibly explain the reasons why cyclists choose to ride at a 

higher cadence than appears to be physiologically appropriate. The adjustment of cadence is believed to be 

linked to RPE (Cavanagh and Kram, 1985), and maybe due to muscle fibre type, and possibly work load 

(Coyle et al., 1991). Perceptions of effort during cycle exercise have been reported to be affected by pedal 

cadence, however, studies have shown increased RPE with increasing pedal cadence (Coast et al., 1986) 

with the increased metabolic costs of a fixed external work output. Pivamik et al. (1988) found no 

significant differences in RPE at 50 or 90 revmin'1 however non-cyclists were used in this study. Therefore 

why do trained cyclists choose a cadence that feels harder than a slower one? The competitive cyclist 

appears to be riding at pedal cadences above what is believed to be ‘efficient’. This could be simply a 

laboratory phenomenon linked to the methods of testing, and the specificity of exercise. It is possible that 

ergometer testing is not specific enough to cycling on the road. During road cycling there is a need to 

match the dynamics of the rider(s) in front to maintain drafting advantages. Therefore, a higher cadence 

would allow for faster acceleration, shorter time span in the wind and therefore maximising the 

effectiveness of drafting that would play a dominant role in the outcome of cycle races, McCole et al. 

(1990) reported a 28% decrease in V 02 for cyclists drafting behind another rider. Yet this does not explain 

why a rider who has attacked alone and is not drafting during a road race fails to ride at cadences linked to 

RPE, and also the time trialist who has no benefits from drafting again chooses a cadence that is above what 

is believed to be perceived as minimal load. It could be possible that any changes in gradient and or road 

surface may require significant input by the athlete whilst time trialing in the field. Consequently a higher 

pedal cadence is required to minimise stress upon the body in the field, maintaining rhythm and speed. The

34



true physiological costs of riding in the field have yet to be documented, and could affect efficiency 

calculation, which may be the result of differences between riding on a smooth roller/flywheel, compared to 

undulating rough road surfaces. Research in this area by Marsh and Martin (1998) analysing cadences from 

50-110 rev min'1 at powers from 75-250W led them to conclude that RPE may not be a critical factor in 

cadence selection during submaximal cycling.

5.2.3 Effect of Body Mass

A study by Berry et al. (1993) reported net VO, and gross V 02 data to be positively correlated to body 

mass, and accordingly net and gross efficiency were found to significantly negatively correlate with body 

mass during cycle ergometer exercise. This study incorporated a wide variation in body mass to specifically 

look into this area, and is possibly supported by findings from Wahlund (1948), who found similar VO, 

values for a group of individuals homogenous in terms of body mass. Berry et al. (1993) concluded that the 

increases in V 02 observed may be attributed to an increase in work required to move the legs. The authors 

concluded that the use of gross and net measures of efficiency were inappropriate, and that delta and work 

efficiencies would be a more appropriate measure of efficiency due to taking baseline values into account 

when making the calculations.

5.3 Inefficiency During Cycling

Inefficiency during exercise is the term used to describe wasted effort, or a non productive force produced, 

which is stressing energy systems further than is theoretically required for a given movement. Patterson and 

Moreno (1990), studied force effectiveness as a measure of wasted energy during cycling exercise. They 

revealed that a significant amount of force produced (-25%) during the down stroke of the pedal action was 

used to overcome negative forces from the trailing leg, they speculated that training may possibly increase 

motor control, increasing propulsive work output with training status (Faria, 1992). Nickleberry and Brooks 

(1996), found no significant differences for gross mechanical efficiency or delta efficiency between 

competitive and non-competitive cyclists. In theory if the untrained subjects were less co-ordinated to the 

pedal action, compared to the trained cyclists, there would be increased negative forces acting during the 

pedal stroke, causing the inexperienced cyclist to achieve more work during the propulsive phase of the 

pedal action, to maintain a given power output measured at the flywheel of an ergometer. In other words, a 

higher V 02 would have been recorded, decreasing efficiency. The competitive subjects used in this study 

had only 4.3 ±1.2 years experience from which it might be assumed they were not elite cyclists, but were 

reasonably powerful athletes (75% V 02max equated to 258 ±10 watts). Coyle et al. (1991) made a 

comparison of force production during a Lac' threshold test between elite and sub elite cyclists. They found 

the negative forces on the upstroke of the pedal action to be similar in both groups, and the performance 

differences (53.9 ±0.5 vs 60 ±1.1 min/40 km) were attributed to a higher peak torque produced by the elite 

riders. As gross mechanical efficiency was not significantly different between groups, it indicates that for a 

given workload the energy cost was similar. As the elite subjects were able to sustain a higher work rate
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and a higher ratio of propulsive to negative forces, you would expect a higher V 02submax value, however, 

the propulsive forces acting on the cranks were not measured during the performance ride, and any increase 

in negative forces, may require increases in propulsive forces to maintain a power output on an ergometer 

measuring flywheel velocity. Sanderson (1991), concluded that experienced cyclists (USA Cat II) had 

similar characteristics to recreational cyclists for index of effectiveness (proportion of overall force 

perpendicular to the cranks), but relatively low work rates (100-235 watts) may have failed to make any 

distinction between subject groups. Sanderson (1991) did report however a reduction in index of 

effectiveness as cadence increased from 60-100 rpm. During 70 minute laboratory simulated time trial rides

it has been shown there is a steady increase in V 02, VE, B[Lac'] and heart rate (Balmer et al., 1998). 

Despite no increases in power output, it appears that subjects are under considerably more physiological 

stress in the latter stages due to the upward drift in these variables. It is speculation, but it is possible that 

due to fatigue there may be a gradual increase in negative forces acting on the crank, making the rider work 

harder to maintain the work output measured at the rear wheel of the bicycle. However according to 

Patterson and Moreno (1990), ineffective force production that increased as pedal cadence increased from 

60-120 rpm, resulted in relatively small increases in metabolic cost to compensate for the non quantifiable 

work output. Nevertheless, the effects on muscle fatigue of forces acting against the pedal crank motion 

have yet to be documented, especially with regard to endurance performance. Hagan et al. (1992) 

concluded that during prolonged exercise the drift upwards in V 02 at exercise intensities over 50% V 02max 

was a result of increased muscle fibre recruitment, after estimating 13-15% of the drift could be attributed to 

increased core temperature, and 6-15% could be attributed to the increase in the 0 2 demand of the 

respiratory muscle whose work rate increased due to increases in ventilation. Supporting their findings 

were Poole et al. (1991) who found 86% of the rise in V 02 could be accounted by an increased leg 0 2 

uptake. They also concluded due to a reduction of B[Lac] with time, the drift up in V 02 could not be 

attributed to the B[Lac'].

5.4 Implications for the Physiological Assessment of Cyclists

These findings have implications for the laboratory testing of cyclists. Many protocols have used fixed 

criteria for pedal cadence (e.g. 60 rpm) to determine fatigue at maximal or submaximal exercise protocols 

which have remained popular as they enable relatively unfit subjects to participate in exercise testing 

(Pivamik et al., 1988). Disparity between performance results and laboratory tests could therefore be 

explained by ‘inefficient’ cadences chosen by experimenters. Cadence appears to be an individual 

phenomenon, and any cadence chosen as a set protocol will cause inefficient losses amongst at least some 

subjects. In theory this may cause elevations in physiological responses, which might be interpreted to 

suggest weaker performance in the field, and disparity between laboratory and field performance. There 

may also be differences in the process of loading upon muscles during ergometer testing as opposed to track 

or road cycling, and possibly variations between ergometer types (Kenny et al., 1995), which again could
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influence physiological responses to submaximal exercise, and altering efficiency calculations between 

laboratories.

In terms of laboratory simulation of cycling, the cyclist should be able to manipulate cadence as if they were 

cycling on the road or in competition. Their behaviour in the peleton should be matched, so that the 

physiological responses recorded can be applied to their actual race behaviour. The reduction in pedal 

cadence that has been observed in the field (Davison and Coleman unpublished observation) could possibly 

be a factor that may alter performance. A laboratory protocol that attempts to simulate cycling using a 

fixed cadence criterion, may fail to match the physiological stress a competitive cyclist endures in the field, 

reducing the applicability of findings to the competitive cyclist.

A further point to consider when interpreting laboratory based efficiency data is the temperature and 

humidity of the environment in which the cyclists are participating. According to Daniels (1985), these 

factors will have a significant effect on the efficiency of movement. Increased energy cost of circulation, 

sweating, and ventilation under hyperthermal conditions will reduce efficiency as the work accomplished 

will remain unchanged. This again could be an influencing factor for variation of inter and intra subject 

differences, and cause variations in reported efficiencies between laboratories.
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Chapter Six. Physiological Characteristics of Road Racing Cyclists

During steady state cycling, the energy supply depends upon and individual’s aerobic capacity, their 

maximal aerobic power, the proportion of this which is sustainable, and an individual’s mechanical 

efficiency (Olds, 1992). Olds (1992), speculated that with alterations in race duration, and speed changes, 

the relative importance of different factors may change. For the road cyclist, with events that last for a 

minimum of 45 minutes, riders are possibly going to require different attributes to the track sprinter (whose 

performance lasts -10-11 seconds), however very little literature has been published on the road race 

cyclist.

6.1 Aerobic Power of Road Race Cyclists

Previous studies that have simulated road race cycling have focused on using exercise intensities relative to 

aerobic power, with intensities ranging from 30-90% of maximum power output derived from a V 02max 

test (Brouns et al., 1990, Palmer et al., 1997). Therefore highly oxidative muscle fibres would be a 

potential advantage, along with the ability to produce high power outputs without the build up of BLac". 

The oxidative nature of road cycling is further highlighted by a recent publication in the popular cycling 

press (Cycling Plus, August 1998) which showed a mean work output of 269 watts for a ride of nearly 

seven hours in duration (figure 6.1).

Figure 6.1 SRM data published in the popular cycling press from the Amstel Gold World cup race; 

The SRM system was recording the work output of race winner Bjarne Riis

400 T

Values reported for V 02max in elite road race riders were reported by Vrijens et al. (1982), with Belgium 

professional riders attaining figures of 4.71 lmin'1 (65.7 mlkg"1 min"1). Faria et al. (1989), reported previous 

studies findings of values of 77.4 ml kg'1 min-1 in British elite riders and 67.6 ml kg^min'1 in Dutch elite
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riders (in Bonjer, 1979). Brennan et al. (1994) reported Kingcycle maximal minute power figures (MMP) 

for three groups of riders, including the Northern Ireland commonwealth games squad (Table 6.1). The 

testing protocol for maximal minute power is described in 7.2.2.1. Previous research by Keen et al. (1991), 

reported a significant relationship between V 02max and MMP output achieved on the Kingcycle rig. Table

6.1 below is the predicted V 02max values from the Brennan et al. (1994) study. The Brennan et al. (1994) 

findings of a higher predicted V 02max in Northern Irelands’ elite versus sub elite development riders is a 

similar finding to Malhotra et al. (1985), who reported that in Indian cyclists who attained higher absolute 

(linin'1) and relative to body mass (ml kg'1 min'1) values were the selected riders for international duty. 

Selection was gained through previous competition results with the laboratory tests conducted after 

selection decisions were made.

Table 6.1 Maximum minute power values and predicted V 0 2max values from (Brennan et al. 1994).

Rider Status MMP MMP kg'1 Predicted Predicted V 0 2max

(W) (W k g1) V 0 2max (l min'1) (ml kg"1 min ')

Commonwealth 486 7.09 5.376 78.4

Games Squad

Development 455 6.22 5.085 69.5

Squad

Club Level 423 6.11 4.733 69.2

Sjogaard (1984), reported V 02max values again in professional continental riders of 4.96 linin'1 or 71 

ml kg'1 min'1, compared to riders competing at a lower level of 3.79 lm in'1 and 56 mlkg'1 min'1. Pfeiffer et 

al. (1993) reported the potential dangers of using absolute laboratory markers as performance indicators 

during road race cycling. This was because team tactics, crashes, and differing terrain will all influence 

finishing positions, and are not taken into consideration with laboratory testing.

When the demands during cycling change from lower power outputs to the higher power outputs, Oz 

kinetics may also play a major role in a rider’s ability during road cycling. Craig et al. (1993) reported in 

track cycling (4000 metres pursuit) not only is there a requirement for a high V 02max, but also the ability to 

achieve it quickly as this could also significantly influence results. This has been speculated by Olds 

(1992), who stated that during shorter distance events it is not necessarily the V 02max that is important, but 

the anaerobic capacity and V 02 kinetics that play a large role. Fast V 0 2 kinetics could cause a reduction in 

the reliance upon anaerobic sources during the initial stages of exercise, sparing muscle fuel, and reducing 

acidosis within the muscle. To produce high forces, and to continually change work rates in a variable 

fashion (Palmer et al., 1994), the reliance on anaerobic pathways may be essential. Therefore a high 

V 02max may not indicate the true performance potential of an individual. However the anaerobic
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component of the sport has not been emphasised during the previous attempts to simulate the sport in the 

laboratory. This is possibly due to the comparison of heart rate recordings in the field to a heart rate and 

power regression equation derived from testing in the laboratory. Using this method no exercise intensity 

will exceed maximum heart rate and hence V 02max. The recording of power during the field on one rider 

during a mountain stage (6.5 hours in duration) of the Tour de France by Jeukendrup and VanDieman 

(1998) again did not highlight the importance of ‘anaerobic’ powers, but the smoothed data (each data point 

consisting of a mean power of the previous 60 seconds) did have data points in excess of 400 watts for 

sustained periods. In the same paper Jeukendrup and VanDieman (1998) also showed a power trace of a 

170 km race smoothed over 10 seconds was a lot more variable than the heart rate trace, with data points in 

excess of 700 watts. As the SRM system is a relatively new tool in the field of cycling there is little data 

published on actual field cycling, and no studies to date have reported further resolution (1 second sampling 

is available using the SRM system) than the Jeukendrup and VanDieman (1998) paper during competitive 

cycling events of any ranking. Therefore assumptions about the relative importance of the anaerobic and 

aerobic systems and their contribution to successful road race performance appear in conflict from the sport 

science simulations, compared to the coaching perspective of individuals working in the sport.

During steady state exercise at the previously simulated intensities (Brouns et al., 1990), exercising at 90% 

V 02max requires a significant contribution from the anaerobic system. Potteiger et al. (1995) concluded 

that although this intensity of exercise relies heavily on aerobic indices, there are significantly elevated 

levels of BLac' resulting in decreased muscle and blood pH. Burke et al. (1977) hypothesised that due to 

competitive road cyclists requiring oxidative potential for long periods and the ability to break away, climb 

and sprint, a mixture of 50% slow twitch, and 50% fast twitch muscle fibre would be ideal for both the 

sprinting and endurance requirements in the sport. Evidence from elite professional road riders suggests 

this is not the case, and, as reported previously, higher values for V 0 2max in professional riders indicates 

that a high oxidative capacity is essential, therefore even in athletes that compete in variable intensity 

exercise a high percentage of slow twitch muscle fibre is essential. Sjogaard (1984), reported that for elite 

riders 55-85% of muscle fibres were slow twitch (compared to 15-75% in riders of a lower category), they 

also reported higher capillary density in elite riders, per cross sectional area (509 vs 380 capillaries per 

mm2), and per fibre (3.3 vs 2.1 capillaries per fibre), compared to lower category riders. Sjogaard (1984), 

measured the ‘aerobic potential’ of these athletes using the ratio of citrate synthasedactate dehydrogenase as 

a marker. She reported that as the cycling season progressed, (where emphasis is upon racing and recovery, 

and having to do less ‘training’) aerobic potential increased through a reduction in lactate dehydrogenase 

and an increase in citrate synthase activity.

6.1.1 Oxygen Consumption and Relative Exercise Intensity

Previous studies have used maximal ‘aerobic’ power (watts), and V 02max as parameters to establish 

relative exercise intensity during laboratory tests (e.g. Coggan and Coyle, 1989). Keen et al. (1991) reported 

a significant relationship between maximum minute power on a continuous ramp test to volitional
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exhaustion, and V 02max in a heterogeneous population of cyclists (r=0.98). Likewise using a slightly 

different protocol (25 watts increases in work rate every 150 seconds), Hawley and Noakes, (1992) reported 

a significant correlation coefficient r= 0.97 (p<0.0001) between these two variables in a heterogeneous 

population of cyclists. Hawley and Noakes (1992) acknowledged that they were unsure if this relationship 

would hold for a homogenous population of racing cyclists. There has been no data published on a more 

homogenous group of racing cyclists from these authors. However Coyle et al. (1992) reported that elite 

riders and sub elite riders had no differences in V 02max, yet their sustainable percentage of V 02max, and 

mechanical power output were significantly different, resulting in the performance differences. Loftin and 

Warren (1994) reported VO,max to be a poor predictor of 16 km performance (r=-0.31), and concluded that 

markers at the ventilatory threshold (absolute V 02 at ventilatory threshold, and percentage of V 02max) 

were better predictors than absolute V 02max. Coyle (1998) has since concluded that to normalise exercise 

intensity, the use of the Lac' threshold should be employed rather than a fixed percentage of V 0 2max during 

assessment of endurance exercise. These findings are echoed by Bishop et al. (1998) who suggested that 

the reason ‘lactate threshold’ markers correlated to endurance performance was because lactate simply 

reflected a rate of muscle glycogen use, therefore in theory, speed or power (at lactate threshold) would 

correlate to endurance performance (rate of fuel utilisation). The findings by Coyle et al. (1991) and Loftin 

and Warren (1994), are not supported by the findings of Dobbins et al. (1998) who reported strong 

correlations between performance and measures of V 02peak and maximal minute power at V 0 2peak. This 

is possibly due to differences in the V 02peak testing protocols. The Dobbins (1998), studies used the 

Kingcycle test rig for their data collection for both performance and maximal testing protocols. Bishop et 

al. (1998) also reported a significant correlation (pO.OOl) between maximal values and performance. If the 

conclusions by Bishop et al. (1998) (performance prediction from lactate threshold tests simply reflect a rate 

of glycogen use), are taken into consideration with the Dobbins (1998) study, where Kingcycle maximum 

minute power was a significant performance predictor, the two would be linked theoretically. Previous 

studies have used percentages of Kingcycle maximum minute power to ‘normalise’ relative exercise 

intensity (Passfield et al., 1995) however to date, no data has been published on the physiological responses 

at different relative exercise intensities relative to Kingcycle maximum minute power. The relatively fast, 

continuous ramp ~ 20 watts per minute (employed by the Kingcycle software) compared to stepped 

protocols ( 3 - 4  minute work stages, increasing 25 watts per increment) could possibly account for the 

differences observed. It is possible that this test, and the subsequent powers reached, or predicted and 

measured V 02max values are heavily influenced by Lac' kinetics and therefore produce high correlation 

coefficients to performance in the laboratory. In other words the percentages of maximum minute power 

sustained is very similar between individuals (Bishop et al., 1998). The stepped ramp protocol used by 

Coyle et al. (1991) may yield different (lower) values for maximal power output. Coyle et al. (1991) used a 

protocol that consisted of increasing work rate every 2 minutes to exhaustion. Dobbins et al. (1998) 

reported similar findings when altering continuous ramp rates during maximal testing protocols. They
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reported significantly lower VCfipeak values during a 5 watts per minute ramp protocol compared to faster 

ramps of 20 watts, and 35 watts, per minute (Table 6.2).

Dobbins et al. (1998) controlled the duration of the 35 and 20 watts trials (8-12 minutes). In their 

conclusions they made the assumption that if anaerobic capacity could be expressed as a fixed amount of 

time that could be sustained above a work load (that can be sustained by the aerobic system), the faster work 

rates will elicit higher maximum powers due to the increased ramp per minute of exercise. Likewise during 

the slower ramp rate of 5 watts they concluded that the extended time spent above the aerobically 

sustainable intensity exhausted the anaerobic system, via the build up of metabolites before V 02peak was 

elicited. The 5 watts trial lasted 30.36 minutes compared to 10.43 and 11.15 minutes in the 20 watts and 35 

watts trials.

Table 6.2 Effect of ramp rate during maximal testing (Dobbins et al. 1998).

Protocol V 0 2peak (linin'1) Maximal Minute Power (W)

35 watts 4.32 ±0.63 393 ±50

20 watts' 4.18 ±0.54 367 ±47*

5 watts 3.93 ±0.48** 305 ±30**

* Denotes Significant difference from the 35 watts protocol. (p<0.05)

** Denotes Significant difference from 20 watts and 35 watts protocols. (p<0.05)

If there is a fixed amount of time that an individual can sustain above an aerobic work load then stepped 

protocols are likely to yield lower maximal power figures than fast ramp protocols, this may explain 

differences in performance prediction from different test protocols both Coyle et al. (1991) and Loftin and 

Warren (1994), used step type protocols. One further point to note is that the results from the Dobbins et al. 

(1998) study, is that there are greater standard deviations for both V 02peak, and maximum minute power 

during the higher versus the lower ramp rates, which could possibly indicate a greater differentiation 

between riders’ abilities. Therefore, during studies that are trying to achieve a standard exercise intensity 

for athletes, the testing protocol for V 02max, and power at V 02max appear critical in determining a relative 

exercise intensity.

6.1.2 V 0 2max and Performance Prediction

Unsurprisingly due to the time involved in the endurance events of cycling, V 02max has become the 

common method of predicting performance. During field performance, the results will also depend upon the 

terrain. This is likely to influence the correlation coefficient depending upon whether the raw data is 

expressed relative to body mass (ml kg'1m in'1), or in absolute terms (linin'1). Table 6.3 below shows a 

collection of endurance cycling tasks and their correlation to V 02max. The highest correlation coefficient 

reported in Table 6.3 comes from the study by Malhortra et al. (1985), who concluded that stronger 

correlations to absolute V 02max are achieved with the longer duration of a performance trial
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Table 6.3 Predicting performance from VCTmax values.

Author Performance trial Correlation 

Coefficient, 

(time: VO,max)

M alhortra et al. (1985). 1 min'1 84 km (undulating) r=-0.87

Dobbins (1996). Linin'1 16 km (undulating) r=-0.86

Rollings et al. (1995). 1 min 1 2 km (climb) r=-0.60

Dobbins (1996). ml kg'1 min'1 16 km (undulating) r=-0.59

Debold et al. (1996) ml kg'1 min'1 14.73 km (climb) r=-0.79

6.2 Pacing Strategy

The use of physiological variables to predict performance in road race cycling is going to have its 

limitations due to the effects of drafting, team tactics employed and the terrain involved. To add to those 

variables Hickey et al. (1992) reported that the knowledge of an appropriate pacing strategy will alter time 

trial performance significantly. It is unclear in many studies how the pacing strategy of individuals or a 

group was controlled for. However, during repeated performance trials altering the pacing strategy could 

significantly influence performance. Foster et al. (1993) reported that during track cycling there is a wide 

variation in pacing strategies in short events lasting from 1-4 minutes. During the 1980 Olympic 1 km 

cycling event (~65 seconds) there was a trend toward slowing down in the latter stages. During the 4 km 

event there was a trend toward even paced strategy throughout the trial. Ingen Scherer et al. (1992) also 

reported data from these two events, and then employed ‘all out’ and ‘constant power’ trials over these 

distances. They reported that the all out strategy employed during the 1 km event produced the fastest 

results, and the actual performance of the riders during the 4 km event produced the fastest times compared 

to their intervention trials (Figures 6.2 and 6.3). These are in contrast to the findings of Foster et al. (1993), 

who reported that during 2 km track cycling the even paced trial appeared to yield the fastest times 

compared to four other pacing strategies (Figure 6.4).

Foster et al. (1993) reported that these changes in time did not attain statistical significance, but went on to 

conclude that the findings were meaningful in the sporting context in terms of selecting the correct pacing 

strategy. They also reported no significant correlations to V 02 uptake kinetics, the percentage of work 

derived through oxidative metabolism, or accumulated oxygen deficit values. They concluded that 

differences in the rates of muscle Lac" accumulation in relation to pacing strategy may be responsible for the 

changes in performance seen in their study. It appears for cycling disciplines of 2 km and further, even 

power strategy appears to yield the fastest times in those events.
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Previous findings by Coleman et al. (1994) showed that cyclists who were given no feedback on pacing, 

produced a ‘U’ shape pattern of power production in terms of their pacing strategy (Figure 6.5).

Figure 6.2 Pacing strategy and finishing time for 1 km cycling (Ingen Scherer et al., 1992).

65 . 

64.5 _

ACTUAL ALL OUT CONST ANT POWER

Strategy

This pattern was reproduced for all four conditions in a study looking at the effects of creatine 

supplementation on 16 km cycling performance. An initial hard start was followed by a reduction in power, 

and a rise in pace again in the final minutes of the 16 km event.

Figure 6.3 Pacing strategy and finishing time for 4km cycling (Ingen Scherer et al., 1992).
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Figure 6.4 Starting pacing strategy and finishing time for 2km cycling (Foster e t a l 1993).
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Figure 6.5 ‘U’ shape pattern of power output during 4 trials (mean of eight rides per trial). (Coleman

et al., 1995).
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This ‘U’ shape pattern of pacing has also been shown to exist in the field (Balmer unpublished observations) 

and during other laboratory trials by Lindsay et al. (1996), in a study evaluating performance over 40 km, 

the subjects were again blinded to time elapsed, and in both trials this pattern was observed with 

approximately 50 watts decrease in power from the initial fast start to the trough of the ‘U’. During a 

second trial after an interval training intervention, the pacing still ultimately followed the ‘U’ shape, but at 

approximately half distance an increase in power output for approximately 10 minutes was observed before 

returning to a lower power. This pattern has not been seen in the field, and has not been previously reported
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in the literature. A change in pacing would have influenced the overall results, with the only measured 

physiological marker of heart rate which was elevated due to the increase in power.

Figure 6.6 shows the B[Lac'] measured at 5 minute intervals throughout the performance trial in the study 

by Coleman et al. (1994). The B[Lac'] showed an initial steep rise, linked to the fast start of these athletes.

Figure 6.6 B|Lac | during 16km performance. (Coleman et al., 1995).
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The period of adjustment by the athletes (reducing power output) still resulted in an increase in B[Lac‘]. It 

would be interesting to speculate on the effects of reducing the fast start by these riders, which might 

decrease initial B[Lac ], resulting in the ability to maintain a higher work output during the middle phase of 

the 16 km performance trial. Therefore, if there are changes in pacing between trials for repeated 

performance testing it may not only effect the time to compete the trials (Foster et al., 1993), but also the 

metabolic responses that are recorded during such testing. These findings therefore need to be applied to 

repeated measures testing, and in terms of performance testing need to be standardised to ascertain if 

differences in performance are due to physiological or pacing phenomena.

Hickey et al. (1992) reported the coefficient of variation for performance (time) over three different 

durations of cycling exercise, -105 minutes, -12 minutes, and -0.55 minutes. Blinding their subjects to 

time elapsed, and only allowing them to view work completed (kJ), they reported that there was low 

variation for the two longer trials (Table 6.4). During the shorter trial there was greater variation compared 

to the other two trials.

Despite not indicating the pacing strategy of these athletes, the findings of Hickey et al. (1992), indicate 

there is minimal variation in trained cyclists performance (time and work rate). However, there were larger 

variations in physiological response in the Hickey et al. (1992) study (table 6.4).
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Table 6.4 Coefficient of variation for experienced trained cyclists (US category 2/3) over three 

different duration trials. (Hickey et al., 1992).

Variable —105 minutes -12.03 minutes -0.55 minutes

Time 1.01% 0.95% 2.43%

kJ 0.5% 0.53% 1.35%

Watts 1.25% 1.53% 3.09%

VO, 1 min 1 3.02%

V 0 2 ml kg 1 min 1 3.64%

RER 3.53%

6.3 Effects of Body Mass; Hill Climbing Ability

A high V 02max relative to body mass may also be a prerequisite of a successful road cyclist due to the 

terrain involved in many races. The importance of hill climbing ability has been recognised by Rollings et 

al. (1995) as an important component of cycle racing that can influence the of results in cycle road races. 

Swain and Wilcox, (1992) reported that during uphill cycling most of the power output achieved goes into 

opposing the forces of gravity, leaving little for the development of forward force. This suggests that the 

effect of body and cycle mass will significantly influence performance. A study by Stovall et al. (1993) 

reported that during the Tour Du Pont (America’s top international stage race), significant correlations were 

observed between the body mass of 55 male competitors and the finishing times on the three stages of the 

race with the most amount of climbing. The most significant correlation (r=0.41) between these two values 

was observed on stage 8, which had 6000m of climbing during the 158 km stage. Pfeiffer et al. (1993) also 

observed a significant correlation between finishing time and relative V 0 2 ml.kg'1min'1 on 11 stages of an 

elite female stage race. The results from these studies are interesting in that because of crashes, mechanical 

problems and team tactics it often means that stronger riders are left back in the peleton, therefore the 

correlation may actually underestimate the true significance of the relationship. These intervening variables 

would also be implicated in one day racing, however no data has been reported on single one-day races, or 

body mass relative to laboratory power output and finishing race position. Jeukendrup and VanDieman 

(1998) showed the importance of sustained high power outputs in excess of 350 watts during a mountain 

climb lasting approximately one hour during the Tour de France. During one day racing this may not 

necessarily be the case, as sustained one hour climbing is not generally a characteristic of one day racing. 

Rollings et al. (1985) found a significant correlation between laboratory 2 km climbing performance (time) 

and relative V 02max (r=-0.71) as the highest predictor of performance. They concluded that an increase in 

V 02max, and optimising body mass would improve hill climb ability in trained cyclists.

According to Swain et al. (1994) the relationship between climbing ability and relative measures is not 

directionally proportional to body mass. They reported that during uphill treadmill cycling the mass
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exponent was calculated to be 0.79. A direct relationship with body mass would have revealed an exponent 

of 1, however, as the 0.79 value is closer to 1 than the mass exponent for V 02max (0.67 which is also 

observed for surface area), then small cyclists should have better performances during hill climbing because 

their relative advantage in VO,max is greater than their relative disadvantage in energy cost. The 

disadvantage to smaller riders is that the mass of the bicycle is relatively heavier when compared to the 

heavier cyclists. Swain et al. (1994) reported that the added cost of the bicycle to be 12% in the larger 

cyclists as compared to 17% in the smaller riders. This resulted in a lower relative V 02 among heavier 

cyclists on a 10% gradient at 11.3 km.h'1 when expressed in ml.kg^min'1.Changes in the physiological 

response during uphill cycling are further complicated by the alteration in cycling position, with riders 

sitting in the saddle, and standing on the pedals. Swain and Wilcox (1992) reported an increased V 02 during 

standing cycling was due to the use of accessory muscles recruited during the rocking motion of the bicycle. 

They concluded that increased upper body muscular activity was involved in torso stabilisation, and that the 

legs needed to provide support during standing cycling. The question of why trained cyclists adopt the 

standing position on the bicycle for an increased metabolic cost therefore needs to be addressed. Swain and 

Wilcox (1992), concluded that the shift to standing on the pedals brings the riders mass over the pedals 

which may enhance power production, and may relieve muscle fatigue by changes in recruitment patterns. 

Ryschon and Stray Gundersen (1991), concluded that the reasons cyclists choose the standing position is to 

reduce perceived exertion. However, the nature of physiological measurement in the laboratory during 

these studies has meant that cyclists have been required to spend extended periods of time in the standing 

position. It is debatable whether this would be the normal requirement in a road race where they might put 

in short bursts in the standing position. It is possible that this may not necessarily elevate the physiological 

responses to standing cycling that prolonged periods in the standing position have shown, however this has 

yet to be investigated. Anecdotal data from experienced cyclists also suggests that a shift to standing 

cycling may also be partly due to relieving contact points with the saddle and avoiding saddle soreness.

Any event that increases the need for a rider to complete the task standing out of the saddle may therefore 

require an increase in energy supply. The selection of when to alter position on the bicycle and altering 

muscle fibre recruitment could be an important factor in cycle races. Therefore the reasons may be 

peripheral fatigue, and the rider changes position to relieve these sensations. This results in increasing the 

energetic demand, (some of which is due to upper body exercise), which may increase the cost of 

movement centrally (V 02 and heart rate), but may however momentarily relieve the peripheral effects of 

fatigue. Despite possible changes in the position of a rider, the movement on the bicycle whilst climbing, 

and the importance of climbing ability in any major cycle race (e.g. Tour de France) there has been no data 

published on how graded cycling compares to the stationary position associated with laboratory ergometer 

type testing (e.g. Kingcycle or Monarch cycling).This line of investigation has implications for the 

evaluation of competitive cyclists in the field. Palmer et al. (1994) reported the heart rate responses of an 

elite group of cyclists during the Giro del Capo a 4 day stage race in South Africa. Any evaluation with
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regard to matching the heart rate to a measured laboratory power output may be limited by any changes in 

seated and standing cycling. This could also be said for power measurement in the field with regard to 

metabolic stress. A set power output may have increased metabolic demands if the rider stands on the 

pedals increasing V 02 and heart rate compared to the seated position, therefore increasing the demands for a 

given power output. In this example the interpretation of the heart rate:power regression equation 

determined in the laboratory possibly has its limitations when extrapolating to field performance where 

cycling in and out of the saddle has occurred. The measurement of both power output and heart rate 

simultaneously in the field may allow for the analysis of the heart rate power relationship with regard to the 

true cost (power) of the event.

To summarise, many studies have evaluated cyclists with specific attention to aerobic power, which in the 

laboratory setting appears reproducible although the absolute values attained may vary according to the 

methods involved. The two major previous studies that have attempted to simulate road race cycling have 

also emphasised the importance of V 02max and assumed that a high oxidative capacity appears to be a 

prerequisite of the elite road race cyclist (Brouns et al., 1990, Palmer et al., 1997) However these studies do 

not appear to acknowledge that there are many road races that end in sprint finishes, and there are also many 

intermediate sprint ‘primes’. Consequently the capacity to produce anaerobic power may also play an 

important role in the performance outcomes of the road race cyclist.

6.4 Anaerobic Responses of Trained Cyclists

The measurement and applicability of anaerobic power to racing cyclists has been relatively ignored when 

compared to the volume of literature regarding aerobic power. This is probably not surprising considering 

that road races last from 1-8 hours in duration, indicating the sport has an important endurance component. 

However, it is not necessarily the rider who possesses the highest aerobic power who will be the first rider 

over the line. Burke et al. (1977) indicated that anaerobic power is also an important requirement for 

competitive road racing cyclists. These athletes need the ability to be able to break away, climb steep hills 

and sprint at the end of the race, Burke et al. (1977) hypothesised that a fibre type mix of 50% fast twitch, 

50% slow twitch slow twitch could possibly be ideal for these athletes, as the races are a mixture of both 

sprinting and endurance demands, although as previously indicated, studies have not shown this to be the 

case (Sjogaard, 1984). Palmer et al. (1994) reported that road racing was stochastic, with the dynamics of 

the peleton responsible for the changes in intensity (heart rate response). Possible implications of a higher 

anaerobic power could mean that it would take less time, and hence less overall effort to bridge gaps that 

appear when coming out of comers, with pace changes, and matching the efforts of other riders. This would 

aid in keeping the cyclist in the slipstream of other riders to far greater effect, reducing the oxygen cost of 

cycling (McCole et al., 1990) and hence the overall energetic demand of the event.
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6.4.1 Measurement of Anaerobic Power in Trained Cyclists

Relatively few studies have analysed the anaerobic power of competitive racing cyclists through single 

anaerobic test protocols. Tanaka et al. (1993), reported data from 30 second Wingate tests on a selection of 

American based riders. They concluded that as riders moved through the category system of the USCF 

there was an increase in peak power, mean power, and peak and mean power relative to body mass (Table 

6.5). This could be interpreted as the quality of races increases as you move up the category system, 

anaerobic power needs to be increased to participate in those races. Indeed, Vrijens el al. (1982) reported 

no significant differences between professional riders and development squad riders for maximal aerobic 

power, therefore differences in race performance and results could possibly be explained by differences in 

anaerobic power, however no reference was made to issues of the percentage of sustained power and 

efficiency of these cyclists. The categorising (licensing) of individual riders however may favour those with 

higher relative anaerobic power. During many races, there will be whole peleton sprint finishes, for first 

place, and nearly always for the lower placing where points to move up the category system would be 

available. By drafting and staying with the main peleton those riders with the greater anaerobic capacity 

can regularly pick up points to upgrade their category. Whereas those riders’ who possess a lower 

anaerobic capacity would have to escape from the peleton to secure points. This depends upon their tactics, 

teamwork, and other riders’ tactics, to collect points from the category system.

Table 6.5 Wingate Anaerobic Power of Category Ranked Cyclists. Tanaka et al. (1993)

CAT 2 (n=7) male 3 (n = ll) male 4 (n=12) male 2-4 (n=6) 

female

Peak Power (PP) (watts) 994.07 985.17 923.41 783.67

PP/kg (watts.kg'1) 13.86 13.55 12.8 12.17

Mean Power (MP) (watts) 804.05 805.16 749.45 614.8

MP/kg (watts.kg'1) 11.22 11.06 10.4 9.56

% Fatigue 34.25 33.46 36.65 37.8

Therefore the findings from Tanaka et al. (1993), (table 6.5) could possibly be explained from a different 

perspective. However, the importance of a high anaerobic capacity are highlighted from the coaching 

perspective.

Sheam et al. (1996) also analysed anaerobic capacity in the form of Wingate tests on 12 regional cyclists, 

who recorded lower figures than that of Tanaka et al. (1993). Peak power (PP) values were 704watts, (10.1 

watts.kg'1) Mean power (MP) 592.4watts (8.56 watts.kg'1). The authors also gave their subjects a 7.1 mile 

time trial task on relatively flat roads, the subjects recorded a mean time of 1057 seconds for the time trial. 

Correlation analysis was performed, and time to complete the time trial significantly correlated with PP.kg'1

(r=-0.58), mean power.kg'1 (r=-0.61), and total work.kg'1 (r=-0.61). This data suggests that 7.1-mile time
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trial is linked to anaerobic power and body mass indices, or that aerobic power and anaerobic power 

correlates in these athletes. As the time trial task lasted over 17 minutes in duration, the major contribution 

of energy supply would be expected to come from oxidative processes. The findings by Sheam et al. 

(1996) possibly imply two things, firstly, there is possibly a high contribution of anaerobic energy release 

during the time trial task, according to Balmer et al. (unpublished observations) during a laboratory 

simulated 16 kilometre time trial, subjects were exercising at 84% V 0 2max. As the 7.1-mile test is shorter 

you would expect the intensity to be slightly higher, Potteiger et al. (1995), concluded that exercising at 

90% V 02max relies heavily on aerobic indices, there are however large amounts of lactate produced, 

indicating a significant anaerobic contribution to overall energy production.

