
Augousti, Andreas T. (1985) Density functional theories and the structure 
of fluids near walls.  Doctor of Philosophy (PhD) thesis, University of Kent. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94181/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. 

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open 

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line 

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ... 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/94181/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


0

Density Functional Theories and the Structure of Fluids near

Walls

Andreas T. Augousti

Physics Laboratory, University of Kent, Canterbury

June 6, 1985



For Munì, Dad and Michele



CONTENTS

Page
Acknowledgements

CHAPTER 1 - INTRODUCTION 1

1.1 Background 1
1.2 DLVO Theory 1
1.3 Stern layer modification 2
1.4 Experimental Evidence for DLVO theory 3

1.4.1 Studies of the Kinetics of Slow
Coagulation 3

1.4.2 Equilibrium Studies of the Force of
Interaction 5

1.4.3 Conclusion 6
1.5 Theories based on Integral Equations 6
1.6 Overview of the thesis 8

CHAPTER 2 - STATISTICAL MECHANICAL BACKGROUND 12

CHAPTER 3 - LINEAR FUNCTIONAL APPROXIMATION FOR THE FREE ENERGY
OF AN IONIC-DIPOLAR SYSTEM 21

3.1 Introduction 21
3.2 Theory 2 3

3.2.1 The Thermodynamic Potential 23
3.2.2 The pressure 30

3.3 Calculation of the Correlation Functions 33
3.4 Results and Discussion 35

3.4.1 Computation 35
3.4.2 The Charge and Polarisation profiles 36
3.4.3 Force and Colloidal Stability 38

CHAPTER 4 - A NON-LINEAR FUNCTIONAL APPROXIMATION FOR THE FREE
ENERGY OF AN IONIC-DIPOLAR SYSTEM 46

4.1 Introduction 46
4.2 Free Energy 47
4.3 Relation to linear theory 51
4.4 Pressure 54
4.5 Results and Discussions 56

CHAPTER 5 - A GENERAL DENSITY FUNCTIONAL FOR FLUIDS 65

5.1 Introduction 65
5.2 Pressure and the density functional 66
5.3 A Hard-Sphere Fluid near a Hard Wall 74
5.4 Attractive forces, and the wetting of a Hard

Wall by Vapour 80



CHAPTER 6 - SHOULDERED HARD SPHERE MODEL FOR CHARGED COLLOIDAL
DISPERSIONS 97
6.1 Introduction 97
6.2 Theory and Results 97
6.3 Soft Core reference potential 102

CHAPTER 7 - CONCLUSION 109

REFERENCES 114

APPENDIX A - FUNCTIONAL TECHNIQUES 117

APPENDIX B 123

P a g e

APPENDIX C 125



Acknowledgements

I would firstly like to thank my supervisor, Professor G.
Rickayzen, for his exemplary supervision. His sure hand has confidently 
guided this work and I feel privileged to have worked with him.

Dr. Malcolm Grimson has contributed in no small measure to this work 
by his willingness to discuss and clarify his work upon which much of the 
material here is based. His help and suggestions have been much appreciated.

My co-supervisor, Dr. Peter Richmond, has been a constant source of 
support, particularly at times spent at the Food Research Institute, where 
some of this work was carried out. I thank him for freely giving of his 
time.

I would also like to take this opportunity to thank Ron Fowler for his 
invaluable help, particularly regarding the use of the University computer. 
Many ideas resulting from fruitful discussions stem from him, and I acknow- 
lege here my great indebtedness to him.

In the production of this thesis, I am grateful to Miss Michele Pope, 
who drew most of the diagrams, and Mrs. Betty Jones for the final production 
of the thesis, as well as for the typing of all previous papers.

Finally, I hereby acknowledge the financial support of the S.E.R.C., 
the Food Research Institute and Unilever in the form of a CASE award.



DENSITY FUNCTIONAL THEORIES AND THE STRUCTURE OF FLUID
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Doctor of Philosophy

ABSTRACT

The structure of fluids near walls is examined using density functional 
techniques. A brief introduction to the subject is given, followed by a 
mathematical derivation of some important basic results. A linear 
(Chap.3) and non-linear (Chap.4) density functional approximation for the 
thermodynamic potential is used to treat a model fluid comprised of hard 
spheres with embedded point ions or dipoles confined between two hard 
infinite planar walls. Results are obtained and compared for the charge 
and polarisation densities. Both theories produce oscillatory charge and 
polarisation density profiles, in agreement with results at a single wall 
from other workers. These results differ qualitatively with those given 
by earlier, continuum theories of the electrical double layer such as 
Debye-Huckel and Poisson-Boltzmann.

A modified functional is introduced (Chap.5), and is used to treat a 
simple fluid of hard spheres. A single variable parameter of the theory 
is chosen to ensure thermodynamic consistency, and results for the number 
density are obtained. These results are in excellent agreement with 
results from Monte Carlo computer experiments, even up to unrealistically 
high fluid densities. The modified functional is further applied to a 
hard sphere fluid with attractive long-range interactions. This leads to 
wetting of the walls by vapour, a result also observed previously at a 
single wall.

Finally,. a perturbation treatment is applied to experimental scattering 
data to give a potential of mean force for an aqueous dispersion of 
polystyrene spheres.
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1. INTRODUCTION

1.1. Background

The static structural properties of a fluid near a wall have recently become a field 

of intense interest. These properties form the basis for phenomena such as electrical 

double-layers, wetting of a solid surface by liquid or gas, and the effective interaction 

of solute particles, as well as for others. Thus a knowledge of the distribution of a fluid 

near a wall allows one to predict its behaviour in a number of circumstances, in 

addition to providing an explanation for experimental results.

The structure of a fluid near a wall is of direct consequence in the field of colloid 

science. For sufficiently large colloid particles, the boundary between particle and fluid 

may be taken to be planar to a good approximation. Thus the pressure obtained from 

calculations involving two walls may be used to infer a colloidal interparticle potential.

1.2. DLVO Theory

The earliest attempts at providing such a potential came from the work of 

Derjaguin, Landau, Verwey and Overbeek, and is referred to as DLVO theory. The 

essence of the theory was to represent the interparticle force between die colloid 

particles as the superposition of repulsive forces arising from colloidal double-layer 

interactions, and the van der Waals forces of attraction, a phenomenon due to the 

fluctuations of the colloidal charge distributions. The resulting superposition gives a 

potential of the form shown in Fig. 1.1

The theory met with considerable success, not the least of which was its 

theoretical justification for the empirical Schulze-Hardy rule, viz.

10"39critical coagulation concentration =8.65 X—
z A

(1.1)

where z was the valency of the electrolyte, and A, the Hamaker constant, a measure of
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the strength of die van der Waals forces. However this apparent success may have been 

more than slightly coincidental, particularly when one dosely examines the 

assumptions which serve as die basis of die theory. The solvent was treated as a 

continuum, with die dielectric constant of the fluid taken as constant throughout. This 

may be so at some distance from the particle, but the solvent structure near it, and 

hence the dielectric constant, is undoubtedly different from that in the bulk. As this 

must significantiy affect the form of die double-layer, the corresponding modification 

of the repulsive forces is not negligible. Secondly, no allowance was made for 

redistribution of material on the surface of the particle due to the influence of other 

particles, a condition that is almost certainly not true when die particles are densely 

packed, or close to flocculation or coagulation.

Furthermore, the practice of assuming die validity of DLVO theory and then 

using the Schulze-Hardy rule to calculate the value of A, die Hamaker constant, from 

the experimental data, hardly constituted a rigorous test of the theory.

1.3. Stern layer modification

An attempt at improving the theory to allow for the effects of structure in the 

interfacial region, without having to specify this structure, was made by Stem. He 

postulated a layer adjacent to to the surface of the particle whose dielectric constant 

and thickness could be chosen at will. This was to take into account the phenomenon 

of " charge crowding The charge adsorbed on the surface of the colloid could not 

increase indefinitely. Stem was able to derive the equation

4»o~4»8 4tt “sP o u
5 €, I+J&iq

where ij»0 is the potential at the colloid surface, »Ji8 is the potential at a distance 8 from 

the surface, and 8 is the width of the Stem layer. AT is a Boltzmann factor and crSo is

the surface charge density at saturation. This was a useful equation, as it became 

evident that as the concentration, n0, increases, the potential in the Stem layer
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increases up to a constant value when die surface is saturated.

Note that: (i) One can consider the modification of Stem layer theory to the 

analysis of double-layers as effectively positioning a new wall at x —8 with surface 

potential i}»8 rather than iJ/0, with an internal dielectric constant c ,. However e, and 8 

were hard to measure, and were generally chosen to fit the data; (ii) As the 

concentration increases, increasing amounts of the drop in potential occur across die 

Stem layer; (iii) i|ifi is only much smaller than t|i0 in dilute solutions if i|>0 is relatively 

large. So Debye-Huckel theory, which assumes low surface potential, is then useful in 

replacing the more exact Gouy-Chapman theory; (iv) iji8 varies only slighdy as »j»0 

changes. It is, however, very sensitive to the concentration, until rj>0 is relatively large.

This modification of electrical double-layer theory by Stem brought DLVO theory 

more in line with experimental results, yet the modification was an ad hoc one, and no 

fundamental proof of the existence of the layer was given.

1.4. Experimental Evidence for DLVO theory

There are two main techniques for obtaining information regarding the 

interparticle potential :-

(1) Studies of the kinetics of slow coagulation

(2) Equilibrium measurement of the force of interaction directiy

1.4.1. Studies of the Kinetics of Slow Coagulation

These measurements are related to V ^ ,  the height of the potential barrier in the 

potential-distance curve.

Ottewill and Shaw [1] did not find good agreement with the theory, although they 

claimed the zeta potential (the potential at the boundary of the Stem layer and the 

fluid) varied. Still, they may only have detected the flocculation which occurs in the 

second minimum of potential, so that even for allowing for variation of , the wall
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potential, the experiment may not have been a valid test of DLVO theory.

Matthews and Rhodes [2] found tentative confirmation of the prediction of 

increase in stability for increase in size, working with a monodisperse system , and 

particles in die range 0.74<d<1.4 \un (d is die diameter). However in this experiment 

Ka ~1, whereas it should have been < < 1  (k is die inverse Debye length, a is particle 

size). For die condition i c a « l  to be satisfied requires that the concentration be 

<10-3M. Once again doubt is cast on the experiment, as aggregation may have been 

due to a deep secondary minimum.

Joseph-Petit et al [3], working with monodisperse selenium hydroxide, with 

45<d<135 nm, found the stability increased up to 50nm, and then decreased. DLVO 

theory, including the Void effect and viscous interactions fit the data only up to 50nm. 

From there, it was shown quite well, quantitatively, that secondary minimum 

flocculation was taking place.

The conclusion is that DLVO theory is not accurately tested with respect to 

aggregation kinetics of a dispersion. Is is necessary to work with a monodisperse system 

with well-characterised surfaces, and particles «nail enough to preclude secondary 

minimum flocculation at a given concentration. The results seem to be in reasonable 

accord with theory, although there are peculiarities, such as the dependence of A, the 

Hamaker constant, on electrolyte concentration.

Even so, studies of coagulation kinetics are not particularly useful, as they 

measure W, die stability ratio, which is an integral over the separation of two particles 

of a function related to the potential. It is therefore relatively insensitive to spatial 

variation. It does not allow one to say whether the repulsive and attractive potentials 

are incorrectly calculated, or that DLVO theory is fundamentally wrong, and that 

other forces are important.
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1.4.2. Equilibrium Studies of the Force of Interaction

Nonish [4], using the clay mineral montmorillonite found the force-distance curve 

close to the theoretical when pressure was applied, but when removed, die equilibrium 

spacing was smaller than predicted. The failure was argued to be due the fact that the 

system was not identical to die model e.g. improperly aligned particles, heterogeneous 

charge distribution on the surfaces etc.

Work on soap films was carried out independently by Derjaguin, Scheludko, 

Sonntag and others. Scheludko worked on plane-parallel systems, applicable to foams, 

finding quantitative and semi-quantitative evidence for dispersion and DLVO forces. 

Sonntag’s work leaned more towards emulsions, and there, too, agreement was good 

when suction pressure was applied, but the equilibrium thickness was too small at low 

salt content, and too high at high salt content. This was not entirely explicable in terms 

of dependence of A cm concentration. Also, agreement was not good for separations < 

10 9 m. Corrections, too, were required , and these were mostly system-specific.

More recentiy [5-9], very precise measurements have been carried out by 

Israelachvili and coworkers. The system was composed of a pair of crossed, 

molecularly smooth mica cylinders an an electrolyte solution. The separation could be 

varied between 20Á to infinity. For a 1:1 electrolyte, the forces measured were in 

excellent agreement, even up to concentrations of 10-1M. For R<20A different 

effects became apparent. There were also discrepancies for asymmetric electrolytes, 

and Poisson-Boltzmann theory, which describes how the potential and charge 

distributions vary across the double-layer, was found to be not very good.

In order to obtain measurable effects for R>20A, a solvent with a larger diameter 

was needed. Octalmethylcyclotetrasiloxane ((CH^j^SiO )4 was chosen. It is an inert 

organic liquid, non-polar, and almost spherically symmetric (a slightly oblate spheroid, 

in fact). It has a diameter of very nearly lnm. Oscillations in force were detected at up 

to 10 molecular diameters, comparable, and for very small separations (<3nm), much



6

greater then van der Waals forces. For R>3nm, the average periodicity was 1.05 ± 

.05nm, which is almost exactly a molecular diameter. For R<3nm, die average 

periodicity was . 8 ±  .lnm  which suggests that the molecules are then lining up with 

their shorter axes perpendicular to the wall.

Similar experiments were performed for cyclohexane, but for that system, wily six 

oscillations were measurable, with periodicity again similar to die size of the molecular 

diameter. The reason for fewer oscillations may be due to die die greater distance of 

the temperature from the melting point. (Both experiments were performed at 22 °C 

-m.p. of cyclohexane is 6.6°C, m.p. of octamethylcyclotetrasiloxane is 17.5°Q.

Further results, such as the dependence of die force on temperature and other 

factors are eagerly awaited awaited.

1.4.3. Conclusion

DLVO theory applies best to aggregation in systems where VmaT occurs at large

separation relative to the molecular diameter. As this is normally this implies low

concentrations are necessary. At high ionic concentrations^ 10 2M ), corrections due 

to viscous interactions, entropic effects etc. become important. They are always 

important in coalescence, and DLVO theory is not adequate to describe this. It may 

also be stated with confidence that DLVO theory fails at very small separations, 

where the continuum approximation breaks down, and forces due to structure become 

appreciable.

1.5. Theories based on Integral Equations

The next logical step was to introduce a formalism that was capable of accounting 

for the discrete nature of the electrolyte and, if possible, the solvent, albeit on on an 

averaged basis of some kind. The methods of statistical mechanics were capable of just 

such a representation. A brief outline of the basic principles and results of the
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statistical mechanical representation of fluids is given in the next chapter.

There are two closely related formulations of the problem:- the integral equation 

method, and application of a variational principle to a functional form. The former 

consists of formulating integral equations for chosen functions directly by consideration 

of the interactions of the particles. This is achieved by writing down a formally exact 

but insoluble equation (such as the Bom-Green-Yvon equation or the Omstein- 

Zemike equation), and supplementing this with an additional approximate equation, 

called a closure relation, involving the same quantities as the first, and usually of 

integral form too.

The latter involves approximating the free energy of the system by a functional 

expansion of a function of position, usually the density or external potential, and then 

by using a variational principle for the free energy, obtaining an equation to be solved 

for the appropriate function. This procedure, too, normally requires a supplementary 

equation and often the same equations as the ones used in the first method are chosen.

The results of this more recent work differ qualitatively with that of the older 

DLVO theory. They reveal that at small separations of the particle surfaces, the 

interparticle potential oscillates strongly as a function of the separation, and can be 

large compared with the van der Waals potential, as well as having several local 

minima. This is in good agreement with the results of Israelachvili et al as discussed in 

the previous section.

The implications for the stability of colloids are great. Loose, and even fairly tight 

aggregations of particles are now more likely to be considered flocculation, occuring in 

the second minimum or even higher minima, rather than coagulation, which should 

occur only in the first, and generally deepest, minimum.

Another bonus of the newer methods is the calculation of adsorption of material 

on the surface directly. It is a simple matter to calculate this either numerically or 

analytically from the density profile derived from the solution of the integral
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equations. It is then possible to investigate how this adsorption excess depends cm 

various parameters: electrolyte concentration, charge and potential on the wall 

representing the the colloid particle surface, proximity of the other wall, and bulk 

dielectric constant, to name but a few. It is also possible to establish how this 

adsorption excess affects the pressure between the walls, or equivalently, the 

interparticle force.

