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Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and 
abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic 
pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital 
role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different 
environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, 
including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phy-
cobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other 
frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic 
pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced 
light harvesting, increased photoprotection and improved photosynthetic efficiency.
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Introduction

Photosynthesis is the process by which photosynthetic 
organisms utilize the energy from sunlight to assimilate 
CO2 from the atmosphere and convert it into soluble car-
bohydrates, which are then used for plant growth (Bassham 
and Calvin 1960; Biel and Fomina 2015; Calvin and Benson 
1948; Raines 2003). To meet global demand, the predicted 
requirement to increase crop yield, including the global 

staples such as maize (Zea mays), wheat (Triticum aesti-
vum) and soybean (Glycine max), is as much as 70–100% 
by 2050. This escalation is due to advancements in living 
standards and changing human diets as well as the height-
ened requirement for plant-based proteins for animal feed 
(FAO 2017; RSOL 2009; Tilman and Clark 2015; World-
Bank 2008). Thus enhancement of photosynthetic efficiency 
is a crucial step to achieving these ends. Furthermore, given 
that current breeding approaches are no longer leading to 
significant genetic gains in yield (Ray et al. 2013, 2012), 
new approaches for increasing crop productivity such as 
manipulating photosynthesis related pigments to improve 
light capture and or photoprotection are called for.

Crop yield is the result of the cumulative photosynthetic 
rate during the growing season with the yield potential 
(maximal yield obtained) described as the maximum yield 
of plant growth under optimal healthy conditions (Evans 
and Fischer 1999). Yield potential is defined by three 
pivotal factors: (i) the capacity to capture light; (ii) the 
energy conversion efficiency also known as radiation use 
efficiency (RUE), which ultimately generates biomass and 
(iii) harvest index (HI), which is defined as the harvestable 
product in relation to total plant biomass (Reynolds et al. 
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2009). Substantial increments in light capture and HI have 
been noted post green revolution and the introduction of 
dwarfing genes (Calderini et al. 1995; Gale and Yousse-
fian 1985). The current focus for improving crop yields 
concentrates on enhancing RUE, which is defined by the 
photosynthetic rate and the efficiency at which light energy 
is converted to fixed carbon (Parry et al. 2011; Reynolds 
et al. 2009).

Several studies have reported that enhanced photo-
synthetic capacity can be achieved in leaves by increas-
ing photosynthetic electron transport rates (Chida et al. 
2007; Lopez-Calcagno et al. 2020; Simkin et al. 2017b; 
Yadav et al. 2018), manipulating Calvin Benson Cycle 
(CBC) enzymes to increase energy conversion (Driever 
et al. 2017; Lefebvre et al. 2005; Lopez-Calcagno et al. 
2020; Simkin et al. 2015, 2017a, 2019; Raines et al. 2022), 
modifying photorespiration (López-Calcagno et al. 2018; 
Simkin et al. 2017a; Timm et al. 2012), along with improv-
ing the kinetics of non-photochemical quenching (NPQ), 
a photoprotective mechanism employed by plants under 
high light stress, and the re-allocation of absorbed energy 
back into photosynthesis rather than being dissipated as 
heat (Glowacka et al. 2018; Kromdijk et al. 2016). Fur-
thermore, recent studies have also suggested that increas-
ing the photosynthetic capacity of non-foliar tissue such 
as fruits, stems and wheat ears could play a key role in 
improving yield (Simkin et al. 2020).

As outlined above, there is currently significant inter-
est in manipulating photosynthetic processes to improve 
plant productivity, including efforts to maximize light 
harvesting and effective light use. At the core of this, are 
photosynthetic pigments, chlorophylls (Chl), carotenoids 
and/or phycobilins (in cyanobacteria), which play pivotal 
roles in both light harvesting and photoprotection of the 
photosynthetic apparatus and are therefore fundamental to 
our efforts to improve plant productivity (Mirkovic et al. 
2017). In addition, pigments such as anthocyanins, though 
not being involved in light capture, act as photoprotectants, 
absorbing harmful UV rays, reducing photoinhibition and 
photodamage. Each pigment performs a specific function 
in the photosynthetic machinery and is also involved with 
its repair cycle (Croce and Van Amerongen 2014). This 
review focuses on the relative abundance and functions 
of pigments in the photosynthetic apparatus of photo-
synthetic organisms (plants, cyanobacteria, algae), and 
their contribution to the acclimation of these organisms 
to unique dynamic environments. In addition, we will 
highlight the potential use of these novel pigment to opti-
mise light capture and thereby the overall carbon pool in 
planta to improve crop productivity, explored in a context 
of improving food production for a growing population 
(Simkin 2019; Simkin et al. 2019).

Chlorophylls in photosynthetic tissues

The Chlorophyll (Chl) family are essential pigments 
required by all photosynthetic organisms to absorb light 
energy and play a key role in acclimation to environments 
with a varied light spectra. The structure of Chl is similar 
to that of haemoglobin consisting of a cyclic tetrapyrrole 
ring, known as chlorin, which is linked to a central atom of 
magnesium instead of an iron-containing porphyrin com-
pound (haeme) (Senge et al. 2014). The evolution of Chl 
has been unravelled to some extent via the stages of its 
biosynthetic pathway, which contains at least 17 steps with 
the earliest being identical to heme biosynthesis indicat-
ing the likelihood that these were adopted from this path-
way (Beale 1999; Granick 1965). The later stages of Chl 
biosynthesis include (i) magnesium insertion and (ii) the 
formation of the characteristic ring structure (Raymond 
and Blankenship 2004).

Chlorophyll a (absorption maxima (λmax) 665 nm in 
90% acetone) is found in the photosynthetic reaction cen-
tres (RC) and the light harvesting complexes and is the 
main collector of light energy (400–450 nm, 660–675 nm) 
transferred to the RC. The substitution of the formyl group 
at the chlorin ring of Chl a for a methyl or vinyl group 
leads to the formation of Chl b, Chl c Chl d, and Chl f with 
differential spectral properties and variation in λmax (Chen 
and Blankenship 2011). Terrestrial plants only possess Chl 
a and Chl b (Kume et al. 2018), whereas marine organ-
isms contain a wide range of Chl (a, b, c1, c2, c3, d and 
f) that enables them to adapt to the aquatic environment 
and variations in solar radiation (i.e., blue-green light) at 
different depths (Croce and Van Amerongen 2014; Kirk 
2011) (see Fig. 1). All photosynthetic pigments eventually 
transfer absorbed light to Chl a (Fig. 2) in the RC and Chl 
a is the most abundant form of chlorophyll in terrestrial 
plants, present in both the light harvesting complexes and 
reaction centres of almost all organisms capable of oxy-
genic photosynthesis (Croce and Van Amerongen 2014). 
Higher plants, algae and prokaryotes contain different 
chlorophyll compositions often dictated by adaptation to 
their surrounding environment.

