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Abstract. The Subset Difference (SD) method is the most popular of
Broadcast Encryption schemes due to its use in AACS standard for video
discs. The scheme assumes the number of users n to be a power of two.
In this paper, we relax this and consider arbitrary values of n. In some
applications, this leads to substantial savings in the transmission over-
head. Our analysis consists of the following aspects: (1) A recurrence to
count N(n, r, h) - the number of revocation patterns for arbitrary values
of n and r (number of revoked users) resulting in a header length of
h. The recurrence allows us to generate data and hence to completely
analyze it for larger n than the brute force method. (2) We do a proba-
bilistic analysis of the subset cover finding algorithm of the SD method
and find an expression to evaluate the expected header length E[Xn,r]
for arbitrary values of n and r. Using this, E[Xn,r] can be evaluated in
O(r logn) time using constant space. (3) While concluding, we suggest
a similar method for finding E[Xn,r] for the Layered Subset Difference
(LSD) scheme of Halevy and Shamir. (4) In the SD method, for n being
a power two, we find asymptotic values of the expected header length.

Keywords: Broadcast encryption, subset difference, recurrence, expected header
length, asymptotic analysis, layered subset difference.

1 Introduction

Broadcast Encryption (BE) is a cryptographic method for a center to efficiently
broadcast digital contents to a set of users so that only an intended subset of
the users (called privileged users) can access the contents. BE has a wide range
of applications in the implementation of digital rights management [DRM] such
as Internet or mobile video broadcast, pay-TV or even digital media like CD or
DVD to name a few. In a BE scenario, the center pre-distributes key decrypting
keys to users during initialization. After initialization is complete, when a data
message has to be broadcast to the privileged users, it is encrypted using some
session key. This session key in turn is encrypted several times using the key
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encrypting keys for different sets of privileged users. These encryptions of the
session key are sent along with the encrypted data as the header. Only privileged
users will be able to retrieve the session key (using their own pre-distributed keys)
from the header. Using the session key, the actual data that had been broadcast
can be retrieved. Even if all the other (revoked) users collude, they should not
be able to retrieve the session key.

Broadcast Encryption was introduced in [Ber91] followed by [FN93]. Further
works on BE were [Sti97], [PGMM03] and [AKI03]. Traitor tracing, an impor-
tant aspect of BE has been studied in [CFN94], [NP98], etc. The subset cover
framework was introduced in [NNL01]. The tree-based subset difference method,
which is the scheme that we have primarily analyzed in this paper, was also in-
troduced in [NNL01]. Asymptotic improvements to this scheme were suggested
in the LSD scheme of [HS02], which is also analyzed as part of our work. The
SD method is the most popular BE scheme due to its use in the Advanced
Access Content System (AACS) [AAC] standard used for content protection in
video-discs. [LS98] and [PGM04] suggest bounds and tradeoffs between different
parameters of BE. One of the efficiency parameters is the transmission overhead
of a broadcast. It is determined by the header length (the number of encryptions
of the session key in the header). Another work on BE is [JHC+05] in which the
worst case header length has been brought down to r.

The SD scheme in [NNL01] and all the subsequent papers like [PB06] assume
the number of users to be of the form 2t while, for practical implementations of
the scheme, the number of users can be arbitrary. In Section 4.1 of this paper we
show that, if we do away with this assumption it will lead to significant saving
on the transmission overhead. The following are our main contributions:

1. For the SD scheme, we find a recurrence N(n, r, h) to count the number of
revocation patterns for any given arbitrary n and r resulting in a header
length of h. Previous to this work, there was no efficient way to generate
this count exhaustively for large n other than the brute force method. For
the special case when n is a power of two, we derive from it a generating
function for the values of N(n, r, h). It is similar to the generating function
stated in [PB06].

2. For arbitrary n and r, we obtain an expression and hence an algorithm to
find the expected header length E[Xn,r] for the SD scheme where Xn,r is a
random variable taking its values from the set of possible header lengths. The
algorithm to evaluate E[Xn,r] takes O(r log n) time using constant space.
Using this algorithm we show that, using the true value of n (instead of
rounding it off to a power of two as suggested in the SD scheme) leads to
remarkable improvements in the expected header length.