1.6. Overview of the thesis

These latest treatments described above have been applied to a variety of systems 

with differing degrees of success as tested against results provided by experiments or 

the increasingly important computer simulations. The strength and weaknesses of 

particular treatments have been uncovered, and these will be touched on later.

The main aim of this work is to extend the present formalism, in particular that of 

the functional approach, and to apply it to more complex systems than have hitherto 

been dealt with. There is in addition some work presented which deals with the 

structure of a fluid near a wall from the point of view of perturbation theory.

Chapter 2 gives a brief outline of the results given by the application of statistical 

mechanical principles to liquid theory. The distribution functions and the correlation 

functions used to describe the structure of a liquid are introduced here, and the 

meaning of these functions is explained.

A density functional formalism is applied to a model consisting of equally sized 

hard spheres with point charges and dipoles embedded in them, confined between two 

hard planar infinite walls, in Chapter 3. Results for the charge and polarisation 

profiles are obtained, and these are compared with earlier continuum theories such as 

Debye-Huckel. The pressure between the walls due to electrostatic effects is calculated 

in two ways, and these are shown to be equivalent. The results are found to be 

different from those of the older continuum theories, and agree with those obtained by
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other workers dealing with a single wall.

In Chapter 4 the formalism is extended by treating the entropy of the fluid 

exactly, instead of using the linearised approximation of Chap. 2. In this case, the 

equation involving the number density does not decouple from the remainder, and 

must be solved simultaneously with die equations governing the charge and 

polarisation profiles. The same quantities as in the previous chapter are calculated and 

a comparison is made. The most striking difference is the large increase in the value of 

the charge and polarisation profiles at the wall.

Chapter 5 introduces a functional for the free energy which is exact for direct 

correlation functions that are expandable functionals of the number density. The exact 

(but unknown) functional is replaced by a tractable approximation, and applied to a 

fluid of hard spheres confined between hard planar walls and excellent agreement is 

found between the theory and results obtained from computer simulation. The theory 

is also applied to a fluid of Lennard-Jones-type particles, and wetting of the wall by 

vapour is observed.

Up to this point the thesis deals with the pressure between two walls confining a 

fluid directly, by calculation of the variation of the free energy of the system with 

respect to variation of the separation of the walls. Insofar as this represents the 

interparticle potential for colloid particles in solution, this method is acceptable. 

However, one may approach the problem from the point of view of a related quantity, 

the structure factor. From a knowledge of a potential of mean force, the structure 

factor may be calculated under a given approximation. When this is compared with 

experimental measurements, the difference in the two structure factors may be used 

within a perturbation theory to establish a new potential of mean force. This is done in 

Chapter 6, with two reference potentials of mean force, a shouldered hard-sphere 

potential and a " soft core " potential, for a system of polystyrene spheres in solution.
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Finally, in Chapter 4 , the results of previous chapters are discussed in a broader 

context, and possible future developments are explored.

The thesis closes with a series of appendices introducing functional techniques, 

relating the theory in Chapter 3 to Debye-Huckel theory, and showing that the two 

methods used in that chapter to calculate the electrostatic pressure are equivalent.



Fig 1.1: Sketch showing the interoolloidal potential V(r) according to DLVO

theory.
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2. STATISTICAL MECHANICAL BACKGROUND

The starting point for a statistical mechanical consideration of a fluid comprised 

of N  particles in a volume V is the probability distribution function. This gives die 

probability of finding molecule 1 in the region drlf molecule 2 in dr2, etc. as

P (N)(r)dNr = / > . . . ,r^)dr, • • • drN

e • • • drN
= Z*

where ZN is the configuration integral

(2 .1)

zn = I  ■ ' ¡ P iN)(r! • • • r#l|)dr1 • • • drN (2.2)

and $=l/kBT , kB being Boltzmann’s constant.

We shall only consider molecules interacting via pair potentials v(r) . If the 

system is in an external field U (r) which couples to the density, the potential energy 

may then be written as

* N= 2  v(rf—r•j ) + ± U ( r i) (2.3)
¿>y=l i=l

The distribution functions follow from these equations immediately. The 

probability distribution function of a molecule in drj at r l5 ... , and any molecule in 

dr„ at r„ irrespective of the position of the remaining N —n molecules is

P{NXJT, • • • , r j  = j ^ z n y  j  • • • I p(NKr 1» • • • » • • •  ^ d T n + i (2-4)

The most important distribution and correlation functions are the one- and two- 

particle functions which can be measured experimentally. Note that for a homogeneous 

system P ^  (r) =N/V , i.e. the bulk density.

The set of equations termed the Bom-Green-Yvon (BGY) equations that relate 

the distribution functions, p (" \  to themselves, follow from eqn (2.4). Thus consider

nnw r r _Pi2v(r,-rJ)+i/(r,)+2v(r,-r,)+2 l/(r.)L dr2 ’ ‘p W (ri) = /  • • * Je  1 Jx ------?------- (2.5)
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where in the exponent the co-ordinates of particle 1 have been separated explicitly. 

Now differentiating w.r.t. r lf one obtains

VP (!)(r)= —3/> ̂ ( r )  Vt/ (r)—p /d ^  Vv ( r - r j P  (2)(r ,r,) (2.6)

This equation forms the first in a hierarchy of N  equations that relate the large number 

of correlation functions, p (" \  The usual method of reducing these equations to a 

tractable form is by making an approximation which neglects correlations above a 

certain order thereby reducing the set to a smaller number. When applied to an 

inhomogeneous fluid it is usual to truncate at the first equation, which may then be 

written

V/, (1> (r)= -p F (1> (r)V i/(r )-p /d r1V v (r -r 1)/,(1)(r)f>(1)(r ik (r ,r 1) (2.7)

and replace the inhomogeneous pair distribution function g (r,rj) by the function 

appropriate for a bulk homogeneous fluid. The BGY hierarchy will not be discussed 

further in this thesis, but it is included for completion, as it formed the basis of the 

earliest studies of dense fluids.

A newer class of integral equations based on the consideration of the so-called 

direct correlation function c ( r ,r ')  were later formulated. The physical significance of 

this function is somewhat obscure, although it is approximately equal to minus the 

reduced two-body potential for dilute fluids. Its relationship to the distributions 

functions already mentioned will now be discussed.

First recall the definition of the Helmholtz free energy F

r ~P(F-Ffl) ZN
v "

where F0 is the free energy of a non-interacting ideal system. Now

(2.8)

-P22T-PE^(r.)-Pv(ri. • • • >0
e pF= C / drj • • • drN/d p i • • • dpj^e 1 1 (2.9)

for a fluid in an external potential t/(r), and C is a normalisation constant. 

Integrating over the momenta gives
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-^ (O -P v ir ,.....r.)
e-pF=C' ^~iNnf d r l • • • di^e 1 (2.10)

where C ' is a new normalisation constant. Thus F is now a functional of U(r)

i.e. F = F [l/]

Taking the functional derivative of F w.r.t. U(r) gives

W ( r j =<^ r~ ]r«)> = p (r) (2 1 1 )

^ 8  (r—r, ) is a density function p(r,r, ) and
I

< 2 8(*—r«)>=p(r)
I

is the mean density at r

Also

ZN
(2.12)

From Eqn 2.11 From eqn (2.11) t/(r) and p(r) are therefore conjugate 

thermodynamic variables

Upon functionally differentiating eqn (2.11) w.r.t. U(r'), one obtains the the 

density fluctuation function

82(F —F 0) goO)
W W W M  =  =  “ p<W r’ -r‘ )Wr>r' )> + M r)p(r')

= -3 p ( r)[8(r-r ')+ p (r ')A  ( r - r ') ]  (2.13)

where h (r,r ') is termed the total pair correlation function. For a homogeneous system

* (r ,r ')= g (r ,r ')-l

Now form the thermodynamic potential

n (p ]= - /d rp ( r )£ /( r )+ (F - f0) (2.14)

It follows that

80
6p(r) U( r) (2.15)
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Thus p(r) is the natural variable for ft which one would expect since ft is related 

to (F — F 0) via the Legendre transform in eqn (2.14). For a non-interacting system

p(r)~Poe pi/(r) (2.16)

where po is the density of the ideal uniform system for which i/(r)= 0 . For an 

interacting system we can introduce an effective ’ direct ’ one-particle potential c(r) 

and formally write

p(r)=p0e-WI'M +e<r»

i.e.

l /( r )+ c (r)= -p Ll n [ ^ j  (2.17)

where po is now the uniform density when U(r) is zero. Noting that c(r) is a 

functional of p(r) one can immediately obtain from (2.15) and (2.17)

S2ft 8t/(r) S (r - r ')  c (r ,r ')
8p(r)5p(r') 8p(r') Pp(r') (3 ^ ‘LK)

and the direct correlation function

c <r-r> - f l o  (219)
has been introduced. Using the identity

f 8P(r ) d r"= 8 (r—r')  (2 20)J 8p(r") 8 t/(r ')  ^  r }
in conjunction with eqns (2.13) and (2.18), one obtains the Omstein-Zemike equation 

for inhomogeneous systems

M r ,r > c ( r ,0 + J d r " M r ,r " ) p ( r " ) c ( r " , r ')  (2.21)

which is the basis for any approach based on the use of ’ direct ’ correlation functions.

This equation has to be supplemented by a second relation between these 

correlation functions which is usually obtained by summing appropriate subsets of 

diagrams obtained from perturbation theory or by an equivalent functional expansion.
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This second relation is called a closure relation and the most commonly used cmes are 

the Percus-Yevick approximation (PY) and the hyper-netted chain approximation 

(HNQ. The PY closure relation is

*(l,2)=eK“<i.2% (l,2)-c(l,2)] (2.22)
and that of the HNC approximation is

Ing (1,2)=—(Jv(l ,2)+A (1,2)—c (1,2) (2.23)

In the weak interaction limit (e.g. a dilute fluid), the difference h (1,2) — c(l,2 ) 

is small and eqn (2.23) can be rewritten as

£ (l,2 )= e~ M1’2)e[A(1’2)_c(1’2)l (2.24)
= e-M i,2)[1+/j(1,2)—c ( i ,2)]
= e-M U )b (1;2 ) - f (l,2)] (2.25)

In this limit the PY and HNC approximations agree.

In practice, it seems that for uniform fluids the PY approximation yields good 

results for short-range intermolecular potentials, while the HNC approximation 

provides good results when the interaction is long range. A modification of the PY 

approximation which appears to work well when the potential has a sharp short-range 

part such as a repulsive core surrounded by long-range interaction is the mean 

spherical approximation (MSA). This assumes eqn (2.22) for |r x—r2|< a  where a is 

the range of the short-range part (e.g. the radius of the core for hard spheres) and

c (l ,2 )= -p v (l ,2 )  (2.26)

otherwise. Equation (2.26) is asymptotically correct as

These approximations have been used in the study of liquids bounded by one or 

two walls by taking the equations in the appropriate limit. For example, in the case of 

one wall, the equations are first generalised to the case of a liquid which is a mixture 

of two molecular species of different sizes and densities. One then allows the radius of 

one species to tend to infinity appropriately while its density tends to zero. If the large
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species is spherically symmetric, the pair distribution function between molecules of 

the two species g 12(l,2) can be written as a function of (R +x) where R is the radius of 

the large species and x is the shortest distance of the centre of the smaller species from 

the surface of the larger. In the limit R -cc,

* 1 2 (1 ,2 ) - -^  (2.27)
Po

where p(x) is the mean density of the smaller species at x and po is its bulk density[14]

In the case of two walls, the starting point is a mixture of three molecular species. 

The radii of two of the species are then allowed to tend to infinity while their densities 

tend to zero. In this way the correlation h(x)  between the walls is obtained and from 

this correlation a potential of mean force can be constructed. A weakness of the 

method in this case is that it omits direct three-particle correlations between the two 

walls and the fluid and these are likely to be important.

Another class of approximations that have been much used for fluid problems is 

based on the use of the energy density-functional, ft[p]. This is the approach favoured 

in succeeding chapters of this thesis. The first workers to use this approach assumed 

that the density varied slowly in space compared with the correlation function[15]. It 

is then possible to expand fi[p] in terms of the derivatives of p. Thus

iV p7=/^/p(r)7+Ftt/ P;V|j)(r)+ F M.v[p]V(tVvp(r)
+ ^ V [ p ] V ( r)VvP(r)dr (2.28)

where F ,F^, F V,F' are functions (not functionals) of the density p(r). To use the 

approximation one needs to know these functions or to make further assumptions 

about them.

An alternative use of the energy density-functional, ft[p], is to make some 

assumption about its form. Two fruitful approximations begin from the formal relation 

between il[p] and the direct correlation function c(l,2;p) (eqn (2.18)) which is in
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general a functional of the density p(r) in an inhomogeneous system as well as of the 

two molecular co-ordinates *1’ and ’2’. This equation is really the definition of the 

direct correlation function and so does not contain any new information. However, one 

can make intuitively promising approximations for this correlation function and so 

obtain useful approximations for Cl.

Equation (2.18) can be integrated formally in a number of different ways. The 

method used here is that used by Saam and Ebner [16]. Suppose that we choose a 

reference state of uniform density po and that we know or have an approximation for 

the direct correlation function along the path on which

Pa(l)=Po+ot[p(l)-p0]

where p(r) is the final density. Then

(2.29)

i [̂p]—i^Po]= 1 U (l)[p (l)~Po]+fd1 p(l)ln

>

-[p (l)-P o ]

- f d U 2 C ( U M D - poIIpO - p,,] (2.30)

where

1 a
C (l ,2 )= /d a /d a 'C ( l ,2 ;a ')  (2.31)

0 0
C (l,2 ;a) is the direct correlation function when the density is pa(l)  and U is the 

external potential. If the fluid undergoes no phase transition along the path , C (l,2;a) 

is unique and the result (2.30) is independent of the path.

Ebner et al (1980) have used the thermodynamic potential (2.30) with C (l,2;a) 

chosen to have a form for a uniform fluid with density

y[Pa(l)+Pa(2)]

This is not as simple as it may seem because the correlation function has to be found
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for all pairs of points along the path p(l), the end of the path. Ebner et al developed 

special numerical techniques to complete the calculation.

Grimson et al (1980)[17] in their studies of a fluid between two walls used as an 

approximation to C (l,2 ;a) the bulk direct correlation function C(l,2;0). With this 

approximation,

C(1,2)=C(1,2;0) (2.32)

This is a rather drastic approximation although it is exact for small departures 

from the bulk density. In fact, it is related to the use of the Omstein-Zemike (OZ) 

equation with the HNC closure. For suppose we determine the density by using eqn 

(2.32) and by making (2.30) stationary w.r.t variations in p. Then the equation to 

determine p is

P(/(1)+In j-p 2 C (l,2 )[p (2 )-p „ ]= 0  (2.33)

Now suppose that t /(  1) is the interparticle potential V(l) due to a definite 

molecule of the fluid at the origin. Then

p(l)=Pos(l) (2-34)

and

p(2)-Po=PoM2) (235)

Thus eqn (2.33) becomes in this case

lng ( l ) = - p ^ ( l ) + Po;<i2C(l,2)/,(2)
=-PV(1)+*.(1)-c(1) (2.36)

where the OZ equation was used in the last step. Equation (2.36) agrees with the HNC 

approximation, eqn (2.23). Grimson et al also used eqn (2.23) in the form obtained 

by linearising eqn (2.28) about the solution with C(l,2) equal to zero. This form is 

similarly related to the PY closure. Again for a fluid bounded by a single wall this 

approximation is equivalent to that obtained by using the OZ equation plus HNC 

closure if one takes the limit of a binary mixture discussed earlier. The spirit of this
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approximation is similar to that of the truncation of the BGY equations. However, in 

this approximation the direct correlation function is replaced by its bulk value while in 

the BGY approximation the pair distribution function is replaced by its bulk value. It 

is not obvious a priori which is the better starting point.
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3. LINEAR FUNCTIONAL APPROXIMATION FOR THE FREE ENERGY OF AN 

IONIC-DIPOLAR SYSTEM

3.1. Introduction

The structure of a fluid near a wall is a desirable thing to know. If one allows the 

wall to represent a colloid particle, and the fluid to represent a solvent, then from a 

knowledge of the fluid structure one can determine, under certain approximations, a 

great deal of information about the behaviour of a system. Perhaps the most valuable 

results which can be obtained concerns the pressure between two walls, or 

alternatively, the intercolloidal potential.

Early workers on charged systems included the effects of the solvent via a 

monolayer at the wall-fluid interface [43-46]. The ultimate aim was to model an 

aqueous solvent, and although the attempts to model a bulk system over all phases 

were poor, some good results were obtained in the liquid phase [47-49]. The most 

succesful civilised model used is Hard Sphere Ion-Dipole Mixture (HSIDM) [61] model 

described later in this chapter. It yields analytical results under the MSA [50,51,53] 

and numerical results using HNC theory [52]. However, the usefulness of the HSIDM 

model is limited, and theories using more complex, anisotropic short-range potentials 

have emerged [54-58]. Most previous workers [18-20] have dealt exclusively with 

fluids bounded by a single wall. Now whilst the information from such work is 

undoubtedly useful, particularly in testing the accuracy of rival approximations, one 

cannot use such models to represent real colloid systems, since colloid particles are not 

found in isolation.

