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SUMMARY

Photosynthesis is currently a focus for crop improvement. The majority of this work has taken place and

been assessed in leaves, and limited consideration has been given to the contribution that other green tis-

sues make to whole-plant carbon assimilation. The major focus of this review is to evaluate the impact of

non-foliar photosynthesis on carbon-use efficiency and total assimilation. Here we appraise and summarize

past and current literature on the substantial contribution of different photosynthetically active organs and

tissues to productivity in a variety of different plant types, with an emphasis on fruit and cereal crops. Previ-

ous studies provide evidence that non-leaf photosynthesis could be an unexploited potential target for crop

improvement. We also briefly examine the role of stomata in non-foliar tissues, gas exchange, maintenance

of optimal temperatures and thus photosynthesis. In the final section, we discuss possible opportunities to

manipulate these processes and provide evidence that Triticum aestivum (wheat) plants genetically manipu-

lated to increase leaf photosynthesis also displayed higher rates of ear assimilation, which translated to

increased grain yield. By understanding these processes, we can start to provide insights into manipulating

non-foliar photosynthesis and stomatal behaviour to identify novel targets for exploitation in continuing

breeding programmes.

Keywords: photosynthesis, Calvin–Benson cycle, sink capacity, wheat ears, non-foliar organs, stomata.

INTRODUCTION

Photosynthesis in leaves is a well-established and extre-

mely well researched process whereby plants harvest the

energy from sunlight and use this to convert CO2 into sol-

uble carbohydrates, which are subsequently used for plant

growth (Calvin and Benson, 1948; Bassham and Calvin,

1960; Raines, 2003; Biel and Fomina, 2015). Photosynthesis

is responsible, therefore, either directly (through plant

growth) or indirectly (through the food chain), for all food

consumed worldwide. The majority of studies on photo-

synthesis often only consider photosynthesis in leaves,

with little appreciation of potential carbon assimilation in

other green non-foliar tissue and its contribution to overall

yield. With the predicted requirement to double food pro-

duction by the year 2020 (WorldBank, 2008; RSOL, 2009;

Tilman and Clark, 2015; FAO, 2017) and the fact that annual

genetic gains in yield, using current breeding approaches,

are reducing or slowing for many crops (Ray et al., 2012;

Ray et al., 2013), research into photosynthesis and the pro-

cesses associated with it are being increasingly recognized

as potential novel targets for improving crop yield. Crop

yield is determined by the cumulative rate of photosynthe-

sis over the growing season. The maximum yield obtained

(yield potential), defined as the yield obtainable when a

crop is grown in optimal conditions with no biotic or abi-

otic stress (Evans and Fischer, 1999), is the result of three

key determinants: (i) light capture; (ii) radiation use effi-

ciency (RUE) or energy conversion efficiency (the product

of which is biomass); and (iii) harvest index (HI, the parti-

tion of harvestable produce relative to plant biomass) (Rey-

nolds et al., 2009). Significant gains in both HI and light

interception have been made over the last several decades,

with considerable increases in HI following the green
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revolution and the introduction of dwarfing (Rht) genes

(Gale and Youssefian, 1985; Calderini et al., 1995). The cur-

rent focus is on RUE (Reynolds et al., 2009; Parry et al.,

2011), which is primarily photosynthesis and the conver-

sion of light energy into fixed carbon. Several recent stud-

ies have demonstrated that improving diverse aspects of

photosynthesis in leaf tissue, including altering key

enzymes within the Calvin–Benson cycle (CBC) (Lefebvre

et al., 2005; Simkin et al., 2015; Driever et al., 2017; Simkin

et al., 2017a), electron transport (Chida et al., 2007; Simkin

et al., 2017b; Yadav et al., 2018; Ermakova et al., 2019),

photorespiration (Timm et al., 2012; L�opez-Calcagno et al.,

2018) and the kinetics of non-photochemical quenching

(NPQ) (Kromdijk et al., 2016; Glowacka et al., 2018) can

improve yield potential in both glasshouse- and field-

grown plants (Simkin, 2019; Simkin et al., 2019). Leaves

are not the only location within the plant where photosyn-

thesis occurs, however, with evidence that petioles and

stems (Hibberd and Quick, 2002), seeds (Schwender et al.,

2004), fruit (Hetherington et al., 1998; Carrara et al., 2001;

Hiratsuka et al., 2015; Sui et al., 2017), Triticum aestivum

(wheat) ears (Maydup et al., 2010), and the husks of Zea

mays (corn) (Pengelly et al., 2011) all photosynthesize and

may provide significant and alternative sources of the pho-

toassimlates, essential for optimal yield. Figure 1 illustrates

chlorophyll fluorescence imaging of the operating effi-

ciency of photosystem II (PSII) photochemistry (F 0
q=F

0
m) in

non-leaf tissues, which is indicative of functional electron

transport in these green non-leaf organs. To date little data

exist on how potential manipulation of photosynthetic pro-

cesses may impact these chlorophyll-containing tissues.

The majority of studies that have examined photosyn-

thesis in non-foliar tissue have assumed and described a

photosynthetic pathway similar to that of the mesophyll.

One key difference in non-foliar tissue photosynthesis is

the fact that there are two potential major sources of CO2.

First, ribulose-1,5-bisphosphate carboxylase (Rubisco)

assimilates atmospheric CO2 that diffuses into the cells

through the stomatal pores, leading to the production of

sugars via the CBC, similar to the CO2 pathway in leaf

(C3) tissue. Second, CO2 released by mitochondrial respi-

ration can be the main supply of CO2 and is refixed (recy-

cling photosynthesis; Aschan and Pfanz, 2003; Millar

et al., 2011), and there is limited diffusion and supply of

external CO2. Although stomata are present in various

numbers on some non-foliar tissues their function has not

been fully evaluated, and the amount of photosynthesis

that relies on the atmospheric supply of CO2 through

these pores is not currently known. In this review we

focus on photosynthesis in non-foliar tissues and the

potential contribution to yield, as well as the role of stom-

ata in this process. Before discussing the possibility to

manipulate non-foliar photosynthesis for improved pro-

ductivity or nutritional quality, we first provide an

overview of what is known about photosynthesis in vari-

ous organs, focusing on stems and fruits as well as vari-

ous parts of cereals.

