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ABSTRACT <

The electrical conductivity of a metallic system 
containing a very low concentration of paramagnetic 
impurities (commonly known as a Kondo system) is investigated 
by applying the linear response formalism. Starting from 
the s-d exchange Hamiltonian, the Nagaoka equations are 
re-formulated in the presence of a uniform electromagnetic 
field and a finite concentration of impurities. These 
self-consistent, closed set of equations are solved 
diagrammatically and it is shown that for s-wave scattering 
only, or more generally if only a single phase shift of the 
exchange interaction is non zero, the vertex corrections 
drop out. The calculations of conductivities at high and 
low temperatures, compared to the Kondo temperature, T^, 
where the perturbation theory breaks down, within the 
response formalism then give the same results as those of 
Nagaoka. Our investigation also substantiates the approxima
tion that the Kondo system relaxes with a characteristic 
time, t , provided the concentration of impurities is so low 
that the interaction betx^een the impurities can be neglected.

The same formalism has been used to calculate 
analytically the frequency-dependent conductivity at low 
temperatures. Because of the approximations involved in the 
calculations, our result is valid for frequencies very much 
less than 10 Hz. The real and imaginary parts of the 
complex conductivity are written down in terms of a 
dimensionaless parameter in the 'pure* and ’dirty’ limits 
(concentration of impurities, c ~ 10  ̂ or more). In contrast 
with the numerical calculations of Murata and Wilkins, the



(ii)

real part o£ the conductivity does not show a peak with 
respect to the frequency. In the ’pure' limit, the con
ductivities can be expressed as a universal function of 
impurity-concentration, and in the 'dirty* limit they are 
independent of it. These results are in agreement with the 
calculations of Murata and Wilkins. The predicted peak has 
not yet been observed experimentally.

The basic equations are derived again, taking an 
extended exchange interaction, with finite concentration of 
impurities but this time in the absence of the electric 
field. By following the same procedure, these equations 
have been solved for s and p wave scattering together. The 
vertex function for high temperatures has been evaluated from 
an integral equation formed through the Ward's identity. The 
electrical conductivity at high temperatures is calculated 
and a third order term in the exchange interaction is found 
in the coefficient of the leading logarithmic term as a 
correction. This term occurs due to the interference of s 
and p wave scattering and it has been shown that for a 
particular ratio of the strengths of s and p wave scattering, 
the leading logarithmic term can vanish giving an entirely 
new high temperature behaviour. The next highest order term 
has been calculated, and it is shown that this term does not 
vanish for the particular ratio when the leading term 
vanishes. Some experimental results are discussed in the 
light of the present theory. The approximate expression for 
the conductivity at low temperatures has been found. At 
absolute zero temperature, the effect of inclusion of p wave 
scattering is a significant reduction in the conductivity.



For weak p-wave scattering, the conductivity at low tempera 
tures is found to depend on p-wave scattering only.

(iii)
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CHAPTER 1 INTRODUCTORY REMARKS ON THE KONDO PROBLEM

1.1 Early Experimental Work
The study of dilute alloys of transition metal and

rare-earth ions in non-magnetic hosts has a long history.
In 1930, Meissner and Voigt*'1-' observed that the electrical
resistivity of certain metals, particularly of 'pure*
gold, decreased first and then gradually increased, by a
few per cent, as temperature is decreased to below 10°K.
This v;as studied more closely by De Haas, De Boer and 

f 21Van den Berg^ J and they found a minimum in the resistance- 
temperature curve of 'pure' gold (impurity <10 1I).

rLindev J carried out a series of investigations on the 
specific increase in the resistivity when snail amounts of 
normal and transition metals were added to the noble metals, 
(Cu, Ag and Au). He observed that Linde’s rule*-^ is valid 
for the addition of normal metals but not for transition 
metals. Later, Gerritsen and Linde’s*-^ experiments on 
electrical resistivity of Ag-Mn alloys showed a minimum for 
a concentration of about 0*1 at % Mn in Ag. Since then, 
the same phenomenon has been observed in many other alloys.*-^ 

For many years the subject remained obscure despite 
experimental studies, and in the absence of proper 
theoretical explanation the anomalous behaviour remained 
a mystery. It is only in recent years that an understanding 
of the nature of the problem has been attained. Gradually, 
a number of phenomena became quite well established. 
Anomalies in the thermodynamic and transport properties of 
the alloys were correlated with the existence of a local
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f 221moment on the impurity ionsv 1 , as indicated by high
r23 241temperature susceptibility measurements'- * J. The 

principal effects observed were the folloi^ing:
(1) A resistance minimum occurred at low temperature. 
This was remarkably different behaviour from that found 
in ’normal’ alloys where the low temperature resistivity 
became a temperature independent function dominated by 
defect and ordinary impurity scattering. Such 
anomalous effects were observed, for example, in 
numerous gold-, silver- and copper-based transition 
metal alloys*-6-2i). in Cu-Fe the temperature of the 
minimum, T - was found to vary with the impurity
concentration c as Tm^n «= c1/5(15)

(2) The high temperature magnetic susceptibility x »
r

approximately obeyed a Curie-Weiss law, x C O  ~ (T+1T) 
where 0 was generally of the same order as
T • min

( 2 2 ) and C is a constant. For small impurity
concentration, x(T) was proportional to concentration 
and no antiferromagnetic order was observed. But 
deviations from the Curie and Curie-Weiss law were 
observed at low temperatures * 26  ̂.
(3) The magnetoresistance was found negative at

(7 271temperatures below Tm^n *
o .(4) The specific heat exhibited a peak at 6 K m  

Cu-Fe alloys ̂-28 ’29  ̂. The associated entropy under 
the specific heat curve was consistent with the loss
of spin degree of freedom as the temperature dropped

(29 30)toward zero. A similar peak was suggested in Cu-Cr- *

specific heat data with entropy R In 2.5 per mole of
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impurity (R is the gas constant per mole).
(5) Very large and negative thermoelectric power was 
found in the same temperature region where the specific

f 31 32")heat and resistivity were anomalousv * .
Similarly, anomalies were observed in the linewidth 

of NMR^"^ and Mossbauer spectra^^*37) ̂
No theory proposed before 1964 satisfactorily 

explained the available experimental results. Attempts to 
explain experimental data followed in two different 
directions. The first concerned the conditions for the 
existence and stability of localized moments in the system.
The second studied the effects of localized moments on the 
properties of the host metal. Both of these have been 
studied extensively on the basis of different models.

1.2 The Kondo Problem
The study of the existence of localized moments in 

metals started with the work of Friedel^^. By introducing 
the concept of a 'virtual bound state' he explained why local 
moments are more stable in monovalent metals than in poly
valent metals. Anderson and W o l f f p r o p o s e d  simple 
models to establish criteria for the existence of localized 
moments. Long before that, Z e n e r p r o p o s e d  a model of 
ferromagnetic transition metals where an exchange interaction 
between the localized d electrons and itinerant s electrons 
is assumed to be the cause of ferromagnetism of the 3d metals. 
This model has also been applied to magnetic alloys where an 
impurity spin of fixed magnitude is thought to interact with 
the spins of the conduction electrons (the s-d exchange 
model). Schrieffer and W o l f f s h o w e d  that this type of 
interaction can be obtained from the Anderson model if the



4

width of the spin split of d levels is small compared to 
the distance of these levels from the Fermi surface.

For a long time, it was believed that the ordinary 
perturbation theory could account for the anomalous 
properties of dilute alloys. Y o s i d a ^ ^  calculated the 
resistivity due to spin disorder scattering to the first 
Born Approximation and found that the temperature dependence 
of the relaxation time t was too small to account for the 
rise in the resistivity at low temperatures. Kondo 
realized that as the resistance-minimum was a widely 
observed phenomenon, it should be possible to explain it 
using a very simple model. He carried the calculation one 
step further, to the second Born A p p r o x i m a t i o n . In the 
second Born Approximation, intermediate states come into 
the picture. The amplitudes of two probable processes of 
spin flip scattering (say Kt -*■ K ’+) do not cancel, because 
the probability of these two processes occurring are not 
the same. When integrated over the intermediate energy, 
it leads to a term containing £n T. The expression for 
resistivity, R(T) due to the exchange scattering was found to 
be

R(T) = c R [1 + J N (0) £n T/D] (1.1)m

where c is the concentration of impurities, N(0) is the 
density of band states per atom near the Fermi surface, D 
is the cut off parameter of the order of band width and R 
is the resisitivity calculated in the first Born 
Approximation (vie choose units such that h = = 1).
The logarithmic term increases as the temperature decreases 
if the strength of exchange interaction, J is negative.
This term added to normal phonon scattering gave remarkable
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agreement with experimental data showing resistance-minimum. 
Kondo concluded that J should be negative for alloys showing 
resistance-minimum. Furthermore, when lattice scattering 
(Rl (T) « T5) is added to Eq.(l.l), the total resistivity 
may be shown to have a minimum at T  ̂ **.

The logarithmic term can be viewed as arising out of 
the 'internal structure’ of the localized spin from which the 
conduction electrons scatter. There are two degenerate 
internal states, spin up and spin down. Since the result 
of any particular scattering is dependent upon the spin 
orientation, it is also dependent upon the previous 
scattering. Mathematically, it is a consequence of the 
non-commutabiiity of the spin operators, S+S_ - S_S+ * 0.
The Fermi factors which occur in the intermediate states of 
a perturbation calculation no longer cancel as happens for 
normal potential scattering. In the third order, they add, 
and the summation over intermediate momenta generate the 
logarithmic dependence of the scattering lifetime near the 
Fermi surface.

Kondo's c a l c u l a t i o n , while explaining some features 
of the resistivity data, brought in new difficulties.
Eq. (1.1) implies that the resistivity diverges as T + 0.
This cannot be the case, since all scattering is limited by 
unitarity. It must be noted that Eq. (1.1) represents only 
the first two terms of the expansion. The second term 
dominates over the first as T 0, however small J N(0) may 
be. It was found that in higher order similar logarithmic 
terms were present and these could be summed as a geometric 
series, giving

-1R(T) c R [1 m
TJ N (0) An T/D] (1 .2)
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which has a pole for negative (antiferromagnetic) 
J at the 'Kondo temperature, T^'given by

Tt, - D

sign of

(1.3)

This signifies the breakdown of perturbation theory. Such 
behaviour usually signals an instability of the normal Fermi 
sea, as was earlier recognized in the theory of super
conductivity^^. In that case a phase transition takes 
place which brings in a new 'superfluid' state. Because of 
the limited number of spin degrees of freedom, the Kondo 
system behaves in many ways like a zero dimensional system, 
and hence a usual phase transition does not take place. 
Experimentally also the thermodynamic properties pass 
smoothly from their high to low temperature values.

1.3 Theoretical Development
A large number of attempts have been made to explain 

the low temperature behaviour of the Kondo system. They may 
be classified into three g r o u p s ; (1) analytic continua
tions of the dominant terms in high temperature perturbation 
theory to low temperatures,T < T ^ 1  ̂ 52)^ (•£) variational 
techniques at T = to determine ground state
properties and the low lying excitation spectrum and (3) 
the concept of 'localized spin fluctuation'^^ which
starts from non-magnetic states and allows gradual transition 
to the magnetic states. We shall restrict our treatment to 

(1 ).

The most widely used theories of the first type are 
those of A b r i k o s o v , Suhl^T°̂  and Nagaoka^^ as extended 
by Hamann®-50 ,̂ Bloomfield*-51] Zittartz and Muller-Hartmann*-5 
Abrikosov*-17  ̂ replaced the local spin by a pseudo-fermion
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and summed up the special ’parquet’ diagrams to calculate 
the perturbation series. S u h l ^ ^  formulated the problem 
in terms of dispersion theory while Nagaoka^^ wrote 
Green's function equations-of-motion which were then 
truncated and solved. Later theories were shown to be 
equivalent , although their identity was not apparent 
from the outset. It is the approach of Nagaoka ’ ̂ ^which 
we intend to follow later.

Using the retarded double time Green's function,
N a g a o k a d e r i v e d  a closed set of equations for two single 
electron Green's functions. This was reduced to a nonlinear 
singular integral equation for the non-spin flip part of the 
T-matrix by Hamann*-50 .̂ From his solution the temperature 
dependence of the resistivity was calculated and found to beabove
in qualitative agreement with experimentX As T 0,
R(T) approached the unitarity limit. The specific heat was
initially found to be zero, but this discrepancy with
experiment was resolved through an essentially exact solution
for T-matrix later carried out by Bloomfield and Hamann^51-*.
A pronounced maximum in the specific heat, CV (T) was found
at T ~ ¿ t . Zittartz and Muller-Hartmann^^ then showed 3 K
from the exact solution that Cy(T) « An ^T/T^- as T -* 0.

The susceptibility has been a slightly more difficult 
problem since it cannot be directly calculated from the 
T-matrix. A theory due to Zittartz , based upon 
essentially the same physical assumptions as the truncation 
by Nagaoka, has shown that x(T) becomes negative at low 
temperatures. Though such a result is inconsistent, it does 
indicate the tendency of conduction electrons to compensate
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the local spin for T < T^. Later, Bloomfield, Hecht and 
Sievert^^ have extended the Nagaoka theory to finite 
magnetic fields and found a similar negative susceptibility 
at low temperatures in the presence of small magnetic fields.

The earliest of the variational theories was 
developed by Yosida^^. Other later attempts pre
dicted a ferromagnetic instability for J > 0 in disagree
ment with perturbation expansions . For antiferromagnetic 
coupling, J<0, all variational theories assume a singlet 
ground state. Matlis^63  ̂ proof, and other results from 
finite temperature theories , support this assumption. 
Y o s i d a ^ ^  started with a trial wave function in which one 
electron above the Fermi sea was paired in a singlet way 
with the local moment. Then the coupling parameter was 
varied to minimize the ground state energy. In higher orders 
successive numbers of particle-hole pairs were added to the 
single electron. As increasing numbers of pairs accumulated, 
it was shown that the net binding energy grew, and approached 
Tk in the limit. Thus, the formation of the singlet bound 
state led to small decrease in energy.

The third line of investigation started with the work
of Lederer and Mills , Rivier^*^ and Suhl^L '. The

r6 51idea of this approach was to begin with Anderson model^ 
and to use many-body perturbation theory starting with the 
assumption that the ground state is a non-magnetic one.
This is called the 'localized spin fluctuation' theory.
Now, in cases in which the impurity is indeed not very 
magnetic, for example Mn in A l ^ ^ ,  this theory is very 
successful. One obtains a non-singular slowly decreasing 
susceptibility, and a resistivity which may increase or
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decrease as T2. Again, since the localized state is indeed
non-magnetic, such a theory works with renormalised
parameters over any limited temperature range. Hamann and 

(96)Schrieffer showed how this renormalisation works in such a 
way as to give Kondo temperature, and also worked out the 
relationship between high and low temperature regimes.

Thus the qualitative features of the Kondo anomalies 
appear to be reasonably explained. Below all theories 
predict a very strong coupling of the conduction electron 
spin and the impurity moment. At T = 0, the coupling is so 
strong that the spin nonflip scattering at the Fermi surface 
reaches the unitarity limit, and a singlet ground state is 
formed. This state has a binding energy of order T^ and its 
formation is accompanied by a specific heat anomaly. The 
entropy under the specific heat curve is of order £n 
corresponding to the loss of the local spin degree of freedom. 
Negative magnetoresistance is understood as the tendency of 
a magnetic field to break up the singlet pairing, and hence 
to reduce the scattering cross section.

1.4 Comparison of Theory and Experiment

At high temperatures, T > Tj,, all physical properties 
can be calculated by applying perturbation theory and the 
results are in good agreement with experimental data.
However, several discrepancies still exist between theory 
and experiment. One which is clearly apparent is that the 
width of the transition from high to low temperature 
behaviour is predicted to be too broad. For example, the 
width of the specific heat anomaly is theoretically about 
two decades temperature^^', while experiment indicates only 
one decade^0'1. The resistance anomaly is similarly predicted 
to be considerably broader than the 1\ decades found
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experimentally .
A number of more serious quantitative disagreements

with experiment occur at low temperatures, T << T^. By
taking care to eliminate the effects of interactions
between impurities, it has been found that simple power
law in T governs the low temperature behaviour of the 

f 7 0“7 ° ̂Kondo system1 ~ J. At low temperatures, it i\,ras observed 
that the resistivity varied as

2 C 71)R(T) = R(0)(1 - a T ) for PdCr 
and for C u F e ^ ^  (with Fe concentration, c = *6 x 10 /f) and 
also

R(T) = R(0)[1 - a(T £n T/b)2] for AuV, CuCr^7'̂

and also for CuFe^7^  (with c = *13 x 10  ̂ to *4 x 10 J).
But the theory predicts an infinite slope of the 
resistivity at T = 0 as a function of T(zero slope for R 
as a function of £n T/T^) and for very low temperature a 
negative curvature of R(T) for s > |. However, other 
predictions of the theory at high temperatures seem to be 
in good agreement with the experimental data.