Chl b (λmax ~ 450 nm; blue light) is only found in the 
antennae of the light harvesting complexes (Croce 2012; 
Kume et al. 2018). Chl b binding influences the protein 
levels in the antenna complexes and thereby the final size 
(truncated antenna with low Chl b levels) and composi-
tion of antenna. Therefore, Chl b has a critical role in the 
stacking of grana, harvesting light at lower light intensi-
ties as well as photoprotection (see Fig. 2) (Kume et al. 
2018; Voitsekhovskaja and Tyutereva 2015). The ratios of 
Chl a to b have been shown to be variable dependent on 
environmental conditions, including light levels, nutrient 
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availability, stress linked to low temperature, desiccation, 
and stage of development (Vialet-Chabrand et al. 2017; 
Esteban et al. 2015; Yamori 2016). A high Chl a/b ratio for 
example indicates greater acclimation to high light intensi-
ties and an enhancement in photosynthetic electron trans-
port (Jin et al. 2016), whereas a low Chl a/b ratio indicates 
shade tolerance (Matsubara et al. 2012). Optimizing the 
balance between pigment composition and light captur-
ing capacity of the plant is a potential strategy to increase 
photosynthetic efficiency and plant performance (Beck-
mann et al. 2009). For example, in green algae and plants 
downregulation of a gene responsible for Chl a to Chl b 
conversion (chlorophyllide a oxygenase (CAO)) reduced 
Chl b accumulation thereby increasing the Chl a/b ratio 
and enhancing the biomass production by 40% (Ayumi 

Tanaka 1998; Czarnecki and Grimm 2012; Perrine et al. 
2012) (see Fig. 3). Jin et al (2016) demonstrated that a 
reduction in the levels of the High Photosynthetic Effi-
ciency 1 gene reduced the total Chl content and lead to 
an increase in the Chl a/b ratio. This altered ratio of Chl 
a/b resulted in a moderately decreased antenna size that 
was optimal for enhanced light use efficiency. The fine 
tuning of the antenna size results in greater light penetra-
tion and distribution within the canopy due to a smaller 
antennae cross section, avoiding light saturation associ-
ated photodamage (requiring repair to restore efficiency) 
and wasteful dissipation of energy (Jin et al. 2016). Also, 
exposure to high light intensities activates photoprotec-
tive mechanisms, which in fluctuating light environments 
can drop photosynthetic efficiency (Ort and Melis 2011). 

Fig. 1   Structural variation in photosynthetic pigments. The figure 
depicts the structural variation amongst photosynthetic pigments; 
Chlorophyll, Carotenoids and Phycobiliproteins, underpinning their 
absorption properties. The different side chains in the Chl fam-
ily widen their absorption spectrum range for photosynthesis. Chl a 
absorbance is shifted to a red shift (longer wavelength), in case of Chl 
d (C3 formyl substitution) and to an even longer wavelength in case 
of Chl f (C2 formyl substitution) However, Chl b (C7 formyl substi-

tution) switches the spectrum towards the blue shift (shorter wave-
length). The structures of Chl c1, Chl c2 and Chl c3 differ from Chl 
a due to absence of a phytol chain. Carotenoids are broadly classi-
fied into xanthophyll and carotene; with similarity in structure, except 
the presence of oxygen in xanthophylls. Phycobiliproteins differ in 
their spectral properties due to presence of open chain tetrapyrroles; 
chromophores; phycobilins
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Fig. 2   Role of pigments in light capture and excitation energy trans-
fer. The photosynthetic pigments in diverse phototrophs absorb a 
wide range of wavelength and facilitate photosynthesis in varied 
habitat. The figure depicts the flow of excitation energy (down-hill) 
to the RC received by chlorophyll P680 in PSII and P700 in PSI. In 
cyanobacteria A. marinus, the electron donor, Chl d absorbs Far Red 
(FR) light and transfers the energy to PSII (the constitution of PSII in 

A.marinus has been debatable so far) whilst Chl d P740 replaces Chl 
a in PSI. In Halomicronema hongdechloris Chl f absorbs the infra-
red light (IR) and energy is transferred to PSII (P680) and PSI (P700) 
respectively. Most cyanobacteria and red algae have phycobilipro-
teins; Phycoerythrin (PE), Phycocyanin (PC) and Allophycocyanin 
(APC) which absorb a wide range of wavelength (green, orange, and 
red) thereby enhancing the light capture and photosynthetic efficiency

Fig. 3   Optimized Chl a/b ratio boost photosynthesis. The figure por-
trays the role of optimised Chl a/b ratio in bioengineered plants (and 
algae) in uplifting photosynthetic performance and crop yield as com-
pared to WT (wild type). An efficient utilization of HL (high light) 

supported by moderately reduced antenna size due to reduction in Chl 
b levels and an increase in Chl a/b ratio strikes a balance between the 
speed of light capture and its utilization
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These authors have suggested that manipulating Chl a/b 
ratio would be a novel strategy for improving biomass pro-
duction in plants (Jin et al. 2016). Furthermore, Friedland 
et al (2019) reported that the down regulation of CAO in 
transgenic Camelina plants reduced chlorophyll b levels 
resulting in an increase in the Chl a/b ratio and a reduction 
in the light harvesting antenna size. Plants with a smaller 
antenna size outperformed control plants in both green-
house and field conditions achieving a 40% increase in 
biomass yield (Friedland et al. 2019). These authors then 
demonstrated that either a reduction or increase in antenna 
size from this new smaller antenna size reduce photosyn-
thetic efficiency and tolerance to light stress (Friedland 
et al. 2019) (Fig. 3). Manipulating chlorophyll, a/b ratio 
and antenna size could therefore be a mechanism for 
manipulating photosynthesis and resource use efficiency 
dependent on the growing environment. For example, 
crops grown within commercial greenhouses, where light 
is highly regulated may benefit from a smaller antenna size 
compared to crops grown outside, as well as providing idi-
otypes for specific field locations. In addition to manipu-
lation of the Chl a/b ratio and antenna sizes, balanced 
light absorption, and electron transport flow between the 
two photosystems are important for efficient and optimal 
photosynthesis, including carbon dioxide reduction and 
therefore could be a mechanism for manipulating photo-
synthesis and resource use efficiency depending on the 
growing environment.

In marine habitats, Chl c, Chl a, and carotenoids function 
together to harvest light (Garrido et al. 1995). Chl c1, c2, 
and c3 are present in the antennae of organisms, including 
diatoms, brown algae and dinoflagellates inhabiting oce-
anic areas where light penetration is attenuated by the water 
column and organisms at shallower levels (Songaila et al. 
2013). Structurally, Chl c differs from other chlorophylls a 
and b (Fig. 1) due to the presence of an unsaturated tetra pyr-
role macrocycle and is therefore a magnesium-protochloro-
phyllide rather than a magnesium-chlorin (Budzikiewicz and 
Taraz 1971; Jeffrey 1989; Scheer 1991). However, Chl c is 
classed as a chlorophyll due to its light harvesting role and λ 
max at 450 nm (for review see (Zapata et al. 2006) and plays 
a vital role as an accessory pigment (Dougherty et al. 1970).