The second possible explanation of the Shearn et al. (1996) findings could suggest that the Wingate testing 

protocol is not a test purely of anaerobic energy supply, but there is a significant aerobic contribution 

(Medbo et al., 1989, reported a 40% aerobic energy contribution to a 30 second sprint). This has been 

speculated by Withers et al. (1991) who, concluded that during 30 second sprints the processes of (ATP) 

replenishment is primarily supplied by phosphocreatine (PCr), however some ATP would be synthesised 

from oxidative metabolism by the 0 2 stores in the body bound to haemoglobin and myoglobin, and from 0 2 

dissolved in body fluids and in the lungs. During longer sprint tasks (60 and 90 seconds) Withers et al., 

(1991) reported significant correlations between V 02max and average power (r= 0.81, and r=0.97), and 

highlighted that aerobic metabolism plays a major role during anaerobic capacity testing in endurance 

athletes (in this case road cyclists).

Withers et al. (1991) also speculated there may be individual variation in response to 30 second sprint tests. 

They hypothesised that two subjects can perform exactly the same amount of work during such a test, but 

depending upon V 02max, and the V 02 increase at the onset of such a test, there are possible differences in 

anaerobic yield from the test. Therefore two riders competing in the same sprint finish may produce the 

same amount of anaerobic energy for contraction, but depending upon aerobic parameters and oxygen 

kinetics, the winner of the sprint could theoretically be the rider who is able to supplement the anaerobic 

energy release via oxidative energy metabolism, and perform more work. These authors also reported that 

the percentage of fast twitch fibre, and index of fatigue both significantly correlated with the peak B[Lac'] 

(r=0.81 and r=0.85 respectively). Withers et al. (1991) speculated that a high V 02max, and fast oxygen 

kinetics would reduce glycogen depletion, and reduce lactate yield from a sprint, which would have 

implications for endurance exercise.

Withers et al. (1991), reported that duration of the anaerobic test will also alter the physiological responses 

during this type of exercise. They reported similar peaks in B[Lac ] response time, in terms of time to peak 

(7.5 minutes post test) after separate all out sprint tests lasting 30, 60 and 90 seconds. However differences 

were seen for the absolute values of BLac'. Significantly lower values were seen for BLac' after 30 seconds 

compared to the other sprints of longer duration, possibly indicating a greater reliance of PCr to supplement
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the energy for contraction rather than glycolysis, plus according to Medbo et al. (1989), an aerobic 

contribution of 40% of the energy supplied during a 30 second sprint effort. The highest B[Lac'] were seen 

after 60 seconds sprinting, and although there is a higher percentage of aerobic energy supply of 

approximately 50% (Medbo et al., 1989), PCr stores would be exhausted rapidly, and glycolysis would be 

the major supply of anaerobic energy production during sprinting of this duration. During the longer sprint 

of 90 seconds, less BLac' accumulation occurred, this was according to Medbo et al. (1989) due to the 

inhibition of glycolysis by H~, reducing the muscle cell’s ability to process glycogen in this manner, and any 

further Lac' production would be dependant upon the individual’s ability to transfer lactate to other 

compartments.

Sprints during the road race event may possibly vary in duration, however, it could be speculated from 

previous simulation studies by Brouns et al. (1990) and Palmer et al. (1997) that anaerobic capacity does 

not play a major role in this type of exercise because they have not simulated intense anaerobic demands.

Terrandos et al. (1994), concluded that the anaerobic capacity of professional road racing cyclists was not 

limiting when they compared values of Maximal Accumulated Oxygen Deficit (MAOD) to short distance 

Kayak racers on sport specific ergometers. The Kayak racers were classed as highly anaerobic athletes due 

to the nature of their short distance event (500m), and as the results showed no significant differences 

between the athletes for MAOD, they concluded that anaerobic capacity in elite cyclists was not a limiting 

factor to performance. This supports the conclusions of Tanaka et al. (1993) who summarised that although 

aerobic power is a major determinant of success in endurance events the anaerobic power in their athletes 

was very high, and higher than have been reported in some anaerobic athletes.

Sjogaard (1984), took muscle biopsy samples taken from the vastus lateralis muscle to analyse for

anaerobic and aerobic enzymes. She measured concentrations of Lac' dehydrogenase (LDH) as a marker of

glycolytic activity within the muscle. Concentrations of citrate synthase (CS) were used to represent the

aerobic potential of the muscle. Comparisons were made for these enzymes between elite ‘Tour de France’

cyclists, and competitive road racing cyclists of a lower standard. The study also measured these variables

in the close season (February) and in July when the riders would be expected to be in peak condition for the

Tour de France cycle race. The elite riders had significantly lower LDH concentrations compared to the

competitive riders (628 mmol.kg.d.w'1 vs 1100 mmol.kg.d.w'1 respectively), but the elite riders had

significantly higher CS a concentration compared to the competitive riders (69 mmol.kg.d.w'1 Vs 41

mmol.kg.d.w'1). The ratio of aerobic:anaerobic potential CS:LDH ratio was higher in the elite riders

compared to the competitive riders (CS:LDH 0.1 Vs 0.04 respectively). From the beginning of the racing

season (February) to the end of the Tour de France, (July) the concentration of LDH decreased (612-518

mmol.kg.d.w'1), in the elite riders, where as CS concentration increased (65-112 mmol.kg.d.w'1) which

increase the ratio of CS:LDH to 0.2 in July. There are a couple of explanations for these findings, the first is

the nature of training and racing that the elite riders participate in. The elite riders participating in the Tour

de France would be expected to cover 3,500-4000 kilometres in a 3-week period. The other races on the
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elite calendar are also often over 250 kilometres in length, incorporating the need for aerobic endurance in 

such events. The competitive riders would be competing over shorter distances, typically races lasting 100- 

160 kilometres in length. With these races being considerably shorter, in theory they could be more intense, 

requiring a larger anaerobic capacity to cope with the demands of the event, compared to a 250 km race 

requiring greater aerobic endurance. This could also help explain why the sub elite riders who compete in 

shorter races spend a higher percentage of time at higher intensities hence success is determined by fibre 

type make up or the training/racing patterns of these riders. The results from Sjogaard (1984) study may 

help to explain why riders struggle to make the transformation from amateur to professional cycling, as the 

demands placed upon a successful elite professional rider may well be different from racing at an amateur 

level.

Sjogaard (1984) also reported BLac' values recorded after a maximal aerobic power test, the results 

indicated that the competitive cyclists relied to a greater extent on anaerobic energy sources as B[Lac'j were 

significantly higher than the elite riders (elite 8.2 mmol.I'1 vs competitive 15.7 mmol.I'1). The values for the 

elite riders are similar to those reported by Mendoza et al. (1994) in competitive cyclists (8.2 ± 2.6 mmolT 

'). Barlow et al. (1985) reported that non-competitive cyclists recruited more fatigueable fast twitch fibre 

during maximal aerobic power testing, which resulted in greater BLac' accumulation, despite producing less 

work than competitive cyclists. With the results from Terrandos et al. (1994) and Tanaka et al. (1993), 

indicating that anaerobic capacity in elite level cyclists is high, coupled with the results from Sjogaard 

(1984), of reduced LDH activity, and higher CS activity it may indicate that top level road cyclists are able 

to produce more work through the activation of slow twitch fibre than untrained or less conditioned 

individuals. Coyle et al. (1992) reported that despite a greater percentage of slow twitch muscle fibre, elite 

time trial cyclists produced higher peak torque at the crank arm than non elite time trial cyclists. With 

reduced LDH activity in slow twitch muscle fibre this would then lead to a reduction in lactate production 

until higher relative intensities.

The road race cyclist has the ability to produce high values for anaerobic power (Tanaka et al., 1993), yet 

does not possess the intermediate enzymes for glycolytic energy production in high concentrations 

(Sjogaard, 1984). Therefore it appears that the road cyclist has the ability to achieve high powers without 

the classic muscle fibre type or glycolytic capacity generally associated with anaerobic performance. To 

date no studies have looked at the interaction between the aerobic and anaerobic capacities of these athletes.

6.4.2 Repeated Sprint Activity

A major criticism of single tests to analyse anaerobic capacity in relation to race performance is that they 

are not specific enough to road racing cyclists. With track sprinters, there is a single effort made lasting 

between 10-12 seconds, however, it appears according to Palmer et al. (1997) that the road race cycling is 

made up of many changes in intensity. Therefore the looking at a single sprint may not give us the 

information that is required when looking at differences between elite riders and sub elite riders. 

Unfortunately data on repeated sprint ability is only available on team game players.
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Research by Hamilton et al. (1991) reported that after completing thirty, six second running sprints (54 

seconds recovery) the post exercise B[Lac ] showed a strong relationship with peak speed (r=0.9), peak 

power (r=0.92), and mean speed (r=0.83). This research was carried out on team game players whose 

muscle morphology is likely to be different from the more homogenous slow twitch morphology of road 

racing cyclists. However, Hamilton et al. (1991) speculated on the effects of a higher slow twitch aerobic 

athletic component. They hypothesised that the greater 0 2 supply might aid in the replenishment of PCr 

which has been shown to be directly related to capillary density (Tesch and Wright, 1983). Therefore 

despite glycolysis being activated in the first second of contraction, (Balsom et al., 1992, Hultman and 

Sjoholm, 1983) athletes with a higher slow twitch muscle fibre make up may rely to a greater extent upon 

PCr, and replenished PCr during repeated sprint activity reducing the reliance on glycolysis and the LDH 

reaction, resulting in lower Lac' production. This again has implications for endurance with decreased 

glycogenolysis, and increasing the availability of glycogen during the later stages of exercise. The pattern 

of force production during repeated sprints has been shown to change during repeated sprint activity. 

McCartney et al. (1984) reported that during a set of 4 x 30 second sprints on a bicycle ergometer, peak 

power was attained in the first 2 seconds of the first two sprints. During the final two sprints, the peak 

power was not generated until the 10lh second of the protocol. (There was a decrement of peak and mean 

power from tests 1-4, but there was a similar rate (slope) of fatigue during all tests). These findings were 

supported by Spriet et al. (1989) who reported that during three repeated Wingate tests, peak power was 

achieved in the first 1-2 pedal revolutions in the first two tests, but delayed until the 9lh - 10lh pedal 

revolution in the third test. Both protocols used similar 4-minute rest periods between sprints. The authors 

hypothesised that despite the availability of PCr, the rapid rate of PCr utilisation stimulated glycolysis 

during the first two sprints. Glycolysis then appeared to be inhibited during 3rd and 4th sprints as there was 

no detectable reduction in glycogen or rise in muscle Lac'.The pattern of force application in road cyclists 

has not previously been reported, however, it is interesting to speculate as it may help to explain why elite 

road race cyclists have a high slow twitch fibre content, yet the demands appear to have an important 

anaerobic component. If during repeated sprinting there is a tendency for the peak power to be applied to 

the crank after 10 seconds during later efforts, this also has implications for the tactical nature and training 

of road race cyclists. The ability to produce high forces instantly would increase the riders’ ability to close 

gaps, and accelerate away from other riders who may take longer to generate the forces. This is a possible 

difference between cyclists of different standards, where it is not necessarily the peak power produced, but 

the time to peak power that is important, and influencing performance as described by Burke et al. (1977).

6.4.3 Physiological Response to Intermittent Endurance Exercise

Many team and individual sports are made up of bursts of high intensity activity, followed by periods of 

recovery. Many of these activities last well over 60 minutes in duration, implying that physiologically there 

is an important aerobic component, as well as an essential anaerobic capacity, to compete in such sports. 

This has been acknowledged by Schabort et al. (1998) reported high reproducibility during an intermittent
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exercise protocol (coefficient of variation for time 1.7%) on three repeated trials of 100km at an even power 

with four 1 km and four 4 km maximal efforts incorporated.

One of the major studies investigating intermittent exercise was carried out by Essen et al. (1977). Using 

an intermittent protocol (INT) of 15 seconds of work followed by 15 seconds of rest, to produce a mean 

power of 157 watts (55% V 02max), the intermittent protocol was compared to continuous exercise (CONT) 

at the same intensity and duration (60 minutes). During their study the heart rate response differed between 

the two conditions. During the continuous protocol the heart rate was initially 11 beats min'1 lower when 

compared to the intermittent trial, which supports the conclusions of Kenny et al. (1995), and Vanhelder et 

al. (1985) who reported that the linearity of heart rate versus power is influenced by intermittent exercise, 

causing elevations in heart rate for a given power. These findings are in contradiction to those of Palmer et 

al. (1997) who found during a similar matched intermittent and continuous experimental protocol, heart 

rates were actually higher on average during the continuous protocol compared to the intermittent ride (153 

Vs 150 beats min'1). However, as the exercise progressed during the Essen et al. (1977) study, a drift of 20 

beats min'1 during INT and 27 beats min'1 during CONT, resulted in no significant differences between the 

two trials at the end of the exercise protocol. The findings from Essen et al. (1977) could be linked to the 

V 02 response where initially the V 02 was higher in the intermittent and then the drift up in V 02 from the 

CONT exercise matched the V 02 response from the INT protocol. The lower initial heart rate during 

CONT and the greater drift up (27 beats min"1) could be explained by alterations in substrate use. Although 

there were no significant differences in glycogen depletion between the two protocols or free fatty acid 

oxidisation, slightly higher triglyceride utilisation was observed during the CONT trial. The greater drift up 

in heart rate (and 0 2 cost) during CONT may have been due to the higher 0 2 cost of triglyceride utilisation 

later in exercise. Vanhelder et al. (1985) reported that free fatty acid oxidisation was significantly higher 

during the continuous task as opposed to the intermittent protocol, (although contradictory to the findings of 

Essen et al., 1977), could also lead in an increase in V 02 to oxidise free fatty acids as substrate. Palmer et 

al. (1997) reported less drift up in the heart rate response during their 150 minute protocol at 58% power 

output at V 02max (10 beats min'1), this study used trained cyclists, and it is possible that the subjects were 

able to metabolise a greater proportion of triglycerides from the beginning of both the continuous and the 

intermittent protocols. A V 02:power output comparison over time-of trained cyclists has not previously 

been reported, but it has implications for the measurement of heart rates from the road race event (and other 

sports) and trying to predict demands in the laboratory from establishing a V 02:power response, which will 

possibly be altered due to the individual intermittent nature of each race. These findings also have 

implications for riders that use a pulse meter to gauge their efforts during road race events, with not only 

elevations in heart rate during the race compared to steady state rides, but also possibly a drift up over time 

in the heart rate response, compared to power.

The Essen et al. (1977) study also revealed differences in leg blood flow between the two protocols. The

CONT protocol elicited a higher overall leg blood flow, whereas the INT exercise had higher blood flow
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during the recovery periods compared to the intense intervals. This has the implications for the supply of 

0 2 and the removal of bi-products, which could be a key factor in competitive road race cycling. The 

repeated occlusion of blood flow to the exercising limbs could result in significant local fatigue due to the 

inability to supply substantial amounts of 0 2 to the working muscles. No significant differences were seen 

for muscle glycogen depletion due to the changes in blood flow, a greater reliance on local glycogen supply 

might be expected, however, a greater use of blood glucose was observed for the CONT protocol (23% Vs 

17%), which is possibly due to the occlusion during the intermittent trial reducing blood flow, and transit 

time for the supply of blood glucose. Vanhelder et al. (1985) reported that during intermittent exercise of 

20 minutes duration (1 minute work 1 minute rest), there were no differences in blood glucose 

concentrations when compared to a continuous task of the same duration. This possibly indicates that as 

time increases, blood glucose could play an increasing role in continuous compared to intermittent exercise.

Due to the greater blood glucose and triglyceride utilisation during the CONT protocol of the Essen et al. 

(1977) study, and the similarities for glycogen and free fatty acid oxidisation, there appears to be a small 

discrepancy for energy utilisation between the two protocols. It is possible that Lac' utilisation could have 

been used by active tissues. Essen et al. (1977) reported the production of 1.5 molemin'1 of Lac' throughout 

the INT protocol, compared to the CONT trial, where apart from the first 5 minutes of exercise there was 

no net production or removal of Lac'. Kozaris and Mongomery (1991), also reported changes in the Lac' 

response with an intermittent versus continuous protocol. They also concluded that sustained muscular 

contraction restricted blood flow, but immediately post exercise there was an increase in blood flow. They 

concluded that increased blood flow during recovery increased the Lac' efflux, as opposed to a continuous 

test where there would be minimal changes in blood flow. Due to the occlusion during short work periods 

there is a greater rate of glycolysis which could also be accounted for by the increased Lac' values seen 

during intermittent protocols. For the road race cyclist it is important that sufficient recovery is permitted 

between bursts if tactics allow. This would enable recovery periods to remove Lac' and H+, and increase 

blood flow to the previously active muscle fibres. The release of Lac' may also reflect a larger recruitment 

of fast twitch fibres during an intermittent protocol (Essen et al., 1977). It has been speculated that both fast 

twitch and slow twitch fibres are recruited during intermittent exercise (Spriet et al., 1989, Linossier et al., 

1993). During repeated Wingate sprinting, Spriet et al. (1989) reported that the work rate during the third 

test (4 min recovery between tests) was 82% of the previous bout, but only 32% of glycogenolysis occurred 

compared to the previous bout. They concluded that it was possible through the activation of and slow 

twitch fibre for a greater ATP yield to come via the oxidative metabolism of glycogen. Linossier et al. 

(1993) reported an increase in the percentage of slow twitch fibres following a 7 week intensive 5 second 

sprint training program, however, the fibre size appeared to decrease, resulting in an unchanged percentage 

and slow twitch area. This could possibly explain the findings of Sjogaard (1984), who found homogenous 

fibre type amongst elite professional riders 55-85% and slow twitch fibre, compared to the lower level 

competitive cyclists 15-75%. Linossier et al. (1993) concluded that slow twitch fibres becomes more
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involved during the recovery periods from intense exercise, repleting PCr, and oxidating Lac' within the 

muscle. Further evidence of both fast twitch and slow twitch fibre activation during intermittent exercise 

comes from the reductions in muscle glycogen in both fibre types during this mode of exercise (Greenhaff 

et al., 1992). Linossier et al. (1993) reported at the end of an intermittent training protocol there was a 

significant increase in glycolytic activity, and no change in the concentrations of PCr. Glycolytic activity 

during this study significantly correlated with the production of high powers (r=0.87). As anaerobic power 

is believed to be involved in sprinting, climbing and breaking away during road race cycling, then 

potentially the glycolytic capacity of the rider could play an important role in performance and race results 

of an individual. The effects on performance of variable intensity versus continuous exercise have been 

reported by Palmer et al., (1997). During a 150 minute variable intensity road race simulation protocol at 

58% Wmax, subjects performed a 20 km time trial in the fastest time possible. The variable intensity 

protocol increased the mean time to complete the task by 1 minute 36 seconds, and reduced the mean power 

output sustained by 37 watts, and the mean heart rate by 6 beats min'1. Palmer et al. (1997) concluded that 

this was due to greater reliance upon glycogen during the variable intensity protocol, reducing the substrate 

availability during the performance test. No data has been published by these authors on the speculation of 

greater glycogen utilisation during the variable intensity task compared to an even power trial. However, 

there is a possibility because the activation of both fast twitch and slow twitch fibre during variable intensity 

exercise would cause glycogen depletion in both fibre types (Greenhaff et al., 1992), whereas during the 

continuous protocol there would be less fast twitch fibre activity, enabling greater fast twitch recruitment 

during the intense 20 km performance test. The results from these studies suggest an increased energy cost 

of performing variable intensity exercise compared to a continuous work output, with the results indicating 

that performance is significantly affected. There are issues regarding quantifying the energy cost of 

accelerating up to higher powers due to the inertial effects of the ergometer flywheel during variable 

intensity exercise trials. There has been no detail included regarding this issue within the methods sections 

of these papers so it is unclear whether the inertial cost of acceleration has been discounted, and the subjects 

in fact produced more work during intermittent trials. Although there are some issues surrounding the 

methods associated with changes in pace during variable intensity exercise, it still appears that continuous 

trials are less demanding and maintaining a continuous power output would increase performance in the 

latter stages of races (Palmer et al., 1997). A steady state ride appears an impossibility during a road due to 

the peleton dynamics (Palmer et al., 1994) therefore if variation in intensity occurs, selecting when to make 

the bursts of effort, and recognising the detrimental effects of wasted attacks can be incorporated into race 

tactics and will have implications for performance.

6.5 The Specificity of Exercise; The Ergometer

In evaluating aerobic and anaerobic power, the use of cycle ergometers alongside treadmill testing is 

probably the most popular format for the testing of athletes in the sport science laboratory. These tests

appear sport specific to the racing cyclist, however research has begun to question the assumptions behind
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the extrapolation of laboratory findings to field performance. Simulating cycling in the laboratory may not 

be as simple as it appears. A study by Padilla et al. (1996) reported changes in the energetic demand 

between simulated laboratory cycling and actual velodrome cycling. They reported significantly higher 

B[Lac'] in the field tests compared to the laboratory tests at the higher work rates. There are a couple of 

limitations to this study, firstly, exercise intensity was calculated using the equations from Di Prampero who 

used track cyclists for the V 02 - speed calculation, where as Padilla et al. (1996) used road cyclists. This 

could affect the energetic demands of the track tests by inexperienced riders failing to maintain the shortest 

distance around the velodrome, which experienced riders would be following. The second limitation is the 

lower pedal cadence at which the laboratory test were calculated (70 rpm), as opposed to the self-selected 

ratios that would be higher in the field. Further possible explanations for these findings are documented by 

Kenny et al. (1995). These authors compared the submaximal exercise responses to riding on a velodrome 

surface, and laboratory exercise tests on a Monarch type stationary ergometer, and cycling on a motorised 

treadmill. They used heart rate as an intensity guide and found significant differences in forces at the crank 

between field and laboratory tests. Kenny et al. (1995) reported higher peak and average crank torque 

values during treadmill cycling, which would be likely to elevate the demands, and increase B[Lac'] as 

described by Padilla et al. (1996). Kenny et al. (1995) concluded that this was possibly down to differences 

in maintaining balance on the track compared to maintaining balance on a monarch ergometer or cycling on 

a treadmill. Kenny et al. (1995) speculated that the inertial characteristics of the laboratory testing 

ergometers could account for the differences in physiological responses, although no mention was made 

about the energetics of leaning around the curves of the velodrome compared to upright cycling on the 

ergometry systems. This is a valid consideration when testing athletes and trying to make comparisons to 

field conditions. For example Loftin and Warren (1994), reported that competitive cyclists (USA category 

3 and 4) with a laboratory measured V 02max of 4.0 lm in'1, (55.4 ml kg’1 min'1) were able to complete a 16 

kilometre task on Velodyne trainer in an average time of 16 minutes and 18 seconds, riding at a mean pedal 

cadence of 118 rpm, for a sample of six subjects. The average speed for such a ride is 58.9 km.h'1 which is 

substantially faster than the current world hour record, held by Chris Boardman, (a top professional rider), 

who completed the record ride at a predicted mean power output of 442 watts (Keen, unpublished 

observations). It is unlikely that the category 3 and 4 riders could perform such high work rates considering 

their V 0 2max values. It is possible that the inertial characteristics, and loading upon the riders were 

different when compared to those experienced in true racing conditions.

The work of Loftin and Warren (1994) was designed to test riders in their sport specific positions, Svaren et 

al. (1994), concluded that the use of racing cycles attached to test ergometers, can yield differences in 

V 0 2max due to alterations in motor unit recruitment patterns. This could possibly be an area of variation 

amongst tests performed on elite athletes. Many studies have attempted to evaluate elite and sub elite riders 

in respect to physiological and metabolic variables, however, the ability to perform in the laboratory may be 

concealed by changes in such things as muscle fibre recruitment patterns, altering physiological and
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metabolic demands. Padilla et al. (1996), reported that in their experience of laboratory testing, elite 

cyclists preferred sport specific tests, which where performed with equipment with which they are familiar.

This does however pose a few problems for the experimenter. The developments of sport specific cycling 

ergometers that allow the cyclist to mount their own bicycles are a significant progression from the 

Monarch type system previously used. However, there are other considerations that need to be made before 

expressing the potential for an ergometer to simulate field conditions. Evangelisti et al. (1994) investigated 

changes in the riding position of moderately trained cyclists (V 02max = 56 ml.kg'lmin'1) and their 

physiological cost of movement. They manipulated the handlebar position of the riders from the standard 

drop position to using an aerodynamic handlebar position. The authors found that the drop handlebar 

position yielded a significantly lower heart rate (2 beats min'1) and V 0 2 response (2 ml.kg'1min'1), indicating 

changes in position can alter the physiological cost of cycling. They concluded that it is essential to test 

riders in their cycling position in the laboratory for accuracy. During road races cyclists tend to move 

around on their bicycles to an extent. Standing for sprinting and hill climbing, moving forward on the 

saddle in an aerodynamic tuck on the flat etc. The ergometer chosen must have the ability to cope with 

these changes, as the reasons cyclists move are possibly due to decrease the sensation of effort in the legs 

(Tanaka et al., 1996), or according to Swain and Wilcox (1992) riders move to enhance power production, 

and relieve muscle fatigue by changing recruitment patterns. In terms of testing cyclists, the ability to move 

around is essential when looking at endurance tasks. If Swain and Wilcox (1992) are correct, and that 

fatigue can be relieved by a change in position (from seated to standing for example) then any ergometer 

that requires an elite cyclist to remain in the same position could cause premature fatigue, and show a 

poorer reflection of an individual’s capability. In terms of endurance, any change in muscle fibre 

recruitment may also allow for the use of glycogen that would otherwise remain inside the (un) recruited 

muscle cell. It appears that the ergometer choice could potentially affect physiological responses to exercise. 

Therefore the selection of ergometer (and protocol) must replicate the sporting conditions in order for 

cyclists to perform to their racing potential.
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Chapter Seven. Rationale for studies described in the thesis

7.1 Chapter 9. (study 1).

In the simulation of cycling, there have been many different methods of ascertaining a relative exercise 

intensity to standardise procedures. Previous research has used percentages of V 02max to determine a 

relative exercise intensity (e.g. Coggan and Coyle, 1987). The rationale behind using this method is that 

performance can be predicted from maximal values. Strong correlations have been found between 

performance and V 02max, the values shown previously in table 6.3 display results from a variety of studies 

(r=-0.59 to 0.87). However, V 02max has also been shown to be a poor predictor of performance, Loftin 

and Warren (1994) reported a correlation coefficient r=-0.31. This has led to other methods being utilised 

to standardise relative exercise intensity. Passfield et al. (1995) used maximum minute power (derived 

from Kingcycle testing protocols) to identify a relative exercise intensity in highly trained cyclists. 

Maximal minute power has subsequently been found to strongly correlate to performance, Davison et al. 

(1997) reported r>0.9 between maximum minute power and 16.1 km laboratory simulated trials. In terms 

of constructing a road race simulation protocol from power output data, a measure of power output would 

be required to achieve this. Keen et al, (1991) reported a strong correlation between maximal minute power 

and V 02 max, however, no studies have evaluated the maximal minute power test for reliability, and the 

physiological responses of cyclists at different percentages of this maximal intensity. Therefore one of the 

initial aims of this study was to evaluate this test, for reliability and note the physiological responses of well 

trained cyclists riding at different percentages of maximum minute power output.

7.2 Chapters 10 & 13. (Study 2 and 5)

Previous research has estimated the energetics of road race cycling from the heart rate and power 

relationship in the laboratory (Palmer et al., 1994). However, there are some discrepancies between the 

perceptions of the demands of the sport (e.g. Burke et al., 1977) and the findings of those who have 

attempted to simulate road race cycling in the sport science laboratory (Brouns et al., 1989. Palmer et al., 

1997). With the development of a portable power measuring device (SRM powermeter), one of the aims of 

this study is to clarify the energetics of actual field competition.

Burke et al. (1977) speculated that sprinting, like hill climbing, was a key factor associated with road racing 

performance. Compared to the volume of literature on cyclists aerobic power, there is limited data on the 

anaerobic responses of well trained road race cyclists. With the recording of power output during 

competitive races, the aim was to also record standard laboratory tests of anaerobic power/capacity 

(Wingate) to compare field and laboratory based responses.

The aim of this study is to record field data on competing cyclists, and, using this data, create a simulation 

of road race cycling in the laboratory that replicates the demands that these riders face in the field.

The simulation of road race cycling by Palmer et al, (1997) included a 20 km performance time trial at the 

end of the simulation. There were however minimal physiological variables presented, therefore predicting
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performance following a period of simulated road cycling was not possible. The benefits of constructing a 

valid simulation of road race cycling and performance test would allow for the measurement of 

physiological variables, which might give some insight into the factors that influence road race cycling 

performance. Previous research has indicated that B[Lac'] could be linked to performance outcomes 

(Sjogaard, 1994), likewise NH3 (Brouns et al., 1990), percentage of V 02max (Coyle et al, 1992), and 

efficiency (Cavanagh and Kram, 1995). Palmer et al., (1997) speculated that during their simulation of road 

cycling there was more muscle glycogen used compared to an even power trial, and, this resulted in 

reductions in performance following simulated road cycling compared to even power cycling. Previous 

research has indicated that carbohydrate availability (Coggan and Coyle, 1989) is critical to endurance 

performance. Yaspelkis et al, (1993) and Hargreaves et al, (1984) reported muscle glycogen sparing during 

an intermittent exercise protocol with glucose feeding. During even power cycling this has not been 

reported, however performance benefits have been reported (Coggan and Coyle, 1989). The performance 

benefits have been indicated to come from the ability of blood glucose to support exercise intensity, 

however this is limited to 75% V 02max late in exercise (Coggan and Coyle, 1988). With the speculation of 

Palmer et al, (1997) and the findings of Yaspelkis et al, (1993) and Hargreaves et al (1984), it could be 

speculated that glucose supplementation may have a greater impact upon intense performance (-100% 

V 0 2max) following intermittent exercise than compared to even power cycling due to the resynthesis of 

muscle glycogen during intermittent protocols. Therefore a comparison of responses (and performance) to 

glucose feeding for even power and intermittent cycling was a further aim of this study.

7.3 Chapters 11 and 12. (Studies 3 and 4).

Burke et al. (1977) also speculated that climbing was a very important components of road race cycling. 

Stovall et al. (1993) reported that significant correlations were observed between body mass and time to 

complete mountainous stages of a professional stage race, and Pfeiffer et al, (1993) reported that V 02max 

(ml kg'1 min'1) correlated to the finishing time of elite female road cyclists during similar hilly days of a 

stage race. The studies by Stovall et al. (1993), and Pfeiffer et al. (1993) would have had their data 

influenced by team tactics, crashes, mechanical trouble, which could result in stronger or lighter riders left 

behind weaker/heavier riders. No research has been conducted on the measurement of power output and the 

prediction of this key component of road race cycling, therefore the aim is to analyse the role of hill 

climbing in road races, and report the key factors associated with hill climbing performance.
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Chapter Eight. General Methodology

The aim of this chapter is to outline general methods of physiological testing (equipment and protocols 

used) that were common throughout the various studies. All laboratory-based studies were carried out in 

the Canterbury Christ Church University College Sport Science laboratory. This laboratory holds British 

Association of Sport and Exercise Sciences (BASES) accreditation status.

8.1 Subject Recruitment

All studies gained ethical committee approval prior to the onset of physiological testing. Subjects were 

recruited on a voluntary basis, initially with the help of a British Cycling Federation Senior coach. All 

subjects completed a medical questionnaire, and gave written informed consent. All subjects were informed 

that they could withdraw from the testing protocol at any time.

8.2 Testing Procedures

8.2.1 Initial Testing Procedures

Prior to all physiological assessment in the laboratory, laboratory temperature and humidity were recorded 

(RS TH07, SLS. Nottingham, UK) and barometric pressure (F.D & Co. Ltd. Watford, UK).

Upon arrival at the laboratory general subject details were recorded. Subjects’ age, height and body mass 

were recorded to the nearest year, 0.01 m, and 0.1 kg (Balance beam scales, Kent & Sussex scales, 

Wadhurst, UK) respectively.

8.2.2 Equipment and Testing Protocols

Equipment that was commonly used throughout the studies is outlined below, with a brief introduction, 

protocols, and validation/reliability practices.

8.2.2.1 The Kingcycle Testing Rig

8.2.2.1.1 Introduction

The Kingcycle testing rig (EDS Portaprompt, High Wycombe, UK) has previously been used by sport 

scientists and coaches as a sport specific method of exercise assessment, and has been used to evaluate elite 

cyclists by the British Cycling Federation.

The Kingcycle was developed to simulate the inertial characteristics of rolling resistance that a cyclist 

would experience on the road. The rig allows for the attachment of the subject’s own bicycle with the front 

wheel removed and the forks clamped onto a support by a quick release skewer. The bicycle is supported 

underneath the bottom bracket shell by an adjustable rubber support, which is used to raise or lower the 

subject’s rear wheel onto a roller. The roller is air-braked to create the resistance with a fan on one side of 

the roller, and a 4.6 kg flywheel on the opposite side of the roller.

During use the Kingcycle rig relays information via an optical sensor adjacent to the flywheel to a PC (DAN 

Technology PLC) to display power output continuously by analysing the velocity of the flywheel using 

equation 8.1.
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Equation 8.1 Calculation of power output by the Kingcycle test rig.

watts = 0.000136 (RPS)3 + 1.09 RPS

(RPS = revs s'1)

8.2.2.1.2 Calibration Procedures

The calibration procedure of the Kingcycle relies on a deceleration curve stored in the computer’s memory. 

Before calibration can commence however, the operator must ensure that the pressure in the rear bicycle 

tyre is standardised (100 psi), and that the subject doesn’t move from the calibrated position on the bicycle. 

The operator selects the power value to which the rig is to be calibrated, and asks the subject to pedal up the 

flywheel to that power. Upon reaching that power the subject is instructed by the PC to stop pedalling and 

hold their position on the bicycle. The computer then matches the current deceleration curve with that of 

the ideal curve stored in its memory. If the current curve differs from the stored curve the PC will instruct 

the operator to raise or lower the subject’s bicycle to match the decay curve. The rig is then deemed to be 

calibrated as long as the subject maintains the same position on the bicycle.

8.2.2.1.3 Kingcycle Maximum Minute Power Test.

The Kingcycle maximum minute power (MMP) test was used during these studies to determine a maximal 

power value at V 02max, and to simultaneously predict/measure V 02max. Previous research by Keen et al. 

(1991) produced a significant correlation coefficient (r=0.98, pO.OOOl) between maximal minute power 

and V 02max.

Once calibration procedures have been completed, subject details of name, age, height, body mass, category 

and gender are entered into the programme. The starting power and ramp rate for an individual are selected 

on the basis of ability, gender, and body mass, with the aim of achieving volitional fatigue within 8-12 

minutes. The computer displays a gradually increasing power output that the subject must match for a valid 

test to occur. When the subject cannot maintain the desired work rate, the test is terminated. The highest 

average power over any 60-second period during the test is termed maximum minute power. A schematic 

diagram of this test is shown in figure 8.1. This has been shown to be reproducible by Keen et al. (1991) 

who reported significant Test-retest reliability (r=0.98). Palmer et al. (1996) also reported reproducible 

figures for the Kingcycle testing rig for submaximal performance testing (coefficient of variation for time,

1.1 ± 0.9%). Keen et al. (1991) concluded that this method of testing was a valid method of measuring 

aerobic power of cyclists.
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Figure 8.1 Schematic representation of the Kingcyele maximal minute power test. Maximal minute 

power is calculated from the highest work rate in any 60 second period of the test.
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During the Kingcycle MMP tests carried out during these studies, heart rate was recorded during all tests 

(Polar, Kempele, Finland), and subjects were cooled by a large fan (Grants Electrical, Ballymena, UK).

Wind speed of the fan has previously been measured (Department of Geography, Canterbury Christ Church 

University College) using an annometer on repeated occasions. (Figure 8.2).

Figure 8.2 Relationship between wind speed and speed settings of the laboratory fan (n=6).

Fan Speed Setting

8.2.2.2 The SRM Powercrank System

8.2.2.1 Introduction

To test the validity and reliability of the Kingcycle system the measurement of power output was also 

recorded in conjunction with the SRM powermeter system.
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The SRM powercrank system (Professional, Welldorf, Germany) has been designed to measure, record and 

evaluate power output during laboratory or field cycling exercise. During these studies both the 

‘Professional’ and ‘Research’ crank were used. This system compromises a standard Shimano Dura-ace 

chainset and crank arm 172.5 mm in length. The chainset spider has been removed and a deformable alloy 

disc inserted containing 4 strain gauges (20 gauges in the research model). The chainset has two standard 

Shimano chainrings attached (53 and 39 teeth). The SRM Powercrank is mounted to a standard bottom 

bracket fitting and can be fitted on almost all bicycles.

The SRM system measures work output via the deformation of the alloy surrounding the strain gauges. The 

data is relayed telemetrically to a handlebar-mounted computer by a sensor placed perpendicular to the disc. 

The computer also stores heart rate (Polar technology), pedal cadence. During road cycling speed and 

distance is also recorded by the system by an additional front fork mounted sensor and a magnet attached to 

the spokes of the front wheel. The computer stores mean data over the sample period. Data can be stored at 

1, 2, 5, 10, 20, 30, 60, 120 second intervals for all parameters. During this study the data was stored at 1 

second intervals; the computer can store data for 7 hours 23 minutes at this sample rate. The data is then 

downloaded onto a PC and analysed using the SRM software package.

8.2.2.2.2 Calibration of the SRM Povvercrank

The SRM Powercrank system undergoes two stages of calibration. The first is a dynamic calibration carried 

out before purchase, and during service work by Ingenieurbüro Schoberer. A motorised dynamic 

calibration is carried out to determine the slope of increased deformation to the strain gauges. Accuracy of 

this calibration procedure has been confirmed by Keen (unpublished observations) using static methods of 

calibration. However, the manufacturer claims this method could lead to inaccurate data recordings. Jones 

and Passfield (1998) designed and built a rig from a Monark exercise cycle and a motorised treadmill to test 

the manufacturers accuracy claims, they reported figures that exceeded the claims of the SRM company 

(95% limits of agreement = 0.3, 1.1, 1.0 % on 3 separate units).

The operator carries out the second phase of calibration. Once the SRM Powercrank has been fitted to the 

bottom bracket axle of the bicycle by a crank bolt the zero position of the system has to be recorded. The 

SRM Powercrank has to be turned with no resistance so the chain is removed. The cranks are then spun 

forward. The handlebar mounted computer then reads the strain gauge reading (Hz) as the zero position. 

The zero position is then stored by the computer. The zero position is dependant upon the strain created 

when the SRM Powercrank is attached to the bottom bracket axle of the bike, and by the tension of the 

chain ring bolts that are fitted to the system. Once data has been downloaded into the PC corrections for the 

zero position can be performed.

8.2.2.3 Gas analysis; Covox Microlab

The Covox online gas analysis system was calibrated to known gas mixtures (Oxygen 21%, Carbon dioxide 

5%, Balance nitrogen, Cryoservice Ltd, Worcester, England), and the pneumotachograph was calibrated

65



using a 3 litre syringe (Hans Rudolf Inc. Kansas, USA). Ventilation was converted to STPD, and data was 

displayed on a computer monitor at 30 second intervals during testing procedures. Variability of the Covox 

microlab system is displayed in table 8.1.

Table 8.1 Coefficient of variation during repeated trials using the Covox microlab.