A quite different behaviour has been observed in 
alloys such as RhFe, IrFe, PdCo ̂ 7  ̂ 7^  etc. where the 
impurity contribution to resistivity increases with 
increasing temperature and decreases strongly with decreasing 
temperature. This has been discussed in terms of positive 
j(44). BUt susceptibility measurements show a very
substantial decrease in the magnetic moment at low 
temperatures*-7'-̂ . They also show a specific heat anomaly 
at low temperatures'-7*̂  and there are Mossbauer anomalies 
similar to that in CuFe*-7^ .  Thus, except for resistivity, 
these results indicate that they are negative J systems.
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Attempts have been made on the basis of 'localized spin 
fluctuation' model and two-band model to explain the
resistivity of these alloys. But, these systems are not 
well understood yet.

Our object has been to study the nature of the 
exchange scattering and to try to explain the experimental 
data with the existing theory. In the second chapter we 
develop Nagaoka equations with finite concentration of 
magnetic impurities in the presence of a uniform electro
magnetic field, A(t). We solve these equations (Chapter 3) 
for A(t) = 0 and A(t) * 0. There we show explicitly that<v
for constant J, the 'vertex corrections'1" J drop out when 
we average over the impurity positions. We then recover 
Nagaoka's result for the conductivities at high and low 
temperatures. As a by-product of applying the linear 
response formalism to the Kondo system, we have succeeded 
in calculating analytically the frequency dependent conductivit 
at low temperatures (Chapter 4). In Chapter 5, we reformulate 
the equations with finite concentration of magnetic 
impurities - this time with extended exchange interaction, 
and present a formal solution. In Chapter 6, we solve the 
equations for s and p wave scattering only. We calculate 
the resistivities at high and low temperatures and present 
some discussion on the results. In the final chapter we 
discuss some aspects of the Kondo system and attempt to 
indicate the nature of future work within our formulation.
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CHAPTER 2 FORMULATION OF THE EQUATIONS

2.1 Introduction
The explanation of the resistance minimum given by

stimulating. Kondo pointed out that the resistance minimum 
arose as a many-'body effect from the spin dependent scattering 
of conduction electrons from the localized moments. This can 
be viewed as follows: the scattering of an electron by the 
impurity depends on the fact that a previous such event had 
taken place, and hence an indirect electron-electron inter
action is generated. This is S'chematically shown in the 
diagram (Fig. 1). A similar case was found previously in the

Figure 1. Schematic diagram of the indirect electron-electroi. 
interaction in the Kondo effect.

two-particle t-matrix for scattering through the indirect 
(via phonons) electron-electron interaction which leads to 
superconductivity. After Kondo?s paper, a large number of 
nonperturbative attempts have been made to describe the 
state of the system for temperatures T < T^. We shall 
restrict ourselves to the equation-of-motion method due to 
Nagaoka^9* and consider the case when potential scatter
ing is absent. Some parts of the derivation overlap with

Kondo in his celebrated paper ̂  turned out to be extremely

/
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that of Nagaoka, we shall, nevertheless, include them for 
the sake of completeness.

2,2 The Hamiltonian

We take the s-d exchange Hamiltonian which starts from 
the assumption that a localized magnetic moment exists at 
the impurity site. Friedel^^ and W o l f f h a v e  worked 
out how such a moment could exist in a metallic environment 
and Anderson*-3 9 showed why some transition metal impurities 
in noble metal would show magnetic behaviour and others 
would not. In the s-d exchange Hamiltonian the impurity 
spin of fixed magnitude is coupled with the spins of the 
conduction electrons through an exchange interaction. For 
KA impurities distributed randomly throughout the system 
such that the impurity concentration, c = N./N (where N is 
the number of atoms in the crystal) is very low to enable us 
to neglect the interaction between the impurities, we take 
the model Hamiltonian for the Kondo system given by,

H = H + l Ho L a
a
ex

where
H = l o Lka

e, Cb+ C, k ka Ka

( 2. 1)

( 2 . 2 )

and
Ha'ex 2N kk*

ji (k -k) • Rar i-p+ n p + p >' ~ ~ “ L ̂ kt^k't L'kfLk'iJ5z

, p ̂  p C a 4. P + P Q ̂  “lLk ^ k ' ^ -  Lk+Lk'+a+J (2.3)

Equation (2.2) is the conduction electron kinetic energy; 
Eq.(2.3) represents the s-d interaction. Here and 
are the creation and annihilation operators of the conduction 
electron with wave vector k and spin a , being its energy
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measured from the Fermi surface. We take J which represents 
the strength of the exchange coupling between the conduction 
electrons and the local spin Sa , to be constant. The 
positive and negative signs of J indicate ferromagnetic and 
antiferromagnetic coupling respectively. Later on we shall 
consider the effect of the extended exchange interaction.
The localized orbital is assumed to be occupied by just one 
electron - this assumption is inherent in the Hamiltonian. 
Also S® , SG are the components of the spin operator SG .
For simplicity, we shall restrict our treatment to the case 
of Sa = | only.

Let us now introduce, the single particle time 
dependent Green's f u n c t i o n d e f i n e d  by

Gkk' t ') = -i< TCk ,+(t)Ck+(t*) (2.4)

Here <....> denotes the averaging over the grand canonical 
ensemble, i.e. the expectation value of an operator, y is 
given by

< X > Tr[e -6H
Tr[e -6H

Xl
]

(2.5)

where Tr denotes the trace and 3 = 1/T. [For convenience, 
we shall use units such that, Planck's constant divided by 
2rr and Boltzmann constant are equal to unity, i.e. 
h = kp = 1]. Ck (t), Ck (t) are Heisenberg operators in 
which times evolve as

ck(t) - eiHtCke-iHt (2.5)

and T orders the imaginary parts of t,t'. 
condition is

The boundary
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Jkk (t,f) = - G
t=o kk’(t,f) t= - i8

\2.1)

(the minus sign appears because we are dealing with Fermions) 
which states that the Green’s function is analytic for the 
complex values of the time arguments in the period 0 to 
-i8. The Fourier expansion of it is given by

-if3
kk' v n -iB o

-to t
^kk!(t ,t ’)e dt ( 2 . 8 )

where, to = (2n + 1)tt/B, n = 0, ±1, ±2,..., the odd
r o 2 'vMatsubara frequency1 } for Fermions.

2.5 The Equations of Motion

We now develop the equation of motion for the Green's
function in the presence of a uniform electromagnetic 

, 3A(t)field, E(t) -------- . Using
3t

dCk (t)
i------

dt
iCk ,H3. (2.9)

the equation of motion of the Green’s 
can be written as

function G » Ct, tf )

dGkki (t,t ’ )
= 6(t-t’)6kk, + ek ,(t)Gkk,(t,t’)

J  ̂ ei (£-kr ) * Ra
2N % ,a

(t,t’) (2.10)

Here the Green's function depends explicitly on t and t ’ 
and not just on (t-t') as is usually the case in the absence 
of the field. We also defined

r£k,(t,t’) = -i< TCt̂ .̂ tjŜ Ct) + Ck H (t)Ŝ (t)]Ckf(t') >
(2.11)
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It can be easily verified that the Green's function , also 
satisfies the same boundary condition (2.7) and hence has the 
same Fourier expansion. Since, the first order terms in the 
field A(t) is enough to calculate transport properties of 
the system, we shall neglect higher order terms in the field, 
i.e. we can take

ek (tJ ao (iu - y °
-icot (2.12)

where aQ = e/m*, e is the charge and m* is the effective mass 
of the electron and the response to the field is taken to 
be of the form A(t) = A e where to is the frequency of«v »v CO
the field. Then using the Fourier transforms of G^,, and 
rkk' Eq. (2.10) can be written as

l iwnGkk'C(V t,)e n = 5kk'6(t"t,) 
wn

+ ek* E Gkk'(“n st,)to_
V

n

“ a0 (âü3*i,) l Gkk'(wn»t,)eto
(to — ito) tXI

n

to t-¿I ei'i-r)-«? I r£((,v f)e »
2N £,a to

(2.13)
n

For convenience we set, to = ito , to = 2irp/S, p -■ 0, ±1, ±2..._P P
and evaluate the response at points tô  and later we make 
analytic continuation in the upper half plane, according to 
ito -* to + i0+ (0+ is a positive infinitesimal) to extendp
the results for all frequencies. Multiplying both sides of

“(O' t
(2.13) by e ' and integrating over t from 0 to -i£, we gee
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(i<V ek')Gkk'CV t,) + ao ^ “ -i,^Gkk»i“n"“p*t,)

I <2N Z ,a
i(£-k').Rara

rk£(wn»t,) “ 6kk,e
-an. t 1 

1 1 (2.14)

The Fourier transform of the Dirac delta function is defined 
by

15 (Ur,»t') = +-n ■iB

-ie ”0) t
<5(t-t')e dt

o

i t *——- q if 0 > t’ > -iB
iB

= 0 otherwise

To obtain a closed set of equations, we must noitf write 
the equation of motion of T^,. But this generates higher 
order Green's functions and the equations of motion of those 
generate still higher order Green's functions. In this way 
we obtain a chain of equations which cannot be solved. Hence 
one has to cut the chain by making some approximation. We 
shall come to this point later. Let us now write the 
equation of motion of T^t : first of all we take

H " Ho + Hex

where we have not summed over the impurity position Rot.
The derivation of the equation folloxvs as before. We have 
< > = 0, because there is no external magnetic field and
so the impurity spins have no preferred direction. We 
obtain
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^ k k * 13 a a += 6(t-t,)< CCkl+S; + Ck H s“ , Ck,]t=t, >
dt

Ar .(t)'■"°V î A V ̂ +-i< Ti—— —  cUi4-̂r
e^t)

dt s“(t)C^(t’) >-i< Tck’t(t)i~  cktCt,;! >

dC. ,,(t) . dsa(t)
_i< Ti— S“(t)c£+(f) >-i< TCk, + (t)i—  C ^ f )

dt dt

(2.15)

We evaluate the commutators, [Ck ,H] etc., in (2.15) 
and use the following relations valid for Sa = \ :

ndnCt — jl 1 C r N C t  ç01 _ . •( çOtb + b- - + 2 a+ , b b± ~ ± 2 b +

and n CL q CL ? n & f rjOt°+s- - 4 + S - (S )a-, 2z-

Then Eq. (2.15) becomes 

.drkk'
dt

= ek'(t)r“k, (t,f)

J_ jei(i-k').RaGM(titt)
2N

2N a

-i~ l . eiCA’‘̂ *£“< TCkl + (t)C^(t)CA H (t)S“(t)Ĉ +(t») >
2N £,£'

+i—  l TCkI + (t)cJ4>(t)CA, + (t)Sj(t)cJ+(t,5 >
Zi1']

+i—  I si(- T C k, (t)Cj (t)C , (t)S“(t)Ck+(t‘) >
2N £,£'

-i—  I ei(A ’-^*^< TCk,,(t)c! (t)C , (t)S^(t)Ck (f) >

TCk! + (t)C^(t)C£ff(t)G“(t)Ckt(t’) >
N /b p!)b

(2-16)
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2.4 Decoupling Approximation

It can be seen in the last part of Eq.(2.16) that the 
Green's functions contain five operators. As mentioned 
before, the equations of these Green's functions generate 
still higher order Green's functions. Thus one is faced 
with a truly many-body problem to solve. At this point, one 
must make some approximation. We follow Nagaoka's decoupling 
scheme , where the average of some combination of 
operators is replaced by a product of averages of operators. 
In doing so, we combine the operators in such a manner that 
each average conserves spin. Lot of criticisms have been 
made of this approximation, but so far no substantial 
improvement could be achieved. One approach is to adopt what 
is called 'cumulant averages'^ But, whether this method 
provides any better approximation to this problem remains to 
be seen. Nagaoka^^, however, showed that his decoupling 
scheme is exact to infinite order of J as far as the most 
divergent logarithmic terms in each order of J are concerned.

We decouple the quantities that appear in Eq.(2.16) 
as follows:

* < > < c

< r c+ saCl.sr >< c > + < c'
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Ck ,+C£+CV + S-lCkt >

< ><: ^ k H ^ - ^ k t  > _ <  G?.*Gk* ><: W.'t^kf >

< W u cr + S-Ick+ >

= < Ck H CJ>+ ><C£’^S-lCkf > + <CSUCl'± ><: Ck'+S-lCk+

< Ck H V n ' + SzlCkt >

" < Ck'lCU  >< C£ H SzlCkt > + < Ck H CW Sz >< Cr J Ckl

(2.17;

where we denoted < TA(t)B(t’) > by < AjB >, We also use 
the following symmetry relations:

< CkfCk'+ * ~ < CklCk*4- >

< Ck+Ck'+S- > = < Ck4-Ck'+S+ >k+ k'+l

2< CktCk'tSz > * _?< r+ r sa > z< Lk r k ' r z
(2.18)

2.5 Basic Equations in Electromagnetic Field 

The Eq.(2.16) can then be written as

Ll, , (t , t ' ). ̂  kk i----
dt

a
= ek t (tKvvt U'» <-■ 1 T —  L c ------- xk£'K KK 2N I* -i- I ei ti-i,)-£ar“ e.t')

3 d V* i ( £ "“ k ) • P ft f- 1 ̂- I —  le - - - Gk£(t^  J2N i

- 1 l e ^ - i ' ^ n ^ C O r ^ n . t ' )
N

, J v i  (£-k* ) .Ra a r+.̂ r t+ —  ¿e — — — mi i (^^Gk £ ^ s^
2N

(2.19)
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where

n£(t) = Ieii-‘-),£°< cJ+Ct)Ck+(t) > (2.20)

m g c t )  =  c £ t ( t ) C k t ( t ) S ® C t )  >  ( 2. 21)

Now using the Fourier expansions of G T Ct,t f ) and r^,(t,t') 
as before and the following Fourier transforms of the 
products,

tt)Gvo(t,t ')k£
^ n » 1' ^

n?,(t)r^(t,t’)

= J  mk'(a)n‘wy)Gk£(wy»t,) (2‘22)

s l nk»(«n““y)rk£(“v»1 ’5 (2*23)ug. 7 7

the Eq.(2.19) reduces to

^ ^ ^ k ' - ^ k k ' + ao^-0J*-' ̂ kk' ̂ n " wp» c' ̂

+ } A.
2N „

- -i. Iei(£‘- (¡0 t')
2N 4

J
N l{ ï « Ï . K - V k t O j r - t ’>}„ 0).. / / j

J ri i(£-k’).Ra y ma
2N - ¡c

e “ ' 4~ J mk ' ^ " “y - ^ kJ^y’1'w.
■ = 0

(2.24)
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Next, we consider the remaining part of the 
Hamiltonian, i.e. £ Ha *. As Sa commutes with that part,

a ’ *a,
it only comes in through the time derivative of ,a and we 
get the following terms

-i l lex Ur±')-&'< TCA+(t)S“' (t)s£(t)c£+(t') >
a' -a 'kf

-i l ^e1  ̂*—a< TC£+(t)S“‘(t)s“(t)C^.(t*) >
a 1 *a

-i l ^el(- ‘- ,}*-a,< TC£+(t)S“ '(t)S®(t)c£+ (t') >
a *a

+ i l  ̂ TC£f (t)sjis®(tiC^Ct1) > (2.25)
a' *a

Since we consider the case of very low concentration of
impurities, we can neglect the interaction between the spins

( 5 4 lat different impurity sites. However, following hagaoxa
we take their effect into account by replacing (ia>n“ek ,)
appearing in (2.24) by (ift(wn) “ e^i) w^cre fi(u)n) is a
function of to and is equal to w_ in the lowest order n n
approximation. Thus, the equation of motion for rjĵ , can 
be written from Eq.(2.24) by replacing (io>n— f) by 
[iQ(w ) - i,e* we write
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C « ( V  ' ek ] rkk't“n>t'5 - a0CAU.k')r“k,(Un-v t')

+ 3 -i Jei(i'i,:)-£“GkiC»n ,f)
2N n£

J r i(i,-k').Rara
2N

J
N

_J_
2N

h
z

vf i (£-k') .Ra r „a c p̂Ci ,y ,_0
l\e - -  - l » k ' K ' V ^ V ^n l
l “y

V ( i(£-k*).Ra p h , „ sr r<>
1 ' e “ Z mk' ̂■wn"wv^k£^wv,t ^n 0).. /  /  J

= 0 (2.26)

In the next chapter we solve the equations. There, 
we replace n^ and mk by their impurity averaged quantities 
and then relate them to Gkk,, r£k ,, which are also impurity 
averaged. These relations together with Eqs.(2.14) and (2,26) 
form a self-consistent closed set of equations.
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CHAPTER 3 SOLUTIONS : CONDUCTIVITIES AT HIGH AND LOW 
TEMPERATURES

3,1 Introduction

Our aim has been to calculate the conductivity and 
hence the resistivity of the system from the response formalis 
so that we do not need to adopt the relaxation time approxima
tion. The expectation value of the current operator is given 
by

< > = < pl(iwp^v > C3,1-)

where = 2irp/3 , p = 0,±1,±2,... are the Matsubara 
frequencies and is the first order correction to the 
density matrix. Eq.(3.1) gives rise to the familiar current- 
current correlation f u n c t i o n ( K u b o  formula) which can be 
related to the single particle Green's function of the 
system. However, there, we need to include the 'vertex 
corrections' that arise due to interference between the 
Green's f u n c t i o n ^ ^ , which occur while we average the 
product of two Green's functions in order to evaluate the 
current-current correlation function. This correction, to 
a certain approximation, is usually given by a complicated 
integral equation. Our purpose here to formulate the 
Green's function equations in the present manner is that if 
we calculate the single particle Green's function in the 
presence of a uniform field, this will give us the average 
current directly and the relevant corrections would be

rooh
automatically taken into account. Although it is known1 
that the vertex corrections do not contribute to the 
conductivity of the system for s-wave scattering only, we
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shall nevertheless show this explicitly so that the reader 
can follow easily the formulations of later chapters. We 
shall now solve the equations derived in the last chapter. 
As the response function, first order in the field, is 
sufficient to evaluate the transport properties, we shall 
consider equations relating to the first order terms only. 
We proceed in two steps. First we solve the equations 
formally when A(t) = 0 and then substitute the zeroth order 
terms from these solutions in the equations of the first 
order terms. Finally, we solve these equations.