In the cyanobacteria Acaryochloris marina, which live 
in infra-red rich surroundings, the main photosynthetic pig-
ment is Chl d (~ 97%), which differs in chemical structure, 
whereby the vinyl group of Chl a is replaced by a formyl 
group (Fig. 1) (Chen and Blankenship 2011; Miyashita et al. 
1996, 2014; Renger and Schlodder 2008), resulting in shift 
of absorption maxima (red shift) towards longer wavelengths 
(λmax:710 nm). Chlorophyll d is found only in the RC of 
a few cyanobacteria that dwell in aquatic habitats (Kashiy-
ama et al. 2008; Mielke et al. 2011) (see Fig. 2). Chl d has 
enabled A. marina to adapt to occupy a niche with reduced 

light availability at lower depths, due to higher energy light 
being absorbed by Chl a containing organism closer to the 
surface of the water. Along with Chl d, A. marina contains 
trace amounts of Chl a (located at key positions) (Miyash-
ita et al. 2014; Renger and Schlodder 2008; Mimuro et al. 
2004), with the exact amount present dependent on available 
light intensities (Mimuro et al. 2004). Similarly, cyanobac-
teria found living in stromatolites in near infra-red environ-
ments have been shown to contain a novel pigment; Chl f 
(λmax: 706 nm) (Chen et al. 2010; Gan et al. 2014; Miyash-
ita et al. 2014). Chl f has a reported maximum absorbance 
of ~ 706 nm (in methanol) and has been assumed to have a 
purely light harvesting role (Fig. 2) (Chen and Blankenship 
2011) (for detailed review on Chl d and Chl f see (Allakh-
verdiev et al. 2016). However, further work by Nürnberg 
et al (2018) demonstrated the involvement of Chl f in charge 
separation between photosystem I and II at 745 nm and Chl 
f/d at 727 nm, respectively. Chl f containing photosystems 
function ‘beyond the red limit’ absorbing light at > 760 nm 
and could therefore extend the photosynthetic absorption 
spectrum (Nürnberg et al. 2018).

These novel marine pigments could potentially be 
exploited to engineer crops that can make greater use of 
light at a larger range of frequencies improving light cap-
ture, light use efficiency and growth rates. For example, the 
accumulation of Chl d in the lower leaves of a canopy could 
allow plants to harvest light at the lower canopy at wave-
lengths not being absorbed by Chl a containing leaves in 
the upper canopy (Chen and Blankenship 2011). This could 
prove invaluable to crops that grow in densely packed fields 
where higher energy shorter wavelengths are absorbed by 
the upper canopy leaving the lower leaves in shade and 
enriched in longer wavelengths. Such an approach would 
require a greater understanding of the changing patterns of 
metabolism in leaves in different parts of the canopy and 
may require an “inducible” approach in which chlorophyll 
ratios are manipulated at an individual leaf level depending 
on where that leaf is within the canopy at various devel-
opmental stages, as well as the density of crop planting. 
Furthermore, such an approach could be used to engineer 
crops to be cultivated in environments where non-artificial 
light may be attenuated by water such as in below-water 
greenhouses or engineered into crops i.e., seaweeds harvest-
able from the sea.

Fine tuning of chlorophyll for enhanced 
photosynthesis

Lowering of leaf absorptivity with attenuated levels of pho-
tosynthetic pigments such as chlorophyll resulting in small 
antenna size of the photosystems has been considered as 
an effective strategy under several trials to augment PSII 
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and electron transport efficiency (Gu et al. 2017; Pettigrew 
et al. 1989; Sobiechowska-Sasim et al. 2014; Sakowska et al. 
2018; Slattery et al. 2017). Gu et al (2017) reported that rice 
mutants with lowered chlorophyll levels displayed uncom-
promised development of chloroplast with higher expression 
of thylakoid membrane protein genes (increased potential for 
electron transport in the chloroplast) and the protein genes 
involved in chlorophyll binding (suggesting smaller antenna 
size) thereby avoiding excessive absorption of light, result-
ing in increased PSII efficiency with improved carbon diox-
ide conductance and Rubisco activity (Gu et al. 2017). Fur-
thermore, decreasing the chlorophyll content of sun exposed 
leaves is an effective approach which can be used to increase 
the total canopy photosynthesis via improved distribution of 
light in the canopy, reduced photoprotection related energy 
losses coupled with increased carbon fixation and PSII quan-
tum yield (Ort et al. 2015a). In chlorophyll-deficient leaf 
mutants, higher light energy reaches the abaxial (under) side 
of the leaf (deeper penetration and even distribution) and the 
green and yellow light is not absorbed as it passes through 
the adaxial (upper) side due to reduced chlorophyll levels. 
In wild type (WT) green leaved plants, blue and red light is 
absorbed at the adaxial side of the leaf with only green pho-
tons reaching the chloroplasts on the abaxial side (Sakowska 
et al. 2018). These findings are supported by chlorophyll‐
deficient soybean isolines exhibiting higher penetration of 
PPFD (photosynthetic photon flux densities) into the canopy 
(Pettigrew et al. 1989) thereby indicating over investment 
in chlorophyll as soybean mutants with > 50% reduction in 
chlorophyll, exhibited higher leaf level photosynthesis and 
light use efficiency in comparison to the WT (Slattery et al. 
2017). Taken together, this data indicate an effective strategy 
to relocate energy resources and nitrogen towards enhancing 
biochemical photosynthetic capacity (used otherwise in pig-
ment protein) to enhance biomass and yield.

Exploring the introduction of phycobilins 
into higher plants

Phycobilins are open chain tetrapyrroles (see Fig. 1) and 
the main light harvesting system in cyanobacteria. They 
are also present in glaucocystophytes, red algae and some 
cryptomonads but are absent in green algae or in higher 
plants (Chakdar and Pabbi 2016; Tanaka et al. 2011). They 
belong to the class of accessory pigments that absorb light 
in the range of 520 and 670 nm and are particularly efficient 
absorbers of green (550 nm, not absorbed by Chl a), yel-
low (580 nm), orange (600 nm), and red light (620) (see 
Fig. 2). Unlike other photosynthetic pigments, phycobilins 
are bound to water-soluble proteins called phycobilipro-
teins with molecular masses of between 30 and 35 kDa. 
The pigment protein structures contain between 300 and 

800 phycobilins and form phycobilisomes, which are about 
40 nm in diameter (Nobel 2009). In red algae and cyano-
bacteria, these phycobilisomes are found associated with 
the lamellar membrane stromal surfaces and function as the 
primary accessory pigment.