3. Following the same method, we suggest a similar method for computing
E[Xn,r] for the Layered Subset Difference (LSD) scheme of [HS02].

4. For n of the form 2t, we find expressions to perform asymptotic analysis
of E[Xn,r]. This explains the empirical observation in [NNL01] that the
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expected header length is upper bounded by 1.25r. Our analysis is the first
to provide theoretical support to the experimental observations of [NNL01].

Theorem 10 of [PB06] gives a method to find E[Xn,r] for n of the power of two.
They report their expressions as “complex to compute and hence difficult to get
insight from”. On the other hand, we see that the complexity of their algorithm
is O(r log(n − r)) which for r ≤ n

2 is asymptotically same as the complexity of
our algorithm (since in practice, r is much smaller than n). Our algorithm is
much more appropriate for practical applications where n is arbitrary and it is
easily computable. Both these methods use constant space.

2 The Subset Difference Method

The subset-cover revocation framework proposed in [NNL01], assumes that a
broadcasting system has three parts: (1) an initiation scheme, (2) the broadcast
algorithm and (3) the decryption algorithm. Let N be the set of all users and
let |N | = n; R is the set of revoked users and let |R| = r. The initiation scheme
defines a collection of subsets of users S = {S1, S2, . . . , Sw} where each Sj ⊆ N .
Each subset Sj is assigned a long-lived key Lj ; every member u of Sj should
be able to deduce Lj as a part of the decryption algorithm, from the secret
information it receives during initiation from the center.

During broadcast, given a revoked set R, the broadcast algorithm is used to
partition the remaining usersN\R into h disjoint subsets Si1 , Si2 , . . . , Sih so that

N \ R =
⋃h

k=1 Sik . This sub-collection of disjoint subsets is called the cover Sc

for N \R (Sc = {Si1 , Si2 , . . . , Sih}). A uniform random session key K is used to
encrypt the broadcast message M by some symmetric key encryption algorithm.
K is then encrypted h times with Li1 , Li2 , . . . , Lih and sent as the header with
encrypted M . A privileged user, upon receiving the above broadcast, uses the
decryption algorithm to deduce some Lj using its own secret information, and
hence decrypt the encrypted session key K. This session key will further be used
to decrypt the broadcast data.

For the Subset Difference method, the Subset-Cover Revocation Framework
is specified as follows: In the initiation scheme that defines the collection SSD

of subsets, the users in N are viewed as the leaves of a complete binary tree
T 0 rooted at node 0. All internal nodes in T 0 are numbered on a top-to-bottom
(level-wise) and then left-to-right (at each level) basis. Hence every internal node
i (root of subtree T i) represents a group of users that are leaves of T i. For each
internal node i and a successor node j of i in T 0, a subset Si,j is included into the
collection SSD of subsets. Such a subset Si,j has every user that is a successor of
the node i but is not a successor of node j (those leaves which are in the subtree
T i but not in T j). In other words, Si,j corresponds to the users in T i \ T j .
A subset corresponding to all users (represented by the full binary tree T 0) is
added to SSD.

During broadcast, the center starts with the set R of revoked users. To find
the cover Sc, the center first finds the Steiner tree ST (R) i.e.; the minimal
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subtree of the full binary tree T 0, all of whose leaves are in R. T ′, a copy of
ST (R) is created and the following algorithm is applied to find the cover Sc:

1. Find leaf nodes i and j of T ′ such that the subtree rooted at the least-
common-ancestor v of these two nodes does not contain any other leaf of
T ′.

2. Let l and k be the two children of v such that i is a descendant of (or the
same node as) l and j is a descendant of (or the same node as) k. If l 6= i,
add the subset Sl,i to the cover Sc. Similarly, if k 6= j, add the subset Sk,j

to the cover Sc.
3. Delete the subtree rooted at v in T ′. Hence v becomes a leaf node in T ′.
4. Repeat the above three steps iteratively until there is only one leaf remaining.

