Hlahleni, Emmanuel Tafara (2022) ZFY:A putative transcription factor with a poorly conserved N-terminus and a highly conserved C-terminus. Master of Science by Research (MScRes) thesis, University of Kent,.

Downloaded from
https://kar.kent.ac.uk/93709/ The University of Kent's Academic Repository KAR

The version of record is available from
 https://doi.org/10.22024/UniKent/01.02.93709

This document version UNSPECIFIED

DOI for this version

Licence for this version

CC BY (Attribution)

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

ZFY: A putative transcription factor with a poorly conserved N-terminus and a highly conserved C-terminus

A thesis submitted to the University of Kent
M.Sc. Genetics in the Faculty of Science,

Technology and Medical Studies

> Univesity of

2020

Emmanuel Tafara Hlahleni

School of Biosciences

Supervisor: Dr Peter Ellis

I Declaration

No part of this thesis has been submitted in support of an application for any degree or other qualification of the University of Kent, or any other University or Institution of learning.

Emmanuel Tafara Hlahleni

December 2020

II Acknowledgements

First and foremost, I would like to express my sincere gratitude to my excellent supervisor Dr Peter Ellis, who made this project possible. I am appreciative for his guidance, advice, patience, enthusiasm, and benevolence throughout the entirety of this project. He made sure the experience was as pleasant as possible despite the hardships of the pandemic. I would like to also thank my co-supervisor Dr Tim Fenton for also ensuring the project was possible. An additional thanks to Ane Stranger, Alex Hendry, and Lucas Kazim for their assistance throughout my project. I would also like to thank Corey Kirkland and Dr Marta Farré Belmonte for assistance with the bioinformatic analysis, and my other lab friends within the Griffin lab, whom I shared bench spaces and my other friends from the Fenton lab. My sincere appreciation also goes to Laura Freeman, an undergraduate student whom I supervised along with Dr Peter Ellis, for trusting in my limited supervisory skills. I would also like to thank the Ortega lab as they also assisted me with troubleshooting some areas of my project.

Last but not least, I would like to thank my family for the endless support they have offered, and friends who also provided motivation throughout the difficulties of the global pandemic

III Contents

Table of Contents
I Declaration. 1
II Acknowledgements 2
III Contents 3
IV List of Figures6
V Abbreviations 7
VI Abstract 10
1 Introduction 11
1.1 Head and neck cancers 11
1.1.1 Head and neck squamous cell carcinoma are more prevalent in men than women 11
1.2 ZFY 14
1.2.1 ZFY structure 14
1.2.2 ZFY splicing in relation to transactivation ability 17
1.3 Physiological functions of ZFY 20
1.3.1 MSCI 20
1.3.2 Physiological functions of $Z F Y$ 23
1.3.3 ZFY as an oncogene 26
1.3.4 Regulation of $Z F Y$ splicing 27
1.4 RBMY 28
1.4.1 RBMY structure 28
1.4.2 RBMY Physiological Function 30
1.4.3 Proposed RBMY Oncogenic Effect 31
1.5 Project outline 32
2 Materials \& Method 35
2.1 ZFY protein and cDNA (nucleotide) search and alignment 35
2.2 ZFY Phylogenetic Tree 41
2.3 ZFY 9aaTAD Motif and DNA binding site prediction 41
2.4 Transformation and plasmid minipreps 44
2.5 E. coli Growth 45
2.6 ZFY Induction and Isolation 45
2.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 47
2.8 Western blot analysis 48
3 Results 50
3.1 ZFY exon length is conserved in majority of the land vertebrates 50
3.2 Vertebrates ZFY protein alignment and phylogeny 53
3.3 Land vertebrates ZFY protein alignment and phylogeny 65
3.4 9aa TAD and DNA binding site prediction. 75
3.5 ZFY domain binding 84
3.6 Transformations 88
3.7 Growth of pET15b transformed E. coli cells 88
3.8 Recombinant hZFY-long AD expression was absent, but hZFY-short AD was abundant 89
3.9 Western Blot analysis shows hZFY-short AD protein was present. 90
4 Discussion 93
4.1 ZFY N-terminus is less conserved than the C-terminus 93
4.2 Nine amino acid TAD motif predictions are highly conserved, and two additional motifs located on the $5^{\text {th }}$ and $6^{\text {th }}$ exon 94
4.3 ZFY zinc fingers are highly conserved 97
4.4 ZFY zinc finger binding sites 98
4.5 ZFY phylogeny 100
4.6 E. coli expression of recombinant hZFY proteins 101
4.7 Electrophoresis and western blot analysis 103
4.8 Future Work 105
4.9 Conclusions 107
5 References 109
6 Supplementary data 120