In the water column, green light can penetrate much 
deeper and the absorption of this light by photosynthetic 
pigments such as phycobilins allows cyanobacteria and red 
algae to stay at greater depths (Sobiechowska-Sasim et al. 
2014) compared to organisms that depend on Chl such 
as green algae, which are therefore confined to shallower 
waters (Blankenship 2002, 2014). Some shallow-water 
organisms also contain phycobilins that can capture yellow/
red light. However, it should be noted, that even in these 
organism’s photosynthesis still relies on Chl a and phyco-
bilins efficiently transfer the absorbed light energy to Chl a 
for photosynthesis (Cho 1970; Liu et al. 2013).

Three types of pigment protein complexes form the phy-
cobiliprotein family have been identified in photosynthetic 
organisms: (1) phycoerythrin/phycoerythrocyanin (PE/
PEC); (2) phycocyanin (PC) and (3) allophycocyanin (APC) 
(Fig. 2). The reddish PE is soluble in aqueous solutions and 
absorbs green light (between 530 and 570 nm). PC and APC 
(appears bluish in colour) as PC absorbs orange and red 
light (610–660 nm; λmax ~ 620) whilst APC (consisting of 
two subunits of protein each binding one phycocyanobilin 
chromophore) absorbs red light (λmax ~ 650 nm) (Chakdar 
and Pabbi 2016). Multiple forms of these phycobiliproteins 
have been observed in both red algae and cyanobacteria.

Phycobilins are considered as weak chromophores as they 
are less stable and more flexible in terms of their structural 
configuration compared to chlorophylls. However, on bind-
ing with proteins, phycobilins gain stability thereby increas-
ing their rate of light absorption and ultimately enhancing 
light harvesting capacity (Parson et al. 2003). In addition, 
during fluctuating light intensities, phycobilins carry out 
state transitions, which is an adaptive mechanism involv-
ing rapid physiological changes in which the light harvest-
ing antenna move between the two photosystems to balance 
the excitation pressure between photosystem I (PSI) and 
photosystem II (PSII). During state 1 transition, PSI is pre-
dominantly excited thus favouring the association of major 
light harvesting antenna complexes to PS II. On the con-
trary, when the varying light regime favour PSII excitation 
(state 2) the mobile antenna complexes are linked to PSI 
(Allen and Forsberg 2001). The mobility of phycobilisomes 
has been documented to be essential during cyanobacterial 
state1- state2 transitions, which keeps a check on the extent 
and choice of excitation energy transfer to either photosys-
tem I or II. In cyanobacteria it has been reported that state 
transitions take place at low light and help to maximize the 
productivity of absorbed light; however, these transitions 
are directed only towards maximum utilization of absorbed 
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light and do not protect the organism from photoinhibition 
(Mullineaux and Emlyn-Jones 2005). The addition of phy-
cobilins to plant photosynthetic structures (wherein PSI and 
PSII compete for similar wavelengths) via biotechnological 
approaches could be a novel mechanism for widening the 
spectrum of light capture and optimize light use efficiency. 
Since, phycobilin pigments harvest light at different frequen-
cies such plant manipulations could be exploited to grow 
crops in specific environments or to increase light harvesting 
by leaves lower down in the canopy structure where light 
intensity and spectra are altered. However, the impact of 
introducing foreign pigments into plant photosynthetic sys-
tems will impact on endogenous pigments and may prove 
problematic. Two of the more obvious problems in such a 
scenario could be (a) the architecture of green plant thyla-
koids being incompatible with phycobiliproteins-PSII asso-
ciation and (b) a major metabolic re-adjustment would be 
required to sustain the production of enough phycobilipro-
teins to have a significant impact on light harvesting. Such 
an option is complex and would require extensive research 
to determine if any benefit could be realised by such an 
endeavour.

Role of carotenoids in light harvesting 
and photoprotection

Carotenoids are yellow-orange-coloured chromophores 
(Fig. 1) that absorb light in the range of 400−550 nm. They 
are found in all photosynthetic organisms (Sankari et al. 
2018) where they carry out multiple important biological 
functions, including (i) stabilisation of lipid membranes 
(Gruszecki and Strzałka 2005; Havaux 1998) and the assem-
bly of lipid protein structures (i.e. fibrils) (Deruere et al. 
1994; Simkin et al. 2004a, 2007b), ii) photosynthetic light 
harvesting and, (iii) protecting the photosystems from photo 
radiation related oxidative damage often attributed to reac-
tive oxygen species (ROS) (Frank and Cogdell 1996; Hashi-
moto et al. 2016; Ledford and Niyogi 2005). Apart from 
their protective role, carotenoids also act as key regulatory 
molecules in both photosynthetic and non-photosynthetic 
organisms (Blankenship 2010). For example, carotenoids 
are cleaved by enzymes such as CCDs (carotenoid cleavage 
dioxygenases) and NCED’s (9-cis-epoxy carotenoid dioxy-
genases) and the products act as precursors for the genera-
tion of vital primary and secondary metabolites, including 
the phytohormones abscisic acid (Parry et al. 1990; Qin and 
Zeevaart 1999; Tan et al. 2003; Simkin 2021) and strigo-
lactones (Booker et al. 2004; Lopez-Obando et al. 2015; 
Schwartz et al. 2004; Snowden et al. 2005; Vogel et al. 
2010) as well as important flavours and aroma compounds, 
in fruit pericarp, flowers and seeds (Auldridge et al. 2006a, 
2006b; Giberti et al. 2019; Rubio et al. 2008; Schwartz et al. 

2001; Simkin et al. 2010, 2004c, 2004b). These carotenoid-
derived flavour and aroma compounds are valuable prod-
ucts in foods, flowers (Lin et al. 2002; Mahattanatawee 
et al. 2005), wine (Winterhalter and Gök 2013), Kentucky 
bourbon (Poisson and Schieberle 2008), cosmetic and spice 
industries (Bouvier et al. 2003a, 2003b).

Carotenoids are multifunctional and play an indispensable 
role in absorption of light in the blue-green zone (Hashimoto 
et al. 2016), transferring energy to Chl, (see Fig. 2) thereby 
increasing the spectrum of light collected by the light har-
vesting complex (Domonkos et al. 2013). Carotenoids also 
participate in the assembly of photosystems enhancing the 
functions of the photosynthetic apparatus and are engaged 
in regulating the expression of various genes via the by-
products of oxidation (Ramel et al. 2012). Carotenoids aid 
in quenching of excess energy (Fig. 5) when light absorption 
is greater than can be utilized by the photosystems as it may 
initiate damaging Chl triplet formation (see Xanthophyll 
(ZAV) and Lutein (LxL) cycles below) (Krieger-Liszkay 
et al. 2008). This protective function of carotenoids related 
with the antenna/light harvesting complex and the RC is 
so crucial that any obstruction in carotenoid biosynthesis 
is lethal to all photosynthetic organisms (Josse et al. 2000; 
Sandmann 1989; Simkin et al. 2000).