For the last leaf node z, add the set S0,z to the cover Sc.

The cardinality of Sc is called the header length and determines the transmission
overhead.

Note 1. The original algorithm in [NNL01] and all subsequent analysis [PB06]
[AK08] [MMW09] consider n to be a power of two. In contrast, we work with
arbitrary n.

Later, we argue that this can lead to substantial reduction in the transmission
overhead.

3 Counting Revocation Patterns

A fixed permutation of the users where some are revoked and others are privi-
leged is called a revocation pattern. The algorithm to find the subset cover takes
as an input a revocation pattern and outputs the subset cover. The number of
subsets h in the subset cover is called the header length.

N(n, r, h) is defined as the number of revocation patterns with r revoked
users (out of total n users) that are covered by a header of length exactly h.

T (n, r, h) is defined as the number of revocation patterns with r revoked users
(out of total n users) that are covered by a header of length h such that there is
at least one revoked user in each of the two subtrees of the root node.

For an arbitrary n (2t0 < n ≤ 2t0+1 for some t0), T (n, r, h) and N(n, r, h) are
given by the following recurrences:

T (n, r, h) =

r−1∑
r1=1

h∑
h1=0

N(2t0 , r1, h1)×N(n− 2t0 , r − r1, h− h1) (1)

N(n, r, h) = T (n, r, h) +

t0∑
`=1

(
q` × T (2`, r, h− 1)

)
+

t0∑
`=1

(⌊
ρ` − 1

2`−1

⌋
× T (ρ`, r, h− 1)

)
(2)
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where q` =
⌊

n
2`

⌋
and ρ` = n − (q` × 2`). The base cases to the recurrences

T (n, r, h) and N(n, r, h) are as follows:

T (n, r, h) r < 0 r = 0 r = 1 2 ≤ r < n r = n r > n

h < 0 0 0 0 0 0 0
h = 0 0 0 0 0 1 0
h ≥ 1 0 0 0 from (1) 0 0

N(n, r, h) r < 0 r = 0 r = 1 2 ≤ r < n r = n r > n

h < 0 0 0 0 0 0 0
h = 0 0 0 0 0 1 0
h = 1 0 1 n from (2) 0 0
h > 1 0 0 0 from (2) 0 0

(3)

A dynamic programming based algorithm to count N(n, r, h) follows from the
recurrence relations (1) and (2). We omit the description of this algorithm and
the proof of correctness of the recurrence relations due to space constraints. For a
given ni, ri and hi, after the smaller values have been computed, the computation
complexity of N(ni, ri, hi) and T (ni, ri, hi) are O(log n) and O(rh) respectively.
Hence, the overall complexity is O(n log nrh+nr2h2). This algorithm will require
O(nrh) space. This is a significant improvement over the brute force method
which involves enumeration of the

(
n
r

)
revocation patterns, and hence cannot be

used for large values of n and r. Moreover, if the complete data for all r and h
is needed for a given n, the subset cover finding algorithm has to be run for all
the 2n revocation patterns. The following table contains results of running the
dynamic programming based algorithm for some values of n, r and h.

n r h N(n, r, h) n r h N(n, r, h)

100 49 30 1.37× 1028 115 50 36 1.12× 1032

110 49 38 1.06× 1030 117 60 37 1.00× 1033
(4)

From Recurrences (1) and (2), we find the generating function for the sequence
N(n, r, h) when the number of users is n = 2m. We omit the proof here due to
lack of space.

Theorem 1. The generating function for the sequence Nm(r, h) of numbers is
given by Xm(x, y) where

Xm(x, y) =
(
Xm−1(x, y)− xy2

m−1
)2

+ xy2
m

+ 2mx2y2
m−1

+

m−1∑
i=1

(
2m−ixy2

m−2i ×
(
Xi−1(x, y)− xy2

i−1
)2)

. (5)

A similar generating function was found by Park and Blake in [PB06]. It was
derived based on the structural properties of the tree T 0 used in creating the
subsets of the subset difference method. We have taken a different approach of
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first finding the recurrence relations for the sequence N(n, r, h) and then have
derived the generating function from it. Our generating function is of a slightly
different form but gives rise to the same sequence.