Measure Coefficient of Variation

60 1 min"1 90 1 min"1 120 1 min"1

%02 0.28% 0.33% 0.38%

% co2 4.6 % 3.03% 2.4%

VE 1.83% 1.77% 1.07%
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Chapter Nine. Physiological Responses of Competitive Road Race Cyclist

9.1 Introduction

Determining relative exercise intensity for endurance tasks is a common practice in Sport Science for 

analysing the physiological responses of athletes, or for developing protocols for intervention studies. 

However, the criteria for relative exercise intensity are varied in the literature, with percentages of V 02max, 

heart rate, maximal power, lactate threshold, or ventilatory threshold being used. In terms of correlation to 

performance, previous research has highlighted the importance of V 02max and Kingcycle maximal minute 

power as key determinants (e.g. Malhortra et al., 1985. Davison et al., 1997). Other research has focused 

upon the importance of the BLac' response (Bishop et al., 1998), and the percentage of V 02max sustained 

(as opposed to absolute V 02max) as a key determinant of performance (Coyle et al 1991). Coyle presenting 

data at the 1998 ACSM conference indicated that relative exercise intensity ought to be derived from a Lac' 

threshold test. A further possible determinant of performance outcomes is the efficiency of movement and 

the energy cost of a given task (Cavanagh and Kram, 1995). As the MMP test is a good predictor of 

performance, the aim of this study was to evaluate the Kingcycle MMP test, and record the physiological 

responses during submaximal exercise intensities relative to an individual’s maximal data, and to evaluate 

the test as a method of ascertaining a relative exercise intensity in a homogenous population of racing 

cyclists.

9.2 Methodology

Eleven trained male competitive cyclists were recruited on the basis of previous expertise at road racing to 

participate in this study (8.1). Prior to any physiological assessment laboratory and subject details were 

recorded (8.2.1). Following a period of familiarisation to the testing procedures subjects were required to 

return to the laboratory on five separate occasions (one visit per week) for a series of two maximal, and six 

submaximal exercise tests. All subjects had previously undergone Kingcycle evaluation for coaching 

purposes.

9.2.1 Familiarisation

During familiarisation (and data collection) subject’s entered the laboratory having refrained from training 

during the previous 24 hours, they were also instructed to maintain their normal training and dietary 

routines during the testing period.

Familiarisation consisted of a Kingcycle MMP test (8.2.2.1) on the subject’s own bicycle equipment. 

Following a warm up to their own requirements, subjects were fitted with a face mask (Hans Rudolf. Kansas 

city, USA), and connected to an online gas analysis system (Covox, Exeter, UK). Subjects indicated when 

they were ready to start the test, and were instructed to match the desired power output displayed by the PC. 

They were verbally encouraged during the test until the required power output could no longer be matched. 

Three minutes post test, a thumb prick blood sample was taken (Unilet lancets, Owen Mumford, Oxford, 

England) and analysed for Lac' and glucose (Yellow Springs Instrument, 2300 Stat Plus, Ohio USA).
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9.2.2 Experimental procedures

9.2.2.1 Tests 1 and 2. Kingcyclc MMP tests.

Following dietary and training control as described above, subjects underwent the same protocol as 

described above during familiarisation on two consecutive visits to the laboratory 1 week apart. 

Measurement of MMP, maximum heart rate, V 0 2max, and 3 minute post B[Lac‘] were recorded. Two 

consecutive tests were completed for test/retest analysis.

9.2.2.2 Tests 3, 4 and 5. Kingcycle Submaximal tests.

Following identical preparation to the previous tests, subjects underwent six randomised submaximal tests at 

intensities corresponding to 60%, 65%, 70%, 75%, 80% and 85% of the highest MMP recorded from tests 1 

and 2. Two tests were completed during each visit to the laboratory with the lowest intensity condition 

performed first, with a 30-minute break between tests. Intensities for each visit to the laboratory for 

submaximal testing were paired at the following percentages of MMP (60% and 85%, 65% and 75%, 70 

and 80%). Subjects were ramped up to the desired work output over a 5 minute period and on reaching the 

desired work rate were instructed to maintain their work output to ± 5 watts for a 10 minute period for a 

valid test. Online gas analysis (Covox) was conducted throughout all of the submaximal tests. Heart rate 

was also recorded throughout the test (Polar). Thumb prick capillary blood samples were taken at 4 and 9 

minutes during each submaximal test and analysed for B[Lac']. On completion of all tests subjects were 

allowed to warm down at their own desired intensity.

9.2.3 Statistical analysis

A one-way repeated measures ANOVA was used to establish if there were any differences between trials for 

the repeated MMP data, and the efficiency and economy data from all exercise intensities. The coefficient 

of variation was also calculated on repeated MMP trials. Power output was calculated at B[Lac ] of 4 

mmol.l'1, and the power output corresponding to the data point preceding an increase in B[Lac'] of 1 

mmol.r1. The power output was also calculated where the blood lactate response deviated from baseline 

values using a visual interpretation of the lactate curve data.

9.3 Results

All 11 subjects completed the maximal testing phase of this study, however, only 10 subjects completed all 

of the submaximal trials. All 11-subject baseline details are reported in table 9.1.

Values for the maximal minute power tests are shown in figure 9.1, trial 1 was conducted without gas 

analysis and trial 2 with gas analysis sampled. No significant differences were observed between the two 

trials (P=0.96). The coefficient of variation between the two trials for maximum minute power was 1.72% 

(95% Cl - 1.01-2.85%), SEE 2.60 (95% Cl - 1.51-4.26).
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Table 9.1 Baseline subject details for 11 subjects.

(mean ± S.D)

Subjects n= ll

Age 29 ± 9 years

Height 1.75 ±0.05 m

Mass 72.6 ±5.4 kg

MMP test 1 380.6 ± 35.3 watts

(test 2 381.2 ± 28.5 watts)

V 0 2max 1 min'1 4.97 ±0.57

V 0 2max ml kg ' min 68.43 ±6.02

Figure 9.1 Comparison between two Kingcycle maximum minute power tests (one week apart). Test

two also included gas analysis.

5 0 0

4 5 0  

f  4 0 0  

E.  3 5 0

1  3 0 0O
S'  2 5 0

.1 200 + 
E 1
B 1 5 03
.§ 100 
X 
C3

2  5 0

4  5 6 7

Subject

10 11
g  trial 1 

q  trial 2

Table 9.2 below shows the heart rate and B[Lac‘] during the maximal minute power test, and during the 10- 

minute submaximal work bouts.

Failure to establish a baseline B[Lac'], and missing data points resulted in the loss of one subjects data using 

two of the methods of lactate curve analysis. Strong positive correlations were found between MMP and; 

power output corresponding to B[Lac ] at 4mmol.r' (r=0.92, n=10); power output corresponding to the data 

point preceding and increase in B[Lac'] of 1 mmol.I'1 (r=0.88, n=9); power output at a visual interpretation 

of lactate threshold (r=0.94, n=9). The mean data for the percentage of MMP at the various blood lactate 

concentrations are shown in table 9.3. The lactate power relationship for each subject are presented in 

appendix 1.

69



(mean ± S.D.)

Table 9.2 Heart rate and Blood lactate responses to exercise at different relative exercise intensities.

Relative Work Load Heart Rate 

(beats min'1)

Relative Heart 

Rate (%)

Blood Lactate Concentration 

(m m oU1)

60% MMP 145.6 ±7.3 76.4 ±4.7 2.51 ±0.56

65% MMP 151.9 ± 7.8 79.7 ±4.7 2.57 ±0.70

70% MMP 160.5 ± 11.4 84.2 ±5.6 2.87 ±0.77

75% MMP 168.7 ± 10.9 88.5 ±5.6 5.06 ± 1.05

80% MMP 173.3 ± 10.9 90.9 ± 5.5 7.11 ± 1.65

85% MMP 179.7 ± 10.2 94.2 ±5.2 11.93 ±2.09

100% - MMP 190.9 ± 10.0 100 12.13 ± 2.76

Table 9.3 Power output at various blood lactate concentrations, (mean ± SD)

Method % MMP

B[Lac'] 4mmol.l'1 72.4 ± 2.6 %

Data point preceding a 1 mmol. I '1 increase in B[Lac'] 70.6 ±3 .9%

Visual interpretation 68.9 ± 2.2 %

The three methods of analysing the BLac' response to incremental exercise also correlated significantly 

(table 9.4)

Table 9.4 Relationship between 3 different methods of assessment of the BLac' response during

incremental work (n=9).

Method Correlation coefficient 95% Cl

B[Lac] dmmol.l"1 vs Data point preceding a 1 m m ol.l'1 

increase in B[Lac ]

r= 0.67* 0.01-0.92

B[Lac'] 4mmol.r' vs Visual interpretation i= 0.91# 0.66-0.98

Visual interpretation 1 vs Data point preceding a 1 m m ol.l'1 

increase in B[Lac']

r= 0.77* 0.22-0.95

*p<0.05

#p<0-01

Respiratory, gross mechanical efficiency and economy values are shown in Table 9.5. Figure 9.2 shows the 

V 0 2, VC02, RER, responses at the submaximal work bouts. There were no significant differences for
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economy (p=0.29), or gross mechanical efficiency (p=0.57), between different exercise intensities (Figures

9.3 and 9.4).

Table 9.5 Respiratory, economy and gross mechanical efficiency data from exercise trials at different

exercise intensities, (mean ± SD).

Relative 

Work Load

V 0 21 min 1 VCOj 1 min 1 RER Gross 

Mechanical 

Efficiency (%)

Economy

(%)

60% MMP 3.39 ± 1.86 2.94 ±0.34 0.86 ±0.02 19.54 ± 1.58 66.07 ±5.39

65% MMP 3.71 ±0.39 3.23 ±0.39 0.87 ±0.03 19.93 ±0.97 67.92 ±3.03

70% MMP 3.91 ±0.35 3.59 ±0.33 0.92 ±0.03 20.18 ± 1.00 68.28 ±2.36

75% MMP 4.25 ±0.34 3.95 ±0.31 0.93 ±0.03 19.63 ±0.67 68.00 ±2.66

80% MMP 4.50 ±0.25 4.41 ±0.36 0.98 ±0.06 20.6 ± 1.4 71.56 ± 5.05

85% MMP 4.69 ±0.51 4.64 ± 0..56 0.99 ±0.05 19.9 ± 1.56 69.51 ±5.75

Figure 9.2 Mean respiratory responses during 10-minute submaximal exercise intensities at different

percentages of maximum minute power.
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percentages of maximum minute power.

Figure 9.3 Mean economy (watts.I'1) during 10 minute submaximal exercise intensities at different

Figure 9.4 Mean gross mechanical efficiency during 10-minute submaximal exercise intensities at 

different percentages of maximal minute power.
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9.4 Discussion

9.4.1 Characteristics of subjects

The mean measured V 02max group data from this study (~68 ml.kg'1 min'1) compared favourably to 

previous values reported in the literature by Vrijens et al. (1982) of 65.7 m l.kg'm in'1 in Belgium 

professional riders, and also the findings by Bonjer (1979) (67.6 ml.kg'Im in l in Dutch elite riders). 

However, they do not reach the maximal figures recorded by White et al. (1982) (77.4 ml.kg'm in'1 in 

British elite riders) or predicted values by Brennan et al. (1994) who reported values and 78.4 ml.kg 'min'1 

in Northern Irish Commonwealth Games squad. Although the laboratory measures do compare between the 

subjects used in this study and those of Vrijens et al. (1982) and Bonjer (1979) the subjects used in this 

study do not compete at an elite level. This could possibly be attributed to differences in testing protocol for
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the attainment of V 02max. Two subjects hold a British ‘elite’ ranked licence (although it is generally a 

lower grade than continental counterparts).

The differences in performance relative to the similar laboratory tests could simply be explained by the 

pitfalls of comparing data from different laboratories using different measurement systems, and different 

methods to ascertain VO,max. If we assumed cross comparison could be applied, club level cyclists (from 

this study, and Brennan et al., 1994) are attaining similar figures to Professional/elite riders competing 15- 

20 years ago. It could also indicate that factors other than V 02max differentiate between some very ordinary 

(in terms of performance ability - British 3rd category) riders when compared to elite professional riders. 

This has been considered by Vrijens et al. (1982) who concluded that maximal figures did not differ 

between sub elite and elite riders, but power/V02 at threshold levels was the differentiating factor.

9.4.2 Reliability of Kingcycle MMP testing

The figures for maximum power output recorded by the Kingcycle ergometer showed no significant 

difference between two tests, conducted seven days apart. The coefficient of variation between tests was 

1.72 % for power. This figure is similar to reported figures for submaximal performance cycling (for time) 

reported by Palmer et al. (1996), who reported coefficient of variations for time (derived from power) of 1.1 

% for simulated 20 km performance testing, and 1.0 % for 40 km performance testing. On a longer 

endurance test Schabort et al. (1998) reported a coefficient of variation (time) of 0.93% for a 100 km 

Kingcycle laboratory performance test. This suggests that both the Kingcycle performance and MMP data 

is reliable. A further conclusion from this data is that the method of ‘controlling’ subjects during the first 

study by asking them to prepare for each test in a similar fashion to competition racing, eating well, and no 

training on the day preceding the test. This appears to be sufficient in minimising any variation in 

maximum power. Data on the effects of prior training on Kingcycle maximal test performance has been 

collected by Balmer (unpublished observations) during a study on repeated maximal and 70 km 

performance testing. They reported significant reductions in Kingcycle maximum minute power with hard 

training/racing the day before or even 2 days before the test procedures.

9.4.3 Physiological responses during submaximal testing

9.4.3.1 BLac" response to submaximal exercise

All three methods of blood lactate assessment in this study all correlated to MMP strongly (r= 0.88-0.94). 

However, only the 4 mmol.f1 method allowed for power output detection in all subjects. The mean % 

MMP derived from these methods showed similarity (~69 to 72.5% of MMP), however smaller variability 

was around the mean was recorded using the visual method of blood lactate interpretation (table 9.3). This 

therefore explains the high correlations obtained by Davison et al. (1997) between endurance performance 

(16 km) and MMP. From these results, it is apparent that in well trained cyclists the results obtained from 

the MMP test could simply be a reflection of BLac" kinetics. As V 0 2max correlates significantly (r=0.98. 

Keen et al., 1991) with MMP using the 20 watts per minute protocol, it is therefore not surprising that
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V 02max obtained from Kingcycle testing also significantly correlates with endurance performance (r=0.86. 

Dobbins et al., 1996).

As exercise intensity increased, there was also an increase in the standard deviation for the group data for 

BfLac'j. This suggests that although there was a similar inflection point for BLac' between subjects, there 

are smaller differences in the BLac' at lower as opposed to higher work rates. Bishop et al (1998) 

concluded that the B[Lac'] was a reflection of glycogen utilisation, in which case at higher exercise 

intensities rates of glycogen utilisation may differ, which may have implications for endurance 

performance. Data collected using SRM technology by Davison et al., (1999) however suggests that during 

endurance tasks lasting from one hour to twelve hours cyclists maintain a very similar percentage of their 

maximum power, the exact percentages sustained being governed by the duration of the event.

During the highest exercise intensity (85% MMP) a mean B[Lac'] of 11.28 mmol.l'1 was reached. 

Submaximal values at 85% of MMP actually produced a higher standard deviation than the maximal B[Lac' 

] recorded post MMP test (table 9.2). This data shows that well trained cyclists can sustain exercise 

intensities for a ten-minute period in substantial excess of the BLac' threshold, and can tolerate significant 

B[Lac'] for a sustained period of time. This confirms previously presented data by Coleman et al. (1995) 

who reported B[Lac'] rising to over 9 mmol.l'1 during simulated 16 km performance testing (lasting 

approximately 23 minutes).

No significant difference (p>0.05) was found between the B[Lac'] recorded post MMP test and the values at 

85% MMP. There is a possibility that the amount of energy derived from the anaerobic breakdown of 

glycogen may have an upper limit, despite differences in exercise intensity (85% MMP vs 100% MMP) and 

duration (10 minutes vs ~4 minutes above B[Lac ] threshold during MMP). Spreit, (1995) reported that 

although the glycolytic flux is not believed to be limited by typical metabolic changes during heavy exercise 

(e.g. pH) the contribution of ATP from glycolysis during exhausting exercise was dependant upon the 

lactate and associated ion movements into open circulation. Spriet (1995) indicated that circulating lactate 

concentrations of over 9 mmol.l'1 may alter lactate efflux, and reported a 30% decrease in the contribution 

of glycolysis to ATP production with closed circulation. Coyle, presenting data at the American College of 

Sports Medicine conference (Orlando, 1998) indicated that work output at the lactate threshold was the most 

effective method of establishing a relative exercise intensity, (in terms of metabolic response). It appears 

that the Kingcycle maximum minute power test is a good indicator of power output at the blood lactate 

threshold, although the complexity of physiological responses at different relative intensities warrants 

further investigation. Each submaximal work stage during this study had a duration of 10 minutes. The 

implications of longer work stages (>60 minutes) at the various percentages of MMP may further 

substantiate the findings of Bishop et al, (1998), and further investigate rates of substrate depletion at fixed 

percentages of MMP (lactate threshold) during endurance exercise.
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A further conclusion from these findings is the critical importance of Kingcycle maximum minute power 

output. If similar percentages of power output can be sustained during the steady state condition, plus the 

relatively normalised BLac' response during set percentages of maximum minute power, then the ability to 

achieve high figures is possibly going to determine time trial performance. In theory a high maximum 

power, coupled with a reduced frontal area (Wright et al., 1994) would produce a good time trialist, with 

body mass being a factor during hillier races (Rollings et al. 1985).

9.4.3.2 Efficiency calculations from submaximal exercise intensities

During the submaximal study, efficiency values revealed similar figures (18-23%) to those previously 

reported by Coyle et al.{ 1992) who recorded figures from 18-26% in a group of well-trained cyclists. 

During the tests at the different relative exercise intensities, there were minor fluctuations of the mean group 

data of ~1% during these trials, supporting the findings of Nickleberry and Brooks (1996). Therefore the 

efficiency calculations of trained cyclists possibly do not play such an important role in the outcome of 

events when compared to the 12-15% differences that have been postulated in runners (Cavanagh and 

Kram, 1995). The nature of road cycling however has a significantly longer duration than 10 minutes, 

previous studies have not reported if these values change over longer time periods, where in theory even the 

small differences may have an impact upon performance.

9.4.3.3 Heart rate and V 0 2max responses to Submaximal exercise

The relationship between percentage maximum heart rate and the corresponding percentage of V 02max 

have previously been plotted by McArdle et al. (1996) using four other studies to construct their table (table 

9.6). The data from this study shows a similar pattern during the lower exercise intensities. However, 

during the last two work rates of 80 and 85% of MMP the percentage of V 0 2max higher for a given heart 

rate. From this study, equation 9.1 was derived.

Table 9.6 The relationship between heart rate and V 0 2 (from McArdle et al., 1996)

% Maximum Heart Rate % V 0 2max

50 28

60 40

70 58

80 70

90 83

100 100

Equation 9.1 V 0 2 and heart rate relationship during submaximal exercise
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% V 02max= 1.4494 x (% maximum heart rate) - 42.289 (r=0.996, p<0.001).

Compared to the McArdle et al. (1996) data, these cyclists would be utilising a higher proportion of 

V 02max during steady state cycling for a given percentage of maximum heart rate. From the data presented 

therefore, to elicit training adaptation in the region of the BLac' inflection point, (occurring between 70- 

75% of MMP), training at heart rates between 84.2 and 88.5% of maximum will elicit these changes. This 

corresponds to a V 02 of between 78.7-85.5% of maximum values.
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Chapter Ten. Data Collection From Competitive British Cycling Federation Cycling Events

10.1 Introduction

One of the major roles of the coach is to prepare athletes for competition. This is achieved by establishing 

the demands of the sport, and developing training methods to enhance athletic ability, to match the demands 

of the sport. For the coach to be successful, a detailed knowledge of the competitive demands is required. 

During road race cycling, heart rate data has previously been recorded to ascertain the physiological 

demands of the sport (Palmer et al., 1994), with Sport Scientists using this data to replicate the sporting 

demands in the laboratory (Palmer et al., 1997). Telemetric heart rate recording and the subsequent 

playback of the data have enabled subjects to compete without data collection interfering with their 

performance. The development of SRM powercrank technology also has the same benefits, and allows the 

recording of not only heart rates, but also of power output, pedal cadence, speed, time and distance covered. 

The aim of this study was to record these variables during competition (SRM), and compare them to 

maximal values recorded in the laboratory (Kingcycle MMP test. 8.2.2.1). An initial study was required to 

investigate the relationship between SRM and Kingcycle measurement of power output.

10.2 Comparison between Kingcycle and SRM power measurement.

The aim of this study was to evaluate the relationship between two methods of calculating power output, 

with SRM technology being used for the collection of field data and the Kingcycle ergometer used in the 

laboratory setting. The relationship between the two systems would be important when comparing field and 

laboratory data. Previous unpublished research by Keen indicated there might be a discrepancy between the 

two measures of power output.

10.2.1 Method

Thirteen undergraduate students gave informed consent (8.2) and had initial details recorded (Table 10.1).A 

bicycle fitted with the SRM powercrank system was attached to the Kingcycle test rig, and calibration 

procedures were followed for both systems (8.2.2.1.2, 8.2.2.2.2). Once calibrated, subjects were required 

to exercise on the bicycle at five different intensities with each work stage lasting one minute. The subjects 

rode to Kingcycle power output values displayed on the PC screen. A recovery period of approximately 

two minutes was allowed between each work stage, with subjects instructed to be exercising at the required 

intensity ten seconds before that work stage commenced. The selection of work stage intensity was 

dependant upon the individual subject’s ability. If at any stage during the work interval the power output 

dropped from the desired figure, the work interval was eliminated from the analysis. The mean power for 

each work stage was recorded by the two respective systems.
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10.2.2 Statistical Analysis

The data for each 60-second work period were compared using a Pearsons Product Moment correlation. 

The data was checked for heteroscedasticity by correlating the absolute residuals and the fits (Neville, 

2000). A repeated measures ANOVA was used to establish if there were any differences between the data 

from the two methods of measuring power output. Ratio limits of agreement were also calculated using the 

methods described by Bland and Altman (1986).

10.2.3 Results

Table 10.1 Subject details, (mean ± SD).

Subjects n=13

Age 25 ± 7 years

Height 1.76 ± 0.10m

Mass 70.2 ± 10.4 kg

The mean work rate undertaken by the subjects was 183.8 ±106.8 Kingcycle watts, which equated to 167.0 

± 97.8 SRM watts. There was evidence of heteroscedasticity within the data therefore logarithmic 

transformation was employed. The ratio limits of agreement between Kingcycle and SRM power were 0.90 

(95% Cl = 0.90-0.91) x/-r 1.04.

Figure 10.1 The relationship between Kingcycle and SRM measures of power output, (dotted line

represents the line of identity)

y= 0.9145x-1.0674

r2=0.9957
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There was a significant difference between the two systems for the logarithmically transformed data 

(p=0.035). The Kingcycle measure of power output was 9.62 ± 4.22% higher than the SRM system. Figure

10.1 shows the relationship between Kingcycle and SRM watts over the range of powers sampled for each 

minute. The correlation coefficient revealed a significant relationship (r=0.99, p<0.01) between the two 

measures of power output.

10.2.4 Discussion

Power output during these studies was monitored by two independent systems, the Kingcycle test rig, and 

the SRM power meter. Data recorded by both systems showed a significant linear relationship (r=0.99, 

p<0.05. 95% Cl - 1.6-32 W) at power outputs ranging from 50 - 500 watts, however there was a significant 

difference between the two systems for the absolute values attained for power output. The mean difference 

between SRM and Kingcycle power was 9.6%, a correction factor that has now been employed by the latest 

Kingcycle software. The accuracy of both systems has previously been investigated, data collected by Jones 

and Passfield (1998) using dynamic methods to calibrate the SRM system have shown that the SRM system 

is reading ‘true’ watts (validity 1%) and the Kingcycle appears to be the piece of apparatus that is over 

reading power output by 9.6%. The results of Jones and Passfield (1998) indicated greater accuracy than 

the claims made by the SRM Company. These figures compare favourably with the unpublished 

observations by Keen, who reported similar (1%) deviations using a static method of calibration. The SRM 

company do however state a dynamic calibration should be performed to ensure validity. Therefore the 

SRM system was returned at regular intervals to Germany for dynamic calibration. The calibration values 

remained stable with only slight modification during servicing.

10.3 Data collection from road cycling events

10.3.1 Method

Nine competitive male cyclists of mixed ability were recruited to participate in this study. All subjects had 

previously been involved in physiological testing in the Laboratory. Following the collection of laboratory 

and subject details (8.2), Subjects underwent a Kingcycle MMP test (8.2.2.1.3). Once the bicycle was 

attached to the Kingcycle rig, warm up began at a self-paced intensity, with subject’s indicating when they 

were ready to begin the test. Maximal minute power, predicted V 02max and maximal heart rate were 

recorded.

Within ± 7 days of the Kingcycle MMP test, subjects had pre-entered a competitive British Cycling 

Federation race. Race duration varied, as did the standard of the competition (relative to the category of 

racing licence held by the individual). SRM powercranks were fitted to the subject’s bicycle two days prior 

to the race, and all calibration procedures were completed (8.2.2.2.2). Just prior to the race, a further 

calibration was performed.

During the event subjects were able to view power, heart rate, cadence, speed, and time elapsed with the 

only instruction that their aim was to win that race. Some subjects recorded more than one competitive race
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during the ± 7-day period. Measured parameters were stored by the handlebar-mounted computer at one- 

second intervals, and downloaded following the race.

For three of the local courses, the profile of the course was determined using Ordnance Survey Land ranger 

maps (188, 189, 197).

For comparison with the Palmer et a!. (1994) study, SRM data were also collected during two-stage race 

cycling events with a smaller subject group (n=4).

10.3.1.1 Kingcycle Power Test (Wingate).

Five of the subjects returned to the laboratory to undergo a Kingcycle anaerobic power test. The Kingcycle 

power test is a 30 second sprint test designed to measure anaerobic capacity based upon the classic Wingate 

protocol. Upon arrival at the laboratory, details of the subject were recorded and SRM Powercranks were 

mounted on the subject’s bicycle and calibration procedures were followed. The subject’s bicycle was then 

attached to the Kingcycle test rig and the additional sprint rig attached. The sprint rig consists of increased 

supports extending from the rear of the Kingcycle, connecting a nylon band from the rig to the subject’s 

bicycle saddle rails. This is used to prevent any slippage of the rear wheel of the bicycle on the Kingcycle 

roller. Following calibration, and warm up, subjects selected their chosen gear ratio (previously selected 

from familiarisation trials) with which they felt they could achieve the highest work output for the test 

period. Subjects were then instructed to reduce their power output to 30 watts. The test began when 

subjects indicated they were ready to start the test. The subjects were instructed to accelerate as fast as 

possible and to cover the furthest distance during the 30-second test. Subjects were only allowed to view 

time expired during the test. Power output was recorded by the Kingcycle rig and the SRM system 

throughout the test. Values for peak power, mean power, and distance covered were recorded during the 

test.

10.3.2 Statistical analysis

Laboratory and field heart rate and power data were compared, using a one-way ANOVA. The laboratory 

data was also correlated to the finishing positions of all of the one-day races using a Spearmans rank 

correlation.

10.4 Results

All 13 subjects completed the laboratory testing protocol, however, during the races, two subjects failed to 

record the complete race duration during field data collection. One subject punctured during the road race, 

the other crashed out of their race, both riders failed to finish. Subject details for the 11 subjects are listed 

in table 10.2. Predicted V 02max values are calculated from Keen et al. (1991). A total of 16 races were 

recorded during this study. Raw data, and smoothed data from these races are shown in appendix 2.
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The mean race duration was 111.3 ± 64.9 minutes. Finishing positions from the field data ranged from 1SI 

place to 53rd place. No significant correlations between laboratory test indices and finishing position were 

recorded (p>0.05).

Table 10.2 Subject details from the laboratory visit ± 7 days from the competitive cycle race, (mean ±

S.D.).

Subjects n = 11

Age (years) 29 ± 10

Height (m) 1.78 ±0.04

Mass (kg) 72.9 ±3.8

Maximum Minute Power (SRM) (W) 394 ±36

Predicted V 0 2max (lm in 1) 4.86 ± 0.42

Predicted V 0 2raax (ml kg 1 min ') 67 ±5

Maximum Heart Rate (beats min'1) 190 ± 5

Peak work rate (PWR) during the races are shown in Figure 10.2, peak values for sampling rates of 1, 5, 

10, 30, 60, 90, 120 seconds are reported. The relationship between peak power output values and the race 

duration are shown in figure 10.3.

All subjects (n=5) recorded a higher power output in the field compared to the laboratory sprint test 

(1186.2 ± 57.5 vs 937 ± 105 watts) for peak power ( p=0.001).

Figure 10.4 shows a comparison between data recorded by Bjame Riis (Tour de France winner 1996) 

during the Amstel Gold World Cup race (>6 hours duration), and the data collected from British races.

Figure 10.2 (Mean) peak work rates for seven sampling periods during competitive road race events.

(n=16).

1 5 10 30 60 90 120
Peak Work Rate Sample (seconds)
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events.

Figure 10.3 (Mean) Relative peak work rates over the duration of competitive road race cycling
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Figure 10.4 A comparison between mean power from road race data (GB races, n=16) and one elite

performance
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10.4.1.1 Relative exercise intensity

Mean data from the British cycling races is shown in table 10.3. Subjects averaged 67.2 % of maximum 

minute power during the races. During 10 of the 16 recorded races, heart rate was simultaneously recorded,
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this equated to 88.5 % of maximum heart rate. Mean race pedal cadence was 76.8 ± 4.0 revolutions per 

minute.

Table 10.3 Mean (absolute and relative) data from the field for Power output, Heart rate and pedal

cadence, (mean ± s)

Absolute Power 264 ± 8.8 watts

% Maximum minute power 67.2 ± 7.6 %

Heart Rate 169 ± 7 beats min'1

% Heart Ratemax 88.5 ± 2.9 %

Pedal Cadence 74.5 ± 5.2 revolutions per minute

The distribution of power output is shown in figure 10.5. The results showed that 39.1 ± 9.2% of the race 

duration was spent above maximum minute power. During competition, 12.7 ± 6.1% of the race duration 

was spent at zero watts, where the bicyclists were ‘free wheeling’. Deducting the time spent at zero power 

output and zero cadence (12.7% of race duration) results in a mean pedal cadence of 84.9 revolutions per 

minute, and likewise a power output of 302 watts - 80% of maximum minute power for the time working.

Appendix 2 shows the traces from three races (smoothed over 60 seconds) relative to the course profile over 

which those races took place, Forestside, Frant, and Godmersham.

Figure 10.6 shows the distribution of heart rate response during the ten races. To allow direct comparison, 

the distribution categories selected are the same as those selected by Palmer et al., (1994). Subjects spent 

6.0 ± 7.9% of the race duration between 71-80% of maximum heart rate, 57.2 ± 23.7% of race duration 

between 81-90% maximum heart rate, and 34.9 ± 28.0% of race duration between 91-100% of maximum 

heart rate.

For the 10 races with heart rate being recorded, the mean power output during the races was 267 ± 34 watts, 

and the mean heart rate was 169 ± 7 beats min'1. From the laboratory maximum minute power test, a heart 

rate: power relationship was calculated for each rider, (one subject’s data was omitted from these 

calculations Subject 3, due to the race being stopped for a period of 5 minutes - table 10.4).

Actual mean heart rate was significantly higher in the field (p=0.006) compared to the maximal minute 

power test (169 vs 158 beats min"' for actual and predicted heart rate). Correlation analysis revealed only a 

moderate correlation between duration of the race and the difference between actual and predicted mean 

heart rate (r=0.40).
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Figure 10.5 Relative distribution of exercise intensity during competitive road race cycling events
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Figure 10.6 The relative distribution of heart rates during competitive road race cycling events.
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Figure 10.7 Heart rate response during each 10% portion of the races; comparison to the laboratory

predicted heart rate. (* denotes p<0.05).

% race duration
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Table 10.4 Actual and predicted power output from laboratory and field data.

Subject Actual Power (watts) Actual Heart 

Rate (beats min ')

Laboratory Predicted Heart Rate 

(beats min ')

1 343 169 155

2 271 185 181

3 224 173 134

4 233 159 146

5 286 166 159

6 244 169 155

7 254 172 157

8 257 169 158

9 291 163 158

10 273 160 153

Mean 267 169 156

S.D. 34 7 11

The differences between actual and ‘laboratory predicted’ heart rate response are shown in figure 10.7. 

There were significant differences between these two methods, in all but two of the portions of the race - the 

first 10% and the 70% portions.

10.4.1.2 Energy demands of stage race cycling; FBD Milk Ras

Further field (SRM) data were collected without laboratory-based data on one rider from an international 

‘amateur’ stage race (FBD Milk Ras - Ireland). During the 9-stage race the rider finished 4th overall on 

general classification, and recorded one stage win (stage 3). The mean power output was 235 ± 16.35 watts, 

heart rate 144 ± 8 beatsmin'1, and pedal cadence 80.79 ± 4.5 revmin. The mean mechanical energy 

expenditure was 2823 ± 887 kj.day’1. Figure 10.8 shows the stage-by-stage breakdown of the power output 

and heart rate response during the 9-stage race.

Using the SRM analysis software, a 4-minute smoothing factor was run over the heart rate and power output 

data. By shifting the heart rate response forward (due to a time lag between power output and heart rate 

response), the software then calculates the highest correlation coefficient between the two variables. From 

this a physical work capacity (PWC) at heart rate 150 is calculated.

Figure 10.9 below shows the calculated PWC 150 values for the nine stages during the FBD Milk Ras. 

There is a significant linear increase over time (r=0.891, p<0.05).
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(n=l).

Figure 10.8 Mean Power output and heart rate responses from a competitive stage race cycling event.

Figure 10.9 Predicted physical work capacity at heart rate 150 beats min 1 during competitive stage

race road cycling. (n=l).

Stage

10.4.1.3 Energy demands of stage race cycling; P&O Tour of the North (TOTN)

Three riders completed a five-day (6 stage) Tour of Northern Ireland, however one stage was not fully 

recorded by one subject. All subjects rode for the same racing team. Subject data are in table 10.5.

Table 10.5 Subject details from the TOTN

Subject Age (years) Height (m) Mass (kg)

A 23 1.83 74.0

B 27 1.77 70.0

C 31 1.78 67.0
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The race was made up of 4 one-day stages and one split stage (am & pm), incorporating four mass start road 

race stages and two short time trials. Stage details are in table 10.6. Overall finishing position and mean 

data from the race are recorded in table 10.7. Heart rate response was not recorded on one of the riders.

Heart rate responses of subjects A and B are shown in figures 10.10 - 10.14. Although riding for the same 

team, the team role for these riders was different. Rider A was classed as a domestic, Rider B as joint leader 

with another member of the team (not included in this report). Roles of the riders did not become apparent 

until after stage 4 where rider B made the decisive split of the race, rider A did not.

Table 10.6 stage details from the TOTN

Stage Discipline Distance

1 Time trial 5 miles

2 Road race 80 miles

3** Time trial 6 miles
4** Road race 55 miles

5 Road race 75 miles

6 Road race 75 miles

Table 10.7 Race data from the TOTN

Subject A B C

W fC rpm W fC rpm W fC rpm

stage 1 349 174 84 353 182 82 373 95

stage 2 282 158 66 239 167 73 287 79

stage 3** 281 166 72 325 180 84 353 93

stage 4** 228 147 75 264 171 75 241 73

stage 5 230 144 60 280 165 79 240 72

stage 6 237 147 68 261 160 73 256 75

GC finish 35 7 25

** denotes split stages
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Figure 10.10 Heart rate response during time trial and road race stages of the TOTN.
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Figure 10.11 Heart rate response during stage 1 of the TOTN
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Figure 10.12 Heart rate response during stage 2 of the TOTN
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Figure 10.13 Heart rate response during stage 3 of the TOTN
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Figure 10.14 Heart rate response during stage 4 of the TOTN
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Figure 10.15 Heart rate response during stage 5 of the TOTN
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Figure 10.16 Heart rate response during stage 6 of the TOTN
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10.5 Discussion

10.5.1 Power output during road cycling

The data collected from the competitive road cycling events is the first data presented with the resolution of 

1 Hz. Recent studies have reported SRM data, however not with this resolution (e.g. Jeukendrup et al., 

1998), and the data has been a ‘case study’ of an individual ride, compared to this sample of races. SRM 

data has also been published in the popular cycling press from a ride in a European ‘Classic’ world cup race 

with the rider being former Tour de France winner Bjame Riis.

Appendix 2 shows the SRM race traces for Power, pedal cadence, and depending upon rider choice, heart 

rate and speed. From the data, it is apparent that the power output is highly variable, and intermittent in 

nature. The traces reveal that the road race effort is made up of many repeated bursts, interspersed with 

recovery periods of inactivity (in terms of power output). For those riders that opted to wear a heart rate 

transmitter, it is also apparent that the power output is far more variable than heart rate during competition.

Previous studies by Brouns et al. (1991) and Palmer et al. (1997) have tried to simulate road race cycling at 

relative exercise intensities fluctuating between 30 and 90% of maximal power output derived from a 

V 02max test. The data collected during this study indicates >20% of data points falling below 30% of 

MMP, and >39% of data points above 90% of MMP. Palmer et al, (1997) constructed a simulation from 

heart rate traces from races. The data from this study suggests that the heart rate is not as variable as the 

power output trace, and the heart rate recordings do not represent the rapid alterations that are seen in the 

power output trace. With data points in excess of 100% of MMP not reflected in the heart rate response (as 

heart rate doesn’t exceed 100% of the maximum value recorded during a MMP test) this indicates how the 

Palmer et al. (1997) protocol which was derived from heart rate was limited to ~85% MMP. Likewise, the 

heart rate never drops to zero when the power output of the subject drops to zero. Therefore in the Palmer 

et al. (1997) study there was no recovery periods during the protocol. With the use of heart rate (with power
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or V 02) it is important therefore that the baseline data is recorded at the start of the test. Baseline heart rate 

values may have been recorded during field data collection but failure to associate this with a zero power 

output may have resulted in some inaccuracies in the prediction of power output from the heart rate 

response recorded in the field. Because of the lack of recovery periods (zero watts), the laboratory 

simulation of Palmer et al. (1997) should be described as a ‘variable intensity’ protocol when in reality road 

race cycling is intermittent.

The mean distribution of power output during the races follows a relatively normal distribution, except for a 

significant portion of the data at zero watts (12.7%). The data at zero watts significantly influences the 

mean data from the races, and as mentioned previously, is substantially different from any study that 

previously has tried to simulate this type of exercise. The mean power output during the measured races 

was 269 watts, which equated to ~67% of maximum minute power output and -89% of maximum heart 

rate. This mean heart rate value is higher than in the Palmer et al. (1996) study who used the heart rate data 

collected from a South African 4 day stage race the Giro del Capo to develop their road race simulation 

study. The stage race heart rate responses recorded during this study indicate that the use of heart rate data 

recorded in the later stages of the race may not be representative of a ‘fresh’ heart rate response recorded 

during one day races. Data collected from the FBD milk Ras (the PWC 150 data) shows that heart rate 

relative to power output falls during stage race cycling. This is further complicated by the Tour of the 

North data. The heart rate and power data shows a more varied response from day to day. For example 

rider A (who was used for Domestique purposes by rider B) on stage 2 averaged 282 watts, stage 3, 281 

watts, for a difference of 8 beats min'1 in heart rate response. Likewise the same rider averaged the same 

heart rate on stages 4 and five with a 9 watts difference in power. Rider B shows a similar response to the 

FBD rider, chasing a position on the overall classification (like the FBD rider) resulted in a drop in heart 

rate relative to the power.

