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Abstract

The Subset Difference (SD) method proposed by Naor, Naor and Lotspiech is the most popular broadcast
encryption (BE) scheme. It is suitable for real-time applications like Pay-TV and has been suggested for use
by the AACS standard for digital rights management in Blu-Ray and HD-DVD discs. The SD method assumes
the number of users to be a power of two. We propose the Complete Tree Subset Difference (CTSD) method
that allows the system to support an arbitrary number of users. In particular, it subsumes the SD method and
all results proved for the CTSD method also hold for the SD method. Recurrences are obtained for the CTSD
scheme to count the number, N(n, r, h), of possible ways r users in the system of n users can be revoked to
result in a transmission overhead or header length of h. The recurrences lead to a polynomial time dynamic
programming algorithm for computing N(n, r, h). Further, they provide bounds on the maximum possible
header length. A probabilistic analysis is performed to obtain an O(r log n) time algorithm to compute the
expected header length in the CTSD scheme. Further, for the SD scheme we obtain an explicit limiting upper
bound on the expected header length.

Keywords: Broadcast encryption; subset difference; combinatorial analysis; recurrence; probabilistic analysis;
expected header length; transmission overhead; asymptotic analysis

1 Introduction

A Broadcast Encryption (BE) scheme allows a centre to efficiently broadcast encrypted information so that
only an intended set of users can recover the message. Before the system starts to work, the users are given
some secret information. This could be the actual decryption keys or some information from which it can
derive the decryption keys. A user uses this information for decrypting relevant encrypted digital content.
Copyright protection using Digital Rights Management (DRM) techniques is an important application of BE.
The application of BE systems is pretty wide in the implementation of DRM for content protection in digital
data distribution technologies such as pay-TV, Internet or mobile video broadcast, optical discs, etc.

In a typical BE scheme, the entire digital data to be broadcast is divided into blocks. Each such block is
called a message. Each message to be broadcast, is encrypted using a unique key called a session key. The
session key in turn, is encrypted a number of times using user keys and these multiple encryptions of the session
key are sent as the header of the encrypted message. The transmission overhead of the scheme is determined by
the number of encryptions of the session key in the header. This is called the header length and we denote this
quantity by h.

In a fully resilient scheme, even if an adversary has the decryption keys of all the remaining non-privileged
users in the system, it will not be able to correctly decrypt the content. The non-privileged users are called
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1 INTRODUCTION 2

revoked users. A crucial requirement for a BE scheme is that it should facilitate dynamic revocation of decryption
privilege from any subset of users at any point of time. The decision could be based on their subscription or
privilege status.

In real-time scenarios like Pay-TV, Internet or mobile video broadcast, the number of users can vary from a
few thousands to millions. For other real-time applications of BE like broadcasting secret instructions to military
outposts from a base station, the number of users will be a few hundreds. The BE scheme that is used in real
time scenarios as above, has to be efficient in terms of the transmission overhead associated with each message
as also the encryption and decryption times and storage of user keys. For non-real-time applications like content
protection in Blu-Ray discs and HD-DVDs, the requirements from a BE scheme are somewhat different. Here,
the transmission overhead is the additional information stored in the physical media that is used for decrypting
the content. Storage space in discs is no more a constraint nowadays. Further, since encryption does not happen
in real-time, improving the encryption time is also not very important. On the other hand, reducing the user
storage and decryption time is still important.

Broadcast Encryption was introduced in [Ber91] followed by [FN93]. There have been several works in this
area [Sti97, SW98] since then, but the most popular scheme out of these is the tree-based Subset Difference
(SD) method of [NNL01]. Since it is a symmetric key based scheme, it is very efficient in terms of encryption
and decryption time. It allows the users to be stateless and hence, they do not have to update their individual
secret information with every session. It also allows dynamic revocation of users. User storage requirement is
O(log2 n) where n is the total number of users and the transmission overhead is linear in the number of revoked
users r. Currently, the SD scheme offers the simplest algorithm and the best trade-offs for use in both real-time
applications like Pay-TV and non-real time applications like content protection in optical discs [AAC].

1.1 Our Contributions

There are three contributions in this work.

Arbitrary number of users: We broaden the scope of use of the SD scheme. The SD scheme and all follow-
up works [HS02, GST04, PB06, AK08, MMW09] assume the total number of users n to be a power of two.
When implementing the SD scheme for applications such as Pay-TV, it is possible that the number of users in
the system will be arbitrary. In that case, the centre has to assume the existence of dummy users to make the
number of users a power of two. We relax this restriction to allow any arbitrary number of users in the system by
introducing the Complete Tree Subset Difference (CTSD) scheme. The CTSD scheme is based on the SD scheme
and subsumes it while eliminating the requirement of dummy users in the system. When the number of users in
the CTSD method is a power of two, it becomes exactly the same as the SD scheme. Inclusion of dummy users
results in the expected header length of the SD scheme to be more than the CTSD scheme for practical values
of n and r.

It is to be noted that an implementation that uses the SD scheme can easily shift to using the CTSD scheme
with minimal change in the software implementation. This is because the internal tree structure used for assigning
keys to subsets of users in the SD scheme remains almost the same in the CTSD scheme.

Combinatorial Analysis: The importance of the SD scheme motivates the study of its combinatorial prop-
erties. We carry out such a study for the CTSD scheme and the results so obtained also apply to the SD scheme.
A new approach is used for the detailed combinatorial analysis. A method is proposed to count the number,
N(n, r, h), of ways that r out of n users can be revoked to get a header length of h in the CTSD scheme. This
counting is formulated using two recurrences. Using these recurrences, a dynamic programming based algorithm
is developed to compute N(n, r, h) in polynomial time. Previous to our work, to compute N(n, r, h) for the SD
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method, one would have to run the SD algorithm on the possibly exponentially many
(

n
r

)

revocation patterns.
Further combinatorial results that we obtain are as follows.

1. The worst case header length for a given r in the SD scheme was shown to be 2r−1 in [NNL01]. We show that
the worst case header length for the CTSD scheme and hence for the SD scheme is min(2r−1, ⌊n/2⌋, n−r).

2. Given r, we characterize the minimum number of users, nr, that need to be in a system using the CTSD
method, that can give rise to the maximum header length of 2r− 1. For the special case of the SD method
the expression for nr was obtained in [MMW09].

3. For the special case when n is a power of two i.e., for the SD scheme, we use the recurrences to obtain a
generating function for the sequence. Earlier, a generating function of a slightly different form was obtained
in [PB06] using direct arguments.

Probabilistic analysis: We propose a simple and efficient algorithm for computing the expected header length
for a given n and r in the CTSD and hence the SD method. The algorithm requires O(r logn) multiplications
and O(1) space. Due to its efficiency, this algorithm allows the computation of the expected header length for
values of n ranging from a few hundreds to millions. This provides a useful tool to practitioners implementing
either the SD or the CTSD method.

For the SD scheme, as n goes to infinity through powers of two, we provide an expression Hr for the limiting
upper bound on the expected header length Hn,r. The value of Hr can be computed using O(r) multiplications.
Computing this value for different r shows that Hr is always less than 1.25r. The only previously known upper
bound on the expected header length in the SD scheme for r revoked users was proved to be 1.38r in [NNL01].
They also commented that experimental results indicated that the bound is probably 1.25r. Our analysis of the
expected header length shows that proving the precise limiting upper bound is more complicated than anticipated
in [NNL01].

1.2 Previous Works

The tree-based SD scheme has inspired quite a lot of work in the area of broadcast encryption. Asymptotic
improvements to the user storage parameter of the SD scheme were suggested in the tree-based LSD scheme
of [HS02] with some loss of efficiency in the transmission overhead. Analysis of the combinatorics behind broadcast
encryption schemes and different generic bounds on the efficiency parameters have been done in [LS98, PGM04]
and other works. A generic method for constructing BE schemes from pseudo-random generators was proposed
in [AKI03].

An analysis of the expected header length of the SD and LSD schemes was done in [PB06]. As mentioned
earlier, they proposed generating functions for counting the number of ways p users out of total n users can be
given access privilege so that the header length will be h. Using this generating function, they found equations
to compute the expected header length for a given n and r. However, they admitted that their equations were
“complex to compute and difficult to gain insight from”. Consequently, they went forward to find approximations
for the same. The analysis of the expected header length in [PB06] was continued in [EOPR08] to show that
the standard deviations are small compared to the means as the number of users gets large. Other combinatorial
studies of the SD method has been done in [MMW09, AK08]. In particular, the maximum possible header length
for a given n and r was found accurately in [MMW09].

An earlier attempt to extend the SD method to handle arbitrary number of users have been reported in [BS11].
This work, however, considered unbalanced trees and the results so obtained are inferior to the results obtained
here.

A family of broadcast encryption schemes using linear algebraic techniques and hence called linear broadcast
encryption schemes was introduced in [PGMM03]. The same authors had also proposed key pre-distribution
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techniques based on linear algebraic techniques in [PGMM02]. Another interesting work on BE is [JHC+05]. It
works on the idea of “one key per punctured interval” in which the worst case header length has been brought
down to r for the first time. This can also be decreased below r at the cost of increasing user storage. But, the
method is more complicated than the SD scheme and the user storage requirement is rather high.

Traitor tracing [CFN94, FT01, NP98, KY01, SSW01] is a related issue. We do not discuss this here, since it
is not directly connected to the contribution of the paper. We only remark that the traitor tracing method for
the SD scheme can be modified to obtain a traitor tracing method for the CTSD scheme. There are several BE
schemes based on public-key cryptography [BF99, Asa02, DF03, JG04, BGW05, GW09, LT08, PPS11]. These
are not relevant to our work and we do not consider them any further.

2 The Subset Cover Revocation Framework

The Complete Tree Subset Difference method that we propose is based on the Subset Difference method
introduced by Naor, Naor and Lotspiech in [NNL01]. The Subset Difference algorithm is essentially a key
encrypting method that falls under the Subset Cover Revocation Framework that was proposed in the same
paper. We begin with a very short description of this framework.

The Subset Cover Revocation Framework assumes a centre that encrypts a message M and broadcasts it to a
set N of users where |N | = n. This set of users contains all the possible recipients of the broadcast. A subset
R of these users are revoked. A broadcast encryption algorithm under this framework consists of three parts:
(1) an initiation scheme - that assigns user u ∈ N , the secret information Iu that will allow them to decrypt
messages intended for them; (2) the broadcast algorithm - that takes as input the message M and the set R of
revoked users and outputs the ciphertext C. C is broadcast to all the users in N ; (3) the decryption algorithm -
that runs at the user end. It takes as input the ciphertext C and the secret information Iu that the user u had
received during initiation and attempts to decrypt C. A privileged user in N \R should be able to get back the
original message M , while any coalition of revoked users in R should not be able to get back the correct message
from C.