IV List of Figures

Figure 1. Head and neck cancer cases by percentages. 11
Figure 2. Human ZFY gene transcript and predicted protein product. 15
Figure 3. Human ZFY gene transcript variants. 18
Figure 4. Human ZFY expression profiles in various organ tissues. 19
Figure 5. Human meiotic sex chromosome inactivation model. 22
Figure 6. Overview of ZFY function 25
Figure 7. Human RBMY gene and RBMY protein structure. 29
Figure 8. Maximum likelihood (Bootstrap) tree of the ZFY and ZFX multiple sequence alignment shown in Table 12. 65
Figure 9. Maximum likelihood (Bootstrap) tree of land vertebrate ZFY pimary
sequences shown by Table 10. 73
Figure 10. Maximum likelihood (Bootstrap) tree of multiple ZFY nucleotidesequence alignment.74
Figure 11. Natural log plot for the growth of transformed T7 E. coli expressing therecombinant hZFY AD variants (without the DBD) over a period of 120 (hZFY-shortAD) and 150 minutes (hZFY-long AD).. 88
Figure 12. Expression of hZFY AD variants without (w/o) DBD. 90
Figure 13. hZFY-short AD protein without the DBD expression shown using horse
radish peroxidase tagged primary antibody. 91
Figure 14. Expression patterns on SDS PAGE and Western blots of hZFY-long AD without DBD. hZFY was harvested as described in section 2.4. 92
Figure 15. Zinc finger structure with a C2H2 motif. 98
Figure 16. Proposed ZFY binding mechanism. 100
Figure 17. Flow chart for the small-scale expression test adaptation (Zerbs, Giuliani and Collart, 2014). 103

V Abbreviations

9 aa TAD	9 amino acid transactivation domain
9G8	Splicing factor 9G8
aa	Amino acid(s)
AD	Acidic domain
ATR	Ataxia telangiectasia and Rad3-related
AR	Androgen receptor
AZFb	Azoospermia factor
BIC	Bayesian Information criterion
BRCA1	Breast cancer type-1 susceptibility protein
BSA	Bovine serum albumin
C2H2	Cystiene2-Histidine2
cDNA	Complementary DNA
CRISPR/Cas9	Clustered Regularly Interspaced Short Palindromic Repeat/ CRISPRassociated protein-9
CRM1	Chromosome region maintenance 1
CYPT	Cysteine-rich perinuclear theca
DBD	DNA binding domain
DSB	Double Strand Breaks
EDTA	Ethylenediaminetetraacetic acid
eGFP	Enhanced green fluorescent protein
EJC	Exon junction complex
E. coli	Escherichia coli