Some work has already been done on fluids bounded by two walls [17,21,22]. 

This chapter extends that work to deal with a fluid of greater complexity, a so-called 

’civilised’ model. In this model, the fluid is comprised of two species of hard spheres 

with equal and opposite point charges respectively embedded at their centre, 

representing the electrolyte as before. Now, however, the continuous background
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dielectric medium is replaced by a third species of neutral hard spheres, equal in size 

to the electrolyte hard spheres, but with point dipoles embedded at their centre. The 

strength of the dipoles can be chosen to yield any given bulk dielectric constant. The 

density of dipoles, much higher than that of the electrolyte, is chosen to be like that of 

real liquids. This fluid is confined between two hard charged walls with a fixed surface 

potential, and results for the charge and polarisation density profiles at fixed wall 

separations, as well as the pressure between the walls as a function of their separation, 

are obtained.

The relation between the pressure and the contact values of the variables for 

charged systems can be obtained from exact sum rules [40-43]. It can also be obtained 

for purely polar and electrolyte/solvent systems [59,60]. The forms obtained in this 

chapter differ from the exact forms due to the linear nature of the theory. In the next 

chapter, the non-linear theory presented gives the correct sum rules.

The method employed here is the same as in earlier work of this kind. A density- 

functional is used to represent the free energy of the fluid, assuming only small 

perturbations of the density from its value in the bulk. This free energy is minimised 

with respect to variations in the density profile, and the resulting equation, which is 

satisfied uniquely by the equilibrium density profile, is solved. In point of fact, the 

free energy was not minimised directly with respect to the individual species densities 

(although, in principle, it could have been). It was instead found that the free energy 

could be represented in terms of the charge density, proportional to the difference of 

the two electrolyte species, the polarisation density, proportional to the angular- 

dependent dipole density, and the total density, which was just the sum of all the 

species densities. The advantage of this representation is that it produces a decoupling 

of the total density from the charge and polarisation densities, and further, one solves 

for the charge and polarisation directly. Also, angular-dependence is eliminated from 

the equations. The equation involving total density alone is not treated here, as this
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has been fully solved elsewhere [17], and the pressure due to this component is simply 

additive.

The theory can be considered a generalisation both of Debye-Huckel (DH) 

theory, allowing for ions and dipoles of finite sizes, and the work of other authors 

[18-20] who deal with a single wall. The former connection is made in Appendix C.

The results for the charge density and the pressure obtained from this theory are 

therefore compared with those arising from DH theory with the inclusion of a Stem 

layer of unit dielectric constant at the walls. The best agreement was found for fluids 

with low dielectric constant. For high fluid dielectric constants, the deviations from 

uniformity are so great as to affect the colloidal stability, and this topic is discussed at 

the end of the chapter.

Now for a high value of the bulk dielectric constant, the electrostatic interaction 

of the two walls is greatly reduced. This modification is made evident in one of the 

derivations of the pressure, as the pressure is given by the difference of two large 

quantities. Since this procedure is sensitive to the values of these large quantities, any 

error in either one is greatly multiplied when their difference is taken, and large errors 

for the pressure ensue. Accordingly, an alternative form for the pressure is derived, 

one which is less sensitive to errors in the calculation. The equivalence of these two 

forms is established in Appendix B.

3.2. Theory

3.2.1. The Thermodynamic Potential

Since the model represents an electrolyte in a solvent, it is comprised of three 

species, two with equal and opposite point charges at their centre, and one with a point 

dipole. Now the dipole potential is not spherically symmetric, as are the potentials 

involved ( Coulomb, hard-sphere ), and hence the orientation, Cl, of the dipoles must 

be specified, as well as their position, r. The number density of species X (X= 1,2,3)
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will then be dependent on both position and orientation,

Px(r,O)=Px00 (3.1)

Although the ion densities do not depend on orientation, it is useful in the 

formalism to treat them as if they did.

In the uniform fluid, the orientation of the dipoles is random. This is another 

way of saying that the number densities are independent of orientation. Similarly, the 

number densities are also independent of position. Then

where pgX is the number density of species X. Perturbations in the densities caused by 

external fields can therefore be written as

&Px(*)=Px(*)-^-

Now the equilibrium bulk density is such as to make the free energy a minimum. 

So for small perturbations in the density caused by an external field, the free energy 

will not change to first order. In fact, only second-order terms are important, and one 

may therefore express the new free energy as a quadratic functional of 8px(x). More 

specifically

n(& pj= m + y  2 f d  xd x' hpk(x)K kv(x,x')hpv(x') (3.2)

where the integration over x indicates an integral over all space and orientations. The 

significance of the function XT(x,x') is discussed more fully in Chapter 5, section 2. It 

is the functional version of the first coefficient in a Taylor series. Strictly speaking, it 

should therefore be independent of the variable of expansion; in this case, the density. 

However, the function XTXv(x,x') must also satisfy a condition which follows from the 

general theory of fluids, obtained by functionally differentiating the free energy twice 

with respect to the density

Kkv(x,x')=
4tt8XvS(x,x')

P l (PoxPov)1/2 'X v ( * > * ' ) j (3.3)
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In general, the direct correlation function of a fluid is known to vary with the 

density. So the function tfXv(x,x') is not, therefore, density independent.

Now the perturbations are caused by an external field, <f>x(x). This will couple to 

the density components, giving rise to a term which must be included in the free 

energy,

2/<t>x(x)Px(*)<** (3.4)
x

where $=l/kT (k is Boltzmann’s constant and T is the temperature, 8Xv is the 

Kronecker delta, 8(x,x') is the Dirac delta function and cXv(x,x') are the bulk direct 

correlation functions for the fluid mixture. With these modifications, the free energy 

will now have the form

An[5Px(x)]=n[&px(x)]-n(0)

= ^ 2 / d x dx’Bpx( , ) { ^ g i i - e x.(x .x ))8p .( ,0

+2/dx<{>x(x)px(x). (3.5)
x

The real direct correlation functions for such a system are unknown, but analytic forms 

may be obtained through an approximation scheme. In this case the mean spherical 

was chosen, as this approximation has been solved by various workers [23]. Under this 

approximation, the direct correlation function is simply proportional to the particle 

interaction potential beyond a given radius. For the system described above, the 

orientation dependence of these potentials is no greater than that given by first-order 

spherical harmonic functions. Thus for an electric external field, the induced densities 

can be expanded in terms of Legendre polynomials to first-order only,

P x i x ^ - ^ + l v M O  (3.6)

Higher order terms would vanish when convolved with the first-order ( and zeroth 

order) terms arising from the direct correlation functions, since the Legendre functions 

form an orthogonal basis set.
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One may now define the local polarisation, which depends on the orientation of 

all the dipoles at a given position, as

P x O W d iW x O O  (3.7)

If one substitutes eqn (3.6) for px(x) in eqn (3.7) and integrates over orientation, 

remembering that

JV ad i l= 0

and

where a = x,y ,z ,  then one obtains the relation between Ax(r) and the polarisation 

^x(r),

Therefore

Ax(r)
3Px(r)
4irp,x2

(3.8)

Xv (PoxPOv)
8px(x)8pl,(x ' )dxdx'

= 4 ^ / ^ ^ d x = X T f / < l r d i i  
x Pox X Pox

8Px2(r) 9[M-x'Px(r )]2
(4tt)2

<
( W )2

= X /d r - l
Pox

2,  , . 3i \ 2(r)
8Px (r)+

M-x
(3.9)

The cross-term arising from the square of the form given in eqn (3.6) for the density is

not included, as this vanishes when the integration over orientation is performed. So 

the free energy now becomes

dr
a m i

.  , n , 3 / \ 2(r)
8Px (0 + ------ —

Px

“ ^ 2 dxdx'8Px(*)cxv(x>*>Pv(0+2/dx<J>xMPx(*)^
Xi» X

(3.10)
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In order to put this in a more useful form, we now introduce the total number density, 

p(r), the charge density, q (r), and a quantity, n(r), defined by

POO=2PxOO. ?(r)=2>xPx(r), n (r)= p (r)-p 3(r) (3.11)
x x

where for the civilised model we have

X=l,2,3; «x= l,—1,0; p.x=0»0»M-; Fx=0,0,P

and

Po=2Po,, wo= Poi+ Po2- (3-12)
i

After a little algebraic manipulation, eqn (3.10) may now be written in terms of these 

more useful quantities as

AO[Spx(r)]= ^  |~/drSp2(r )+ -^-/dr^2(r)+ -^^-/drw 2(r)

+ - ^ T /dr/>2(r) }-^ ]£/dxdx '8px(x)cXl/x,x')8p„(x')
P03P- J 2P Xv

+ E / dx<t>x(*)Px(x) (3-13)
x

where

“ f ö 
hn (r)  ^ ( r )

(3.14)
«0 P03

The model being dealt with is that of a non-polar 1:1 electrolyte with a neutral third

component. For simplicity equal radii components are chosen. Now since this is a 

linear theory, the perturbations from the equilibrium density are proportional to the 

equilibrium density. It is then a simple matter to show that

u(r)=0 (3.15)

and this quantity no longer appears in the succeeding equations of this chapter.

Here we adopt (with some minor alterations) the notation of Chan et al., [23]. 

This suggests the following form for the bulk direct correlation functions

cXv(x,x ')=cXl,"s (r0)+ e xevcc(r0)+ e xc£(r0)£ l, - e yc£ (r0)Ex
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+ r V K v + c D( l > , , „  (3.16)

where

4 .= A K ) 'i * K ) .
Dkv= P -K ) • (3 r r - /  ) • p.(cd„), r ° = r - r ' (3.17)

and where cm  are the bulk hard-sphere correlation functions, c c are ion-ion 

correlation functions, cE are ion-dipole correlation functions and c A and cD are 

dipole- dipole correlation functions. All the functions c(r) are symmetric under a 

change of sign of their argument except for cE(r) which is antisymmetric. This follows 

intuitively if one considers what happens to the interaction potential, proportional to 

the direct correlation function beyond the hard-sphere radius in the MSA, when the 

positions of two interacting particles are exchanged, preserving the orientation of each 

one. This corresponds to reversing the sign of the argument of the direct correlation 

functions. Within the hard-sphere core there seems to be no reason why the functions 

should not maintain their symmetry or antisymmetry, and there are probably good 

physical reasons why this should be so.

Now the only external fields acting on the fluid are those due to the 

impenetrability of the walls and the charges thereon. In that case, the external fields 

can be represented by

*x00= ■ ¿ A ( r ) = (r) +ee XV (r)] • (3.18)

where the first term represents the short-range impenetrability, and the second term 

represents the long-range Coulombic interaction.

With this modification the integrals over orientation can all be performed 

explicitly. This removes orientation dependence from the integrals, and the 

thermodynamic potential (or, equivalently, free energy) therefore becomes

2pAO(5px)=2pAn(p,<7,P)

l Po n0 p03p/ J
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—fd rd r ' [sP(r)c"5(r°)5p(r')+?(r)cc(r°)g(r')

+ P ( r ) P ( r ' )
M-2

+ 2P(r)-r° q (r ')c£ (r0-̂ - ] +23/dr[<t>J (r)p(r)+<?v (r)9 (r)]. (3.19)

If we now specialise to a system in which the liquid is confined between two 

parallel hard walls with uniform surface charge, then all the densities will depend only 

on the direction perpendicular to these walls, x say. Furthermore, the electric field 

will everywhere point in this direction and so will the polarisation. Then one can 

integrate over the two transverse co-ordinates y and z where possible, and 

subsequently divide the equation by fdydz throughout. Then the thermodynamic 

potential per unit area can be written as

2pA0(q , p,P) = -M" fip2(-t )dx + - ~ J q 2(x )dx + ~ - —J P 2(x)dx
Po "0) PtuH

- fd x d x ’ [Sp(i)C“s(x0)8p(x ')+9 (x)C‘ (x°)i  <y )

+ M s ^ c V )
P

+P(x)P(x' )C£ (x»)]
|X p-

+2Pfdx  [<t>J (x )p(x )+ev(x)g(x)] (3.20)

where

oo
Cc ’ A’ffS(x)=2tt/  drrc c ’A’HS (r )

X
00

CE (x )—2iTjdrxcE (r)
X

CD (x)=2'iTjdrr-^(3x2—l)c D(r) (3-21)
X

Now the equilibrium distributions p(jt),<?(*), and P(x) make the free energy a
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minimum. Hence they can be found by differentiating the free energy with respect to 

each of these quantities, and setting the result equal to zero. This provides us with 

three integral equations, the solutions of which are the equilibrium distributions.

The equation involving the total density has not been included, as this is identical 

to the one obtained elsewhere [17], and has been fully solved there. Note that the 

equations involving the charge and polarisation density profiles, q(x)  and P(x) 

respectively, are coupled.

One may make one further simplification to the form for the free energy. The 

term <f>J (jc ), representing the impenetrability of the walls, can be dropped as its sole 

effect on the fluid can incorporated in a modification of the range of integration. At 

present, the range of integration extends over all space. However, since the walls 

exclude the fluid from occupying the same position, the term <{>*(*) may be neglected 

if one simultaneously alters the integration limits to extend only over the range in 

which the fluid exists, namely 0 < x< h . So,

fdx ' q(x ')C c( x ° ) - £ ^ C E(x°) +pev(x)=0 (3.22)

^ Ç—  fdx ' 2CD(x°)]+q(x' ) - --£*-°)- =0 (3.23)

h h
- f f d t d x '  [5p(x)C“ (*0)S p (* ')+ « M C '(* °M * ’ )

0 0
^_Pjx)P{x ) 7 fP ^ T0^4 - P(x)P(x  )

0

3.2.2. The pressure

One can see from fundamental arguments that for an incremental change in the 

separation of the walls, h , the free energy per unit area will change by an amount
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proportional to the pressure. Hence the pressure may be obtained by differentiating the 

free energy with respect to the separation, h . By considering the sign of the change in 

the free energy, one can see that the pressure is, in fact, the negative differential of the 

free energy. So

-2(3
dAil
dh

i f f y ) , , h? \ h )i 1
( no 2P03H

l
Po

—2Jdx' |sp(/i )CHS(h —x' )8p(x ')+q (h )CC (h —x' )q (x' )

+ P{h)P(x ' ) CA(  ̂_ x , }+ P {h )P & .l2CD(h _ x . ) 
fJL M-

+ fJ £ 1 q (*' )CE(h - x ’ ) - ^ j p - q  (h )CE(h ~ x ’ ) 

+ 2 ^ id x le v ( ,x )q (x ) ]  J (3.25)

Most of the terms on the righthand side of eqn (3.25) can be eliminated by use of the 

three equations for the equilibrium distributions, with the value of x chosen as h . 

Then the total pressure is seen to be a simple additive function of terms coming from 

each of the macroscopic variables, i.e

dAil p2(h) ,
” S ~ 2

where pq is the electrostatic component of the pressure between the walls,

1 i 2(A) 3 P \h ) Q \h )
2p n o 2

P03^ 2eo (3.26)

and Q (h ) is the surface charge density on a single wall on which the potential is fixed

at Vo and can be obtained from the electroneutrality condition, viz.

h
feq (x)dx+ 2Q (h)= 0  (3.27)
o

The term in the pressure due to the total density has been dealt with elsewhere

[17], and since it is simply additive, will not therefore be discussed further here.
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The electrostatic pressure, pq , can also be derived in a way which is not explicitly 

dependent upon the discrete nature of the fluid. For this grand canonical system it can 

be shown [22] that the pressure is given by

<3-28)

where

F = Sl-'£V iQi (3.29)
I

< fn = 2 « w a  (3.30)

and where V, and Q, are the potential and charge per unit area at the f  th wall, 

i =1,2. If one slowly increases the charges on each wall from 0 to g, by adding 

increments of charge q jd \, then, from eqn (3.30)

d C l^ V iW Q 'd X  (3.31)
I

where V, (X) is the potential on the i’ th surface when the charges are Xg,. Integrating 

this equation gives

n(g)=2& jv<(x)<*x (3 .3 2 )
> 0

Since in this approximation the equations are linear, V, (X) is proportional to X, and

V',<X)=XV,

m ) = \ ^ ,Q ,V ,  (3.33)
i

F (Q )= - \ '2 Q :V,
i

Hie system under consideration is one in which the walls are identical. By symmetry, 

therefore, the charge and potential on each wall is the same. The free energy then 

simplifies to

F = -Q V  o

M * ) - « ' .  ( f ) - (3.34)
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This is the alternative formula for calculating pq(h). It is not obvious that eqn (3.34) 

will lead to the same values for the pressure as eqn (3.26). It is therefore shown in 

Appendix C that the two formulae are equivalent. One can see that the resultant 

electrostatic component of the pressure between the walls, f q(h), is simply the 

difference of the pressures acting on either side of one wall. Now fluid is presumed to 

exist at infinity ( see ref 21, fig 1) -  this is the limit of a wall with finite width 

immersed in fluid, with the wall width allowed to tend to infinity. Since no other wall 

exists beyond the far side of the wall as the limit is taken, the pressure at the far side 

corresponds to that for a single wall, namely pq (<*). Therefore

f q(h)=pq(h )-p q(°o)

3.3. Calculation of the Correlation Functions

As mentioned earlier, the functions cXy(x,x') are the bulk direct correlation 

functions. These are not known exactly for this fluid, but analytical functions for them 

may be obtained using certain approximations. In this case the mean spherical 

approximation (MSA) was used, in conjunction with the Omstein-Zemike relations for 

this fluid mixture. The bulk direct correlation functions can be obtained from these. A 

further simplification is the use of these bulk direct correlation functions in place of 

the (unknown) inhomogeneous ones, a step taken by many workers [e.g. 18-23].