The heart rate power relationship is important as it has previously been used to quantify work done during 

road cycling, by using the heart rate data and extrapolating to laboratory work output. Simultaneous 

recording of power output has highlighted that this method is clearly flawed. Further research could analyse 

these responses in relation to tactics and successive days of cycling with a demand in excess of 3000kj.

10.5.2 Anaerobic power during road cycling

The data sampled at different time intervals showed similar patterns for data at 1 second through 5, 10, 30, 

60, 90, 120 seconds and for the mean power during each 10% portion of the race. Although non significant, 

there was an overall trend for a drift down in the peak powers for each of these sampling intervals with the 

lowest at the 90% portion of the race and an increase back up in the last 10% of the race duration. Peak 

power of these athletes recorded in the field was in excess of 1150 watts, which is higher than has 

previously been reported during laboratory testing (Tanaka et al., 1993), and significantly different from 

laboratory Wingate testing carried out on five of the subjects in this study. This could indicate differences
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in our subject selection compared to the 2nd and 3rd category (USA) riders of Tanaka et al. (1993). This 

data could also possibly imply that the nature of anaerobic testing via a Wingate type protocol may not 

enable trained cyclists to elicit the kind of power outputs that they can achieve in the field.

Appendix 2 shows the sustained high power outputs (>100% MMP) that were recorded when climbing 

during this study. For sustained power output illustrated by the smoothed data, the peaks during each race 

where profiles were included came on the climbs during those races. During climbing in competition 

subjects were able to stand up on their bicycles, therefore the differences could be due to the body posture 

and force application, during a Wingate type test subjects are required to remain in the seated position, 

whereas riders stand up during competition. If this is a factor in the generation of power output during 

anaerobic exercise, it may also have implications for the measurement and evaluation of aerobic capacity 

(MMP) measured in the laboratory setting. If peak powers achieved during climbing were substantially 

higher (~300 watts) than previously reported during laboratory tests, then standard stationary (essentially 

level graded) ergometry testing may not be representative of an essential component of road cycling. This 

therefore was the rationale behind measuring aerobic capacity, anaerobic capacity and simulated hill climb 

performance in the hill climb study (chapter 11).

10.5.3 Power output and heart rate response during road cycling

Previous studies have used the heart rate responses during laboratory ramp type tests to calculate energy 

demands of road race cyclists (e.g. Palmer et al. 1996). The simultaneous recording of power output and 

heart rate by the SRM system allowed for analysis of the relationship between these two variables in the 

field. The data indicates that heart rate at a given power is significantly elevated relative to that of the same 

subject in the laboratory, for a power output of 272 watts, the heart rate response was 158 beats min'1 in the 

laboratory compared to 169 beatsmin'' during competition. Essen et al. (1977) reported an 11 beatsmin'1 

increase in heart rate during the initial stages of an intermittent trial compared to a steady state condition. 

The laboratory heart rate: V 02 response therefore overestimates the power demands of an event, and the use 

of field heart rates to compare to laboratory responses (e.g. blood lactate threshold responses) may have 

limitations. Differences between laboratory predicted and actual race heart rate were observed after 20% of 

the race duration was completed (figure 10.7), with heart rate differences at 70% of race duration failing to 

reach significance (p=0.06). Steady state cycling during the study described in chapter 8 revealed a heart 

rate (at 70% MMP) of 84% of the maximum value recorded during the MMP test. That compares to the 

-67%  of MMP recorded in the field at a heart rate apparently ‘inflated’ to 89.5% of maximum heart rate.

Using the same method of establishing a heart rate power relationship in the laboratory, and comparing it to 

simulated performance in the laboratory, and race performance in the field, data on time trial (~steady state) 

cycling shows a different response. The relationship did not show significantly higher heart rates in the 

field or indoor performance relative to the laboratory ramp test relationship (p=0.12) for a 12-subject 

sample (Balmer unpublished observation).
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Kenny et al. (1995) and Vanhelder et al. (1985) reported that the linearity of the power : heart rate 

relationship is influenced by intermittent exercise. Two possible explanations are the adrenaline response of 

competition not being matched in the laboratory setting, or secondly the continual change in intensity 

elevated the heart rate response during road cycling. Work rates of varied intensity could cause changes in 

the response of metabolites in the blood and the blood pressure. If increased work periods drove fluid out 

of the vascular volume, then the increased heart rate is a possible the result. Wilkerson et al. (1977) 

reported that greater losses of plasma volume were seen with the appearance of BLac', possibly reducing 

plasma volume, resulting in an increased cardiac frequency for a given volume. If this is a possible 

influence on heart rate then the amount of sprinting and repetitive intermittent activity that is likely to 

elevate B[Lac‘], may cause greater changes in the power:heart rate ratio.

A further complication may be the posture adopted by the cyclists during competition compared to 

laboratory tests. During road cycling there are many times when a rider will ride out of the saddle in a 

standing posture. Swain and Wilcox (1992) reported an increased VO, observed during standing cycling 

due to ‘accessory muscles’ being utilised in the rocking motion of the bicycle. These alterations in 

energetic cost have also been reported by Ryschon and Stray Gundersen (1991). They reported a 12% 

increase in V 02max and an 8% elevation in heart rate response during standing versus seated cycling. 

Therefore this is possibly a factor that has influenced the difference between seated laboratory and 

standing/seated field performance.

This data suggests that there is a change in the energetic cost of cycling during standing cycling. This has 

implications for the physiological assessment of competitive road race cyclists, if the standing posture is an 

important component of a race - during sprinting, climbing and breaking away (i.e. when power outputs are 

extremely high), plus for the comfort factor of altering muscle fibre recruitment for a few seconds, the 

assessment of road cyclists using a seated posture may not allow for the true reflection of the cyclists’ 

capacity to be recorded in the laboratory.

This also has major implications for the previous studies carried out comparing heart rate data to laboratory 

responses to determine the physiological demands of sports. Palmer et al. (1994) reported the heart rate 

responses of an elite group of cyclists during the Giro del Capo a 4-day stage race in South Africa, with 

comparison to laboratory heart rate:power measures to ascertain the demands of the race. The findings of 

this current study indicate that in all riders the laboratory relationship is likely to overestimate the power 

output predicted from a field heart rate response. These findings do highlight the limitations however of 

converting heart rate data from the field into other physiological responses recorded in the laboratory, 

although the exact cause remains speculative.

10.5.4 Pedal cadence during road cycling

It has been reported that trained cyclists have a preferred pedal cadence of 95.3 rpm (Marsh and Martin, 

1995), this appears in contrast to optimal cadences reported in the literature (Jordan et al., 1979 reported
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optimal cadence of 60 rpm, Coast et al., 1986 reported optimal cadence between 60 and 80 rpm). Mean 

cadence during the road races was 74.5 rpm, apparently agreeing with the findings of Coast et al. (1986). 

However if the data at zero watts (i.e. when the pedals are not turning) is removed, the mean pedal cadence 

for time pedalling is ~85 rpm, thus closer to Marsh and Martins’ (1995) findings. Our study however does 

not attempt to solve this apparent disagreement, and the added explanation by Merrill and White (1994) that 

race cadences selected are due to peer and coaching pressure complicates things further. Another of their 

arguments is that due to group dynamics of the pelcton cyclists must be able to change pace almost 

instantly, thus being caught in a high gear would have detrimental effects on the acceleration of an 

individual. Changing gears and pedal cadence to a preferred level can only happen when there are lower 

forces acting on the crank, thus the behaviour of other individuals is possibly going to influence any mean 

figures that are generated from this type of data collection.

10.5.5 Correlation to finishing position during road cycling

Rollings et al. (1995) have identified body mass as an important component of cycle racing that can 

influence results in cycle road races. Stovall et al. (1993) reported that during the American stage race 

‘Tour Dupont’, there were significant correlations between body mass and finishing position of the 55 male 

competitors, with the strongest correlation on the hilliest stage. Likewise Pfeiffer et al. (1993) reported 

significant correlations between finishing time and V 0 2 ml kg'1,min'1 in 11 female elite riders, and this 

despite the individual tactical nature, and possible team tactics and mechanical problems influencing the 

results. This study showed no significant correlations between finishing position and power: body mass 

ratio. Without measuring the body mass of the other competitors in the race it is difficult to assess this 

relationship with more confidence. However, riders with a higher power to weight ratio failed to win lower 

class races than those with lower power to weight ratios in races of a better (licence) standard. The subjects 

were instructed to try to win the races, some riders opted to break away early (e.g. one rider was away in a 

break for 85 miles and was caught ending up with the worst position (53rd) yet has a power to weight ratio 

of over 6.1 watts.kg'1), whereas others left their efforts until a sprint finish. Likewise the terrain was not 

necessarily hilly, and races were on different courses. The correlation between finishing position and 

laboratory measures is also going to be influenced by riders that recorded more than one race with different 

finishing positions despite the same laboratory measures. Rollings et al. (1985) concluded that increases in 

V 02max and optimising body mass would improve road performance in trained cyclists. By reducing body 

mass, the energetic cost of riding the course would reduce physiological responses, thus possibly reducing 

acidosis, and the reliance on muscle glycogen, both of which could influence performance in the latter 

stages of a race. The findings from this study cannot support these findings, as the nature of the sport is not 

necessarily just a test of physiological capacity. In terms of gaining a high finishing position, this study 

highlights the importance of tactical awareness as a major component of this sport, and possibly as 

important as the variables (MMP, MMP.kg'1) measured in the laboratory during one day cycle races on 

relatively flat terrain (compared to 6000m of climbing in the toughest stages of the Tour de France).
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Chapter Eleven. Correlates of Cycling Hill Climb Ability

11.1 Introduction

The rationale for this study comes from the findings in chapter 10. Road race data (appendix 2) when 

smoothed over show high power outputs on the climbs during a race. The power outputs sustained were 

substantially higher than MMP in many cases indicating that the climbs may place significant physiological 

demands upon the competitive road cyclists. Chapter 8 showed significant physiological stress at 85% of 

MMP, (94% maximum heart rate, B[Lac ] 11.28 mmol.I'1). Therefore an aim of this study was to evaluate 

the power, heart rate and BLac' response to simulated hill climbing.

Due to the high power demands during climbing, it appears that the hills during any road race are 

potentially critical to the outcome of a race. Observations from the field show that riders during climbing 

often switch position from seated to standing riding, to maintain speed on the hills. During laboratory 

evaluation, the rider is forced to adopt a seated position due to the calibration procedures of the Kingcycle

(8.2.2.1.2) . Thus a further the aim of this study was to establish if standard seated ergometry testing 

(Kingcycle) could predict competitive cyclists’ performance on a gradient (motorised treadmill) with 

freedom to change their posture during treadmill trials.

Due to differences in hill climb length during different races, two different simulated climbs were used for 

this study (1km at a 12% gradient and 6km at a 6% gradient). Anecdotal evidence from professional 

cycling suggests that during the World cup (1 day races) that have many short climbs (0.4-2 km), true 

climbers (riders with a high aerobic power to weight ratio) do not achieve the results and generally larger 

riders win these races. Whereas during the longer climbs (5-20 km) during the national tours of Italy, 

France and Spain, those riders with a high aerobic power to weight ratio do exceptionally well. Therefore 

another aim of this study was to see if there was any difference in the demands of the two different 

simulated climbs.

11.2 Method

Eight trained cyclists were recruited (8.1) to participate in this study. Laboratory and subject details were 

recorded (8.2.1), along with standardising pressure in the subjects’ bicycle tyres. The mass of the subject in 

full kit plus the mass of the bicycle were also recorded during preliminary measures. Subjects were 

familiarised to the testing procedures (11.2.1) and were required to visit the laboratory on six further 

occasions (one per week) for a series of tests. The testing protocol consisted of a Kingcycle MMP test

(8.2.2.1.3) , a Kingcycle power ‘Wingate’ test (10.3.1.1) and four trials riding on a large motorised treadmill 

graded at 6% and 12% to simulate hill climbing. All tests were conducted in a random order. Prior to all 

laboratory visits, subjects refrained from training the previous day, and maintained their normal dietary 

practices.
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11.2.1 Familiarisation

Seven of the subjects had previously undergone physiological testing in the Sport Science laboratory, 

however, all subjects were (re) familiarised with the Kingcycle (MMP and sprint protocol), and the thumb 

prick blood sampling technique to be used in this study. Subjects were also given a minimum of 2 hours 

familiarisation to treadmill cycling, with practice runs at the gradients/distances that were to be used during 

this study.

11.2.2 Experimental procedures

All tests were carried out in random order, subjects were only informed of which test they were completing 

30 minutes prior to that test.

11.2.2.1 Test 1. Kingcycle MMP .

A Kingcycle MMP test was completed by all riders as described previously (8.2.2.1.3).

11.2.2.2 Test 2. Kingcycle Power Test.

Subjects underwent a Kingcycle power test as described in 10.3.1.1.

11.2.2.3 Tests 3 and 4. 6 km (6%) Treadmill Performance Tests

Subjects performed two 6 km treadmill performance tests at a 6% gradient on two separate occasions. Upon 

arrival, laboratory details were recorded and SRM Power cranks were attached to the subjects’ bicycles and 

calibrated. Subject details were recorded and bike plus body mass value was compared to the subjects’ 

previous data. During initial weighing of the subject’s bicycle a 750g water bottle was added. If the subject 

had an increase in body mass water was removed from the bottle. Any loss in body mass was matched by 

placing weights in the subject’s racing jersey pockets. Subjects warmed up on the treadmill and indicated to 

the experimenter when they were ready to start. The experimenter gave instructions to the riders on 

maintaining an even paced strategy for the fastest ride possible. Oral instructions were given by the 

subjects to influence starting speed, and speed during the test. These were adjusted by the experimenter 

accordingly. The starting speed of the second test was calculated as the average speed of the first test. The 

aim was to complete the test in the shortest time possible. Subjects were allowed to view power, heart rate, 

cadence, time elapsed, distance covered and speed during the test.

11.2.2.4 Tests 5 and 6 , 1km (12%) Treadmill Performance Tests.

Subjects performed two 1 km performance rides at a 12 % gradient on a motorised Woodway treadmill, 

with the protocol identical to tests 3 and 4 except for the distance and gradient of the tests.

11.2.3 Statistical Analysis

Performance (time) was analysed in relation to the standard laboratory measures recorded from Kingcycle 

testing. Pearson’s product moment correlation analysis was then used to establish the relationship between 

independent variables. Stepwise multiple regression analysis was also used to construct prediction 

equations for each of the climbs. The coefficient of variation was also calculated on repeated trials.
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Significant differences between the treadmill tests were calculated using a one-way analysis of variance test. 

The data was analysed using absolute values and allometric scaling was also employed based upon the work 

of Swain et al. (1994).

11.3 Results

11.3.1 Standard stationary ergometer results

Table 11.1 shows the subject details from the MMP test for the 8 subjects.

Table 11.1 Subject details and maximum minute power test results (mean ± S.D.)

Subjects n=8

Age (years) 27 ± 7

Height (m) 1.77 ±0.06

Mass (kg) 72.98 ±5.47

Predicted V 0 2max (linin'1) 4.01 ±0.3

Predicted V 0 2mas (ml kg 1 m in1) 55 ± 4

Maximum Heart Rate (beats m in1) 192 ±5

Maximum Minute Pow'er (SRM) (W) 357 ± 19.6

Maximum Minute Power kg 1 (W k g1) 4.89

Results for the eight subjects from the 30-second sprint test are shown in table 11.2.

Table 11.2 Individual responses to 30-second sprint test protocol. Values for peak power and %

fatigue are for a 1 second sample.

Peak Power Mean Power (watts) Time to Peak Power % Fatigue

(watts) (seconds)

1 796 (782) 635 12 37.6

2 818 (786) 571 8 45.8

3 918 (901) 643 12 40.5

4 732 (715) 558 9 41.8

5 777 (772) 632 10 54.2

6 794 (722) 641 5 25.2

7 974 (966) 768 9 35.5

8 905 (893) 673 9 49.9

Mean ± 839 ±83.2 640.2 ± 64.4 9.25 ±2.2 41.3 ±9.0%

S.D.
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11.3.2 Treadmill test results

Using the methods of detecting heteroscedasticity outlined by Neville (2000), there was no evidence of 

heteroscedasticity within the data.

The times recorded for the 6 kilometre climb at a 6% gradient, and the 1 kilometre climb at a 12% gradient 

were 16.3 ± 1.08 and 4.19 ± 0.3 minutes respectively. These equated to 92.6 ± 4.2% and 115.38 ± 6.1% of 

maximum minute power. Significantly higher power outputs were sustained during the 1 kilometre climb 

for absolute (p<0.001), and relative power outputs (p<0.001). There was also a significant difference 

between B[Lac'] 5 minutes post exercise for the 1 km (11.68 ±1.9 mmol.I'1) and the 6 km climb (9.65 ±1.59 

mmol.r1), (p=0.036). No significant differences were observed for heart rate (184 ± 6 vs 181 ± 4 beats min' 

‘) between 1 km and 6 km performance (p=0.204), which equated to 96% and 94% of maximum heart rate.

11.3.2.1 Performance Trial 1 and Performance Trial 2

There were no significant differences between performance trials 1 and 2, for both the 1 km (4.2 ±0.17 vs 

4.19 ±0.27 minutes, p=0.937) and the 6 km (16.79 ±0.91 vs 16.31 ±1.08 minutes, p=0.348) trials. The 

coefficient of variation (time) for the two 6 km trials was 2.03% (95% CI= 1.32-4.4%) r=0.91 (95% CI= 

0.57-0.98), SEE 2.24 (95% CI= 1.38-4.2). For the two 1 km trials the coefficient of variation was 2.28% 

(95% CI= 0.99-5.42%), r=0.68 (95% CI= -0.81-0.99), SEE 3.47 (95% CI=1.51-8.24). To record the faster 

times in the second trial higher power outputs were also recorded. For the 29 second improvement in time 

for the 6 km climb subjects increased power output (321 ± 17 vs 331 ± 17 watts for the first and second 

trial), but this was also not significantly different between trials (p=0.286). Coefficient of variation for 

power was 2.29% (95% Cl - 1.24-4.13%), r=0.82 (95% CI= 0.26-0.97) SEE 3.28 (95% CI=1.78-5.93) for 

the 6 km trials. For the 1-second improvement during the 1 km trials a non significant (p=0.35) increase in 

power output was recorded (408 ± 32 vs 411 ± 24 watts for the first and second trials respectively). 

Coefficient of variation for power for the 1 km trials was 4.04% (95% Cl - 1.6-9.58%), r= 0.75 (95% CI= 

0.1-0.95), SEE 6.43 (95% CI= 2.8-15.26). The heart rate response followed a similar pattern for the 6 km 

climb (179 ± 7 vs 181 ± 4 beatsmin'1 for the first and second trial) (p=0.48), and the 1 km climb (182 ± 6 vs 

184 ± 6 beats min'1) (p=0.51).

11.3.2.2 Performance Prediction

Performance predictions from the maximal minute test and the 30-second sprint test are shown in table 11.3.

The highest correlation coefficient recorded was that of one climb versus the other (r=0.97, p<0.01). Power 

output sustained during the 1 km and the 6 km did not yield significant correlations to performance time 

(r=-0.157, and r=-0.428 respectively).

Where MMP is maximal minute power output, SPP is the sprint test peak (1 second) power, and SMP is the 

sprint test mean power (30 seconds).

Stepwise multiple regression yielded the following two equations.
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6 km speed (km.h'1) = 0.788 SMP kg'1 + 1.884 MMP (kg + bicycle mass) + 7.295 

(i=0.96, p=0.0016).

1 km speed (km.h'1) = 0.521 SMP kg'1 + 1.201 MMP (kg + bicycle mass) + 4.72 

(r=0.98, p=0.0004).

Table 11.3 Correlation coefficients for time versus laboratory measures.

1 km Climb 6 km Climb

at 12 % grade at 6 % grade

MMP (watts.kg'1) -0.89 -0.87

MMPkg067 -0.88 -0.89

MMP'kg0,79 -0.92 -0.87

MMP (kg + bicycle mass) -0.90 -0.89

SPP (watts kg'1) -0.65 -0.56

SPPkg067 -0.60 -0.51

SPP'kg079 -0.53 -0.63

SPP (kg + bicycle mass) -0.64 -0.55

SMP (watts kg'1) -0.89 -0.85

SMPkg067 -0.89 -0.86

SMP'kg0'79 -0.87 -0.84

11.4 Discussion

11.4.1 Power output during simulated hill climbing

Power output sustained for the 6 km hill climb study was significantly higher than had previously been 

reported’during cycling for this duration (~16 minutes). Fairbam et al. (1991) reported that well trained 

cyclists (~ 60 ml.kg'1min'1) could only sustain 90% of maximum power output for around six minutes on a 

standard stationary ergometer. Evidence from Chapter 8 indicated that B[Lac'] was in excess of 11 mmol.I'1 

at 85% of maximum minute power output, at the end of the 6% climb B[Lac'] was lower than this at a value 

of 9.65 mmol.r1, despite a higher percentage of MMP sustained (>92%) and although these subjects were 

different from the subjects who completed the study in chapter 8, if anything, the subjects who completed 

this study were a lower standard of athlete (V 02max = 55 vs 68 m l.kg'm in'1. For the 16 minute climb at 

over 90% of MMP the heart rate recorded equated to 94% of maximum heart rate, an identical figure to that 

recorded at 85% of MMP in the results from chapter 9.
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From the results from this study, and from the results from the study described in chapter 10, it appears that 

riders are able to sustain very high powers when cycling on a gradient. Possible explanations may be an 

increased upper body component of climbing, or it may be that allowing the rider to change position from 

seated to standing allows for a higher power output to be achieved. In an investigation into the demands of 

standing and seated cycling, Swain and Wilcox (1992) introduced the topic and speculated that the shift to 

standing on the pedals allows a rider to bring his mass over the pedals enhancing power production, and 

may also relieve muscle fatigue by changes in recruitment patterns. This could help to explain the increased 

power sustained by the cyclists in this current study for an apparent lower physiological cost. A reduced 

physiological cost during standing cycling however was not supported by their results. Swain and Wilcox, 

(1992) reported no significant difference between standing and seated conditions, and Ryschon and Stray- 

Gundersen (1991) reported an increase in the V 02 cost of standing cycling. Ryschon and Stray-Gundersen 

(1991) suggest that the biomechanical advantage of standing cycling is overshadowed by the cost of the 

upper body exercise. These authors indicated that standing (compared to seated cycling) involves a greater 

musculature, with the upper torso being more involved for guiding of the rocking motion of the bicycle. 

They also suggest that standing cycling requires greater support, and the result of simply increased grip on 

the handlebars would elevate V 0 2. There is also indirect evidence that standing cycling also requires 

increased power from the quadriceps femoris to support the body mass (Tanaka et al. 1987). Tanaka et al. 

(1987) reported elevated EMG activity during standing cycling compared to seated cycling. As there is 

always a degree of flexion at the knee joint during standing cycling, the quadriceps femoris must be 

recruited to not only to maintain power output, but to also support the body weight of the rider.

Ryschon and Stray-Gundersen (1991) concluded that the reason why cyclists adopt the standing position 

during climbing is to distribute the workload over a greater muscle mass, which despite the elevated V 02 

cost, is perceived by the cyclist to reduce the intensity.

Chapter 11 investigates the cardio respiratory responses of riding on graded and level cycling in the seated 

position at a lower exercise intensity.

A positive correlation was recorded between performance and MMP.kg'1, which supports the findings by 

Rollings et al. (1985) who concluded that increases in V 0 2max and optimising body mass would improve 

performance in trained cyclists. Likewise the weak to moderate correlations of absolute power sustained 

during these hill climb trials again highlight the importance of body mass during simulated climbing. These 

physiological adaptations would allow for faster predicted simulated hill climb performance, however, again 

tactics during road cycling can possibly mask this ability, even during hillier races, if a rider does not go 

with a break, even if they have the highest V 02max relative to body mass (ml.kg 'm in1) it would not 

necessarily be a winning attribute.
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11.4.2 Physiological responses to simulated hill climb performance

Despite differences in the physiological responses during level and graded cycling, during the hill climb 

study the prediction of performance was still possible from the level stationary ergometer. Relative to body 

mass the power outputs recorded during the ‘Wingate’ type tests correlated significantly to performance 

results during the hill climb tests. The B[Lac'] suggests a significant contribution of the anaerobic system 

during both of the hill climb tests. However, with mean exercise intensity lasting over 16 minutes during 

the 6 km climb, it is surprising that mean (30 second) power and even peak (1 second), power correlate to 

performance time. Previous authors have indicated however that a significant portion of energy is being 

derived via the aerobic system during exercise of this short duration. These findings support the work of 

Withers et al., (1991) who found strong correlations between markers of aerobic metabolism (V 02max) and 

sprint performance during laboratory testing in trained road cyclists. Therefore aerobic capacity is possibly 

influencing both test results. Using an off line system of gas analysis (Douglas bags) Keen (unpublished 

observation) has presented data indicating V 02max can be achieved rapidly during a 90 second sprint effort. 

This therefore possibly explains the findings during the hill climb study. Previous data on well-trained 

cyclists (Sjogaard, 1984) has shown significantly high proportions of slow twitch muscle fibre present, with 

some fast twitch (Ha), and minimal lib fibres present. During the road race cycling it appears that the ability 

to continually fluctuate between high and low powers for over four hours is the general pattern of demands 

in this sport. Even though previous simulation studies have not really recognised the high power demands, 

authors such as Burke et al. (1977) have recognised the importance of sprinting ability. However, as the 

duration of the cycle road races is generally 45 minutes plus, the endurance component and relatively high 

force production may possibly be a result of slow twitch muscle fibre activation. Despite what one might 

expect to perceive as a sport specific test, athletes trained at other disciplines achieve higher peak powers 

than the competitive cyclists during the Kingcycle anaerobic test (team game player peak power (1 second) 

= 1770 watts, 26 watts.kg'1, unpublished observation).

This study also further indicates that the heart rate response during exercise has limitations when assuming 

it is associated with a specific power value. There was no significant difference between the heart rates 

recorded during the 6 km climb and the 1 km climb, yet the power differences were 92.6 and 115.4% of 

MMP for the two climbs which equates to 330 vs. 412 watts for no significant difference in heart rate. 

There was a slightly higher heart rate but only 1.6% (p>0.05), for the production of 20% more power. The 

work of Palmer et al. (1994) matching heart rate to a power (or V 0 2) value therefore has its limitations.
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12.1 Introduction

The results from chapter 11 indicate that well trained cyclists can sustain higher percentages of MMP during 

graded cycling compared to previous research on level cycling. When achieving this higher sustained work 

rate, a lower mean B[Lac] was observed compared to a previous group of subjects riding at a lower 

percentage of MMP. This could be due to a decrease in Lac' production or an increased Lac' removal, 

either of which would possibly increase the V 02 for a given work rate. However, these findings could 

simply be a function of an increased efficiency - mechanical advantage, allowing more work for less effort 

during graded as opposed to level cycling. The aim of this study was to evaluate the cardio respiratory 

demands of level and graded cycling on the same subjects, and compare these responses to a short hill climb 

performance test.

12.2 Method

Six well-trained male cyclists were recruited to participate in this study (8.1). Initial details were recorded 

(8.2), and in common with the methodology in the previous study, tyre pressure was standardised (100 psi), 

plus the mass of the full kit (bike plus rider) was also recorded. Likewise a 2-hour familiarisation to 

treadmill riding, and refamiliarisation to Kingcycle procedures was undertaken (11.2.1). All subjects had 

previously undergone physiological assessment in the Sport Science laboratory.

Following familiarisation, subjects were required to make four further visits to the laboratory. Test 1 

consisted of a Kingcycle MMP test, tests 2 and 3 involved riding on a motorised treadmill at either a 

gradient, or on the level. Test 4 consisted of a treadmill performance test (2 km at a 6% gradient). Tests 2, 

3 and 4 were carried out in random order. During treadmill familiarisation, this simulated climb was 

attempted on at least two occasions to ensure that subjects knew the demands of the performance test.

Prior to all tests subjects refrained from training the previous day, and were instructed to maintain their 

normal dietary practices.

12.2.1 Experimental procedures

12.2.1.1 Test 1

Test 1 consisted of a Kingcycle MMP test as described previously (8.2.2.1.3). Data was also simultaneously 

collected using the SRM powercrank system previously attached to the subject’s bicycle.

12.2.1.2 Tests 2 and 3

Tests 2 and 3 consisted of 6-minute trials riding on the motorised treadmill. Following a thorough warm up, 

subjects’ indicated when they were ready to begin. Subjects’ were then fitted with a facemask (Hans 

Rudolf. Kansas city, USA), and connected to an online gas analysis system (Covox. Exeter, UK). A further 

2 minute warm up was then followed by the adjustment of speed to elicit 60% of the individual’s MMP.

Test 2 consisted of subjects’ riding at 60% of MMP on a level gradient. Test 3 only differed from test 2 in
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that the 60% MMP was elicited on a 6% gradient. Throughout the 6-minute trials V 02, V C 02, VE, and 

heart rate were recorded. During trials 2 and 3 pedal cadence was matched between trials, and riders 

remained seated during all trials.

12.2.1.3 Test 4

Test 4 comprised of a treadmill performance test of 2 km in duration at a 6% grade. Following warm up to 

their own requirements, subjects indicated to the operator when they were ready to begin the testing 

protocol. The treadmill was elevated up to 6% and on adjustment of the treadmill speed to the fastest 

average speed recorded during familiarisation, the test commenced. Subjects orally communicated with the 

experimenter to adjust the speed of the treadmill belt. The subjects were instructed to complete the test in 

the shortest time possible.

12.2.2 Statistical analysis

Differences in the physiological responses were ascertained using an Analysis of covariance test (covariate 

treadmill power).

12.3 Results

All six subjects (details in table 12.1) completed the testing protocol. Table 12.2 shows the cardio

respiratory response to level and graded cycling. Due to slight differences in the mean power (3 W) 

ANCOVA was used to analyse the data.

Significant differences in V 02 (0.17 linin'1, p=0.018) (Figure 12.1), VC02 (0.32 linin'1, p=0.032), and VE 

(4.64 l min"1, p=0.035), (figure 12.2) were recorded. No significant differences were found for RER values 

(p=0.273) (figure 12.3) and heart rate (p=0.461) on the level compared to graded cycling. Gross 

mechanical efficiency was also similar (p=0.408) between trials.

Table 12.1 Subject details (mean ± S.D.)

Subjects n=6

Age (years) 26 ± 7

Height (m) 1.785 ±0.05

Mass (kg) 72.7 ±6.5

V 0 2ma, (l inin'1) 5.23 ±0.52

Maximum minute power 413.2 ±42.2

(watts) (SRM)
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SD).

Table 12.2 Cardio-respiratory response during level and graded treadmill cycling (n=6). (mean ±

Treadmill Gradient 0% 6%

Power Output 249 ±23.5 watts 252 ± 25.3 watts

v o 2 3.08 ±0.39 1 min"1 2.91 ±0.19 l inin'1*

v c o 2 2.94 ±0.36 l inin'1 2.62 ± 0.24 1 min'1*

VE 59.34 ± 8.57 linin'1 54.7 ± 6.55 1 min"1*

RER 0.94 ± 0.02 0.90 ±0.03

Gross Mechanical Efficiency 23.47 ±2.41 % 24.79 ± 0.76 %

Heart Rate 146 ± 11 beats'min"1 143 ± 8 beats min'1

*denotes significantly different from level (0%) treadmill cycling (p<0.05).

Figure 12.1 Oxygen consumption during submaximal exercise at the same power output during level

and graded cycling.

Figure 12.2 Ventilatory response during submaximal exercise at the same power output during level

and graded cycling.
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Figure 12.3 Respiratory exchange ratio during submaxiinal exercise at the same power output during

level and graded cycling.
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Figure 12.4 Gross mechanical efficiency during submaximal exercise at the same power output during

level and graded cycling.
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12.3.1 Performance test

The results of the performance test of 2 km at a 6% indicated that riders sustained 113.8 ± 8.91% of 

maximum power during the test. The time taken to complete the performance test was 4.70 ± 0.33 minutes, 

which equated to a speed of 25.65 ± 1.8 km.hr'1. Gross mechanical efficiency calculations from the 

submaximal rides significantly correlated to performance time for the graded trial (r=-0.87, p<0.05), but not 

for the gross mechanical efficiency calculations from the level trial (r=-0.07 p>0.05). The MMP.kg'1min'1 

was again a strong predictor of hill climb performance time (r= -0.84).

12.4 Discussion

12.4.1 Cardio respiratory measures

The findings from this study indicate that there are physiological changes between riding on the level as 

opposed to a 6% gradient. Despite similar power outputs, differences in V 02, VC02, and VE were
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observed. This would then appear to support the findings in chapter 11. Trained cyclists could sustain 

~93% MMP during a 16+ minute performance test on a gradient during the study described in chapter 11, 

however previous research on more aerobically trained cyclists revealed that on a stationary ergometer on 

the level 90% of MMP could only be sustained for ~ 6 minutes (Fairbam et al., 1991). The chapter 1 lstudy 

also found lower B[Lac'] when compared to the highest intensity (85% MMP) completed in chapter 9. 

Therefore the major finding is that these changes in physiological response are likely contributors to the 

increase in overall performance seen in chapter 11.

The combination of differences between the two conditions (~8% VE, ~6%V02, ~11% VC02) indicate 

lower physiological stress on a gradient compared to on the level. This is the first data of this kind to 

highlight these differences, however, the exact cause remains speculative.

The reductions in V 02 indicate an enhanced economy of movement working on a gradient compared to the 

level condition. Previously alterations in the V 02 response have been attributed to changes in the riders 

position on the bicycle (Ryschon and Stray-Gundersen, 1991), however the cyclists did not change position 

between the level and graded conditions. Matching the pedal cadences between the two conditions may 

provide the answer. Previous research by Balmer et al., (2000) suggests that cyclists opt for higher 

cadences in the laboratory than in the field. This is believed to be due to differences in the inertial load 

upon the ergometer, or the resistance in the field. If graded cycling changes the inertial load (compared to 

level cycling) it may alter the optimal cadence, and in turn the V 02 response. The pedal cadence averaged 

80.6 ± 0.85 revs min'1 in the graded trial and 81.2 ± 1.1 revs min'1 during the level trial. Previous research 

has indicated that a cadence of 84 revs min'1 during treadmill cycling at 10% is more efficient than a lower 

cadence (Swain and Wilcox, 1992), however, during level (ergometer) cycling it does appear that the 

majority of the literature suggests lower oxygen costs at pedal cadences around 60 rev min'1 (Suzuki et al., 

1979, Jordan et al., 1979, Coast et al., 1986). Conflicting findings have been reported by Davison and 

Flynn (1997), with optimal cadences around 90 rev min'1 however Balmer et al., (2000) reported higher 

cadences during Kingcycle simulated performance than outdoor performance. This could suggest therefore 

that the inertial load could be different between graded and level cycling, and also between different 

ergometry systems. This then may influence the optimal cadence and the overall V 02 response during 

exercise.

Failure to ride at an optimal cadence however does not explain the performance results of the study 

described in chapter 11. The results indicated that high power outputs could be sustained on a gradient 

compared to what had previously been sustained during level cycling, and, the lower B[Lac'] riding at 92% 

MMP on a gradient compared to the B[Lac'] in the trials at 85% MMP in the study described in chapter 9. 

The high power outputs recorded during actual races indicate that whilst climbing the cyclist has to sustain 

very high powers, therefore these results could possibly be attributed to the training status of recruited

106



muscle fibres during climbing. Further study investigating this phenomenon could compare non cyclists to 

trained cyclists to isolate this variable.

The limitation of using heart rate like the previous study is again shown here. The extrapolation of a heart 

rate to a specific V 02 value appears to be affected by the gradient of the treadmill. Thus road data with 

changes in gradient are going to affect the heart rate, V 02 and the power response (chapter 11) all of which 

were variables not considered by the Palmer et al. (1994) study.

12.4.2 Performance test

The performance test data from this study corroborates the findings in the previous two studies of well- 

trained cyclists being capable of maintaining high percentages of MMP during such performance tests. 

During this study, the performance test time was ~31 seconds slower than the 1 km climb in chapter 11 with 

~2% reduction in relative intensity (% MMP) that could be sustained.

Gross mechanical efficiency calculations of the gradient appear also to predict the performance during the 2 

km climb, whereas the level efficiency calculation did not. This is possibly due to the effectiveness of 

specific muscles being recruited during climbing, thus the more efficient the cyclist at submaximal 

intensities, the better the performance outcomes.
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Chapter Thirteen. Laboratory Simulation of Road Race Cycling

13.1 Introduction

Previous research on competitive road cyclists has either used maximal measures of aerobic capacity, or 

steady state ‘performance’ tests to evaluate riders’ capacities in the laboratory. The data from chapter 10 

highlights that road race cycling is very intermittent, and this type of testing may not give us a true 

reflection of the road race cyclists’ capacity. The findings discussed in chapter 9 also showed that no 

parameters from the Kingcycle MMP test correlated to performance outcome during road cycling. It would 

appear that either this marker of physical capacity does not play a role in the endurance road race 

performance (which it does in time trial performance), or the influence of tactics and the use of drafting 

skew the importance of the physiological responses in the laboratory.

One of the aims of this study is to remove the tactical nature of road racing (by ensuring all subjects 

complete the same relative amount of work) prior to a performance test. This would therefore give some 

indication of whether tests of maximal aerobic capacity are relevant for this type of athlete who is regularly 

utilising anaerobic power and anaerobic capacity to compete.

Previous attempts to simulate road race cycling in the laboratory have used ‘variable intensity’ (intensity 

that changes from lower to higher work loads) as opposed to ‘intermittent’ protocols (where the intensity is 

variable, but there are also intermittent rest periods) (Palmer et al., 1997, Brouns et al., 1991). These 

studies varied intensity from 30% maximum power output to 90% maximum power output during a 

performance ride to exhaustion. From the data in chapter 9, competitive races shows a rather different 

pattern, with ~13% of race duration at zero watts, and ~30% of race duration above 100% MMP. Therefore 

another aim of this study was to examine the physiological responses to a more intermittent protocol than 

has previously been conducted.