3.2 Formal Solution in the Absence of the Field, A(t) * 0IV

When A(t) = 0, we can write

nk (v V

i, 0 6k (ün,w.

(3.2)

(3.3)

which implies that we now have a point interaction only at
a a

a>r) = a) . We also replace m̂ , and by their impurity 
averaged values - which is a consistent approximation in the 
limit of small concentration of impurities. In terms of 
diagrams, this approximation is similar to ignoring the 
diagrams with crossing interaction lines in the calculation 
of that is, we write

4 ° * 4 0) (3.4)

a
mk e m (o) (3.5)
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Also, in the absence of the field, the Green's functions are 
functions of (t-t') only. Hence, we can drop the t* 
dependence. Then the Eqs.(2.14) and (2.26) reduce to

(iwn - £vt)G (o)
kk'

_J_
2N l °°C% )£ ,a

i
0 kk'

(3.6)

We use zero suffix to indicate that the quantities are in 
the absence of the field. From Eq.(3.7) we find

£

! J r ( i w n )

l+JG(iwn) £
(3.8)

where
n (o)

G(iwn)
N [itl(a>n) - ek3

and m (°) . 3
1 v k 4r(iu ) = ~ L --------------N k Cif2(ojn) - ek 3

(3.9)

(3.103

Substituting Eq.(3.8) in Eq.(3.6) and dividing both sides 
by (iw - e^,) we obtain

( V
i + V* (io)n) j  ̂*-aG,^ (wr)
0 (io)n - ekI) (iwn - ek,) £,a

(3.11)



27

with

V'(io)n) 1 + JG(iwn)
(3.12)

Equation (3.11) is similar to the equation of ordinary- 
potential scattering. This equation can be solved by the use 
of the technique of the multiple-scattering theory. When,
J = 0, V'(iw ) = 0 and we have a non-interacting system.
The free electron propagator is given by

gk (iwn) i 1

P (iun - elP

Then Eq.(3.11) can be written as

(3.13)

’(O)
3kk' -

r  ̂ , v i (it-k*) ,Rar (o) ,
gk .«kk' + v o v s k - /  e - - Gki f“.Xj )CL IV

where
VM (ia>n) = -i0V'(iwn) (3.14)

Equation (3.14) is solved by the diagrammatic method. 
The solution is obtained as an infinite series as shown in 
Figure 2 where the double line indicates the single 
particle Green’s function and the single line denotes the 
unperturbed Green's function, gy(ioj^). The cross denotes 
the interaction V” (ia)p) with impurities.
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k' k k' Z k
(a)

k' k k ' Z k
- > X ' ̂ ---' j~---- X ->'" +

k' k

. - - - 0 0  

*a/ ' 0 \
/ \ / I ^

k * / z '» k k ’ /  z \ £ \ k
~y— X "  o — ~y~— 7~ *  -t— y x  o  x  •:>—

(C)

(k’,k are the momenta o£ the ingoing and outcoming electron 
lines)

Figure 2 Calculation of G^3(wn). Cb) shows expansion of 
Gv?,i (w ) \ (c) shows an approximate evaluation ofxCK. II

For convenience, we join the crosses corresponding to 
the same impurity by dotted lines. Then typical fourth order 
terms in the expansion of Fig. 2(c) are:

a
a a\
! '/ '

a

/ \a
* ----------- ¥■

a*
! X

/ \ /  

/ '• ' /'/ \

■\ a 
\

\

-y— — y—— v— v — y— y— -se

ta) (b) (c)
Figure 3 : The Fourth order diagrams
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In the low density limit (kp£ >> 1 where £ is the electron 
mean free path) it can be shown that diagrams cf the form 
Fig.3(c), with intersecting impurity lines are negligible. 
Thus, on summation of the series in Fig.2(c) we obtain

V"' (i03n)
iB3n J2r(iwn)

1 + JG(iwn) + U 2r(icon)F(imn)

with
F(iw ) = - T ----------n N £ CiQ(Wn) _ E]

(3.15)

(3.16)

Finally, we average the equation of Fig.2(b) over the 
impurity positions and obtain

(3.17)

(3.18)

Now we recall the definitions of n^ and m^ from 
Eqs.(2.20) and (2.21). The impurity averaged quantities 
n£°-*and m^^are related to G^0  ̂(wn) and ra°(con) in the 
following way

GS'
kk'

6 [iun - ek + VCiun)]

with N.l
V(iwn)

l x j 2r(i«n)
1 + JG(iun) + |J2r(imn)F(io)n)

n-(o) = -l 1 G
(o)

0),
(«n)eiwn0+

n

■2i l
co

■p CL 0 r "x
rk (“n )e

iwn0+
n

(3.19)

(3.20)
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The factor e n , where 0+ is positive infinitesimal, 
ensures the convergence of the wn integral. To calculate 
n£0^and m ^ w e  must obtain (wn) and T^ 0 (u>n) given by

iw 0+

i(k-k*).Rar (o) 
“ k ' k (to) nJ (3.21)

? ( » n )  - l r « k c n ) (3.22)

Gv°^ (to ) can be calculated quite easily from the diagrammati.. k. n
form of the Eq.(3.14). We multiply both sides by

V" (iwn)ei ‘-“and average over the impurity positions.
This is illustrated in Fig.4. We have

k k*
-X > X
a a *

k £ k*
~f- X~> X ;> 'X X

a a' a"

k

Figure 4 : Diagram illustrating the — io Ìcalculation of G£ (un)
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V ’(iun ) lt V- ( i V ^ k ’

which gives

7 (0 ) c \ i G, 1 (w ) = —k n e
l+JG(icon)

l+JGCiwn)+lJ2F(ia)n)r(ia>n) Cla>n “ ek + V(lV ]

(3.23)

r£° can be calculated from Eq.(3.7) by substituting 
Eq.(3.23). From Eq.(3.7) we obtain

<“n> _J_
2N

(i4o) -I) ci+JG(iton) ]- (n£o) -D  J r  (iwn) 

[ iQ (0Jn)-ek) Cl+JG Cicon) ]

Using Eq.(3.23) we find

“ao (B } j i i 1
k n 2N [ifi(a)n)-ek][l+JG(ia)n)] 6 % Ciwn“e£+V(ia)n)]

(3.24)

3.5 Formal Solution in the Presence of the Field

We now go back to the Eqns.(2.14) and (2.26) and con
sider the case when the external electromagnetic field 
A(t) is not zero. We expand Gkk,, » nk and in terms
of zero and one - where zero terms are values in the absence 
of the field and one terms are the terms of first order in 
the field. As mentioned before, we shall keep the first 
order terms in the field only. We write
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Gk k ' < V  - + Gk k ^ “n’

rk k ,t“n :i “ rkk'(‘V  + rkk' (“n 3

W  = nk°h<V> + nk1)(V

W  " Bk°),:V  + 4 1)(“n3

(3.25)

(3.25)

(3.27)

(3.28)

We consider the response at a single frequency, i.e. 
the field is of the form, A(t) = A^e iwt and we had set 
-ico = u> . Since nix (̂to ) and mi1 -*(w_) are first order inP A II A II
the field, we can write

K > - r,al *“ Tl; 0k a) (3.29)
p * n

C% ) - mal x hu u k no ,oo (3.30)
p * n

Substitution of Eqs.(3.25) to (3.30) in Eqs.(2.14) and 
(2.26) and collection of the first order terms yield

(iwn"ek,)Gkk' (“n^*) + ao ^ k ^^kk' ̂ n_up’t' -1

+ ±  V co ,f) = 0 (3.31)
2N £,a k£ n
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,al[i^(wn)-e^, ]r^^, (a)n>t ') + aQ (Aw . k') r^, («n“W , t ')

N

2N
m'?5-!) I ,iC*-i£*3-l!»G CXJc

+ i n<H l ei ( i - i ' ) .S f» r ^ (o.n-Up,t ')N

£

(3.32)

Now, we eliminate r^t from Eq.(3.31) by substituting 
its value from Eq.(3.32). We have, from Eq. (3.32)

l ei(^ ,)*^arg((on ,f) =
£ ,a n

an (Ao)*A)° - w - ei(-"-,)--otr?to(u) -u tn e k ^  n CV LJ£,a (iwn-e£)

TP r • *\ t* Ra pCtl / 4-1- JG(iu )I e - - ru (un ,t')
£ ,a

+ Wr(io) )I ei(i.-i').RMi)( t ') (3.si)
£,a

Here, the two terms containing m^^and n^^vanished - since 
these quantities are first order in the field, they must
occur in the form (Aw.k) and hence angular integrations

ctoof the k-sum would give zero. By substituting for r^, 
from Ea.(3.7) in the first term of the r.h.s. of Eq.(3.33), 
one can also show that this term vanishes. Hence, we have,
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from Eq.(3.33)

i(£-k').Raral
£ ,a

i J r ( i V  I ei(i-k').£Mi)c >tl)
i+JG(icor) £,a Jk£ v n 1 

(3.34)

Substitution of Eq.(3.34) in Eq.(3.31) yields

= « g v . a„CAM.k')G(°h^ - <on ,t’)’k' o kk* ̂  n p :

- i3gk .V’( i V l ei(-'-') -aGM :i(“n>t') (3-3E)£ a

with g|, and V'(iwn) as defined before in Eqs.(3.13) and
(3.12) .

We solve Eq.(3.35) using similar diagrammatic technique 
as before. We illustrate this in Figure 5.

k*
7^

k' k
_____ \

k' £ k
'

(a)
k’ k* k k’ £

- ,->• X  > 0=
£

k' £ £’ V
'“h — >-4—>— >— <x=z=z

Cb)

£ £ k
(c)

Figure 5 : Calculation of G £ ^  denoted by wavy double lines.
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In averaging over the impurity positions in Figs.5(b),
5(c), we neglected averaging across the vertex. It can be 
seen quite easily that this averaging does not contribute 
to Gyy-j for our point interaction formulation. The phase 
factor associated with the interaction potential is 
independent of the dummy variable, £ and hence when summed 
over, the higher order terms in the typical ’ladder sum’ 
would vanish due to angular integrations. This, in fact,is 
due to the fact that momentum has to be conserved at each 
impurity site when averaged over the impurity positions. We 
can see this clearly from a typical term arising in the 
expansion of G ^ t , (Fig. 6).

A01AA \ \
; 7/ ' \

/ / / x \
/ / / \ \

/ / > ' \/ / /
\

\ \  
\

\

-jf-A Y  > %  > o  ;/ ;
p q £ m

k

Figure 6 : Averaging over the impurity site across the vertex.

Contribution from Fig. 6 can be written as

[-V (iwn ) ] 5 03) 5 Ï V * . . « )
m

(i (m-£) . Ra + i (k-m). Ra

‘[-V (iio u n i e ) 5 l ao CA0..«,)gngog,g|Bel(ï'ï':i-£a
p,q,£

m
•,pëq0£Lïïl''
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Because the angular integral in the i sum gives zero.
As we know G^t gives average current directly through 

a relation

< J > = Jo Jk,w.
(3.3

n

we can insert another k vertex in each term in the series 
for G^t and calculate the average current. This is shown 
in diagram 7.

Figure 7 : Diagrams to calculate the average current < J > .

The current is given by (Fig.7)

J, = 3vAv * '■m*v'
7 k k g/?^ (oi (u -u )L u v kk v nJ kk  ̂ n p' (3.36)

k„u)n

l- i
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where v is the volume of the crystal and all other quantities 
are already defined.

3.4 Conductivity at Hign Temperatures, T > T^.

By high temperatures, we mean, temperature greater than 
the Kondo temperature, Tj,, where the perturbation series 
diverges. In Nagaoka formulation this is the critical temp
erature, T . We can replace n-£°^and m£°^by their zeroth- 
order quantities with respect to J. Thus, we have

mk°'> = 0 » nk°^ = £k = f(£k^ (?*37)

Then, in the lowest order approximation

F ( i« n ) - si 
N

an to.n (3.38)

and
r(io>n)

G(iwn)

i— mp sign to 
4N n

JL
2N

D

-D (e-lwn)
tanh e

(2TJ

(3.39)

de (3.40)

inhere p is the density of states of conduction electrons of 
pure metal near the Fermi surface and we introduced the 
cut-off parameter D in the e integral as the integral 
diverges as e -»• 00 . We approximate (3.40) at T = 0 which 
is, more or less, a standard technique and obtain

G U V £
N

for D >> toli. (3.40a)

Then, using Eqs.(3.38), (3.39) and (3.40a) in Eq.(3.18) we get
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vr. , « i^CTrpJ sign %  
v(iton) - —

1-2^ An
N

<o_n
D

- i£(un)sign un (3.41)

where, v/e neglected the J2 term in the denominator because 
it is small compared to 1. Also, we put c = Ni/N, the 
concentration of impurities. From Eqs.(3.41), (3.17) and 
(3.36), we obtain

D
J = V

V
30 ,m*v. V kF l

de
«, -D Ce-i“n-V(i“n UCe-ia.n-iM -V(ia.n+i“p)3 
n

(3.42)

where kp is the momentum of the conduction electron at the
Fermi surface and, p is the density of states for both spins
(= 3N/2£p). For convenience, we changed the variable
to -to to to* and relabelled to . The e-integral now con- n p n n b
verges as e 00 and we can extend the limits to 00 to 
Then the integral is easily performed around the contour 
as shown in Fig.8. Then we get

Ju
2irv
30

e
,m*v. V kF5(V (3.43)

where

« y “(O <(0 <0
P n to +p Y Yto +C0 -co

JL__2 l - b An
D

1 - b An
D

(3.44)
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with

N
(3.45)

Im e

Re e
—  00 00

Figure 8 : The contour of the e-integral.

Next, we have to perform the to sum in the restricted region, 
This can be done by transforming the wn sum to a contour 
integral using the relation

The integrand has poles along Im z-axis at z = iw and the 
contour c' encloses them. The appropriate contour c' for 
the wn sum is shown in Figure 9.
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Figure 9 : Contour in the complex plane for summing over the 
Fourier energies.

We can now deform the contour as shown in Fig.9 and
4*integrate along the dashed lines. We obtain

£ 0 0P
_ 3

2fti
dz

e6z+l w + p
X

-1Z+Ü)
1 - b£n- 1 - b£n

D
iz
D

2 7T Ì
dz

eBz+l oo + P
X
n ■i z

D
1 - b

Y ____
1 z +con n ^

(3.47)

At this stage, we can make analytic continuation to real 
frequencies, iw^ -> oj + i0+, which gives

 ̂Hiere are ti« points to be cleared up: (i) one has to show that the 
contributions from the end-bits of the contour vanish, (ii) that 
there are no poles in the deformed region. These are done in the 
Appendix A.
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Ç(~iw) =
2ttì

f(x)dx
-10) + Y Y

1 - b £n -lül-ix 1 - b£nXX

D

-103 + Y
1 - b ¿xi'-ix

D

Y
b n-1 X-10J

D

(3.48)

where £(x) is the Fermi function. Eq.(3.48) can be written 
as

Ç(-io)) =
2 ttì

f (x)dx (})(x) - <Kx-ü3)j (3.49)

where

<H*)
-103 + Y Y

1 - b£nix
D

1 - b n -1X-10)

D

(3.50)

We change the variable x-w to x' in the second term of 
Eq.(3.49) and relabel x, to obtain

Ç(-iw) 3
2rr i

<|>(x) [f (x) f (x+o)) ]dx

ifa)g 
2tr

8f (x) 
3x

dx (3.51)

Expanding in powers of J, which is consistent at high 
temperatures, one obtains
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♦oo i * —  rI 2y Lw=o '
1 -- biin (3.52)

Substituting Eq. (3.52) in Eq. (3.51) and performing the 
x-integral one obtains

C(-iw) = _ i h ) g  i  r~
2v 2y L.

1 - b£n T
1.13D ]

(3.53)

Thus, using Eqs.(3.53), (3.45), the current is found to be

Jy = iwA„ 7 ~ ~ ~  PkF2 16N
P 3 rn*2i'  ̂ t2m* v 3itpcJ‘

l - £ i tn T
N 1.13D

(3.54)

The d.c. conductivity a , for J < 0 is given by

a = 1 ne2 16N , . p UI». T
2 m* 3 tt p c J 2 N 1.13D

(3.55)

This is essentially the Kondo result as obtained by 
Nagaoka. Our result differs from Nagaoka by an overall 
factor l and 0.68 in the Jin term. Nagaoka's formula (5.3) 
agrees with ours, which is derived from the current-current 
correlation function, for the free electron gas. But his 
definition, t "1 = -Im G^(-iw) has to be replaced by 
(2xy)-1 = -ImG^(-iw) to account for the factor \ our 
result. Furthermore, Nagaoka used his expression (3.9) 
for evaluating his (5.5) rather than using his (3.10). This
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will account for the factor appearing inside the An.
Thus, we see although we adopted a different method to 

calculate the conductivity of a Kondo system, we arrived at 
the same result. This substantiates the belief that the 
metallic systems containing a very dilute concentration of 
paramagnetic impurities can be treated, to a reasonable 
approximation, as though it relaxes with a characteristic 
time x .