Figure 1. Chlorophyll fluorescence (CF) images of photosystem II (PSII)

operating efficiency (F 0
q=F

0
m) in green non-leaf tissue was used to demon-

strate photosynthetic electron transport. CF images: (a) wheat ear; (b) syca-

more seed pods; (c) tomato fruit; (d) strawberry fruit; (e) greengage; (f)

cherries; and (g) apples. Colour scale bar represents an F 0
q=F

0
m of: (a) 0.45–

0.75; (b) 0.30–0.55; (c) 0.50–0.70; (d) 0.50–0.70; (e) 0.5–0.75; (f) 0.5–0.80; and
(g) 0.45–0.70.
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PHOTOSYNTHESIS IN STEMS

Stems act as temporary storage sites for photoassimilates

from leaves and carry out photosynthesis in their own

right (Aschan and Pfanz, 2003). In Solanum lycopersicum

(tomato), chlorophyll levels were found to be higher in the

upper parts of the stem than in the lower parts of the stem

(Xu et al., 1997), and a comparison of the photosynthetic

activity of various plant parts found the entire stem

accounted for up to 4% of photosynthetic activity (Hether-

ington et al., 1998). The contribution of stem photosynthe-

sis to yield has been demonstrated in Gossypium hirsutum

(cotton) by Hu et al. (2012) who reported that keeping the

main stem in darkness reduced seed weight by 16% (Hu

et al., 2012). These findings were supported by Simbo

et al. (2013), who showed that when light was excluded

from the stem of defoliated Adansonia digitata L. (African

baobab) and Ricinus communis (castor bean) a reduction

in bud dry weight was observed, providing further evi-

dence for the importance of the stem for providing pho-

toassimilates for plant development and growth. In some

plants, such as Justicia californica, flowers and fruits

develop in the absence of leaves, where the stem is the

only photosynthetically active tissue (Tinoco-Ojanguren,

2008; �Avila et al., 2014), also highlighting the role of stem

photosynthesis for reproductive success. This is empha-

sized further by a reported stem photosynthesis equivalent

to 130% of leaf levels in this species (Tinoco-Ojanguren,

2008), whereas in other species, rates of between 16 and

60% relative to leaf levels have been reported (Ehleringer

et al., 1987; �Avila et al., 2014). In the woody plant Eucalyp-

tus photosynthesis in chlorophyll-containing tissue, chlor-

enchyma, located beneath the periderm layer (Pfanz et al.,

2002; Manetas, 2004), known as corticular photosynthesis

(CP), contributed 11% of total photosynthate to plant

growth, demonstrating the contribution of CP to eucalyp-

tus growth (Cernusak and Hutley, 2011).

Stem photosynthesis is particularly important in decidu-

ous species. In the summer-deciduous, green-stemmed

Mediterranean shrub Calicotome villosa, the total branch

photosynthesis is higher in the summer because of an

absence of leaves, and green-stem photosynthesis outcom-

petes leaf photosynthesis on an annual basis (Yiotis et al.,

2008). In the desert ephemeral Erigonum inflatum substantial

photosynthesis was demonstrated in the inflated stems,

despite the fact that these contained only half the chlorophyll

and nitrogen content of the leaves (Osmond et al., 1987).

Internal CO2 concentrations in these stems was reported to

be extremely high. Interestingly, fixation of this internal CO2

was between six and 10 times less than the fixation of atmo-

spheric CO2; however, although small, this additional inter-

nal CO2 pool facilitated high water-use efficiency (WUE,

measured as water lost relative to carbon gained) as a result

of no water loss through stomata for this carbon gain.

Greater WUE was further enhanced in this species by smaller

stem stomata that are more responsive to temperature and

high vapour pressure deficit (VPD), compared with their leaf

counterparts (Osmond et al. 1987). The importance of stem

photosynthesis in desert species is supported by a more

recent study by Avila-Lovera et al. (2017), who examined 11

green-stemmed desert plants and revealed coordination

between stem photosynthesis and hydraulics similar to that

observed in leaves, with an even tighter relationship during

the dry season, facilitating additional carbon gain and poten-

tial mechanisms for enhanced drought tolerance. Further-

more, stem photosynthetic rates were higher during the dry

season when leaves were lost and light interception by the

stems was increased, due to the absence of foliage (Avila-

Lovera et al., 2017). Together these studies illustrate the

importance and annual contribution of stem photosynthesis

to overall carbon gain, which not only contributes to the sur-

vival of plants growing in dry and hot environments, but also

supports the notion that stem photosynthesis may contribute

significantly to yield, and that this contribution may be more

important under conditions such as reduced water availabil-

ity, high temperatures and high VPD. To date, however, there

have been limited studies that have evaluated the impor-

tance of stem photosynthesis to yield in key crop species.

Therefore, although stem photosynthesis may represent a

potential novel target to support enhanced photosynthetic

carbon gain, particular under conditions of water stress (such

as those predicted under climate change for certain agricul-

tural areas), more quantitative information on stem perfor-

mance in crops is needed to evaluate and fully exploit this

process.