During initiation, the algorithm defines a collection S = {S1, . . . ,Sw} of subsets, where each Sj ⊆ N . Each
subset Sj is assigned a long-lived key Lj . A user u ∈ Sj should be able to deduce Lj from the secret Iu it had
acquired during initiation. However, Iu may not explicitly contain the long-lived key Lj , as we will see in the
Complete Tree Subset Difference algorithm. During broadcast, the set of privileged users N \ R is partitioned
into pairwise disjoint subsets Si1 , . . . ,Sih taken from the collection S. This partition is called the subset cover
Sc. In other words,

N \R =
h
⋃

j=1

Sij

where each Sij ∈ S and Sc = {Si1 , . . . ,Sih}. The algorithm uses two encryption schemes:

• A function FK : {0, 1}∗ → {0, 1}∗ to encrypt the message M with a session key K. The session key is a
random string chosen afresh for each new message M .

• A function ELj
: {0, 1}∗ → {0, 1}∗ to encrypt the session key K with a long-lived key Lj corresponding to

the subset Sj (∈ Sc) of users.

Detailed discussion on the security requirement of these primitives can be found in [NNL01]. Hence, in order to
broadcast the message M , the centre chooses a session key K and encrypts M as FK(M). It also finds the cover
Sc = {Si1 , . . . ,Sih}. Let Li1 , . . . , Lih be the long-lived keys that were assigned to each of these subsets in Sc. The
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centre then encrypts the session key K with each of these keys Lij . The session key has to be encrypted h times
for each set in Sc. The h encryptions of the session key is sent along with FK(M) as a header for the encrypted
message. The header also has information to identify the subsets Sij that form the cover Sc. The size h of the
header is determined by the number of sets in Sc. We are going to refer to this size as the header length. The
encrypted message FK(M) along with the header forms the ciphertext C. The header length is a key efficiency
parameter that resembles the transmission overhead of the scheme.

During decryption, a user u has to identify from the header, the set Sij to which it belongs. It derives the
long-lived key Lij from the secret information Iu it had acquired during initiation. Using Lij , it then decrypts
the session key K from the portion of the header that has K encrypted for Sij . The user can hence decrypt the
message M from FK(M). In case a user is revoked and hence does not belong to any of the sets in Sc, it will not
be able to decrypt K or M for that matter.

3 The Complete Tree Subset Difference Method

The Subset Difference (SD) method of [NNL01] and all follow-up work assumes the number of users n to be a
power of two. We propose the Complete Tree Subset Difference (CTSD) algorithm that can accommodate any
arbitrary number of users. Our algorithm considers a rooted complete binary tree T 0 with n leaves. One may
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Figure 1: The non-full complete tree T 0 with n = 13 users as its leaves. Privileged users are indicated in green
and the revoked users are indicated in red. Here, r = 3. The tree T 1 is a subtree of T 0 and is a full subtree
having 8 leaf nodes whereas the tree T 2 is a non-full complete subtree of T 0 with 5 leaf nodes.

note here that a complete binary tree has leaf nodes only at the bottom-most or last level and maybe also the
last-but-one level. The leaves in the last level are filled from the left to the right in the tree. In a full binary
tree of height ℓ there are 2ℓ leaves, all at the last level. A full binary tree is also complete by definition. We will
refer to trees that are complete but not full as non-full. Each user in N is associated with a leaf of the complete
binary tree T 0. There are a total of 2n − 1 nodes in T 0. The root node of T 0 is labeled as 0. All subsequent
nodes are labeled as follows: the left child node of a node i is labeled as 2i+ 1 and the right child is labeled as
2i+2. Hence, nodes 0 to n− 2 are the internal nodes and nodes n− 1 to 2n− 2 are the leaf nodes. The subtree
of T 0 rooted at node i is denoted by T i. The number of leaf nodes in the subtree T i is denoted by λi. The
collection S of subsets is defined as follows: The set Si,j is defined to contain users in the subtree T i but not in
T j . A set Si,j is also denoted as T i \ T j . All subsets of users of the form Si,j , where node j is in the subtree T i

and hence a descendant of node i, is included in the collection S. The set N of all users is also included in S.
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Once this collection S has been created, each set Si,j in S has to be assigned a long-lived key Li,j . We will look
at the key assignment in Section 3.1.

6

8 1097 12 13 14

543

0

15 16 17 18 19 20 21 22 23 24

1 2

11

Figure 2: The subset difference subset S1,7 which includes leaves in T 1 but not in T 7 i.e.; S1,7 = T 1 \ T 7 =
{17, 18, 19, 20, 21, 22}.

During broadcast, the centre will know the set R of revoked users and the message M to be broadcast. It has to
find the subset cover Sc forN\R. Sc contains pairwise disjoint sets Si1,j1 , . . . , Sih,jh such thatN \R =

⋃h
k=1 Sik,jk

where each Sik,jk is taken from S. If the set R is empty, then the only set in the cover Sc is N . Otherwise, the
following cover-finding algorithm is used: The centre first constructs the Steiner Tree ST (R) induced by R on
T 0. The Steiner Tree ST (R) is a subgraph of T 0 that only retains the nodes and edges on paths from the root
node 0 to a revoked leaf node. All the other paths in T 0 are deleted. The cover-finding algorithm runs iteratively
by maintaining a tree T that is a sub-graph of ST (R). It starts by initializing T as a copy of ST (R). At every
iteration, the algorithm keeps removing nodes from T while adding subsets to Sc, until T has just one node left.
At any point of time in the algorithm, a leaf node in T corresponds to either a leaf node in T 0 or the root of a
subtree in T 0 all whose leaves have already been covered till that iteration. More precisely:

1. If there is only one leaf node in T , jump to step 6.

2. Find two leaves j1 and j2 of T whose first common ancestor i does not have any other leaf node in its
subtree in T . Here, out of the many possible such pairs j1 and j2 one may choose the leftmost to have a
specific algorithm.

3. Let i1 (respectively i2) be the immediate child node of i which is an ancestor of j1 (respectively j2) or is
the node j1 (respectively j2) itself. If i1 6= j1 then add the set Si1,j1 to the cover Sc. Similarly, if i2 6= j2
then add the set Si2,j2 to the cover Sc.

4. Delete the paths joining j1 and j2 with their common ancestor i. Hence, node i becomes a leaf in T .

5. If there are more than one leaves remaining in T , go back to step 2.

6. If the only leaf node is the node 0, then there are no more subsets to be added to Sc. Else, add the set S0,j

to Sc. Here j is the leaf node remaining in T .
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3.1 Key assignment to each subset Si,j in S

Pseudo-random generator G: In order to assign keys to each subset in S, the centre assigns uniform random
seeds to every non-leaf node in T 0 and uses a cryptographic pseudo-random generator G. The pseudo-random
generator G outputs a pseudo-random string that has three times the length of the input seed. The output string
G(seed) is divided into three equal parts GL(seed), GM (seed) and GR(seed). Hence, G(seed) = GL(seed) ‖
GM (seed) ‖ GR(seed). G : {0, 1}k → {0, 1}3k is a pseudo-random generator if no polynomial time adversary can
distinguish between its output for a random seed from a truly random string of the same length.

Seed assignment to nodes: Every non-leaf node i in T 0 is assigned a uniform random seed LABELi. Each
non-root node j of T 0 is assigned derived seeds from every ancestor i of j. The left child 2i + 1 of node i in
T 0 derives the seed GL(LABELi) from the random seed LABELi of i. All descendants of 2i + 1 further get
derived seeds from this derived seed GL(LABELi) of 2i + 1. Similarly, the right child 2i + 2 of node i in T 0

derives the seed GR(LABELi) from the random seed of i and all descendants of 2i + 2 get derived seeds from
this derived seed GR(LABELi) of 2i+2. We denote the seed for a node j derived from the random seed of node
i as LABELi,j . Following such an assignment of random and derived seeds for nodes in T 0, the long lived key
Li,j assigned to the set Si,j is GM (LABELi,j).

Iu for each u ∈ N : Once the centre is done with the assignment of random and derived seeds to nodes, it has
to distribute the secret information Iu to each user u ∈ N . The user associated with a leaf j of T 0 must have been
revoked when a set Si,j is in the cover Sc. Hence, the user at leaf j should not be able to compute the Li,j for any
of its predecessor i in T 0. In fact, it should not be able to compute any Li,k where k, a descendant of i, is also one
of its ancestors. In other words, a user at leaf j should be able to compute an Li,k if and only if i is an ancestor
of j and k being a descendant of i, is not on the path joining j with i. In a subtree T i of T 0 to which a user at
leaf j belongs, the node i has a random seed LABELi. The user at j gets the seeds of all nodes adjacent to the
path joining i and j that have been derived from LABELi. Say i1, . . . , im are those nodes “falling off” from the
path between node i and leaf j. The user at j will get the derived seeds LABELi,i1 , LABELi,i2 , . . . , LABELi,im .
To summarize, the Iu for a user u at leaf j consists of all derived seeds LABELi,k such that i is a predecessor
of j and k is adjacent to the path joining i and j. As derived in [NNL01], the number of derived seeds in Iu is
1
2 log

2 n+ 1
2 logn+1 for n a power of two. For an arbitrary n, one has to consider the next higher power of two,

say 2ℓ0−1 < n ≤ 2ℓ0 . The number of derived seeds in Iu will be 1
2ℓ

2
0 +

1
2ℓ0 + 1.

3.2 Dummy Users and the Associated Penalty

The CTSD scheme works with the actual number of users that are present in the system. It may be argued that
even if n is not a power of two, the SD scheme can be applied by incorporating dummy users to make the total
number of users to be a power of two. We argue that this impacts the size of the transmission overhead. For an
actual broadcast, there are two ways to handle the dummy users – either consider all of them to be revoked or
consider all of them to be privileged.

Suppose that the dummy users are considered to be distributed randomly among all the users. Then viewing
them as revoked has very serious performance penalties. This is because, the average header length is linear in
the number of revoked users, as is proved later. Having a larger number of randomly distributed revoked users
leads to larger header size. If, on the other hand, the dummy users are viewed as privileged, then the performance
penalty will be lesser.