High light (HL) stress intensifies production of ROS 
(Fryer et al. 2002), which can prove to be destructive to plant 
lipids, proteins, nucleic acids and pigments. The lipids pre-
sent in the thylakoid membrane are abundant in polyunsatu-
rated fatty acids which are highly prone to oxidation by ROS 
resulting in lipid hydroperoxides initiating chain reactions 
which can ultimately demolish the chloroplast membrane 
(de Bianchi et al. 2010). When the light absorption by the 
plant is more than its photosynthetic capacity, dissipation 
of the excess energy is required or it may cause damage 
to the photosystems (particularly the D1 protein) reducing 
photosynthetic capacity, a process known as photoinhibi-
tion (Fig. 5). Under extreme conditions of stress, the rate of 
photoinhibition increases if the rate at which photodamage 
occurs in PSII exceeds its repair rate (Takahashi and Badger 
2011) (see Fig. 5). Certain carotenoids are responsible for 
quenching ROS as well as directly quenching triplet Chl, 
which is a major source of singlet oxygen. For example, 
β-carotene (β-car) has been reported in the core complex 
of photosystems where it quenches triplet Chls and singlet 
oxygen (Cazzaniga et al. 2016). Zeaxanthin (Z), a xantho-
phyll pigment, is found bound to the antenna proteins in the 
light harvesting complexes or free in thylakoids. It has been 
reported that this free pool of Z is capable of quenching 
excited Chl molecules, (Havaux et al. 2007) and its antioxi-
dant capacity is enhanced when it is bound to proteins in the 
light harvesting centre (Dall'Osto et al. 2010). Moreover, the 
free pool of Z, acts as an antioxidant in a synergistic manner 
with tocopherol and showcases its photoprotective property 
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in the lipids of the thylakoid membrane by removal of sin-
glet oxygen species (Johnson et al. 2008, 2007; Johnson 
and Ruban 2010). Lutein, another xanthophyll carotenoid, 
also plays an active role as a photo protectant and has been 
reported to be the most important xanthophyll stabilizing the 
light harvesting complexes (Dall'Osto et al. 2007).

The Xanthophyll (Zeaxanthin) cycle 
and non‑photochemical quenching

As mentioned above, photosynthetic organisms are able to 
adjust the size of the light harvesting antennae as a moder-
ate to long-term acclimation to growth light environment 
(Walters 2005), however, irradiance also changes on much 
shorter time scales, seconds to hours, and therefore many 
photosynthetic organisms employ mechanisms to dissipate 
absorbed light energy that is greater than can be used for 
photosynthesis. This process is known as non-photochemical 
quenching (NPQ), in which singlet-excited chlorophylls are 

quenched and the energy is dissipated as heat (Müller et al. 
2001). The major form of NPQ is the pH or energy depend-
ent component termed qE (Fig. 4), which relies on both the 
xanthophyll cycle (VAZ cycle) and the protein PsbS (Niyogi 
et al. 2004). This major quenching component is brought 
about by acidification of the thylakoid lumen (see below), 
which occurs as a result of electron transport (Baker 2008) 
and results in the activation of violaxanthin de-epoxidase 
catalysing the conversion of violaxanthin (V) [via antherax-
anthin (A) to zeaxanthin (Z) (Jahns et al. 2009)].

The interconversion of zeaxanthin (Z) and violaxanthin 
(V) (via antheraxanthin (A)) known as the ‘VAZ cycle’ 
(Jahns et al. 2009) is dependent on the enzymes violaxanthin 
de-epoxidase (VDE) (Demmig-Adams and Adams III 1996; 
Farber et al. 1997; Ruban et al. 1994; Woitsch and Romer 
2003) and zeaxanthin epoxidase (ZEP) (Demmig-Adams 
and Adams III 1996; Esteban et al. 2015) (see Fig. 4). The 
rapid changes in the VAZ cycle regulates light energy con-
version protecting the photosynthetic machinery and is an 
essential process for plastid acclimation to fluctuating light 

Fig. 4   Pathways of xanthophyll biosynthesis representing Xantho-
phyll (ZAV) and the Lutein (LxL) cycles. Lycopene β-cyclase (β/β-
cyclase) introduces two β-rings to the ends of the Lycopene carbon 
chain forming β-carotene. α-carotene is formed by the addition of 
a β-ring and ε-ring respectively to lycopene by Lycopene β-cyclase 
and Lycopene ε-cyclase, respectively. The hydroxylation of the β- 
and ε-rings of β-carotene and α-carotene results in the formation of 
oxygenated carotenoids. β-carotene is converted to zeaxanthin by 
the action of β-carotene hydroxylase and the β-rings of α-carotene is 

hydroxylated by βCHY then the ε-ring is hydroxylated by ε-carotene 
hydroxylase to form lutein. Zeaxanthin epoxidase (ZEP) catalyses 
the epoxidation of the two hydroxylated β-rings of zeaxanthin in two 
steps to generate antheraxanthin and violaxanthin. In high light, vio-
laxanthin is converted back to zeaxanthin by the activity of violax-
anthin de-epoxidase (VDE). These two enzymes are also capable of 
epoxidating and de-epoxidating the β-rings of Lutein to form Lutein 
epoxide
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(Hieber et al. 2000; Latowski et al. 2000, 2011). Environ-
mental stress (high light, wounding, cold, drought and salt 
stress), which may lead to increased ROS formation due 
to saturation of photosynthetic electron transport induces Z 
formation. For example, drought increases zeaxanthin lev-
els in Araure 4, Rice cv, elevating DEPS by 40% (Pieters 
and El Souki 2005), which has also been shown in Talinum 
triangulare (Pieters et al. 2003) and coffee (Simkin et al. 
2007a, 2008). Speeding up or changing components of the 
xanthophyll cycle could enhance productivity by increasing 
the photosynthetic efficiency based on the inverse relation-
ship between NPQ and photosynthesis (e.g., (Kromdijk et al. 
2016) see below).

Transmembrane pH differences, activates NPQ by pro-
tonation of carboxylic acid residues of the PSII antennae 
protein PsbS, and the enzymatic de-epoxidation of violax-
anthin to zeaxanthin (Sacharz et al. 2017). Proteins like PsbS 
and Light Harvesting Complex Stress Related 3 (LhcSR3) 
function as stress sensors and play a crucial role in the initia-
tion of NPQ. Correa-Galvis et al (2016) demonstrated that 
high light-induced PsbS and LhcSR3 accumulation triggered 
NPQ in C. reinhardtii and these authors further proposed 
the crucial role of PsbS in activation of NPQ by promoting 
conformational changes essential for activating LHCSR3-
dependent quenching in the antenna of photosystem II. 