The MSA for this system has been solved by Camie and Chan [18], and their 

results are used here. They utilised a method due to Baxter based on the Wiener-Hopf 

procedure, which relates the direct correlation functions to auxiliary £?ap(0 through 

the equations

oo
Ca^ ) = Q ap (x )-^ J d tQ ap(t)Qa^ x  + t) (3.35)

i  o
where

Cn(x)=C'<?)

Ci2(*)=C2i( - ;t)= C £(*) (3.36)
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C22(jO=Ca(x)+2Cd (x)= C +Cc).

The functions Qap(t) are listed below.

r > R

—(9\AnHn —faH2\Mi2){r~R)—A \i 0 <r<R

Q n(r )-~ A 2 i r>R
==(Plî 21^11^'^21a 2)(r —̂ ) —-̂ 21 0<r</? 

Ci2(r )= °  r>R

The simple form of the functions is due to a symmetry of the fluid, namely the equal

The constants are the solutions of the following eleven simultaneous non-linear

4ir3<’2=p1A121 +P2A22!

4ttPc \L=A21a2-p iA n M &

4irpp2p.2= a 22 +PiP2^Î2)2 -Q  (“ €)
l ~ a l = — P l^ ll^+ ^P l^2[P2^21^1°2 —P l^ll^ ll] 
H 2\S = —%A21+p1//11M2i 

M21 = — A21R — ̂ 2(pjA2i / /n + / /2ia2) 

H ua i—~ ^4ii+P2̂ 2i^f 12

= - {  (p ^ iH a i+ ^ rA ii“ jo-2- * 2)

+ - « 21(o ,-p ,/l„ R )+ ^ f(« A ii" 2 -M i2) ( r -R )  0 < r<R

Q nir  )—0=0 r>R

2 P2*

+ Pl^2 1 ^ 2 1  "*“Pl^21^ 21^  12— A  (Ra2~ s ) (r ~ R ) 0<r<R

size of the ions and the dipoles. This furthermore simplifies the ranges over which the 

functions exist.

equations.

4
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«2= [t(2 *)]1/2+ Q - 2 &  r 21 + Y '421 «(1 + «) j

s 1+ t
*  ( l - 2 i )2 ( l - 2 { )2

and q (x ) is defined as

« 0 0
(l+ 2 x )2
( l - * ) 4

These must, in general, be solved numerically on a computer, although analytic low 

ion density solutions are available [18]. These were used as the initial input, and an 

iterative solution for higher densities was obtained. Convergence is slow but can be 

obtained.

3.4. Results and Discussion

3.4.1. Computation

The analytically intractable equations for the charge and polarisation densities 

were also solved by computer, following previous work of this kind [17,21,22]. The 

region in which the fluid exists was divided into discrete intervals. The integrals were 

thereby converted to sums by use of Simpson’s Rule. This gave a matrix equation 

which was then solved by inversion. For a mesh size of 0.125R, the estimated error 

was <1%  in the charge and polarisation density at a dielectric constant of 78, although 

a comparable accuracy could be maintained with larger mesh sizes as the dielectric 

constant decreased.

However, as simple error theory reveals, the corresponding accuracy of the 

pressure as given by eqn (3.26) is much less. Inspection of this equation shows that 

the difference of the term due to the polarisation density at the wall and the term due
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to the charge on the wall is required. Now these terms are found to be nearly equal, 

and both are considerably larger than the term due to the fluid charge density ( by a 

factor of ~  10 for er=78 and a separation of 20R). In fact, the difference between 

these terms is approximately equal to the wall charge term divided by the dielectric 

constant, the result one obtains from macroscopic theory. Small errors in the value of 

either of these terms result in very large errors in their difference, even to the point of 

giving the wrong sign for it. As the separation increases, the polarisation and wall- 

charge terms both increase considerably, and consequently the contribution of their 

difference to the pressure increases in importance both relatively and absolutely, and 

errors acceptable for these terms individually become unacceptable for the pressure.

By contrast, eqn (3.34) provides us with the pressure with an accuracy 

comparable to that of the wall-charge term. Since this is estimated to be <1%  with 

the moderate mesh size of 0.25R, this equation for the pressure was chosen in 

preference to the less accurate form (3.26).

3.4.2. The Charge and Polarisation profiles

The results for the charge and polarisation profiles are displayed in Figs 3.1(a) 

and 3.1(b). The ion concentration is 0.0051 mol dm-3, the bulk dielectric constant of 

the pure dipolar component is 78, and the results are plotted for separations of the 

walls of 2R, 5R, and 10R. Naturally, only half of the profile is shown in each case, 

since the profiles are symmetric about the mid-point for the charge density, and 

antisymmetric for the polarisation density. From the graphs one can see that the value 

of both the charge and polarisation densities at the wall are very dependent on the wall 

separation at small wall separations. Furthermore, structural effects are quite evident 

within three or four molecular diameters of the wall, particularly for the polarisation 

density. This is more remarkable when one considers the low ion density involved.

The comparison between this ’civilised’ model and macroscopic theory is made in 

Fig 3.2, where the charge profile of the present theory is plotted with one obtained
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from Debye-Huckel (DH) theory, assuming a Stem layer of one molecular radius 

thickness, and with a dielectric constant of unity. Three values for the bulk dielectric 

constant of the fluid were chosen; 78, 7.8 and 3. The macroscopic theory cannot, of 

course, reproduce the structural effects, but it also differs from the present theory in 

giving a different value of the charge density at the wall. As already mentioned, the 

effects of structure are very pronounced in the polarisation profile, making it very 

different from the monotonic form predicted by macroscopic theory. The perturbation 

on the charge profile, therefore, is considerable, and is probably sufficient to explain 

the difference between the two theories. Furthermore, upon analysis of the equations 

given by Camie and Chan [18] for a single wall ( the limit of infinite separation in this 

case ) , one can obtain a correction to Debye-Huckel theory, in the limit of low 

densities, of the order of

¿.--I
4</+*

kR

where k 1 is the Debye length and q + is determined from

9 + i - J -er
PP03M-

3eo (3.37)

The Debye length and the dipole density are kept fixed, and in order to vary the 

dielectric constant, the strength of the dipoles is changed. One can see from this that 

the deviation of DH theory grows as the dielectric constant increases, and this is, in 

fact, what occurs (see Fig 3.2). Unfortunately, the choice of dielectric constant of the 

Stem layer is not constrained by any stringent conditions, and so the absolute value of 

the charge density as given by macroscopic theory is not known.

For reasons discussed earlier, eqn (3.34) was chosen to calculate the electrostatic 

component of the pressure. In order to use this equation, the total charge per unit 

area on each wall, Q, needed to be evaluated at all values of the wall separation. 

Because the electroneutrality condition was incorporated in the formalism at the start,
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the charge per unit area on the wall is simply equal and opposite to half of the total 

area under the charge profile. This quantity is therefore plotted against wall separation 

in Fig 3.3, with a Debye length of 10R, and dielectric constants of 78, 7.8 and 3. The 

graph shows that the dependence is monotonic, and the larger the dielectric constant 

is, the faster Q(h) approaches its asymptotic value The former feature is useful 

in that the derivative of Q with respect to h , the quantity directly required for the 

pressure, can be calculated accurately since the graph is smooth and monotonic, and 

the gradient does not change rapidly anywhere.

3.4.3. Force and Colloidal Stability

The results for the calculation of the pressure by eqn (3.34) are displayed in Figs 

3.4(a)-(c). The pressure is shown as a function of wall separation for the three values 

of the bulk dielectric constant used throughout, and the macroscopic results of DH 

theory are shown also. As before, the difference between the two results is greatest for 

the larger values of the dielectric constant. At the highest value of the dielectric 

constant, 78, the pressure is oscillatory, although it is monotonic for the lower values. 

This result is familiar from theories which take the structure of the fluid into account, 

and one would expect this feature to remain when the structure of the solvent is 

included, and indeed it does. Presumably the oscillations are more pronounced at 

higher ionic densities, perhaps even changing sign, and this is currently under 

investigation.

This has direct consequences for colloidal stability. The stability of a colloid is 

largely determined by the forces between colloidal particles at separations of the order 

of a Debye length, k-1. In the system described above, the Debye length was chosen 

to be 10R. Thus from Fig 3.4 it can be seen that at this separation, the modification 

to classical theory is not very great when er<7.8. However, at the highest dielectric 

constant, chosen to be equal to that fo an aqueous solution, the force predicted by the 

present theory is some 70% greater at this separation than that given by DH theory.
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This implies that for high values of the bulk dielectric constant, liquid structure is 

likely to affect the conditions for colloidal stability.

The next chapter extends this formalism by treating the entropy of the fluid 

exactly, rather than taking the approximation used here. The formalism is then applied 

to the same model as in this chapter.



Fig 3.1(a): The charge profile 9 (1 ) for various wall separations h =  (a) 2R , (b) 

5R , (c ) 1QR. The bulk dielectric constant i ,  is  78 , and *W = 0 .1 . T he ion concentra

tion is 0 .0051A/.
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4. A NON-LINEAR FUNCTIONAL APPROXIMATION FOR THE FREE ENERGY OF 

AN IONIC-DIPOLAR SYSTEM.

4.1. Introduction

The initial premise of the preceding chapter was that if the fluctuations in the 

density of a fluid produced by an external potential are small, then the free energy can 

be expressed as a quadratic functional of the fluctuations. It can be shown that this 

approximation is, in effect, an approximation for the entropy of the fluid. If one writes 

the correct form for the entropy, a logarithmic term replaces a linear one [16,17]. This 

is termed the non-linear theory.

This chapter applies this non-linear theory to the same model as in the previous 

chapter, and the results are examined. Due to the non-linearity of the theory, the 

equations for the equilibrium densities, although still expressible in terms of the charge 

and polarisation densities, are now fully coupled. As a result, 4 simultaneous non

linear integral equations must be solved rather than 2, as in the linear case. The 

quantities solved for are the densities of the three species and the polarisation density.

Consequently, the matrix method of solution is made harder by the increased size 

of the matrices required to achieve reliable results. Indeed, due to limitations on the 

computers capability to handle very large matrices, the results were judged not reliable 

enough to produce accurate values for the pressure. It must be emphasised that this is 

due solely to computer limitations, and not an unfortunate formulation of the problem. 

Given a slightly larger capacity, the problem would be rendered much more tractable.

A further obstacle is that the results must be achieved through iteration , and 

cannot be solved at a single stroke. This is not a serious problem, however, as the 

iteration converged sufficiently well.

Section 2 introduces the modification to the free energy, and the new equations 

for equilibrium are derived. Section 3 shows that for small fluctuations, the theory
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reduces to the linear one of Chapter 3. Section 4 derives a simple formula for the 

pressure, and the results and discussion are presented in section 5.

4.2. Free Energy

A modified functional for the free energy of a multicomponent system is

x
fd x PaM — |[PV\0 0 -1 ]

+/dxpx(x)ln
4irpx(x)

Pox II

yXfJtodx' L ( x ) - £  jcXv(x,x') L x' ) - £

+PA/ 8p( x) | e ( p1(x) -p2(x))+CT(r)|— (4.1)

where i l  is the free energy (or grand thermodynamic potential), px(x) is the number 

density at position r, orientation go, (x  =r,a>) , of species X, cXv(x,x') is the direct 

correlation function of species X and v, pqX is the number density of the fluid in the 

absence of inhomogeneities and is therefore a constant, vx(x) is the external applied 

field coupling with species X, and A is a Lagrange multiplier. cr(r) is the external 

charge distribution, and p=l/£BT, kB being Bolztmann’s constant.

The first term on the right-hand side represents the coupling of the components to 

an external field. The second term is the entropy of the fluid and exists even for a 

non-interacting fluid. It is this term that was approximated by a linear term in the 

previous chapter. The third term represents the interaction of the fluid with itself. The 

fourth term is, in effect, a restatement of the electroneutrality condition viz.,

/ d r \e  (P i(r)-p 2(r))+<r(r) 1=0 (4.2)
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and therefore does not contribute to the free energy, but it is a convenient way of 

including this boundary condition without having to retain a separate explicit equation. 

The final term represents the^nteraction of one wall with the other.

The model dealt with is that of a 1:1 electrolyte with a polar solvent. These 

components are represented by A=1,2 and 3 respectively. The first two components do 

not, therefore, depend on orientation but it is convenient in the formalism to treat 

them as if they do.

Now the equilibrium profile of each component minimises the free energy. Thus

^ n _ = p v x(x)+ i „ 14*Pk(x)
8Px(*) PiX*')-

POk
4tt

+3e A=0 (4.3)

If one now substitutes the following forms for the correlation functions, following 

the previous chapter, one obtains

Cij (r°)=cHS (r°)+z1zycc(r°)
Cid (r°,<o) = cHS (r°) +ziCE (r°)E2(o>)
cdi (r V )  = cfIS (r°) - z j  cE (r °)E j(aj) (4.4)
Cdd (rV i  , < * l ) (r°)+cA(r0)A12(w1 ,o)2 )+ cD (r °)D ,0̂ )

where

£ a=ii K ) ‘r \  a =1,2 
^ 12=f i - M f i - M
Z) 12= ¿(oj)-(3rr-1)-¿(0)2)
r°=r-r' (4.5)

One may furthermore specify the external potential

CxV (r)
vxOO=— ( 46)

where

1
X=2

3
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where e is the protonic charge.

Restricting ourselves to a fluid confined between two hard planar walls, one sees 

that, by symmetry, the density profiles will vary only in the co-ordinate perpendicular 

to the walls, say x . Thus the equilibrium equations become

„ /x,. iPi(*)) r • / i cn(x »x) x . ci2( * »  „ , iV
3 e v ( x ) + h i |- |^ - j - J d x  I — 4 ^— 8 Pi(^ ) + — 4^ ~ h^ x )

+ “ 4 ^ (p3(;t' )“ Po3+47rSP3(j:' »“ )) j+ P e  A=0

0 /X., f P2C*) , ic2l(x'»x)t , , C22(x'»x)t ,-3 ev (ac)+ ln |-^ — j - / d x  | — ^ — 8Pl(x ) + — ^ )

Crjfx'jX) 'l
+ — ^ — (8p3(x')+4Tr8p3(jr',0)')) J+p<?A=0

( p3(x)+4-TrSp3(x ,<o) ) ( c3i(x') c32(x')
1 ----------to ---------- J“ /dX |  4tt 8Pi(j: ) + “^ T 8P2(x )

c*33(x') )
4 ^— (8 p3(x' )+47r8p3(x' ,<d) J = 0

where the angular dependence of ^ (x  ,0 ) has been expressed in the form

P3OOp3(x,co) = +8 ^ ( 0: ,<o)

In

(4.7)

(4.8)

(4.9)

(4.10)

and

Sp.(^)= P,(^)-P0i (4.11)

Substituting the forms for the coirelation functions from eqn (4.4), and integrating 

over co' gives

{3ev(x)+ln 6p,(*' )[i-“ (r")+ct (r°)]-5p2(x' )[c«s (r ° ) -c '(r #)]

+ c tts(r°)Sp3(x' )+ c E(r°)rO jfii

( ^ l - M

—3<? A =0 (4.12)

—3^v(x)+ln

+ cf£S(r0)8 p3(x ')—c£ (r'

8Pl(x' ) [c « ( i* ) -c ‘ (r*)]+8P2(;r' )[c"s (r°)+c'(r0)]

0»
“> ™  )- pcA=0 (4.13)
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f p3(*)+4ir8p3(x
P03

—  W * '  | bPi(x' )[c«(r»)+c£(r»)W<o)^]
‘" I

+ 8 ^ '  ) [ c « ( r#)+ c £(r°)(l{m) i :i'+ c« ! (r“)Sp3(I - ) 

+ c4(r°)jL(“ ) l ’(*' )+c°(r°)|i(<u) ( 3 r V - l ) - ! ^ i  J=0 

where, by comparison with chapter 3,

4'irp.
These may be rewritten as

PevCO+ln )[C"s (x°)+C'(x°)]

+Sp2(*' )[C'K(x»)-C '(a»)]+C 'K(^ J8 P3(x’) 

+ ^ p - C E(x'‘) |+ |3cA = 0 

- f r v ( x ) + l n  jsp iC * ')[C“ (x°)-C '(*°)]

+8p2(x' )[C"s (x0)+ C '(x 0)]+C 'B (x“)Sp3(I ’ )

In

^ p - C £ (x°) |- p e A = 0

P3(x)+4tt8p3(x
)[CH5(x°)—CE(x°)jL(ii>)-l^]

+8p2(x’ )[C“ (x0)+C £(x0)iL r1>]+C»s (x0)8p3(x') 

+C4(x0) |i ( o ) ) £ ^ - + 2 C '>(x0)ii(< a )^ i ^  }=0
r* M* I

00

CHS ’c ' \ x  ) =2ttJ  rcHS ’c ’A(r )dr
X

00

C£ (x )—2ttJ xc e (r )dr
X

Cd (x )=2tt/ j  ----1 jrcD(r)Jr

where

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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and

x °= x -x '

The C s may now be identified with those obtained by Camie and Chan.