4 Expected Header Length For Any n And r

For an arbitrary number of users n, and a fixed r, we find the expected header
length. This is done by finding the probability that a node in T 0 contributes a
set to the subset cover (and hence the header). Summing up the probabilities for
each node in the tree, we evaluate the expected header length. We consider the
random experiment where r out of the n initially un-revoked leaves of the tree
T 0 are chosen one-by-one uniformly at random without replacement and revoked.
This gives rise to a revocation pattern and hence a corresponding subset cover
Sc and its header length h. Let Xn,r be the random variable taking the value of
the header length (cover size). Let Xt

n,r ∈ {0, 1} be a random variable associated
with node t of T 0. Xt

n,r = 1 denotes the event that the cover contains a subset

of the form T t \T t′ where t′ is some node in the subtree T t. Similarly, Xt
n,r = 0

denotes the event that there is no subset in the cover of the form T t \ T t′ . If
node t is the kth node of level ` of T 0, then Xt

n,r will also be written as X`,k
n,r.

There are n − 1 internal nodes in T 0. Then for a revocation pattern, we can
write: Xn,r = X0

n,r + X1
n,r + . . . + Xn−2

n,r . By linearity of expectation, we can
write:

E[Xn,r] = E[X0
n,r] + E[X1

n,r] + . . .+ E[Xn−2
n,r ]. (6)

Since all the random variables Xt
n,r follow Bernoulli distribution with probability

Pr[Xt
n,r = 1], we get:

E[Xn,r] = Pr[X0
n,r = 1] + Pr[X1

n,r = 1] + . . .+ Pr[Xn−2
n,r = 1]. (7)

So the problem boils down to finding Pr[Xt
n,r = 1] for a given internal node t.

Here, we define ηr(i, j) as the probability of choosing r elements from a set
of i elements such that some fixed j elements are not chosen. So, if j ≥ i− r+ 1,
then ηr(i, j) = 0 and for 0 < j < i− r + 1,

ηr(i, j) =

(
1− j

i

)(
1− j

i− 1

)(
1− j

i− 2

)
. . .

(
1− j

i− r + 1

)
=

(i− j)r
(i)r

.

(8)

For an internal node t (the kth node of level `), let p be the predecessor and let
s be the other child node of p (the sibling of node t). For a subset of the form
T t \ T t′ to occur in the cover (where t′ is some node in the subtree T t), there
should be at least one revoked user in exactly one of the subtrees of the node
t while there should be no revoked user in the other subtree of t. The subtree
rooted at s should also have at least one revoked user. Let R`,k

left (R`,k
right) be the

random variable taking up values to indicate the number of revoked users in the
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left (right) subtree of T t. Also, let R`,k
sibling be the random variable taking up

values to indicate the number of revoked users in T s. Then we have the following
lemma:

Lemma 2. When r > 0, the probability that the cover Sc contains a set of the
form T t \ T t′ is given by Pr[X`,k

n,r = 1] where

Pr[X`,k
n,r = 1] = Pr[R`,k

sibling > 0 ∧R`,k
right > 0 ∧R`,k

left = 0]

+ Pr[R`,k
sibling > 0 ∧R`,k

left > 0 ∧R`,k
right = 0]. (9)

Let A be the event R`,k
sibling > 0. Similarly, let B and C be the events R`,k

right >

0 and R`,k
left > 0 respectively. Then, Pr[X`,k

n,r = 1] = Pr[A∧B∧C]+Pr[A∧B∧C].