Unlike PsbS, LhcSR3 is a pigment binding protein, which 
binds xanthophylls V, Z, L along with Chl a and Chl b. It 
accumulates in periods of high light intensity and quenches 
Chl molecules in the excited state and is essential for energy 
quenching (qE) in C. reinhardtii (Bonente et al. 2011; Giro-
lomoni et al. 2019). Moreover, this protein facilitates lutein 
radical cation formation, which further aids in the process of 
dissipating excess energy (Ballottari et al. 2016).

In a recently published study on bioengineered tobacco 
plants, Kromdijk et al (2016) revealed that the over expres-
sion of VDE, and ZEP, to augment xanthophyll cycle kinet-
ics, and escalating the amount of the PsbS protein, for sens-
ing pH in the lumen, directly contributed to faster NPQ 
relaxation and quicker retrieval of CO2 fixation after a period 
of high light intensity (Kromdijk et al. 2016). These findings 
showed that CO2 fixation, ribulose bisphosphate regenera-
tion capacity (Jmax) and maximum carboxylation capacity 
(Vcmax) could be improved upon. Speeding up plant recov-
ery to fluctuating environments in field conditions also 
resulted in an increase in biomass by 14 to 20% (Kromdijk 
et al. 2016). These data indicate that the faster activation and 
relaxation of NPQ can be exploited to improve plant produc-
tivity and yield potential. In yet another study in transgenic 
tobacco plants, an increased PsbS expression was found to 
reduce stomatal opening, with water loss curtailed by 25% 

Fig. 5   Defence mechanisms of photosynthetic pigments as stress 
busters. The figure illustrates the pathways initiated by pigments as 
photo protectants in response to environmental stress thereby reduc-
ing photoinhibition which curtails photosynthetic efficiency. The role 

of chlorophyll, carotenoids, carotenogenic response (CR), anthocya-
nin, chloroplast, and leaf movements in curbing the rate of photoda-
mage, promoting PSII repair and thereby attenuating photoinhibition 
has been described
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per carbon dioxide assimilated (Glowacka et al. 2018). In 
contrast to the results reported in tobacco, recent results in 
Arabidopsis thaliana have shown that the overexpression of 
VDE, ZEP and the PsbS proteins did not lead to increased 
productivity but to impaired biomass accumulation (Gar-
cia-Molina and Leister 2020). These contradictory results 
between tobacco and Arabidopsis are a further indication 
that the limitations and control of NPQ may be species 
dependent and identification of specific targeted manipu-
lations for different crop plants needs to be carried out to 
obtain consistent results providing consistent increases in 
yield in different growing environments. However, these 
data provide a route for improving crop productivity through 
the manipulation of NPQ and could be exploited to study a 
variety of crops to determine the impact on crop yield. Such 
manipulations may also be beneficial in crop plants grown in 
environments where high light and future high temperatures 
could curtail biomass/grain yield of conventional crops.

The Lutein epoxide cycle 
and non‑photochemical quenching

Lutein (L) performs vital functions in plants, ranging from 
enhancing the stability of antenna proteins (Jahns et al. 
2001), light harvesting through excitation energy transfer to 
Chl (Matsubara et al. 2009), Chl triplet state quenching in 
LHCII (Standfuss et al. 2005) and superfluous energy dis-
sipation (NPQ) (Li et al. 2009). García-Plazaola et al (2007) 
proposed that accumulation of L (by conversion of lutein 
epoxide (Lx) to L) in the light harvesting complex converts 
this highly efficient light harvesting system into a system 
for energy dissipation (García-Plazaola et al. 2007) (Fig. 4). 
The induction of NPQ by L, as with the other protective 
carotenoids including VAZ, is brought about by a decrease 
in lumen pH. This is usually induced by photosynthetic 
electron transport at high light intensities and can also be 
attributed to increased cyclic electron flow (Armbruster et al. 
2017) or can be driven by a decline in chloroplast ATPase 
proton conductance due to a reduction in the utilization of 
ATP by for example reduced Calvin cycle activity (Kanaz-
awa and Kramer 2002; Takizawa et al. 2008). The LxL cycle 
was originally described in green tomato fruit by Rabinow-
itch et al. (Rabinowitch et al. 1975) and was identified later 
in photosynthetic stems of Cuscuta reflexa (Bungard et al. 
1999). Functional Lx has been shown in several unrelated 
taxa, but it is reported to be an exclusive characteristic of 
woody plants (García-Plazaola et al. 2004), however, ele-
vated rates of Lx have also been found in Cucumis sativus 
L (Esteban et al. 2009a, 2009b). As stated by Dall'Osto et al 
(2006), L is more efficient than V in terms of quenching of 
triplet states of Chl. Lx often accumulates in older shaded 
leaves, which are obscured from intense light by the higher 

canopy (Dall'Osto et al. 2006). At low temperatures, the Lx 
cycle is operational and furthermore, the binding of lutein 
to Early Light-Induced Protein accumulating in the plant 
due to stress, results in increased lutein concentration (Ver-
hoeven 2014). Lx has also been shown to co-localise with V 
in shade leaves of Inga (Matsubara et al. 2007, 2005). It has 
previously been suggested that this co-localisation indicates 
that Lx probably will be equivalent to V both structurally 
and functionally (García-Plazaola et al. 2007). Under high 
light, VDE enzyme which in addition to de-epoxylating V in 
the VAZ cycle, also de-epoxylates the Lx β-ring (see Fig. 4) 
(Goss 2003; Yamamoto and Higashi 1978), converting Lx 
back to L. The conversion of L to Lx by the epoxidation of 
the β-ring of L is most likely carried out by the enzyme ZEP 
(García-Plazaola et al. 2007). It should be noted that the 
epoxidation of L is extremely slow due to the low affinity 
of ZEP for L.

Identifying variants of ZEP and VDE with a greater affin-
ity for L and Lx offers the possibility of engineering plants 
with a higher functioning LxL cycle, which complements 
and supplements the VAZ cycle increasing the efficiency of 
NPQ. This strategy would be effective since VAZ and LxL 
are two kinetically distinct cycles. On exposure to high light, 
L (formed by conversion of Lx to L) replaces Lx in the light 
harvesting complexes therefore taking the place of A + Z in 
light harvesting complexes; (Matsubara et al. 2007) to “lock 
in” a potential for higher NPQ in the dark thereby reducing 
PSII photochemical efficiency (Jia et al. 2013).

The precursor for the formation of L is α-car, which 
interestingly has been found to accumulate at the expense 
of β-car in the leaves and green fruit of a number of plant 
species including carrot (Koch and Goldman 2005), coffee 
(Simkin et al. 2010, 2008) and many shade-grown or shade-
tolerant plants (Demmig-Adams 1998; Demmig-Adams and 
Adams III 1992; Matsubara et al. 2009; Siefermann-Harms 
1994; Thayer and Björkman 1990). It has previously been 
suggested that α-car may substitute β-car molecules required 
for the assembly of photosystem II complex under certain 
conditions (Simkin et al. 2008) and this additional accu-
mulation of α-car may be required to stabilise the pool of L 
for plants where the Lx cycle may have greater importance. 
Improving the Lx cycle in plants where the VAZ cycle pre-
dominates has the potential to offer either a greater degree of 
protection to plants exposed to high light or more flexibilty 
dependent on the available pool of carotenoids.