Palmer et al. (1997), concluded from their study on variable intensity cycling that performance reductions 

following the variable intensity trial (compared to an even power trial) were due to increased muscle 

glycogen use during the variable intensity trial. Previous research has shown that with glucose feeding, 

muscle glycogen can be spared during variable intensity exercise (Yaspelkis et al., 1993). Therefore, if 

muscle glycogen is a limiting factor influencing performance trials post variable intensity exercise, glucose 

feeding may enhance performance. It could be speculated that glucose supplementation during variable 

intensity exercise may therefore have greater effects than when compared to a placebo trial, and be able to 

supply substrate for this type of exercise. In theory therefore, glucose feeding during an intermittent trial, 

versus a placebo intermittent trial might have greater effects than when compared to glucose and placebo 

steady state trials. Therefore a further aim of this study was to test this hypothesis.
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13.2.1 Introduction

The problems of sport specificity when testing the competitive cyclist have been discussed in chapter 7. 

The discussion centred on the true replication of road conditions within the laboratory. The actual race data 

from chapter 10 was used to create the road race simulation protocol (discussed later). During races 

subjects were able to ride in and out of the saddle, move around on the bicycle, and race with as little 

intervention as possible. To use this data to create a simulation, and to keep the protocol as specific to the 

competitive situation as possible, the subject must be able to shift their position, move on the bicycle and 

opt for an out of the saddle position at their own discretion. The design of the Kingcycle test rig does not 

allow for the shifting of the cyclist’s position, due to the requirement of keeping the mass on the roller 

constant for a valid reading of power output.

The results from chapter 11 and 12 also reveal possible changes in physiological responses, and 

performance (power output) during graded as opposed to level ergometry testing. Therefore, the motorised 

treadmill was selected as the ‘ergometer’ to be used during this study in an attempt to replicate field 

conditions.

13.2.2 Treadmill data

13.2.2.1 Introduction

The aim of this preliminary study was to investigate the relationship between power output, body mass, 

treadmill speed and treadmill gradient. Previous research has used motorised treadmills as a means of 

eliciting relative exercise intensities (e.g. % V 0 2max), to date however, no research has been published 

regarding power output whilst cycling on a gradient. Previously work by Jakeman (1989) utilised a pulley 

system, connected to a basket of weights to increase the exercise intensity during treadmill cycling. This 

method of increasing resistance was used during this study to uniformly increase or decrease the power 

output that needed to be attained by the subjects. The pulley type system allows for the instant loading, as 

opposed to subjects winding up to a given power, which might be a source of variation in total work 

achieved at the end of the trials. Therefore, another variable the weight basket, and the addition of weights, 

with treadmill gradient, speed, and power output were also investigated in this preliminary study.

13.2.2.2 Methods

Three male experienced cyclists (details table 13.1) undertook a series of treadmill calibration rides, at 

submaximal/maximal and supramaximal intensities, with the aim of investigating the relationship between 

power, speed and gradient of treadmill cycling.

Following the recording of laboratory and subject details, subjects were given a minimum of two hours 

familiarisation to treadmill cycling on their own bicycle before the study commenced.

13.2 Preliminary study
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Prior to data collection, subjects warmed up and indicated to the experimenter when they were ready to 

begin the testing protocol. Each trial consisted of a 2-minute work stage with either treadmill speed, 

treadmill gradient, mass of the rider, or weight on the pulley system being manipulated.

13.2.2.2.1 Power output and treadmill speed/gradient.

Subjects were required to ride for repeated two-minute work stages at treadmill gradients from 0% to 10% 

in 1% increments, at two speeds, 13.6 and 27.2 kph.

13.2.2.2.2 Power output and mass during graded cycling.

Subjects were required to ride for repeated two-minute work stages on treadmill gradients from 0% to 5% in 

1% increments at three different speeds 12.8, 19.2 and 25.6 kph. Two random trials were completed. One 

trial was conducted with the subject wearing normal racing clothing. The second trial was conducted with 

the subject carrying 7.8 kg in their racing jersey pockets. Both trials were conducted during the same visit 

to the laboratory.

13.2.2.2.3 Power output and the effects of increasing weights on the pulley basket during treadmill 

cycling.

Subjects were required to ride at repeated treadmill speeds (12-36kph) for two-minute work stages. 

Repeated trials consisted of riding with and without the addition of 1 kg to the pulley system.

13.2.2.3 Results

Table 13.1 shows the details (n=3) of the participants in this study.

Table 13.1 Subject details, (mean ± S.D.).

Subjects 11=3

Age (years) 21 ±3

Height (m) 1.77 ±0.08

Mass (kg) 69.2 ±8.8

Figure 13.1 shows the effects of two different treadmill speeds and varying treadmill gradient on the power 

output during treadmill cycling. The correlation coefficient revealed a significant linear relationship 

between these variables (r=0.999, pO.OOl) for both treadmill speeds.

Figure 13.2 shows the interaction between body mass (plus cycle mass) and treadmill speed, gradient, and 

power output. As before, correlation coefficients showed a linear response to increasing speed and/or 

gradient, (r=0.999, p<0.001) for all conditions. The increase in body mass of 9.1% resulted in an increase 

in power output of 8.6% across all trials. Data for the effect of body mass at the different gradients is shown 

in table 13.2.
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Figure 13.1 The relationship between power output, speed and gradient during treadmill cycling.

*  8.5MPH 

D 17MPH

Gradient (%)

Figure 13.3 shows the effect of adding 1 kg in weight to the pulley system basket on power output during 

treadmill cycling. The mean data at each speed shows a significant relationship between treadmill speed 

and the effects of adding 1 kg in weight to the basket (r=0.97, p<0.05). Individual data for each trial (2 

minutes) at each speed for each subject also resulted in a significant correlation coefficient (r=0.94, p<0.05).

Table 13.2 The effect of 9.1% increase in body mass on power output during climbing, (mean ± SD)

Gradient (%) % increase in power 

output

0 7.5 ± 2.2%

1 9.31 ±2.98%

2 7.77 ±2.16%

3 10.01 ±2.72%

4 8.3 ± 0.73 %

5 8.27 ± 1.03 %
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Figure 13.2 The relationship between power output, body mass, speed and gradient during treadmill

cycling.
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Figure 13.3 The effect of adding 1 kilogram to the weights cradle at different treadmill speeds.
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13.2.2.4 Discussion

The aim of this study was to investigate the relationship between treadmill speed, treadmill gradient, body 

mass, and the effect of using the pulley system on power output during treadmill cycling.

Figure 13.1 shows the effect of increasing the treadmill gradient upon the power demands of treadmill 

cycling. For two different treadmill speeds, the results showed a significant linear correlation (r=0.999). 

Any increases in treadmill speed also increase the power output of treadmill cycling (figures 13.1, 13.2), 

likewise did body mass, as demonstrated by artificially altering body mass (table 13.2, figure 13.2).

These results indicate that the body mass of a rider (and bicycle) will influence the energy demands of 

riding on a treadmill. In terms of performance outcomes, then minimising both bicycle and body mass will 

reduce the energetic demand of climbing which appears almost a direct relationship (9.1% increase in mass 

= 8.6% increase in power output).

A further aim of this study was to view these results with regard to creating a road race simulation on the 

running treadmill. Body mass appears critical in the formula for creating a protocol of relative exercise 

intensity. If a subject rides on the treadmill at 25 km .h1, at gradients from 0% to 5% in 1% increments a 

relationship between these variables can be established for that rider as an individual. Any changes in 

treadmill gradient can be accounted for by the slope of a regression line plotted through the data points. 

Figure 13.1 shows the proportional nature of increased (or decreased) speed, therefore any changes in speed 

can be accounted for by and initial calibration ride. Finally, figure 13.3 shows the effect of adding weights 

to the basket/pulley system during treadmill cycling. Again a strong linear correlation was recorded, 

leading to the use of such a system being quantifiable.

Therefore to conclude, if the subject performed an initial calibration ride, using the pulley system, and 

manipulating treadmill speed and gradient, calculations of exercise intensity (power output) could be made, 

therefore the utilisation of the treadmill testing in developing a road race simulation could be possible.

13.3 The development of a protocol to simulate road race cycling

13.3.1 Introduction

The aim of this study was to use the data collected in chapter 10 to create a laboratory simulation of road 

cycling. The data in chapter 10 revealed distinct differences between the distribution of power output in 

previous studies, compared to this data. Therefore the aim was to create a simulation that was more 

‘intermittent’ as opposed to variable intensity.

A further difference was the utilisation of the motorised treadmill to create the simulation. Previous studies 

have utilised standard stationary ergometers to create simulated road racing. However, chapters 11 and 12 

have highlighted possible differences between level and graded cycling. Possibly the most distinct 

difference recorded was the higher work outputs sustained by the subjects on a graded treadmill trial. As 

the road race data was collected during level and graded cycling, some of the sustained high work rates
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recorded could possibly not be achieved on the level on a stationary ergometer, therefore the use of the 

motorised treadmill for this study was imperative.

13.3.2 Treadmill gradients

In creating a road race simulation, the initial stages involved the development of varying gradients for the 

protocol. The majority of cycle races in this country take place over a series of Taps’ of a circuit, using this 

kind of repetitiveness would allow for comparison over time within the physiology laboratory. The profile 

of a local road race circuit (Godmersham, Canterbury, Kent) was taken, and was scaled to create a 30- 

minute Tap’ to be repeated four times over. (Figure 13.4 shows the actual profile from maps of the 

Godmersham circuit).

Figure 13.4 Profile of the four ‘laps’ of the Godmersham road race circuit

As the motorised treadmill had a maximal speed of 36.6 kph, to simulate road race type pedal cadences 

(distribution), subjects were limited to their inner chain ring on their bicycle, but could select any rear 

sprocket gearing at any time.

13.3.3 Power Outputs

The spread of power outputs was created using the data from road races (chapter 10). However, due to 

each race being very different in terms of timing of attacks, hills, sprints and duration, (mean data is just a 

smooth line over time), manipulation of typical patterns was attempted.

The aim was to increase the spread of power output compared to previous studies investigating this sport. 

Therefore high intensity intervals were interspersed with periods of recovery, on the gradients high- 

sustained power outputs were achieved, similar to the patterns observed during road races.

Due to safety reasons, the ‘high’ intensity periods were limited to 150% of MMP. The mean overall 

intensity for the pilot study was 64% MMP plus the performance test, (~65% MMP). However, due to
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problems with fatigue, and cramp (2 subjects failed to reach the final performance test) this was reduced to 

58% MMP plus the performance test (~60% MMP) for the actual study. The aim thereafter was to make the 

simulation as variable as possible within these limits (0 and 150% MMP).

To simulate descending, and to simulate the amount of time spent at zero power output, 2-minute periods of 

‘freewheeling’ were achieved by having an experimenter hold the bicycle stationary, (blood samples were 

also drawn at this time). Further periods of zero watts were achieved by having subjects pedal up to the 

front of the treadmill and stop pedalling and drift back to the back of the treadmill. During periods of light 

exercise the feeding took place (glucose or placebo), plus the mouthpiece was handed up for gas analysis. 

For comparison over time, blood samples, gas samples, and feeding were conducted at exactly the same 

point during each lap.

13.3.4 Performance Test.

At the end of the Godmersham road race course is a 3 km climb to the finish line. To try to simulate the 

finish, a 2 km climb (6% gradient) was used as the finishing performance test, preceded by a 3 minute 

period at a fixed work intensity (70% maximum minute power) at a gradient of 6%. This was done to allow 

subjects to re familiarise themselves with the gradient during this pre performance test period. Subjects 

were instructed to complete the performance test as quickly as possible, and were allowed to view elapsed 

distance and time during the test. The sustained gradient of 6% was chosen to match other studies 

conducted in our laboratory (chapters 11 and 12), and to enable subjects to pace their efforts, which might 

be more difficult if the gradient constantly changed.

13.3.5 The Protocol

The protocol as mentioned previously was designed to be ‘intermittent’ as opposed to a variable protocol, 

the aim was to try to match the histogram pattern of the road race collected data, with that of the simulation 

protocol (figures 13.5, 13.6).

The protocol had two periods of intense intervals per Tap’ with light recovery periods between efforts. 

Sustained high work rates were generated during some of the graded sections of the protocol, to try to 

simulate the similar patterns from the road races.

13.3.6 Sampling

During the protocol continuous measures of heart rate and SRM power output (1 second sampling) were 

taken throughout the 2-hour simulation. During ‘simulated’ descending, blood samples were drawn with 

the mid lap sample analysed for B[Lac‘] and glucose, and the end of lap sample for B[Lac'], glucose, NH3, 

and urea, (figure 12.5). Expired gas was analysed for two periods during the simulation, again indicated on 

figure 13.5, during two periods of fixed intensity exercise (60% MMP).
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Figure 13.5 Schematic representation of one Map’ of the road race simulation protocol (30 minutes)
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Figure 13.6 Distribution of power output from actual race data and the simulation protocol
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Chapter Fourteen. The Effects of Glucose Polymer Supplementation on Simulated Road Race 

and Even Power Cycling.

14.1 Introduction

Previous study into the demands of competitive road race cycling concluded that glycogen depletion 

was possibly the major factor contributing to a deterioration in performance following a variable 

intensity trial as compared to a steady state trial (Palmer et ah, 1997). However, during their study they 

did not measure any markers of fuel utilisation. The aim of this study was again to compare steady state 

versus simulated road race cycling. Previous research has shown muscle glycogen sparing through the 

ingestion of glucose polymer (Yaspelkis et al., 1993). Studies on steady state cycling have not shown 

muscle glycogen sparing during endurance exercise through glucose feeding, therefore, it is possible 

that the ingestion of glucose polymer during an intermittent road race simulation may have more of an 

effect than when compared to even power cycling. The aim of this study was to test this theory.

14.2 Methods

Subjects were recruited as previously described (8.1), and seven male competitive road race cyclists 

were selected to participate in this study. Subjects were physically active and engaged in training at the 

time of study.

14.2.1 Pre testing regime

Subjects reported to the laboratory prior to all tests having rested from training the during the previous 

24 hour period, otherwise subjects maintained their usual training and dietary routine throughout the 

testing period. This method of controlling subjects had previously been shown to minimise variation 

between repeated MMP tests (chapter 9).

Prior to arrival on all laboratory visits subjects were instructed to consume only water during the 

preceding 2-hour period. Subject details were recorded (8.2.2.1), along with the weight of all of the 

cycle equipment to be used during the study. Upon arrival to the laboratory on subsequent visits, 

subjects body mass was recorded, and subjects cycle equipment remained unchanged.

14.2.2 Familiarisation

All subjects had previously cycled on a motorised treadmill (Woodway, Gubh, Germany) during 

previous research studies or during pilot data collection for this study. However, initial familiarisation 

sessions on treadmill cycling were completed to ensure that subjects were comfortable with, i) changes 

in treadmill speed and gradient, ii) riding in and out of the saddle, iii) changing gears on the bicycle, iv) 

high intensity loads with weights placed on the pulley system, v) maintaining a position at the front of 

the treadmill. Other familiarisation of feeding, blood sampling and gas analysis on the treadmill were 

carried out during this period. Subjects also completed on at least two occasions the performance test to 

be carried out at the end of each condition on the treadmill.
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14.2.3 Calibration rides

All subjects completed a series of calibration rides on the treadmill in order to calculate the power 

demands for each individual on the treadmill (as discussed in 13.2.2.4). The SRM power cranks were 

fitted to the subject’s bicycle and calibrated (8.2.2.2.2). Tyre pressure was standardised at lOOpsi, and 

the value for subject plus cycle mass was recorded on a calibrated beam scale (Seca) with subjects 

barefooted and wearing just cycling shorts. As body mass changes could influence the work rates 

during the study, a strategy was employed to ensure the combined weight of the bicycle and subject was 

the same during all trials. This was achieved by placing a large, full water bottle (750g), in the bottle 

cage of the bicycle during weighing, which could be emptied if the subject increased body mass during 

the study. Weights could be placed in the pockets of subjects racing jersey if their body mass decreased 

during the study. Subjects were otherwise clothed in cycling shorts and socks, with optional use of a 

protective crash helmet.

Subjects then wanned up on the treadmill and the pulley line was attached to the subjects’ saddle rail 

during this period. Subjects then rode at set gradients and speeds (25km.h'1 at 0%, 2.5% and 5%, plus 

36.6km.h'1 at 0% gradient). During the calibration period, riders were cooled by a large fan (Grants 

Electrical Services, Ballymena, Northern Ireland) with wind speed kept constant (10 m.sec'1) 

throughout all tests. The power demands were recorded during this period. A regression line was 

drawn through the 25 km.h'1 data points, and used to calculate the power demands at varying gradients 

and speeds on the treadmill (the slope of the line is an individual equation based upon body mass, cycle 

mass, and efficiency of cycle equipment).

14.2.4 Experimental procedures

Following familiarisation, subjects were required to complete a further six visits to the laboratory. A 

cross over design was employed for this study, and subjects were scheduled for two sessions per week 

for three weeks, with a minimum of 48 hours separating tests. Following the completion of tests 1 and 

2, the remaining tests were completed in random order. Supplementation during the protocol was 

conducted in a single blind fashion.

14.2.4.1 Test 1. Kingcycle maximum minute power (MMP) test.

Following subject measurements, subjects’ bicycles were fitted with SRM powercranks, and were 

mounted on the Kingcycle test rig and calibration procedures were followed (8.2.2.1.2). Subjects were 

then allowed to warm up and indicated to the experimenter when they were ready for the test to begin.

Subjects underwent a Kingcycle MMP test as described in 8.2.2.1.2. Prior to testing subjects were fitted 

with a face mask (Hans Rudolf Inc. Kansas, USA) for online gas analysis (Covox Microlab, Exeter, 

England).

Heart rate (Polar Sports Tester, Kempele, Finland) and power (SRM) were also recorded throughout the 

test. Subjects were cooled by a large fan during the test (Grants Electrical Services, Ballymena, 

Northern Ireland). All subjects were verbally encouraged throughout the test.
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14.2.4.2 Test 2. Individual subject data

Speed and weight to be added to the pulley system was calculated from an individual calibration ride on 

the treadmill (14.2.3). Power output was recorded at various treadmill speeds and gradients of 0 and 

5%. From this data the protocol could be created with weights for the basket, and speeds for the 

treadmill being individual to each rider.

14.2.4.3 Tests 3 and 4. Road race simulation

After weighing and correcting for body mass differences, subjects mounted their bicycle on the 

treadmill and the pulley system was attached to the saddle rails of the subject’s bicycle. Subjects then 

completed a 10-minute warm up at their own requested intensity and were allowed to drink water ad 

libitum. On completion of the warm up subjects’ bicycles were held enabling subjects to freewheel and 

a thumb prick capillary blood sample was taken (50 pi) (Unilet lancets, Owen Mumford, Oxford, 

England) and analysed for B[Lac ] and blood glucose concentration (Yellow Springs Instrument, Stat 

Plus 2300, Ohio USA). A further sample was taken (150 pi) and immediately centrifuged (Hawksley 

and Son Ltd. Lancing, England) and analysed for plasma urea and Ammonia (NH3) concentrations 

(Eastman Kodak Company. New York, USA).

Subjects then began the simulation which consisted of 4 x 30 minute ’laps’ at varying power outputs 

(figure 13.5) developed from actual road race data (SRM) equating to an average of 60% MMP.

Changes in power were achieved by altering speed and gradient of the treadmill, and by placing weights 

on the basket. At set intervals subjects were also instructed to drift up and down the treadmill during 

the protocol to increase the intermittent nature of the test, and match the demands from data recorded in 

the field. During the trial subjects were fed 8 x 94ml (750ml total) of an artificially sweetened 

(aspartamine) water placebo or an 11.7% glucose polymer solution (Teknofuel, Medway, UK). 

Subjects were fed the assigned fluid at 3 and 22 minutes of each 30-minute lap. Subjects were passed 

up a nose clip and mouthpiece (Hans Rudolf) two minutes prior to Online gas analysis (Covox) at 13-21 

minutes and 24-28 minutes of each lap. Blood samples were taken with identical methods to the post 

warm up procedure, a 50 pi sample was analysed for [Lac'] and glucose at 21 minutes into each lap. 

On the completion of each lap, a further 200 pi blood sample was taken and analysed for [Lac'], 

glucose, urea and NH3. Heart rate was monitored throughout the trial (Polar, Kempele, Finland). 

Power was recorded by the SRM Powercrank on 4 subjects during the four trials. During the trial 

subjects could select any gear ratio, and ride in or out of the saddle as would be their choice during an 

actual race. On completion of the trial subjects immediately underwent the performance test on the 

treadmill (14.2.4.5).

14.2.4.4 Tests 5 and 6. Even Power Trials.

Following preparation and warm up procedures identical to the simulated road race trials, subjects

performed two steady state trials two hours in duration on the motorised treadmill. One trial was

conducted with subjects fed a glucose polymer supplement, and one trial on the placebo drink (both

drinks were identical to the simulated road race trial for volume and concentration of the supplements).
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The steady state trials were conducted over the same treadmill gradients as the simulated road race 

protocol, however, by manipulating the speed of the treadmill, and by placing weights on the weights 

basket attached to the subjects bicycle saddle rails, the power output was maintained at a constant 60% 

MMP. The data collection procedures for power, heart rate, blood sampling and gas analysis were 

identical to the simulated road race trial. On completion of each 2-hour trial the performance test was 

carried out on the treadmill.

14.2.4.5 Test 7. The Performance Test

On completion of the 4 laps (2 hours), the subjects were required to finish the trial with a performance 

test. Subjects rode into the performance test without a break from the end of their trial. The treadmill 

gradient was taken up to 6% gradient and the speed of the treadmill adjusted to elicit 70% MMP. This 

pace was held for 3 minutes. On completion of the 3-minute period the clock and distance were reset 

and subjects were instructed to complete 2 km as fast as possible. The subject orally instructed the 

experimenter how the speed of the treadmill was to be adjusted. Previous attempts at the climb gave 

subjects an indication of duration of the test, and all subjects were instructed that the most efficient 

pacing strategy was even paced. Heart rate was monitored throughout the performance test and power 

was also recorded. Subjects were allowed to view time and distance covered during the performance 

test. This information was also orally communicated to the subject by an additional member of 

laboratory staff. On completion of the test subjects spent 3 minutes of active recovery on the treadmill 

before a final blood sample was taken and analysed for B[Lac ] and glucose.

14.2.4.6 Test 8. Fresh Performance Test

Subjects arrived at the laboratory having prepared for the test as in the steady state and road race trials. 

Subjects warmed up and indicated to the experimenter when they were ready to start the test. The 

protocol was identical to the performance test carried out after each of the trials, but without the 2-hour 

trial beforehand. Data collection for heart rate, power, and B[Lac‘] were identical to the performance 

tests after each trial.

14.2.5 Statistical Analysis

Data from the four laps and the performance test was evaluated using a two-way (glucose/placebo and 

intermittent/even power) repeated measures Analysis of Variance test, with Tukey post hoc analysis for 

significant differences (Statisticamac). The coefficient of variation was calculated for the power output 

recorded by the four subjects that rode the SRM powercrank during their trials.

14.3 Results (pilot study)

14.3.1 Introduction

In order to assess the practicality of using the pulley system, the motorised treadmill, and the planned 

sampling techniques, a pilot study was conducted prior to experimental procedures. The protocol for 

the pilot study elicited 62% of MMP.
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14.3.2 Results and Discussion

The subject details of the five male trained cyclists who took part in this study are shown in table 14.1.

Table 14.1 Subject details for the pilot study, (mean ± S.D.).

Subjects n=5

Age 28 ± 8 years

Height 1.74 ±0.03 m

Mass 66.4 ± 6.2 kg

Maximum Minute Power (SRM) 377.4 ± 22.4 watts

Only 3 subjects managed to complete the testing protocol, and each of those had a period where they 

needed to stop during the 2-hour testing period. Premature exhaustion during the 2-hour simulation for 

the remaining 3 riders was seen during this study, with exercise induced muscle cramps, and the 

inability to ride at 70% of maximum minute power prior to the performance test being the main 

problem. Therefore the protocol was revised for actual study with the % MMP being reduced to 58% 

(figure 13.5). Data on 3 subjects who completed all four trials of the 2-hour simulation are shown in 

table 14.2.

Table 14.2 Pilot study results on three subjects

Even Power Even Power Road Race Road Race

(glucose) (placebo) Simulation Simulation

(glucose) (placebo)

Power Output 

(watts)

234 ± 14.8 234 ± 14.5 233 ±9.5 232 ± 10.7

Blood Glucose 4.64 ±0.60 4.3 ±0.71 5.49 ±0.85 4.4 ± 0.64

(mmol.I'1)

B[Lac] 2.62 ±0.58 2.17 ± 0.51 5.17 ± 0.81 4.58 ±0.71

(mmol.!1)

V0 2 l inin ' 3.16 ± 0.23 3.07 ±0.32 3.22 ±0.33 2.98 ±0.37

V0 2 mlkg'min 45 ±2.52 44 ± 4.16 46 ±4.04 43 ±5.13

RER 0.89 ±0.01 0.87 ±0.02 0.90 ±0.01 0.91 ±0.02

Heart Rate 149 ±8 146 ±9 157 ±8 147 ± 11

(beats min')

The power output recorded during these trials appears reproducible. The coefficient of variation for the 

road race simulation trials was 0.649% and for the even power trials 0.479%. Sources of error are
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likely to come from the motorised treadmill controls (sometimes flicking between treadmill speeds 

(±0.2 kph), plus the duration of blood sampling sometimes varying due to experimental procedures.

14.4 Results (main study)

Subject details of the six competitive road riders are shown in table 12.1. All subjects were tested 

during a set training phase and complete the testing protocol within a 10-day period.

14.4.1 Power

Power output was measured on four riders during the protocol. Mean absolute power and relative 

power output (% maximum minute power) during the trials are shown in table 14.3. There was no 

significant difference between trials for power (p=0.79). The coefficient of variation for the road race 

simulation trials was 1.35%, and for the even power trials was 1.86%.

Table 14.3 Mean power output during all trials (mean ± S.D.).

Even Power Even Power Road race Road race
(glucose trial) (placebo trial) (glucose trial) (placebo trial)

Power output 253.6 ±10.3 250.1 ±11.0 259.2 ± 18.3 260.5 ±16.7

(watts)

% maximum 61.4 ± 2.0 60.6 ±1.6 62.8 ±0.7 63.0 ±0.7

minute power

Figures 14.1 and 14.2 Show the even power and road race simulation protocols. Figure 13.6 shows the 

distribution of power output during the road race simulation study.

Figure 14.1 Power output during the even power trial (n=l)
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Figure 14.2 Power output during the simulated cycling trial
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14.4.2 Blood measures

Data analysis was carried out on the mean of the two samples taken per ‘lap’ during both the road race 

simulation trials, and the even power trials for measures of BLac' and blood glucose. The data analysis 

of plasma NH3 and plasma urea were from the single sample taken during each Tap’ of the protocol.

14.4.2.1 Blood Lactate

The mean B[Lac'] was significantly elevated during the road race trials compared to the even power 

trials (3.25 ±1.24 vs 1.78 ±0.92 mmol.l'1, p=0.014). Figure 14.3.

There was no significant difference in B[Lac'] between glucose supplement and placebo trials (2.55 ± 

1.38 vs. 2.48 ±1.20 mmol.l'1, p=0.71). There was also no significant change over time for B[Lac'] 

during any trial (p=0.94).

Figure 14.3 Blood lactate concentration during the even power and road race trials
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Figure 14.4 Blood lactate concentration during glucose and placebo trials
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14.4.2.2 Blood Glucose

There was no significant difference for the mean values between the even power and the road race trials 

(4.53 ± 0.67 vs 4.61 ± 0.74 mmol.l'1, p=0.81).

Figure 14.5 Blood glucose concentration during even power and road race trials.

The mean blood glucose concentration was significantly higher in the glucose compared to the placebo 

trials (4.93 ± 0.73 vs 4.22 ± 0.43 mmol.l'1, p=0.046). During both trials there were significant
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reductions in blood glucose over time (p=0.0009). Post hoc analysis revealed blood glucose 

concentrations during lap 1 were significantly higher than laps 3 (p=0.009), and lap 4 (p=0.0003). 

There was also a significant reduction in blood glucose between laps 2 and lap 4 (p=0.013).

Figure 14.6 Blood glucose concentration between glucose and placebo trials.

Sample (lap)

14.4.2.3 Plasma Ammonia

The post warm up plasma ammonia concentration was 116.3 ± 9.3 pmol.l"' There were no significant 

differences between even power and road race simulation trials for post warm up values (p=0.769). 

There were no significant differences in plasma [NH3] between even power and road race trials 

(p=0.26), and likewise between glucose and placebo trials (p=0.2).

Figure 14.7 Plasma ammonia concentrations during all trials.
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Table 14.4 Lap by lap plasma ammonia (/rmol.l min ') concentrations during the four trials, 

(mean ± SD). EP = even power, RR = road race, G = glucose, p = Placebo.

Lap EPG EPP RRG RRP

1 134.8 ± 41.9 139.7 ±41.8 140.8 ±34.1 135.7 ±39.3

2 185.5 ± 69.5 146.0 ± 52.3 157.5 ± 82.3 126.4 ±39.9

3 169.7 ±66.3 150.8 ±62.1 166.2 ±40.0 129.2 ±53.3

4 200.0 ±78.2 161.3 ±53.0 147.0 ±48.5 170 ± 84.9

Mean ± s 172.4 ±55.5 149.5 ±48.2 145.5 ± 50.9 135.4 ±49.7

No significant changes in plasma [NH3] were seen over time (p=0.053), Figure 14.7, table 14.4. Figures 

14.8 and 14.9 show the relationship between B[Lac'] and NH3 samples during the even power and the 

road race simulation trials. A significant correlation was found between B[Lac'] and plasma [NH3] 

during simulated road race cycling, but not during even power cycling.

Figure 14.8 The relationship between blood lactate and plasma ammonia concentrations during

even power cycling.
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Figure 14.9 The relationship between blood lactate and plasma ammonia concentrations during

simulated road race cycling.
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14.4.2.4 Plasma Urea

Mean post warm-up values for plasma urea were 7.37 ± 1.62 mmol.l'1. There were no significant 

differences between trials for post warm up values (p=0.98). (figure 14.10).

The during trial samples were not significantly different between the even power and the road race trials 

(p=0.65), or between glucose and placebo conditions (p=0.46). Mean concentrations for the four conditions 

are shown in table 14.5.

There were no statistically significant changes in plasma urea over time (p=0.129).

Table 14.5 Plasma urea concentrations (mmol.l min ') during the four trials, (mean ± S.D.).

Lap EPG EPP RRG RRP

1 7.58 ± 2.16 7.2 ±1.49 7.17 ±1.38 7.5 ± 1.91

2 8.10 ±2.79 7.5 ± 1.71 7.58 ± 1.54 7.8 ±1.14

3 7.98 ±2.33 7.28 ± 1.71 7.88 ±2.61 7.7 ± 1.15

4 8.74 ± 1.79 7.87 ± 1.94 7.85 ± 1.8 7.3 ±0.99

Mean ± 8.1 ±0.48 7.46 ±0.30 7.62 ±0.33 7.57 ±0.22

S.D.
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Figure 14.10 Plasma urea concentration during all trials.
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14.4.3 Respiratory data

Respiratory data was collected for two periods during each ‘lap’ of the trials. A mid lap sample, and an end 

of lap sample.

During the mid lap sample, a period of matched work rate between the even power trials and the road race 

simulation trial was recorded. Prior to the matched period, the subjects wore the mouthpiece and gas data 

collected for six minutes during the mid lap sample where the workloads were not matched between even 

power and the road race simulation trials.

The results presented therefore represent the ‘mid lap matched’ value plus the ‘total mid lap’ sample and an 

‘end of lap’ sample. The data was analysed as absolute V 0 2 values, relative to body mass (ml kg'1 min'1), 

and as a percentage of V 0 2max.

14.4.3.1 Oxygen Consumption (V 0 2)

For the matched work rates between the even power and the road race trials, there was no significant 

difference for the V 02 for the mean values during this sampling periods (p=0.31) (figure 14.11). There were 

no significant differences between the glucose and placebo trials (p=0.352).

For the total mid lap gas sample there were significant differences for the total V 02 between the even power 

and the road race trials (3.13 vs 2.94 lmin"1, p=0.00004). There were significant increases over time for this 

sampling period; lap 1 was significantly lower than lap 2 (p=0.023), lap 3 (0.0004), and lap 4 (p=0.0012). 

For the sampling period at the end of each ‘lap’ there were no significant differences between even power 

and road race trials (p=0.104), or between glucose and placebo trials (p=0.52). There were significant 

differences between laps for the V 02 sample at the end of the lap (p=0.006). Post hoc analysis revealed lap 

1 was significantly lower than lap 4 (p=0.036), and lap 2 was also significantly lower than lap 4 (p=0.007)
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Figure 14.11 Oxygen consumption (I min"1) during all trials.

Table 14.6 Total oxygen consumption data from three samples during all trials (mean ± S.D.)

Trial Mid Lap 

Matched 

Sample

Mid Lap Total 

Sample

End of Lap 

Matched 

Sample

Even Power (glucose Trial) 3.24 ±0.40 3.13 ±0.46 3.26 ±0.41

Even Power (placebo Trial) 3.29 ±0.36 3.18 ±0.45 3.31 ±0.39

Road Race Simulation (glucose trial) 3.38 ±0.40 2.98 ±0.43*# 3.35 ±0.35

Road Race Simulation (placebo trial) 3.28 ±0.40 2.89 ±0.42*# 3.36 ±0.38

* denotes significant difference from even power glucose trial

# denotes significant difference from even power placebo trial

Table 14.7 Changes in oxygen consumption over time during all conditions mean of total sampling

periods (Titlin'1, mean ± S.D.)

Trial Lap 1 Lap 2 Lap 3 Lap 4 V o 2

‘Drift’

Even Power (glucose trial) 3.05 ± 3.00 ± 3.21 ± 3.21 ± 0.16
0.29 0.35 0.36 0.37

Even Power (placebo trial) 3.24 ± 3.21 ± 3.29 ± 3.32 ± 0.08
0.21 0.25 0.26 0.26

Road Race Simulation (glucose trial) 3.12 ± 3.12 ± 3.12 ± 3.13 ± 0.01
0.50 0.49 0.51 0.55

Road Race Simulation (placebo trial) 3.02 ± 3.06 ± 3.16 ± 3.20 ± 0.18
0.53 0.49 0.56 0.57
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14.4.3.2 Carbon dioxide concentration in expired air

Carbon dioxide production was significantly higher for the total mean data for the road race simulation 

trials compared to the even power trial for the gas sample at the end of the lap sample (3.42 ± 0.36 vs 2.88 

± 0.09 linin'1, p=0.0001) (table 14.8). During the total mid lap sample there were significantly higher 

concentrations of carbon dioxide in the expired air during the even power trial compared to the road race 

simulation trials (2.94 ± 0.12 vs 2.31 ± 0.56 linin'1, p=0.0001). There was also a significant difference 

between the matched mid lap sample between the even power and road race conditions (p=0.028).

Table 14.8 Carbon dioxide concentration of expired air during each ‘lap’ of all trials (end of lap

sample), (mean ± S.D.)

Trial Lap 1 Lap 2 Lap 3 Lap 4

Even Power (glucose trial) 2.92 ±0.34 2.85 ±0.38 2.94 ±0.52 2.78 ± 0.45

Even Power (placebo trial) 2.99 ±0.35 2.88 ±0.44 2.85 ±0.56 2.83 ±0.52

Road Race Simulation (glucose trial) 3.53 ±0.38 3.45 ±0.39 3.36 ±0.54 3.43 ±0.54

Road Race Simulation (placebo trial) 3.43 ±0.35 3.32 ±0.41 3.47 ±0.58 3.33 ±0.51

Figure 14.12 Carbon dioxide production during all trials (matched samples).
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Glucose polymer ingestion had no influence on VC02 production for the mid lap matched sample (p=0.84), 

for the total mid lap sample (p=0.11) or for the end of lap sample (p=0.53).

14.4.3.3 Respiratory exchange ratio

The RER values for the matched sampling period were not significantly different between the even power 

and the road race simulation trials (p=0.11) (figure 14.12). For the same sampling period there were also no

130



differences between glucose and placebo trials (p=0.37). There were however significant differences over 

time (p=0.0002). Post hoc analysis revealed lap 1 RER values were significantly higher than laps 3 

(p=0.0004) and lap 4 (p=0.0006). Lap 2 RER values were also significantly higher than laps 3 (p=0.024) 

and lap 4 (p=0.0018).

An identical pattern was observed for the total mid lap sample. There were no significant differences 

between even power and road race simulated trials (p=0.206), or between glucose and placebo trials 

(p=0.371). There were however changes over time (p=0.00001). Post hoc analysis indicated that RER 

values on lap 1 were significantly higher than laps 3 (p=0.0002), and 4 (p=0.0001). Lap 2 RER values were 

also significantly higher than laps 3 (p=0.006), and 4 (p=.0002).

There were also significant differences between even power and simulated road race cycling for the end of 

lap sample (p=0.004), there were no significant differences between glucose and placebo trials for this 

period (p=0.26). There were significant changes during the trials over time for this sampling period 

(p=0.0005). Post hoc analysis showed lap 1 RER values were significantly higher than laps 3 (p=0.0005) 

and 4 (p=0.0001). Lap 2 RER values were also significantly higher during lap 2 compared to lap 4 

(p=0.0005).

Figure 14.13 Respiratory exchange ratio during the even power and road race trials (matched

samples).
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Mean RER values for each lap are shown in table 14.9.
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Table 14.9 Mid Lap matched RER samples over each lap of all trials, (mean ± S.D.)

Trial Lap 1 Lap 2 Lap 3 Lap 4 Mean ± s

Even Power (glucose trial) 0.92 ± 
0.04

0.90 ± 
0.04

0.90 ± 
0.03

0.89 ± 
0.03

0.90 ± 
0.01

Even Power (placebo trial 0.92 ± 
0.05

0.91 ± 
0.05

0.87 ± 
0.05

0.87 ± 
0.04

0.89 ± 
0.03

Road Race Simulation (glucose 
trial)

0.97 ± 
0.04

0.95 ± 
0.04

0.93 ± 
0.04

0.93 ± 
0.04

0.95 ± 
0.02

Road Race Simulation (placebo 
trial)

0.96 ± 
0.03

0.96 ± 
0.03

0.94 ± 
0.04

0.91 ± 
0.03

0.94 ± 
0.02

14.4.4 Economy and Efficiency data

14.4.4.1 Gross Mechanical Efficiency

Gross mechanical efficiency calculations were made for the total mid lap sample and at the matched work 

rate during this period.

No efficiency calculations were made during the end of lap sample due to RER values exceeding 1.0 in 

some subjects.

14.4.4.1.1 Matched work rate sample

There were no significant differences between the matched gross mechanical efficiency values between 

even power and simulated road race trials (23.25 ± 1.74 vs 22.82 ± 1.53 %, p=0.09). There were also no 

significant differences between the glucose and placebo trials for this sampling period (p=0.317) or for the 

total mid lap sampling period (p=0.249). For the matched sampling period there was a significant drop in 

efficiency over time (p=0.009). Post hoc analysis indicated that lap 1 efficiency values were significantly 

higher than lap 3 (p=0.009) and lap 4 (p=0.029) figure 14.13. For the total mid lap sampling period, even 

power trials were significantly lower than during simulated road race cycling (p=0.0005).