Assuming the dummy users to be randomly distributed may not be fully justifiable. In an actual imple-
mentation, they may be considered to be one block. Suppose that 2ℓ−1 < n < 2ℓ and that the users numbered
n + 1, . . . , 2ℓ are the dummy users and the real users are numbered 1 to n. The actual revoked users will be



3 THE COMPLETE TREE SUBSET DIFFERENCE METHOD 8

n r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

17 (CTSD) 2.34 3.22 3.93 4.49 4.89 5.13 5.21

17 + 15 (dummy revoked) 3.06 3.87 4.49 4.96 5.29 5.46 5.49

17 + 15 (dummy privileged) 2.76 3.88 4.66 5.24 5.64 5.87 5.96

18 (CTSD) 2.36 3.29 4.05 4.67 5.14 5.45 5.60

18 + 14 (dummy revoked) 3.04 3.88 4.53 5.04 5.41 5.65 5.74

18 + 14 (dummy privileged) 2.67 3.76 4.53 5.09 5.51 5.78 5.92

19 (CTSD) 2.37 3.32 4.09 4.73 5.21 5.55 5.74

19 + 13 (dummy revoked) 3.12 4.01 4.72 5.27 5.69 5.97 6.11

19 + 13 (dummy privileged) 2.61 3.72 4.52 5.16 5.67 6.07 6.35

20 (CTSD) 2.39 3.38 4.19 4.86 5.39 5.77 6.02

20 + 12 (dummy revoked) 2.86 3.70 4.40 4.98 5.44 5.80 6.03

20 + 12 (dummy privileged) 2.56 3.66 4.48 5.15 5.69 6.12 6.44

21 (CTSD) 2.40 3.38 4.20 4.88 5.43 5.85 6.15

21 + 11 (dummy revoked) 3.69 4.44 5.07 5.60 6.02 6.35 6.56

21 + 11 (dummy privileged) 2.52 3.64 4.52 5.26 5.90 6.43 6.84

22 (CTSD) 2.42 3.43 4.27 4.98 5.58 6.06 6.42

22 + 10 (dummy revoked) 3.19 4.09 4.86 5.50 6.01 6.40 6.69

22 + 10 (dummy privileged) 2.49 3.62 4.53 5.31 5.99 6.56 7.03

23 (CTSD) 2.43 3.44 4.28 4.99 5.60 6.09 6.48

23 + 9 (dummy revoked) 3.27 4.20 5.01 5.68 6.23 6.66 6.98

23 + 9 (dummy privileged) 2.47 3.62 4.58 5.41 6.14 6.77 7.28

24 (CTSD) 2.45 3.48 4.33 5.07 5.71 6.24 6.67

24 + 8 (dummy revoked) 2.70 3.54 4.35 5.08 5.71 6.24 6.67

24 + 8 (dummy privileged) 2.45 3.60 4.59 5.45 6.19 6.83 7.34

Table 1: Comparison of the expected header lengths for 17 ≤ n ≤ 24 and 2 ≤ r ≤ 8 in the CTSD method with
the SD method working with dummy users forming a block at the right end. The dummy users may be privileged
or revoked. It shows that the CTSD scheme always requires lesser bandwidth than the SD scheme with dummy
users.

among the values 1 to n, whereas the users numbered n+ 1, . . . , 2ℓ will be considered to be either all revoked or
all privileged.

We compare the expected header length of the CTSD method with the SD method in Table 1. These values
are obtained by running the header generation algorithms on all possible (n, r)-revocation patterns. The SD
algorithm is run assuming the dummy users to form a block at the right end of the tree. In separate cases, these
dummy users are considered to be privileged and revoked as a group. Due to the exponentially many possible
revocation patterns, the algorithm could be run only for small values of n. We, however, expect the results to be
indicative of the general behaviour. For 17 ≤ n ≤ 24 and 2 ≤ r ≤ 8, the expected header length by the CTSD
method is never more than that of the SD method and is almost always less.
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4 Combinatorial Analysis of the SD and CTSD methods

A given set of revoked users is called a revocation pattern. We denote a revocation pattern on n users where
r are revoked, as an (n, r)-revocation pattern. The number of possible (n, r)-revocation patterns is

(

n
r

)

. In order
to study the detailed combinatorial behaviour of the CTSD and hence the SD algorithm, we find a method to
count the number of (n, r)-revocation patterns that result in a header length of h.

Definition 1. In a subtree T j of T 0 with λj users, N(λj , r, h) is defined as the number of (λj , r)-revocation
patterns that are covered by exactly h subsets. Similarly, for λj users in T j, T (λj , r, h) is defined as the number
of (λj , r)-revocation patterns that are covered by h subsets such that there is at least one revoked user in both
subtrees of T j.

Since the tree T 0 has n (= λ0) leaves, N(n, r, h) = N(λ0, r, h) is the number of (n, r)-revocation patterns
covered by a header length of h. We obtain recurrences for N(n, r, h).

4.1 Some Notation

Level number and position of nodes: Before we start deriving the expressions for T (n, r, h) and N(n, r, h),
we fix a few notation for the ease of description. A level number of T 0 is indicated by ℓ. In particular, the level
of a node i is denoted by ℓi. The root node 0 is at the highest level ℓ0. Hence, ℓ ∈ {0, . . . , ℓ0}. Since every subtree
T i is a complete binary tree, 2ℓi−1 < λi ≤ 2ℓi . The number of nodes at level ℓ of T 0 is denoted by qℓ. We see
that the number of nodes at the last level is q0 = 2(n − 2ℓ1). For ℓ ∈ {1, . . . , ℓ0}, qℓ = 2ℓ0−ℓ. The position of a
node at a level from the left is denoted by k where k ranges from 1 to qℓ. Hence, a node i is uniquely represented
by the pair (ℓi, ki) – the level ℓi of T 0 to which it belongs and its position ki from the left at that level. As an
example, the root node 0 of T 0 is represented by (ℓ0, 1). We will interchangeably use both i and (ℓi, ki) to denote
a node.

1 2

6

107 14

543

15 16 17 18 19 20 21 22 23 24

11 12 1398

0

l=1

l=0

l=4

l=3

l=2

Figure 3: Level numbers in T 0. The path P0 is marked with blue. Nodes coloured blue are at position kPℓ for
the respective level ℓ.

Non-full subtrees at each level of T 0: Let us take a closer look at the structure of the tree T 0. In case
T 0 is full, all its subtrees are also full. In case T 0 is non-full, we observe that every level ℓ > 0 of T 0 can have
at most one non-full subtree. To identify these subtrees, we look at the path joining the root node 0 of T 0 with
node n− 2 and denote it by P0. The node numbered n− 2 is the last non-leaf node. There is exactly one node
on P0 for every level ℓ > 0 of T 0. For level ℓ, the position of the node lying on the path P0 from the left, is
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denoted by kPℓ . Let j be a node on P0, say the node represented by (ℓ, kPℓ ). The part of the path P0 lying in the
subtree T j is denoted as Pj . For the level ℓ, the subtree T j rooted at node (ℓ, kPℓ ) is the only possibly non-full
subtree rooted at level ℓ. The subtrees to the left and right of node kPℓ at level ℓ are all full. The subtrees to the
left (respectively right) of node kPℓ of level ℓ have 2ℓ (respectively 2ℓ−1) leaves. The number of leaves in the only
possibly non-full subtree rooted at level ℓ is denoted by λℓ,P . The root node of this subtree would be node (ℓ, kPℓ )
of level ℓ. Hence, 2ℓ−1 < λℓ,P ≤ 2ℓ. More specifically, λℓ,P = n− ((kPℓ − 1)× 2ℓ)− ((2ℓ0−ℓ − kPℓ )× 2ℓ−1). Also,

kPℓ =
⌈ q0
2ℓ

⌉

. We define k
Pj

ℓ for the path Pj as the position of the node at level ℓ on Pj from the left in the subtree

T j . Hence, kPℓ is also denoted as kP0

ℓ . One can see that k
Pj

ℓ =

⌈

q0−(kP
ℓj
−1)×(2ℓj )

2ℓ

⌉

=
⌈ q0
2ℓ

⌉

− (kPℓj − 1)× (2ℓj−ℓ).

4.2 Recurrences N(n, r, h) and T (n, r, h)

Theorem 1. For a subtree T i of T 0 with λi (2
ℓ < λi ≤ 2ℓ+1) leaves,

N(λi, r1, h1) = T (λi, r1, h1) +
∑

j∈IN(i)

T (λj , r1, h1 − 1) (1)

where IN(i) is the set of all internal nodes in the subtree T i excluding the node i.

Proof. We show that a revocation pattern is counted in N(λi, r1, h1) if and only if it is counted in exactly one of
T (λi, r, h) or T (λj , r, h− 1) for some j ∈ IN(i). First we consider a (λi, r)-revocation pattern that is counted in
N(λi, r, h). There exists a minimal subtree T j , with j ∈ IN(i), of T i that contains all the revoked leaves. If this
subtree is rooted at i itself, then that revocation pattern is counted in T (λi, r, h) and is covered by h subsets of
S. For any other node j 6= i, the revocation pattern is counted in T (λj , r, h− 1) and has to be covered by h− 1
subsets of S. The rest of the λi − λj privileged users form one SD subset of the cover. The total cover size will
hence be h. Since a set R of revoked users has a corresponding unique minimal subtree T j of T i containing all
the users in R, hence it is counted exactly once on the right side of (1).

Now, let us consider a (λi, r)-revocation pattern that has been counted in T (λi, r, h). By the definitions of
T and N , the (λi, r)-revocation patterns that are counted in T (λi, r, h) are also counted in N(λi, r, h). For some
other revocation pattern, counted in T (λj , r, h− 1) for some j ∈ IN(i), both subtrees of T j contain at least one
revoked user in each. Hence, the minimal subtree of T i containing the r revoked users for such a revocation
pattern is T j . For the revocation patterns counted in T (λj , r, h− 1), the privileged users of the subtree T j have
been covered with h− 1 SD subsets of S. The rest of the λi − λj users are all privileged and are covered by one
more SD subset Si,j . Hence, the corresponding (λi, r)-revocation pattern is counted in N(λi, r, h).

Theorem 2. For a subtree T i of T 0 with λi (2
ℓ < λi ≤ 2ℓ+1) leaves,

T (λi, r1, h1) =

r1−1
∑

r′=1

h1
∑

h′=0

N(λ2i+1, r
′, h′)×N(λ2i+2, r1 − r′, h1 − h′) (2)

where λ2i+1 (respectively λ2i+2) is the number of leaves in the left (respectively right) subtree of T i.