Carotenoid binding proteins

In addition to the role of pigments in light harvesting and 
photoprotection, the role of pigment binding protein in 
plants and cyanobacteria must be discussed. In plants, Fibril-
lins (FIB/FBN/FIN), also known as chloroplast drought 
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stress-related proteins; for review see (Simkin et al. 2004a; 
Singh et al. 2010; Singh and McNellis 2011), and Orange 
Carotenoid Proteins (OCP) found in cyanobacteria play 
important roles in photoprotection.

FIBs have been identified as carotenoid associated pro-
teins (Simkin et al. 2004a; Vishnevetsky et al. 1999) and 
are present in all photosynthetic organisms ranging from 
cyanobacteria to higher plants. FIBs have been shown to be 
a major structural protein involved in biotic/abiotic stresses, 
pathogenic infection, high salt, high light, exposure to ozone 
or drought (Simkin et al. 2004a, 2007b, 2008; Singh et al. 
2010; Singh and McNellis 2011; Youssef et al. 2010; Arii-
zumi et al. 2014; Langenkämper et al. 2001; Rey et al. 2000; 
Jiang et al. 2020). FIB levels have also been correlated with 
a reduction in photoinhibition (Fig. 5) under high light, and 
FIB expression has been shown to be regulated by ABA 
indicating that FIB plays a role in abscisic acid-mediated 
photoprotection in Arabidopsis (Yang et al. 2006) and FIB 
accumulated linked response to the production of ROS in 
plastids. It has been reported that FIB are structural com-
ponents required for the biosynthesis of plastoquinone-9 
(PQ-9) (Kim et al. 2015). PQ-9 is the most common form 
of plastoquinone, an isoprenoid molecule involved in the 
transport of electrons between the Cytochrome b6f complex 
and PSII in the light-dependent reactions of photosynthesis. 
Transgenic plants with reduced Fibrillin levels had less PQ-9 
resulting in lower photosynthetic performance and a slower 
growth rate compared to control plants (Kim et al. 2015). 
In tobacco, over-expression of pepper fibrillin resulted in 
enhanced development and accelerated flowering when 
grown under HL proposing that fibrillin-related proteins play 
a vital role in plant development in relation to environmental 
and light stresses (Rey et al. 2000).

In cyanobacteria, NPQ relies on the light absorption (in 
the blue-green spectrum) by a protein which binds carot-
enoids; the Orange carotenoid protein (OCP) (Kirilovsky 
2007). OCP binds a single non-covalently bound ketocarot-
enoid (3’-hydroxyequinenone) (Holt and Krogmann 1981; 
Kerfeld 2004a, b; Wilson et al. 2006; Wu and Krogmann 
1997) and plays a dual role as a photoreceptor and a facilita-
tor of energy dissipation, modulating the extent of energy 
that arrives at the phycobilisome (Wilson et  al. 2006). 
Upon illumination, OCP undertakes a reversible structural 
change from the secure ‘orange’ form to the active ‘bright 
red’ form and binds itself to the phycobilisome core, dis-
sipating 80% of its excitations as heat before they reach to 
the RC (Kirilovsky and Kerfeld 2012). This photoprotective 
mechanism is essential for the adaptation of cyanobacte-
ria to light-induced stress. No similar mechanism currently 
exists or functions in plant chloroplasts. The genetic intro-
duction of such a mechanism has the potential to improve 
plant responses to stress/high light and therefore enhance 
productivity. Due to the complexity of this system, and the 

key role played by ketocarotenoids, which are not found in 
plants, further research is required to comprehend the pro-
tein carotenoid association and whether such a mechanism 
could be functional and beneficial in higher plant chloro-
plasts. Attempts have already been made in this direction 
by Andreoni et al (2017) who evaluated the possibility of 
controlling the energy transfer pathway in response to light 
intensity by bioengineering OCP in an artificially designed 
antenna model (Andreoni et al. 2017).

Anthocyanins

Anthocyanins are polyphenolic pigments found throughout 
the plant kingdom. In plants, anthocyanins play a number 
of critical roles in reproduction, attracting pollinators/seed 
dispersers and in protection against various stresses, both 
abiotic and biotic (Siva 2007). Foliar anthocyanins (AnCs) 
are abundant in juvenile and senescing leaves; however, 
their distribution varies amongst species. Anthocyanins are 
generally stored in the vacuole in or just below the adaxial 
epidermis, although under certain circumstances AnCs accu-
mulate in cell vacuoles of the abaxial epidermis, palisade 
and spongy mesophyll where they are involved in photo-
protection (Steyn et al. 2002; Chalker-Scott 1999; Hughes 
and Smith 2007; Hughes and Lev-Yadun 2015; Pietrini et al. 
2002). AnCs play an active role in preventing photoinhibi-
tion and photodamage by quenching of excess solar radiation 
when the existing photoprotective mechanisms for quench-
ing of excess energy in plants are completely exhausted dur-
ing periods of extreme oxidative stress; particularly high 
light, extreme temperatures, elevated UV, drought, high soil 
salinity and nutrient deficiency (Chalker-Scott 1999; Steyn 
et al. 2002). Though the functionality of AnCs in leaves is 
debatable, in the epidermal layers they have been shown to 
absorb blue light (Chalker-Scott 1999; Feild et al. 2001) and 
it has been suggested that the photoprotective function of 
AnCs largely depends on this ability and to a lesser degree 
the absorption of red photons (Gould et al. 2018; Jordheim 
et al. 2016; Tattini et al. 2014). AnCs also act as sinks for 
excessive photosynthates generated due to light satura-
tion and thus support photosynthesis by limiting feedback 
regulation of photosynthesis due to escalated production of 
photoassimilates. In a recent study by Piccolo et al (2020), 
AnCs were found to limit the accumulation of sugar (hex-
oses) in the cytosol by directing the excessive sugar into the 
vacuole. These researches emphasized on the sugar buff-
ering role of AnCs which attenuated the sugar supported 
regulation of photosynthesis (Piccolo et al. 2020) (Fig. 5). 
Furthermore, AnCs, play a role in slowing down the rate of 
senescence and acting as metal chelating agents and sun-
screens (acylated anthocyanins absorb UV) (Solovchenko 
and Merzlyak 2008; Merzlyak et al. 2008). Manipulation of 
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AnCs levels could be used to adapt plants to extreme light 
environments where other mechanisms for photoprotection 
may be overwhelmed, and/or delaying senescence increas-
ing the photosynthetic lifespan of leaves to improve yield.