The last equation may be split into angular-dependent and angular-independent 

parts, to give two separate equations. Firstly we write

ln(
p3(x)+47rSp3(x

P03
—  )= In P3CO

P03
u

4ir8p3(x ,<o)
P3CO

4'ir5p3(x ,to )'

P3(^)
(4.20)

Then expanding the second logarithm to first order only, and collecting together 

angle-dependent and angle-independent terms separately gives the two equations

In
f t ? ) - ' -

[8pi(xf ) + 8p2(x' )+Sp3(x' )]C ® (x°)= 0

3J»fr)
P3(x )^ 2

-fdx' C +(x0) ^ ^ ~ ^ ^ °C‘ (x°)q(x') =0

where

(4.21)

(4.22)

C +(x ) = C \ x )+2Cd (x )
9(x )= 8Pl(x)-8p2(x) (4.23)

Note here that unlike the Unear functional discussed in the previous chapter, the 

density terms remain coupled to those of the charge and polarisation, as one would 

expect. To solve them completely one needs to solve eqns (4.16),(4.17), (4.21) and 

(4.22) simultaneously, a much harder task than solving the two simultaneous equations 

of chapter 3. The process is further compUcated by the fact that the equations are no 

longer Unear, and so an iterative solution is required.

4.3. Relation to linear theory

Now for the case of two charged plates, (v(x)=0), and it can be shown that 

A=V0, the potential on the plates. Expanding to first order in 8px, (having already
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functionally differentiated w.r.t. 6 px(x) once) , we quickly obtain three further 

equations:

P e v ( x ) + ^ - J < f c ’ i&Pi(jr' )[C"s (xt’)+ C '(^ )]+ 5 p 2(V )[C® (x»)-C‘ (x°)] 
Poi (

+C® (x^8p3( x ' ) + - ^ ^ C £ (x°) |+(3e A=0 (4.24)

- £ e v ( x ) + ^ r ~ J d x '  isp^x ' )[Cws(x°)-C c(x0)]+ 8 p2(x°)+Cc(x0)]
P02 (

+C«s (jr0)Sp3( j i ' ) + - ^ - ( x 0) 1—Pe A=0 (4.25)

8 p3(x)  ̂ 4tt8p3(x ><o)
P03 P03

- J d x ‘ | s Pl(x' r r t - C W M l + l t e f r '  )[cm (x°)+c£ (t,(w)] 

+C 'B (x0)8p3(x ')+ C +( x ° ) p ; ( o . ) - ^ -  1=0 (4.26)

where

M̂c (o>)=|i.(<o)-rb (4.27)

Subtracting eqn (4.26) from (4.25) gives

8pj(x) Sp2(x) r (  n
——-------- — ------2Jdx' | c c(x°)[8pj(x' ) - 8p2(x' )]

Poi P02 (

+C£( x ° ) ^ p -  j+2(3eV0=0 (4.28)

Upon dividing both sides by 2, one obtains

|« (x ' )Cc(x“)+ C E( x ° ) - ^ i |+ p e r o=0 (4.29)

where

_ «0 
Poi ~ P02 2

This is one of the equations of the linear theory (with C£ (x°) of opposite sign — we 

shall see that this is acceptable if the sign of the polarisation is consistent in the other
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equation involving C£ (x°), as the polarisation is antisymmetric ).

If we now add eqns (4.25),(4.26) and (4.27), we get

SPiCO | SP2CO | Sp3(x) t 4ir8p3(x ,o))
POl P02 P03 P03

-J d x ' |3C HS( i 0)[8p,(x’ )+ 8 p2( i ’ )+Sp3(x ')]

- C E(x“)[5p1(x ')-8 p 2(x')]p;(o>)+C*(x0) ^ i p x(<O) |= 0  (4.30)

Separating this into its angular-dependent and angular-independent parts gives 

5pi(ac) Sp2(jr) 8 p3(jc) _  „
- ^ + - ^ + - ^ - 3 M ' C “ (*°)Sp(*')=0 (4.31)

Poi P02 P03

where

p(jc)=Pi(x)+p2(a:)+P3(x)

and

(4.32)

4xr5p3(x ,to)
P03 ■i4 (“ )/<**'

Now in the linear theory

Spi Sp2 8p3
Poi Poi P03

and it is easy to see that

(4.33)

(4.34)

_ Sp _
Poi Po

Therefore eqn (4.31) becomes

^ * 1 -  fdx ’CHS(x°)hp(x' )=0 
Po

(4.35)

(4.36)

This is he second equation of the linear theory.

Comparing the form of 8p3(x ,01) with that given in chapter 3, one can see that

Sp3(^,w)=M-A(r) (4.37)
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where

Thus

A(r)= 3r(r)
4irp,2

4ttSp3(j:,o)) 3|i.(tri)-P(r) _  3P(x)t4(<d)
P03 P03M-2 P03M<

Dividing eqn (4.33) throughout by ¿ (o^p , gives

(4.38)

(4.39)

( = 0  (4.40)
P03M- l M- M* J

This is the final equation of the linear theory. As can be seen, the sign of the 

term CE(x°) is opposite to that of the same term in eqn (4.29). Both signs may be 

simultaneously reversed, the result of which is to cause the polarisation at every point 

to reverse direction, leaving the charge and total density unchanged. As the 

polarisation is antisymmetric in space, both sets of equations are acceptable, as they 

both describe physically possible situations.

4.4. Pressure

If the external applied potential v(r) is zero (i.e. hard walls), then we can write

p n = / d x | -  2  (p\(*)0(A ~*)-Pox)
V x=i

+0(/i —jc)
(4irpx(*) ) f4iTp3(x)) p42(x)■1p ‘ ln  { “ ¡ S T  J + p 4 (x ) ln  J + )

2  /dxdx' |px(x)0(/z - x ) —^  j c X|i(x,x') jp^x' )0(A )—^  J
+PA j/<Zx2>exPx(x)0(fc ~x)+2Q  J —1 ~ (4.41)

where

P3(*)=P3(^)+P4(x), / p 4(x)da)=0
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C4x(x>*')=Cx4(x,x')= C 3x(x,x')  X=l,2,3
C44(x,x')=C 33(x,x') (4.42)
P04=0 , e 1= ~ e 2= e  , e3=e4=0

and h is the separation of the walls, Q the charge on one of them. The step function 

effectively puts limits on the integrals, as no fluid exists beyond the walls.

Now the equations for the px(x) are

x = u  - ^ r e{‘ - x ) -

- / t l x ' X  CX|i(x,x')
ji.=i

p ^ ' ) e ( A - x ' ) - POji
4ir

Pox J

+(3eA |=H (4.43)

X=3 5 0

Spx(x)
=Q (h-x) In

P03

. . 50 .
x=4 m  ( x ) { P03

- /d x '2 C XflL(x,x')

Ì P4(x) P42
J P3OO 2p32(x)

v(*')0(* -

P4(x)
Ps( )̂

le ^ - x ') - P oJ }
4- J  J

(4.44)

(4.45)

Then the pressure is

3P =
apo
dh = fd ai

4 3 ( 4irp Jh  )
2  Px(* ,<*)- 2  Px(* ,<o)ln ^
X=1  x=i l Pox

- p 4(h ,w) P42(*
2p3(^ )

,<*>) \
1
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+ 2  p œ /d x 'p x(/j ,<û)CkiL(h ,x') L ( x ' )0(A )—^

3 A |> xp & ) - ■ $ £ - (4.46)

Multiplying eqns (4.43),(4.44) and (4.45) by the respective px(fc,to), integrating over 

<d, adding them together and letting x -h  gives

P0(j.

X=1

+

( Pox

£  Jrfoxix'px(/i ,<*)CXiL(h ,<a,x' ) ^ ( x  )Q(h - x ’ )—^  j

fd w
f  4TTp3(k ) )

p4(h ,d))ln — ------  +p4(* ,<*>)-
( Po3 J

P42(^ ,<*>) 
P3(^)

+2>x3A/rf(i)px(/i,co) j= 0 (4.47)

Thus the sum of all the terms barring the first on the right-hand side of eqn 

(4.46) is zero. So finally

Up = fdu, £  ?,(/, , « o - ^ - = Pl(A )+P2(/, ) + P 3 W ~ ^

=p(h)- 3Ô2
2eo

which agrees with well-known exact sum rule [59,60].

(4.48)

4.5. Results and Discussion

The equations for the species densities and polarisation density were solved, and 

the difference of the two electrolyte species fluctuations were taken, thereby giving the 

charge density profile. The results are displayed in Figs 4.1-4.6.

Figure 4.1 shows the charge profile for wall separations of 2 and 4 molecular 

diameters. The most immediately striking feature is the large increase in the wall value
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compared with the equivalent case for the linear theory. This effect has also been 

reported for the ’primitive’ model, where the dielectric medium is treated as 

continuous [24], It seems purely to be an artefact of the theory. It can be shown that 

this non-linear density-functional formulation is equivalent to an integral equation 

approach, using the Omstein-Zemike (OZ) equations for fluid mixtures, and the 

hyper-netted chain (HNQ closure. Now it is well-known that the HNC closure for a 

fluid of hard spheres produces values of the density at the wall that are very high, 

much higher than would be predicted from the most accurate equation of state for hard 

spheres, the Camahan-Stariing equation. This is true for mixtures, and presumably 

true when potentials other than that of hard spheres are involved, and this is therefore 

regarded as the cause of the abnormally high values of the charge density at the wall. 

As in the linear theory, the charge profile is seen to be oscillatory, contrary to 

macroscopic theories (e.g. DH ), and is evidence for the importance of fluid structure. 

The maximum separation of the walls is 4 molecular diameters, since to have increased 

this would have resulted in a significant decrease in the accuracy of the profiles 

obtained. Here the mesh size was 1/8 th of a molecular diameter. The accuracy of the 

value of the charge density at the wall at this mesh size is believed to be no better than 

10%.
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Fig 4.3: The polarisation profile P[x).  All else as for Fig 4.1
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5. A GENERAL DENSI TY FUNCTIONAL FOR FLUIDS 

5.1. Introduction

In the previous two chapters, density functionals were used in which the 

interaction of the fluid with itself was represented by a term which was no greater than 

quadratic in the density. A generalised density-functional is introduced in this chapter, 

based upon a functional version of a Taylor expansion. Terms which are cubic, 

quartic, etc. are included, and these represent three-body, four-body, and higher order 

interactions in the liquid. It is expected that these would only be significant in very 

dense liquids.

This generalised functional is used to represent the free energy of a neutral hard 

sphere fluid confined between two planar walls. When the walls do not interact with 

the fluid (other than excluding the fluid from the region occupied by them), the 

pressure is found to be directly proportional to the value of the density at the wall. It 

can also be related to the inhomogeneous direct correlation function, a well-known 

result but derived in a new manner. It can thus be easily shown that the functional 

equivalent to the HNC approximation used in the last chapter will yield the wrong 

density at the wall.

A truncated version of the general functional is proposed which is cubic in the 

density. There are thus two free parameters in the functional. These are chosen so as 

to fulfill a constraint involving the direct correlation function, and to satisfy the 

density required at the wall calculated by using the Camahan-Starling equation of state 

for hard spheres. In spite of the constraints, one is free to choose one of a large 

number of forms for the three-body interaction, and various physical choices were 

made.

The functional was minimised in the same way as before, and the equilibrium 

density profile for the fluid obtained. It was found to be in excellent agreement with
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Monte Carlo simulations, even well away from the wall and at very high fluid 

densities. Furthermore, the solution was not very sensitive to the form of the three- 

body interaction.

Finally, the functional is used for a fluid with long-range Lennard-Jones 

interactions with hard sphere cores, and liquid-vapour coexistence is observed.

5.2. Pressure and the density functional

One can, in general, represent a function of some variable by an infinite power 

series in the variable. Similarly, one can represent a functional of a function by an 

infinite series of terms involving ever-increasing "powers" of the function. The 

coefficients in the first case now become functions (see Appendix A).

Thus consider a fluid of spherically symmetric particles whose free energy, fl[p], 

is represented in this fashion, with p(r), the particle density being the independent 

function. Then

3ii[p]= J drxP(r1)|ln [p (r1) - J - - l | + p / ^ v ( r 1)p(r1)

“  2  J * j  • * * dr,^,(rl5 • • • ,r„)p(ri) • • • p(r„) (5.1)
n =2

where pj is related to the chemical potential p, by

Pp.=lnPl , (3= (^T ) - 1 (5.2)

and v(r) is an external potential. The first term on the righthand side in eqn (5.1) is 

the entropy of the fluid and exists for a fluid of non-interacting particles. The last term 

arises from the interactions of the molecules. Insofar as this describes the behaviour of 

a system of identical particles interacting solely through pairwise additive potentials, 

certain inferences can be made about the form of Kn (r2, • • • ,r„), as it is the only term 

representing these interactions. Firstly, if one interchanges the positions of two or more 

particles, the free energy is unchanged, as they are identical. Therefore 

Kn (r i, • • • ,r„) is symmetric in its arguments. Secondly, if two particles are moved in
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a manner such that their separation remains unchanged, the contribution of this pair of 

particles to the free energy also remains unchanged. So Kn(rl5 • • •  ,r„) may be 

expressed in terms of the differences of the co-ordinates. Note further that only n — 1 

of these differences are independent. This will be of importance later.

Now the direct correlation function, the second functional derivative of the free 

energy with respect to the density, is given by

, v ps2n  . S(ri—r2)
c (ri»r2,p) 8p(ri)5p(r2) p(ri)

= ¿ / i ( / i - l ) j d r 3drI1A:(r1,r2, • • • ,r„)p(r3) • • • p ( r j  (5.3)
n =2

The term in the sum with n =2 involves no integration and is simply 2AT(r!,r2). The 

density dependence of the direct correlation function is now evident. One can easily 

see that the functions Kn(r^, • • • ,r„) are the n-body direct correlation functions in the 

limit of infinite dilution, and are therefore independent of the density (just as the 

coefficients are independent of the variable in an ordinary power series). This, too, 

will be useful later.

Let us now specialise to a liquid confined between identical planar hard walls 

located at x =±h/2. The density will then be a function of the co-ordinate x only. We 

assume the external potential arises solely from the effect of the walls on the fluid. 

Then

v(r1)=w(x1+/z/2)+u(h/2—xj) (5-4)

where u {x) is the potential at distance x from one wall.

As the system is of infinite extent, the free energy is likewise infinite. However, 

the free energy per unit area, a more useful quantity in this instance, is not. This can 

be written as

ha
pnA[P]= /  d ip ( i)

-ha

rHSw'a.jfl 
L -,,,"71 - 1

l  Pi J
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+ 3  f  d l[u(xl+ h/2)+ u(h /2—xl)]p (l)
- h a

.  ha
~  2  /  * M , ( U ,  * • • ,n)p(l) • * • p(n); (5.5)

n =2—ha

where the notation has been simplified so that

p(0=P(*i) * /<*'=/<&,• (5.6)
¿„(1,2 • • • , n ) = k „ { x ^ 2, • • • xn ) = J d y 2d z 2 * • • dyndz„ K (x1,x2, • • • ,r„) (5.7)

Note that for purely mathematical reasons the functions k„ are also symmetric in their

arguments and depend only on the coordinate differences.