3.5 Conductivity at Low Temperatures, T < T^.

At low temperatures, a straightforward perturbation 
expansion is not possible. The m£°^is then expected to be 
large near = 0. We shall follow Nagaoka procedure to 
find a solution at low temperatures, valid near the Fermi 
surface. We shall solve for the case J < 0.

Let us assume,

where, a > o, is a parameter to be determined self con
sistently. Then G(iwn) becomes

(m I )  - a ( 4 0)- n / e k (3.56)

iw 2 (3.57)
a

Then, substituting (3.57) in (3.18) one finds

V(iwR) = if(mn)sign wn
where

---1----- and y » = ±c|j|a , A =a|j|pir/AH

K l  + A (3.58)
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provided,

(3.59)

A depends on a and, has to be determined self-consistently 
from the Eq.(3.59). Then the expression for average current 
is given by, as before,

1 e2 
3g m*2v V kF

ton

___________________ de___________________
Ce - iwn- V(iun)]Ce-iun-ito) -V(io)n+i« )]

Performing the e-integral, one obtains

2tt e2 
33 m*2v A/ | p  t o y

where

■to <(0 <0 p n
00.n A + (0n + to.

(3.60)

The to sum follows exactly the same way as before and after 
making analytic continuation, we obtain

5(-iw) " '' £(x) 4>(x) - 4>(x-u)
2tt i

with

<Kx)
-10) + Y (3.62)

A + ix A - ix - io)
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Again, in the d.c. limit

a-iuO iw3 1 L 3f]
2'IT • Y' + Y' • 3x-

A + ix A - ix

which gives

_ iw$ A TT ̂1 + T 2

2 TT 2Y' 3
(3.63)

Then using Eqs.(3.58) and (3.60) the conductivity is 
obtained as

ne2 irp

x\ + r—j

r
1

m* 2cN 3
(3.64)

A factor of 2 can be taken into account in the same way as 
before. Eq.(3.64) gives the low temperature conductivity of 
Kondo alloys and this goes to a constant as T -*■ 0.

Now, one has to determine the temperature dependence 
of the function A from Eq.(3.59). This has been done by 
Nagaoka and we shall not persue this point any further, but 
quote Nagaoka's result. For two limiting concentrations of 
impurities A ’s are obtained to be, at T = 0

A = A. cN
2ttp

2L£ a 2

for c << — a 
N c

for c >> — A 
N (cN
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where
An = D exp[- N/ |J 1p j

For higher temperatures, the approximate solutions give,
•for T ~ 0,

A (T) = A (0)[1 - AT2]

where

A = TT2 1

6 Ao
1 - 9 c

4 TTpAo
for c << ~ A 

N c

TT2 1
6 a ;

i - ^ o
2cN

for c >> — A 
N

and for T < T ~ c

A(T) - — (T - T) .
ir

v/ith
Tc = 1.14D exp(N/Jp) .



47

CHAPTER 4 THE A.C. CONDUCTIVITY AT LOW TEMPERATURES

4.1 Introduction

In the last chapter, we applied linear response
formalism to the Kondo problem. For contact interaction,
we found that 'the vertex corrections' dropped out and the
conductivity could be calculated from the current-current
correlation function in a straightforward manner. In that
case, the transport relaxation time reduces to ordinary
relaxation time for the scattering of conduction electrons
by the impurities. As a result of applying the response
formalism, vie have succeeded in calculating analytically
the frequency dependent conductivity (valid for 

12a) << w x ~ 10 Hz) at low temperatures.

Although there exist a few theoretical calculations of 
frequency-dependent conductivity of the Kondo system, there 
are hardly any experimental data available to compare. 
Kakitani ; has carried out a perturbational calculation 
of the complex conductivity, a(w) = a^(w) + ic^C^Oj based 
on the s-d exchange model valid at temperatures higher than 
the Kondo temperature, T^. Calculations by Moriya and 
I n c u e o f  the frequency dependent conductivity of a dilute 
magnetic alloy have indicated that measurements of the 
surface resistance of a Kondo alloy in the microwave or far 
infrared region might distinguish between the s-d and Asf 
(localised spin fluctuation) models. Their results indicate 
significant deviation from the Drude model and predict a 
peak at finite frequencies in the real part of the conduct
ivity. Murata and Wilkins calculated the surface
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resistance of Kondo alloys by solving the t-matrix of the 
s-d model numerically. They also have suggested that a peak 
might be observed in the frequency dependent conductivity. 
But, the experimental data^ J so far available have not 
supported this prediction.

Our analytic expressions do not show any peak in the 
real part of the conductivity. But, since our calculations 
are valid at low frequencies and low temperatures, we 
are not in a position to draw any definite conclusion. We 
shall discuss this point in the last section of this chapter.

4.2 Frequency-Dependent Conductivity at Absolute Zero
Temperature.

Let us recall the expression for average current at 
low temperatures:

jy
2tt e2 
38 m*2v V f p 5fy (4.1)

where

-to <0) <0 p n

1
Y'

A + to + u> n P

(4.2)

wi th
y* = |c|j|a and A = a|j|pTr/4N (4.3)

The w sum now has to be performed carefully, since we are 
not interested in the d.c. conductivity any more but want 
to extend it to all frequencies. We notice that the summand 
in Eq. (4.2) goes as aT1 as «n + °°. So if we subtract
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from the summand at the outset, the summand will be 
absolutely convergent as con -* 00 and the contributions from 
the end parts of the contour (Fig.9) will pose no problem. 
Then, transforming the w sum to the contour integral form 
we arrive at the following expression:

Ç(-iœ) = — - —
2 tt 2iri

dx
8x

+ 1
■ICO + Y* Y

A - ix A + ix - ico

-1(0 + Y
A + ix

Y*
I X  - 1(0

(4.4)

where we already made the analytic continuation to the real 
frequencies. We write the expression (4.4) in the 
following form

Ç(-iw) J _____§_
2 tt 2 tt i

dx
e3x+l

g(x) (4.5)

where

g 00 ax2 - bx + o
'1

ax + bx + o
(4.6)

with

a = co2, b = co3, C2 = (o2A2-i(o3A + i(oy ’ (2A-ico) and c-̂ = Y'(2A-i(o)

(4.7)

We notice that the function g(x) is odd and so we can 
transform the expression (4.5) to
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C(-ica) =
2 tt

_6_
iti

g(x)f(x)dx + — g (x) dx 
2 tt i  ■

(4.8)

where f(x) is the Fermi function. At absolute zero tempera
ture the Fermi function vanishes and we only need, to 
evaluate the last integral of Eq.(4.8). For small frequency 
range, b2 < 4ac2 and we can perform the integral quite 
easily giving

00 /)4C, -, r,
g (x) dx = ... ...  tan — ■ ■■ -....—  (4.9)

o / 4 a c 2 “ b2 / 4 a c 2 ~ b 2

where
4c.

/4ac2 - b2
_____ 4y 1 (2A - ito)__________

w 3/2[4 A+y »t0 + 2iy,A)-a)3]̂
(4.10)

and

0)3/2
7. Tz [4(a3A2-ia)2A+y'm+2iy,A) - w3]2 v4ac0 - n

(4.11)

We simplify the square of the last expression and obtain

b 2
4ac2 - b 2 46 +

1__
8i6

(4.12)

where

<5 = y'/A2 and u = w/A
1The next step is to assume w << y'2. This assumption 

restricts the validity of our calculations to frequencies
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12 NiA NiTkvery much smaller than ~10 Hz. Since, y f = --- * ----
TTp p

at T = 0 and with the density of conduction electron states
near the Fermi surface for both spins, , y' ~ cT^Cp

2ep

where c = N^/N is the concentration of impurities. Hence
i ----  i 7w ~ c2/ecT. is 10 Hz, if we take ec ~ 5 ev andIilciX r K. r

Tr ~ 10°K.

Now, if we take to2 << y* , 6 = —  >> to2. Using this
A

condition, one can show that the expression (4.12) is very 
much less than 1 and hence the expansion for tan ^x for 
small x is valid. Then to2 << 6 i.e. 6/to2 >> 1 and we can 
neglect 1 in the denominator of (4.12) compared to <$/to2.
We obtain

1 1 to 2 / 4
A  + ii + li

A  - 0
A  + M  + 8 i 6 1 + 6 + 2 i 6 /to

to2 to2 to 1-to2 j to2 to2 to3

(4.13)

can consider two cases, 6 > 1 and <5 £ 1. For both the
possible cases the expression (4.13) is very much less than
1. Thus Eq.(4.9) can be expressed as

oo
g(x)dx 

o
___________4y * (2A - ito)___________
4toA2 + 4y'to - to3 + 8iy*A - 4ito2A

The rearranging and the rationalising of the r.h.s. gives

________ 8Ay tto(4A2+to2)_________4y* [to2 (4A2-4y * +to2)-16y 1 A2 ]
to2 (4A2+4y*-to2) 2+16A2(2y*-to2) 2 to2 (4A+4y*-to2) +16A2 (2y’-to2)2

(4.14)
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Using (4.14), Eq.(4.8) becomes, at absolute zero temperature,

?(-io)) _____________8AYt03(4A2+u)2)_____
w2(4A2 + 4y' - oj2)2 + 16A2(2y * - m2)2

77
4y[m2(4A2-4Yt+m 2)-16Y1A2 

a)2 (4A2+4y * -w 2) 2+16A2 (2y ' -w2)
(4.15)

Substituting Eq.(4.15) in Eq. (4.1), and dividing by iwA^, 
one obtains the expression for complex conductivity given by

-i _ J_ ___________8Ay1 (4A2+o>2)_____________
2ttw 2 TT u 2(4A2 + 4y’ - w 2)2+ 16A2 (2y ’-w2) 2

f 2tt e2 , 2a(w) ----------- pkp
3 m*2v

_i_______ 4Y[m(4A2-4Y,+tA)2)~16Y>A2/a)]_______
2ir u)2(4A2 + 4y * - w2)2 + 16A2(2y ' - w 2)2

(4.16)

The d.c. conductivity at T = 0 was found to be

i — —  pk£ — —  = a . We can no\tf express the real and 
° m* v 2y

imaginary parts of the frequency dependent conductivity in 
the dimensionaless form in the following manner

aR (w,0)

and

5j(w,0)

1 + l w 2 T _ _ 2------------------=b------, _ 1 W x 2
"2-------i  ̂2+ l  w

— - ** 2  1 . 1 - j L
L 6 J L 6 6

~ r rl , S2 -,W{c-iT ]-

2 f l  -  i — T  *3! fi d  - 1 51
L « J 2 L 5 6

(4.17)

(4.18)
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where

aR (w,0) = aR (w,0)/ao and OjCw.O) = a1 (w,0)/ao

New, 6 = ~ c(e.p/T,,,) measures the impurity concentra-
tion. Also we assumed w 2 << y' which implies w 2 << 6 i.e.
-v 2
™  << 1. Using this limit Eqs.(4.17) and (4.18) reduce to 
6

dR (m,0)
1 +

I M S 2 
l w2[l + |]2

(4.19)

a j (a) ,0)
^-[l-6-lôw2]
1 + l Si2Cl" + I)2

(4.20)

Before considering the pure and dirty limits i.e.
6 << 1 and 6 >> 1 we shall take into account the effect of 
temperature being increased from zero degree.

4.3 The A.C, Conductivity in the Pure and Dirty Limits

As temperature rises from the zero degree we cannot 
ignore the first integral of Eq»(4,8). We see that in the
integral f(x)g(x)dx the important values of x are of the

order T, and an expansion in powers of x is valid. So, we
1C

write

g(x) = ax2 - bx + C2 ax2 + bx + c?

2bc-
c2

-X
2ac-,-bz „2

1 z 2 a U1 ----------x - — xi
r2 r2c2 2

2ac0-b2 2
x +... ’

= dpX + ¿ 2X 3 + d^x5 + ..... etc. (4.21)



54

with
2bc,

d2 = ----- (2ac2 - b 2) etc. (4.22)
c 2

We have assumed, [(2ac2~ b2)/^]2
case this gives'-p j^- ~ 1, i.e. T ~ y

/ c 2
»1

1. In the limiting 
Now, since

i 12A << y'2, and for maximum frequency w ~ 10 Hz, we get
T ~ 50 IC°if we take co ~ A. Hence, our expansion is valid
as long as the temperature is below 50°K. Since our
expression for the average current is valid for temperatures
below T^, we are within our region of interest.

Now we write the integral in the following way

I (-Dr=l
r+1 , . -rßx,g(x)e p dx = l (-1)r=l

r+1 dlXe-Brxdx

d2X3e vq'rx;dx + ... (4.23)

and since

- rx, 1xe dx =
(er)

x 3e-Brxdx * 6
(0r)

also
l C - D r+1 -T = —  , I (-1)r=l 12 r=l

r+1 J_ = _Z_ x“
r* 720

Eq. (4.23) gives

d. 2 do o
i l .  + —  —  Tr' + ... .
ß2 12 ß1* 720

(4.24)
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Since the parameter (T/A) is very much less than unity, we 
can ignore all higher order contributions. Using definitions 
of a^ cx and we get d^, given by

2bcl _ 4wy' A - 2ito2y '
" ' .....ra 1 ' Tr'"‘ r •

c| CcjA2 - iw2A + 2iy'A + y'w]2

Rationalising, the above expression becomes

2bcl = 4u)y * A[(o2 (A2-*-y* 3 2 — A2 C2y* —co2 )̂ 2 3 — 4o33Ay* (A2+y>) (2y *-m 2) 
c2 [a)2(A2+y,)2-A2(2y’-w2)2]2+4A2ijj2(A2+Y,)2(2y,-w2)2

.2ai2y tCto2 (A2+yt)2-A2 (2y t-co2)2]-8cj2A 2y > (A2+y1) (2y 1 -to“) 
O 2 (A2+y' ) 2-A2 ̂ y ’-w2) 2]2+4A 2to2 (A2+y' ) 2 (2y* -a>2) 2

(4.25)

This equation is substituted in Eq.(4.24), where we keep only 
the first term, and express it in dimensionless form as 
before. Then the real and imaginary parts of the complex 
conductivity can be written,using the same condition as 
before, as:

dR (co,T) U  + ̂ 2)
lV*c32 (ini)* 

0

+ 4 ( i 4 - s n i 4 ) 2
3 4[l+^-(l+il 2+—  (1+i) “ ]

2 6 16 5

2

(4.26)

CTj(w,T)
2[l + Jw2(l+-)‘] 3 A

5 2 6 16 6

(4.27)
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One can easily verify that for d.c. conductivity 
. 2 2

o r (0,T) = [1 + IT ] and dj(0,T) = 0 which is, of course,
what it should be.

We now consider the two limiting cases:
1. In the pure limit, i.e. 6 << 1, for very low concentra
tion of impurities, >> 1 and we also have 3 2 << I the 
Eqs.(4.26) and (4.27) reduce to

Spfffl.T) = -- 1--  + —  f l
R 1 * x2 3 UJ 2-v 2(1 + x2)

(x = 3/26) (4.28)

3j(w,T) = 7T
1 + X'

'T)2
lA-

1 Y
(1 + x2)232

(4.29)

2. In the dirty limit, 6 >> 1, — << 1. We have to
6

remember that our solutions are not valid for a very dirty 
limit, since the single particle Green’s function we derived 
is valid only for low concentration of impurities. In this 
case, the Eqs. reduce to

aR (u),T) = 1 + 7T ' 1 1 + X' (x = 3/2) (4.30)

CT J (o> ,T) = -  X  + TT ‘ 'Tl2
1AJ

x
1 + x‘

(4.31)

Eqs. (4.30) and (4.31) are independent of impurity concentra
tion.

4.4 Discussion

As mentioned earlier, in the absence of experimental 
data in the region of interest, we cannot compare our theory
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with experimental results. In the dirty limit, our
expression for complex conductivity becomes independent of
impurity concentration. This has to be viewed writh
scepticism, since our solutions for the self-consistent
equations are not valid for high concentration of impurities.
In the pure limit, our expression for complex conductivity
is given by a universal function of S/6. Murata and 

1911Wilkins^ J calculated numerically the surface resistance of 
Kondo alloys for several impurity concentrations. Our 
results seem to agree well with their predictions as far as 
variation with concentration of impurities is concerned. 
Theoretical calculations of Moriya and I n o u e ^ ^  as well as 
Murata and Wilkins indicate that a peak might be observed
in measurements of the surface impedance of a Kondo alloy at 
low temperatures in the microwave or far infrared spectral 
regions. The experimental results of Brandii^ J et al. 
do not show any peak. Although they argue that the presence 
of potential scattering will reduce the peaking behaviour, one 
can by no means be certain that the differential calculation 
of the A.C. response would show no peak experimentally. Our 
results do not show any peak although we have not taken 
potential scattering into account. But, unfortunately, we 
cannot claim our results to be valid in the far infrared 
frequency region because of the approximation involved. We 
believe that the so-called peak in the surface impedance 
measurements of Kondo alloys is yet to be established.
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CHAPTER 5 EXTENDED INTERACTION FORMULATION

5.1 Introduction

In chapters 2 and 3 we have re-derived Nagaoka's 
equations in the presence of a uniform electromagnetic field, 
E(t), and solved them by iteration procedure. We found 
that the vertex part does not contribute to the electrical 
conductivity of the system. In this section, we want to 
generalize Nagaoka's treatment to the case of an extended 
exchange interaction and see the effect of applying linear 
response to it. This time, because of the mathematical 
complexity, we formulate the equations, in the absence of 
the electromagnetic field, and the vertex corrections are 
taken into account through the Ward's Identity.