Other strategies to harvest light and avoid 
photodamage: chloroplast and leaf 
movement

Other strategies in line with avoidance of photodamage 
include mobility of the leaf where the leaf lamina aligns 
itself parallel to the light direction (paraheliotropism) 
(Pastenes et al. 2005) and movement of the chloroplast 
(Haupt and Scheuerlein 1990; Kasahara et al. 2002) (Fig. 5).

Chloroplast movement, also referred to as chloroplast 
photo relocation, is essential for plant adaptation to chang-
ing light conditions and allows plants to maximise photo-
synthetic efficiency whilst avoiding photodamage of chloro-
plasts (Kasahara et al. 2002). In the case of the ‘avoidance 
response’, relocation of chloroplasts away from the strong 
light helps to minimise photodamage and in the case of 
the ‘accumulation response’ they move towards weak light 
to optimise light use for photosynthesis (Wada and Kong 
2011). These responses are vital for plants below a canopy 
where strong winds can rapidly change the environment 
from high light to dark shade, requiring plants to adapt 
quickly to these new norms and the requirements of chloro-
plasts to move down for photoprotection or up for optimal 
photosynthesis (Wada and Kong 2011). Chloroplast move-
ments are regulated by phototropins (phot), which are blue 
light receptors (Christie 2007; Kodama et al. 2008; Komatsu 
et al. 2014). phot 2 mediates the avoidance response whilst 
the accumulation response is facilitated by phot 1 and phot 2 
(Kong et al., 2012; Suetsugu and Wada, 2012). The research 
findings using phot2 mutant plants, in contrast to wild type, 
demonstrated that phot2 mutant plants could not withstand 
the pressures of light fluctuations (Gotoh et  al. 2018). 
Thereby the avoidance response plays a photoprotective role 
in plants experiencing sudden and extreme light fluctuations. 
These movements also protect chloroplast pigments from 
exposure to damaging light levels. Moreover, amongst the 
photosynthetic pigments the xanthophyll lipids have been 
speculated for their role in chloroplast movements initiated 
by blue light as the VAZ cycle pigments have been reported 
to be altered with a 40-fold increase in the levels of zeax-
anthin. Also, the cis and trans photo isomers of zeaxanthin 
have been suggested to trigger the chloroplast mobility under 
the influence of blue light (Tlałka et al. 1999).

The positioning of the leaves in the plant have been 
observed to play a role in phototropism as the leaves posi-
tioned perpendicular to light will absorb more light as com-
pared to leaves placed in a parallel orientation (Lovelock 

et al. 1992). Therefore, variations in the leaf angle have been 
suggested to be an indicator of leaf movements in plants due 
to fluctuating light intensities. As per a recent study on soya 
bean plant, under high light conditions an increase in the 
leaf angle (epinasty) was observed due to the reduction in 
the angle between the stem and the abaxial leaf petiole (Feng 
et al. 2019). Thereby suggesting a parallel orientation of the 
leaf to the incident light of high intensity and protecting the 
plant from photodamage. On the contrary, leaf movements 
reported as a result of low light is an upward movement 
called hyponasty (increased angle between the stem and the 
abaxial leaf petiole) to capture more photons under limited 
light conditions (Pharis and King 1985) (Fig. 5). This leaf 
movement has been observed to vary amongst crop species 
and is regulated by cryptochromes and phytochromes (Mil-
lenaar et al. 2009). The variations in light intensities also 
affect the leaf anatomy as an increase in leaf thickness due 
to enhanced cell growth of palisade and spongy tissues has 
been reported under high light exposure (Fan et al. 2018). 
Whilst large cell gaps and reduced cellular development 
has been reported in leaves exposed to low light intensities 
(Kalve et al. 2014).

Conclusions

Enhancing crop yield to meet the global demand is chal-
lenging in these unprecedented times, therefore, enhancing 
the efficiency of the photosynthetic machinery, through 
genetic manipulation of the Calvin Benson cycle, pho-
torespiration and photosynthetic electron transport (see for 
review (Ort et al. 2015b; Simkin 2019; Raines et al. 2022; 
Simkin et al. 2019)), coupled with the development of bio-
technological tools (i.e. new vectors Exposito-Rodriguez 
et al. 2017; Engler et al. 2008) and promoters (Alotaibi 
et al. 2018; Mukherjee et al. 2015) have been key tar-
gets. Furthermore, novel pathways have been discovered 
and new targets identified to increase the efficiency of the 
photosynthetic machinery by optimizing the levels of pho-
tosynthetic pigment levels in the chloroplast, which could 
be exploited to enhance quantum efficiency and increase 
yield to meet the global demands for food security. The 
large variety of pigments with different absorption spectra 
offer the potential to engineer plants for specific environ-
ments or improve plant productivity by widening the spec-
tra of light harvested and increasing the overall quantity of 
useable light. In combination with an enhanced ability to 
dissipate excess energy, prevent photodamage, stimulate 
repair and shorten the period of photoinhibition, photosyn-
thetic pigments exhibit tremendous potential to boost the 
photosynthetic efficiency in diverse environments. Engi-
neering of photosynthetic pigments in plants targeting spe-
cific environments would improve the survival potential, 
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coupled with enhanced biomass production. Furthermore, 
several current studies have demonstrated that photons of 
far-red light (701–750 nm) interplay with photons with 
a shorter wavelength to enhance leaf photosynthetic effi-
ciency (Zhen and Bugbee 2020) indicating that improve-
ments to far-red light interception could also have the 
potential to improve light use efficiencies and yield.

In addition, development of unique photosynthetic sys-
tems may open up the possibilities of designing plants for 
unique environments and new growing situations, includ-
ing vertical farms, Antarctic greenhouse (Bamsey et al. 
2015) and new non-terrestrial environments, such as space 
travel (Poulet et al. 2014), where plants would be exposed 
to different light intensities including a mix of artificial 
and natural light; or on the surface of Mars, where light 
levels are approximately 43% of those on Earth. Work to 
design and operate greenhouses in extreme environments, 
such as the Arthur Clarke Mars Greenhouse (Giroux et al. 
2006; Bamsey et  al. 2009) and the Lunar greenhouse 
design (Zeidler et al. 2017) are ongoing, but it may be 
necessary to ‘genetically’ acclimate new plant varieties 
to be productive in an essentially low light environment. 
Furthermore, extra-terrestrial environments also have high 
UV levels and as previously shown acylated anthocyanins 
absorb UV, offering a further potential mechanism of pro-
tecting plants in such environments. Manipulating pho-
tosynthetic pigment composition may offer opportunities 
to design crops for specific needs. This review has pro-
vided a background to various pigment protein complexes 
and introduced the scope to explore photosynthetic pig-
ments towards enhancing biomass production. This area 
of research requires more study to fully benefit from the 
availability of chlorophylls and accessory pigments found 
in nature.
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