Following the procedure of previous chapters, the free energy is functionally 

differentiated and set to zero. Thus

In j = —$[u(xi+h/2)+u{h/2— jĉ ]

oc ha
+  f  d 2  • • • <¿«¿„(1,2, • • • , n )p(2) • • • p(n), (5.8)

n =2 —ha

where the symmetry of kn has been used to simplify the last term. The solution of this 

equation provides us with the equilibrium density profile.

Now for realistic wall-fluid potentials, u (x ) tends to zero for large x . Therefore 

the fluid at large distances from the walls is, in effect, in the bulk. So as h -<», Pi-Po 

almost everywhere, and as the deviations from the bulk near the wall continue to 

decrease in importance as the walls separate, one may write the exact equation

In hr |= S  h2■ ■ • <*■*.( 1,2, •••.») (5.9)(Pi J n =2—=o

This equation relates the equilibrium density of the fluid to pj and thereby to the 

chemical potential p..

A useful feature of this formalism is that one can obtain the presure directly from

h/2

the free energy. It is not hard to see that
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3 p (5.10)

Applying this equation to the form given by Eqn (5.5) and using Eqn (5.8) to 

eliminate various terms gives

(i/>=i[p(A/2 )+ p (-* /2 )]

D a
j  f  [ u ix i+ h fy -u ih /Z -x ^ p iX )  (5.11)
2 -h n dx'

The derivatives of p with respect to h can be ignored because Cl is minimised w.r.t p. 

This is the well-known exact result . As the walls are identical, it is obvious, by 

symmetry, that the density at the two walls is the same. Equation (5.11) therefore 

simplifies to

ha .
p/ > = PiV- 3  f  d \ - f - u ( ? x+ h n )9 0 )  (5-12)

-ha dxi
where

Pw~P(~h/2)=p(h/2) (5.13)

is the density at a wall when the separation is h . This equation is further simplified 

when there is no wall-fluid interaction, i.e. u (x)  is zero.

— Pw
The walls are then said to be hard walls.

(5.14)

Now by using a similar method to calculate the pressure for a bulk fluid (i.e. 

infinite wall separation), one can derive another formula for the pressure, this time in 

terms of the direct correlation function. This is important as it imposes a condition on 

the direct correlation function (assuming the pressure in the bulk fluid is known). If 

one can satisfy this condition by a suitable choice of direct correlation function, one 

guarantees the right value of the density at the wall in the limit of infinite wall 

separation. This alternative formula will now be derived below. One begins by making 

the following substitution in Eqn (5.5)
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(5.15)

which therefore becomes

0 njp]= fc/< fy i in
—’A l  Pi J

-  f 4 y i  ■ • • <iynKQiy\, • • • ¿yJp(>T*0 * • * p(y„M (5.16)
n = 2  -%

Following the same procedure as before, to show that nothing intrinsically different is 

occuring, one differentiates with respect to h . As before, one can ignore the 

derivatives of p with w.r.t h , for the same reasons. So

Using Eqn (5.8) to eliminate some terms, and changing the variables back to x, gives

* h!2

Now we are concerned with the pressure for a fluid in the bulk. This is the limit of 

infinite wall separation (h and so the density tends to the bulk density po almost

eveiywhere. As before, the deviations near the wall become unimportant. From Eqn 

(5.18) it may appear that in this limit both terms on the righthand side will disappear, 

but this is not the case.

+ ' t n h n 1f d y 1 ”  • dynkn(hy1, • • • ,hyn)p{yxh) • • • p(y„h)
n = 2  — 'A

= T  /  d W )'* l rt

In both terms there exists an integral of order h , and this is therefore sufficient to 

make both terms non-zero. This is most easily seen in the first term, where p(l)
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becomes a constant, and the size of the integral then depends purely on the limits. 

Now the second term involves integrations over n positions. The function k„, however, 

depends only on the difference of these positions, and furthermore tends to zero if any 

of these differences tends to infinity. There are only n — 1 of these. So after n —1 

integrations the integrand is of order pg and independent of position. Thus the final 

integration provides the factor of order h required. This is best shown rigourously. 

Hence consider the term

ha d
h = n  $  dxi • • • dx„x1— kn( l ,  ■ • • ,n)p(l) - - * p(/i)

- h a  ■ d x i
ha » a

= /  dxx • • • dxn '2lxi -r-7-kn( l ,  • • • ,n)p(l) • • • p(n) (5.19)
—h a  i=i oax‘

Since kn is a symmetric function of the difference of its arguments we can write

‘ • • »*«)=$, (*2- * i ,  ‘ ‘
where Sn is a symmetric function of its arguments. Then

(5.20)

n Q
^ Xi T r kn(X 1» 

1=1 dx‘
s  , ^  a

= X (.Xi-xi) — sn(x2- x u ■ ■ ■ ^ - X , )  (5.21)
1=2 dxi

and

ha  h a - x , ^
Jn = /  dxx f  dz2 - • -dzn ¿Z,.— 5„(z2, • • • »zJ pOcj) 

- h a  - h a - x x i=2 ozi

x p (jc1+ z2) • • • p(*i+z„) (5.22)

after the substitution

Zj =xi x i , (i =2, • • • , / ! )  (5.23)

The function Sn is like a one-dimensional correlation function. Therefore, as 

mentioned above, it must vanish if any of its arguments becomes very large. So as h 

in Eqn (5.22), the integrals over zi will converge, p(*j)-Po once again, and
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/  oo ^
Ï “ T  = P° " ^ ife2  ‘ ' ‘ ¿ Zi ^ T 5 n(z2, • • • >*„)

¿ = 2  az*
(5.24)

Substituting this result back in eqn (5.18) gives

&P=Po+'IPon( n - l ) f d z 2 • • • dznz2— S„(z2, • • • ,z„)
n —oo 2

(5.25)

It is of interest to express this in terms of the direct correlation function. This can 

be done in the following way. Substituting back to the variables x, gives

P^=Po+ J * 2 (* 2 -* i)^ 2 P o " (« - l) J < f r3  • * • dx„
2 n

1^ 2» • • (5.26)

Now the function kn is the integral of Kn over the transverse variables y and z . As has 

been mentioned, Kn is the n-particle direct correlation function in the limit of infinite 

dilution, and therefore independent of the bulk density pq. Hence k„ is also 

independent of pq. Thus one may write eqn (5.26) as 

p0 •)
$p  $  dp$dx2{x2- x l)— '2 /i(n - \)p n 1

0 2 „

x f d x 3 • • • dx„kn(Xl, • • • jcn) (5.27)

Using eqn (5.3, the direct correlation function for a bulk is simply

c(ri,r2,Po)= 2  n (n —l)po" 2/d r 3 • • • d r ^  (r1?r2, * • • ,rJ (5.28)
n =2

Combining eqns (5.27),(5.28) and (5.7) one obtains

p° d
=Po+/f^ p/dr2(x2- x i ) - —c (rj,r2;p)

0 dX2
Po

~P o~fp dpfdr2c (rj,r2;p) (5.29)
o

This is the usual formula for the pressure in terms of the direct correlation function. 

The importance of this derivation is that it establishes that the pressure (and hence the 

density at the wall) depends on the direct correlation function (as determined by the
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form of the functional chosen). In fact, when the potential u(x)  is zero (hard walls), 

the density at the wall may be calculated directly from the two formulas for the 

pressures, eqns (5.14) and (5.29), without having to solve for the density profile at all. 

Note, however, that the latter formula is only applicable when the functions k„ are 

independent of pg, and the free energy has the form given in eqn (5.1).

It is now evident why the hyper-netted chain (HNQ approximation fails to give 

the right value of the density at the wall. Here one uses the form (5.1) for the free 

energy, with

^ 2(ri,r2) = y c ( r „ r 2 ;po)

Kn(r i> * * * >rn)—0 , n > 2. (5.30)

The function AT2(r1,r2) , though, is now dependent on pg, and thus one may proceed

no further than eqn (5.26) in the calculation of the alternative form for the pressure. 

Thus

Po2 ^
P w=$P = P o + ^  ( r„ r 2 ;pg) (5.31)

This is different from eqn (5.29), which gives the correct density at the wall.

Eqn (5.26) can be obtained more straightforwardly from eqns (5.1) and (5.9). In 

the thermodynamic limit, the fluid becomes homogeneous. Since the system dealt with 

is a grand canonical ensemble, the Gibbs-Duhem relation is applicable for the free 

energy, whence,

PPT=-Pfl[p0]

+ 2 Pon/d r i  ‘ • • • , r j
n =2

As mentioned earlier, Kn depends only o n n - 1  independent variables, so one of the n 

integrations over space may be trivially performed with an integrand of unity, simply 

giving the volume of the system as a result. Dividing both sides of the equation by this 

volume gives

= - /d r ip 0
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P/J=r~Po

Substituting for the logarithmic term from eqn (5.9) gives the desired formula for the 

pressure

&P =P0-  2  Po" (* - l) /d T 2 * * • fri* * * *
n =2

This is the same as eqn (5.26) after one has integrated by parts. Although the required 

formula can be obtained in this way, it does not illustrate as directly that the density at 

the wall depends on the form of the density functional, and that precisely the same 

steps were carried out from the same starting point to obtain it in the former method, 

as opposed to deriving it from a different starting point in the latter.

It can be seen now that a criterion has been developed for a successful density- 

functional theory. In order to be successful, a minimum requirement of the theory is to 

reproduce the value of the density at the wall correctly. Thus the form chosen for the 

functional must satisfy eqn (5.26) with P being the (known) bulk pressure.

Bearing this in mind, a generalisation of the HNC density-functional is proposed 

in the next section which satisfies the above condition. This should therefore describe 

accurately the structure of a hard-sphere fluid, for which an accurate, albeit empirical, 

equation of state exists, from which the value of the bulk pressure appropriate to a 

given bulk density can be obtained.

/

l o *
I pi l “ 1

+ 2  Po" J«*r2 * ' • (ri> * • *
n =2

5.3. A Hard-Sphere Fluid near a Hard Wall

The simplest generalisation of the HNC functional one can make is to introduce a 

third order term into the functional. Thus it becomes

p n = /p ( i) In P ill
Pi

d T i+ p /c h W lM l)

- J d r ,d r 2tf ( r j^ p O jJ p fo )
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- / d r 1dr2dr3L (r1,r2,r3)p(r1)p(r2)p(r3)

Upon functionally differentiating with respect to the density, allowing the system to 

tend to its homogeneous state, and dividing by the bulk density, one obtains

In ( p7 ] = ~ PV(1 )+ 2 p° / ^ ( r i’r2 )d r 2

+3p02/L  (r„ r2,r3)dr2dr3 (5.32)

thereby relating the equilibrium density to the chemical potential, p., via p2. 

Differentiating the free energy twice with respect to the density once more, and using 

the definition of the direct correlation function, eqn (5.3), gives

c (r i>r2 ;p)= 2 AT (r1,r2)+ 6 / d r 3L (rj,r2,r3)p(r3) (5.33)

which reduces in the bulk to

c (ri,r2 ;p0)=2K (rj,r2)+ 6 po/dr3L (rj,r2,r3) (5.34)

Also

C3(ri»r2 ,r3)= 6 L (r1,r2 ,r3) 
and eqn (5.26) for the pressure becomes

=Po+ /dr2(*2- * i ) ^ [ P o 2*  (ri,r2)

+2Po3/ d r 2L (r1,r2 ,r3)] (5.35)

One may substitute for p and K by po and c (rj,r2 ;pfl) respectively, using eqns 

(5.32) and (5.34). Specialising to the case of a hard-sphere fluid between hard walls 

means that the density profile is a function of x only. So

(3ft„[p]-p!!,[Po]= /  p W ln i-E ^ )—/Sp(l)<il -ha l Po

—Jd ld 2 C  (1,2,p0)8p(l)Sp(2)

—/ d ld2d3 l (1,2,3)8p(l)8p(2)8p(3) (5.36)
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where

8P(1)=
P(!)-P0 , —h/2<x<h/2

(5.37)
-Po \x\> hri

C (1,2,Po) = f c  ( r„ r2;po )dyjdz2 (5.38)

and

l  (1 ,2 ,3 )= /£ fy 2̂ 2 ^ 3 ^ z3L (r l>r 2>r 3) (5.39)

The equilibrium density profile minimises the free energy, and is therefore the solution 

of the equation

Now the original independent parameters \l,K, and L have been replaced by po,C, 

and P . Choosing for C the Percus-Yevick (PY) approximation for a bulk fluid of 

density po, and for the pressure P the value given by the Camahan-Starling equation 

of state at density po, means that p.,AT, and L are given in terms of pq. However, as 

the functional is written explicitly in terms of po,C, and L , only L need be calculated. 

This can be done using eqn (5.26), and substituting for K in terms of C , viz.

Taking c (r j,r2) equal to the PY approximation for the direct correlation function of 

the bulk fluid and putting / equal to zero in (5.40) yields the non-linear theory 

discussed by Grimson and Rickayzen [17].

Now the function L (rj,r2 ,r3) must be chosen to satisfy eqn (5.41). Since this 

concerns the integral of the function over its two independent arguments, there is a 

wide latitude of choice in choosing the form of L . From the form of eqn (5.36) one 

would expect it to be equal to the three-particle direct correlation function of the

In j =/i</2 C (l,2 )8 p(2 ) + J  d2d3 l(l ,2,3)8p(2)Sp(3) (5.40)

(5.41)
—oo
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homogeneous fluid at density po, but this is unknown. Now it is well-known that as 

the arguments of an n-body direct correlation function increase, the n-body direct 

correlation function tends to the corresponding n-body interaction potential. For the 

case of simple neutral hard spheres, there are no three- or higher-body forces which 

might be attributed to polarisability of charge distribution on the model particles. Thus 

L must vanish in the in the limit of large particle separations. Similarly, one expects 

three-body correlations to be most important when the particles are in close proximity. 

A simple choice for L which has these properties is

I ( r i , r 2,r3 )= A 0(a- | r j - r 2 |)0(<j- |r 2- r 3 |)0 (a -  |r3- r ,  |) (5.42)

where 0(x) is the Heaviside step function,

o /^ -O  , x < 0
0 ^ ~ 1  , x > 0

A is a constant chosen to satisfy eqn (5.41) and a  is the diameter of a hard sphere 

’molecule’.

In fact, in the one-dimensional problem only the function /(x 1^t2 7JC3) occurs and 

it seems reasonable to approximate this directly. To see how critical the form of 

/ (x-irx2’x 3) was to the results, three approximations were used, two of which have two 

of the properties of the function obtained from eqn (5.42); they both vanish when the 

separation of any pair of co-ordinates exceeds a  and they are both continuous at 

I jc; —Xj h=a. All of them can be written in the form

/ (xj^c2rx3)=Bf (x1- x 2) f  (*2- x 3) /  (*3-* i )  

where the functions /  (x ) are chosen to be, in case I,

/ ( * ) = ( i — I4 je (< r -1 * |)

in case n ,

/(*)= |i- ^ | 0 ( ct-  |x |)

(5.43)

(5.44)

(5.45)
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and, in case HI, simply

/ ( x ) = 8 ( a -  jar |) (5.46)

B is therefore determined by eqn (5.41), for each case, and is given in terms of 

Po. The functional is furthermore independent of the wall-fluid potential. As already 

mentioned the PY approximation for c (r 1,r2;p0), the bulk direct correlation function, 

has been used, and the Carnahan- Starling formula,

for the pressure.

The theory was applied to a hard-sphere fluid confined between two hard walls 

separated by 8  molecular diameters, as computer simulation results are available for 

this system, and direct comparison is therefore possible. The constant B was kept 

fixed, independent of h , as this is required in the derivation of eqn (5.41). Equation 

(5.40) was solved numerically by computer with methods described elsewhere (see 

Chapter 3, for example). The resulting density profiles are believed to differ from the 

exact solution by less than 0.5%.

The results of the calculations are displayed in Figs. 5.1-5.13 where the density 

profile is displayed for various values of the reduced equilibrium density pgo3, the one 

dimensionless parameter in the problem. Figs. 5.1-5.3 show the profile for pqo3  = 

0.57, h = 8 cx, obtained variously using the PY approximation (or linear theory of 

Grimson and Rickayzen), the HNC approximation (or non-linear theory of Grimson 

and Rickayzen), and the three approximations of this theory. It is evident that the PY 

and HNC approximations do not give the right value of the density at the wall, as has 

been demonstrated earlier. Since B has been chosen to give the bulk pressure, it 

naturally gives the right value of the density at the wall as the separation tends to 

infinity. It was found that in all three cases the density at the wall at 8 a  differed by no 

more than 0.5% from the density at the wall at infinite separation. So the density

(5.47)
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profile is similar to that found near a single wall ( the limit of infinite wall separation 

). Considering that the only constraint on the form of L is that it is chosen to give the 

right value of the wall density, the fit to the simulation results of Snook and 

Henderson [25] is extremely good. Although not very apparent at this density, there 

exists a cusp in the profile for case HI. This is a well-known feature of profiles 

obtained by using a discontinuous direct correlation function, as was the case here. At 

this low density, all three approximations give similar results, all of which are superior 

to those obtained from the PY and HNC approximations.

