
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kaleba, Sophie, Larose, Octave, Marr, Stefan and Jones, Richard (2022) Who You Gonna Call?
A Case Study about the Call-Site Behaviour in Ruby-on-Rails Applications. In: MoreVMs'22:
Workshop on Modern Language Runtimes, Ecosystems, and VMs, 21-25 Mar 2022 and 11-14
Apr 2022, Porto, Portugal and online. (Unpublished)

DOI

Link to record in KAR

https://kar.kent.ac.uk/93937/

Document Version

Author's Accepted Manuscript

Who You Gonna Call?
A Study of the Call-Site Behaviour
of Ruby-on-Rails Applications

Sophie Kaleba
University of Kent

Canterbury, United Kingdom
S.Kaleba@kent.ac.uk

Octave Larose
University of Kent

Canterbury, United Kingdom
O.Larose@kent.ac.uk

Stefan Marr
University of Kent

Canterbury, United Kingdom
S.Marr@kent.ac.uk

Richard Jones
University of Kent

Canterbury, United Kingdom
R.E.Jones@kent.ac.uk

TALK PROPOSAL
Web-applications are ubiquitous, from simple personal blogs to
e-commerce platforms with millions of sales. Ruby-on-Rails [1]
is a popular framework implemented in Ruby that provides tools
to build such web-applications. Performance is often critical in
the context of large-scale web-applications; especially in dynamic
languages such as Ruby that feature reflection and the use of many
small methods. Such languages therefore benefit from run-time
optimisations, notably through the combined use of lookup caches,
splitting and inlining.

To limit their overhead, such optimisations generally rely on
assumptions that do not necessarily match with the actual run-
time behaviour. With Phase-based splitting [4], we showed that
splitting can benefit from using homogeneous patterns of behaviour,
called “phases” [6, 7] to reach better performance. In an effort to
identify such phases in real-world web-applications, we thoroughly
analyse the run-time call-site behaviour of Ruby programs and
Ruby-on-Rails applications, running on top of TruffleRuby [8]. This
talk describes our findings and aims at guiding future research on
call-site optimisation.

Findings about common call-site optimisations. Our analy-
sis first focuses on the call-site behaviour at run time and more
precisely how lookup caches are influenced by call-site optimisa-
tions. A lookup cache [3] holds the different call-targets that can
be called at a particular call-site; this caching helps avoiding the
otherwise expensive lookup cost. If the cache contains a single en-
try, it is qualified as monomorphic. It becomes polymorphic once it
contains more than two entries; polymorphic lookup caches holding
a large number of entries are often considered to be megamorphic.
Target polymorphism is observed when several entries in the
lookup cache point to the same target which may happen if i.e. two
classes share the same implementation of a method. This issue is
optimised in TruffleRuby by relying on an extra cache level to store
the observed type of the receiver. Splitting [2] is an optimisation
that clones methods so that their lookup cache is reset; splitting
decisions are typically triggered based on the degree of polymor-
phism of the lookup cache of a call-site and its close callers. In
TruffleRuby, splitting may in addition be explicitly triggered for

core methods since they are more likely to be polymorphic and
massively executed at start-up.

We analyse the effect of addressing target polymorphism and
splitting in a benchmark set containing common micro- and macro-
benchmarks [5] as well as micro- and macro-benchmarks used by
the Ruby community. We first confirm that polymorphic caches
tend to negatively affect performance, e.g. in TruffleRuby, a cache of
5 entries is 1.5x slower than a monomorphic cache. A megamorphic
cache is up to 6x slower. However, polymorphic call-sites remain
rare, and represent on average less than 1% of all method calls.When
focusing on closure application sites, we see that 24% of all closures
applications are polymorphic, which represent 2.6% of all calls
(method calls and closure applications). We expect that addressing
target polymorphism should lower the degree of polymorphism.
Our analysis indeed shows that having an extra cache helps to
monomorphise lookup caches, where some of our benchmarks saw
more than 50% of their calls turning monomorphic.

We also expected that splitting should ideally lead to monomor-
phic lookup caches. It may also prevent call-sites from reaching
the usually slower megamorphic state. In our analysis, we first
assess the performance of the different splitting strategies available
in TruffleRuby on Ruby-on-Rails web-applications and check how
their combination performs in terms of execution time. At the same
time, we examine the lookup caches of the most executed call-sites
and check whether the splitting strategies in place perform as ex-
pected. We previously identified [4] that a call-site experiencing a
polymorphic phase followed by a monomorphic one could be split
on phase switch to improve performance. The goal of our analysis
is to identify other kind of possible trigger points for high-level
behaviour-driven, i.e., phase-based, splitting.

Identifyinghigh-level behaviours impacting lookup caches.
Monitoring the state of lookup caches at run time is time-consu-
ming; a low-overhead alternative is to identify higher-level be-
haviours that could be used as proxy of the lookup caches’ status.
After examining lookup caches’ behaviour at run time, we fur-
ther analyse our set of web-applications to identify such high-level
behaviours. We focus on request-based web-applications and in-
vestigate whether typical features of these applications produce
execution phases. To do so, we observe different aspects of call-sites,

Sophie Kaleba, Octave Larose, Stefan Marr, and Richard Jones

such as their type and their receiver(s) and monitor their evolu-
tion during execution; we then check how they relate to high-level
behaviours.

We notably investigate how different web-routes impact call-site
behaviour and whether phased-behaviour emerges. Such routes are
generally composed of a type of HTTPmethod (e.g. GET), a path (i.e.
URL) and a method responsible for handling that path; we explore
different combinations of these components. Testing different varia-
tions of paths only do not seem to produce any phased-behaviour in
a Ruby-on-Rails blog application; experimenting with other kinds of
web-applications may however lead to different results, especially if
different templates are rendered.We conducted further experiments
by varying the type of HTTP methods: call-site behaviour seems to
differ significantly between GET and POST requests, which creates
phases. This use-case is currently under closer investigation.

REFERENCES
[1] Michael Bächle and Paul Kirchberg. 2007. Ruby on rails. IEEE software 24, 6 (2007),

105–108.
[2] Craig Chambers, David Ungar, and Elgin Lee. 1989. An efficient implementation

of SELF a dynamically-typed object-oriented language based on prototypes. ACM
Sigplan Notices 24, 10 (1989), 49–70.

[3] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In European
Conference on Object-Oriented Programming. Springer, 21–38.

[4] Sophie Kaleba, Stefan Marr, and Richard Jones. 2021. Avoiding Monomorphization
Bottlenecks with Phase-Based Splitting. Association for Computing Machinery,
New York, NY, USA, 16–18. https://doi.org/10.1145/3484271.3484976

[5] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-language
compiler benchmarking: are we fast yet? ACM SIGPLAN Notices 52, 2 (2016),
120–131.

[6] Priya Nagpurkar. 2007. Analysis, Detection, and Exploitation of Phase Behavior
in Java Programs. (2007), 217.

[7] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong. 2006.
Detecting phases in parallel applications on shared memory architectures. In
Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
IEEE, Rhodes Island, Greece, 10 pp. https://doi.org/10.1109/IPDPS.2006.1639325

[8] Chris Seaton, Benoit Daloze, Kevin Menard, Petr Chalupa, Brandon Fish, and
Duncan MacGregor. 2017. TruffleRuby–A High Performance Implementation of
the Ruby Programming Language.

https://doi.org/10.1145/3484271.3484976
https://doi.org/10.1109/IPDPS.2006.1639325