5.2 Formulation of the Equations

The Hamiltonian is written as

H = H + Y H o La
a
ex (5.1)

with

1 v t .i(k'-k).Ra —  l. JVV'e “ - -Kex 2N kk' "kK (CktCk'+" CM Ck ' d S“

+ ^ki^k'4-^- + kf k'+k' + (5.2)

Hq is the conduction electron energy as defined by 
Eq.(2.2). All quantities are defined in Sec.2.2. The 
only difference now is that ill Eq.(5.1), J, the strength of
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the exchange integral, new depends on the conduction electron 
momenta k and k ’, whereas in Eq.(2.1) it is a constant. We 
shall assume later that J-^, depends only on ¡k - k *|.

Nov;, we define the single particle Green’s functions 

*^kk’’ rkk'’ anc  ̂t^e -̂r boundary conditions, as before,
(Sec. 2.2), and use the same decoupling procedure to arrive 
at the follottfing set of Equations.

(io> -e, , )Gn kk ( V T i(Jt-k’) .Roua Jk a e “ “ " M a -6(3 kk’

(5.3)

[ifl(wn) - ek ,3

3 1 v t i(A-k’).Rar , ^
+ i —  l Jk'£e - - - Gk h ° V2N o

- -i- V j ei(—”— ') *“ara (w
2N i

+  I  y  T na .Rotra f .J££'nk ’£e lkSL̂  vJN IV

- ±  I2N IV
Jaa

a i(A’-k') . Rar rjl -, 
-mk'ne - - - Gkk'(V 0 (5.4)

Where and mk ,k are

a i(k'-k).Rot r+ r  ̂
nk'k " 6 - - - < ckick-t >

a _ i(k'-k).Ra. r+ r ca .
mk'k = 3e - - - < cktck ’+s- >

In the limit of low concentration of impurities (c << 1) we 
can replace n“ ,k and mk ,k by their impurity averaged values,
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nk'k an<* mk'k* as we ^ef°re* Let us Put

Vk ’k ' ^Jpknk ’p " ^Jk ’k
P

Ak ’k = iJpkmk'p " *Jk'k

C 5 <. 5 ) 

(5.6)

Then the Eqs. (5.3) and (5.4) reduce to

^ “n ^ k ' ^ k k '  + ^   ̂ Jk U el<'“ ” }’”ark5,(;a)n) " ^ k k ’ (5,7)
A , a

and

[ifiCV - ek ,]r“ktOon)

+ Zl
N £

1 V a x(ii“k ) • Rar r n _
■ —  t *fc'le - - -  GU CV  ‘ 02N £

(5.8)

nk ,k and mk ,k are related to Gkk, (u>n) and rkk, (wn) by the 
following relations

i(k *-k).Ra v r r -y nk ’ k -1 ® 1
“ n0*

CD. kk1  ̂ n"
n

(5.9)

mk'k -2i e ^ ' - B - S f  Z r ^ c , ) / “"0 *
“n

(5.1C)

So Eqs. (5.7) to (5.10) together with Eqs. (5.5) and 
(5.6) now form a closed set of equations. We shall solve 
them for s and p wave scattering only.
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5.3 Formal Solution with s and p Wave Scattering Only.

In the lowest order approximation we replace 
[ifi(con) - e^,], appearing in Eq.(5.8)s by (iu)n - ê .,)» and 
write Eqs. (5.7) and (5.8) in the follo\ving form

Jkk , c v iB
2N

t i(£-k').Rara ( -s 
gk' Clwn ^  Jk ’£e rk£(;a)n)

£,a
(5.11)

,a
kk ’(wn) "

iB
2N gk'

s r. i(£-k1). Rar
t1“n n Ak',ie - - - Gkl£ ( V

iB ri iXu i(£-k').Rara —  gk » ( ^ n ^ Vk'£e - ~ “ rk£N £ (%) (5.12)

where the free electron propagator gk (i“n) is as defined 
by Eq.(3.13). We represent Eqs.(5.11) and (5.12) 
diagrammatically (Figure 10).

One must notice here chat at cross vertex (x) the 
impurities are summed over, whereas at circle (0) and 
triangle (A) vertices they are not. ikk? depends explicitly 
on the position of a single impurity at Ra . Now, we 
double iterate the equations diagrammatically and examine 
the different order terms in the series for Ĝ .̂,(a)n). This 
series up to sixth order term, would be as shoirn in 
Figure 11.
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::x k

k'

where

k

6kk'
k' k—̂.-----......
k* a k

— —

k* k
■■■>.x->—

k. k
" U "

k« f k

Gkk'(“n5

rkk'C«n>

,i3iT i (k-k* ) .Rot 8k' (— ]Jk'ke - - " «k

riRx, i(k-k').Ra 
•8k ' ( ^ ) Ak'ke - -

gk rii'
\T>

,T i (k-k* Ì .Ra 
Vk ’ke " “ “ 8k

Figure 10 : Diagrammatic representation of Equations
(Soil) and (5.12).
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k' £ k

- * - o -

k' £ V  k
— 'h— k r - C  r—

^ k y a ^ a 1 ,£" k k' a V  £" k

k' £ £' £" £'" k k’ £ £’ £" £M* k
^ r_ 0 ~ X  0 ~ ~f~ ~~Xt-zV O '  x  •(3 '—

k1 £ £’ £" £,M k k* £ £’ £"* £’" k
4 >----4- y<—

k* £ £• £" £,B £"" k k* £ £* £" £m  £""
*“Q" *-A - & - q —  -f OfOr OrxD~>K/**\J ~

k’ £ £’ £M £"’£"" k k* £ £’ £" £"’ £""k
t X Z V  q ~x -/t o  X- •— x  •/y  "/V" a ^

Figure 11 : Expansion of G ^ ,  (un) up to sixth order,

A careful examination of the terms of various orders will
i" Inreveal the pattern of the n L order term. We find that the 

n * order term, (i) starts with a cross and ends with an 
open circle; (ii) open circles and crosses occur in pairs, 
(iii) any number of triangles occur between the cross and 
open circle of (i). This pattern can be seen mathematically 
if we write the follox.Ting matrix equations for G and T for 
(a) and (b) in Figure 10*
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G = g + gxr

r = gOG + gAr

Solving for G, one obtains

G = [1 - gX(l - gA)"1gO]'1g

Expanding, we can write

G = [1 - (gXgO + gXgAgO + gXgAgAgO + . ..)] 1g 

Suppressing g !s, this series can be written as

G = 1 + XO + XAO + [XOXO + XAAO]

+ [XOXO + XAOXO + XAAAO]

+ [XOXOXO + XOXAAO + XAAOXO

The general pattern of the terms occurring in the series for 
G can now be clearly perceived. Having been able to find 
the pattern, our next problem is to sum the series for G.
The whole series for G can be diagrammatically written as 
shown in Figure 12.

Let us denote the series in Fig. 12 (d) by G , as 
it depends on the impurity position at Ra. Using the 
definitions (given in Fig. 10) we can write

XAOXAO + XAAAAO]+ • • • • (5.13)

1 ( £ - £ ' )  •&*£ ( k > £ )+ (5.14)
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k* k*
A

£
a

6kk' -*— o - >

with
k' x k——

a
k’>-

k’ £
- >  x — o

£'
4a a'

kk* k' k'

(a)
£ k

---4*--
k 4- ~pr

6kk' i k’
/
k

4~ ■-----

___ 6kk'\ 4-
k'\

f . X \  i---
/ 4  !

-

k k'
- A - > -  A  ~

(b)

(c)

£ k
A .-A->- 4

— k k' £ V
\/ r\

k
________ — ^ — "A U -----

a

(d)

(e)

Figure 12 : The Series For G^,.

Let us try a solution of the form

G (k.k') a ̂ J G (k.k* . i(k-k').Ra ) e — — —

Then Eq.(5.14) reduces to

G(k,k') » gk6kk,+ Î fk I (k j 2.)
£

(5.15)

(5.16)

Hence Eq.(5.15) is indeed a solution of Eq.(5.14). Using 
Eq.(5.15), Fig. 12 (e) can be written as

— (T, .ok* iß
2N- l

£ ,£ Ja
(3 n• i74J
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and the series for (un) j Fig* 12(c) is given by

G,kk , ( V 6kk,gk"Sk' 2N l Jk f AAil » k^ * »£^Gk ,̂ a)n̂ )e 
a, a1 a

i (k-k*) . Ra

(5.18)

Then Eqs.(5.16) and (5.18) form two coupled equations for
/v
G(k,k') and Gkkt(wn). Vie have to solve them.

Vie now recall the approximation made in Eq.(5.12) where 
we replaced the renormalised propagator by a free electron 
propagator. This means that the interactions between the 
impurity spins at different sites have been neglected. And 
this is a good approximation in the limit of low concentra
tion of impurities. But this simplification, later on, 
gives rise to divergent integrals in the vertex equations.
We shall use the renormalised propagator to take into 
account the spin-spin interactions and replace it by the 
free electron propagator when it does not bring in any 
unnecessary mathematical complexity. Next, we must remember 
that if we sum the series for Gkk,(o)n) by iteration, 
repeated scattering at a single site would give rise to 
'nested diagrams'. Taking these into account, Eq.(5.16) is 
replaced by

G(k,k ') = Gk6kk, i3
( N Gk ' l w c k >*)

a
(5.19)

Now, these coupled Eqs. (5.18) and (5.19) are either 
impossible or extremely difficult to solve for the general 
case. We shall solve them for s and p wave scattering only.
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The scattering of conduction electrons by a single 
impurity at Rot depends only on |k-k' | i.e. on the modulus of 
the difference of wave vectors of incoming and scattered 
waves. In the limit of low concentration of impurities, 
we can expand the exchange interaction, Jkk, into Legendre 
polynomials, (cos0kk,). We write

For s and p wave scattering only this can be written as

where JQ and J-̂  are constants denoting the strengths of s 
and p wave scattering. Now, from the definitions of \rk ik 
and A^iy given in Eqs. (5.5) and (5.6) and also from the 
solutions in Chapter 3 for s wave only, we can make the 
following ansatz:

Let us also assume a solution for G(k,k') of Eq.(5.19) given 
by

and k* only. Then substituting Eqs. (5.23) and (5.20) in 
Eq. (5.19) and equating the coefficients of c030]^* an<i unity

CO
J kk* = I (2£+l)JJft(cosekk,) .

X/ O

(5.20)

(k1) + V( 1 ) (k’ )cosek , k (5.21)

Ak'k ~ A(o) (k') + A(1 ) ( k ')cosek , k (5.22)

(5.23)

A A

where G^0^(k,k') and G^^(k,k') depend on the moduli! of k
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on both sides, one obtains

S (o3 Ck.lc'D - ^ k .{V(o)(k')Gk * V C*')lS(0)C M ) }  (5.24)
N a

G (1)Ck,k') = i ^ k ,{V(1)(k,)Gk + iv(1)Ck')XG(1)(k,£)} (5.26)
*• Or

Where some of the terms vanished due to angular integrations 
and use has been made of the following result,

Icosek£ cose£k, = icosekk,

Solving for G (k,k') and G^^(k,k') in Eqs.(5.24) and 
(5.25) , one gets

G (0)(k,k') - iß
N JV ( o ) ^ GkGk ’ l-iß5v

- 1-1

(o)
(5.26)

and
G (1)(k,k') iß

N >
V(i)(k’)GkGk ,

-I - 1

1 -iiBÇV ( 1 )
(5.27)

where

5V = 1 Ï v r0l(k)Gk V (o) N k k
(5.28)

= - I v m C k ) G k V (l) N k <-l) K
(5.29)

Therefore, G(k,k') has a solution of the form

G(k.k') - ikk,Gk ♦ 'ig1
N V (o)(k '’GkGk' l-iß?y

(o)

iß
N V a ) (k')GkGk< 4 isev

-1 - 1

COS 0
( 1) kk' (5.30)
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We can now find the impurity averaged value °f Gkk, 
for s and p wave scattering only by a similar technique 
to that applied in Chapter 3. This is illustrated in 
Figure 13.

k' k
\

...-

6kk' k* k
4- 4 - - Q 4

a a a’
4- - - 
(a)

\a (c)
a

k k'
+  - H “

/x—
r- 1__r o  +

p' (d)
Figure 13 : Calculation of Gkk,(un); (a) is the expansion
of GV1 t(w ) and (b), (c) and (d) show an approximate kk n
calculation of it. Boxes connected with the dotted lines
are associated with the same impurity.

The series in Fig. 13 (d) can be written as
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'sk'
.  ̂2 i3
2N- I , 1 ’ kG ̂ £ * * £ ̂ e

y

i(k-k!).Ra
Sk

ie
2N' 6k'i ' i [Jk ' A ' p G ^ » ^ ]Gp ^  CJp r .A£,n k G(£- ,r-)]

i(k-k*).Ra e - - gk

(5.31)

This series cannot be summed for the general case of 
all partial waves. We have succeeded in summing the series 
for s and p wave scattering only. Then, using Eqs. (5.20), 
(5.21) and (5.30), one obtains

A NJ_n /•_> 1

£ Jk'£Ar k G(:r ,£) = " . RF£,£' J--iPby

r J t Nr)-°— C°-L . + . 1X U .. cosekk, (5.32)
(O) 3 '(1 )

where

(o) - I A (k)G- 
N k (0) K

(5.33)

n (l) = n } A (l)°0 G k (5.34)

Similarly, one finds

2 Jk'£A£'pG(£' ’V)
£,£’

n ^ f o )  3JiNn(D■■■■ • + - V -- L J -  cos9n1<,
1-iBSy l~iB5,o ’V ( 1)

C5.34(i) ]

and

 ̂ NJ.r) /- -v 7 Ji Nn n s
I J r ,Ar „k G(£’” ,£”) = ---2 - ^ -  + — n —

o „  o h . P  i - i B S y£ >£ V(o) 3 V(l)
+ cos9kp 5̂>3^CiA)]
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and hence the term appearing in the curly bracket in the 
second term of Eq.(5.31) can be easily evaluated. One finds

I E Jp r ,A£'" k ^ £M' ,r^ ]

J Nnf ,
o Co)

d-iee
+ i èJiNri (l)

V ( o ) J

“I 2

(l)
cos9kk 5 ïgiP

(5.35)

One can see now that using Eqs.(5.32), (5.35) and 
other similar quantities, the series in Fig. 13 (d) can be 
written as

k' r _  k rig]
2 ¡“NJ

gk f 2̂N̂ 1-
NJon (o) + (1)

(o)
ai65v. cos6̂'
3 ' (1)

i(k-k!).Rasr-i e v-- —^k

ig
2N gk . K JoNnCo)

1 -igçV (oj

r- 1

+ Ì rr'd)

( U

C O S 0 kk' gke
i(k-k?).Ra

+

We can sum this double geometric series to obtain

-gk'A (o)
i(k-k’).Ra . _n_ i (k-k1 ) .Rot

e “ “ “ gk"gk'^(l)C0S kk'e “ ~ 1gk 
(5.36)

where A (o) and A ( 1 )
are
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. NiS
2N7

NJo"Co)

(o)
A (O)

i + iS
2NJ K JoNp(o)

p P 1 - CoT

(5.37)

iS
2N-*

2 3 JiNr| (1)

3 CD
(1 )

1 + l[il] l G 
p

3J1T1(1)N
3 i2N^ „ p 1 - -iS5V (if

(5.38)

We now find the impurity averaged ,(wn) from 
Fig. 13(b) given by

Gkk ' ̂  "
gk6kk'

n  + N. (A +A ) £■. ] L i L (o) (iy°kJ
(5.39)

Eq.(5.39) can be written as

Gkk v n( < 0  = Ts [iu - e, +n ~k L v~nJ
(5.4

where, \(w^), the self-energy part, after some 
simplification, can be expressed as

Z < V  * 7
0 Trl J,

1 ^ 0^ V ° F

1 T J- T Jinr i i
V lp

(5.41)

x^ith c = Ni/N, the concentration of impurities and
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o 1 v r, = - I
N v

Tl1 - ì lN ,

> O (k)

Ci"n " Gk + K “n))

A (!) (k)

[i“n - ek + IC“n)]

V, -,(k)

[i“n - ek + I (<*>„)3

h o (k)
- I
N k [i“n ' Ek +

and

F . ' ï --------- 1---------
N k [iwn - £k + Î ( V ]

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

Thus, Eqs.(5.40) to (5.46) give formai solutions to 
our closed set of equations for the impurity averaged 
single-particle Green’s function, where we have taken s and 
p wave scattering only. In the next chapter, we shall 
calculate the electrical conductivity of the Kondo system 
using this solution.
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CHAPTER 6 SOLUTIONS : CONDUCTIVITIES AT HIGH AND LOW 
TEMPERATURES

6.1 Solution at High Temperatures

At high temperatures, T > Tv we can apply 
perturbational treatment and so we put

mk’k ~ ^ an<̂  nk'k = ^k^kk' * (^»1)

Then, from definitions of V ^ ( k ) ,  V^(k:), A^Qj(k) an(̂  
A(l)(k) we have

A ( o ) « ‘ -*Jo V k> ' W »

A(1)(k) ■ -Wj. V (1)(k) " Jl(fk-i) (6-2)

Let us put,
iw + T (w ) - ifl (6.3)n L tv' n

and assume that is real and has the same sign as w^. Both 
of these assumptions are consistent and we shall see that 
these assumptions do not lead to any contradiction. Then, 
we calculate the quantities F, n°, nx , K0 and Ç-j as before 
(Chapter 3); we obtain

F = _i I£ sign w (6.4)
N

= i up
N

J sign a)n (6 5)
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n 1 = i | 1 £ j sign u> (6 .6)
N n

where p is the density of conduction electron states near 
the Fermi surface. We also have

pj r tanh(7m)deE = ----- Z L _  (6 »7)
2N J.D E - ian

At T = 0, this is

p J ft
5 ------ £ ĵ n| —  | for D >> ft . (6 .8)
° N D

Again, we introduced the cut-off parameter D which is 
taken to be of the order of band-width. Similarly, at 
T = 0

pJ -a ft*.
5 . ---1 £n| — | . (6.9)
1 N D

Since, at high temperatures, 
quantities in powers of JQ and J^,

2
compared to unityf 2 rpJi)--- and i

N J l N >

we are expanding the 
we can ignore

. Then l(wn) can be

written as

iY°Slgni;n t lYlSl«nuMn (6 .1 0 )
1 -b ¿n| —  | l-b1 £n|—^

0 D 1 D
where

^0
3 CTT P j 2 

16 N 0
Yl = J_ 

16
Clip T 2 ---
N

(6 .1 1 )

b

o'“3Q.11 b. ; 1 p j ^ (6 .1 2 )o N 1 3 N
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It can be seen now by substituting Eq. (6.10) in Eq.(6.3) 
that the assumptions we made about ftn are consistent. We 
get

sign (6.13)

In the first order approximation, this is

ftn wn +
Yo

to w
1 -b £n| —  | 1 -b.Anl — |

° D 1 D

sign to.n (6.14)

= w.n f (to o v n) sign w.n (6.15)

where the function fQ (ton) is defined from the Eq.(6.14).