FRUIT PHOTOSYNTHESIS

Fruit photosynthesis is particularly interesting, as many

species (e.g. tomato) undergo a shift from green photosyn-

thetic (or partial photosynthetic) to fully heterotrophic

metabolism on ripening (Lytovchenko et al., 2011). As early

as 1974, Tanaka and coworkers conducted shading experi-

ments on tomato fruits and showed that fruit photosynthe-

sis contributes to net sugar accumulation and growth

(Tanaka et al., 1974), and from this work concluded that

photosynthesis contributed between 10 and 15% of the

total fixed carbon, which was later confirmed by Hethering-

ton et al. (1998) and Obiadalla-Ali et al. (2004). In addition

to showing a similar photosynthetic function to leaves,

developing tomato fruit have also been reported to have

approximately 41% of the photosynthetic electron trans-

port capacity of leaf tissue (Piechulla et al., 1987). Recent

proteomic analysis has demonstrated that all of the com-

ponents of the CBC and photorespiratory cycle accumulate

at the protein level in tomato fruit (Barsan et al., 2010; Bar-

san et al., 2012). The major light-harvesting proteins,

including the thylakoid membrane light-harvesting

© 2019 The Authors.
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complex proteins of PSI (psaA) and PSII (psbA), and the

chlorophyll a/b binding proteins, have also been observed

(Piechulla et al., 1986; Lemaire-Chamley et al., 2005), in

conjunctionwith plastocyanin, cytochrome f, cytochrome b,

ferredoxins, Rieske iron sulphur protein (Piechulla et al.,

1987; Livne and Gepstein, 1988; Cheung et al., 1993; Aoki

et al., 1998) and the CBC proteins, Rubisco and fructose 1,6-

bisphophate aldolase (FBPaldolase) (Barsan et al., 2010;

Steinhauser et al., 2010). Rubisco assays have also demon-

strated that the enzyme is active in tomato fruit (Willmer and

Johnston, 1976; Bravdo et al., 1977; Laval-Martin et al., 1977;

Piechulla et al., 1987; Sugita andGruissem, 1987).

Despite the fact that transcriptomic and metabolomic

analyses have revealed high expression levels of many of

these photosynthetic genes in tomato fruit, and have

shown that photosynthetic carbon assimilation in these

organs makes an important contribution to early fruit

development (Wang et al., 2009), many studies do not

agree that these fruit are net assimilators of CO2 (see

Blanke and Lenz, 1989; Carrara et al., 2001). Lytovchenko

et al. (2011) used antisense technology to reduce expres-

sion of the chlorophyll biosynthesis gene glutamate

1-semialdehyde aminotransferase, which resulted in a

reduced photosynthetic rate; however, fruit size and

metabolite levels remained unchanged. These authors sug-

gested that transport of photosynthate from leaves com-

pensated for any reduction in fruit localized photosynthetic

rates and proposed that fruit photosynthesis is dispens-

able. However, a delay in seed development was observed,

suggesting that localized CO2 fixation/re-assimilation may

be important for seed formation (Lytovchenko et al., 2011).

In contrast, another study demonstrated that decreased

expression of fruit chloroplastic fructose-1,6-bisphos-

phatase (FBPase) resulted in a 15–20% negative impact on

fruit development (Obiadalla-Ali et al., 2004). Lytovchenko

et al. (2011) suggested that these contradictory results

could be explained by different promotor specificity and/or

the impact of reduced FBPase activity later in the develop-

ment of the fruit.

Although it is evident that photosynthesis occurs in

fruits, the extent and importance is not clear. The fact that

tomato fruit lack stomata (Vogg et al., 2004) (Figure 2)

implies that photosynthesis in these organs relies exclu-

sively on CO2 liberated from mitochondria, that no ‘new’

carbon is fixed and that photosynthesis functions to re-as-

similate CO2 (recycling photosynthesis) that would other-

wise be lost. This is supported by the reported

accumulation of transcripts in tomato loculare tissue asso-

ciated with photosynthesis, clearly demonstrating photo-

synthetic capacity, but alongside high measured

respiration rates (Lemaire-Chamley et al., 2005). CO2 gener-

ated by the oxidative pentose pathway is re-assimilated by

the CBC in a manner previously reported in green seeds of

Brassica napus (oilseed rape) (Schwender et al., 2004). It

has been reported that these photosynthesis-specific tran-

scripts are regulated by transcription factors in a similar

way to those in leaf tissue (Hetherington et al., 1998; Car-

rara et al., 2001); however, a number of authors have

reported the existence of some fruit-specific regulation of

photosynthetic genes (Piechulla et al., 1987; Piechulla and

Gruissem, 1987; Sugita and Gruissem, 1987; Manzara

et al., 1993), and Cocaliadis et al. (2014) suggested that this

is likely to optimize photosynthetic function for fruit devel-

opment. This specificity therefore provides a potential

route for manipulating key photosynthetic genes specifi-

cally in fruit to enhance development, yield or nutritional

quality.

In summary, it appears that photosynthetic carbon

assimilation does take place in green immature tomato

fruit and that this relies almost exclusively on respired

CO2, and that any reductions in the rate of photosynthesis

in these organs can be compensated for by the upregula-

tion of leaf photosynthesis (Nunes-Nesi et al., 2005; Ara�ujo

et al., 2011) and increased imported photoassimilates from

leaves. Such import cannot compensate for the losses of

fruit photosynthesis for seed set, establishment and devel-

opment (Lytovchenko et al., 2011). Therefore, altering fruit

photosynthesis could provide advantages of early seed set,

as well as maintaining yield, particularly under conditions

of stress when leaf photosynthesis may be compromised.