Proof. We show that a revocation pattern is counted in T (λi, r1, h1) if and only if it is counted in the right
hand side of (2). For a given λi, the number of leaves in the left and right subtrees get fixed to λ2i+1 and
λ2i+2 respectively. When a (λi, r1)-revocation pattern is counted in T (λi, r1, h1), both the subtrees of T i must
have at least one revoked user. Assuming the left subtree of T i has r′ revoked users, the right subtree should
have r1 − r′ revoked users since the total number of revoked users is r1. Similarly, assuming that the privileged
users in this left subtree are covered by h′ sets of S, the privileged users in the right subtree should be covered
by h1 − h′ sets of S. The number of (λ2i+1, r

′)-revocation patterns in the left subtree covered by h′ subsets
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T (λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0

h1 ≥ 1 0 0 0 from (2) 0 0

N(λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0

h1 = 1 0 1 n from (1) 0 0

h1 > 1 0 0 0 from (1) 0 0

Table 2: Boundary conditions on T (n, r, h) and N(n, r, h).

is N(λ2i+1, r
′, h′). Similarly, the number of (λ2i+2, r1 − r′)-revocation patterns in the right subtree covered by

h1−h′ subsets is N(λ2i+2, r1− r′, h1−h′). Each such (λ2i+1, r
′)-revocation pattern in the left subtree along with

a (λ2i+2, r1 − r′)-revocation pattern in the right subtree gives rise to a (λi, r)-revocation pattern in the tree T i

that is covered by h1 subsets of S. Hence, for all values of r′ ∈ {1, . . . , r1 − 1} and all values of h′ ∈ {0, . . . , h1},
N(λ2i+1, r

′, h′)×N(λ2i+2, r1 − r′, h1 − h′) counts all the possible T (λi, r1, h1).

Any (λi, r1)-revocation pattern covered by h′ subsets will be counted in some N(λ2i+1, r
′, h′)×N(λ2i+2, r1 −

r′, h1−h′). The ones counted in N(λ2i+1, r
′, h′)×N(λ2i+2, r1−r′, h1−h′) for fixed values of r′ and h′ are counted

exactly once in it. For other values of r′ and h′, the corresponding (λi, r1)-revocation patterns will be counted
in the respective N(λ2i+1, r

′, h′) × N(λ2i+2, r1 − r′, h1 − h′). Hence, a (λi, r1)-revocation pattern is counted on
the right hand side of (2) if and only if it is counted in T (λi, r1, h1).

Boundary conditions: The boundary conditions on T (λi, r1, h1) and N(λi, r1, h1) are given in Table 2. Other
than the tabulated values, N(λi, r1, h1) = 0 for λi ≤ 0 and T (λi, r1, h1) = 0 for λi ≤ 1. From recurrences in
Theorems 1 and 2 and the boundary conditions on these recurrences, one can find the value of N(n, r, h) for any
given n, r and h using dynamic programming.

4.3 Algorithms to compute N(n, r, h) and T (n, r, h)

Substituting for j ∈ IN(i): To use these recurrences as an algorithm, the nodes j ∈ IN(i) in (1) for a node
i have to be explicitly identified and the corresponding λjs have to be substituted. As described in Section 4.1
before, there are at most three types of subtrees rooted at a level ℓj of T

0: full subtrees of height ℓi, full subtrees
of height ℓi − 1 and a non-full complete subtree of height ℓi.
(1) For a subtree T i that is full and is of height 2ℓi and to the left of the node at position kPℓi at level ℓi:

N(λi, r1, h1) = T (λi, r1, h1) +

ℓi−1
∑

ℓj=1

(2ℓi−ℓj )× T (2ℓj , r1, h1 − 1). (3)

(2) For a subtree T i that is full and is of height 2ℓi−1 and to the right of the node at position kPℓi at level ℓi:

N(λi, r1, h1) = T (λi, r1, h1) +

ℓi−1
∑

ℓj=2

(2ℓi−ℓj )× T (2ℓj−1, r1, h1 − 1). (4)
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(3) For the only possibly non-full subtree T i for i = (ℓi, k
P
ℓi
) of height 2ℓi and at position kPℓi at level ℓi:

N(λi, r1, h1) = T (λi, r1, h1)

+

ℓi−1
∑

ℓj=2

[(kPi

ℓj
− 1)× T (2ℓj , r1, h1 − 1) + T (λℓj ,P , r1, h1 − 1)

+ (2ℓi−ℓj − kPi

ℓj
)× T (2ℓj−1, r1, h1 − 1)]. (5)

Dynamic Programming: Computing N(n, r, h) and T (n, r, h) requires computing the values of N(λi, r1, h1)
and T (λi, r1, h1) for some smaller λi, r1 and h1. We use dynamic programming technique where all values of
N(λi, r1, h1) and T (λi, r1, h1) for smaller λi, r1 and h1 are pre-computed. The algorithm to compute T (n, r, h)
from these pre-computed values is obtained from (2) in a straightforward manner. The algorithm to compute
N(n, r, h) from these pre-computed values is obtained from (1). More specifically from either of (3) or (5). Level
ℓi of T 0 has kPℓi − 1 full subtrees of height ℓi, (2

ℓ0−ℓi)− kPℓi full subtrees of height ℓi − 1 and one possibly non-full

subtree. For every level in the tree T 0, T (λi, r, h− 1) is pre-computed once for each of the three types of nodes
and used to compute N(n, r, h).

Space and Time complexity of the algorithm: Using (2) to compute T (n, r, h) from the pre-computed
values of N(·, ·, ·) requires O(rh) memory operations and multiplications. Equation (1) shows how N(n, r, h) is
related to pre-computed values of T (·, ·, ·). Actual computation is done using (3), (4) and (5). This requires
O(1) memory operations and a single addition for each of the ⌈logn⌉ levels of T 0. Hence, the time complexity
for computing T (n, r, h) and then N(n, r, h) from pre-computed values is O(rh+ log n).

These pre-computed values in turn need to be computed. By the form of (3), (4) and (5) there are logn
subtrees to be considered. For each such subtree, O(rh) values need to be computed and the computation of these
will be based on values computed earlier. A dynamic programming algorithm proceeds in a bottom-up fashion
by computing the O(rh) values corresponding to smaller sub-trees and then using these to compute the values
for progressively larger sub-trees. This takes a total of O(r2h2 logn + rh log2 n) time. The space requirement
is given by the number of pre-computed values that need to be stored to compute N(n, r, h). For each of the
O(logn) sub-trees, a total of O(rh) values need to be stored and so the space complexity is O(rh logn).

The above time and space complexities are required for a single set of values of n, r and h. For a fixed n and
r, it may be required to compute the values of N(n, r, h) for all possible values of h. This would be a typical
requirement for a broadcast centre which will have a fixed number of users and for a particular transmission knows
the number of revoked users. The corresponding time and space complexities can be obtained by substituting
an appropriate value for h. In Lemma 9 in Appendix A, we show that h ≤ 2r − 1 which gives the expressions
O(r4 log n + r2 log n) and O(r2 log2 n) for time and space complexities respectively. For large n and moderate
values of r, these are practical complexities.

Further, allowing r to range over all the O(n) possible values leads to O(n4 logn + n2 log2 n) time and
O(n2 log n) space complexities respectively. If we are interested in computing N(i, r, h) for all 2 ≤ i ≤ n and all
possible values of r and h, then the time and space complexities are O(n5 + n3 log n) and O(n3) respectively.

As an example, using this dynamic programming algorithm, we find that for n = 126, r = 63 and h = 37,
the floating point value of N(n, r, h) is 7.44× 1035. Note that computing such a value would not be possible by
direct enumeration. Attempting direct enumeration, would require considering

(

126
63

)

possible revocation patterns
which is way beyond the present computational capabilities.
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4.4 Upper Bounds on the Header Length

The header length is an important efficiency parameter of a broadcast encryption scheme. So, upper bounds
on the header length of the SD and CTSD schemes are of practical interest. A detailed combinatorial analysis
of upper bounds on the header length is given in Appendix A. Here, we present a summary of the important
results. The proofs are given in Appendix A.

In Lemma 9 in Appendix A, it is shown that the header length of the CTSD scheme is at most 2r − 1. For
the special case of the SD method, this bound was proved in [NNL01]. This bound is made more specific in
Theorem 3 below for the CTSD and hence the SD method.

Theorem 3. The maximum header length in the CTSD method for n users is min(2r − 1,
⌊

n
2

⌋

, n− r).

The bound given by Theorem 3 gives a complete picture. If r ≤ n/4, then the bound 2r − 1 is appropriate;
if n/4 < r ≤ n/2, then the bound ⌊n/2⌋ is appropriate; and for r > n/2, the bound (n− r) is appropriate. The
last bound has an important consequence. If the number of revoked users is greater than n/2, it may appear
that using individual transmission to the privileged users would be better than using the CTSD method. But,
The bound of (n − r) on the header size shows that this is not true. Using the CTSD method is never worse
than individual transmission to privileged users.

The bound of Theorem 3 holds for the SD scheme, i.e., for full trees. The only previously proved upper
bound for the SD scheme is 2r − 1. The other two bounds do not appear to have been reported with proofs in
the literature. In fact, there does not seem to be an easy way to argue about these bounds without using the
recurrences that we have derived.

Fix a value for r and denote by nr the minimum value of n such that there exists an (n, r)-revocation pattern
giving rise to a header of size 2r − 1. Theorem 4 characterizes nr.

Theorem 4. In the CTSD method, let 2k−1 < r ≤ 2k. When r ≤ 2k−1 + 2k−2, let r1 = 2k−2 and r0 = r − 2k−2

and hence,
nr = nr0 + 22k−2 + 22k−1

and when r > 2k−1 + 2k−2, let r0 = 2k−1 and r1 = r − 2k−1 and hence,

nr = 22k−1 + nr1 + 22k−1.

From this it easily follows that for the SD method, for any r in the range 2k−1 < r ≤ 2k, nr = 22k+1. This
has been earlier proved in [MMW09].

For the SD scheme the number of users is a power of 2. In this case, we show that the recurrences lead to a
generating function for the sequence N(n, r, h). Let the number of users be n = 2ℓ0 and hence the tree T 0 is full
and of height ℓ0. For a full tree T 0, all subtrees T i are full and at level ℓ, there are 2ℓ0−ℓ subtrees with 2ℓ leaves
in each.

We define Tℓ(r, h) = T (2ℓ, r, h) and Nℓ(r, h) = N(2ℓ, r, h). Then the recurrences (1) and (2) for counting the
number of revocation patterns become.