Next,we shall evaluate the average current and 
electrical conductivity of the system from the Kubo formula 
of linear response. We shall ignore the vertex corrections 
for the moment and later on take them into account. The 
current is given by

Jp - SvAv nn* vj l kukvGkk(“n)Gk’A “n + V
x . t o .n

A
33  ̂m*2v Pkp I

to.
de

n [iwn-e+J(ton)][iwn+iw-e+l(ton+top)]
(6.16)

All the quantities are the same as defined in chapter
3. Performing the e integral in the upper half plane, we
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obtain

V _ L  a  - 2 —  p k J
30 y m*2v F l

2 tt

. w + f. (u) + f, (to +w)-co <oo <o p 1 v n' Z v n p'p n

where
(6.17)

fi(%) ■ 1 -b £n - o
%  +

D
1 -b-, icn - —

1 D
(6.18)

ana

f2 (“n+“o) =P' 00 +U> 00+0)
1-b Jin — — 2. l-b. £n— — 2

0 D 1 D

(6.19)

We transform the oon-sum to a contour integral form as 
before, (See Chapter 3), and make analytic continuation to 
real frequencies iu)p -+ oo + i0 + to get

l co + f, fco ) + f-.fco + co ) -o> <io <o p lv n' 2  ̂n r>JP n

B dx
2 TT Ì e8x+l

C<Kx) - 0 (x - co) ] (6 .20)

with

<Hx) Y- loo +- 0 ■Yl Y1

1-b £n 1 -b ftn~ ~x— —  1 -b.Ani^ l-b.jinl1- ^
0 D 0 D 1 D 1 D

(6 .21)

Using the same procedure the average current is
found to be
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J ■ 1A..U) -
m *2 v

pkiK x- 1 -
2 (y +Y-i )

•Vobo ^ l bl
Cy0 n i )

£n
1.13D

(6 .2 2 )

and the conductivity is given by (in the d.c. limit)

ne2 8N T
m* 3ttpc(J2+j J2) l 0 3 1 1.13D

4

In the last expression we have replaced yQ, y^, bQ and b^ 
by their values from Eqs. (6.11) and (6.12). We notice 
that for = 0, i.e. for s-wave scattering only Eq.(ó.23) 
immediately reduces to Eq.(3.55). The effect of taking 
p-wave scattering into account is just to renormalize the 
previous result for s-wave scattering only. But, we must 
also remember that we have not yet taken the vertex 
corrections into account. We shall do that in the following 
section.

6.2 Vertex Corrections at High Temperatures

The vertex corrections are taken into account by the 
prescription laid down through the generalized Ward’s 
identity which itself arises from the conservation laws, 
like the conservation of charge, particle, momentum etc.
The series for the single particle Green’s function is 
given by Fig.13(a) where the fundamental units are empty 
boxes. To take vertex corrections into account, one has to 
evaluate the vertex function which usually occurs in the 
form of an integral equation. According to the Ward’s
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identity, this integral equation has to be constructed by 
inserting current vertices at all points on the free 
electron propagator between the empty boxes, (in the diagram), 
in each term of the series. Only one current vertex has to 
be inserted at a time. At this point, we must recall that 
the empty boxes themselves consist of crosses, triangles 
and open circles, and notice that current vertices can also 
be inserted between them, but we shall consider this later. 
Thus, for the following typical term

we write

k' i V  k
4 - - > _ J ■. r

1____ j
— —1

1____ 4-
k' % V

vy

lc

then the diagrams are bent about the vertices to form the 
vertex equation. Since, at high temperatures we expand 
in powers of J, we shall calculate the lowest order correc 
tion first. The vertex function, X is then given by ther*
diagram I4 .

From Fig.I4 , the vertex equation is written as

h ik) “ iu* l AA k ')Gk'k' (“n)Gk'k' ("n + “p -1
k* ,a

i8

2N- l Jk£A£*ic’G ^ * ’^ ’“n-*
i(k'-k).Ra

’ l , Jk'pAp'kG(P ,̂ wn+a)p)e P.P v v

i(k-k’).Ra (6>24)
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M

Figure 14 : The form of the integral equation for the 
vertex function, A .r*

As it is clear from the above Equation that the vertex 
function A^ does not depend on the position of a single 
impurity, the sum over the impurities can be performed 
immediately giving N^, the total number of impurities in 
the system. We use Eqs. [5.34(i)] and [5.34(ii)] to 
reduce Eq. (6.24) in the following form

X (k) = k + m  N-C-igN)2! ~y (2IV 1
Xii(k')Gk , Cwn)Gk , (wn + a) )•y

k'

CJoUo^n^ + J1 U1 ̂ n ^ cos0kk'J

•CJo V “n + U)_P) + J1U1 (ton + « )cos0kkl] (6.2 3)

where we wrote Gkk = Gk and



The Eq. (6.25) is very difficult to solve for the general 
case. Since X must be proportional to k , we putM r*
X (k) = kX(k) and multiply both sides by k and sum over y. 
The important k* values in the sum are |k’| ~ kp and also 
we require X(k) for |k| ~ kp. Writing X(kp) = X , we 
obtain

X = i * * I M i 2
16N2 • K>o<VUlCV V  ♦

• (Mn)Ck, (un + (6.27)

The product terms UG ( wn ) TlJ*0 (a)n+wp^ ani* U1 ̂ wn ^ l  ̂ wn+up^ 
vanished because of the angular integrations. Denoting

Q ( V W p ) _____________________ de____________________
Ce - iwn - I(wn)3Ce - i«n- iwp- I O n +“ p ) 3

Eq. (6.27) becomes
(6.23)

(6.29)

Thus, in the simplest case the vertex function is given by
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Eq. (6.29). Now, the conductivity is given by the currant 
current correlation function, represented by diagram 15, 
where the propagators are full Green’s functions.

k , w_ +o)* n p
\

Figure 15 : The diagram representing the current-current 
correlation function.

The current is given by

jy = ev
r ) 2e
•m*v- Av l W l d W W

k,wn
(6.30)

All quantities appear in Eq. (6.30) are already defined in 
Chapter 3. Using Eq. (6.29) and performing the e integrals 
in Eas. (6,28) and (6.30), we obtain

y 38 m*2v u -U) <U) <0P n
o+fA V  * f2( v y  - V uo cV uifv y

i
(6.31)

where f, (w ) and f9 (o) +oj ) are defined in Eqs. (6.18) andX XI / L i X i J
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(6.19) and we put a = J J. . The oj sum is performed
0 48N 0 1

in the same way as before and we make analytic continuation, 
iaip •+ co + i0 + to get

J„a 2tt e‘ A k:
^ 33 m*2v  ̂ ^ 2iri

dx
eex+l

<Kx) - <j>(x-U)) (6.32)

where 

4>(x) = Y, Y,-10) + Y 1

1-b ¡in—  1-b £n 1-b. Jin—
0 D 0 D 1 B

Y1

l-bQ£nix
D •

l-b^£n -IX-10)
D

1-b Jin-•IX-10)
D

-1

1-b. Znr1-
D ;

(6.33)

ivhere b , b^, yo and y^ are defined in Eqs. (6.11) and
2 3

(6.12) and we put y' = c-n • J 2J?. Expanding for
768N3 ° 1

PdQ PJX— — << 1 and --- << 1 , we get conductivity in the d.c.
N N
limit, given by

a 1
3 m*2v

1 , yobo^ibr 2r bobi„_ T
2(Yo+Yr Y’) (Yo+Yĵ 'Y’) 1.13D

ne2 8N 
m* 3ttcp i t2j.1 t2_ TTP2 t?-t2

(J- 3Jr r n ^ 7 JoJio 144N

1-
— f j3+i t3_ J P t3 j3
N lJo T l  72TroJlJ

(J2+ij2-
0 3 1 144N2

-Jin

•#!>

T
1.13D

(6.34)
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It is clear from Eq.(6.34) that the inclusion of vertex 
corrections by inserting current vertices between the 
empty boxes, contributes a correction which is sixth order 
in J, to the log term. In the high temperature expansion 
this is negligible.

To obtain the lower order correction, wc need to 
write down the empty boxes in the series for the Green's 
function in their constituent crosses, triangles and open 
circles, and then apply the generalized Ward's identity as 
before. The Green's function is then given by

k' k ôkk' k' i k k ’ Z V  k

k' l Z' £" k

Figure 16 : The series for the Green's function G ^ i  .

Inserting current vertices systematically and keeping only 
the first order corrections, the vertex equation can be 
represented as in Figure 17.



85

Figure 17 : The vertex equation for X .p*

The open circle, cross and thick lines are all defined 
before in Chapter 5. The vertex equation is

X (k) = k ~\iK J ~y i xu(k')G(k' ,p,Mn)GcP' ,k' , v y  W k
p ,p '
k* ,a

(6.35)

Proceeding in the same way, writing X(kp) = X, one obtains

fl ~  I V G(k- ,P,i*)n}G(p' ,k- )J^A ,k]  (6.36)
4NP,P'

k*

where, we put y = cos8kk,, which occurs when we multiply both 
sides of Eq.(6.35) by k^, sum over y and divide both sides
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by k2. We shall now embark on calculating X . This is a 
rather tedious job, but if we keep only terms third order 
in J, the algebra is simplified to a great extent. Nov/,

A

using the values of G(k,k',oin), J ^ ,  and A ^ »  found for s 
and p wave scattering only, the term appearing in the 
denominator of the Eq. (6.36) can be written as

l, vGU'.p.u )G(p',k',u )Jk A ,k
P.P ^k'

= - 7  Í cosek k ^ Jo+Jlcos9k p H Jo+Jicos0p ,k)
k\ p ’

<Sk ’pGk'

ip
'•N'v (0) (PJGpSkf-ieSv^, C“n)J 1+( l f ) Va )  tp)Gk- (“n)Gp(V

- 1 - 1

G O3 v(i) n cosek’p

6p,k,Gk' (V V  + (f) V  (V V Gk' (wn+wp)V(o) Ck')C1“i65V(-o) (V V ]

1 ., ,-l
” jGp' (V wp)Gk’ ((an+wp)V(l) ('k’'l[11 i6?Vn ̂ (un+V ] cosep’k(1)

COS0 , ■

(6.37)

At high temperatures, v/e put m^,^
- — J, ,v . Now, we notice that the4 K K

0 and so A^»-^ becomes 
angular integrations will

give zero for a large number of terms in Eq.(6.37). We 
perform the angular integrations and use Eq.(6.2) to obtain 
the following, keeping only terms up to third order in J,
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l y GCk'.p.w )G(p*,k*,a>n+u> )Jk A ,k 
P.P

JoJl
4 k2 J, Gk ’ ̂ “n)Gk' tu)n+tV

, Gk'(“n )Gk'(V “p)Gp'(V “p)(£k l " U  N J k ,p’

+ | M
N Jo l Gk ’(V Gk'Cwxi+wp)Gp*(V Cfp ’” H

k* ,P’

i$

+ I

N J

iB
N

J 1 l Gk ' K )Gk * K % > V CV (£p*"
k',p*

Ji I Gk»(wn)Gk'(a)n+V Gn ’(wn+up)(£k ’ “ ^  
k* ,p*

(6.38)

The k' and p' sums appearing in the above expression are 
independent of each other and can be performed separately 
without much difficulty. However, the sums with the factor 
(f ^ J ) or Cfp» ~a D(fk is the Fermi distribution function) 
are evaluated at T = 0. We obtain the following results

a) kI,Gk'(V Gk'cW  =
2 ttp ______________ 1________________

s2 ¡0 * f i ( V + t d V V

2 ttp _____1_____

6 2 Q(ton+w ) ( - v v ° )

(6.39)
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p is the density of states of conduction electrons near 
the Fermi surface and the functions f^ (ion) and f2^(A)n+wp^ 
are already defined and Q(u)n+<Op) is defined from its 
previous line.

(ii) upsign(wn+w ) = for -w <o)n<o (6.40)

(iii) kI Gk ,Cmn)(fk ,-i) *
CO + f n ((0 )n l v nJ - - ip£n

D 8 D

(6.41;

(iv) ^  Gk ,((on)Gkl(a»n+(op)(fkf - D

1£
, 2 -Sin
e2 V fl(“n)+f2 < W

= _ i£
8 2 QCwn+w )

-In
& (w ) _____n

Bl> n +V
(6.42)

The functions A(con) and B(wn+(ô ) are defined quite obviously 
from the above expressions. Now using these results j_Eqs.
(6 .3 9) to (6.42)] the expression (b.38) is simplified to 
the form

Jo V p 1 

6 2 Q(wn+CJp)
1 &n

BC“n * V

+ J^) £n
a c% )

D
.

(6.43)
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Substitution of Eq. (6.43) in Eq. (6.30) yields

X =
1 - a -in
«vy «vy

2n in
«vy D

(6.44)

where

a = Jo V pNi _ V i irpc
4N‘ 4N

11 = —  (Jo + \ V “4N ° 3 1

6.3 Conductivity at High Temperatures

Now, the current is given, as usual, by

2e
jy = 6vAvi . i'•m*v-'

l k X,,Gt,(w„)Gv (w +ui ) L y v k v n' k v n p'
k,wTn

Using the vertex function as obtained in Eq.(6.44), this 
becomes

V
2ir e2

A„kpP l33 m*2v ^ -̂w <0) <o P n Q(wn+ajp)-a+rii.n W
B(vy

-2r|£n
D

(6.45)

The wn-sum is again performed by transforming it to a contour 
integral. After making analytic continuation as before, the

sum becomes n

6 f -Ar-[i>U) - *Cx -
e*x+l2iri

(6.46)
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W i t h

<Kx) ■•=
Q(-ix-ico)-a+n&n ———— j -2n to.[~

L-B(-ix-ito) -I •—
-A(-ix) ~| I

D J j

In the d.c. limit Eq. (6.46) is

i(og
2 ïï

4>(x) ' 3f(x)l 
co=o 3x

dx (6.47)

Now, since

B(-ix-ico) = -ix-iw + Y, Y i

!-b onliîli“O ~ 1D D

A(-ix) = -ix - Yo Y i

l-b„in—  1-b, Jtn—  
0 D 1 D

a n d

Q(-ix-ito) = B(-ix-iw) - A(-ix)

= -1(0 + + ____ + _ A ^ _  + n
l-b l-b toH 1-b.inH

0 D 1 D 0 D 1 D

On expansion, for b0 toT/D << 1, b^toT/D << 1 and keeping 
terms only up to third order in J, one gets

4>(x) to=o l(y o  + Y 1 ) “ ct+C 2 ( y o b 0 + Y 1 b 1 -n)i,n|--| ]
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Expanding once more

$00 w=o
1 __

[2 (To+Yl)~a]
' 1

2(Y0+Yi)-a
(6.48)

Thus, the expression for current becomes

2(Y0b0nibi-n)
i -1-2Î
• b 3 nr‘v

kppî A.y [2(Y0+Yi)-a3 2(Y0+Yi)>ct
In

1.13D
(6.42)

and the conductivity, a is given by

ne2 8N 1 ïï(Jo 4 Jl‘3JoJl 4 ]lJo)
'

T
m* 3ïïpc (J2+AJ2-4j- J, ) 1 o 3 1 3 o 1 1.13D

(6.50)

where we put back the values of bQ , b1 , yQ , y^, n and a .
Now, we shall examine the implication of this 

expression for conductivity. We notice that if we put
= 0 i.e. if we consider s-wave scattering only Eq.(6.50) 

immediately reduces to the Nagaoka expression, as it should 
be. We find that inclusion of vertex corrections gives 
rise to correction which is third order in J, and appears 
in the coefficient of the log term in the expression for 
conductivity. The denominator of the coefficient can be 
reduced to (J - 4  J O 2 + f » which is always positive
for any values of J_ and J., . In the numerator, if we setJ O JL

= rJo> we Set
PJo— ° (r3 - r2 - 3r + 9).
9N
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And hence, when r 3 - r 2 - 3 r + 9 = 0  the log term in the 
expression for conductivity vanishes, though we still have 
an interacting system. It is crucial to understand that 
the interference between s and p wave scattering can in 
fact 'wipe out' the logarithmic behaviour in the limiting 
case. The cubic equation for the ratio of and JQ has 
one real root at- -2.2. That is, at that particular ratio 
of and J , the leading logarithmic term vanishes 
though (as we shall show) the next order term does not. 
Hence, for particular dilute magnetic alloys with strong 
p wave scattering we obtain a different high temperature 
behaviour. It î ill be of interest to see how well these 
theoretical calculations agree with the experimental data.We 
shall discuss this point further in the last section of 
this chapter.