Tomato photosynthesis is restricted to the green phases

of development up until chloroplast-to-chloroplast differen-

tiation, which is marked by the loss of chlorophyll, the

degradation of the thylakoid membranes, and a strong

decrease in the levels of photosynthesis-associated tran-

scripts and proteins (Harris and Spurr, 1969a; Harris and

Spurr, 1969b; Cheung et al., 1993; Barsan et al., 2012), after

which the fruit continues to develop and ripen. This is simi-

lar for other fruits such as Capsicum annum (pepper) (Steer

and Pearson, 1976), Citrus unshiu (satsuma mandarin)

(Hiratsuka et al., 2015), blueberry (Birkhold et al., 1992); cof-

fee (Coffea arabica) (Cannell, 1985; Lopez et al., 2000);

Prunus tomentova (plum) (Aoyagi and Bassham, 1984); the

ornamental plant Arum italicum (Ferroni et al., 2013) and

Jatropha curcas (Ranjan et al., 2012). In satsuma mandarin,

it has been demonstrated that photosynthesis occurs in

these fruits, is greater at low irradiances, and increases with

increasing [CO2] supplied through fully developed stomata

in the rind of satsuma (Hiratsuka et al., 2015). The fact that

stomata can be found in densities of about 72 mm�2 in

immature Jatropha curcas fruit suggests that new carbon

can be assimilated through these tissues (Ranjan et al.,

2012). In this case, given the importance of fruit photosyn-

thesis in the absence of leaves, increasing the stomatal den-

sity could increase CO2 uptake and boost photosynthetic

rates in fruit, with a positive impact on yield.

Cucumis sativus (cucumber) is fundamentally different

to tomato and other coloured fruit, remaining green

© 2019 The Authors.
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through to full maturity, with a surface area equivalent to a

fully expanded leaf (Sui et al., 2017). An analysis of gene

expression found a number of CBC enzymes (SBPase,

FBPase, rbcL, rbcS) and light-harvesting complex proteins

of PSI (Lhca) and PSII (Lhcb) expressed in the exocarp (Sui

et al., 2017). Interestingly, unlike tomato, stomata are

found on the epidermis of cucumbers (Figure 2), although

Sui et al. (2017) reported a layer of epicuticular waxes

around the guard cells that may reduce function. How-

ever, the presence of these pores on the fruit surface sug-

gests, in the case of cucumber at least, that these fruits are

capable of assimilating some CO2 directly from the atmo-

sphere. Their physiology also suggests that photosynthesis

can occur from the re-assimilation of respiratory CO2.

Cucumber fruits have been shown to have both high pho-

tosynthetic and respiratory rates (Todd et al., 1961), and a

recent study demonstrated that fruit photosynthesis con-

tributed 9.4% of its own carbon requirements whereas 88%

of respiratory CO2 in fruit was refixed (Sui et al., 2017).

Improving photosynthetic efficiency in fruit, therefore, has

the potential to increase the fruit carbon contribution for

growth through both recycling respiratory CO2 and atmo-

spheric assimilation, which could in turn directly impact

WUE. The need to maintain or increase fruit yield (or fruit

size) whilst using less water cannot be underestimated

given current environmental changes.

Are stomata important in fruit photosynthesis?

It is important to note that although stomata are routinely

found on the surface of some fruit and are of a similar

size to stomata found on respective leaves, the numbers

are generally significantly lower compared with those

found in leaf tissue (Blanke, 1998). For example, Blanke

and Lenz (1998) reported that the number of stomata on

mature Malus domestica (apple) fruit was 30 times less

abundant than the stomata found on apple leaves. Sto-

matal numbers are fixed at anthesis and as the fruit

expands during growth, they become more dispersed

(Hieke et al., 2002; Hetherington and Woodward, 2003).

Although it has been reported that stomatal density in

fruit typically represents 1–10% of the frequency found in

corresponding leaf tissue (S�anchez et al., 2013), these

numbers can vary greatly depending on the species. In

Persea americana (avocado), the number of stomata on

the fruit represent 14% of the number on the leaf (Blanke,

1992), whilst in green coffee fruit this number is 13–23%
(Cannell, 1985), whereas in oranges the stomatal densities

can reach up to 30% of those found on leaves (Moreshet

and Green, 1980). To date, most studies have focused on

the presence of stomata on various fruit tissue but have

not fully demonstrated the functionality. If functional,

however, the presence and stomatal densities reported

above suggest that under certain conditions, in certain

plants at least, stomata may play a role in gas exchange

and therefore manipulating stomatal numbers through

developmental mechanisms or transgenic approaches has

the potential to change CO2 assimilation rates and yields.

In other plants, however, the contribution of stomata to

assimilation appears to be negligible compared with recy-

cling photosynthesis. In these plants, we cannot rule out

that the role of stomata is primarily for evaporative cool-

ing. Although not directly related to CO2 uptake, this pro-

cess may help maintain fruit temperature at an optimal

level for recycling photosynthesis, thereby maximising

CO2 recovery.

SEED AND EMBRYO PHOTOSYNTHESIS

The fruit pericarp is not the only non-foliar green tissue

that is capable of photosynthesis. The embryos of many

taxa contain significant quantities of chlorophyll, which

(a)

(b) (d)

(c)Figure 2. Example of epidermal impressions taken

from tomato (b) and cucumber (d). Photographs of

the fruit are presented in (a) and (c). Stomata were

absent from the epidermis of tomato (b), whereas a

relatively high stomatal density is illustrated in

cucumber (d, with the inset showing a magnified

stomatal complex).

© 2019 The Authors.
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persists until maturity (Yakovlev and Zhukova, 1980; Sim-

kin et al., 2010; Puthur et al., 2013; Smolikova and Medve-

dev, 2016). This group includes model species

(Arabidopsis thaliana) and important crops such as Cicer

arietinum L. (chickpeas), coffee, cotton, Glycine max L.

(soybean), oilseed rape, Pisum sativum L. (peas), and Vicia

faba L. (broad beans). These embryos, first referred to as

chloroembryos by Palanisamy and Vivekanandan (1986),

contain all the photosynthetic complexes of PSI and PSII,

cytochrome b6f complex and ATP synthase (Weber et al.,

2005; Allorent et al., 2015; Kohzuma et al., 2017).