Nℓ0(r, h) = Tℓ0(r, h) +

ℓ0−1
∑

ℓ=1

(

2ℓ0−ℓ × Tℓ(r, h− 1)
)

. (6)

Tℓ0(r, h) =
r−1
∑

r1=1

h
∑

h1=0

Nℓ0−1(r1, h1)×Nℓ0−1(r − r1, h− h1). (7)

The following result states the form of the generating function and the proof is given in Appendix B.
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Theorem 5. The generating function for the sequence Nℓ0(r, h) of numbers defined in (6) above, is given by
Xℓ0(x, y) where

Xℓ0(x, y) =
(

Xℓ0−1(x, y)− xy2
ℓ0−1

)2
+ xy2

ℓ0
+ 2ℓ0x2y2

ℓ0−1 +

ℓ0−1
∑

ℓ=1

(

2ℓ0−ℓxy2
ℓ0−2ℓ ×

(

Xℓ−1(x, y)− xy2
ℓ−1
)2
)

.

A similar generating function was found by Park and Blake in [PB06]. It was directly derived based on the
structural properties of the tree. We have taken a different approach of first finding the recurrence relations for
the sequence N(n, r, h) and then deriving the generating function from it.

5 Expected Header Length in the CTSD and SD methods

In the previous section, we have studied upper bounds on the header length. In practice, however, it is of interest
to know the average header length. This will provide a broadcast centre with valuable information about the
average communication bandwidth.

Given the number of users n such that 2ℓ0−1 < n ≤ 2ℓ0 , and the number of revoked users r, there are
(

n
r

)

possible revocation patterns. Each such revocation pattern gives rise to a subset cover for the privileged users
and hence a header in the ciphertext C. We now obtain an algorithm to compute the expected header length for
a given n and r in the CTSD scheme. In particular this algorithm applies to the SD method and is of significant
practical interest.

The Random Experiment: We consider the random experiment where r out of the n initially un-revoked
leaves of the tree T 0 are chosen uniformly at random without replacement and revoked. This gives rise to a
random (n, r)-revocation pattern and hence a corresponding random subset cover Sc and its header length h.
Let Xn,r be the random variable taking the value of the header length h due to the (n, r)-revocation pattern of
the above experiment. Next, we associate a random variable with each node of the tree T 0. Let Xi

n,r ∈ {0, 1}
be a random variable associated with node i of T 0. Xi

n,r = 1 denotes the event that the cover contains a subset
Si,j = T i \ T j where j is some node in the subtree T i. In other words, when Xi

n,r = 1 we say that node i
generates a subset for the cover. Similarly, Xi

n,r = 0 denotes the event that there is no subset Si,j in the cover.

Since i is also represented by (ℓi, ki), X
i
n,r will also be written as Xℓi,ki

n,r whenever the nodes need to be viewed
level-wise and is appropriate in the context.

The Expected Header Length: Since the header constitutes of subsets Si,j , each rooted at a different node
i, it is easy to see that, Xn,r = X0

n,r +X1
n,r + . . .+Xn−2

n,r . By linearity of expectation:

E[Xn,r] = E[X0
n,r] + E[X1

n,r] + . . .+ E[Xn−2
n,r ]. (8)

Since all the random variables Xt
n,r follow a Bernoulli distribution with probability Pr[Xt

n,r = 1], we get:

E[Xn,r] = Pr[X0
n,r = 1] + Pr[X1

n,r = 1] + . . .+ Pr[Xn−2
n,r = 1]. (9)

Calculating each of these n− 1 probability terms individually would give the expected header length. However,
the running time can be optimized. Recall that P0 is the unique path from the root to a leaf node which contains
the nodes at which the non-full subtrees of T 0 are rooted. As we had discussed before, the subtrees T i for which
i is not on P0 are full. For a level ℓ of T 0 the subtrees to the left of P0 are all full and have equal number of
leaves. Hence, Pr[Xi

n,r = 1] needs to be computed only once for every such node i to the left of P0 at level ℓ.
Similarly for nodes to the right of P0. Hence, efficient computation of E[Xn,r] using (9), boils down to finding
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Pr[Xj
n,r = 1] level-wise. There are qℓ internal nodes at all levels ℓ ≥ 2. At level 1, there are n − 2ℓ1 = q0/2

internal nodes. The other q1 − (n− 2ℓ1) nodes at level 1 are leaves. Hence, (9) can also be written as:

E[Xn,r] =

ℓ0
∑

ℓ=2

qℓ
∑

k=1

Pr[Xℓ,k
n,r = 1] +

q0/2
∑

k=1

Pr[X1,k
n,r = 1]. (10)

When r = 0, there is only one set N in the cover Sc and hence, E[Xn,0] = 1. Here on, we will consider r ≥ 1.

Pr[Xℓi,ki
n,r = 1] for the node i of T i: The sibling subtree T s of node i may be T i−1 on its left or T i+1 on

its right. To find the probability that node i generates a subset Si,j for the cover, we observe that the event
Xi

n,r = 1 occurs when the sibling subtree T s of i has at least one revoked node and exactly one of the subtrees
of i has at least one revoked user. We define the events Ri

sb, R
i
lt and Ri

rt for node i with respect to our random
experiment. Ri

sb denotes the event that the number of revoked nodes in the sibling subtree of T i is non-zero.
Ri

lt (respectively Ri
rt) denotes the event that the number of revoked nodes in the left (respectively right) subtree

T 2i+1 (respectively T 2i+2) is non-zero.

lt rt sb

i

2i+1 2i+2

sb

i

2i+1 2i+2

rtlt

Figure 4: Figures demonstrating the events Ri
sb∧R

i
rt∧R

i
lt and Ri

sb∧R
i
lt∧R

i
rt respectively. The triangles represent

subtrees rooted at the respective nodes. White denotes that the subtree has no revoked user in it. Gray denotes
that the subtree has at least one revoked user in it. The sizes of the subtrees are not to the scale of the number
of users in them.

Lemma 6. For an internal non-root node i in T 0, the probability that the cover Sc contains a set of the form
T i \ T j where j is some node in the subtree T i, is given by Pr[Xi

n,r = 1] where

Pr[Xi
n,r = 1] = Pr[Ri

sb ∧Ri
rt ∧Ri

lt] + Pr[Ri
sb ∧Ri

lt ∧Ri
rt].

For the root node 0, this probability is given by Pr[X0
n,r = 1] where

Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt].

Proof. For a non-root node i, a subset Si,j occurs in the cover when there is at least one revoked user in exactly
one of the subtrees T 2i+1 or T 2i+2 of i. The sibling subtree T s should also have at least one revoked user. Hence
the event Xi

n,r = 1 can be divided into two mutually exclusive and exhaustive events. First, when the sibling
subtree and the right subtree of T i have at least one revoked user in each and the left subtree does not have any:
(Ri

sb ∧ Ri
rt ∧ Ri

lt). Second, when the sibling subtree and the left subtree of T i have at least one revoked user in

each and the right subtree does not have any: (Ri
sb ∧Ri

lt ∧Ri
rt).

The root node 0 does not have any sibling subtree. Hence the event X0
n,r = 1 occurs when all revoked users

are either in the left or right subtree of 0. Hence the lemma.
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To simplify the computation of these probabilities in Lemma 6, we define a new notation ηr(α, β) to indicate
the probability of choosing r elements from a set of α elements such that β out of these α elements are never
chosen. So, if β ≥ α− r + 1, then ηr(α, β) = 0 by definition. Else, for 0 < β < α− r + 1,

ηr(α, β) =

(

α−β
r

)

(

α
r

) =

(

1−
β

α

)(

1−
β

α− 1

)(

1−
β

α− 2

)

. . .

(

1−
β

α− r + 1

)

. (11)

Theorem 7. For an internal non-root node i of T 0 whose sibling subtree has λs leaves,

Pr[Xi
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)

− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (12)

For the root node 0 of T 0,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (13)

Proof. The following two expressions can be obtained by usual probability arguments.

Pr[Ri
sb ∧Ri

rt ∧Ri
lt] = Pr[Ri

lt]− Pr[Ri
sb ∧Ri

lt]− Pr[Ri
rt ∧Ri

lt] + Pr[Ri
sb ∧Ri

rt ∧Ri
lt];

Pr[Ri
sb ∧Ri

lt ∧Ri
rt] = Pr[Ri

rt]− Pr[Ri
sb ∧Ri

rt]− Pr[Ri
lt ∧Ri

rt] + Pr[Ri
sb ∧Ri

lt ∧Ri
rt].

}

(14)

Next, we deduce the expression for finding Pr[Ri
sb ∧ Ri

lt ∧ Ri
rt] in terms of ηr(·, ·). This is the probability of

choosing r elements from n such that none of the users in the subtrees T 2i+1, T 2i+1 or the sibling subtree T s of
i are chosen. Consequently, Pr[Ri

sb ∧Ri
lt ∧Ri

rt] = ηr(n, λs + λ2i+1 + λ2i+2). The other probabilities on the right
hand sides of (14) can be found similarly by excluding the users in the respective subtrees. From Lemma 6, and
substituting the probabilities on the right hand sides of (14) with their corresponding ηr(·, ·) equivalents, we get:

Pr[Xi
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)

− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (15)

For the root node, Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt] where Pr[R0

lt] = ηr(n, λ1) and Pr[R0
rt] = ηr(n, λ2). Hence,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (16)

The algorithm for computing E[Xn,r]: Now that we have the expressions to find Pr[Xi
n,r = 1] for all

i ∈ {0, . . . , n− 2} in Theorem 7, the values for λs, λ2i+1 and λ2i+2 for node i have to substituted appropriately
in (15) and (16). By doing these substitutions for nodes at each level ℓ ∈ {1, . . . , ℓ0} of T 0, we get the complete
algorithm. For level ℓ ∈ {2, . . . , ℓ0 − 1}, this computation is done in four steps: (1) for the node kPℓ of level ℓ,
(2) its sibling subtree, (3) all full subtrees to the left of the above two subtrees, and (4) all full subtrees to the
right of the two subtrees in 1 and 2. The subtree at position kPℓ at level ℓ is the only possible non-full subtree
for level ℓ and is of height ℓ. If kPℓ is odd, its sibling subtree is full and of height ℓ− 1. If kPℓ is even, its sibling
subtree is full and of height ℓ. The subtree at node kPℓ−1 of level ℓ − 1 is always a subtree of the tree rooted at

node kPℓ of level ℓ. When kPℓ−1 is odd, the right subtree of the tree rooted at node kPℓ of level ℓ is full. When

kPℓ−1 is even, the left subtree of the tree rooted at node kPℓ of level ℓ is full. For the root node 0 and the nodes
at level 1, the substitutions are more simple.