6.3(a) Calculating the next highest order term

Although it involves rather tedious algebra, we 
present here the calculation of the next highest order 
term and show that for the particular ratio of JQ and J-̂ , 
when the leading logarithmic term vanishes, the next 
highest order term does not. The calculation is straight
forward. From Eq. (6.37), we collect terms fourth order 
in J only and summations over momenta variables are carried 
out as before. The fourth order contribution to 
Eq. (6.43) is found to be



93

V i -JL£Ì~ f j 2 + ì j 2 ) ----------1----An
N z 3 2 l  9  -  q ( co + w )n p-

H * n)

B(VV
An B( W

D

»  ÌISl ( J 2 »  1  J 2 )  _ i
N2e! 0 s iJ

2
Un A(“n)

D

2up :
3N232

V i Qi“n+y
in A(V

B(,W
An AV

D
(6.51)

This is added to what we obtained before up to third order 
in J in Eq.(6.43). Following the same procedure, the 
expression for current becomes

2tt 
33 m* 2. AykFP 2

-CO <00 <0p n

with

5 ( V _ 3
2iri

-CO <W<0P n

dx
.Sx, 4>(x) - <i>(x - a>)

(6.52)

(6.53)

and this time

4>(x)
’ r  —♦

Q (- ix -  ito) -a * +a^ An A(-ix) 1 -2a-̂ An -A(-ix) +a2An B(-ix-ito)
B(-ix-iw) D D

k

An -A(-ix)
B(-ix-ito)

-2a2An2 -A(-ix)
D

+a^An
-1

-A(-ix)
B(-ix-ito)

An -A(-ix)

(6.54)
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where

- 1 £ P _  J j (J * I  j )

1 16N2 0 1 0  3 1

’ - J„J, V i *  i J?)16N 3 o 1 v o 9 1-

a ~ = P^rc j 2 j 2  

24N3 0 1
(6.55)

and a = Trpc
4N V i

All other quantities have been defined before. One has to be 
extremely cautious in including all fourth order terms. We 
recall the approximation made in f^(wn) and ^ ^ n ^ p ^ *  w^ere 
we neglected higher order terms in J, because they are small 
compared to unity. We now keep these terms, and so the 
definitions of A(-ix) and B(-ix) are slightly modified.
They are given by

A(-ix) = -ix +
1 -b £n—  + d. o D o 1 -b. £n—  + d.l D

(6.56)

B(-ix) = -ix +

D

Yi

i - h o ^  - d0 l-b.£n—  + d. 
1 D

(6.57)

where

l V  j» and dr i ! V  j. 
0 1 48 N2 116 N 2

Now, expanding, simplifying, and keeping only up to fourth
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order terms in J, we get

<Kx)
w=o

______ 1______
[2(Y0+Yi)-a’3

1 2 ^ o bo * Yibi - V
C2 Cy 0 + - a ’]

in x
D

*2(a2 - ia3)- \  (Y0bS*1f1li)-2CY0don 1d1)

C2Cy0 + Yi) * «']
2t V 0 ^ i br a2>
[2(Y0+Y1)-a’3

(6.58)

At this point, we may note that there is a constant fourth 
order term, (log independent), arising from the vertex 
equation we first formed by inserting current vertices 
between the empty boxes. Let us put that constant term 
together with that appearing in Eq. (6.58) to be equal to 
Aj,. We now insert Eq. (6.58) in Eq. (6.53) and label Aj 
to all constants arising there together with Aj,. We 
ignore this term because it is of no interest to us, since 
it can be easily verified that 1 - Aj > 0 , and therefore can 
be absorbed without difficulty. Finally, the conductivity 
is obtained as

» 1 e2 j,2p 1

r
T

3 m*2v F l2 (yo+Y^)-a'3 C2 (V Yi)-a'] 1.13D

2 (Y0 b 2nib|-a2) 
I2tv0+y1)-u'1

*
2 T 

in - 
D

4

* (6

2We now examine the An-term. The denominator of the 
coefficient is again always positive and the numerator can
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be written as

7T p 3 C
8N 3

Setting = rJQ , this becomes

J“ (r1* - r 3 - 9r + 27)
8N 3 0

and hence the particular value of the ratio r(~-2 .2) for
which the leading logarithmic term vanishes, the ¿n-term 
does not. But, since this is one order higher in J, its 
effect will be smaller. Hence, the gradual diminishing of 
logarithmic behaviour in certain alloys may be explained 
by taking the existence of strong p-wave scattering into 
account.

6.4 Conductivity at Low Temperatures

Our main interest has been to find out the effect of 
p-wave scattering on the electrical conductivity of the 
system and hence while solving the equations at low 
temperatures, we shall follow the easier method of 
Nagaoka. We assume

2

a (o) (6.60)

a (1 ) (6.61)

where a and are parameters to be determined
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self-consistently. Then, by substituting Eq. (6.60) 
Eq. (5.42) we have

ifi -i V, .(k)
n - 5 ♦ - l — -------

“  N k  e k

where we wrote, ia>n + £(wn) ~ i^n and similarly

ii2n 1 _ , 1 r V (l)(k)
N k ek

Substitution of Eqs. (6.62) and (6.63) in Eq. (5.41)

I tv ■c
4

SL
1 TT J 1

in
n ♦ Ij F + h . F

36 1
— /' "S' "t" — _ F — -rrTV ° )  4 ° 3 ^ n r

provided

1 - i l -121---- = 0N k

1 r V m ^i - _L l  —i±i---= o
3N k ek

The last two equations determine and For
JQ < 0 and J, < 0, we simplify £ (wn) to obtain

I K )  -
iy1signK sign Qn + ______________

 ̂’ CIV + a(o)] ClfinltA(l)]

= if (¡¡n ) sign SJ.

in

(6.62)

(6.63) 

yields

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)



98

where we used Eq. (6.4) and replaced JQ> by their 
moduli.! and denoted

^o = c Jo a(0:i/4 y, = c J,

A = ïïPa(~0) j 
4N J° (1)

_ irpa(1)
12N

(6.69)

(6.70)

6.4(a) Self-consistent relations of and

Before proceeding any further, we shall discuss the 
temperature dependence of and A .-jj . These quantities 
will be determined from Eqs. (6.65) and (6.66) and they in
turn will fix a (o) and a ( 1) Vie recall the relations of

nkk' and mkk' with Gk sk and rk ’k

• v 1 IK" K
nkk' ' l e ~ ~

i (k-k1 ) . Ra, ico 0+ ito 0 +
con

'k(a)n)e n 1 "1 E Gk ’ke0)n (6.71)

mkk1 = -2i l
to kk ( V e

n.0+ = -2i l
n to. rk'ke

iun0+
n

(6.72)

We shall now evaluate This is slightly more complicated
than the case we encountered before. The calculation is 
illustrated in Figure 18.

The difficulty arises because the momentum index k* 
is not summed over and we needed to construct a special 
impurity averaged box Ps/j • This special box is evaluated
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k p ’ k*
_a_J-J 3 Y -f ■

k p ' k •f7~7"7-•> V A y Ar/ ! h 
\-l/t~Yz2y
a 3*a

k' P k' __
— j a

kp k'
>- -h ->

a
/ \k \ p

(a)

( b )
a

\

K
/ I 

/ I \
1 / i \

/
+

i___J

-1

/, a 
' \

f-/-
k p 1 p

-t -----
a (c)

k ’
_n__K /

k
! W P k ’ __ p k

->—| a f->~ 4~
p k ’ /

.__
4-

r- | p ,

P*

Figure 18 : Evaluation of Gk ,k * 

in Fig. 18(c) and is found to be

“ L l - L - h
k p  ’ p

(d)

" Ukk,5k ,p6kk' + ukk,6k ' p V ^ k »p  ̂ (o./^)
(k)

wnere

Ukk’ i3
V2N, £ Jk' £A£ ’ kG ̂ ^

l,V

for s and j) wave scattering only Ukk, is given by

ie

with

A o =

Ukk* 4N v o

Jon

(An + A1 cos0kk,) 

1 , „1

1 + Z, A 1 "
7 Jln'

(6.74)

(6.75)

(6.76)
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and

fiCk.p) ' Upk* Ï, Up'kUt3'pGp ,+ l UP ' k V p ' UP ’PGp ’V  + ••• 
p p \ p "

iS
4N

A Alcos9kn (6.77)
L i + I  A F 1 + —  A, F -J

4 o 12

Thus, from Fig. 18(b)

Ukk,Gk'k^“n^ “ 2Uk k ' V p ’Côkk» + Gkff(k,p‘)]G
P

P ’k*

i.e.

Gk*k^wn^ =C<Skk* + (k,k')]Gk ,k , (6.78)

New, in the lowest order approximation, we have

=
Y 1 0 Y-

C K I  + A (o)]
= f(“n ) (6.79)

and using the self-consistency relations (6.65) and (6.66),
we get

J a(l)
A, o
o 10).

and A^ = (6.80)
n 10 ).n

Then, on simplification Gk ,k becomes

W « ^ )  -  W Y k ' *  ¿ G k (“ P Gk ' t V [ f ( ° : ) (“ n ) t f a ) (con )c o s e k k t ] s i gn

(6.81)
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where

f(0)K )
V  + A (o)

and (wn)
“nl * a (l)

(6.82)

Now, since Vkk, - ¡J k ,nk - W kk. = V (o) (k) * VjfkJcose^,
P

equating the coefficients, we obtain

V( o ) W  -

and

ico 0+
-iJo 2e ” Gk (VW,n

1 + A f  t°) (o)n)sign wn^G 
Nc Po _i

- U

(6.

V (1J(k) -
iw 0+-iJl^e * Gk(u>n)

0).n
!+7 T-f(1)( V siSn “J Gp_ 3 Nc p _

_1 T2 u 1

(6.84)

Substituting these Eqs. in Eqs. (6.65) and (6.66), and 
solving the integral equations, one can obtain the 
temperature dependence of an<̂  ^(1)* not -̂ce
the resulting integral equations are independent of each 
other and exactly similar in structure. Since the same 
equation for for s-scattering only has been solved by
Nagaoka (results are quoted in Chapter 3), we shall not go 
into any further detail.

Now, at low temperatures, T < T^, current is given 
by, as usual

3P
2tt e 2

38 m * 2v V f p ?(V
(6.85)
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where, in the lowest approximation, we take and get

SOp)
-01 <01 <0 “p + £(V  +p n r r

(6 .86)

Transforming this into contour integral and making analytic 
continuation, we obtain

EC-ioi) - -B-
2tri

dx
e 0x+l

$ (x) - <f> (x-co) (6.87)

with

(j) (x ) = Y
-ICO + 2____ + ____Li___ + Y1 1

( i x + A ^ )  ( ix + A ^ - j)  (-ix-ico+A ^) (-ix -iw + A ^ )'

In the d.c. limit,

(6 .88)

K - io i)  s -
2 7T 03 = 0

■_ 9f' 
‘ 3x-

dx

igeo
2 tt

(x2* i ^ K x y 6 = )

2Cy o A (c ) (x 2 + A ci)’n iAi (x t A t o p 3

3f
1 3x;

dx

(6.89)

At absolute zero temperature, the derivative of Fermi 
function can be replaced by a delta function and we get

_ _ igeo A (o)A (l)______
2ir 2Cy0A(1) + Yl^Co)3

(6.90)
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and the conductivity, a is

o a (°)& (d
2Cy oA (1) * YlA (o)]

Putting back the values of y , and A (1) one finds

a = _I£_
m* 8cN

( 6 . 9 1 )

Hence, we see, at T = 0, inclusion of p-wave scattering 
reduces the conductivity to \ of its previous value. As 
temperature increases, we can write,

Ç(-iw) iüjg TT P

2 ir 2cN
dy ey

[3A(o)]2 + 3[gA(l)]2 (1 + ey)2
y2+[3A(o)]2 y2+[3A(1)]2 (6.92)

Let, 8 A >> 1, p A >> 1, then expanding one obtains

Ç(-iw) iü)3 TT P 

4 tt cN • 1 - x.

[ e A ( o ) ]:

___ e?___
(1 + ey)2

iü)3 Trp 
1 6 tt cN 1

ey
(1 + ey)2

( 6 . 9 3 )

Expanding, once more
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5(-iw) _ _ j(0g Trp 
2 it 8cN j d y i+ày: + 3

H A (o) C D J -U (1 + e')y.2

This gives the conductivity, a , given by
•

• '2 f ' 2
1 it2 T T1 + —

12»
+ 3

■a c d - -
(6.94)

where aQ * o at T s 0 and we found

(1 + ey)2
j TTdy = —

We consider the case A q -j << 
weak p wave scattering. With 8Â -0  ̂

becomes
>> 1

i.e. the case of 
, B A >> i, o ,

(6.95)

which is independent of A^-j, i.e» conductivity depends on 
the p-wave scattering only. In other words, p-wave 
scattering becomes important. By simple extension of the 
argument, one may say that other partial wave scattering are 
also important is this limit.

For, << A a n d  when g A ^  >> 1 but ^A (i) <<:
we go back to Eq. (6.92) and approximate

5(-iw) - " icog Trp 

4tt cN
1 +

CPA(o)]2
1 +

(1 + e')

[i3A(l)]2
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iOjfc TT p

4 tt cN
dy 1 +

—  2
y

(1 + e > V
(6.96)

And this gives

a = a. f i  + li
f '

T
2

3 f—\o
<3 (6.97)

In terms cf resistivity Eqs. (6.95) and (6.97) can be written 
as (for «  A (q))

R(T) = R —l f 1=3 1 1
0 f *

T
2

J  4 ■a c d - _
(6A(0)>> 1, BA(!)>> ^ ( 6 . 9 8 ;

and

R (T) = K 1 + li
f *

T
2 -

3 •A (o)-

-1
(8A(1)<< 1, 8ACo)»  1) (6.99)

where we denoted 1/oQ = RQ . Also with no assumption about
the relative size of A^-* and A ^ ,

R(T) = R, 1 +
*

T
2
+ ^

f
T

2 ~ \

12
. ■A (o). a (D- t

-1
(6.100)

The important thing to notice is that inclusion of 
p-wave scattering reduces the conductivity at T = 0 to one 
quarter of its value which we obtained in Chapter 3 for 
s-wave scattering only (see Eq. (6.91) . For weak p-wave 
scattering, A ^  << A (o) on^y P-wave scattering is important 
for g A ^  >> 1, g A ^  >> 1 and only s-wave scattering is 
significant when g A ^  >> but g A ^  <<:
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6.5 Discussion

The most important conclusion we have arrived at in 
this chapter concerns the high temperature behaviour o£ the 
Kondo system. Inclusion of vertex corrections, for the 
extended exchange interaction formulation, gave rise to 
correction, third order in exchange interaction and appeared 
in the coefficient of the leading in term. We showed that 
for a particular ratio of the strengths of the s and p wave 
scattering, this coefficient can vanish, giving a different 
type of high temperature behaviour. From our results in 
Section 6.3, if we write the expression for resistivity,
R(T)

R(T) = cR [1 + aX + 3X2 3 (6.101)Hi

where, X = pJ/N&n T/D, a, g are constants such that 
aX, gX2 << 1. Rm is the resistivity in the first Born 
approximation, and c is the concentration of impurities.
At high temperatures, we have aX > gX2 and if we call the 
reverse situation, i.e. aX < gX2 'low* temperature region, 
we can define a critical temperature, Tc given by

Is
D

where, is the Kondo temperature. Then for a/g << 1,
T̂ , << Tc . To ignore the leading in term, aX, in the 
resistivity expression (6.101), we need a/g << 1. Thus, vie 
have a temperature region, given by

T,_K
D

a/g
(6 .102)

Tk << T << Tc (6.103)
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where our formulation is applicable. The Eq. (6.101) is 
valid for T >> and if we take D - 10^K, Tj, ~ 10 and 
a/B ~ 10 Tc becomes of the order of 10'X. Also, if
Tk ~ 10°K, D ~ 105K and a/B ~ 1, Tc is again 104K. Hence, 
we can, in principle have a large temperature region for 
which our theory is applicable. For normal Kondo effect, 
we have T >> and T »  Tc . For T >> Tc , the leading 
An-term dominates, no matter how small a is and also even 
if a is of the order of 3 . But, in the latter case,

T k  ~  V
Experimentally, the resistivity of RhFe IrFe^

PtFe and PdCo alloys does not show a minimum. For
RhFe the resistivity was found to increase gradually with
temperature and at about 20°I(, it bends in the shape of a
knee and then rises sharply with temperature (for 0.1 at %
of Fe concentration). For higher concentration this knee
disappears giving a very sharp rise with temperature. For
IrFe, strong temperature dependence of resistivity was found
for 0.01 at % concentration of Fe. Similar behaviour was
also found for PdCo alloys. These alloys have been called
’Coles alloys' and attempts have been made to explain their
behaviour. Loram et al. found that their data on PdCo alloy
for excess resistivity, Ap agree well with an expression
Ap = A + BAnT, where B was positive. But, to account for
their magnetoresistance data, a large positive, but
improbable value of the exchange coupling between conduction
electrons and local spins is required. Rivier and Zlatic^^
attempted to explain these results from the ’localized spin

(95)
fluctuation’ point of view. It has been argued that since 
these alloys contain transition elements for both host and
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impurity, they are not Kondo systems with well defined
('77')localized states. But, susceptibility datav , specific 

h e a t ^ ^  anomaly at low temperatures, also Mossbauer 
a n o m a l i e s s i m i l a r  to that in CuFe alloy, all indicate 
that these alloys behave like a Kondo system with negative 
exchange interation, except for resistivity.