Chloroembryos have been shown to photosynthesize

(Smolikova and Medvedev, 2016; Smolikova et al., 2017),

and confirmation of carbon fixation is supported by the

activity of the CBC enzymes NADP-glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) in the chloroembryo

chloroplasts of oilseed rape and pea (Smith et al., 1990;

Eastmond et al., 1996) and fructose-1,6-bisphosphatase

(FBPase) in oilseed rape (Kang and Rawsthorne, 1996). Fur-

thermore, Rubisco has also been shown to be active in the

seeds of soybean (Allen et al., 2009), oilseed rape (Hills,

2004; Ruuska et al., 2004), broad bean (Willmer and John-

ston, 1976) and Trigonella foenum-graecum (Willmer and

Johnston, 1976).

The contribution of photosynthesis in embryos may be

different to that described above for fruit, as it has been

reported that embryo photosynthesis contributes a signifi-

cant amount of oxygen, which fuels energy-generating bio-

chemical pathways, including respiration and glycolysis

(Ruuska et al., 2004; Borisjuk et al., 2005; Tschiersch et al.,

2011; Galili et al., 2014). The role of photosynthesis in

chloroembryos has also been associated with the rapid

synthesis of ATP and NADPH for the synthesis of complex

carbohydrates, fatty acids and proteins (Asokanthan et al.,

1997; Wu et al., 2014). It has been reported that a key

source of carbon is sucrose, imported from the leaves

(Asokanthan et al., 1997), which is respired by the seed,

releasing CO2 (Ruuska et al., 2004; Smolikova and Medve-

dev, 2016) within chloroembryos, which is subsequently

efficiently re-assimilated and thus directly affects the car-

bon economy of the seed (Puthur et al., 2013).

In oilseed rape, seed photosynthesis plays a role in the

accumulation of storage lipids (Eastmond et al., 1996;

Ruuska et al., 2004). Interestingly, Rubisco acts in a distinc-

tive context, without the CBC, to increase the carbon-use

efficiency for the synthesis of oil (Schwender et al., 2004).

This unique pathway generates 20% more acetyl-CoA than

glycolysis, reducing the loss of CO2 and increasing the avail-

ability of acetyl-CoA for fatty acid biosynthesis (Schwender

et al., 2004). In the embryos of legumes, including pea, the

main CO2-refixing enzyme is phosphoenol pyruvate (PEP)

carboxylase (Golombek et al., 1999) suggesting that CO2 is

refixed at the site of origin. In the case of pea, a small spheri-

cal seed with a green embryo within a seed pod, only a

fraction of light reaches the photosynthetically active tissue.

The light is attenuated by the pod, reflecting or absorbing as

much as 75% of the sunlight. Only 32% of the remaining

sunlight (approximately 8% of photosynthetic active radia-

tion (PAR)), penetrates the pod and seed coat to reach the

surface of the embryo; however, this is enough to drive pho-

tosynthesis with the highest electron transport rates

reported in the seed coat (Tschiersch et al., 2011). In addi-

tion to seed photosynthesis, pea pods also photosynthesize

in two distinct layers. First, the outer layer, comprising

chlorenchyma and mesocarp, assimilates CO2 from the

atmosphere and second, the inner epidermis lining of the

pod cavity reassimilates the CO2 released by the embryonic

respiration into the pod cavity (Atkins et al., 1977). Rubisco

activity has also been detected in the pod wall of pea

embryos, although this activity is 10–100 times lower than

that detected in the leaf tissue (Hedley et al., 1975).

IMPORTANCE OF PHOTOSYNTHESIS IN NON-FOLIAR

CEREAL ORGANS

In cereals, although leaf photosynthesis plays a central role

in biomass accumulation and yield formation over the

entire growing season (Fischer et al., 1998; Gu et al., 2014),

the photosynthetic activity of the ear has been shown to

dramatically contribute to the pool of carbohydrates

translocated to the developing grains over the post-anthe-

sis stages (Tambussi et al., 2005; Tambussi et al., 2007;

Maydup et al., 2010; Sanchez-Bragado et al., 2014).

Although on an area basis, the ear CO2 assimilation rate is

lower than that of the flag leaf (Tambussi et al., 2005; Tam-

bussi et al., 2007; Zhou et al., 2016), experimental evidence

suggests that in bread and durum wheat, ear photosynthe-

sis can contribute to the individual grain weight yield com-

ponent by up to 70% in a large range of genotypes

(Maydup et al., 2010) and contrasting environments (San-

chez-Bragado et al., 2014). Similarly to wheat, in Hordeum

vulgare (barley), shading experiments revealed a signifi-

cant contribution of the ear (up to 50%) to grain weight

and therefore yield (Bort et al., 1994). In the next few sec-

tions we focus on different aspects of ear photosynthesis

and the challenges in assessing photosynthesis in non-

foliar organs.

Photosynthetically active ear components

The ear bracts (which consist of glume, lemma and palea)

contain chlorophyll and possess stomata (Figure 3), and

therefore have potential to fix atmospheric CO2 (Tambussi

et al., 2007). Genotypic variation in ear photosynthetic CO2

assimilation per unit area and contribution of ear photo-

synthesis to grain weight have been reported in the litera-

ture (Maydup et al., 2014; Sanchez-Bragado et al., 2014).

The exploitation of this variation might be of pivotal impor-

tance for cereal improvement. Several ear bracts have

been considered putative locations of photosynthetic
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activity, with glumes, lemmas and awns considered the

most photosynthetically active (Tambussi et al., 2007; Hu

et al., 2019). In particular, the floral-derived awns have

been targeted as a trait to increase wheat yield owing to

their high photosynthetic capacity of 7–35 µmol m�2 sec�1

(Hein et al., 2016), and especially in view of the limited pos-

sibility to further increase assimilates partitioning to grains

by manipulating the harvest index (Maydup et al., 2014).