For the moment, assume Pr[C] > 0 and Pr[B ∧ C] > 0. Then,

Pr[A ∧B ∧ C] = (1− Pr[A ∨B|C])× Pr[C]

= Pr[C]− Pr[A ∧ C]− Pr[B ∧ C] + Pr[A ∧B ∧ C]. (10)

It can be verified that (10) holds even if Pr[C] = 0. Similarly, Pr[A ∧ B ∧ C] =
Pr[B]− Pr[A ∧B]− Pr[B ∧ C] + Pr[A ∧B ∧ C]. Hence,

Pr[X`,k
n,r = 1] = Pr[B] + Pr[C]− Pr[A ∧B]− Pr[A ∧ C]− 2 Pr[B ∧ C]

+ 2 Pr[A ∧B ∧ C] (11)

As a result, we get the following theorem:

Theorem 3. Let n` and nr be the number of leaf nodes in the left and right
subtrees respectively of the kth node of level ` and let ns be the number of leaf
nodes in its sibling subtree T s. Then,

Pr[X`,k
n,r = 1] = ηr(n, n`) + ηr(n, nr)− ηr(n, ns + n`)− ηr(n, ns + nr)

− 2ηr(n, n` + nr) + 2ηr(n, ns + n` + nr) (12)

Equation (7) can be rewritten as follows:

E[Xn,r] =

t0+1∑
`=1

q∑̀
k=1

Pr[X`,k
n,r = 1] +

t0∑
`=1

⌊
ρ` − 1

2`−1

⌋
× Pr[X`,q`+1

n,r = 1]. (13)

Here, level t0 + 1 has only one node (the root node) for which Pr[X0
n,r = 1] =

ηr(n, 2t0)+ηr(n, n−2t0) which is a special case of (12). Computing Pr[X`,k
n,r = 1]

requires evaluating the η function which requires r multiplications. At level `,
Pr[X`,k

n,r = 1] is same for k = 1, . . . , q`−1 and needs to be computed once. Hence,
for these q` − 1 nodes for all the ` levels O(r log n) multiplications are required.
Contribution from the qth` and (q` + 1)th nodes at the level ` can be computed
using O(r log n) multiplications and so the overall complexity is O(r log n) mul-
tiplications. The space complexity is O(1). By running this algorithm, we make

an interesting observation that for r = 2, n = (220−1) and 220,
E[Xn,r]

r = 1.249.

For n = (220 + 1),
E[Xn,r]

r = 1.499. So, there is a sharp change in the value of
E[Xn,r]

r as n increases from 220 − 1, 220 to 220 + 1. This also happens for other
similar values of n.
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4.1 Power-of-two Anomaly

The SD scheme of [NNL01] and all subsequent work on it, assume n to be
a power of 2. For most practical implementations, n will not be a power of 2.
Hence, to be able to use the scheme, additional dummy users have to be assumed
and added to the collection of users to make n a power of 2. If n is of the form
2t0 + 1, then the next high power is 2t0+1 and hence the number of dummy
users added is almost equal to n. These dummy users can either be assumed
to be revoked or privileged. Unless the implementation requires redundancy in
the number of privileged users, assuming the dummy users to be privileged
will lead to useless increase in key storage and may lead to increase in header
length. This may be less of a problem for implementations in DVD-s, but it
will definitely be a serious issue with implementations like pay-TV where user
storage as well as transmission overhead are crucial efficiency parameters. The
storage space required by each user is 1

2 log2 n + 1
2 log n + 1 in the SD method.

If the number of dummy users is almost equal to n, then the useless storage is
around log 2 log n + 1

2 log2 2 + 1
2 log 2 which is significant compared to the total

storage size of the user. Hence, it is more reasonable to assume the dummy users
to be revoked. But such an assumption adversely affects the efficiency of the
scheme. The following table enlists the true values of n and r, the corresponding
assumed values of n′ (of the form 2t0+1) and r′ and their respective expected
header lengths.

n r E[Xn,r] n′ r′ E[Xn′,r′ ]
216 + 1 27 160.03 217 27 + (216 − 1) 38065.75
216 + 8 27 160.01 217 27 + (216 − 8) 38066.14

216 + 215 27 159.15 217 27 + (215) 29771.38
216 + 1 210 1253.96 217 210 + (216 − 1) 38008.61
216 + 8 210 1253.85 217 210 + (216 − 8) 38009.11

216 + 215 210 1260.33 217 210 + (215) 30275.03

(14)

The above table shows that if n is rounded off to n′ (a power of 2) as suggested
by [NNL01] and all subsequent work, the expected header length suffers an
enormous increase. This clearly brings out the significance of our contribution.