Figure 14.14 Gross mechanical efficiency during all trials (matched samples).

Sample (lap)

132



14.4.4.2 Economy

Economy was measured for the total mid lap sample, the matched work rate during the mid lap sample, and 

during the end of lap gas sample.

There were significant differences between economy values for the matched mid lap sample between the 

even power and road race trial, (84.25 ± 9.56 vs 78.61 ± 4.99 W.(1.02"'), p=0.001). There were no 

significant differences between glucose and placebo trials (81.46 ± 7.63 vs 81.40 ± 6.92 W.(1.02_l), p=0.57). 

Over time, significant reductions in economy were observed (p=0.000). Post hoc analysis revealed 

significant reductions in economy occurred only in the road race simulation trials, with lap 1 values were 

significantly higher than lap 3 (p=0.00018) and lap 4 (p=0.0034).

For the total mid lap sample there were also significant differences between even power and simulated road 

race trials (p=0.0007). There were no significant differences between glucose and placebo trials (p=0.43). 

Significant reductions in economy over time were also recorded for this sampling period (p=0.0019). Post 

hoc analysis indicated that lap 1 economy values were significantly higher than lap 2 (p=0.026), lap 3 

(p=0.0018) and lap 4 (p=0.009).

The end of lap sample showed no significant differences in economy between even power and simulated 

road race trials (p=0.288), or glucose and placebo trials (p=0.601). There were changes in economy over 

time for this sampling period (p=0.005). Post hoc analysis indicated that lap 1 economy values were 

significantly higher than lap 4 (p=0.039) Lap 2 economy values were also significantly higher than lap 4 

(p=0.005).

14.4.4.2.1 End o f ‘Lap’ Sample

There were no significant differences between the end of lap samples between the even power and road race 

trials (76.29 ± 3.33 vs 79.40 ± 5.42 W.(1.02_1), p=0.288), or between the glucose and placebo trials 

(p=0.601). There were significant reductions in economy between lap 1 and lap 4 (p=0.003), and lap 2 and 

lap 4 (p=0.005) for this sampling period.

14.4.5 Heart Rate

There were no significant differences between the even power trials and the road race simulation trials for 

heart rate (147 ± 7 vs 151 ± 7 beats min’1, p=0.19). There were also no significant differences between 

glucose and placebo trials (149 ± 7 vs 149 ± 7 beatsmin'1, p=0.99). Over time, there were however 

significant rises in heart rate (p=0.0000) (table 14.10). Lap 1 heart rates were significantly lower than lap 2 

(p=0.04), lap 3 (p=0.026) and lap 4 (p=0.001). Heart rates during lap 4 were also significantly higher than 

lap 2 (p=0.0009) and lap 3 (p=0.001).
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Figure 14.15 Relative heart rate during all

trials.

Sample (lap)

Table 14.10 Heart rate response during the four trials (mean ± S.D.).

Lap 1 Lap 2 Lap 3 Lap 4

Even power (glucose trial) 145 ± 7 146 ± 7 147 ± 7 149 ± 7

Even Power (placebo trial) 146 ± 6 147 ± 8 147 ± 7 152 ± 7

Road race simulation (glucose trial) 147 ± 6 152 ± 8 152 ± 6 154 ± 8

Road race simulation (placebo trial) 147 ± 6 149 ± 9 150 ± 8 154 ± 8

14.4.6 One Subject Data

Online gas analysis was performed on one subject for 24 minutes during each lap of each of the four trials 

(total 98 minutes of the 120 minute protocol). Mean values for each condition are shown in table 14.11.

14.4.6.1 Oxygen consumption

Figure 14.15 shows the pattern of oxygen consumption recorded on one subject during the even power and 

the road race simulation trials. The breaks in the data collection were due to consume the experimental 

drinks during the trials.

Lap by lap breakdown of the oxygen consumption data are shown in table 14.12.
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Table 14.11 Respiratory data from all four conditions (n=l). (mean ± S.D.).

Even Power Even Power Road Race Road Race

(glucose trial) (placebo trial) Simulation Simulation

(glucose trial) (placebo trial)

V 0 2 I min' 1 2.91 ±0.20 3.28 ±0.19 3.07 ±0.80 2.98 ±0.83

V0 2 m tkg1 min' 1 40.42 ±2.71 45.15 ±4.53 42.52 ±11.02 41.3 ± 11.38

% v o 2max 53.8 ±3.6 60.1 ±6.0 56.6 ±14.7 55.0 ± 15.1

V C 021 min 1 2.68 ±0.19 2.74 ±0.16 2.97 ±0.87 2.83 ± 0.89

Respiratory 0.92 ± 0.04 0.83 ±0.02 0.96 ±0.07 0.95 ±0.07

exchange ratio

14.4.6.2 Carbon dioxide production

Mean values for carbon dioxide production (n=l) are shown in table 14.11. The VC02 response is shown 

lap by lap in figure 14.16, and in table 14.13.

Table 14.12 Oxygen consumption during each lap for all trials (n=l). (mean ± S.D.).

Lap 1 Lap 2 Lap 3 Lap 4

Even power (glucose) 2.85 ±0.22 2.89 ±0.21 2.84 ±0.16 2.99 ± 0.16

Even power (placebo) 3.27 ±0.22 3.28 ±0.17 3.28 ±0.08 3.28 ±0.17

Road race simulation (glucose) 3.07 ±0.81 3.09 ±0.83 3.03 ±0.76 3.06 ±0.81

Road race simulation (placebo) 2.64 ±0.98 3.14 ±0.67 2.99 ±0.79 3.04 ±0.82
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Figure 14.16 Oxygen consumption during even power and simulated road race cycling (n=l).
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Figure 14.18 Respiratory exchange ratio during even power and simulated road race cycling (n=l).
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Table 14.13 Carbon dioxide concentration during each lap of all trials (n=l). (mean ± S.D.)

Lap 1 Lap 2 Lap 3 Lap 4

Even power (glucose) 2.75 ±0.24 2.69 ±0.17 2.65 ±0.15 2.62 ±0.13

Even power (placebo) 2.81 ±0.19 2.73 ±0.14 2.77 ±0.14 2.68 ±0.14

Road race simulation (glucose) 3.10 ± 0.91 3.00 ±0.89 2.89 ±0.83 2.87 ±0.85

Road race simulation (placebo) 2.51 ± 1.00 3.00 ±0.84 2.86 ±0.83 2.86 ±0.87

14.4.6.3 Respiratory exchange ratio

The RER values are shown in table 14.11. The 4-lap breakdown for each trial is shown in table 14.14, and 

in figure 14.17.

Table 14.14 Respiratory exchange ratio during each lap for each trial (n=l). (mean ± S.D.)

Lap 1 Lap 2 Lap 3 Lap 4

Even power (glucose) 0.96
±0.03

0.93
±0.03

0.91
±0.02

0.87
±0.02

Even power (placebo) 0.86
±0.02

0.83
±0.01

0.84
±0.0

0.82
±0.02

Road race simulation (glucose) 1.00
±0.06

0.97
±0.06

0.95
±0.06

0.93
±0.07

Road race simulation (placebo) 0.95
±0.05

0.98
±0.08

0.96
±0.06

0.93
±0.09

0 120
Time
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There was a significant differences between glucose and placebo trials (p=0.03), and between the even 

power and road race simulation trials (p=0.042) for time to complete the performance tests at the end of 

each trial. Table 14.15 shows the mean times for all conditions.

Table 14.15 performance times for all conditions, (mean ± S.D.).

14.4.7 Performance data

14.4.7.1 Time

Condition ‘Fresh’ Even power Even power Road race Road race

(glucose trial) (placebo trial) simulation simulation

(glucose trial) (placebo trial)

Time (mins) 4.70± 0.33 5.02 ±0.44 5.26 ±0.51 5.16± 0.36 5.49 ±0.34

Power (W) 469.5 ±56.2 440.2± 62.4 420.3± 57.4 427.3 ±52.0 400.2± 35.8

Figure 14.19 Performance times recorded following the four trials, and the ‘fresh’ performance trial.

6.00

FRESH EPG EPP 
T rial

RRG RRP

14.4.7.2 Power

Compared to the fresh performance trial in study 4 there was a significant drop in power output during the 

road race simulation trial versus the even power trial (-55.8 ± 25.8 vs -47.5 ± 23.4 watts, p=0.045), and a 

significant drop in the placebo compared to the glucose trials (-59.3 ±24.9 vs -35.7 ±14.75 watts, p=0.006).
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comparison to the ‘fresh’ performance trial.

Figure 14.20 Reductions in power output during the performance tests following all four trials -

E P G  E P P  R R G  R R P

14.4.7.3 Performance Test Heart rate

No significant differences were observed between glucose and placebo (0.68) or between even power and 

road race simulation (p=0.44) for heart rate at 70% maximum minute power prior to the performance test. 

There were also no significant differences between heart rate values during the performance test, for even 

power versus simulated road race trials, (p=0.51), or for glucose versus placebo trials (p=0.73).

A significantly higher heart rate values were observed during the last minute of the road race simulation 

performance trials versus even power trial (p=0.000).

14.4.7.4 Post exercise BLac and blood glucose concentrations

Simulated road race or even power cycling had no effect on B[Lac‘] response 3 minutes post performance 

test (8.9 ± 2.75 vs 10.75 ± 3.28 mmol.I'1, p=0.207), however B[Lac] was significantly elevated post 

glucose compared to placebo (11.11 ± 3.07 vs 8.55 ± 2.67 mmol.I1, p=0.02). Figure 14.20 shows the B[Lac‘ 

] during trials and post performance test.
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Figure 14.21 Blood lactate concentrations during the 2 hour trials and post performance tests

epg epp rrg

Trial

rrp
g  during 2 hour trial 

□ post performance

The same relationship was observed for blood glucose concentration measured 3 minutes post performance 

test, there was no significant difference between even power and road race (5.93 ± 0.95 vs 6.49 ± 1.48 

mmol.l'1, p=0.20), but a significant difference between glucose and placebo trials (6.92 ±1.39 vs 5.49 ± 0.46 

mmolT1, p=0.003).

14.4.7.5 One subject performance data

Gas analysis was performed on one subject during all of the performance tests. Mean power outputs for the 

performance tests are shown in table 14.16.

14.4.7.5.1 One subject performance respiratory data

Power output, and respiratory data for each trial is shown in table 14.16.

14.4.7.6 Performance Correlation analysis

Performance predictions from maximum minute test data are shown in table 14.17.

The highest correlation coefficients for predicting performance came from the other climbs (table 14.18). 

Appendix 4 shows the correlation coefficients between measured variables during the road race simulation 

and the even power trial correlated to reductions in performance relative to the individual rider’s fresh 

performance test.
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Table 14.16 Power, respiratory and economy data from the four performance trials (n=l). (mean ±

S.D.).

Fresh trial Even power 
(glucose 

trial)

Even power 
(placebo 

trial)

Road race 
simulation 

(glucose 
trial)

Road race 
simulation 
(placebo 

trial)
Power (W) 475 438.4 401 425 411
V0 2 (finin'1) 5.34 4.76 5.05 4.68 4.69
% v o 2ma, 98.5 87.8 93.2 86.3 86.5
Peak recorded V 0 2 
1 min 1 (60 sec)

5.47 5.16 5.14 5.00 5.04

% V 0 2raax (of peak 
recorded values)

101% 95.2 94.8 92.3 93.0

V C 02 (1 min'1) 6.18 4.81 4.70 4.90 4.82
RER 1.16 1.01 0.93 1.04 1.03
RER peak 1.18 1.11 0.97 1.14 1.09
Economy (W 102'‘) 89.0 92.1 79.4 90.9 87.6

Table 14.17 Correlation coefficients for time for the 2 km climb performance test for the ‘fresh’, post 

road race simulation, and post even power trials (n=6).

Fresh trial Even power 
(glucose 

trial)

Even power 
(placebo 

trial)

Road race 
simulation 

(glucose 
trial)

Road race 
simulation 
(placebo 

trial)
Maximum minute 
power (MMP) 
(W inin')

-0.90* -0.94* -0.81 -0.73 -0.57

MMPkg' 1 -0.70 -0.56 -0.54 -0.50 -0.69
MMPkg0'67 -0.87* -0.79 -0.72 -0.65 -0.71
MMPkg079 -0.82* -0.72 -0.66 -0.61 -0.72
MMPkg033 -0.92* -0.91* -0.80 -0.72 -0.66
V0 2max fmin"1 -0.53 -0.59 -0.53 -0.58 -0.71
V0 2max mlkg' 
1 min' 1

-0.33 -0.27 -0.31 -0.40 -0.84*

V0 2max 
mlkg0 67 min 1

-0.42 -0.41 -0.41 -0.49 -0.83*

V0 2max ml kg0 79 
min'1

-0.39 -0.36 -0.38 -0.46 -0.84*

V0 2max 
mlkg033 min'

-0.46 -0.50 -0.48 -0.53 -0.77

*denotes p<0.05
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Table 14.18 Correlation coefficients for the 2 km performance test (time) for all trials (n=6).

Fresh Even power 

(glucose)

Even power 

(placebo)

Road race 

simulation 

(glucose)

Road race 

simulation

(placebo)

Fresh 1.00

Even power (g) 0.94* 1.00

Even power (p) 0.89* 0.96* 1.00

Road Race Simulation (g) 0.89* 0.78 0.75 1.00

Road Race Simulation (p) 0.71 0.61 0.68 0.78 1.00

*denotes p<0.05 

14.5 Discussion

14.5.1 Power output during the even power and road race simulation study

The motorised running treadmill was used during this study to elicit not only the required powers, but to 

elicit them uniformly, and instantly as would happen in the field. The only difference was that the subject 

was warned about the increase in load, rather than self-inducing the changes in work rates during the 2-hour 

road race simulation. A possible limitation to the simulation study is the uniform nature of the increases in 

power output that were elicited by placing weights on the pulley system. Previous research into repeated 

sprint activity by McCartney et al. (1986) and supported by Spriet et al. (1989) showed that the pattern of 

force application changed during repeated sprint type testing. The highest peak powers were attained 

during the first 2 seconds initially, however during subsequent 30 second Wingate cycling tests, peak power 

was achieved later during the 10"1 second of the test. During the road race simulation protocol, when the 

weights were dropped on the basket for the 12 sprints per lap, instantaneous work was required to prevent 

the subject being pulled from the treadmill (i.e. the extra power was required within 1 second). The 

implications of this are discussed later in this chapter.

The motorised treadmill also required subjects to balance and handle their bicycles, and allowed riders to 

ride out of the saddle, change posture at their own volition, allowing for recruitment changes and easing 

tired muscles, and saddle soreness if required. This is what would happen in the field, and therefore 

improves the specificity of the exercise testing procedures. The last, and possibly most beneficial reason for 

using the Woodway treadmill is to allow for the simulation of hills, with the associated changes in 

respiratory, and efficiency factors. If the motor recruitment patterns change with alteration in posture 

during climbing, then, treadmill testing again increases the validity of assessment of these athletes.

Figures 14.1 and 14.2 show the SRM traces from the even power and the road race simulation study. During 

the even power trials, the treadmill gradient and speed altered and followed the same gradient pattern as the 

road race simulation trial. This was due to the differences observed from previous hill climb studies and the
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effects of gradient on performance would not influence results, therefore, any possible differences observed 

would be due to the intermittent versus the even power protocol. Calculating the mean power for the trials, 

the power output for the even power trials was 61.4% and 60.6% of maximum minute power for the 

glucose and placebo trials respectively. During the road race trials, the mean work rates again incorporating 

the last two phases was 62.8% and 63.0% of maximum minute power during the glucose and placebo rides. 

This compares to an estimated intensity of 58% for the Palmer et al., (1997) study. The variation in the 

actual road race simulation (1.35%) and the even power (1.86%) during the study were higher than the pilot 

study data. This variation is still lower than the manufacturer claims of the system (2%). The increased 

variation is likely to be due to the longer blood sampling required during the actual study, as NH3 and urea 

assays required larger blood samples.

14.5.1.1 Even power trace

The even power trace shows some variation in power output during the two-hour simulation. The blood 

sampling required subjects to ease off and be held (therefore zero power output) which caused most of the 

deviation from the mean power recorded. The other ‘noise’ appears even during steady state ergometry 

testing with the SRM (Balmer and Coleman unpublished observations), and is far less stochastic than an 

attempted even trace recorded in the field.

14.5.1.2 Road race power trace

The road race simulation trace is shown in graph represents the work rates achieved during different periods 

of the road race simulation. Power outputs of 150% of maximum minute power were achieved. One 

limitation of this study was that it did not elicit work rates higher than 150% of maximum minute power 

output for safety reasons on the motorised running treadmill. In the recorded traces from competition, there 

were short periods in excess of 150% MMP, however even attaining 150% MMP was arguably more 

realistic than previous studies that have attempted to simulate road cycling. These studies had their power 

outputs ranging from 30-90 % of maximum minute power (Brouns et al., 1990. Palmer et al., 1997), which 

is a much narrower distribution than the data in this study. The distribution of the data somewhat matches 

the pattern recorded in the field, with what would be an almost normal distribution if it were not for the data 

recorded at zero watts of power.

14.5.2 Blood parameters during simulated cycling

14.5.2.1 BLac' response

The mean B[Lac'] values observed during the road race compared to the even power trials during all four 

laps of the trials were 3.25 vs 1.78 mmol.l'1. This compares to 2.51 mmol.I'1 at a steady state intensity 60% 

MMP in the study presented in chapter 9. The B[Lac ] are indicative of metabolic adjustments required to 

maintain ATP production (Spurway, 1982). Essen et al. (1977) reported that only slow twitch muscle fibres 

were recruited during a steady state trial for 60 minutes at 55% V 0 2max, whereas both slow twitch and fast 

twitch muscle fibres were recruited during an intermittent trial. The exercise intensities in this study were
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similar (60-65% VCfmax), differences in B[Lac‘] could be attributed to the different metabolic capabilities 

of muscle fibre. The recruitment of fast twitch muscle fibre to generate the instant forces applied at 150% 

of maximum minute power for the session of five intervals, plus the small changes in exercise intensity 

throughout the protocol that would require anaerobic energy production as adjustments in aerobic 

metabolism take place. The production of Lac' from glycogen would have resulted in increased CHO use 

during the road race trial, during this present intermittent simulation study the only marker of CHO 

utilisation recorded was the respiratory exchange ratio, and higher values were observed during the road 

race simulation compared to the even power trials as speculated by Palmer et al. (1997).

The B[Lac'] values during the road race simulation do however appear low bearing in mind the high powers 

achieved during the interval sessions of this protocol. It is possible that these cyclists have the ability to 

either produce these powers, i) without the production of Lac', ii) without the accumulation of B[Lac'].

During repeated Wingate testing, (4 x 30 seconds) McCartney et al. (1986) reported no detectable changes 

in muscle Lac' production, or glycogen depletion during the latter tests. There were reductions in force 

however, and they concluded that increased slow twitch muscle fibre recruitment would have reduced the 

force, the Lac' accumulation, and glycogen depletion. Spreit et al. (1989) reported that during a third 

Wingate test (3 out of 3), there was 82% of the work achieved from the previous test, yet only 32% of 

energy that was derived from glycogenolysis during the Wingate number 2 occurred during the third trial. 

They concluded that H+ concentrations inhibited phosphorylase b to a transformation, thereby reducing 

glycogenolysis. The reductions in work were then offset by the recruitment of more slow twitch muscle 

fibre enabling higher ATP yield through oxidative metabolism. Essen et al. (1977) also reported lipid 

metabolism during repeated high intensity bursts of exercise. The studies by McCartney et al. (1986), and 

Spriet et al. (1989) worked subjects maximally during the repeated bouts of exercise, Essen et al. (1977) 

worked subjects for 60 minutes at the power output required to achieve V 02max for 15 seconds with 15 

seconds recovery. The present study did not maximally work subjects, therefore the work intervals were not 

as intense as the McCartney et al. (1986) or the Spriet et al.( 1989) studies so it would be less likely that H+ 

accumulation would inhibit glycogenolysis. However, the longer recovery to work ratio in this current 

study compared to the Essen et al. (1977) study, and the lower intensity than the McCartney et al. (1986) 

and the Spriet et al. (1989) studies might lead to enhanced slow twitch fibre recruitment and possible lipid 

metabolism to cover the ATP demand. Muscle biopsy sampling could identify the likely substrate use 

during future studies that attempt to simulate road race cycling.

McCartney et al. (1986) reported that this pattern of possible slow twitch fibre recruitment elicited changes 

in the pattern of peak force production with initial (supposedly fast twitch generated) sprints recording peak 

powers during the first 1-2 seconds, and the second two sprints (supposedly slow twitch fibre generated) 

taking 9-10 seconds to generate peak power. During the anaerobic power testing of the hill climb study 

(chapter 10), mean time to peak power was 8.8 seconds for the competitive cyclists, possibly fitting the

144



theory that slow twitch muscle is predominantly developed in road cyclists, and is recruited during Wingate 

type testing. However without further investigation using the muscle biopsy analysis technique this remains 

speculative. The recruitment patterns during intense exercise in endurance athletes to our knowledge has 

not been documented. In cycling with high forces produced yet the typical morphology being one of 

predominant slow twitch fibre it is tempting to speculate that these athletes can produce these high powers 

through slow twitch fibre.

During the road race simulation protocol the riders needed to generate peak force instantly to prevent 

themselves being dragged off the treadmill. This possibly required the regeneration of ATP through 

‘alactic’ mechanisms. Phosphocreatine could have covered the energy cost for some of the sprints involved, 

and replenishment achieved during the recovery periods (Hamilton et al., 1991). Therefore this could 

reduce the reliance upon glycolysis and the LDH reaction, resulting in lower Lac' production, and lower 

Lac' appearance in the blood stream. From the SRM race traces it is somewhat difficult to ascertain if there 

are any changes in the rate at which an athlete can generate peak power, however it is interesting to note the 

late peak powers recorded during the Wingate test for the hill climb study (9 seconds) resulting in high 

levels of BLac' accumulation.

Testing designed to evaluate anaerobic capacity (Wingate) has previously correlated to aerobic sustained 

performance, Tanaka et al. (1993) reported mean and peak power indices relative to body mass correlated 

with time during a hill climb task lasting a mean duration of 17 minutes 37 seconds. Likewise the hill climb 

study (chapter 11) found anaerobic power measures correlating to sustained performance lasting 16.31 

minutes. It could be implied therefore that the work rates sustained were achieved through highly oxidative 

muscle fibre, reducing the BLac' responses during this type of effort.

Withers et al. (1991) indicated reliance upon aerobic sources during intense exercise, and, speculated that a 

high V 02max, and fast oxygen kinetics would reduce muscle glycogen use, and the Lac' yield from a sprint.

Increased utilisation of slow twitch muscle fibre would also enable the removal and re-conversion of Lac' to 

pyruvate during periods of recovery. This process could also be activated in the liver, via the Cori cycle 

during periods of reduced exercise intensity, thereby reducing the B[Lac'] despite the high work rate 

intervals during the simulation study.

Essen et al. (1977) reported production of 1.5 mmol.l'1 throughout an intermittent exercise protocol 

compared to a continuous trial. During the continuous trial, where, after that there was no net production or 

removal from the working limbs (except for the first five minutes of exercise). Koziris and Montgomery 

(1991), also reported variation in the Lac' response when comparing intermittent and continuous trials. 

They indicated that leg blood flow could alter the response to intermittent and continuous tests of anaerobic 

capacity. Koziris and Montgomery (1991) analysed the response to three tests; an all out continuous test 

(90 seconds in duration), an all out intermittent test ( 6x15 seconds all out with 15 seconds recovery), and a 

continuous paced trial at the mean power of the continuous all out trial. They hypothesised that intermittent
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exercise would result in higher B[Lac] compared to the other two trials due to the continuous trials 

requiring sustained muscular contractions which would restrict blood flow through the working muscles. 

They speculated that this would result in initially higher intramuscular [Lac"], elevated H’ which would then 

inhibit glycolysis, with the result of reducing anaerobic contribution during continuous trials. Koziris and 

Montgomery, (1991) indicated that the recovery periods during an intermittent bout would allow for the 

wash out of lactate into the blood therefore more energy would be derived through anaerobic energy sources 

without the inhibition of glycolysis. This discussion was based upon high B[Lac"] (12.4-14.2 mmol.I"1), 

and the authors reported significantly higher B[Lac"] during both all out trials compared to the continuous 

paced trial. Occlusion during low intensity exercise (the continuous trial at 60% MMP in this study) would 

not have resulted in limited blood flow due to occlusion, and therefore would not have initiated the 

mechanisms associated with reductions in glycolysis, as this would have led to premature fatigue. 

However, due to the intense nature of the work interval bouts during the road race simulation trials, and the 

reductions in blood flow that occur during intense muscle contractions, this could enhance the reliance upon 

anaerobic metabolism during these periods, with higher B[Lac"] following the extended recovery periods 

after each work interval. This would result in higher B[Lac ] during the road race simulation compared to 

the even power trial.

Following the glucose trials, power output was significantly higher (6%) during the 2 km performance 

tests. The post trial B[Lac"] was also significantly higher following the glucose trials (27%). This has 

previously been reported following exercise lasting approximately 1 minute in duration by Jacobs (1981). 

She reported a drop in muscle force during intense contractions following a period of prolonged exercise, 

and, like the present study this was accompanied by far greater metabolic changes. Jacobs (1981) reported 

that muscle lactate levels were reduced, and speculated that due to prolonged exercise, glycogen depletion 

would decrease the available substrate available for enzymatic reactions; in other words prolonged exercise 

would reduce the flux through glycolysis. Jacobs (1981) also indicated that as the performance changes 

were not of the same magnitude as the fall in the lactate concentrations, and that lipid utilisation may have 

contributed to offset some of the deficit in energy demand. Lipid utilisation has been reported during high 

intensity exercise (Essen et al., 1977).

Chapter 6 highlighted the limited data on the anaerobic responses of competitive cyclists, further research 

should firstly focus on the importance of this component to road cyclists. This current study simulated road 

race cycling with a relative exercise intensity derived from a MMP test. The analysis of the responses of 

riders with similar MMP and different anaerobic power/capacity capabilities would highlight the influence 

of enhanced anaerobic capabilities on road race performance.

The second direction for future research in this area should focus the laboratory assessment of anaerobic 

power of road cyclists. The data presented from chapter 9 indicates that riders in the field can produce 

higher peak powers than when they undergo Wingate testing in the laboratory. With the presentation of
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highly intermittent data from actual races, it has become apparent that we may not necessarily be able to 

measure the anaerobic power of trained cyclists in the laboratory using current protocols.

A further avenue for investigation centres around the discussion within this chapter of the mechanisms 

capable of eliciting the high power outputs in athletes that have been shown to have predominantly slow 

twitch muscle fibre characteristics. The relative contribution of energy systems to repeated sprinting and 

the fibre recruitment patterns could be determined if the muscle biopsy studies could be conducted 

following intermittent exercise.

14.5.2.2 Blood glucose concentrations

There were no significant differences between road race simulation and the even power trials for blood 

glucose concentrations (4.53 vs 4.61 mmol.I'1). This supports the findings of Vanhelder et al. (1985) who 

reported no difference in blood glucose concentrations during intermittent versus a continuous trial.

The higher RER values during the road race simulation trials indicate higher rates of carbohydrate 

utilisation and B[Lac ] during this trial. The blood glucose concentrations significantly reduced during the 

trials between laps 1-4, this is a similar response to the reductions in RER values for the same time periods. 

The similarity in blood glucose concentrations (between even power and simulated cycling trials) implies 

that either the reliance upon this blood borne substrate was the same between trials (therefore greater 

reliance upon muscle glycogen during the road race trial), or, the supply and maintenance utilised greater 

liver glycogen and the process of gluconeogenisis to maintain blood glucose concentrations during the road 

race simulation trial, compared to the even power trial. Again further study using the muscle biopsy 

technique would give further detail in the investigation of substrate utilisation during this form of exercise. 

Likewise instigating a protocol to deplete muscle glycogen (induced via dietary and exercise manipulation), 

followed by an intermittent or continuous trial might indicate the relative ability of blood glucose to sustain 

intensity during these two different forms of exercise.

14.5.2.3 NHj response to exercise.

Mean post warm up values for NH3 and urea were higher than resting values reported by Brouns et al. 

(1990), however there were no significant differences between the trials for the post warm up value. There 

were also no significant increases in plasma NH3 over time during the trials.

This data is in contrast to research published by Lemon and Mullin (1980). They reported that reduced 

substrate availability during endurance exercise with limited substrate supply induced protein breakdown, 

with an associated NH3 accumulation. During a carbohydrate depleted trial increased dependence upon 

protein was observed, indicating utilisation to cover the energy demands of the task. Palmer et al. (1997) 

concluded that possible reductions in performance after intermittent activity were the result of an increased 

utilisation of muscle glycogen. If this were the case during this study an increased contribution of protein 

breakdown to cover the energy requirement in theory would have been recorded. The road race simulation 

trials, and the even power trials did not induce conditions of hypoglycaemia as might be expected under
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conditions of severe muscle glycogen depletion. Therefore it is possible that this is the reason why 

significant increases of plasma NH3 accumulation were not observed during this study.

Another possible explanation is the coupling of B[Lac‘] and NH3 kinetics. Correlation analysis revealed that 

during the road race simulation trials, the absolute plasma NH3 and B[Lac'] concentrations correlated 

significantly (r=0.77). During the even power trials, the absolute plasma NH3 concentrations did not 

significantly correlate with B[Lac'], (r=0.29). These values are for the mean of each subject during each 

condition. This therefore suggests that in the road race simulation trial the Lac' and ammonia kinetics are 

matched, whereas during the even power trial they were not. Lutoslowska (1996), reported similar 

correlation coefficient for B[Lac] and plasma [NH3] for intense ‘endurance’ exercise (r=0.66). This could 

also be linked to the findings of Pages et al. (1994) who reported coupled kinetics between Lac' and NH3 

during high intensity exercise, however, during endurance exercise the kinetics were uncoupled. It appears 

from the road race simulation results and previous literature that during high intensity exercise the 

production of NH3 and B[Lac'] arc linked thus it is likely that the PNC is involved in these processes. It also 

appears that during steady state exercise the NH3 and BLac' responses are not linked this would be due to 

the oxidisation of branched chain amino acids during steady state exercise. Although amino acid 

metabolism can increase under conditions of increased acidosis, highly oxidative muscle has a greater 

capacity to oxidise branched chain amino acids (Graham et al., 1995). Therefore under conditions of slow 

twitch muscle fibre recruitment amino acid metabolism may occur, with minimal BLac' accumulation, 

therefore resulting in uncoupled characteristics between the two metabolites.

Even though there was no significant rise in the accumulation of plasma NH3, it could be that the purine 

nucleotide cycle was ‘cycling’ during intermittent exercise. Breakdown of AMP with the production of 

IMP occurs under conditions of intense muscle contraction. NH3 is produced during this process, however, 

if aspartate is available IMP can be converted into adenylosuccinate, and back into AMP. However, during 

these conditions of anaerobic exercise, and aspartate (GTP unavailable) is not available, IMP is further 

degraded into hypoxanthine and uric acid. It is likely therefore that under conditions of intense intermittent 

exercise NH3 is released, likewise some Lac' is produced, hence the coupled kinetics during the road race 

simulation trials.

The pattern of NH3 formation during all trials is possibly another indication of substrate not being under 

conditions of depletion during the trials. The less toxic amino carriers alanine and glutamine both transport 

the nitrogen compound formed within the muscle cell to the liver for deamination. These two compounds 

are formed within the cell to minimise toxicity. The formation of these two nitrogen ‘carriers’ however 

requires ATP (glutamine) and pyruvate (alanine). It has been speculated that during endurance exercise 

where substrate is limited there will be increases in NH3 due to reduced substrate availability to fuel the 

formation of alanine and glutamine. As there was no significant rise in plasma [NH3] during any trial, 

(which has been reported as a consequence of a reduction in substrate availability, Haralambie and Berg,
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1976), it is another indication that the subjects were not totally glycogen depleted during the four ‘laps’ of 

the protocol.

14.5.2.4 Plasma urea response to exercise

The post warm up plasma urea concentrations were not significantly different between trials, however the 

post warm up values were higher than had been previously reported by Rauwbottom et al. (1997). There 

was a mean increase of 12.3% in plasma urea during the even power trials, compared to a mean rise of 3.4% 

in the road race trials. These values are lower than has been previously reported by Cemy (1975) who 

reported a significant 20% increase during steady state exercise at similar intensity (60-65% V 0 2max) for 

one hour in duration.

Decombaz (1979) also reported significant rises in plasma urea (44%) during endurance (70-90 kilometres) 

cross-country skiing. Lemon et al. (1989) reported a 252% increase in plasma urea during a 62 minute 

swim at approximately 70% of V 02max, they calculated that changes in blood flow to the liver could only 

account for 34% of the rise so the rest of the plasma accumulation was due to increased protein breakdown. 

Haralambie and Berg (1976), monitored serum urea levels of athletes throughout a variety of endurance 

activities, and concluded that serum urea levels increased linearly with exercise duration after an initial 

plateau for 60-70 minutes. However, Rattu et al. (1996) reported reductions in plasma urea concentrations 

during a 25 mile laboratory simulated cycling time trial performance test, with subjects ingesting glucose 

polymer during one trial and a placebo substance during the other. The drop during the Rattu et al. (1996) 

study was approximately 10-15% from the resting value, between the two trials. There was a greater 

reduction during the glucose trial compared to the placebo trial during the Rattu et al. (1996) study, and 

they concluded that there was less reliance upon amino acids for energy production compared to the placebo 

trial. There were no significant differences between the glucose and placebo trials during this study 

however. Haralambie and Berg (1976) concluded from their findings that the rise in serum urea was 

indicative of muscle glycogen levels becoming depleted. Studies on ultra endurance tasks have concluded 

that the rises in serum urea observed during an iron man triathlon (Farber et al., 1987), and during a 24-hour 

run (Irving et al., 1989) were due to inadequate carbohydrate sources, resulting in increased protein 

utilisation, during this type of endurance exercise. Therefore again, it is possible that the simulated road 

race did not deplete muscle glycogen to extreme levels whereby increased rates of protein utilisation would 

induce significant increases in serum urea.

The pattern of increased serum urea concentrations typically occurs during the hours, and possibly the days 

after exercise has ceased. Previous authors have speculated that due to reduced sweat rates at the cessation 

of exercise, serum urea increases due to this being a major removal mechanism for urea. Lemon and 

Mullin (1980) reported that with increased exercise intensities, there would be increased sweat rates, leading 

to the increased removal of urea through the sweating mechanism, thereby reducing the concentrations of 

serum urea. This possibly explains the findings by Rattu et al. (1996) who reported reduced levels of serum
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urca during the 25-mile laboratory time trial. Previous studies by Coyle et al. (1991) reported that cyclists 

can maintain exercise intensity in excess of 80% during this type of task indicating that sweat rates are 

likely to be high to maintain core temperature during exercise that is likely to last approximately one hour.

The findings of no significant increases in urea are possibly linked to the similar responses in NH3, 

however, the breakdown and utilisation of protein, and its pathway to excretion are implicated in 

performance outcomes of these athletes discussed later in this chapter.

14.5.3 Cardiovascular responses to simulated road and even power cycling

14.5.3.1 Oxygen consumption and carbon dioxide production

The ‘one subject’ data shows wide variations in V 02 throughout the simulation trial, however, when the 

matched samples during each trial are compared there are no significant differences between the V 02 values 

(absolute or relative). It appears therefore that adjustments to repay any oxygen debt incurred during the 

interval sessions is repaid quickly and efficiently by these athletes, and hence within a couple of minutes of 

an interval session the V 0 2 has returned to a value reflecting the current exercise intensity. Due to the 

similarities in V 02, there were no significant differences for gross mechanical efficiency, or economy 

during matched periods of work. The end of lap sample showed higher VC02 values during the post sprint 

recovery period, it appears therefore that possibly the ‘longer term’ (2-5 minutes) compensation for an 

intense interval session is elevated VC02 production compared to increased V 02. As the B[Lac ] also 

appear relatively low compared to what might be expected post repeat sprint activity, carbon dioxide 

excretion appears to be a major central compensatory mechanism post intense intermittent sprinting. 

Further research into the recovery patterns from intense exercise on these athletes is warranted.

14.5.3.2 Comparative cardio respiratory response to Kingcycle and Treadmill cycling

Table 14.19 below shows a summary of results from chapters 9 (physiological responses of competitive 

road race cyclists), 12 (effect of gradient on cardio respiratory measures during submaximal cycling) and 14 

(effect of glucose polymer supplementation on simulated road race and even power cycling). The data 

selected is for steady state rides at a relative intensity of 60% MMP. The results are possibly more 

comparable between chapter 9 (physiological responses of road cyclists) and chapter 12 (effect of gradient 

on cardio respiratory measures during submaximal cycling) due to the short nature of both protocols (10 and 

6 minutes respectively) whereas chapter 14 was the mean data over the sampling periods during the 2-hour 

protocol.

In comparing the two different ergometers, the results show similarities for B[Lac~], and % maximum heart 

rate. However V 02 data shows a 9% difference in relative exercise intensity, when comparing the data in 

chapters 8 and 11, and thus affects the other figures (economy and efficiency calculations) associated with 

the V 02 values. Kenny et al. (1995) reported higher average crank torque during treadmill as opposed to 

track cycling. This they concluded would elevate the demands of riding on a treadmill compared to the 

track. With lower demands on the treadmill compared to the Kingcycle (V 02), it may be that for the same
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relative power output, the treadmill still requires a higher V 02 than the track, and the Kingcycle requires a 

higher VO, than the treadmill. Further research is warranted into the reasons behind the changes in V 02 

between Kingcycle and treadmill bicycling, and possibly more importantly, how these compare to the 

cycling demands on the road.

Table 14.19 comparison of treadmill and Kingcycle cycling at 60% MMP

Chapter

9

Chapter

12

Chapter

14

B[Lac ] mmoLl1 2.51 1.78

% Maximum Heart Rate 76.4% 77.2% 78%

% V0 2max 68% 59% 62%

V C 02 (linin'1) 2.94 2.94 2.88

RER 0.86 0.94 0.89

Gross Mechanical Efficiency (%) 19.54 23.47 22.82

Economy (watts. 1.02) 66.07 80.84 84.25

14.5.4 Post exercise performance

The 2 km performance test was repeated on 2-3 occasions during familiarisation prior to the testing 

procedures commencing. Previous research by Foster et al. (1993) reported faster trials during an even 

paced strategy during a study that included a range of pacing strategies. The findings were not statistically 

significant, however, in terms of ensuring differences were due to true physiological considerations (as 

opposed to pacing strategy) optimal pacing was encouraged, and subjects were instructed that their fastest 

ride would be their most even paced.

14.5.4.2 Even power versus road race simulated cycling (performance tests)

The mean exercise intensity ridden for the final 2 km performance test was above 400 watts in all trials 

(table 14.15).