To analyze the running time of the algorithm, we observe that each computation of ηr(α, β) involves O(r)
multiplications and there are a constant number of computations of ηr(α, β) for each level of the tree. Hence,
the algorithm requires O(r log n) multiplications and O(1) space.
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Remarks.

Simulation method for estimating the expected header length: Suppose it is desired to obtain an idea
of the average header length for n users of which r are revoked. One can choose k random revocation
patterns. For each such pattern, the actual header generation algorithm is executed and the header size is
obtained. The average header size over the k patterns provides an idea of the average header length. This
method, however, is less efficient than our algorithm to compute the expected header length. For each of
the k revocation patterns, the simulation will have to construct the Steiner Tree to compute the generated
subsets. Each such run will require Ω(r2 log n) memory accesses and O(n) space for finding the cover and
hence the header length. In comparison, our algorithm requires O(r log n) multiplications and O(1) space
and finds the exact header length. Further, it is much simpler to implement.

On the other hand, there is a situation where the simulation method may be useful. For the probability
analysis, it is usual to assume that revocations take place uniformly. In practice, though, this may not
be true. For non-uniform distributions, mathematical analysis may not be possible. For such situations,
there is no other option but to use the simulation method to get an idea of the average header length.
Additionally, simulations may provide more information about the probability distribution than just the
average header length.

Approximation: In [PB06] a formula is given for the expected header length. However, they mentioned that
their equations were “complex to compute and difficult to gain insight from”. Consequently, they went
forward to find approximations for the same. In contrast, our algorithm computes the exact value of the
expected header length. Also, [PB06] work only with the SD scheme and so their results do not apply when
the number of users is not a power of two.

We have implemented our algorithm to compute the expected header length. Table 3 shows that as r goes above
a certain minimum, the expected header length of the CTSD method is significantly better than the SD method.
To summarize, the CTSD algorithm always gives better transmission efficiency and its cumulative improvement
over many messages is significant on the bandwidth. Since replacing the SD algorithm with the CTSD scheme
can be done with very little additional cost the CTSD algorithm should be the more efficient and practical choice.

5.1 Asymptotic Analysis of the Expected Header Length for the SD Method

It is of interest to find the maximum possible value of the expected header length. We carry out this task for
full binary trees. In this case, the CTSD method becomes the SD method.

For n = 2ℓ0 , for any internal node i ∈ {0, . . . , n − 2}, λ2i+1 = λ2i+2 = 2ℓi−1. For any node at level ℓi > 0,
λs = 2ℓi+1. Substituting these values for a node (ℓ, k), (15) becomes:

Pr[Xℓ,k
n,r = 1] = 2[ηr(n, 2

ℓ−1)− ηr(n, 2× 2ℓ−1)− ηr(n, 3× 2ℓ−1) + ηr(n, 4× 2ℓ−1)]. (17)

This probability is independent of k. In other words, the probability of generating a subset for the cover is equal
for all nodes at level ℓ. Define

B(ℓ)
n,r

∆
= Pr[Xℓ,k

n,r = 1] = 2[ηr(n, 2
ℓ−1)− ηr(n, 2× 2ℓ−1)− ηr(n, 3× 2ℓ−1) + ηr(n, 4× 2ℓ−1)]. (18)

Note that by this definition, for the only node at level ℓ0, i.e., the root node, B
(ℓ0)
n,r = 2ηr(n, 2

ℓ0−1) which is
consistent with (16) for n = 2ℓ0 . For a given n = 2ℓ0 and r, the expected header length Hn,r due to the subset
cover algorithm of the CTSD scheme is defined as:

Hn,r
∆
= E[Xn,r] =

ℓ0
∑

ℓ=1

2ℓ0−ℓB(ℓ)
n,r.
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r n < 2ℓ0 (CTSD) CTSD E[Xn,r] n = 2ℓ0 (SD) SD E[Xn,r] Extra KBytes

102 219 + 1 124.49 220 124.50 0.001KB

102 219 + 218 124.49 220 124.50 0.001KB

103 219 + 1 1242.49 220 1243.80 0.021KB

103 219 + 218 1243.36 220 1243.80 0.007KB

5× 103 219 + 1 6159.94 220 6192.74 0.525KB

5× 103 219 + 218 6181.80 220 6192.74 0.175KB

104 219 + 1 12188.73 220 12319.86 2.098KB

104 219 + 218 12276.12 220 12319.86 0.700KB

105 219 + 1 98555.30 220 111451.58 206.340KB

105 219 + 218 107134.01 220 111451.58 69.081KB

105 223 + 1 122870.35 224 123690.49 13.122KB

105 223 + 222 123417.07 224 123690.49 4.375KB

106 223 + 1 1082115.11 224 1163305.89 1299.056KB

106 223 + 222 1136173.35 224 1163305.89 434.128KB

Table 3: The expected header lengths for the SD and CTSD schemes for different n and r and the number of
extra bytes needed per message of broadcast. Here we assume each session key is 128 bits long. The additional
number of bytes required by the SD scheme is computed as 16 times the difference in header length of the two
schemes.

As n increases, the value of Hn,r converges to a limit which depends only on r and is independent of n. The
following result gives this limiting upper bound on Hn,r. We use the notation x ↑ a to denote that a variable x
increases to the limit a.

Theorem 8. For all n ≥ 1, r ≥ 1, the expected header length Hn,r ↑ Hr, as n increases through powers of two,
where

Hr = 3r − 2− 3×
r−1
∑

i=1

(

(

−
1

2

)i
+

i
∑

k=1

(−1)k
(

i

k

)

(2k − 3k)

(2k − 1)

)

.

The proof requires a bit of detailed combinatorial analysis and is provided in Appendix C. We have computed
the ratio Hr/r for many values of r and have found it to be always less than 1.25.

In [NNL01], a sketchy argument was given to show that Hn,r is bounded above by 1.38r. It was mentioned
that simulation results showed a tighter upper bound of 1.25r. Values computed using Theorem 8 explain this
observation. On the other hand, Theorem 8 shows that the actual limiting value for the expected header length
is much more complicated than the simple 1.25r that was suggested in [NNL01]. Our experiments have shown
that the convergence to this limiting value is quite fast. Further, the bound given by Theorem 8 can be computed
in O(r) time and O(1) space.

6 Conclusion

We have proposed a new BE scheme which extends the tree-based SD scheme of [NNL01]. The new Complete
Tree Subset Difference method is capable of accommodating any arbitrary number of users that may not be a
power of two and hence subsumes the SD scheme of [NNL01]. Almost all results of the CTSD scheme that we
subsequently prove are also new for the SD scheme.
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Detailed combinatorial analysis of the CTSD scheme is done by finding two recurrences to count the number
of ways r out of n users can be revoked to result in a subset cover size of h in the CTSD method. Using these
recurrences, it is proved that the maximum possible header length for a given r is 2r − 1. This is no worse than
the SD scheme even though arbitrary number of users are accommodated. The maximum header length for all
r is

⌊

n
2

⌋

. The recurrences are the most efficient tool as per our knowledge to generate exhaustive data for the
above count. Using the recurrences, we also find and prove the expression for the minimum number of users
required to be in a system so that for a given r, the maximum cover size would reach 2r − 1. For n a power of
two, a generating function is found for generating the same sequence as the recurrences.

Probabilistic analysis of the revocation patterns in the CTSD scheme gives the most important result of this
work: an efficient algorithm to compute the expected header length for a given n and r. Using this algorithm,
it is shown that for practical values of n and r, the CTSD scheme provides better transmission efficiency as
compared to the SD scheme. An asymptotic analysis is done using this algorithm that not only gives theoretical
support to the empirical upper bound of 1.25r mentioned in [NNL01], but also gives an expression to compute
the maximum possible expected header length for a given r in the SD algorithm in O(r) time.

Acknowledgement: We thank the anonymous reviewers for their comments that has helped to improve the
paper.
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Appendices

A Upper Bounds on Header Length of the SD and CTSD methods

The result below shows that the header length of the CTSD scheme is upper bounded by 2r − 1.

Lemma 9. N(λi, r1, h1) = 0 when h1 > 2r1 − 1. T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1.

Proof. First we show that T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1 in (1). We prove this from (2) by induction
on r1. The boundary conditions have been listed in Table 2. We know that, 2ℓi−1 < λi ≤ 2ℓi . By induction
hypothesis, when h′ > 2r′ − 1 and 1 ≤ r′ < r1, N(λ2i+1, r

′, h′) = 0. If h′ ≤ 2r′ − 1, then h1 − h′ > 2r1 − 1− h′ ≥
2r1 − 1− 2r′ + 1 = 2(r1 − r′). Then, again by induction hypothesis, N(λ2i+2, r1 − r′, h1 − h′) = 0. Hence, when
h1 ≥ 2r1 − 1, T (λi, r1, h1) = 0.

Now, if h1 > 2r1− 1, the other terms on the right hand side of (1) are T (λi, r1, h1− 1) where h1− 1 ≥ 2r1− 1
for all terms and hence are all 0 as proved above. Hence, when h1 > 2r1 − 1, N(λi, r1, h1) = 0.

We later show that for sufficiently large n, N(n, r, 2r − 1) is positive and also characterize the minimum n
for which this happens. Next, we show that N(n, r, h) is monotonic on n for fixed r and h.

Lemma 10. Let n1 ≥ n2. If N(n2, r, h) 6= 0 then N(n1, r, h) 6= 0. If T (n2, r, h) 6= 0 then T (n1, r, h) 6= 0.
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Proof. Let T (n2, r, h) 6= 0. From (2) we get:

T (n2, r, h) =
r−1
∑

r′=1

h
∑

h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Let RH = {(r1, h1) . . . , (rs, hs)} be such that both N(λ1, r
′, h′) and N(λ2, r− r′, h−h′) are non-zero (and hence

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′) is non-zero) when (r′, h′) ∈ RH. Hence, we can also write:

T (n2, r, h) =
∑

(r′,h′)∈RH

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Since λ1 < n2 (by the structure of T 0 with n2 leaves), hence by induction hypothesis, for any λ ≥ λ1, N(λ1, r, h) 6=
0 implies N(λ, r, h) 6= 0. Similarly, since λ2 < n2, hence by induction hypothesis, for any λ ≥ λ2, N(λ2, r, h) 6= 0
implies N(λ, r, h) 6= 0. When there are n1 leaves in the tree let there be λ′

1 leaves in the left subtree and λ′
2

leaves in the right subtree of the root node. Hence, by the construction of T 0, we get λ′
1 ≥ λ1 and λ′

2 ≥ λ2. In
the expression for T (n1, r, h), for (r′, h′) ∈ RH, by induction hypothesis, N(λ′

1, r
′, h′) and N(λ′

2, r − r′, h − h′)
are both non-zero. Hence, for at least (r′, h′) ∈ RH, N(λ′

1, r
′, h′) × N(λ′

2, r − r′, h − h′) is non-zero. Thus,
T (n1, r, h) 6= 0.