Figures 5.4 and 5.5 show similar results for the next density at which Snook and 

Henderson performed their simulation, namely per3 =.755. The increased density 

emphasises the inaccuracy of the PY and HNC approximations, and the cusp in HI is 

now more evident. It can be seen that the first approximation, however, still gives very 

good results.

The trend continues as the bulk density is increased, and this is displayed in Figs 

5.6-5.10. Here the reduced bulk density per3 is 0.81. The same features as before are 

now exaggerated even more. Note that the results of cases I and II are not very 

different, indicating that the form of /(1,2,3) is not too important, providing that the 

constraints imposed upon it are fulfilled. However, case II does fit the peak, located at 

about a molecular diameter from the wall, slightly better, but the improvement is not 

significant.

In Fig 5.10, the HNC and PY approximations, along with the best approximation 

of this theory, case H, are plotted out to a distance of 4 molecular diameters from the 

wall. Not surprisingly, beyond about 2 molecular diameters, the results are not very 

different; in fact, the perturbations from the equilibrium density there are not very 

great, ( of the order of a few per cent ), and the spatial oscillations of the three 

approximations occur virtually in phase. Each peak is located at about an integral 

number of molecular diameters from the wall, the usual result.
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Finally, the results for the ( somewhat unrealistic ) reduced liquid density of 0.91 

are shown in Figs 5.11-5.13. Here the cusp in case III is very prominent, and the HNC 

value of the density at the wall differs from the correct value by a factor of about 2 . 

Yet the failure of the FY approximation is more complete, as it results in negative 

densities at various distances from the wall, a feature shared by the generalised mean 

spherical approximation (GMSA) [26]. Once again, case II gives slightly better results 

than case I.

The constant B was found to be negative. In the nature of the mean spherical 

approximation, one can identify the 3-body direct correlation function as the algebraic 

opposite of an effective three-body potential. This makes the three-body potential a 

positive quantity, and therefore repulsive. This serves to reduce particle correlations, 

as witnessed by the lower heights of the peaks in cases I and II compared with the 

peaks due to the HNC approximation.

It is a measure of the amount by which the the wall pressure given by the HNC 

approximation differs from the bulk pressure. The dimensionless constant B a4 depends 

strongly on the density and in case I it varies from -58.5 to -184.6 while in case II it 

varies from -27.4 to -86.4 as pqct3 varies from 0.57 to 0.91.

5.4. Attractive forces, and the wetting of a Hard Wall by Vapour

This formalism may now be applied to a mixture containing attractive long-range 

forces. Henderson [27] and others [28] have shown that for a functional to represent 

the behaviour of a either a liquid or a vapour in the bulk, depending on the 

conditions, the functional must be at least cubic in the density. Presumably this applies 

to inhomogeneous fluids too, and as the functional used in this chapter is indeed cubic 

in the density, it was considered interesting to find out if the same functional could 

produce liquid or vapour behaviour, or even liquid-vapour coexistence, depending on 

the conditions.
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A Lennard-Jones-type potential of the form 

V (r )= -e

=4c

r<  2V6<t 
6

(f r -w ■>2v 6(j (5.48)

was chosen for the long-range attractive forces. A hard sphere core potential was 

maintained.

The direct correlation function of the fluid was calculated using the random phase 

approximation (RPA). So

c (r)= c //5 (r)-pV ,(r) (5.49)

This choice of approximation scheme was useful in that the correction to the free 

energy of the system is simply the addition of an extra term, viz.

3^[p]= Pfy/s [p] + 2 " /p(r) v (r~ T' )p(r ' )drdr'

This equation is easily minimised to give 

8 ilfjs [p] .
^ _ 8 p(r)—+ ̂ p(r )V(r~ r )dr ==°

This equation was solved in the same manner as before. 

Now for a homogeneous fluid, the pressure is given by

PoP=Pm +T fV (r)dr  

At the critical point,

and

dP
dP0

(5.50)

(5.51)

(5.52)

n2p
“ 4 = 0  (5.53)
dPo

So from eqns (5.53) and using the Carnahan-Starling formula for the pressure due to 

the hard spheres, one arrives at the following values for the critical temperature, Tc ,
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and the critical packing fraction, ”nc

■ ^ = .9 6 3  , Hr =.129 (5.54)

The value of the reduced temperature was therefore chosen as 

IrT
T * = — = .82 (5.54)

At this temperature, the density of coexisting liquid was in the region of p0cr3=.76, 

and the corresponding density of coexisting vapour was found to be about pocr3=.019.

The results for different bulk densities are shown in Fig 5.14. As can be seen, as 

the density approaches that of coexistence, the value of the density at the wall 

decreases dramatically. It tends to the density of the vapour. Thus one can see that a 

thin layer of vapour is built up at the wall.
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6 . SHOULDERED HARD SPHERE MODEL FOR CHARGED COLLOIDAL 

DISPERSIONS

6.1. Introduction

The work up until now has dealt with the structure of liquids near a wall from a 

fundamental starting point, the free energy. Information regarding the distribution of 

the fluid follows directly from this approach. It is possible however, to obtain such 

information in an indirect way, via the structure factor. This is related to the fourier 

transform of the radial distribution function, (similar to the density profile for a 

homogeneous fluid ), and is of importance as it can be measured directly by scattering 

experiments.

The rest of this thesis deals with this aspect of fluid structure, and the structure 

factor according to several theories, as applied to specific models, is found and 

compared with experiment.

This chapter introduces a perturbation theory in which a real fluid is modelled by 

a reference potential, and the difference between the structure factor calculated from 

the reference potential and the structure factor measured by experiment is used to 

calculate a correction to the reference potential. The reference potential chosen is a 

shouldered hard sphere potential. The structure factor for a fluid with softer cores is 

also calculated, but not used in the perturbation theory, as it does not fit the 

experimental data any better than the potential already used.

6.2. Theory and Results

Light and neutron scattering studies of the static structure factor S (q ) for aqueous 

dispersions of charged colloidal particles bear a strong resemblance to similar studies of 

simple liquids. This has led authors to try to interpret experimentally determined 

structure factors with models that are familiar from theories of simple liquids. In 

particular, the well-known hard sphere fluid and one-component plasma (OCP) have
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been used with varying degrees of success. For all of the models used, the free 

parameters of the interaction potential between the particles are chosen to ensure that 

the principal peak in S (q ) for the model fluid matches that of the dispersion. But it 

has been found that the second peak in S (q) for the hard sphere fluid is located at too 

small a wavevector to model the experimental data after the principal peak has been 

fitted (see, for example, Fig. 6.1 ). The OCP is considerably better than the hard 

sphere fluid at locating the positions of the peaks of S(q)  in agreement with 

experiment, but significantly underestimates the magnitude of the second peak in 

S(q). Perhaps the most successful model to date in terms of fitting experimental data 

for charged dispersions has been the rescaled mean spherical approximation (RMSA) 

of Hansen and Hayter.

This model involves a rescaling procedure to extend the range of applicability of a 

fluid of particles interacting through a hard sphere plus long-ranged repulsive Yukawa 

potential in the MSA. This model is as successful as the OCP in locating the position 

of the peaks in S(q), but is noticeably better in reproducing the magnitude of the 

second peak. The major deficiency of the RMSA is its inability to reproduce 

accurately the trough between the principal and second peaks in 5 (q ) with regard to 

the position of the minimum and asymmetry of the trough.

As an example of the asymmetry of the trough in S(q) Fig 6.1 shows the 

structure factor for an aqueous dispersion of polystyrene spheres of nominal density 

p—2.53x l0 12cm- 3  obtained by Grüner and Lehmann[29] in a light scattering 

experiment. The asymmetry of the trough in S (q ) is not unique to colloidal 

dispersions, a similar phenomenon arises in some liquid metals which exhibit a 

shoulder on the high angle side of the principal peak of S(q). Silbert and Young[30] 

have shown that this feature is consistent with a fluid whose pair potential has the form 

of a shouldered hard sphere,

oo r <d

^ shs(r )~ e d < r  <Xd 

„ 0 r > \ d

(6.1)
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with suitable choices for the constants d ,e and X. While the study of Silbert and Young 

was performed using an approximate analytic theory, the results have been confirmed 

by Monte Carlo simulations due to Levesque and Weis[31] and an exact study of a 

one-dimensional analogue due to Kincaid and Stell.[32]

Here the method of Silbert and Young is followed in using a simple analytic 

approximation for the structure factor of this shouldered hard sphere fluid based on the 

random phase approximation (RPA). This formalism has been described elsewhere[33] 

and consists of writing the direct correlation function of the shouldered hard sphere 

fluid cSHS ( r ) as the sum of the direct correlation function for a fluid of hard spheres of 

diameter d , cHS (r), and a perturbation potential arising from the shoulder in <îSHS (r). 

The structure factor for the shouldered hard sphere fluid is then given by

Sshs(<] ) = (1 ~ cshs((i )) 1 (6-2)

where the Fourier transform of cSHS(r) is given by

Cshs (<l)=J d  r4irr2^ j L [cHS (r )-ße0(Xd - r ) ]  (6.3)

When the analytic form of cHS(r) from the Percus-Yevick approximation is used, the 

integral in eqn (6.3) is straightforward. Although the RPA formalism has its 

limitations at high momentum transfers, previous work suggests that it should be 

adequate for the present study.

For a system of particles of packing fraction ----- r-, the shouldered hard sphere
6 pd

fluid represents a model with four adjustable parameters (T),d ,e,\) and it is difficult to 

be sure that a unique solution has been found in a search to obtain the combination of 

parameters to satisfy the observed data. But Fig 6.1 shows the the structure factor for a 

shouldered hard sphere fluid with -q =0.27, d= 5 .2x l0~ scm, ße=0.28 and X=2.1 in 

relation to the experimental data of Grüner and Lehmann for an aqueous dispersion of 

polystyrene spheres of nominal density p=2.53xl012cm 3. It is reasonable to treat r\ 

as a variational parameter, since doubt exists as to the correct value of the density. For
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comparative purposes Fig 6.1 also shows the best fit to experiment that can be obtained 

with a hard sphere fluid by varying the the two parameters t] and d  (^=0.34 and 

d  =5 .6x l0~ 5cm). It can be seen that the shouldered hard sphere model is significantly 

superior to the hard sphere model in modelling the observed data. Indeed the 

shouldered hard sphere fluid is very successful in its ability to locate and model the 

second peak in S(q)  in addition to the reproduction of the asymmetry of the trough 

between the first and second peaks of S (q ). Further note that the shoulders on the low 

and high angle sides of the principal peak in S(q)  for the shouldered hard sphere 

model mimic corresponding features in the experimental data. Thus the shouldered 

hard sphere fluid represents a useful model system for interpreting experimental data 

that will complement the RMSA of Hansen and Hayter which also contains four free 

parameters.

The primary aim of this study is to produce a model system that can represent the 

experimentally observed structure factor at high momentum transfers accurately 

enough to perform perturbation treatments on the available small angle scattering 

data. Given the success of the shouldered hard sphere fluid above, one may use this 

model as a reference system in a RPA calculation of the interaction potential from the 

observed S (q). In this treatment the effective interparticle pair potential 4>(r) for the 

colloid is given by

« K O ^ sa/s O")-
kBT

(2ir)3Po
Jdq 4 tt<7

2 smgr 1 1

s(q )  $shs (q )
(6.4)

This technique has been seen to be semi-quantitatively accurate when applied to simple 

liquids and liquid metals and the results of a calculation based on the shouldered hard 

sphere fluid and experimental data shown in Fig 6.1 are given in Fig 6.2.

The effective pair potential shown in Fig 6.2 displays a cusp at the hard core and 

a discontinuity at larger particle separations due to the form of the shouldered hard 

sphere potential. Thus we may expect the calculated <}>(/■) to be only an approximation
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to the effective pair potential. But it is interesting to note that the oscillatory nature of 

the calculated pair potential is consistent with a similar study of high density 

dispersions. As noted in the analysis of the result in ref 39, the shallow primary 

minimum in <J>(r) differs qualitatively from the form given by DLVO theory. The 

deficiencies of DLVO theory in predicting the structure of concentrated dispersions of 

charged particles are evident from the work of Hansen and Hayter[34]. They use a 

fluid of particles interacting via a hard core plus repulsive Yukawa pair potential that 

is equivalent to a DLVO theory in the absence of van der Waals interactions, which 

are thought to be negligible in these systems, and fail to accurately reproduce the large 

wavevector form of 5 (q). The failure of the Hansen and Hayter model in the small 

angle scattering regime is far more serious and questions the long-range form of the 

DLVO pair potential. However, the status of DLVO theory from these scattering 

measurements may appear to be artificially bad for two reasons. Firstly the simple 

DLVO pair potential is derived in the dilute dispersion limit and is not strictly valid 

for the concentrated systems studied in the light and neutron scattering experiments. 

Secondly, the samples used in the experiments are known to be polydisperse to a small 

extent and it can be shown that the polydispersity of the sample around some 

representative monodisperse system may be regarded at the level of the RPA as an 

additional contribution to the effective pair potential. Thus a study of the 

polydispersity of the samples used in the experiment is essential if structure factor 

measurements are to provide information on colloid interaction potentials.

It must be emphasised that the model presented for the large wavevector form of 

the structure factor is by no means unique, but given the simplicity of the shouldered 

hard sphere model it may provide a guide for the interpretation of experimental data. 

Much more work is required on the possible degree of polydispersity of the polystyrene 

sphere system used in the experiments if the physical origin of the shoulder in the 

interaction potential is to be attributed to either an intrinsic softness of the core in the
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pair potential, polydispersity of the hard cores or some other effect.

6.3. Soft Core reference potential

A second potential was also used as a reference potential in order to find a good 

fit to the data. This was the so-called "soft core" potential. The form of the potential is 

not given explicitly, but rather its effect on the radial distribution function of a pure 

hard fluid is specified. From this the correction to the structure factor may be 

calculated. This has been done by Hoshino [35].

Thus the following terms are added to the hard-sphere radial distribution function

(rdf)

4?i0-)= (
Aexp[8 (r/cr)—1 ] r < a

(6.5)
(—Bexp[—e(r/a)—1 ] r > a  

where A ,B ,8 , and e are dimensionless positive parameters. These are chosen so as to

fulfil the following conditions;

(i) continuity of g (r ) at r  =cr

(ii) continuity of at r —a

(iii) conservation of the normalisation of the rdf

4'rrp/A£1(r)r2</r=0 (6.6)

Thus there is only one free parameter in the model. Using a pure hard sphere fluid to 

give the rdf which will be "softened", the conditions (6 .6 ) become

A +B = a  + p+"y 
A 8 —B e=p+3y
A (1/8—2/82 + 2/83)=B (l/e+2/€2+2/e3) (6.7)

where

a =

P =

( 1 + 2 d) 2 

(l-'n)4 
—6ti(1+tV2)2 
(l-'n)4
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"y=Y<* (6 .8 )

and Ti=-^p—, the packing fraction.

Then the structure factor is given by

S ( k ) - l  =4irpf(g (r ) - 1) (6.9)

The equations (6.7) were solved by computer for various values of the density, and A 

was chosen to be the free parameter. Figures 6.3-6.5 show the best fit to the data of 

Griiner and Lehmann obtained at three different densities. As has already been 

mentioned with regards to the shouldered hard sphere potential, it is valid to treat the 

packing fraction as a variable parameter, as doubt exists concerning the correct value 

to choose. As can be seen from the graphs, the resulting curves all fit the data fairly 

well, but not significantly better than each other or the shouldered hard-sphere 

potential. It was therefore not deemed worthwhile to use this potential in the 

perturbation theory.



2
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0

1 0 q ( c m )

Fig 6.1: The structure factor for an aqueous dispersion of polystyrene hard 

spheres given by the shouldered hard sphere model (solid curve) and the pure hard 

sphere model (dashed curve). The points represent the experimental data of Grilner 

and Lehmann. For relevant parameters see text.