The performance test post even power cycling was 3.7% faster (p<0.05) than post road race simulated 

cycling. One possible explanation for the relatively better performance in the even power compared to the 

road race simulation trials is the recruitment pattern of muscle fibres. Essen et al. (1977) reported slow 

twitch recruitment only in a steady state trial (55% V 02max), compared to slow twitch and fast twitch 

recruitment during an intermittent trial. According to Bergstrom and Hultman (1967), resting fibres cannot 

donate glycogen to other active fibres, in which case the utilisation of fast twitch fibres to work at higher 

intensities during the even power trials may explain the results. However the post performance B[Lac'] 

were not significantly different between trials, therefore it might be premature to make these assumptions.
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There were no significant differences for mean heart rates between even power and simulated road race 

trials. Despite worse performance post road race simulation trials, heart rate during the last minute of the 

test was significantly higher during this trial (for lower power) compared to the even power trial. This again 

indicates problems when comparing to what was observed during the road race data collection from actual 

races. For a given power output, (derived from the maximum minute test data) heart rate was significantly 

elevated on the road. This occurred for only the final minute of the trials lasting nearly two hours and ten 

minutes, compared to the actual road races where from 20% of race distance covered, there was an elevated 

heart rate response compared to laboratory predicted data.

14.5.4.3 Road race trial

Following the 2-hour road race trial, performance power was lower during the 2 km performance test 

relative to fresh performance (mean - 55.8 watts) over the 2 km trial, this was a significantly greater drop 

than the even power trial (p<0.05).

Table 14.17 shows the correlations between MMP test data and the five 2 km performance tests (4 trials and 

the rested fresh trial). Following the road race simulation glucose trial none of the MMP and V 02 variables 

correlated significantly to performance (time), with scaled V 0 2max correlating to performance in the 

placebo trial.

This compares to significant correlations for the Fresh performance to absolute MMP values and relative 

MMP values. This indicates that reductions in performance were not the same for each subject.

Appendix 4 shows the correlations for the performance test and physiological responses during the road 

race protocol.

In this study higher post performance B[Lac] were indicative of improved relative performance during the 

2 km climb. This again possibly indicates a greater fast twitch fibre utilisation resulted in better 

performance and increased Lac' production, if fast twitch fibre was already fatigued (glycogen depleted), 

there would possibly be an inability to recruit them, and produce the desired force during the performance 

test resulting in decreased BLac' levels.

Elevated relative plasma urea and NH3 concentrations during the road race trials were also related to poorer 

relative performance (r=0.82 and r=0.81 respectively). Previous research by Brouns et al., (1990) reported 

a wide range of NH3 responses to endurance exercise. In theory elevated glycogen use would result in the 

use of protein sources as an alternative fuel, likewise PNC activity during anaerobic bursts resulting in the 

accumulation of NH3, and the subsequent elevations in urea concentrations. Thus as previously indicated by 

Brouns et al., (1990) these mechanisms are implicated in fatigue during endurance based intermittent 

activity.

The mean respiratory measures taken during the road race simulation trials failed to produce any significant 

correlates of performance. However the upward drift in V 0 2 from lap 1 to lap 4 correlated positively to
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improved relative performance at the end of the road race trials. During even power exercise it has been 

speculated that the oxygen slow component is due to increased recruitment of fast twitch fibres resulting in 

inefficiency during the latter stages of exercise (Xu and Rhodes, 1999) It is likely however that fast twitch 

fibres would be recruited from the onset of exercise during the highly intensive sprints. The ability to utilise 

or switch to greater fat metabolism during exercise of a high intensity nature could be indicative of greater 

slow twitch muscle fibre recruitment as the simulation progressed. This might also reduce the recruitment 

of fast twitch fibres, that might then be required to sustain the high powers reported in the performance 

tests. Due to the reflection of anaerobic metabolism in the RER measurements taken during intermittent 

exercise, other methods of substrate utilisation analysis need to be undertaken to investigate these findings 

further.

To summarise, it appears that to produce a high relative performance following a road race simulation trial, 

riders need to minimise plasma concentrations of NH3 and urea, and following the performance test have 

high B[Lac ] following the trial. These factors in the literature have been linked to the ability to minimise 

carbohydrate use during exercise, reducing NH3 and urea formation, and having muscle glycogen available 

to produce lactate, thus producing higher work rates with a larger anaerobic component in the latter stages 

of road race cycling.

14.5.4.4 Even Power trial

Relative performance decrements were also seen following the 2-hour even power trials compared to the 

fresh performance tests, a reduction in power of 47.5 watts.

Interestingly the respiratory responses during even power trial showed the opposite responses compared to 

what has been previously reported in the literature. Increased relative V 02, VC02, and RER correlated to 

improved performance during the even power performance trials, however only the RER value attained 

statistical significance in this study with small subject numbers. In the calculation of efficiency from the 

even power data those riders with high efficiencies performed worse than those with lower efficiency values 

relative to their previous fresh performance trials. This is in direct contrast to the work of Passfield et al. 

(1995) who reported smaller reductions in MMP following a 3-hour even power trial. In this current study 

the subjects were working at a higher exercise intensity compared to the Passfield et al. (1995) study. Like 

the Passfield study the early measures (lap 1) gave the indication of these results (r=-0.65 and r=-0.86) 

during the matched work rate phase of the protocol. The final samples (end of lap sample on lap 4) 

correlated strongly to performance (r=-0.91 and r=-0.88) with lower RER values again indicating poorer 

relative performance. This during the later stages of exercise may link to adequate CHO availability. 

Appendix 4 shows the lap-by-lap correlation data for chapter 14. Coyle et al. (1991) reported that glucose 

availability late in exercise enabled subjects to sustain higher power outputs during performance testing, this 

appears to be the case and is reflected in the RER values in the latter stages of the even power trial.
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14.5.4.5 One subject performance data

Figures 14.25, 14.26 and 14.27 show the respiratory responses of the one individual who completed the 

majority of the trials with constant gas analysis. Table 14.17 shows the respiratory responses during the 

performance trial for this individual. Using the five performance trials (power) and comparing them to the 

respiratory data, relative performance correlated to the ability to achieve high V 02 (r=0.58), to produce 

VC02 (r=0.90) and produce high RER values (r=0.90). Therefore, reductions in performance seen during 

these four trials are possibly linked to the ability to achieve these values. The fresh performance test elicited

a mean V 02 of 5.34 l min'1 (98.5% of V 02max), with reductions down to 86.5% V 0 2max during the road 

race placebo performance trial. VC02 values during the post trial performance rides equated to 76-79% of 

the fresh performance value, likewise mean RER data ranged between 80-90% of what was achieved during 

the fresh performance test. These figures are similar to the percentage of fresh performance (power) 

sustained by this rider (92% even power (glucose trial), 84% even power (placebo trial), 89% road race 

simulation trial (glucose trial), 86% road race simulation (placebo trial).

Substrate, and anaerobic metabolism appear important, likewise the ability to achieve a high percentage of 

V 02max at the end of the trials. During the road race simulation trials the respiratory data shows wide 

fluctuations (high standard deviations) during the trial for V 02, V C 02, and RER. This may influence the 

ability to achieve a high V 02 value at the end of competition, and possibly indicates that central fatigue 

could be implicated in the reductions in performance at the end of the 2-hour trials. The economy data from 

these trials shows that this individual had an economy of 90 W.1.02, during all but the even power placebo 

trial (79 W.1.02). This could suggest that the anaerobic contribution to the production of power during 3 out 

of the 4 trials was very similar, i.e. if greater energy production had come from anaerobic sources with the 

same V 02 a greater economy would be the result. The values for economy and B[Lac'] for this individual 

showed a positive correlation (r=0.88).

These findings cannot differentiate between central and peripheral factors influencing performance. Is it the 

ability to produce the higher relative power outputs that require the higher respiratory values? or is it the 

inability to achieve these respiratory values that limits the ability to produce the power outputs at this stage 

of the trials?. As the VC02 and RER values are stronger correlates to the power produced by this one 

subject it may again suggest that the availability of fuel will be a determining factor associated with 

anaerobic energy release during intensive exercise lasting approximately 5 minutes.

14.5.5 The effect of glucose polymer ingestion on simulated cycling

The absolute values for blood glucose concentration during the forth lap of all trials indicated that no trial 

induced hypoglycaemia. The 120 minute (plus performance test) length of these trials was possibly not
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long enough to reduce blood glucose concentrations to the extent seen previously by Flynn et al. (1987), 

who reported at the concentration of 3.5 mmol.1 1 exercise would be impeded with fatigue approaching

Confirming the findings of many other studies, the supplementation of glucose polymer improved 

performance. Compared to the fresh 2 km performance trial all trials had a reduction in power, however 

glucose polymer supplementation during even power trial was reduced less than when compared to the 

placebo trial. Performance following the glucose-supplemented trial was enhanced 5.3% (time) compared 

to the placebo trial. The same pattern was observed for the simulated road race trials with glucose polymer 

significantly improving results (6.01%). There was no significant difference between the effect of glucose 

on even power compared to simulated road race cycling. Previous studies have shown improvements with 

glucose supplementation during steady state cycling exercise at varied intensities (50-85% V 02max 

Massicote et al., 1985, Coggan and Coyle, 1988) and during exercise as short as 1 hour in duration (Below 

et al., 1995). Coggan and Coyle (1989) reported performance improvements following CHO ingestion of 

21% at an exercise intensity of 70% V 0 2max (~5% higher than during this study) on trained subjects who 

had previously fasted. Their protocol consisted of feeding subjects 30 minutes before the anticipated time 

to fatigue (derived from previous tests), thereby ‘eliminating’ the possibility of the sparing of muscle 

glycogen. This indicates that the blood borne substrate can play a major role in the outcome of cycling 

events over a wide spectrum of times/distances. The findings from this study also indicate that there are 

performance improvements following CHO ingestion even when the subjects have only abstained from food 

for just two hours (as would occur with typical race preparation), which is more likely to occur in 

competing athletes than longer periods of fasting.

These improvements in performance were accompanied by a 14% higher blood glucose concentration in the 

glucose trials, with significant differences reached on Tap’ 2, with statistical significance increasing during 

the two remaining Taps’.

During intermittent exercise improved performance with glucose supplementation has previously been 

observed by Yaspelkis et al. (1993) and by Hargreaves et al. (1984). They reported that spared muscle 

glycogen during the carbohydrate feeding trials improved performance during these trials. They concluded 

that possible muscle glycogen resynthesis occurred during the periods of reduced energy requirement, and 

the availability of exogenous substrate repleted muscle glycogen. Similarities in blood glucose between the 

road race and even power trials suggests that if muscle glycogen sparing / resynthesis occurred then either 

the precursor was not glucose (i.e. possibly BLac') or alternatively, liver glucose production maintained 

blood glucose. Other studies have previously reported that during steady state exercise performance 

improvements occur without sparing of muscle glycogen (Coggan and Coyle, 1989).

The manifestation in performance improvements during this current study could be indicated by the blood 

samples taken during the latter stages of exercise between the two trials. Despite significantly elevated 

blood glucose concentrations during the glucose supplemented trials, significant differences in the RER
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were not apparent during the protocols until ‘lap’ four. This possibly indicates that rates of CHO use were 

not significantly different for these athletes despite greater carbohydrate availability during the early laps. 

Alternatively the process of supplying blood glucose and maintaining euglycaemia were not taxed until the 

last 30 minutes of the trials. Therefore the CHO supplemented trial enabled the cyclists to utilise more 

glucose, for aerobic and anaerobic energy release, and therefore maintain higher work rates at the work 

intensities greater than 85%V02max. The performance improvements during the glucose trials compared to 

the placebo trials could possibly be explained by the post performance blood samples.

Following the glucose trials, power output was significantly higher (6%) during the 2 km performance 

tests. The post trial B[Lac'] was also significantly higher following the glucose trials (27%). This has 

previously been reported following exercise lasting approximately 1 minute in duration by Jacobs (1981). 

She reported a drop in muscle force during intense contractions following a period of prolonged exercise, 

and, like the present study this was accompanied by far greater metabolic changes. Jacobs (1981) reported 

that muscle lactate levels were reduced, and speculated that due to prolonged exercise, glycogen depletion 

would decrease the available substrate available for enzymatic reactions; in other words prolonged exercise 

would reduce the flux through glycolysis. Jacobs (1981) also indicated that as the performance changes 

were not of the same magnitude as the fall in the lactate concentrations, and that lipid utilisation may have 

contributed to offset some of the deficit in energy demand. Lipid utilisation has been reported during high 

intensity exercise (Essen et al., 1977). Evidence of reduced carbohydrate use is also supported by the one 

subject respiratory data, where VC02 and RER values indicative of substrate use were lower during the 

placebo trials compared to the glucose supplemented trials.

Palmer et al. (1997) speculated that during a post trial performance test, glycogen depletion was the likely 

factor causing fatigue following an intermittent exercise trial. They speculated that improved performance 

following an even power trial was due to reduced demands upon glycogen reserves during steady state 

exercise. Palmer et al. (1997) reported no markers of substrate utilisation during these trials. 

Interpretations of the results from this current study come from a variety of responses that have implications 

for fuel utilisation during exercise. During the simulation protocols the respiratory data showed elevated 

RER values during the road race simulation trials at the points sampled during the protocol. This could 

simply demonstrate that there was not true steady state under the conditions measured during the road race 

simulation trial at the sampling points. The higher RER values for the road race simulation trials (which are 

confirmed by the one subject whole simulation trials) show that there is continual adjustment of V 02, 

VC02, and hence RER throughout the protocol. This continual adjustment is due to the continual changes 

in power output that is characteristic of road cycling. This continual adjustment will not be covered initially 

by the consumption of 0 2, thus anaerobic sources will be required. The elevated B[Lac'] and RER values 

are thus indicators of an elevated carbohydrate requirement for this type of exercise.
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The adjustment to match the power demands is likely to involve fast twitch muscle fibre. Likewise during 

the performance trials of the hill climb study and the simulation studies the relatively high power outputs, 

plus the high B[Lac] recorded, indicate that fast twitch fibre are contributing to the maintenance of these 

work rates. Repeated use of fast twitch fibres during the road race simulation protocol possibly induced a 

degree of glycogen depletion within these fibres. This would reduce the effectiveness of this muscle fibre 

type during the performance test at the end of the road race simulation study, and possibly contribute to the 

reductions in power output during the performance tests of these trials. The B[Lac'] 3 minutes post 

performance tests were lower for the road race versus the even power trials, but this did not reach statistical 

significance.

If as speculated by Palmer et al. (1997) variable intensity exercise causes greater reductions in muscle 

glycogen than even power exercise then following placebo road race trial you would expect the poorest 

performance. This was confirmed by the slowest times to complete the 2 km performance test. V 02max 

values, absolute (lm in 1) or relative (kg '1, kg'0'3370'677079) failed to correlate significantly to fresh 

performance, or to the performances during both even power trials and the road race glucose trial. V 02 

indices correlated significantly to the performance of the simulated road race placebo trial. If fast twitch 

muscle fibre was glycogen depleted, more emphasis would be placed upon the slow twitch aerobic fibres. 

As it appears that fast twitch fibres and slow twitch fibres (high V 02 values recorded during the 

performance testing) are recruited during the fresh performance testing, a reduction in the ability to use fast 

twitch muscle fibres would reduce performance, and, place power production from slow twitch muscle thus 

performance being derived from oxidative sources. Thus the V 02max values correlate strongly to 

performance for the post road race placebo trial.

This again highlights the importance of tactical awareness during road cycling as if selective glycogen 

depletion is a determinant of reductions in performance during the latter stages of road race cycling, opting 

when to use precious carbohydrate stores, and maintaining force production for the latter stages of the race 

is important.
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Chapter Fifteen. Conclusion

The results from these studies have highlighted some specific areas for future research into the energy 

demands of road and time trial cycling.

15.1 Laboratory Equipment and Methodology

The use of laboratory-based ergometers has been previously highlighted as an area of concern in terms of 

specifically testing road cyclists. This study has highlighted the possible differences between not only level 

and graded cycling (in terms of physiological responses), but also potential differences between Kingcycle 

and treadmill cycling in terms of relative physiological responses. The SRM technology is now available to 

assess the breakdown of the pedal revolution during all types of cycling (analysis and sampling at 50 Hz), 

therefore a comparison of torque produced through the pedal action may start to answer some of the 

questions posed during this study on an altered physiological response during cycling on different 

ergometry systems and at different gradients.

The hill climb study data (chapter 10) highlighted that trained cyclists could sustain very high power outputs 

during simulated climbing. These are higher than has previously been reported (Fairbam et a i, 1991) and 

for a lower physiological cost than in previous stationary (level) ergometer testing. Possible explanation of 

these findings comes from chapter 11, where reduced V 02, VC02 and VE on a gradient indicates that there 

is reduced central overload for the same external work output during simulated hill climb cycling. As hill 

climbing is such an important component of road cycling, further investigation should focus on the possible 

causes of this phenomenon. We have speculated that enhanced fibre recruitment when riding in the upright 

climbing position could be the key factor in enhancing power output. EMG evaluation of key muscle 

groups involved in cycling would establish if this is the cause of the higher work rates on the gradient. 

More frequent sampling using the latest SRM system also tell us if the force generating characteristics are 

different when riding on a gradient compared to level cycling. These potential future studies have 

implications for the competitive cyclist because if they can be manipulated for level cycling (position 

change of the bicycle for example) then they may significantly enhance performance. However, despite the 

changes in physiological responses during level and graded cycling it still appears that stationary ergometer 

testing can predict simulated hill climb performance in the laboratory.

Other possible differences between the laboratory and the field conditions lie with the measurement of 

anaerobic power output. It appears that the use of the Wingate protocol also has limitations in terms of the 

analysis of the road cyclist. Data from the BCF races show that riders can elicit higher peak powers on the 

road rather than the laboratory setting. Further research into more specific protocol/testing procedures that 

provide a valid representation of field results is required in order to assess the cyclists. It is probably likely 

that peak powers are achieved during road cycling when the riders are out of the saddle, therefore this may 

cast doubt on the use of the seated Wingate testing protocol in the assessment of anaerobic power in these 

athletes. A direct comparison of seated and standing Wingate testing compared to field data may offer
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further insight into the likely cause of the discrepancy between field and laboratory recorded data in this 

study.

15.1.1 Competitive cyclists

The aim of this study was to evaluate competitive cyclists in a sport specific laboratory environment, and 

thus try to highlight some of the key components that make up a successful road race cyclist. The subjects 

in the road race study had equivalent maximum power outputs to the elite professional riders that have 

previously been reported (Lucia et al., 1998). However again, the protocols used possibly give different 

results (speculated to be 10% lower in step protocols, Lucia et al., 1998). This is highlighted by the vast 

difference in the performance abilities of the riders in these studies compared to the continental professional 

riders who compete at the top of the world rankings. For a true comparison similar protocols and equipment 

have to be used. The use of the Kingcycle MMP protocol appears to give the sport scientist a lot of 

information regarding the lactate inflection point, which has been indicated as a major predictor of (steady 

state) endurance performance (Coyle et al. 1991). This data, and the findings from Davison et al. (1997) 

confirm that the smooth ramp protocol of the Kingcycle MMP test enables a good non-invasive prediction 

of the lactate inflection point.

MMP also appears reliable (CV 1.72%) in subjects who have prepared in a manner equivalent to their pre 

race preparation, i.e. a full day off prior to the MMP test, plus a following of their pre race feeding and 

drinking pattern has shown to provide reproducible results. As this figure appears vital in the sustained 

power that these endurance athletes can sustain, then further research should focus on methods of training 

(interval/continuous), volume of training, and intensity of training that might be implemented to try to 

improve the MMP figure for the competitive cyclist.

15.2 Road Race cycling performance

One of the major findings of this study is that road race cycling is far more variable than has previously 

been envisaged by sport scientists. The variability is also greater than has previously been used in a 

simulation by Brouns et al. (1989) and Palmer et al. (1997), however the mean power output during the 

races is not particularly high.

The importance of tactical awareness during the road race is important to ensure the rider does not waste 

energy, but expends the required energy in creating breaks and marking those other riders who are likely to 

play a major role in the outcome of the races. The Stage race data on the 3 riders competing in the same 

race further highlights the importance of tactics and rider role in the collection of physiological data from 

road cycling events.

Not only were the powers recorded higher than had previously been envisaged, there was a significant

proportion of the data (—12%) at zero watts. This again has not previously been simulated in other studies

into this sport, where although the mean values for the simulations may have been similar (Palmer et al.,

1997, had a mean relative exercise intensity of 58%) to the overall road race data average, the spectrum of
159



power outputs covered by the road race cyclist is a lot wider than has previously been reported. This of 

course would not be highlighted by the heart rate response to exercise (zero watts does not give you zero 

heart rate), and it is simply the availability of SRM technology that has allowed this data to become 

available.

Evidence of the importance of tactics comes from the initial road race data collection. There were no strong 

predictors from the laboratory data indicating what were the main attributes that would indicate a high 

finishing position during road race cycling. However, once the tactics were removed in the laboratory 

simulation study, by each rider performing the same relative amount of work, the prediction of simulated 

performance from physiological factors could be made from the standard stationary ergometer measures 

(Kingcycle). The requirement for riders to have some kind of ‘race plan’ and to be aware of what is 

happening during a race appear crucial to the outcome, and further confirms the requirement of coaching 

from a physiological and psychological background.

15.3 Physiological responses to simulated road race cycling

To our knowledge, this is the first study to use an intermittent pattern of power outputs to simulate road 

cycling. These powers have been derived from actual race performances, this coupled with differences in 

physiological responses during simulated climbing, and the incorporation of this into the simulation, make 

the results more sport specific than previous studies in this area. This therefore makes the physiological 

response data very interesting to the cyclist and sport scientist. The results from the road race simulation 

trials indicate that optimising carbohydrate use, minimising the appearance of NH3 and urea, and having 

adequate substrate to produce higher B[Lac'] at the end of exercise will benefit performance in these 

athletes.

15.3.1 Blood lactate response to exercise

One of the most obvious points of discussion and further research comes from the B[Lac'] data recorded 

during the simulation study. Despite a series of 5 intense bursts, the B[Lac ] data showed only a small 

increase over the even power trial (p<0.05). There could be a few possible explanations for this metabolic 

pattern. 1) the riders did not produce Lac" during these sprints, 2) The riders’ [Lac'] did not appear in the 

blood after these sprints, 3) the riders could clear the B[Lac] very quickly after the sprints. The single 

sample of B[Lac'] does not give us the information to be certain on the reason behind the relatively low 

B[Lac'].

Despite the low variability in B[Lac‘] at the sampling points, V 0 2 and VC02 showed wide variations during 

the simulated trials depending upon the exercise intensity. Further investigation into the BLac' response 

with blood and intramuscular biopsy sampling, plus establishing patterns of production and removal of 

BLac' during this type of exercise would give further detail, and enable explanations to be proposed for the 

relatively low B[Lac'].
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Currently in coaching circles the emphasis on training is centred around aerobic power, the road race data 

has shown high peak anaerobic powers, despite the relatively low B[Lac'] values, further study into the 

effects of anaerobic power on road race cycling could highlight an optimum way of preparing these 

athletes for competition. If a simulation study was conducted on two groups of subjects with similar MMP 

values but different anaerobic power and anaerobic capacities, the effect on the performance outcome may 

enlighten the coach and the sport scientist to the role of anaerobic power and capacity on road race 

performance.

15.3.2 Heart rate response to exercise

Previous studies have reported high heart rate drifts during laboratory tests (Essen et a i, 1977), and we also 

have evidence that this is not simply a laboratory phenomenon with heart rate drift relative to steady state 

power output being recorded during time trial cycling. During this current investigation, the riders who had 

higher heart rate drift had a poorer relative performance following the two-hour even power and the 

simulated road trials. The drift in heart rate, plus the apparent ‘inflation’ in heart rate during road cycling 

make the interpretation of heart rate more complicated for the athlete and the sport scientist. Previous 

research by Palmer et al., (1994) used heart rate data from road race cycling to establish a power output at 

which these riders were working. The data presented here shows fundamental problems with this method, 

problems associated with laboratory and field differences for the same external workload, heart rate drift, 

and changes during stage race cycling. Further research is required into the mechanisms associated with the 

inflated heart rate response in the field. The laboratory simulation did not initiate this response, so further 

field investigation of the cyclists’ performance/response may be required to determine the cause of this 

change in the heart rate power relationship.

15.3.3 Substrate utilisation

Glucose supplementation significantly elevated blood glucose concentrations during the experimental trials. 

There was no difference between road race and even power trials, however there does appear from other 

data that there are differences in carbohydrate utilisation between these trials. Confirmation of this would 

require muscle biopsy sampling, and the analysis of different fibre types to support the findings from this 

study.

This study demonstrated a significant improvement in performance post intermittent and even power 

cycling with glucose polymer supplementation compared to the placebo trials. The supplementation 

enabled the cyclists to produce power outputs closer to those achieved during the fresh trials.

This is further evidence that substrate availability is vitally important to the cyclist when competing in either 

even power or intermittent road race cycling events.
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Appendix 1. Raw data from Chapter 9 
Appendix l(i). MMP data

trial 1 trial 2 age (years) mass (kg) height (m) category V02max ml. kg
380 391 21 70.1 1.86 3 5.06 72.2
402 393 23 76.3 1.78 1 5.3 69.5
376 381 51 72.5 1.76 3 4.83 66.6
406 397 19 80.4 1.83 1 5.28 65.7
306 335 27 60 1.7 2 3.89 64.8
384 380 25 75.3 1.84 1 5.24 69.6
425 433 33 67.8 1.74 1 5.28 77.9
362 363 23 75 1.72 1 5.3 70.7
428 411 40 75.9 1.75 1 5.78 76.2
347 345 31 72.5 1.75 3 4.58 63.2

Appendix 1 (ii). Power data

power 60 65 70 75 80 85 100
i 229 248 267 286 305 324 381
2 241 261 281 302 322 342 402
3 244 264 284 305 325 345 406
4 234 254 273 293 312 332 390
5 201 218 235 251 268 285 335
6 230 250 269 288 307 326 384
7 260 281 303 325 346 368 433
8 218 236 254 272 290 309 363
9 208 226 243 260 278 295 347
10 257 278 300 321 342 364 428

Appendix (iii). Heart rate data

heart rate 60 65 70 75 80 85 100
1 135 135 141 147 156 164 171
2 155 159 179 178 187 191 190
3 147 151 149 165 165 179 195
4 141 145 152 161 175 177 204
5 159 162 173 187 194 202 198
6 141 148 165 161 164 178 194
7 145 157 159 173 174 180 186
8 142 153 168 172 172 176 202
9 141 153 160 173 173 174 188
10 150 156 159 170 173 176 181



Appendix T (iv). Blood lactate concentrations and power output.

B[Lac ] analysis method Power output
Visual Interpretation of threshold 235 watts
4 mmol.r1 239 watts
Data point preceding a 1 mmol.!-1 rise in lactate concentration 235 watts

Power (watts)

B[Lac ] analysis method Power output
Visual Interpretation of threshold 236 watts
4 mmol.r1 272 watts
Data point preceding a 1 mmol.I'1 rise in lactate concentration 236 watts

1 £
1 d
1 ?

O 1 n
/

E 1U
C 8

•77 a _̂__ —
o o a
hJ d ^____
a  0z

n

257 278 300 321 342 364 

Power (watts)

B[Lac ] analysis method Power output
Visual Interpretation of threshold 300 watts
4 mmol.l'1 310 watts
Data point preceding a 1 mmol.r1 rise in lactate concentration 300 watts
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B[Lac'] analysis method Power output
Visual Interpretation of threshold 303 watts
4 mmol.r1 333 watts
Data point preceding a 1 mmol.I'1 rise in lactate concentration 303 watts

1 6 1—
14 -i—

_ 12 
I  10 —
i 8 -¡—

0 4- - - - - - - - - - ,- - - - - - - - - - ,- - - - - - - - - - ,- - - - - - - - - - ,- - - - - - - - - - i—
230 250 269 288 307 326

Power (watts)

B[Lac ] analysis method Power output
Visual Interpretation of threshold Not determined
4 mmol.r1 288 watts
Data point preceding a 1 mmol.P1 rise in lactate concentration Not determined

Power (watts)

B[Lac ] analysis method Power output
Visual Interpretation of threshold 264 watts
4 mmol.r1 274 watts
Data point preceding a 1 mmol.I'1 rise in lactate concentration 325 watts
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1 6

229 248 267 286 305 324

Power (watts)

B[Lac‘] analysis method Power output
Visual Interpretation of threshold 267 watts
4 mmol.l'1 272watts
Data point preceding a 1 mmol.I'1 rise in lactate concentration 267 watts

16

241 261 281 302 322 342

Power (watts)

B[Lac'l analysis method Power output
Visual Interpretation of threshold 235 watts
4 mmol.l'1 239 watts

Data point preceding a 1 mmol.l'1 rise in lactate concentration 235 watts

Power (watts)

B[Lac'] analysis method Power output
Visual Interpretation of threshold 273 watts
4 mmol.l'1 283 watts
Data point preceding a 1 mmol.l'1 rise in lactate concentration 273 watts
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208 226 243 260 278 295

Power (watts)

B[Lac'| analysis method Power output
Visual Interpretation of threshold 243watts
4 mmol.l'1 254watts
Data point preceding a 1 mmol.l'1 rise in lactate concentration 243 watts
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Appendix 2 Raw and smoothed data competitive cycle races
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Appendix 2(xxxvi). Power output and course profile from one lap of the Godmersham road race circuit
1. Figure C
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Appendix 2(xxxvii). Power output and course profile from one lap of the Frant road race circuit
I. Figure E
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Appendix 3. Raw data from chapter 11
Appendix 3(i). MMP test data
Subject MMP HR BjLacl 

MAX T
B[Lac | 
5POST

1 365 202 7.5 9.54
2 370 192 9.33 14.4
3 383 191 7.06 10.5
4 343 190 6.65 9.53
5 339 190 6.38 13.3
6 362 193 6.11 13.2
7 369 195 4.69 9.43
8 324 185 3.3 6.8

Appendix 3(ii). Hill climb results
Subject time 6km 6km

w-min'1
time 1km 1km

w-min'1
% MMP W-kg W-kg-067 W-(KG+C) 1

1 15.08 330 3.85 391.4 90.41 5.45 21.82 4.72
2 15.38 329 4 403.1 88.92 5.48 22.01 4.69
3 15.63 368.4 4.07 464.1 96.19 4.77 20.28 4.19
4 15.88 337.6 4.15 423.9 98.43 4.76 19.54 4.12
5 16.18 308.9 4.05 393.8 91.12 4.93 19.91 4.24
6 16.83 321.7 4.25 415.2 88.87 4.87 20.19 4.19
7 16.95 328.3 4.42 408.2 88.97 4.66 19.74 4.1
8 18.43 317.5 4.72 390.9 97.99 4.13 17.43 3.6

Appendix 3(iii). Hill climb study correlation matrix
MMP time 

6km
6km

w-min'
i

time
1km

1km % 
w-min'1 MMP

W-kg1 W-kg
0 .6 7

W-(kg
+C)

HR
max

B[Lac" 
] T

B[Lac]
5POST

MMP 1.00
time 6km -0.61 1.00
6km w-min'1 0.66 -0.43 1.00
time 1km -0.52 0.97 -0.27 1.00
1km w-min'1 0.57 -0.27 0.90 -0.16 1.00
% MMP -0.46 0.27 0.36 0.35 0.35 1.00
W-kg'1 0.54 -0.87 0.06 -0.89 -0.11 -0.61 1.00
W-kg-0.67 0.71 -0.89 0.21 -0.88 0.05 -0.63 0.98 1.00
W-(kg+C) -1 0.60 -0.89 0.12 -0.90 -0.07 -0.61 0.99 0.99 1.00
HR max 0.58 -0.62 0.10 -0.63 -0.13 -0.60 0.71 0.74 0.75 1.00
B[Lac]T 0.57 -0.91 0.31 -0.89 0.19 -0.35 0.91 0.90 0.89 0.42 1.00
B[Lac]
5POST

0.37 -0.49 -0.14 -0.57 0.03 -0.64 0.64 0.63 0.60 0.13 0.70 1.00



Appendix 4. Raw data from chapter 12
Appendix 4(i). Physiological responses to level cycling

LEVEL Watts- hr V0 21-min'1 v o 2 VC02 VE ■min' 1 rer kcal-min 1 GME
min' 1 ml-kg-min'1 l-min'1

1 283 138.2 3.38 41.5 3.16 61.8 0.94 16.81 24.19
2 269 140 3.13 41.75 2.88 63.8 0.92 15.49 25.15
3 244 160 3.37 53.5 3.38 65.55 0.92 16.72 20.31
4 242 147.1 3.24 43.75 3.11 64.2 0.97 16.30 21.09
5 216 132.7 2.33 34.5 2.34 42.7 0.92 11.61 26.64
6 242 158 3 40 2.77 58 0.92 14.69 23.40

Appendix 4(ii). Physiological responses to graded cycling

GRADED Watts-
min'1

hr V0 2 l inin'
i

v o 2
ml.kg-min'1

v c o 2
l-min'1

VE 1-min' 
i

rer kcal-min'1 GME

1 291 133.4 3.17 38.9 2.94 57.4 0.92 15.68 25.94
2 275 143.8 3.06 40.8 2.90 65 0.95 15.25 25.55
3 238 155 2.83 45 2.50 52.7 0.88 13.88 24.45
4 245 144.58 2.89 39 2.50 51.7 0.88 14.10 24.37
5 225 135.18 2.60 38.5 2.34 45.4 0.89 12.83 24.11
6 238 148 2.88 38.5 2.54 56 0.88 14.14 24.31



Appendix 5. Raw data from chapter 14.
Appendix 5(i). Subject achievements.

Subject

British
Cycling
Federation
Category

Achievements (Road Racing) Achievements (Time Trialing)

1 E Is'Tour of Warwickshire 1997. 2nd 
Tour of the North 1997, 6lh Divisional 
Championships 1996, (5lh 1997). 
Ridden for Divisional team and 
represented England in International 
stage races. Won many local road 
races and time trials.

National BBAR* Team 1995. 
Won many local time trials 
lOmiles 20min 1 lsec 
25miles 51min24sec 
50miles lhr47min sec 
lOOnriles 3hr48min sec 
12hour 275 miles

2 1 5lh Tour of the Mendips 1997. 1 1,h 
Tour of the North 1997. 13th 
Divisional Championships 1996. Top 
10 finishes in other local road races (1 
win).

Won local time trials, many top 
10 finishes in local time trials. 
lOmiles 20min 50sec 
25miles 53min 50sec 
50miles lhr 48min 12sec 
lOOmiles 3hr 49min Msec 
12hours 270 miles 
Top 10 in BBAR 1998.

3 2 11th Divisional Championships 1997. 
Top 10 places in local road races.

Top 10 finishes in local time 
trials.
lOmiles 20min 42sec 
25miles 53min 56sec 
50miles lhr 50min 50sec 
lOOmiles 4hr 27min sec

4 1 15‘ World Veterans road race 
championship 2000 
2nd Divisional Championships 1996, 
(4th 1997). Won many local road races.

National 24 hour time trial 
champion 1996. Silver medalist 
12hour championships 1994 & 
1995. National BBAR* Team 
1995.Won many local time trials. 
lOmiles 20min sec 
25miles 53min sec 
50miles lhr 45min sec 
lOOmiles 3hr45minsec 
12hour 274miles

5 2 9th Divisional Championships 1996 (7th 
1997). Top 10 finishes in local road 
races.

Won many local time trials. 
lOmiles 20min 56sec 
25miles 53min 48sec 
50miles lhr 52min 30sec 
lOOmiles 4hr 24min sec

6 2 8th Divisional Championships 1996. 
Won Local road races, Top 10 finishes 
in many road races.

National 12hour champion (on 
three occasions) and national 
BBAR champion. Won many 
time trials.



Appendix 5(ii). Raw data from chapter 14.

n h 3
(pmol.l ')

NH, above 
warm up 
value 
(p.mol.1. ')

Urea 
(pmol.l ')

Urea 
above 
warm up 
value 
(pmol.l1)

Heart rate 
(beats.min 
')

Relative 
heart rate
(%
maximum)

B[Lac"|
(mmol.!'1)

Blood
glucose
(mmol.r
')

RRG
1 120.75 -1.25 5.1 -3 141.7994 74.63127 2.82875 4.705
2 225.6667 155.6667 10.175 1.875 153.0198 84.07682 4.84 5.4975
3 91.5 20.5 6.4 0.3 155.4397 79.71264 2.4675 5.74375
4 153.6667 29.66667 7.625 0.425 147.3333 77.54386 2.7025 4.4025
5 178.75 38.75 8.575 -0.325 149.5136 81.70141 4.78375 4.68
6 102.5 -3.5 7.85 0.05 160.656 81.13942 2.0355 4.085

RRP
1 96.66667 35.66667 6.8 1.2 143.4269 75.48782 2.445 3.4
2 160 28 6.566667 0.566667 149.6232 82.21056 4.3475 4.49125
3 83 -41 6.133333 0.133333 157.8202 80.93345 2.885 4.90125
4 153 22 9.475 -1.725 141.7194 74.58918 2.51375 3.73875
5 214.75 66.75 7.975 -0.425 147.3906 80.54131 5.0425 4.08875
6 105.25 3.25 7.6 0.4 159.3509 80.48024 2.10625 4.67875

EPG
1 196.6667 49.66667 4.966667 0.266667 133.2069 70.10892 1.2415 4.52625
2 202.5 118.5 O

O

O
O 1.8 152.5755 83.83267 4.215 6.65375

3 93.5 5.5 6.475 0.475 146.9342 75.35085 1.49 5.1625
4 247.25 59.25 11.175 1.275 149.0284 78.43598 1.746375 4.95
5 167 3 9.675 0.275 148.5223 81.15973 1.35 4.335
6 127.25 29.25 6.575 0.175 150.0006 75.75787 0.906625 4.385

EPP
1 128.75 6.75 4.975 0.175 137.1475 72.18288 1.60625 3.92875
2 156 58 7.875 0.875 149.0358 81.88781 2.76375 4.4175
3 85.5 32.5 5.95 0.15 155.2259 79.60301 1.571875 4.585
4 225.75 44.75 9.175 0.975 145.017 76.32473 2.04 3.915
5 175 50 9.075 -0.025 146.9467 80.29877 1.5825 4.09875
6 125.75 13.75 7.725 0.625 155.4685 78.51944 0.839125 4.37875



Appendix 5(ii). Raw data from chapter 14 (cont).