Now, let N(n2, r, h) 6= 0. From (1) we get:

N(n2, r, h) = T (n2, r, h) +

n2−2
∑

j=1

T (λj , r, h− 1).

Let I = {i1, . . . , it} be the nodes of T 0 (with n2 leaves) such that T (λi, r, h) 6= 0 for i ∈ I. By induction
hypothesis, for any λj < n2 and λi > λj , if T (λj , r, h) 6= 0 then T (λi, r, h) 6= 0. Hence, we can also write:

N(n2, r, h) = T (n2, r, h) +
∑

i∈I

T (λi, r, h− 1).

Here, T (n2, r, h) 6= 0 implies T (n1, r, h) 6= 0 by the first part of this proof. By the construction of the tree T 0,
λ′
i ≥ λi where λ

′
i is the number of leaves in the subtree rooted at node i of the tree T 0 for n1 leaves. By induction

hypothesis, at least for i ∈ I, since T (λi, r, h− 1) 6= 0, hence T (λ′
i, r, h− 1) 6= 0. Thus, N(n1, r, h) 6= 0.

Now, we prove that if r is not small compared to n, then T (n, r, 2r − 2) = 0.

Lemma 11. For n ≤ 22k+1 and r > 2k, T (n, r, 2r − 2) = 0.

Proof. For T (n, r, 2r − 2) in (2), let h′ < 2r′ − 1, then h − h′ = 2r − 2 − h′ > 2r − 2 − 2r′ + 1 = 2(r − r′) − 1.
Hence by Lemma 9, N(λ2, r − r′, h − h′) = 0. Similarly, if h′ > 2r′ − 1, N(λ1, r

′, h′) = 0. So, in the expression
for T (n, r, 2r − 2), the terms on the right hand side of (2) are 0 if h′ 6= 2r′ − 1. Hence,

T (n, r, 2r − 2) =
r−1
∑

r′=1

N(λ1, r
′, 2r′ − 1)×N(λ2, r − r′, 2(r − r′)− 1). (19)

Now by induction on λi, we prove that N(λ1, r
′, 2r′ − 1) = 0 and N(λ2, r − r′, 2(r − r′)− 1) = 0. The boundary

conditions have been listed in Table 2. By induction hypothesis, for λi ≤ 22m+1 where m < k and r′ > 2m

let us assume T (λi, r
′, 2r′ − 2) = 0. In (19), let r′ ≥ r

2 which implies r′ > 2k−1. Hence, for λi ≤ 22k−1,
T (λi, r

′, 2r′ − 2) = 0 by the induction hypothesis. Also, by Lemma 9, T (λ1, r
′, 2r′ − 1) = 0. Putting these

values in (1), we get N(λ1, r
′, 2r′ − 1) = 0. Similarly, for r − r′ ≥ r

2 which implies r − r′ > 2k−1, we get
N(λ2, r − r′, 2(r − r′)− 1) = 0. Hence, from (19) T (n, r, 2r − 2) = 0.
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Some insight: Given a revocation pattern, if we revoke one more user from it, that can result in either increase,
decrease or no change in the cover size. An increase in cover size mostly happens when the newly revoked user
is not adjacent to any previously revoked user. The cover size remains unchanged or decreases when the newly
revoked user is adjacent to a previously revoked user. Decrease in cover size happens when the user in a singleton
subset of the cover is revoked. As the number of revoked users increase, the maximum possible cover size for that
number of revoked users increases up to a certain point. After that the maximum possible cover size decreases.
One may also observe that for n > 2, i.e., ℓ1 ≥ 1, q0/2 = n − 2ℓ1 . Since 2ℓ1 is even for ℓ1 ≥ 1, hence when n is
even q0/2 is even and when n is odd q0/2 is odd.

Lemma 12. The header length in the CTSD method for n users is at most
⌊

n
2

⌋

irrespective of the number of
revoked users.

Proof. First, we show that N(n, r, h) = 0 for h > n
2 for any r. We prove this by induction on n. From (1) we

have:

N(n, r, h) = T (n, r, h) +
n−2
∑

i=1

T (λi, r, h− 1)

and hence, T (n, r, h) ≤ N(n, r, h). When λi < n and h−1 ≥
⌊

n
2

⌋

, N(λi, r, h−1) = 0. Thus,
∑n−2

i=1 T (λi, r, h−1) =
0. From (2) we get:

T (n, r, h) =
r−1
∑

r′=1

h
∑

h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

When h′ > λ1

2 , N(λ1, r
′, h′) = 0 by induction hypothesis. When h′ ≤ λ1

2 , since h > n
2 , h − h′ > n

2 − λ1

2 = λ2

2 .
Therefore, N(λ2, r − r′, h− h′) = 0 by induction hypothesis. Hence, N(n, r, h) = 0 for h > n

2 for any r.
Next, we show that the upper bound of

⌊

n
2

⌋

is actually achieved. First let us assume that n is even and hence
q0/2 is even. We construct a revocation pattern such that none of the users are revoked initially. Now, let us
form a revocation pattern by revoking one user from each of the q0/2 subtrees rooted at level q1 with leaves at
level q0 and one user each from subtrees rooted at level 2 with leaves at level 1. Since all the privileged users
would form singleton subsets in the cover for this revocation pattern, hence the header length for the revocation
pattern thus constructed is of size q1 (= n

2 ). Now, if we attempt to revoke any other user, then by pigeonhole
principle, one of the sets in the cover gets removed and hence the header length decreases. Hence, for even n,
the maximum header length is n

2 .
For odd n, q0/2 is odd. We construct a revocation pattern similarly by revoking one user from each of the

q0/2 subtrees rooted at level q1 with leaves at level q0 and one user each from subtrees rooted at level 2 with
leaves at level 1. Since q0/2 is odd, there will be one subtree with leaves at both levels 0 and 1. This subtree
is rooted at the node at position kP2 . For this subtree, only one out of the three users in it is revoked. All the
privileged users other than the one generated from the above subtree would form singleton subsets. Hence the
cover size for the revocation pattern thus constructed is of size q1 (=

⌊

n
2

⌋

). This is again the maximum header
length by the same argument as above.

Hence, the maximum header length is
⌊

n
2

⌋

for n users.

The complete upper bound on the header length is given in Theorem 3 stated in Section 4.4.

Proof of Theorem 3.

Proof. The bounds 2r − 1 and ⌊n/2⌋ have already been shown. We show the bound of n − r on the header
size. The proof of this is similar to the first part of the proof of Lemma 12, i.e., we show that N(n, r, h) = 0 for
h > n− r.

For λi < n, we have h− 1 > n− 1− r ≥ λi − r and hence using induction, N(λi, r, h− 1) = 0 which implies
that T (λi, r, h−1) is also zero. Again, consider the value of T (n, r, h) and the recurrence expressing this in terms
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of N(λ1, r
′, h′) and N(λ2, r−r′, h−h′), where λ1+λ2 = n. If h′ > λ1−r′, then using induction, N(λ1, r

′, h′) = 0.
So, suppose that h′ ≤ λ1 − r′. Using h > n− r, we have h− h′ > (n− λ1) − (r − r′) = λ2 − (r − r′) and again
using induction, N(λ2, r − r′, h− h′) = 0.

This shows that T (n, r, h) = 0 which combined with the fact that the other relevant values of T (·, ·, ·) are
zero, shows that N(n, r, h) = 0 for h > n− r.

Recall that nr is the minimum number of users so that there exists an (n, r)-revocation pattern which is
covered by a header of length 2r − 1. Lemma 9 shows that the upper bound on the header length is 2r − 1. By
characterizing nr we show that this upper bound on h is actually achieved.

Lemma 13. In the CTSD method, 2k−1 < r ≤ 2k if and only if 22k < nr ≤ 22k+1.

Proof. We first prove that if 2k−1 < r ≤ 2k, then 22k < nr ≤ 22k+1 (by showing that N(22k, r, 2r − 1) = 0 and
N(22k+1, r, 2r − 1) 6= 0). Although by Lemma 9, T (22k+1, r, 2r − 1) = 0, we show that T (22k, r, 2r − 2) 6= 0 and
hence at least one of the terms on the right hand side of (1) is non-zero and hence N(22k+1, r, 2r− 1) 6= 0. From
(2) we get:

T (22k, r, 2r − 2) =
r−1
∑

r′=1

2r−2
∑

h′=0

N(22k−1, r′, h′)×N(22k−1, r − r′, 2r − 2− h′).

When h′ > 2r′−1, N(22k−1, r′, h′) = 0 by Lemma 9. Similarly, when h′ < 2r′−1, 2r−2−h′ > 2r−2−2r′+1 =
2(r − r′)− 1 and hence N(22k−1, r − r′, 2r − 2− h′) = 0. Hence, we get

T (22k, r, 2r − 2) =
r−1
∑

r′=1

N(22k−1, r′, 2r′ − 1)×N(22k−1, r − r′, 2(r − r′)− 1).

When r′ = ⌈ r2⌉ (2k−2 < r′ ≤ 2k−1) by induction hypothesis, nr′ ≤ 22k−1 and hence by Lemma 10, both
N(22k−1, r′, 2r′ − 1) and N(22k−1, r − r′, 2(r − r′) − 1) are non-zero. Hence, T (22k, r, 2r − 2) 6= 0 which implies
N(22k+1, r, 2r − 1) 6= 0. Since T (nr, r, 2r − 1) = 0 and T (22k−1, r, 2r − 2) = 0 hence, nr < 22k+1. Next, we show
that N(22k, r, 2r − 1) = 0. By Lemma 9, T (22k, r, 2r − 1) = 0. By Lemma 11, for all λi ≤ 22k−1 and r > 2k−1,
T (λi, r, 2r − 2) = 0 and hence N(22k, r, 2r − 1) = 0.

Next, we prove that for some 22k < nr ≤ 22k+1, the corresponding r is such that 2k−1 < r ≤ 2k. Let
the corresponding r be such that 2k

′−1 < r ≤ 2k
′

where k 6= k′. Then by the argument above, we know that
22k

′

< nr ≤ 22k
′+1 which is a contradiction since nr is unique for a given r by definition. Hence the corresponding

r is such that 2k−1 < r ≤ 2k.