The seasonality of the post-anthesis stages in cereals

are often associated with increases in environmental stres-

ses and severe water deficit conditions, leading to reduced

yield. Numerous studies provide strong evidence that the

ear possesses an elevated drought tolerance when com-

pared with the flag leaf and highlight the ear as the main

potential buffer for photoassimilate production under dis-

advantageous environments (Jia et al., 2015). Additionally,

the ear shows a lower transpiration rate than the flag leaf

and a higher intrinsic WUE, confirmed by less negative

d13C values (Araus et al., 1993; Tambussi et al., 2007;

Sanchez-Bragado et al., 2014; Vicente et al., 2018). Xero-

morphic characteristics in glumes, lemmas and awns of

durum wheat have been observed, such as sclerenchyma-

tous tissue and thick walls (Tambussi et al., 2005). The

same authors observed a higher osmotic adjustment and

relative water content of the ear compared with the flag

leaf under reduced water availability, leading to a sus-

tained chlorophyll fluorescence signal. Similarly, ear bracts

in barley maintained higher relative water content and gas

exchange under water stress, compared with the leaf, as

well as greater osmotic adjustment (Hein et al., 2016).

Comparing awned and awnless lines under stress condi-

tions showed higher ear intrinsic WUE (mainly driven by

high photosynthetic activity for similar stomatal conduc-

tance (gs per unit area) and photosynthetic capacity when

awns were present, suggesting that awn photosynthesis

also plays an important role when foliar tissue is reduced

as a result of stress (Weyhrich, 1994; Weyhrich et al.,

1995). However, no differences in whole-plant WUE and

Figure 3. Schematic diagram and images of epidermal impressions illustrating stomatal anatomy and density in different components of wheat leaves (flag

leaf), culm (stem) and ear (i.e. external surfaces of the glume, lemma and palea). The insert box provides an example of the stomatal density found on the awns

of Soissons wheat.
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grain weight were found between these lines. Therefore, in

this investigation, the higher photosynthetic capacity in the

awns failed to contribute to yield. In contrast, a multi-loca-

tion field study on the effect of awns on wheat yield com-

ponents showed that the presence of awns increased the

grain size; however, this increase was compensated by a

reduction in grain number (Rebetzke et al., 2016), which

was mainly attributed to the cost of awn setting. Assimilate

partitioning to the floret is decreased in awned varieties

through allocation to the rapidly growing awns, potentially

followed by an associated reduction in floret fertility (Guo

and Schnurbusch, 2016; Rebetzke et al., 2016). It was con-

cluded that awns are mainly useful under terminal drought

conditions, owing to their elevated water stress tolerance

that facilitates the maintenance of grain weight and a

reduced number of shrivelled grains (screenings), com-

pared with awnless lines, thus potentially providing higher

economic yield and commercial value under such condi-

tions. This was also confirmed by Maydup et al. (2014),

who showed that awned varieties have higher ear photo-

synthesis, water status and ear water conductance com-

pared with awnless varieties under water-stress conditions

in the field.

Genotypic variation of ear water-stress tolerance has

also been demonstrated by Li et al. (2017), where a stress-

tolerant wheat variety displayed a conservative water-use

strategy during post-anthesis by reducing leaf transpiration

while maintaining high levels of ear gas exchange. Vicente

et al. (2018) postulated that water stress in wheat reduced

the expression of photosynthetic genes (e.g. ATPase) in

the flag leaf but not in the ear, and that the upregulation of

respiration-related genes, such as phosphoenolpyruvate

carboxylase (PEPCase), 2-oxoglutarate dehydrogenase

complex (OGDC), alternative oxidase (AOX) and pyruvate

kinase, was associated with the increased refixed CO2 in

the ear organs. An observed upregulation of dehydrins

(Abebe et al., 2010), increased transcript levels of antioxi-

dant enzyme genes (Vicente et al., 2018), followed by high

levels of antioxidant enzymes and low levels of ROS (Kong

et al., 2015) confirmed the higher drought tolerance of the

ear and its importance as a main contributor to grain

weight and, more broadly, grain yield under disadvanta-

geous environmental conditions.

Wheat endosperm and pericarp

Caley et al. (1990), followed by Tambussi et al. (2005), also

proposed a possible role of the green pericarp in CO2 refix-

ation. Although stomata are almost absent in the growing

endosperm, suggesting limited gas-exchange capacity,

immunocytochemical analysis showed chloroplasts and

Rubisco co-localization in the green pericarp with elevated

photosynthetic capacity (Kong et al., 2016), which can

account for up to 42% of the total photosynthetic activity

of the ear (Evans and Rawson, 1970). Recent work reported

that genes specific for the C4 pathways such as PEPC,

NAD-ME and NADP-MDH are expressed in the cross and

tube-cell layer of the pericarp (Rangan et al., 2016), agree-

ing with earlier studies that had already suggested the

presence of C4 or C3–C4 intermediate metabolism in the

ear (Ziegler-J€ons, 1989; Imaizumi et al., 1990; Li et al.,

2004; Jia et al., 2015), potentially induced under water-

stress conditions. On the other hand, the following obser-

vations suggest limited evidence for a C4 pathway in the

green pericarp and other ear organs: (i) oxygen sensitivity

of CO2 assimilation rate of the ear (increased by up to 45%

under conditions of 2% O2; Tambussi et al., 2005; Tam-

bussi et al., 2007); (ii) high rates of CO2 assimilation

through the CBC rather than conversion into C4 malate or

aspartate (Bort et al., 1995); and (iii) a lack of the specific

C4 anatomy (Tambussi et al., 2005), although future analy-

ses are required to confirm this and it remains a topic of

debate.