V 02 (l.min1) 
mid lap

% V 02max 
mid lap

V 02 (l.min1) 
matched mid 
lap

% V 02max 
matched mid 
lap

V 02 (l.min ') 
end of lap

% V 02max 
end of lap

RRG
1 3.105556 52.54747 3.784167 64.02989 3.9105 66.16751
2 2.920833 60.85069 3.66875 76.43229 3.449 71.85417
3 2.497292 44.99625 2.960625 53.34459 3.139333 56.56456
4 2.127708 52.66605 2.645 65.4703 2.977 73.68812
5 2.781875 52.38936 3.42125 64.43032 3.532 66.51601
6 2.400909 44.29722 2.930625 54.07057 3.389 62.52768

RRP
1 2.899167 49.05527 3.6575 61.88663 2.9455 49.83926
2 2.926875 60.97656 3.775 78.64583 3.598 74.95833
3 2.28 41.08108 3.004167 54.12913 3.411 61.45946
4 2.161667 53.5066 2.67875 66.30569 2.9815 73.7995
5 2.461667 46.35907 3.44625 64.90113 3.4955 65.82863
6 2.382955 43.96595 2.905 53.59779 3.299333 60.87331

EPG
1 3.564583 60.31444 3.5975 60.8714 3.4005 57.53807
2 3.7575 78.28125 3.8825 80.88542 3.564667 74.26389
3 3.068125 55.28153 2.995 53.96396 3.474667 62.60661
4 2.634167 65.20215 2.63375 65.19183 2.7095 67.06683
5 3.510417 66.10954 3.53625 66.59605 3.365333 63.37728
6 2.912818 53.74203 2.922083 53.91298 2.9445 54.32657

EPP
1 3.644583 61.66808 3.69875 62.5846 3.4015 57.55499
2 3.675083 76.56424 3.743333 77.98611 3.515 73.22917
3 3.154167 56.83183 3.070625 55.32658 3.277 59.04505
4 2.622083 64.90305 2.64375 65.43936 2.59 64.10891
5 3.427139 64.54122 3.5 65.91337 3.35 63.08851
6 3.268864 60.31114 3.266875 60.27445 3.273167 60.39053



Appendix 5(ii). Raw data from chapter 14 (cont).

:

VC02 (l.min 
') mid lap

VC02 (l.min'1) 
matched mid 
lap

VC02 (l.min 
') end of lap

RER mid lap RER matched 
mid lap

RER end of 
lap

RRG
1 2.1275 2.593125 3.814 0.912761 0.913924 0.975219
2 2.612917 3.314375 3.5185 0.894555 0.903417 1.020374
3 2.236875 2.57625 3.426 0.894942 0.868815 1.097578
4 1.811667 2.260625 2.82 0.851524 0.854863 0.947068
5 2.38 2.8825 3.642 0.855542 0.842517 1.030752
6 2.196042 2.7125 3.4285 0.915668 0.926064 1.011202

RRP
1 2.623958 3.259375 3.575 0.90529 0.891939 0.951008
2 2.622083 3.45 3.7035 0.896183 0.914653 1.029365
3 2.035 2.639167 3.396 0.894575 0.878654 0.995848
4 1.82375 2.241875 2.837 0.844316 0.837592 0.952002
5 2.435417 2.945 3.6035 0.896505 0.854531 1.030976
6 2.144167 2.62 3.310667 0.887515 0.902932 1.003452

EPG
1 3.317292 3.34625 3.156667 0.930982 0.931344 0.936346
2 3.496944 3.595 3.287 0.927668 0.922071 0.931347
3 2.787292 2.73625 2.883 0.908629 0.934948 0.825543
4 2.34625 2.350625 2.4045 0.890674 0.892486 0.887671
5 3.109896 3.164375 2.986 0.885887 0.894943 0.887271
6 2.694911 2.73125 2.6755 0.926149 0.935301 0.908925

EPP
1 3.3375 3.420625 3.0815 0.915971 0.925324 0.906108
2 3.547292 3.613125 3.339 0.965313 0.965715 0.950288
3 2.842292 2.744375 2.895 0.901423 0.894388 0.886222
4 2.258958 2.280625 2.234 0.861553 0.86264 0.862723
5 3.049381 3.2 3.0335 0.88685 0.922656 0.906256
6 2.720625 2.705 2.734667 0.832267 0.829215 0.835309



Appendix 5(ii). Raw data from chapter 14 (cont).

Economy mid 
lap

Economy 
matched mid 
lap

Economy end 
of lap

GME mid lap GME
matched mid 
lap

GME end of 
lap

RRG
1 82.47909 75.19494 74.55693 23.95667 21.8 0
2 83.86431 79.03144 80.98195 24.4375 21.585 0
3 87.01333 84.32448 78.58066 25.3625 23.8825 0
4 91.31309 86.73381 74.36683 26.895 24.0625 0
5 83.39465 79.54721 74.86864 24.5225 22.2 0
6 97.29061 92.40839 78.40636 28.2 25.59 0

RRP
1 88.23219 83.58529 74.49698 25.635 22.705 0
2 83.83737 77.26758 77.75301 24.4275 20.995 0
3 96.32046 260.0203 72.32159 28.07 23.46 0
4 89.917 85.6343 74.27259 26.5175 23.8425 0
5 98.20523 84.30236 75.67556 28.55 21.985 0
6 97.97776 94.15178 80.52854 27.97333 25.99 0

EPG
1 79.88504 79.36834 83.69197 23.073 22.915 24.34667
2 72.49866 70.16843 76.44256 20.965 20.32 22.06
3 78.42301 80.33794 69.25354 22.7675 23.17333 20.53333
4 82.05385 82.06113 79.85413 23.92675 23.9275 23.31
5 73.51639 72.99711 76.69169 21.44 21.22 22.36
6 89.07795 88.74478 88.04048 25.7425 25.6 25.5725

EPP
1 78.04236 76.9248 83.66283 22.6187 22.2525 24.3075
2 74.12712 72.77787 77.53702 21.2292 20.83333 22.2825
3 76.30017 78.40641 73.63899 22.19429 22.8475 21.49
4 82.38806 81.70659 83.44644 24.2035 24.0175 24.5125
5 75.33747 73.72198 77.11072 21.9456 21.28 22.365
6 79.29804 79.3997 79.25588 23.48998 “1Î37561 23.4475



Appendix 5(ii). Raw data from chapter 14 (cont).
% fresh time Body mass 

(kg)
MMP
(watts.min'1)

Performance
Power
(watts.min'1)

Decrement in 
power
(watts, min'')

Time (min)

RRG
1 106.5814 89.9 473 522 -35 4.583
2 116.442 87.8 452 433 -71 5.21666
3 108.4337 86.8 397 423 -35 5.4
4 107.0957 80.4 360 388 -28 5.48333
5 108.9888 76 436 373 -34 4.85
6 1 11.6825 86.2 432 425 -50 5.416666

RRP
1 122.4884 89.9 473 454 -103 5.267
2 126.1161 87.8 452 400 -104 5.65
3 110.4418 86.8 397 415 -43 5.5
4 116.5352 80.4 360 357 -59 5.96666
5 111.609 76 436 36Ï 4.9666
6 1 15.4639 86.2 432 411 -64 5.6

EPG
1 105.4186 89.9 473 528 -29 4.53333
2 102.6786 87.8 452 491 -13 4.6
3 104.4177 86.8 397 439 -19 5.2
4 111.002 80.4 360 374 -42 5.6833
5 109.6629 76 436 371 -36 4.88
6 108.2474 86.2 432 438.4 -36.6 5.25

EPP
1 112.0233 89.9 473 497 -60 4.817
2 106.7634 87.8 452 473 -31 4.783333
3 106.4257 86.8 397 431 -27 5.3
4 117.1875 80.4 360 355 -61 6
5 111.236 76 436 365 -42 4.95
6 118.2062 86.2 432 401 -74 5.733333



Appendix 5(ii). Raw data from chapter 14 (cont).

% maximum 
heart rate @ 
70% MMP

% maximum 
heart rate during 
performance test

Heart rate 
during last 
minute of 
performance test 
(beats'1)

B[Lac'] post 
performance test 
(mmol.I'1)

Blood glucose 
post
performance test 
(mmol.I'1)

RRG
1 77.95666 92.92982 186.3333 8.25 4.12
2 91.47609 101.7879 188.9167 8.76 7.7
3 78.70445 92.86859 190 9.59 6.8
4 81.72515 98.50877 195.75 11.7 6.78
5 87.38616 96.05322 182.2787 12.9 6.65
6 85.0954 98.07526 201.3934 11 5.84

RRP
1 79.56656 93.37461 191 6.55 5.41
2 89.471341 99.42631 185.6667 5.75 5.47
3 84.55678 93.03922 186.8333 13.5 6.17
4 78.0848 92.28801 183.0833 5.95 5.01
5 87.99636 96.714 181.377 10.6 5.53
6 89.46409 96.8543 197.1475 8.6 5.69

EPG
1 75.82043 91.2218 97.36842 12.7 6.65
2 90.73359 100.4808 100.2289 7.98 9.74
3 76.97706 92.01243 96.5812 15.9 7.42
4 82.58772 98.25324 102.6754 15.8 7.02
5 86.77292 95.43021 97.61713 13.7 8.44
6 81.77048 91.68764 95.5539 12.1 5.9

EPP
1 78.0805 92.0034 97.45614 8.28 4.8
2 87.45174 99.90361 101.6026 4.83 5.26
3 81.4305 95.33654 99.82906 10.5 6.29
4 79.57602 94.39798 98.90351 9.9 4.98
5 87.87796 97.36861 100.7256 9.73 5.92
6 83.43434 93.10008 95.94304 8.05 5.37



Appendix 5(iii). One subject data (VC02)

Lap 1 vco2
(Linin'1)

Even Power 
(g)

Even Power 
(P)

Road Race 
(g)

Road Race 
(P)

2.71 3.59
2.98 3.54
2.67 2.6 3.1
2.6 3.08 3.27
3.22 2.91 3.36
2.9 3.02 3.17
3.01 3.08 3.09
3.09 3.19 3.15
3.18 2.84 3.2
2.94 2.64 2.91
2.63 2.87 2.77
2.7 2.92 2.89
2.7 2.66 3.33
2.91 2.88 4.03
2.64 2.49 2.95
2.72 2.97 2.16
3.07 2.81 3.27
2.98 3.15 4.16 3.44
2.88 2.75 4.85 4.34
2.78 2.65 4.58 4.79
2.73 2.81 4.41 4.04
2.78 2.67 3.53 3
2.79 2.65 2.22 2.03
2.44 2.79 1.7 1.76
2.2 2.75 1.78 1.63
2 2.9 1.49 1.51

2.14 2.93 1.48 1.42
2.45 2.84 1.58 1.49
2.79 3.15 1.51 1.44
2.55 3 1.92 1.84
3.12 2.56 2.43 1.96
2.96 2.7 2.49 2.21
2.91 2.84 2.6 2.39
2.78 2.73 2.73 2.65
2.89 2.87 2.72 2.6
2.8 2.38 2.82 2.87
2.75 2.38 3.06 2.82

2.83 2.63 2.17
2.73 2.86 3.61
2.53 2.59 4.04
2.77 2.83 4.33
2.62 2.68 4.8
2.67 2.69 3.88
2.65 2.81 4.21
2.92 2.81 4.14
2.62 3.06 4.18
2.65 2.98 3.72
2.75 2.76 3.03
2.77 2.84 3.16

Lap 2 VCO,
(Linin'1)

Even Power 
(8)

Even Power 
(p)

Road Race 
(g)

Road Race 
(P)

2.7 2.78 3.08
2.61 3.07 2.9
2.87 2.73 2.99
2.65 2.78 3.27
2.79 2.57 3.17
2.56 2.92 3.01
2.81 2.62 3.09
2.77 3.01 3.07
2.43 2.67 2.97
2.93 2.63 2.65
2.44 2.72 2.95
2.33 2.83 3.33
2.35 2.93 4.24
2.46 2.67 3.16
2.44 2.68 2.06
2.84 2.6 3.02
3.12 2.78 4.03
2.92 2.75 4.89
2.79 2.77 4.65
2.72 2.88 4.36
2.74 2.72 3.46
2.62 2.67 2.16
2.62 2.54 1.79
2.47 2.43 1.67
2.87 2.75 1.63
2.69 2.68 1.34
2.66 2.86 1.57
2.82 2.84 1.44
2.66 2.56 1.64
2.5 2.68 2.07 1.31
2.52 2.71 2.2 1.76
2.64 2.76 2.55 2.1
2.6 2.68 2.55 2.29
2.72 2.63 2.77 2.61
2.72 2.96 2.84 2.63
2.79 3.02 2.74 2.54
2.62 2.75 2.77 2.74

2.79 2.84 2.53 1.57
2.67 2.67 3.26 3.24
2.77 2.68 4.47 3.38
2.83 2.72 3.74 4.27
2.68 2.65 3.95 4.17
2.66 2.71 4 4.01
3.02 2.61 3.66 4.48
2.84 2.65 4.66 4.06
2.9 2.78 3.51 4
2.77 2.45 3.22 3.09
2.59 2.58 3.02 2.99
2.69 2.69 3.03 2.78



Appendix 5(iii) One subject data (VC02) (cont)

lap 3 VCO,
(Linin'1)

Even Power Even Power Road Race Road Race
(g) (p) (g) (P)

2.42 2.68 3.02
2.58 2.53 2.93
2.6 2.83 2.73
2.75 2.75 2.58
2.71 2.49 2.92
2.69 2.56 2.8
2.45 2.72 2.72
2.7 2.74 2.72
2.56 2.76 2.55
2.62 2.48 2.47
2.58 2.56 2.41
2.71 3.58 2.6
3.1 3.8 3.68
2.67 3.26 3.78
2.32 2.19 2.4
2.77 2.8 2.18
2.62 4.08 3.23
2.84 4.54 4
2.48 4.91 4.75
2.77 4.27 4.48
2.56 3.35 3.76
2.63 2.37 2.83
2.6 1.91 2
2.96 1.56 1.47
2.73 1.61 1.66
2.62 1.51 1.35
2.55 1.5 1.53
2.62 1.63 1.64
2.46 1.93 1.42
2.83 2 1.83
2.55 2.2 2.06
2.82 2.52 2.33
2.74 2.57 2.67
2.66 2.79 2.94
2.67 2.83 2.82
2.71 2.92 2.69
2.87 2.83 2.84

2.39 2.03
2.44 2.99 3.21
2.62 3.67 4.08
2.69 3.65 3.66
2.55 4.15 3.85
2.7 4.07 3.7
2.64 3.83 4.11
2.56 4.11 4
2.41 3.54 3.56
2.69 2.93 2.89 3.32
2.74 2.71 2.96 2.92
2.76 2.66 3.1 3.06

Lap 4 v c o 2
(l.min'1)

Even Power Even Power Road Race Road Race
(g) (p) <g) (p)
2.28 2.54 2.79 3.51
2.72 2.62 2.76 2.87
2.63 2.75 2.48 2.56
2.57 2.88 2.91 2.81
2.62 2.9 2.62 2.89
2.46 2.61 2.6 2.85
2.61 2.54 2.63 2.82
2.76 2.74 3.06 2.66
2.74 2.58 3.01 3.05
2.64 2.69 2.64 2.41
2.6 2.49 2.54 2.6
2.66 2.65 2.51 2.82
2.71 2.73 3.33 3.56
2.71 3.1 4.06 4.09
2.51 2.75 2.61 2.93
2.42 2.81 2.16 2.1
2.42 2.56 3.12 3.16
2.7 2.64 4.02 4.28
2.99 2.83 4.4 5.13
2.51 2.74 4.64 5.04
2.59 2.65 4.11 4.2
2.4 2.66 3.45 3.19
2.49 2.66 2.24 1.81
2.39 2.54 1.8 1.77
2.66 2.6 1.46 1.58
2.84 2.7 1.41 1.4
2.82 2.95 1.31 1.52

2.65 1.64 1.44
2.39 1.33 1.45
2.94 1.71 1.86
2.61 2.18 2.05
2.64 2.07 2.07

2.57 2.41 2.45 2.33
2.67 2.68 2.73 2.67
2.72 2.58 2.84 2.58
2.75 2.68 2.5 2.64
2.58 2.43 2.7 2.62

2.48 2.62 2.25 2.06
2.67 2.84 3.64 2.93
2.49 2.84 4.08 3.59
2.67 2.65 3.78 3.28
2.72 2.72 4.38 3.84
2.59 2.61 3.44 3.58
2.64 2.63 3.93 3.64
2.71 2.67 4.1 3.59
2.67 2.66 3.41 3.52
2.39 2.7 3.28 2.94
2.54 2.66 2.7 3.03
2.54 2.57 2.81 2.8



Appendix 5(iv). One subject data (V 02)

Lap 1 VO2 (Linin' 
>>

Even Power Even Power Road Race Road Race j
(g) (p) <g) (pi i
3.16 3.28
2.77 2.87
2.69 2 .9 7 3.17
3.44 3 .5 5 3.31
2.97 3 .3 5 3.12
3.1 3.48 3.13
3.IB 3.55 3.25
3.22 3.65 3.28
2.96 3.2 2.95
2.68 2.99 2.86
2.79 3.33 2.96
2.78 3.4 3.54
3.04 3.02 4.29
2.71 3.36 2.94
2.79 2.87 2.09
3.15 3.45 3.14
2.95 3.21 4.22
2.73 3.58 4.86 3.82
2.81 3.03 4.3 4.6
2.8 2.99 4.07 4.66
2.85 3.31 3.29 3.8
2.89 3.16 2.2 2.88
2.48 3.14 1.69 2.07
2.5 3.24 1.8 1.8
2.46 3.25 1.55 1.7
2.29 3.36 1.59 1.61
2.6 3.38 1.71 1.52
2.84 3.22 1.6 1.62
2.58 3.61 2.07 1.57
3.26 3.45 2.63 2
3.02 2.95 2.72 2.2
2.89 3.16 2.83 2.49
2.82 3.32 2.99 2.65

3 3.17 3.01 2.91
2.88 3.38 3.06 2.83
2.84 2.79 3.28 3.12
2.48 2.79 2.97
3.03 2.27
2.97 3.27 2.25
2.81 3.49 3.7
2.67 3.1 3.94
2.91 3.39 3.84
2.74 3.21 4.29
2.8 3.21 3.45
2.78 3.38 3.94
3.12 3.39 3.9
2.74 3.61 3.82
2.74 3.57 3.5
2.92 3.18 2.86
2.92 3.35 3.23

Lap 2 VO2 (Linin' 
>)

Even Power Even Power Road Race Road Race
(g) (p) (g> (P)
2.83 3.78 3 .2 2

3.13 3.29 3.08
2.9 3.37 3.18
3 3.12 3.45

2.67 3.54 3.32
2.99 3.16 3.15
2.88 3.65 3.23
2.59 3.16 3.22
3.18 3.15 3.13
2.62 3.28 2.83
2.44 3.36 3.19
2.47 3.51 3.61
2.63 3.14 4.56
2.57 3.18 3.11
3.02 3.18 2
3.39 3.41 3
3.03 3.29 4.21
2.85 3.32 5.01
2.81 3.38 4.39
2.89 3.27 4.07
2.74 3.21 3.26
2.77 3.01 2.2
2.64 2.94 1.91
3.07 3.32 1.76
2.84 3.25 1.74
2.63 3.41 1.46
2.94 3.4 1.7
2.88 2.99 1.58
3.02 3.2 1.8
2.87 3.3 2.29 1.96
2.7 3.3 2.48 2.38
2.71 3.22 2.88 2.6
2.85 3.19 2.84 2.92
2.82 3.53 3.05 2.93
2.96 3.61 3.1 2.76
2.94 3.25 2.95 2.94
2.99 3.15 3.74 3.81

3.3 3.5 2.67 1.7
3 3.23 3.38 3.47

3.06 3.23 4.4 3.36
3.1 3.34 3.39 4.01
2.88 3.22 3.64 3.84
2.91 3.25 3.74 3.71
3.3 3.14 3.53 4.13
3.06 3.18 4.57 3.78
3.11 3.33 3.29 3.71
2.96 2.9 3.1 2.99
2.76 3.09 3.01 2.96
2.94 3.28 3.19 2.89



Appendix 5(iv) One subject data (V 02) (Cont)

lap 3 V02 (l.min* 
')

Even Power Even Power Road Race Road Race
(g) <p) (g) (p)

3.01 2.91 3 .2 2

2.95 2.75 2.91
3.07 3.15 2.78
3.03 3.01 3.18
2.95 2.71 2.97
2.7 2.81 2.87
2.99 2.93 2.86
2.79 2.93 2.7
2.85 2.64 2.67
2.81 2.74 2.62
2.93 3.9 2.82
3.33 4.01 4.05
2.89 3.28 3.96
2.55 2.18 2.38
3.1 2.83 2.13
2.91 4.29 3.28
3.06 4.6 4.26
2.62 4.76 4.82
3.03 3.97 4.24
2.82 3.2 3.55
2.9 2.41 2.8
2.85 2.06 2.09
3.26 1.68 1.54
2.92 1.71 1.76
2.82 1.64 1.43
2.74 1.66 1.67
2.86 1.81 1.81
2.69 2.15 1.59
3.11 2.2 2.09
2.84 2.49 2.32
3.09 2.88 2.71
3.08 2.86 3.05

3 3.11 3.26
2.86 3.1 3.04
2.87 3.21 2.88
2.98 3.08 3.04
3.13 3.7 3.74

3.18 2.62 2.27
2.78 3.22 3.44
2.98 3.77 4.13
3.04 3.49 3.43
2.83 4.06 3.66
3.01 3.89 3.52
2.97 3.52 4.02
2.82 3.95 3.92
2.66 3.41 3.38
3.08 3 .3 7 2.9 3.31
3.12 3.23 3.06 2.96
3.06 3.23 3.4 3.26

Lap 4 V02 (Linin' 
■)

Even Power Even Power Road Race Road Race
(g) (p) (g) (p)

2 .7 3 3.36 3.06 2 .9

3.23 3.39 2.98 2.65
3.06 3.47 2.73 3.09
2.94 3.61 3.28 3.19
3.01 3.56 2.9 3.09
2.82 3.17 2.89 3.03

3 3.1 2.97 2.89
3.18 3.4 3.46 3.2
3.13 3.19 3.22 3.3

3 3.29 2.81 2.58
2.94 3.08 2.84 2.84
2.95 3.24 2.78 3.12
3.02 3.39 3.71 3.93
3.02 3.76 4.41 4.35
2.72 3.15 2.67 2.95
2.75 3.29 2.23 2.06
2.77 3.15 3.24 3.17
3.13 3.22 4.18 4.62
3.33 3.42 4.46 5.21
2.79 3.24 4.56 4.76
2.9 3.18 3.97 3.87
2.76 3.3 3.38 3.08
2.89 3.31 2.26 1.83
2.76 3.09 1.9 1.69
3.06 3.21 1.58 1.52
3.19 3.31 1.56 1.66

3.6 1.5 1.64
3.21 1.87 1.66
2.92 1.52 1.8
3.62 1.97 2.2
3.2 2.57 2.43
3.18 2.43 2.78

2.83 2.93 2.83 3.11
3.06 3.26 3.12 2.94
3.12 3.19 2.81 2.99
3.12 3.28 3.05 3
2.93 2.98 3.85 3.87

2.97 3.35 2.55 2.31
3.21 3.53 4.07 3.22
2.91 3.5 4.2 3.78
3.09 3.27 3.62 3.23
3.2 . 3.36 4.21 3.87
3.02 3.21 3.29 3.6
3.08 3.22 3.88 3.58
3.12 3.29 4.11 3.59
3.08 3.26 3.32 3.45
2.77 3.27 3.31 3.01
2.91 3.26 2.8 3.22

3 3.12 3.05 3.06



Appendix 5(v) One subject data (RER)

Lap 1 RER
Even Power Even Power Road Race Road Race j

(g) (p) (g) (p)
0.94 1.08
0.96 1.08
0.97 0.87 1.03
0.94 0.87 1.02
0.98 0.87 1.02
0.97 0.87 0.99
0.97 0.87 0.97
0.99 0.89 0.98
0.99 0.88 0.99
0.98 0.86 0.97
0.97 0.86 0.98
0.97 0.88 0.94
0.96 0.86 0.94
0.97 0.87 1.00
0.97 0.86 1.03
0.97 0.88 1.04
1.01 0.88 0.99
1.05 0.91 1.00 0.90
0.99 0.89 1.07 0.94
0.98 0.85 1.08 1.03
0.98 0.84 1.07 1.06
0.97 0.84 1.01 1.04
0.98 0.86 1.01 0.98
0.88 0.85 0.99 0.98
0.81 0.86 0.96 0.96
0.93 0.87 0.93 0.94
0.94 0.88 0.92 0.93
0.98 0.87 0.94 0.92
0.99 0.87 0.93 0.92
0.96 0.87 0.92 0.92
0.98 0.85 0.92 0.89
1.01 0.86 0.92 0.89
0.99 0.86 0.91 0.90
0.96 0.85 0.90 0.91
0.97 0.85 0.92 0.92
0.97 0.85 0.93 0.92

0.95 0.80 0.96
0.97 0.82 0.98
0.95 0.84 1.03
0.95 0.83 1.13
0.96 0.83 1.12
0.95 0.84 1.12
0.95 0.83 1.07
0.94 0.83 1.06
0.96 0.85 1.09
0.97 0.83 1.06
0.94 0.87 1.06
0.95 0.85 0.98

Lap 2 RER
Even Power Even Power Road Race Road Race

(g) (p) (g) (p)
0.92 0.81 0.96
0.92 0.83 0.94
0.91 0.82 0.94
0.93 0.82 0.95
0.96 0.82 0.95
0.94 0.83 0.96
0.96 0.82 0.96
0.94 0.84 0.95
0.92 0.83 0.95
0.93 0.83 0.94
0.95 0.84 0.92
0.95 0.83 0.92
0.94 0.85 0.93
0.95 0.84 1.02
0.94 0.82 1.03
0.92 0.82 1.01
0.96 0.84 0.96
0.98 0.83 0.98
0.97 0.85 1.06
0.95 0.83 1.07
0.96 0.83 1.06
0.95 0.84 0.98
0.94 0.83 0.94
0.93 0.83 0.95
0.95 0.82 0.94
1.01 0.84 0.92
0.96 0.84 0.92
0.92 0.86 0.91
0.83 0.84 0.91
0.88 0.82 0.90 0.90
0.98 0.84 0.89 0.88
0.96 0.83 0.89 0.88
0.95 0.82 0.90 0.89
0.96 0.84 0.91 0.90
0.94 0.84 0.92 0.92
0.89 0.85 0.93 0.93

0.85 0.81 0.95 0.92
0.89 0.83 0.96 0.93
0.91 0.83 1.02 1.01
0.91 0.81 1.10 1.06
0.93 0.82 1.09 1.09
0.91 0.83 1.07 1.08
0.92 0.83 1.04 1.08
0.93 0.83 1.02 1.07
0.93 0.83 1.07 1.08
0.94 0.84 1.04 1.03
0.94 0.83 1.00 1.01
0.91 0.82 0.95 0.96



Appendix 5(v) One subject data (RER) (Cont)

lap 3 RER
Even Power 

(g)
Even Power 

(P)
Road Race 

(g)
Road Race 

(P)
0.92 0.81 0.96
0.92 0.83 0.94
0.91 0.82 0.94
0.93 0.82 0.95
0.96 0.82 0.95
0.94 0.83 0.96
0.96 0.82 0.96
0.94 0.84 0.95
0.92 0.83 0.95
0.93 0.83 0.94
09? 0.84 0.92
0.95 0.83 0.92
0.94 0.85 0.93
(Ë951 0.84 1.02
0.94 0.82 1.03
0.92 0.82 1.01
0.96 0.84 0.96
0.98 0.83 0.98
0.97 0.85 1.06
0.95 0.83 1.07
0.96 0.83 1.06
0.95 0.84 0.98
0.94 0.83 0.94
0.93 0.83 0.95
0.95 0.82 0.94
1.01 0.84 0.92
0.96 0.84 0.92
0.92 0.86 0.91
0.83 0.84 0.91
0.88 0.82 0.90 0.90
0.98 0.84 0.89 0.88
0.96 0.83 0.89 0.881
0.95 0.82 0.90 0.89j
0.96 0.84 0.91 0.90
0.94 0.84 0.92 0.92
0.89 0.85 0.93 0.93

0.85 OÏT 0.95 0.92
0.89 0.83 0.96 0931
0.91 0.83 1.02 1.01
0.91 0.81 1.10 Toa
0.93 0.82 fW 1.09
0.91 0.83 LÔ7I 1.08
0.92 0.83 1.04 1.08
0.93 0.83 LÔ21 1.07
0.93 0.83 1.07 1.08
0.94 0.84 1.04 1.03
0.94 0.83 1.00 1.01
0.91 0.82 0.95 0.96

Lap 4 RER
Even Power Even Power Road Race Road Race

(g) (p) (g) (p)
0.84 0.77 0.93 1.08
0.86 0.79 0.91 0.83
0.87 0.80 0.89 0.88
0.87 0.81 0.90 0.94
0.87 0.82 0.90 0.94
0.87 0.82 0.89 0.98
0.87 0.81 0.88 0.83
0.88 0.81 0.93 0.92
0.88 0.82 0.94 0.93
0.88 0.81 0.89 0.92
0.90 0.82 0.90 0.90
0.90 0.81 0.90 0.91
O901 0.82 0.92 0.94
0.92 0.87 0.98 0.99
0.88 0.85 0.97 1.02
0.87 0.81 0.96 1.00
0.86 0.82 0.96 0.93
Ô9ÏÏ1 0.83 0.99 0.98
0.90 0.85 1.02 1.06
0891 0.83 1.04 1.09
0.87 0.81 1.02 1.04
0.86 0.80 0.99 0.99
0.87 0.82 0.95 1.05
0.87 0.81 0.92 1.04
0891 0.82 0.90 0.84

0.82 0.87 0.93
0.83 0.88 0.87
0.82 0.88 0.81
0.81 0.87 0.85
0.82 0.85 0.84
0.83 0.85 0.74

0.91 0.82 0.87 0.75
0.87 0.82 0.88 0.91
0.87 0.81 1.01 0.86
0 8 1 0.82 0.82 0.88
0.88 0.82 0.70 0.68

0.84 0.78 o i l 0.89
0.83 0.80 0.89 0.91
0.86 0.81 0.97 0.95
0861 0.81 LÔÎ 1.02
0.85 0.81 1.04 0.99
Ô861 0.81 1.05 0.99
0.86 0.82 1.01 1.02
0.87 0.81 1.00 1.00
0.87 0.82 1.03 1.02
0.86 0.83 0.99 0.98
0871 0.82 0.96 0.94
(Ï851 0.82 0.92 0.92



Appendix 5(vi). - Correlation coefficients for measured variables verses reductions in performance.

Even power 
(glucose)

Even power 
(placebo)

Road race 
simulation 
(glucose)

Road race 
simulation 
(placebo)

% Fresh time 1.00 1.00 1.00 1.00
Absolute time 0.66 0.73 0.25 0.25
Reduction in power -0.96 -0.94 -0.97 -0.97
Performance power -0.80 -0.52 -0.12 0.36
Heart rate 0.12 -0.08 0.55 -0.39
%maximum heart rate 0.01 -0.42 0.85 -0.12
% maximum heart rate @ 70% 0.00 -0.33 0.85 -0.04
% maximum heart rate during 
performance test

0.00 -0.61 0.77 0.39

% maximum heart rate during last minute 
of performance test

0.23 -0.74 0.13 0.15

Heart rate drift 0.75 -0.06 0.77 0.50
Blood lactate concentration -0.58 -0.53 0.49 0.01
Blood lactate concentration post 
performance

0.56 0.23 -0.22 -0.84

Blood glucose concentration -0.68 -0.51 0.29 -0.35
Blood glucose concentration post 
performance

-0.43 -0.49 0.58 -0.47

Plasma ammonia concentration 0.29 0.46 0.59 -0.02
Plasma ammonia concentration above 
warm up measure

-0.43 -0.39 0.80 0.30

Plasma urea concentration 0.55 0.37 0.82 -0.19
Plasma urea concentration above warm up 
measure

-0.27 0.35 0.71 0.43

Vo2 mid lap
-0.63 -0.51 0.21 0.82

% Vo2ml> mid lap
-0.25 -0.26 0.45 0.82

Vo2 mid lap matched
-0.61 -0.46 0.28 0.62

% Vo2max mid lap matched
-0.27 -0.22 0.47 0.70

Vo2 end lap
-0.81 -0.60 0.01 -0.10

% V o 2m„endlap
-0.28 -0.30 0.20 0.10

V C 02 mid lap
-0.70 -0.66 0.78 0.61

V C 02 mid lap matched
-0.66 -0.60 0.87 0.67

V C 02 end lap
-0.78 -0.73 0.13 0.32

RER mid lap -0.71 -0.84 0.57 0.15
RER mid lap matched -0.70 -0.79 0.64 0.57
RER end lap -0.11 -0.79 0.23 -0.11
Efficiency mid lap 0.44 0.88 0.30 -0.96
Efficiency mid lap matched 0.44 0.71 0.23 -0.43
Efficiency end lap 0.38 0.77 •
Economy mid lap 0.39 0.84 0.32 -0.91
Economy mid lap matched 0.40 0.66 0.30 -0.57
Economy end lap 0.35 0.66 0.86 0.31



Appendix 5(vii) - Lap by lap correlation coefficients for measured variables verses reductions in
performance for each lap of each condition.

Even power (glucose trial) Even power (placebo trial) Road race simulation (glucose 
trial)

Road race simulation (placebo 
trial)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ammonia 0.63 0.08 0.64 -0.14 0.66 0.65 0.33 0.13 0.19 0.73 0..04 0.35 0.2 -0.75 -0.29 0.43

Ammonia (AWU) -0.33 -0.47 0.21 -0.66 -0.30 0.18 -0.24 -0.65 0.53 0.83 0.26 0.74 0.50 -0.79 -0.10 0.51

Urea 0.66 0.51 0.64 0.28 0.27 0.36 0.36 0.45 0.63 0.78 0.94 0.67 -0.05 -0.34 -0.27 -0.23

Urea (AWU) -0.12 -0.03 0.03 -0.76 -0.20 0.21 0.31 0.65 0.42 0.59 0.94 0.58 0.58 0.59 0.30 0.32

Heart rate -0.01 0.03 0.14 0.31 0.04 -0.25 -0.11 0.02 0.49 0.34 0.52 0.75 -0.46 -0.47 -0.48 -0.05

% max heart rate -0.08 -0.06 0.04 0.16 -0.29 -0.54 -0.47 -0.33 0.74 0.72 0.82 0.95 -0.23 -0.31 -0.22 0.25

Blood lactate -0.64 -0.52 -0.50 -0.63 -0.77 -0.60 -0.47 -0.03 -0.03 0.61 0.64 0.35 -0.23 -0.17 -0.01 0.53

Blood glucose -0.46 -0.74 -0.70 -0.89 -0.47 -0.52 -0.41 -0.54 0.20 0.04 0.32 0.46 -0.50 -0.41 -0.25 0.14

V 0 2  mid lap 
total

-0.29 -0.47 -0.63 -0.62 -0.48 -0.47 -0.50 -0.57 0.14 0.17 0.71 0.26 0.95 0.53 0.64 0.77

% V o 2 m ax
(total)

0.65 -0.57 -0.25 -0.20 -0.21 -0.23 -0.28 -0.32 0.39 0.42 0.67 0.40 0.91 0.63 0.67 0.78

V O 2 matched
-0.20 -0.37 -0.62 -0.80 -0.43 -0.37 -0.27 -0.56 0.39 0.16 0.80 0.23 0.96 0.60 0.69 0.83

% V o 2 m ax
(match)

0.74 -0.67 -0.27 -0.58 -0.18 -0.12 0.47 -0.35 0.56 0.38 0.61 0.40 0.76 0.73 0.73 0.81

V O 2 end lap
-0.72 -0.84 -0.80 -0.95 -0.39 -0.62 -0.67 -0.56 -0.03 -0.02 -0.11 0.15 0.24 0.24 0.43 0.55

% V o 2 m ax
(end)

-0.17 0.04 -0.23 -0.25 -0.04 -0.32 -0.64 -0.22 0.14 0.19 0.07 0.32 0.47 0.78 0.52 0.74

V c C >2 mid lap 
total

-0.66 -0.55 -0.72 -0.65 -0.66 -0.64 -0.63 -0.71 0.15 0.18 0.75 0.33 0.88 0.57 0.62 0.73

V c C >2 matched
-0.63 -0.48 -0.68 -0.58 -0.62 -0.57 -0.52 -0.65 0.41 0.21 0.90 0.31 0.89 0.65 0.70 0.79

V C O 2 end lap
-0.72 -0.74 -0.82 -0.98 -0.69 -0.79 -0.65 -0.72 0.00 0.28 0.05 0.16 0.14 0.28 0.23 0.35

RER mid lap total -0.54 -0.78 -0.87 -0.43 -0.91 -0.84 -0.61 -0.83 0.17 0.21 0.68 0.48 -0.21 0.20 0.37 0.42

RER matched -0.65 -0.67 -0.89 -0.61 -0.86 -0.77 0.08 -0.79 0.25 0.33 0.82 0.25 0.15 0.59 0.40 0.40

RER end lap -0.09 0.41 -0.31 -0.91 -0.89 -0.89 -0.15 -0.88 0.04 0.85 0.32 0.20 -0.31 0.30 -0.15 0.21

GME mid lap 
total

-0.01 0.27 0.45 0.40 0.85 0.80 0.82 0.98 0.04 0.11 -0.30 -0.07 -0.89 -0.23 -0.46 -0.52

GME matched -0.13 0.07 0.46 0.54 0.63 0.52 0.43 0.90 -0.32 0.14 -0.58 -0.07 -0.93 -0.39 -0.60 -0.68

GME end lap -0.24 0.63 0.34 0.28 0.44 0.85 0.76 0.61

Econ mid lap 
total

-0.06 0.2 0.41 0.39 0.79 0.71 0.74 0.97 -0.06 0.14 - -0.25 -0.04 -0.88 -0.17 -0.44 -0.51

Econ matched -0.19 0.01 0.43 0.52 0.50 0.40 0.44 0.90 -0.27 0.19 -0.25 -0.04 -0.88 -0.35 -0.44 -0.66

Econ end lap 0.19 0.60 0.31 0.15 0.22 0.76 0.67 0.54 0.74 0.97 0.92 0.59 0.83 0.48 0.42 -0.19
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Appendix 5(viii). Correlation coefficients for road race and even power trial decrements in performance 
and mean physiological variables

Simulated 
Road Race

Even
Power

TIME LOO 1.00
mass 0.50 -0.49
MAX 0.52 -0.40
perf power 0.32 -0.63
LACTATE 0.33 -0.58
% HR DURING 0.34 -0.27
%HR @70% 0.49 -0.17
% PERF HR 0.74 -0.31
hr last min 0.10 -0.22
HR DRIFT 0.84 0.70
AMMONIA 0.26 -0.03
AMMONIA ABOVE 
RESTING

0.82 -0.32

EFFICIENCY 0.04 0.87
V02 0.50 -0.70
V02.BM 0.44 -0.44
V02T0TAL 0.50 -0.55
RER 0.47 -0.88
VC02 0.42 -0.60
VE 0.55 -0.60
VE END OF LAP 0.30 -0.61
VE 2MIN 0.66 -0.61
UREA 0.25 0.42
UREA ABOVE RESTING 0.81 -0.08
GLUCOSE 0.10 -0.73
GLABW 0.06 -0.67
LACPERF -0.81 0.39
GLUC PERF 0.08 -0.68
GLUC AB PERF 0.04 -0.59
effO 0.44 0.44
eff5 0.58 -0.32
V02DRIFT -0.81 0.55
%MAX DRIFT -0.86 0.61

215