Proof of Theorem 4:

Proof. From Lemma 13 we know that for 2k−1 < r ≤ 2k, 22k < nr ≤ 22k+1. For such an nr, λ1 = nr − 22k−1 and
λ2 = 22k−1. From (1) we get

N(nr, r, 2r − 1) = T (nr, r, 2r − 1) + T (nr − 22k−1, r, 2r − 2) + T (22k−1, r, 2r − 2) +

nr−2
∑

i=3

T (λi, r, 2r − 2).

From Lemma 9 we know that T (nr, r, 2r−1) = 0. From Lemma 11 we know that when r > 2k−1 and λi ≤ 22k−1,
T (λi, r, 2r − 2) = 0. Hence the only non-zero component is T (nr − 22k−1, r, 2r − 2). From (2) we get

N(nr, r, 2r − 1) = T (nr − 22k−1, r, 2r − 2) =

r−1
∑

r′=1

2r−2
∑

h′=0

N(λ3, r
′, h′)×N(λ4, r − r′, 2r − 2− h′).
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By an argument similar to the one used in the proof for Lemma 13, we get

N(nr, r, 2r − 1) = T (nr − 22k−1, r, 2r − 2) =
r−1
∑

r′=1

N(λ3, r
′, 2r′ − 1)×N(λ4, r − r′, 2(r − r′)− 1).

By the construction of T 0 and the fact that T 2 does not have any revoked user, i.e. T (22k−1, r, 2r − 2) = 0, it
can be seen that 22k−2 < λ3 ≤ 22k−1 and 22k−2 ≤ λ4 < 22k−1.

When r ≤ 2k−1 + 2k−2, let r′ = r0 = r − 2k−2 and r − r′ = r1 = 2k−2. From the construction of the
complete tree T 0 for (nr0 + 22k−2 + 22k−1) users, it can be seen that λ3 = nr0 and λ4 = 22k−2. Hence,
N(λ3, r

′, 2r′ − 1) = N(nr0 , r0, 2r0 − 1) 6= 0 by the definition of nr. Also, from Lemma 10 and Lemma 13 we
know that for r = 2k (consequently nr < 22k+1) and λ ≥ 22k+1, N(λ, r, 2r − 1) 6= 0. So for r1 = r − r′ = 2k−2

and λ4 = 22(k−2)+2 we get, N(λ4, r − r′, 2(r − r′) − 1) = N(22k−2, r1, 2r1 − 1) 6= 0. Hence, for r ≤ 2k−1 + 2k−2,
N(nr, r, 2r − 1) 6= 0 where nr = nr0 + 22k−2 + 22k−1.

Now, we show that for 2k−1 < r ≤ 2k−1 + 2k−2 (r0 = r − 2k−2 and r1 = 2k−2), N(nr − 1, r, 2r − 1) = 0.
In the tree T 0 for (nr0 + 22k−2 + 22k−1) − 1 users, λ3 = nr0 − 1 and λ4 = 22k−2. Since there are nr0 − 1
users in T 3, at most r0 − 1 revoked users can be accommodated in T 3 so that N(λ3, r

′, 2r′ − 1) 6= 0 and hence
r′ = r0 − 1 and r − r′ = 2k−2 + 1. By Lemma 13 for r − r′ > 2k−2, nr−r′ > 22k−2. But, λ4 = 22k−2 and hence
N(λ4, r − r′, 2(r − r′)− 1) = 0. Consequently, we get N(nr − 1, r, 2r − 1) = 0.

When r > 2k−1 + 2k−2, let r′ = r0 = 2k−1 and r − r′ = r1 = r − 2k−1. From the construction of the
complete tree T 0 for (22k−1 + nr1 + 22k−1) users, it can be seen that λ3 = 22k−1 and λ4 = nr1 . Hence,
N(λ4, r − r′, 2(r − r′)− 1) = N(nr1 , r1, 2r1 − 1) 6= 0 by the definition of nr. From Lemma 10 and Lemma 13 we
know that for r = 2k (consequently nr < 22k+1) and λ ≥ 22k+1, N(λ, r, 2r − 1) 6= 0. So for r0 = r′ = 2k−1 and
λ3 = 22(k−1)+1 we get, N(λ3, r

′, 2r′−1) = N(22k−1, r0, 2r0−1) 6= 0. Hence, for r > 2k−1+2k−2, N(nr, r, 2r−1) 6= 0
where nr = 22k−1 + nr1 + 22k−1.

Now, we show that for r > 2k−1+2k−2, i.e., r0 = 2k−1 and r1 = r− 2k−1, N(nr − 1, r, 2r− 1) = 0. In the tree
T 0 for (22k−1 + nr1 +22k−1)− 1 users, λ3 = 22k−1 and λ4 = nr1 − 1. Since there are nr1 − 1 users in T 4, at most
r1− 1 revoked users can be accommodated in T 4 so that N(λ4, r− r′, 2(r− r′)− 1) 6= 0 and hence r− r′ = r1− 1
and r′ = 2k−1 + 1. By Lemma 13 for r′ > 2k−1, nr′ > 22k−1. But, λ3 = 22k−1 and hence N(λ3, r

′, 2r′ − 1) = 0.
Consequently, we get N(nr − 1, r, 2r − 1) = 0.

B Proof of Theorem 5

Let Xℓ0(x, y) (respectively Yℓ0(x, y)) be the generating function for the sequence Nℓ0(2
ℓ0 − r, h) (respectively

Tℓ0(2
ℓ0 − r, h)).

Xℓ0(x, y) =
2ℓ0
∑

r=0

2ℓ0−r
∑

h=0

Nℓ0(r, h)x
hy2

ℓ0−r Yℓ0(x, y) =
2ℓ0
∑

r=0

2ℓ0−r
∑

h=0

Tℓ0(r, h)x
hy2

ℓ0−r (20)

By definition, when ℓ0 = 0, Y0(x, y) = 0 and X0(x, y) = 1 + xy and when ℓ0 = 1, Y1(x, y) = 1 and X1(x, y) =
1 + 2xy + xy2. Obtaining relations between Xl0(x, y) and Yl0(x, y) requires long computations. We omit the
details of these and report only the relation.

Yℓ0(x, y) = X2
ℓ0−1(x, y)− 2xy2

ℓ0−1

Xℓ0−1(x, y)− x2y2
ℓ0

=
(

Xℓ0−1(x, y)− xy2
ℓ0−1

)2
. (21)
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Multiplying both sides of (6) with xhy2
ℓ0−r and summing both sides over 2 ≤ r ≤ 2ℓ0 and 0 ≤ h ≤ 2ℓ0 we get:

2ℓ0
∑

r=2

2ℓ0−r
∑

h=1

Nℓ0(r, h)x
hy2

ℓ0−r =
2ℓ0
∑

r=2

2ℓ0−r
∑

h=1

Tℓ0(r, h)x
hy2

ℓ0−r +
2ℓ0
∑

r=2

2ℓ0−r
∑

h=1

ℓ0−1
∑

ℓ=1

(

2ℓ0−ℓxhy2
ℓ0−r × Tℓ(r, h− 1)

)

. (22)

Using a few steps of simplification yields the following relation.

Xℓ0(x, y) = xy2
ℓ0
+ 2ℓ0x2y2

ℓ0−1 + Yℓ0(x, y) +

ℓ0−1
∑

ℓ=1

(

2ℓ0−ℓxy2
ℓ0−2ℓ × Yℓ(x, y)

)

. (23)

From (21) and (23) above, we get:

Xℓ0(x, y) =
(

Xℓ0−1(x, y)− xy2
ℓ0−1

)2
+ xy2

ℓ0
+ 2ℓ0x2y2

ℓ0−1 +

ℓ0−1
∑

ℓ=1

(

2ℓ0−ℓxy2
ℓ0−2ℓ ×

(

Xℓ−1(x, y)− xy2
ℓ−1
)2
)

.

(24)

C Proof of Theorem 8

Define Dn,r = Hn,r −Hn,r−1 and so Hn,r = 1+
∑r

i=2Dn,i. Using the definition of B
(ℓ)
n,r given by (18) in terms of

the η’s we get the following expression.

Dn,r+1 =
n

n− r

[

−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)− 3

ℓ0−1
∑

ℓ=1

(

ηr(n, 2× 2ℓ)− ηr(n, 3× 2ℓ)
)

]

. (25)

Note that for a fixed r, as n ↑ ∞, n
n−r ↑ 1, ηr(n, 3) =

(n−3)r
(n)r

↑ 1 and ηr(n, 2) − ηr(n, 1) ↑ 0. Hence, as n ↑ ∞,

(−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)) ↑ 3.

ℓ0−2
∑

ℓ=1

(

ηr(n, 2× 2ℓ)− ηr(n, 3× 2ℓ)
)

=

ℓ0−2
∑

ℓ=1

(

(n− 2× 2ℓ)r
(n)r

−
(n− 3× 2ℓ)r

(n)r

)

≥
1

(n)r

ℓ0−2
∑

ℓ=1

(

(n− r + 1− 2× 2ℓ)r − (n− 3× 2ℓ)r
)

=
1

(n)r

ℓ0−1
∑

ℓ=2

(

((2ℓ − 2

2ℓ

)

n− r + 1
)r

−
((2ℓ − 3

2ℓ

)

n
)r
)

≥
1

nr

ℓ0−1
∑

ℓ=2

(

((2ℓ − 2

2ℓ

)

n− r + 1
)r

−
((2ℓ − 3

2ℓ

)

n
)r
)

=

ℓ0−1
∑

ℓ=2

(

(2ℓ − 2

2ℓ
−

r − 1

n

)r
−
(2ℓ − 3

2ℓ

)r
)

. (26)

Define Kr as follows:

Kr = lim
n→∞

∑

ℓ≥2

(

(2ℓ − 2

2ℓ
−

r − 1

n

)r
−
(2ℓ − 3

2ℓ

)r
)
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After several stages of simplifications, the value of Kr is obtained to be the following:

Kr =
(

−
1

2

)r
+

r
∑

k=1

(−1)k
(

r

k

)

(2k − 3k)

(2k − 1)
. (27)

Let Hr = limn→∞Hn,r and Dr = limn→∞Dn,r. The proof of Theorem 8 can now be obtained as follows. We
have Hr = 1 +

∑r
i=2Di. From (25), (26) and (27), we get Dr+1 = 3 − 3Kr. Putting all this together gives the

desired bound.