The importance of stomata for ear photosynthesis

Several studies have demonstrated that the stomatal den-

sity in the flag leaf of wheat varies between 40 and

90 mm�2 (e.g. Faralli et al., 2019a), and that in ear organs

the stomatal density can be either higher (Kong et al.,

2015) or drastically lower (Tambussi et al., 2005) than in

the leaf. Furthermore, different stomatal densities and dis-

tributions have been reported on both the ventral and the

dorsal sides of the glume and the lemma (Figure 3), with

the lemma showing variable density depending on the

shading area of the neighbouring glume (Tambussi et al.,

2005). As the growing endosperm releases respired CO2,

the presence of stomata in the internal surface of glumes

and lemmas is evidence of CO2 recycling capacity. As

reported for fruit (see above), several studies have demon-

strated large rates of refixation of respiratory CO2 in the

ear (Bort et al., 1996), which can contribute up to 79% of

the sucrose accumulated in bracts (Gebbing and Schnyder,

2001). The refixation capacity has several advantages, in

particular: (i) respiratory CO2 losses are minimized; and (ii)

photosynthetic metabolism is fully independent of the

environment.

Genotypic variation in stomatal distribution in glumes

and lemmas, and on the different sides, also exists in cur-

rent elite bread wheat cultivars (Figures 3 and 4), which

suggests different strategies for atmospheric CO2 assimila-

tion or CO2 refixation that could be further exploited for

ear gas-exchange optimization. In general, high stomatal

densities are reported on the external side of glumes (up

to 32 mm�2) and awns (up to 70 mm�2), with lower num-

bers found in lemmas (between 20 and 10 mm�2) and

absent in paleas (Figure 4). The stomatal density on the

internal surfaces are comparable for glumes and lemmas

(between 20 and 9 mm�2), but are almost absent in paleas.

It has been reported that stomatal functionality may be
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strongly limited in the ear by: (i) the mechanical constraint

induced by the growing grains inside the florets; and (ii) by

the accumulation of waxes preventing guard cells opening

and closing (Araus et al., 1993) and hence limiting photo-

synthetic CO2 uptake, especially during the late grain filling

stage. Figure 5 shows thermal images from the ear and

flag leaf of two wheat varieties, and reveals that although

the temperature regulation of the ear is significantly lower

than that of the flag leaf (i.e. lower transpiration rate), the

ear stomata are responsive and open when subjected to a

transition from low to high light conditions. In the ear the

two cultivars also differ in the magnitude and rapidity of

stomatal opening (Faralli et al., 2019b), suggesting poten-

tial genotypic variation, driven by either differences in wax

accumulation (Araus et al., 1993) or variation in stomatal

size, density and distribution, as well as functional differ-

ences. Indeed, in glasshouse experiments, six recombinant

inbred lines grown under conditions of heat and water

stress showed the presence of cooling capacity in the ear

at early anthesis (i.e. before pollen release) (Steinmeyer

et al., 2013). With the elevated sensitivity of pollen to high

temperatures, ear stomatal dynamics and the overall

evaporative cooling capacity may be important novel traits

for increasing stress tolerance by protecting pollen viability

and minimizing floret damage at anthesis. Indeed, at the

reproductive stage, stress tolerance in crops is based on

both the ability to produce viable pollen and to ‘shield’ the

pollen from environmental stresses (i.e. reducing the tem-

perature of reproductive organs with a high transpiration

rate) (Steinmeyer et al., 2013). In addition, enhancing stom-

atal regulation and transpiration may increase assimilate

translocation to the developing grains and the remobiliza-

tion of resources, and could be considered as an additional

target for increasing yield potential.

CHALLENGES ASSOCIATED WITH MEASURING

PHOTOSYNTHESIS IN NON-FOLIAR TISSUE

Further experimental evidence is needed to fully under-

stand the mechanisms involved in photosynthetic activity

of the ear and other non-foliar photosynthetic organs.

There are challenges associated with measuring photosyn-

thesis in non-laminar tissues using the standard

approaches used for leaves. For example, most leaf-level

measurements of CO2 uptake are conducted using infrared

Figure 4. Stomatal density of ear organs (glume,

lemma, palea and awns, when present) for seven

bread wheat elite cultivars collected after anthesis

(a and b). Wheat plants were grown in a glasshouse

and ears were harvested at the end of anthesis

(i.e. GS69). Stomatal analysis was carried out as

described by Faralli et al. 2019b. Data are

means � standard errors of the mean (n = 2–7).
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gas analysis (IRGA), which requires the material to be

enclosed in a sealed chamber, with the differences in gas

fluxes in and out of the chamber being assessed. Using

such approaches for non-leaf material represents chal-

lenges, including: (i) the small size of commercially avail-

able leaf gas-exchange chambers; (ii) the complication of

refixation of respiratory CO2 in determining gas differen-

tials; and (iii) the complexity of ear architecture in wheat,

making the normalization of gas-exchange data per unit

area particularly difficult and leading to strong uncertainty

in the absolute values. New methodologies are needed

and should be implemented to assess ear gas exchange

and organ contribution to grain weight. For instance, 3D

scanners help to refine the estimation of area, in particular

in view of the consistent underestimation (and thus gas-ex-

change overestimation) that occurs with standard tech-

niques (e.g. using a ruler; Figure 6). Additionally, the

design and development of bespoke chambers is required

to enclose an entire ear or fruit to allow the assessment of

whole-organ gas exchange. Such chambers present further

challenges that arise from the large volumes required,

which can lead to slow gas mixing and difficult tempera-

ture control. In addition, although saturated light can be

provided in large cuvettes for all surfaces, the shading

effects from neighbouring organs, e.g. spikelet morphol-

ogy and distance between spikelets, may lead to additional

sources of error. Chlorophyll fluorescence has been shown

to be a good candidate for ear photosynthetic assessment

(Tambussi et al., 2005; Maydup et al., 2012), and combined

with gas exchange (McAusland et al., 2013) may help to

dissect the proportion of photosynthesis relying on the

refixation of respiratory CO2 from atmospheric CO2, as well

as determining differences in the O2 sensitivity of various

genotypes.