We have shown that for alloys having strong p-wave 
scattering, the logarithmic behaviour in the resistivity 
due to exchange scattering will be smeared and in the 
extreme case will vanish totally. This resistivity will 
tend to a constant and when combined with residual 
resistivity and resistivity due to lattice scattering

tr(<* TJ) the total resistivity will show no resistance 
minimum and a sharp rise with the temperature is inevitable. 
But detailed comparison with experimental data has proved 
problematic. Firstly, the magnitude of J itself is con
troversial^1̂ .  Since the Kondo temperature depends 
exponentially on the exchange constant J, a small change in 
J can vary by an enormous amount. Secondly, fixing the 
ratio of Jc and J-̂  will be totally arbitrary. Finally, it

fQA')has been s u g g e s t e d J that these alloys are not systems 
with strong p-wave scattering. Therefore, we prefer to 
wait until a better understanding of the problem has been 
achieved.
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CHAPTER 7 CONCLUSION

In this thesis, we have applied the linear response 
formalism to calculate the electrical conductivity of dilute 
magnetic alloys and used the s-d exchange Hamiltonian 
throughout. Since this Hamiltonian can be derived from the 
Anderson Hamiltonian, (physically, not very much different 
from the Wolff model), under special circumstances and since

f°7'tboth of the models were shown to produce a Kondo singularity^" 
for the electrical resistivity and Curie-Weiss law^®^ for 
the magnetic susceptibility, it is expected that the results 
derived in one model would not be very much different for the 
other. It must be emphasized here that one is not at all 
certain whether or not the s-d exchange model is adequate for 
treating the dilute magnetic alloys. Considerable efforts 
have been made to study the Anderson and Wolff models where 
the magnitude of the impurity spin is not assumed to be fixed 
but is allowed to vary. It has been known for a long time that 
a model with a fixed half integral or integral impurity spin 
cannot describe these alloys rigorously, since the spin 
values derived from the high temperature susceptibility are 
generally not equal to half or any multiple of it. This leads 
one back to the alternative approach to the problem, viz. 
the problem of the existence and stability of an impurity 
spin in a metallic environment, as separate from the way this 
spin interacts with the conduction electrons. Perhaps, it 
will be profitable to study both of these problems together.

Instead of the usual single impurity formulation, we 
have formulated the equations of motion with impurities



110

distributed randomly throughout the system. It was necessary 
for us to do so in order to apply linear response theory.
But, in effect, we have neglected the impurity-impurity 
correlations by taking the average over the impurity sites 
before solving the equations of motion. It is a standard 
practice for the lov; concentration of impurities. The 
interaction between impurities brings in many new effects.
These have been investigated by several a u t h o r s , but the 
problem is not well understood yet.

In our calculations, the ordinary potential scattering 
has not been included. It was shown by Kondo^1®®^ that the 
ordinary scattering has no essential effect on the 
thermodynamic properties of the system. But, for the transport 
properties it was thought to have severe effects. The giant 
thermoelectric power was explained as a result of the combined 
effect of the ordinary and exchange scattering. Fischer^1®1-̂ 
investigated the effect of the ordinary scattering on the 
exchange scattering and found a factor cos^n^ cos2n^ (n^ are 
phase shifts) incorporated in the leading logarithmic term. 
Since, this factor becomes negative when > ir/4, the InT 
term can change sign. But this result does not agree with 
that of Abrikosov^47  ̂ who found no change in the temperature- 
dependent resistivity due to normal scattering.

There are two ways to take the potential scattering 
into account. First, one can add on additional term containing 
the ordinary potential to the Kondo Hamiltonian^-1®1 104) ?nii 
then adopt Nagaoka’s decoupling scheme to solve the equations. 
Let us call the resultant t-matrix for non spinflip scattering 
tj+y* Alternatively, one can make use of a canonical trans- 
formation^1®2-* to eliminate the potential term. In that case
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the exchange coupling constant, J is replaced by a
renormalized coupling constant, J. Then one can apply the
same decoupling scheme to obtain the corresponding t-matrix,
tZ. It was shown by Schotte^0^  that these two t-matrices

2i6Vare related by t T+y = tj e + ty, where ty and <Sy are the
t-matrix and the phase shift due to the ordinary potential 
scattering only. Thus it is clear that one need not include 
the ordinary potential explicitly in the formulation of the 
Kondo problem.

Recently, scaling t e c h n i q u e s h a v e  been applied to 
develop a theory for the Kondo system which is valid at all 
temperature regions. There, Anderson, Yuval and Hamann 
showed that the Kondo problem is equivalent to a certain 
type of one dimensional statistical problem and solved that 
problem by deriving scaling laws connecting solutions for 
different sets of parameters with each other. Despite this 
progress, there are no quantitative theoretical predictions 
for quantities like resistivity, low temperature susceptibility 
or specific heat. Furthermore, the theory includes s-wave 
scattering only.

In calculating the conductivity of the system we used 
the Kubo f o r m u l a o f  linear response. When the electrons 
in a metal are subjected to the sort of scattering that can 
be described by an isotropic relaxation time, then the Kubo 
formula becomes the quasi classical expression as derived 
from the Boltzmann transport equation. But for more 
complicated scattering mechanism, like that in a Kondo 
system, it is not at all clear from the start that one can use 
a simple relaxation time. Our calculations (Chapters 2 and 3) 
confirm the contention that the scattering in a Kondo system,
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as far as it is described by the s-d model can be represented 
by a simple relaxation time.

Our analytic expressions for the complex conductivity 
(Chapter 4) at low temperatures may serve as a useful start
ing point for future investigations. Moriya and Inoue^90  ̂

have sugeested that the experimental measurements of the 
surface impedance of Kondo alloys at low temperatures in the 
microwave or far infrared frequency regions might different
iate the lsf and the s-d models. Both the theories show a 
significant deviation from the Drude model, and for special 
cases, somewhat different behaviour is predicted for the two 
models. Both theories predict peaks in the frequency- 
dependent conductivity, but the ones in the lsf model are 
sharper. Our theory, valid for frequencies very much less 
than 10 Hz, does not predict any peak. Unfortunately, there 
are no experimental results available at the moment which 
would permit any definite conclusion about these predictions.

Our most important contribution to the theories of Kondo 
systems is the finding of the effect of inclusion of p wave 
scattering of the exchange interaction (Chapters 5 and 6).
The correction to the leading logarithmic term is found as a 
result of including the vertex corrections which arise from 
the non-conservation of local charges. As had been found 
for the BCS t h e o r y o f  superconductivity, the quasi
particle excitations, if treated independently, do not 
conserve charge. Mathematically, the situation arises when 
the two-particle Green’s function is replaced by a product 
of two single-particle Green’s functions. In the Kondo 
problem, one also decouples the higher order Green’s function 
to the lower order ones. Hence the problem of non conserva



113

tion of charge is present unless one works within a conserv
ing approximation. One way to ensure the conservation laws, 
when calculating the response of the system to an electric 
field, is to make use of a 'generalized Ward's identity' 
which is the Green's function analogue of the continuity 
equation. Using this identity, we found the correction term 
in the high temperature conductivity of the Kondo system.
The effect of this term can in fact be very severe.

We have had difficulty in finding experimental data 
for alloys in which p wave scattering would be strong. We 
expect p-wave scattering to be important for large impurities 
with a finite range of interaction; s-wave scattering 
assumes a contact type of interaction described by a 
delta-function. The high temperature resistivity of alloys 
of second or third row transition-metal hosts with a small 
amount of first row transition-metal impurities may show 
agreement with our theory. These alloys showed two distinct 
types of properties. One category exhibits well-defined 
impurity moments and they undergo magnetic ordering at low 
temperatures. They also show a negative magnetoresistance. 
PdFe^108-̂ and MoFe^109  ̂ alloys are typical examples of this 
type. The second category does not show magnetic ordering 
and it has an effective moment per impurity which decreases 
at low temperatures. The resistivity has a positive

temperature dependence; the magnetoresistance 
is found to be positive. RhFe , ^ t F e ^ 8  ̂ etc., show such 
behaviour. But experimental investigations on some other 
alloys like P t F e , PdFe^76  ̂ etc., showed some behaviour 
common to both categories.
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Attempts, along several different lines, have been 

made to explain the two types of behaviour exhibited by the 

alloys named earlier but none of them can, as yet, claim 

complete success. K o n d o ^ ^  tried to describe these systems 

with a positive exchange interaction. But it was pointed 

out^*^ that the decrease in moment at low temperatures as 

v/ell as a large peak in the thermoelectric power in these 

alloys would not be possible from a positive J. A number of 

authors attempted to explain these systems taking ordinary 

potential scattering into account. But the residual 

resistivity^-110  ̂ of these alloys did not support this conten

tion. Knapp has suggested a two-band model for the 

purpose, but there again, one can reject this on the grounds 

that it would not produce a large thermoelectric power^111 .̂ 

Yet another approach is through the localized spin fluctua

tion (lsf) model . The situation, at present is by no 

means clear, as no single theory could explain any substant

ial number of properties over a reasonable temperature range.

From our calculations, we have found that the inclusion 

of p-wave scattering can change the logarithmic temperature 

dependence of the resistivity at high temperatures and in the 

extreme case the £nT term can vanish totally. This term then 

added to the residual resistivity and the resistivity due to 

the lattice scattering (aT5) gives no resistance-minimum but 

a sharp rise in the resistivity as temperature increases.

This may serve as a basis for explaining the behaviour of 

RhFe and related alloys. As more and more experimental data 

are becoming available, we hope our calculations will throw 

some light on the complicated scattering mechanisms in these 

alloys.
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Our calculations, even if they are found to have no 
relevance to typical Kondo alloys, (those with definite 
magnetic moments), can, we believe, be a basis for the 
investigation of the transport properties of alloys, liith 
large magnetic impurities, where p-wave scattering in the 
exchange interaction is expected to be important. The 
expression for high temperature resistivity developed in the 
present thesis can, in fact, predict the temperature 
dependence of the resistivity for the relevant alloys. In 
future, it would be of interest to solve the equations for 
all partial waves and see how the results are modified. A 
straightforward calculation, along similar lines, for the 
Anderson model, might clear up the physical situation.

The vertex corrections need to be included in the 
expression for low temperature resistivity. This may be 
attempted in future. One might use the conserving approxima 
tions developed by Kadanoff and Baym^"*"^ to carry out the 
calculations. Future work can be directed along these lines
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Appendix A

In Chapter 3, we evaluated the restricted ojn-sum 
by using the contour integral method. Using the standard 
result

l f(w.) - —  f fC-iz) (A.l)OJ 27Ti , ei5z + ln c '

where the contour c ’ surrounds the poles of a function which 
has simple poles at values iw , we obtained [See Eqs.(3.44) 
and (3.47)],

«V - y y °
1

03 Y + Y
03 + 03 “ 03

1-biln — — 2- l-b£n ---
D D

3
2ni

dz
;3z+;

03 +P
Y Y
03 -12

1-biln —----
D

1-bJon iz
D

2 TT i
dz

0) + p
Y

03 +1Z
l-b£n —  1-biln -2---

D D

This is true only if (i) the end parts of the contour 
(Fig.S) do not contribute and (ii) the integrand has no 
poles within the contour.

The contribution from the right hand side end part
(from ioi to 00 ) vanishes, because the Fermi factor givesP
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zero for large positive value of z. Since the function
- 1£(00̂ ) tends to ^  x as a>n -»■ ” , the contribution from the 

left hand side does not vanish. By considering the sum more 
carefully, we shall show that this does not contribute any 
correction of interest.

If we subtract w  ̂ from the start, the integrandP
will be absolutely convergent and the end parts would not 
contribute. Therefore, we have

^ O p) = l
- y wn<0

i. + J_
00 +-v p

Y Y or to.
1-ban a)n+Mp

D
-to P

(A. 2)

l-b&n n
D

Transforming this to the contour integral form and making the 
analytic continuation, we obtain

£(-iw) = A  + J L
2tt 2?r i

dx
'

1
e +1 i(1.  ̂ Y + Y

1-b Jin ix l-ban “ix'iw
D B

-ito + Y
l-b£n lx-ito

D
l-b&n -ix

D

(A. 3)

_ 3
2tt 2iri

f (x)g(x)dx (A. 4)

where f(x) is the Fermi function and the function g(x) is 
defined from (A.3). We notice that the function g(x) is odd 
and so we can write (A.4) in the following form
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CC-iu) =
2 tt 2 tt i

(2f(x) - l)g(x)dx (A. 5)

The next step is to evaluate the integrals. We write

g(x)dx = lim
L-»-00

g(x)dx
o

lim
L->°° C (x) - (|>(x-w)]dx

o
(A. 6)

where

(¡)(X) =

-id) + Y
l-b£n I X

T)
1-bAn n

(A. 7)

From (A.6), we get

L o
<}>(x)dx - | 4>(x)dx

-w

U)
4) (L-co) dx

< o

o*
4> (x) dx

- 0 )

(A. 8)

Now, for large L we can expand the £n terms appearing in 
4» (x) to get

in L-x
D

x
L

and £n L-x+oo
D

in L
D

x-co
L
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Then the first integral in (A. 8) gives i as L -*• 00.
The other integral in (A.5) can be written as

CO
f(x)g(x)dx = 
0

00

[<fl (x,w)
0

4) (x-u),w) ]f (x)dx (A.9)

where the function 4>(x,w) is given by (A. 7). From (A. 9), 
one obtains

f(x)g(x)dx = 
0

4>(x,w) [f (x)-f (x+w) ]dx 
0

0

4> (x,n>) f (x+as)dx
*

-to

-to
00

4>(x,<o)
0

0»
4) (x)f(x)dx 

-(0
(AJ.9)

In the d.c. limit, the first integral is evaluated to be

2y
T

1.13D

and the second integral cancels the second integral in 
(A.8) in the d.c. limit when inserted in (A.5). The factor 
i coming from the first integral of (A.8) cancels the first 
tei'm in (A.5). Therefore, we get

Ç(-ito) itog
4 tty

— —
1 - bJln T

1.13D
(A.11)

which is exactly the same as Eq. (3.53). Hence, neglection 
of the contribution from the end part of the contour is 
justified. It may be mentioned here that the first part of 
the integral in (A.10) has another part higher order in b.
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A careful evaluation of that term will make it clear that 
the contribution coming from there is essentially of OCJ1*) 
and higher and hence of no interest to us. A similar 
treatment can be applied to all other evaluations of 
con-sums in this thesis.

The second point we want to resolve is whether the 
integrand of Eq. (3.44) has any pole within the contour. That 
the integrand has no pole within the contour can be shown 
quite easily if we recall the approximation made in 
Eq. (3.40). If we had not made that assumption we could 
write

s o y  = ix -w <W <0
(A.12)

P n up + Y
l-b&n wn

u)2+D 2n o v y 1+D !

Expanding this expression for b << 1, we get

5 0 0  ■
- w 0

yb
O p +2y) (wp+2y)2

£n
0)n < v y *

_ (o)2+D2) (un+wp) 2+D2

(A.13)

One can easily verify that the expansion does not violate 
the analyticity requirements^ J of the summand. If now 
we write the w^-sum into a contour integral form in the same 
way as we have done in Chapter 3, it becomes trivial to show 
that the integrand has no pole within the contour. The 
integrand has a pole within the contour only if the argument
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of in either vanishes or tends to infinity there. But it is 

so only for values z = o , z = D, z =  iw and z = D-iw and 

none of these values lies within the contour. Therefore 

the integrand has not got any pole within the contour.
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