Fig 6.2: Effective inteipartide pair potential for an aqueous dispersion erf polys

tyrene spheres with structure factor depicted in Fig 6.1. The dashed line shows the 

reference shouldered hard sphere potential used to obtain the structure factor in Fig 

6.1



Fig 6.3: Structure factor for soft core potential with A = 1.83, B = 2 .2 1 , 6 = 8 .7 1 , 

« = 1 5 .1 3 , and tj= .45. The dots are the experimenta] data erf Grimer and 1 ^ m a n n



R « 6.4: A s for K g  6 .3 , but w th  „ = .4 ,  4  =  1.58, «  =  1 .75, 6= 1 1 .3 0 , M d 
«= 16 .84



o 1 2

Fig 6.5: As for Fig 6 .3 , but with ij = .35 , ¿ = 1 .3 8 , i? = 1.40, 6= 4 9 .1 6 , and 

« = 5 3 .9 5
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7. CONCLUSION

This thesis has mostly concerned itself with the structure of a fluid near a hard 

wall. The formalism of Grimson and Rickayzen has been extended and applied to the 

case of a fluid comprised of hard spheres with embedded point dipoles or ions confined 

between two hard walls. The model was treated using two separate approximations ( 

the linear and non-linear theories of chapters 3 and 4 respectively ) and the results 

obtained for the polarisation and charge profiles, as well as the pressure as a function 

of wall separation, were compared and contrasted. The most striking difference in the 

non-linear theory is the large increase in the value of the charge density at the wall. 

Similar results have been reported by Grimson[24] for the simpler case of a pure hard 

sphere electrolyte, where the polarisation due to the discrete solvent particles has been 

approximated by a continuous background with a bulk dielectric constant. The 

pressure could not be directly compared, however, as the results in the non-linear case 

were not regarded as being sufficiently accurate to be reliable, for reasons explained in 

chapter 4.

Both of the results derived here differ qualitatively and quantitatively from earlier 

macroscopic theories (Debye-Huckel, Gouy-Chapman) in having oscillatory profiles 

for charge, polarisation and pressure, as opposed to monotonically decaying ones. This 

would appear to have grave consequences for DLVO theory, whose prediction of a 

single minimum in the intercolloidal potential, arising from the choice of Debye- 

Huckel theoiy for the repulsive electrical double-layer component, is challenged. 

However, as the deviations of the pressure from monotonicity are greatest at relatively 

small separations ( < 3 molecular diameters ), the value of DLVO theory is not 

undermined in describing dilute systems, or heavily salted systems in which the 

repulsive potential is of short range anyway. It would seem, though, that DLVO theory 

is not to be used in describing coagulation, or, rather, to be used with caution.

The results also appear to be in agreement with the calculations of other workers
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near a single wall, this case being the limit of infinite separation of two walls.

The advantage of a treatment using two walls is that one can obtain an 

intercolloidal potential directly instead of inferring one from experimental data, or 

assuming one with several adjustable parameters. Thus one should be able to predict 

the behaviour of a system to some degree, a feature which is not available otherwise.

To date no direct measurement of the force between colloid particles has been 

made, to the best knowledge of the author, and so the predictions remain untested. It 

would be desirable for an experiment to do this to be carried out, to test the 

assumptions present in the theory, and the power of the density-functional method.

A generalised density functional was introduced in chap 5, and some well-known 

results were derived from it which had not been done this way before, namely that the 

pressure at the wall was directly proportional to the density of the fluid at the wall for 

systems with no wall-particle interaction (hard walls). A model system of hard spheres 

confined between two hard infinite planar walls was treated using an approximation to 

the generalised functional in which some attempt to take three-body interactions into 

account was made. The results were found to be in excellent agreement with Monte 

Carlo simulations, particularly when one considers the simplicity of the approximations 

made. The density profile was seen to be fairly insensitive to the form of the term 

representing the three-body interaction, a useful feature.

The form of the functional, being cubic in the density, was capable of describing 

liquid-vapour coexistence, and this was demonstrated by applying the functional to a 

system of hard spheres interacting with a truncated Lennard-Jones potential, with the 

direct correlation function given by the RPA. Choosing appropriate values for the 

density and reduced temperature gave similar results to those obtained by Tarazona 

and Evans[28], namely the wetting of a wall by vapour.

The functional is evidently useful, and attempts to apply it to a system 

representing an argon fluid bounded by solid carbon dioxide walls are currently being
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made.

The structure of bulk fluids has also been investigated. This has not been done by 

studying the pair distribution function ( or density profile ) directly, but rather by 

examining the related fourier transform, the structure factor, as measured by 

experiment and calculated theoretically. The purpose of the studies was to obtain an 

intercolloidal potential by approximating the experimental structure factor by a close- 

fitting theoretical one derived from a known inteiparticle reference potential, and then 

using a perturbation approach to derive a correction to the reference potential from the 

difference of the the two structure factors.

When one uses this technique to analyse a system of charged polystyrene balls, 

using as a reference potential a hard sphere potential with an added hard shoulder, 

one finds, perhaps not surprisingly, that the calculated potential contains a deep 

primary minimum, as well as a shallower secondary one. The depth of the minimum is 

about two orders of magnitude greater than the corresponding minimum predicted 

solely on the basis of van der Waals forces. Now it may be argued that this large 

attractive correction to the reference potential is an artificial effect due to the fact that 

the effects of polydispersity were not included in the treatment. Certainly there was 

some degree of polydispersity present in the sol. However it seems that although this is 

true, it may not be deleterious to the theory— one may, in fact, represent the 

polydisperse system as a monodisperse one interacting with a suitable potential of 

mean force. The accuracy of this representation remains to be established. Certainly, it 

can reproduce the observed structure factor, but does it allow calculation of 

thermodynamic or structural quantities which are close to those in the real system? 

This aspect of the theory needs further investigation.

The data was also modelled using a "soft" core as a reference potential. The 

resulting fit to the data was not deemed sufficiently good to merit its use in the 

perturbation theory, but the results are included for the sake of completion.
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Now the logical extension of the present formalism as applied to a system of ions 

and dipoles in Chapters 3 and 4 is to apply it to a fluid comprised of ions, dipoles and 

quadrupoles. This work is currently being carried out, although at present no progress 

beyond calculating the bulk direct correlation functions has been made.

Two further avenues of research already mentioned are

(i) the application of the improved functional of Chapter 5 to other systems,

(ii) the investigation of the accuracy of representing a polydisperse system as a 

monodisperse system interacting through a suitable potential of mean force.

A further refinement to the perturbation theory for the derivation of the 

interparticle potential has also been considered, though not yet implemented. This 

involves using the derived potential as the new input for a reference potential, and 

calculating the new structure factor from this. This is to say one would use a different 

approximation to the RPA ( the PY or HNC approximations, for example) to derive 

the direct correlation function from the new potential, and hence the new reference 

structure factor. One would continue iterating in this fashion until convergence ( 

hopefully ) was achieved, thus justifying the use of the RPA approximation ( exact in 

the limit of small perturbations ), and becoming self-consistent. The resulting 

interparticle potential would be the correct one, within the limitations of the 

approximation chosen for the derivation of the direct correlation function from the 

potential. The RPA will introduce no error, as it essentially correct at convergence.

In summary, the structure of a fluid both in the bulk and near a wall has been 

studied using the method of the density-functional, and perturbation theories. The 

results subsequently derived for the pressure between two hard walls cast doubt on the 

validity of DLVO theoiy, or rather, on its range of applicability.An improved 

functional, taking three-body forces into account, has been introduced, and its 

successful application to a hard sphere system demonstrated. Finally, a simpler 

representation of polydispersity has been (somewhat tentatively) put forward. Its
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ability to accurately represent the polydisperse system beyond the reproduction of its 

structure factor is not yet established.

It is evident that, based upon the work which has already been done, there are 

many exciting possibilities yet to be explored.
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APPENDIX A

FUNCTIONAL TECHNIQUES

Functions of several variables

One may begin by considering functions of several variables, and then extending 

the formalism to deal with a continuous infinity of variables. /  (xlrx 2, • • • yX„ ) exists 

if to every value (x l,x 2, • • • ) in a set one can assign a unique value of / .

Under well defined conditions one can define partial derivatives ( i= l ,  2, ...
dXj

, n) such that (to first order in Ax,)

A/‘=/ ( ^ i +Ax1^ 2 +Ax2, • • • ^„+A x„ ) - / ( x i^ 2, • • • r̂n)

= Y — Ax 
&  dx‘ ‘

Alternatively

G(e)=/(*/+eAx;)
With this new definition, we may write

*  , t i  «*,

The second definition is more exact.

For second order derivatives:

(A .l)

(A. 2)

s2/4 i -ê £ -* * i* * j2  . . , dx. dx; i j =1 ' J

or

(A.3)
|J  = 1 '

Under appropriate conditions, one can expand a function in terms of its first and 

higher order derivatives in a Taylor expansion,

/(x.+Ar,,)=/(!,) + f  Ì
r = 1 ' ‘ r = 1

Axr
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Integration

I = J f ( x  1 ^ 2»  • *  '  yX„)dx\ *  • • dxn 

can be defined. In liquid theory, examples are :

Energy;

E = 2 ] 2»  (*1- ^ .  "  ' ^

Partition function;

Z =CfUdpi exp (-ß£  (<j>, ^  ))

Functionals

One can extend the previous definition to the case where the ” function " depends 

on a continuous infinity of variables i.e on a function.

F [4>(x)] is a functional of the function 4>(x), (defined in the range a < x < b , if to 

every function 4>(x), we ascribe a unique value of F.

Examples:

(i)

F [4 > ] = 1  if <J)(x ) — 0  everywhere 
= 0  otherwise

b
F [4>]=/4 >(x)dx

a

(iii)

(iv)

F [4»]=<{>(a ) as a special case
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Functional Derivatives

Consider small changes in the functional F[<}>] resulting from small changes in

<K*)-

To first order in At}>, when <}> changes from <}> to 4>+A<f>(;c), we have 

b
AF=fA(x)A<$>(x)dx (A.4)

a

(A.4) is the analogue of continuous analogue of (A .l). It is usual to write

a ( SF
A ^  5<t>(x)

This is a function of x , and a functional of <}>(*)•

Alternative definition

Define

<1>(e)=F[<K*)+rf(x)] 

where X and <}> are given. Then

de J t=0 J X(x)dx

Examples:

(ii)

and

b b
F=$${x)dx , AF — fA<fr(x)dx

8 F
&<K*)

(iii)

(A.5)

b

AE=2j

dx

(3)
A<})(x )dx
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(iv)

8 F
8 <K*)

—A
m

+*<W*)

F = / /< K* )K(■* s '  )<!>(*' )dxdx'
AF=J/A<j>(*)^(* rx' )dxdx' + //4>(*K (* s '  )A<}>(*' )dxdx' 

= f fM ( x ) K ( *  s '  )<K*' )dxdx' + f f (}>(*' )K(x rc' )A^(x)dxdx'

Therefore

~8 (j)(x) =t t K (x ' S)+K(* S '  )]<t>(*' )dx'

Note that this is a function of x and a functional of <{>(*)•

(v)

F ( s ) = f i A > i s ) )

(e g) exp(—<j)(x )))

AF^ ) = ^ y A^ )

A f(* ) = a | 5 0 A,M>’)

Therefore

8F «, \ dF
8 <K*) X y d<t>CO

Higher Derivatives 

Let

i»(e)=F[<})+€X]

where 8 2F
8 <t>(*)8 <K*' )

is symmetric in x and x ' .

(A .6)

For higher derivatives
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* (« )= F fo (x )+ tf(x )]

| - ° = f  ■ ■ ■ S s ^ ,  6 F 6<t>(x„) ■ • • *<*">*> ■ ■ ■ *. (A.7)

This defines 8  nF
&<K*i) • • • &t>CO

provided that it is symmetric in x lyx 2,

E.g.

0 )

F = f  4>(x )K (x rk' )<t>(x' )dxdx' 

$ ( 0 = / [ 4>(*)+e*C0 ]* (*»*' )[<K*' )+«X(x' ))dxdx'

6<|>(jc)6 <t)(jc' ) =K(XtX' )+K(x ' »*)

(ii)

F =ff (<K*))
$ ( « ) = / /  (<K* ) +eX (x ))dx

Ae2
t = 0 ‘

& f  ($(*))
dà?2

X \x )d x

= S Sf{? j X' > \ x - x '  )X(x)X(x' )Jxdx’ 
dà?

8 2F  <ff(<b(x))
S<1>(jc )S<{)(jc' ) 

Taylor Series

dà?1
-8 (x —x )

F[<J>+eX(x)]=G>(e)

provided that <I> can be expanded in a Taylor series in e.

d>(e)=<I>(0 )+ 

Therefore

V J _
„=i ' l! { d*n Je=0

F[4»+rf]=F[<H
1 8  nF

n S<t>(ATi) • • • &4>0„) A<K*i) • • • A< }> (*„ > & 1  • • • dx„ (A.8 )

provided that the righthand side exists.
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All of the above theory is valid if 4* is a function of several variables e.g.

4=<t>(r ).

Then the Taylor series is 

F[<}>+A<J>]=F[<}>]

+ „ | i 7 r / ^ ( r 1) 6 -F 6 < K rJA<t'(ri) ' ' ' A<Kr" )dr' • • ' dr- <A 9 >

A similar idea is used as the basis of Chapter 5
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APPENDIX B

Relationship of linear ion-dipole theory to Debye-Huckel theory

It will now be shown that when the diameter, R , of the ions and dipoles tends to 

zero, the equations derived in chapter 3 become those of Debye-Huckel theory. In this 

limit we have

£ +(x)= \x )+ 2 C \x )= Z [0 )h (x )  (B.l)

where

X ( 0 ) = f j L +( x )d x (B.2)

and the limit is taken in such a way that X (0) remains finite. These functions have the 

properties

87£ c(jc) $ e 2 ( . d C E( x )
2 -  „ b(*)> — — 5(*)- (B.3)

d x 2 *o dx eo

Hence, if these functions are substituted into eqns (3.22) and (3.23) and the equations 

differentiated with respect to x, the former twice and the latter once, one obtains

1 j |2q  e 2q  , e dP  ecr
n ■) ------- j--------- =0P"o d x 2 e0 eo dx e0 

3 d P  JC+(0) d P  fig
Po3ji2 dx  p2 dx e o q

(B.4)

(B.5)

where a  is the external charge density such as that on the walls.

The polarisation can now be eliminated between eqns (B.4) and (B.5) to yield

1 ¿rq  e 2q ecr

where

(3«0 d x 2 Éfl

PPo3P-2/3to

=0 (B.6 )

1
(B.7)

3  Po3^+(°)
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Eqn (B.6 ) is the Debye-Huckel equation for ions in a medium of dielectric constant er. 

The latter can be expressed in the more conventional notation using

1 -  J P o r f+(0)= i+=(1+4*,)2(1 -2 x ,) - “ (B.8 )

where x, satisfies

Then

q + - q -
PP03M-2

3eo <?-=( 1 -2 x,)2(1+xi ) - 4 (B.9)

(B.10)

This is the dielectric constant of the bulk dipolar liquid as given in the MSA.
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APPENDIX C

Equivalence of Eqns (3.26) and (3.34) 

From eqn (3.34) we have that

g ( h ) + J d x ^ ^

Now the equations for q and can be written

Yq(x ) - f  K(x ~x' )q(x' )dx +V=0 
0

where

Y=
3

1/Pi 0

0  1/P2
K(jc ~x' )=-

q(*)=
q(x

P(x)/»

C6 ( * - * ' )

Wo

CE( x - x  

<f(jc-*'

V=
0

Hence

Yq(/i)-fK (/i  - x '  )q(x' )dx’ +V=0 
o

If we differentiate eqn (C.2) w.r.t. h ,(V constant)

h , x h

0 dh ' o *

Take the transpose and use Kfr(x— x’ )=K(;t' — *).Then

_ x ) d x , - q " ( . h ) K ( h - x )
dh0 «"• 0 4 eov o

Multiply by q (x ) on the right and integrate over x . Then

f a  Yq(x)-Jdx fdx ' ^  K(x' —x)q(x)+ ~ ~
o dh o o dh €o

(C.1)

(C.2)

')

)

(C.3)

(C-4)

(C.5)

0 (C.6)
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=qrr (* )/K(/i - a: )q(.c )dix 
o

This can be rewritten

\ q ( x ) - fd x 'K ( .x - x ’ )q(x’)
0

+ ̂ = q * ( h ) fK ( h - x ) q ( x ) d x  
*0  n

Now use eqn (C.4) for the curly bracket to obtain

h h
*4 5

o 0 dh «0

Substituting for the integral from eqn (C.4) gives

h

(h )/K(A - x  )q(* )dx = - f d x d<i + & -

q,r(A )[Y q (A )+ V ]= -/d r^ V + -2 -
0 dh «0

Therefore

V=q"(i,)Yq(ft) _ s L
«0

Using the elements of the matrices, this becomes

VV
q \ h )  | f*(h) g2 
PPi PP2M-2 to

Thus, from eqn (C.l)

p(h)- q2(h) { f *(h) Q \h )
2PPi 23p2p.2 to

where

Pi="o> P2~Po/3

(C.7)

(C.8 )

(C.9)

(C.10)

(C.11)

(C.12)

(C-13)

(C.14)