Defoliation, inhibition of photosynthesis through shad-

ing and herbicide application are some of the most com-

monly used approaches to evaluate the contribution of ear

photosynthesis to yield (Sanchez-Bragado et al., 2016).

Although these approaches may be useful to evaluate

genotypic variation, they are likely to induce compensatory

mechanisms (and potentially overestimations). Sanchez-

Bragado et al. (2016) suggested carbon isotope discrimina-

tion as an alternative for assessing ear photosynthetic

traits. In addition, owing to the Rubisco discrimination of
13C and because of the lack of carbon discrimination in

PEPC, the isotopic signature may help to discern potential

variation between the C3 and C4 pathways (Hu et al.,

2019). It must be recognized that almost all the approaches

outlined above lack the advantage of high throughput and

are generally considered time consuming and laborious,

and this therefore limits their use for screening large popu-

lations or samples for ear photosynthetic phenotypes.

There is no doubt that improvement in experimental pro-

cedures along with further advances in high-throughput

approaches for screening ear photosynthesis will increase

our understanding of ear photosynthetic activity and

Figure 5. Temperature differential between the dry reference and either the flag leaf or the ear of two bread wheat varieties grown in glasshouse conditions

(n = 4 cv. Alchemy and Hereward) subjected to a step change in light (from 100 to 1000 µmol m�2 s�1) and maintained under high light conditions for 30 min.

Thermal images of a wheat ears (c, d) following the step increase in light intensity shows significant temperature differences in plants subjected to 10 min (c) or

25 min (d) of illumination, illustrating stomatal functioning in increased evaporative cooling.
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therefore help to design new cereal varieties with elevated

yield potential and stability.

CONCLUSION

Although most studies examining photosynthesis have

focused on leaf-level measurements, including current

approaches to improve photosynthesis, the contribution

that other green tissues make to total photoassimilates has

largely been ignored. As highlighted above, these green tis-

sues contribute significantly to plant development, growth

and yield, and therefore present novel opportunities for

exploitation to improve productivity. The fact that the full

spectrum of light harvest, electron transport and CBC pro-

teins and transcripts are found in non-foliar tissues (Barsan

et al., 2010; Barsan et al., 2012; Sui et al., 2017; Vicente

et al., 2018) offers the potential to manipulate non-foliar

photosynthetic pathways to increase rates of photosynthe-

sis using similar approaches to those currently being

employed in leaves (for a review, see Simkin, 2019

and Simkin et al., 2019). For example, recent experiments in

transgenic wheat with increased activity of the CBC enzyme

SBPase, driven by a constitutive promotor (Driever et al.,

2017), revealed increased gross photosynthesis in the ears

of mutant plants relative to the wild-type control (Figure 7).

It is therefore possible that the overall increase in yield of

plants overexpressing SBpase reported by Driever et al.

(2017) may have been achieved in part by an increase in

ear-derived assimilates, although this would require further

investigation. Such studies highlight the potential benefits

of improving photosynthesis in organs other than leaves

for improving crop productivity and yield. Furthermore, as

photosynthesis provides the building blocks for many

downstream products and metabolites, modifying photo-

synthetic processes in fruits, for example, offers the poten-

tial to alter fruit quality and nutritional value.

A major difference between leaf and non-leaf tissues is

the primary source of CO2 for CBC (atmospheric versus

respiratory), and therefore the manipulation of stomatal

density or function presents an additional avenue to

manipulate photosynthetic processes in some tissues, e.g.

wheat ears. For example, increasing stomatal density or

aperture could result in increasing assimilation by remov-

ing diffusional constraints and increasing the flux of atmo-

spheric CO2 to the site of carboxylation; however, such an

approach would also facilitate the leakage of respiratory

CO2 (Sui et al., 2017), which has been demonstrated to be

of greater importance in some organs. Alternatively,

increased stomatal density in wheat ears could improve

evaporative cooling, thereby maintaining assimilation rates

under elevated temperatures, assuming a similar tempera-

ture sensitivity of photosynthesis in wheat ears and leaves

Figure 6. (a) Example of a detailed assessment of

wheat ear area and volume using a 3D scanner

approach. (b) Example of the underestimation of

ear area using a ruler-based approach compared

with a detailed 3D scanner estimation. Wheat plants

(cv. Cadenza) were grown in a glasshouse and pri-

mary and secondary ears were harvested at differ-

ent times and over three periods after anthesis. The

area was estimated with a ruler by measuring ear

length and width of all the four surfaces and then

the same ear was assessed with a 3D scanner

(n = 4 for each harvest).

Figure 7. Gross assimilation rate calculated as the sum of light-saturated

assimilation rate and dark respiration of wheat ears (n = 5) of control cv.

Cadenza plants and transgenic plants overexpressing SBPase (Driever et al.,

2017). Data were collected post-anthesis in glasshouse-grown plants with a

Licor 6400XT mounted with a bespoke cuvette ensuring saturating light

(1000 lmol m�2 sec�1) and a 25°C block temperature.
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(Scafaro et al., 2012; Scafaro et al., 2016; Perdomo et al.,

2017). On the other hand, this ‘risky’ behaviour might

increase the possibility of early ear dehydration under sev-

ere terminal stress conditions, although further experimen-

tal evidence is required to support this theory. Stomatal

behaviour and transpiration in ears may also provide a key

role in the translocation of photoassimilates to the ear, and

therefore altering gs could assist with sink–source relation-

ships. Although stomatal behaviour is important for photo-

synthesis, it should be acknowledged that stomatal pores

are also an important component of non-leaf tissues to

facilitate drying, which is essential for the dispersal of

spores and seeds (e.g. stomata in the spore capsules of

moss; Merced and Renzaglia, 2013; Chater et al., 2016).

Before such novel targets for improved photosynthesis can

be exploited, a better understanding of the contribution of

non-foliar photosynthesis to yield and quality (particularly

under conditions of stress) and the role of stomata in these

processes is needed.
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