4.2 Complete Tree: Asymptotic Analysis of Expected Header
Length

For n = 2t0+1, n` = nr and hence for a node t (the kth node of level `), (12)
can be written as:

Pr[X`,k
n,r = 1] = 2

(
ηr(n, 2`−1)− ηr(n, 2`)− ηr(n, 3× 2`−1) + ηr(n, 2`+1)

)
. (15)

This probability is independent of k and hence, is equal for all nodes at level `

which we denote by B
(`)
n,r. We define the expected header length Hn,r as: Hn,r =

E[Xn,r] =
∑t0+1

`=1 2t0+1−`B
(`)
n,r. We define Dn,r = Hn,r −Hn,r−1 so that Hn,r =
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Hn,r−1 +Dn,r = 1 +
∑r

i=2Dn,i. Expanding the expressions for B
(`)
n,r+1 and B

(`)
n,r,

and simplifying, we obtain the following:

Dn,r+1 =
n

n− r
[−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)]

− 3n

n− r

[
t0∑
`=1

(
ηr(n, 2× 2` − ηr(n, 3× 2`)

)]
. (16)

For the asymptotic analysis, we define Hr = limn→∞Hn,r, Dr = limn→∞Dn,r

and so, Hr = 1 +
∑r

i=2Di. Using algebraic manipulations, we get the following
result:

Theorem 4. Dr+1 ↑ 3− 3Kr where Kr =
(
− 1

2

)r
+
∑r

j=1(−1)j
(
r
j

) (2j−3j)
(2j−1) .

r 2 3 4 5 6
Dr

3
2

5
4

69
56

417
336

25953
20832

Hr

r 1.25 1.25 1.24 1.24 1.24

(17)

The above table lists the values of Dr and Hr

r for small values of r. This table

shows the ratio Hr

r is 1.25 for r = 2 and decreases with increasing r. This explains
the empirical observation in [NNL01] that the expected header length is 1.25r.

5 Analysis of the Layered Subset Difference Scheme

The basic LSD Scheme of [HS02] causes an asymptotic improvement in the
number of keys stored per user over the SD scheme of [NNL01], with a compro-
mise on the header length. The amount of information that a user has to store
in the SD method, improves from O(log2(n)) to O(log3/2(n)). It modifies the
SD scheme by dividing the levels of nodes of the tree T 0 into

√
log n layers with

each layer containing
√

log n levels of T 0. A level at the border of two adjacent
layers is said to be special and is included in both the layers (above and below
it). To get the collection of subsets SLSD for the LSD scheme, a subset Si,j in
the collection SSD of the SD method is divided into two subsets Si,k and Sk,j

where node k is either in the same layer as node i or is at a special level.

For a node t, let `t denote the level of t and kt be its index in that level. Let
NSDesc(t) be the set of all non-special descendant nodes of node t which are
not at the same layer as t. Similar to the technique used for the SD method
in Section 4, finding the expected header length for LSD boils down to finding

Pr[X`i,ki
n,r = 1 ∧X`j ,kj

n,r = 1] for a pair of nodes (i, j) such that j is a descendant

node of i in T 0 and j ∈ NSDesc(i). The event X`i,ki
n,r = 1 ∧ X`j ,kj

n,r = 1 occurs
when there is at least one revoked user in each of the following subtrees: the
subtree rooted at the sibling node of i and each of the two child subtrees of j.
Using this characterization, we find the expected header length.
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the trade-off between storage and communication in broadcast encryption
schemes. Discrete Applied Mathematics, 143(1-3):213–220, 2004.
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