FANTOM5	Functional Annotation of The Mammalian Genome
yH2AX	H2AX phosphorylated on serine 139
GTEx	Genotype-Tissue Expression
H2AFX	H2A histone family member X
HA-tag	Hemagglutinin-tag
HCC	Hepatocellular carcinoma
His-tagged	Histidine tagged
HMMER	Hidden Markov model
HNSCCs	Head and neck squamous cell carcinomas
HPA	Human Protein Atlas
HPV	Human Papilloma Virus
HRP-conjugated	Horseradish peroxidase-conjugated
hZFY	Human ZFY
hRBMY	Human RBMY
IPTG	isopropyl β-d-thiogalactopyranoside
kDa	Kilodalton
LB	Lysogeny Broth
MEGAX	Molecular Evolutionary Genetics Analysis
MI	First Meiotic Metaphase Checkpoint
MSCI	Meiotic Sex Chromosome Inactivation
MSY	Male specific region of the Y chromosome
NX	Normalized eXpression

Ni-NTA	Nickel Nitriloacetic acid
NCBI	National Center for Biotechnology
Information	

VI Abstract

ZFY is a male specific Y chromosome transcriptional factor with two splice variants: a long form that is ubiquitously expressed in most mammalian species, and a short form that is testis specific. Mouse models indicate that the physiological functions of full length ZFY include promoting meiotic sex chromosome silencing at the onset of pachytene, apoptotic elimination of aberrant cells during pachytene, and spermatid development following meiotic divisions. The testis specific short isoform has no known physiological role but is unable to activate transcription in Saccharomyces cerevisiae. Previous work in the EllisFenton laboratory showed ectopic expression of the short form in HPV-negative oropharyngeal squamous cell carcinoma (OPSCC) cell lines, which could reveal the factor leading to higher head and neck squamous cell carcinoma incidences in males than females. However, the mechanisms leading to the difference in the transactivating activity between the two isoforms are still unknown. Thus, we sought to locate the regions responsible for the transactivation activity of full length ZFY by performing protein and bioinformatic structural studies. We successfully expressed the testis specific short ZFY, and bioinformatically identified a conserved nine amino acid transactivation domain (9aa TAD) motif SVVIQDVVEDVVIE within the alternatively spliced exon. Our results suggest that short form ZFY may competitively bind to the same genomic sites as the full length ZFY, but lacks the motif predicted to recruit the core transcription complex. Thus, it may have an oncogenic effect due to inhibition of the pro-apoptotic functions of full length ZFY.

1 Introduction

1.1 Head and neck cancers

1.1.1 Head and neck squamous cell carcinoma are more prevalent in men than women

Head and neck cancers (HNCs) are a heterogenous group of diseases that affect the upper aerodigestive tract, specifically the mucosal lining (Božinović et al., 2019). These diseases affect the pharynx, oral cavity, sinonasal tract or the larynx, and affect predominantly the squamous cell epithelia as usually $>90 \%$ of the cancers are head and neck squamous cell carcinomas (HNSCCs) (Vigneswaran and Williams, 2014; Božinović et al., 2019). Of the worldwide 18 million new cancer cases reported in 2018, roughly $>880,000$ were HSNSCCs (lip, oral cavity, larynx, oropharynx, nasopharynx, hypopharynx, and salivary gland combined total) indicating that there is high incidence/burden (Bray et al., 2018).

Figure 1. Head and neck cancer cases by percentages. Histopathological cancer type ratios shown next to the HNC cases. 619 subjects in total. SCC: Squamous cell carcinoma; AC: Adenocarcinoma; MeC: Mucoepidermoid carcinoma; BcC: Basocellular carcinoma; Ca ex PA: Carcinoma ex pleomorphic adenoma; NeC: Neuroendocrine carcinoma (Stoyanov et al., 2017)

However, there are significant disparities between male and female incidence as males have higher HNSCCs incidences than females, as various studies have shown. One study in the Cureus Journal of Medical Science by (Stoyanov et al.,
2017) conducted in Bulgaria showed that the male to female ratio for HNC cases was 3.24:1 (Figure 1), and the male to female ratio for HNSCCs cases alone was roughly $4.56: 1$ which demonstrated that there were large disparities by sex. However, numbers vary as a 2018 study in the CA: A Cancer Journal for Clinicians showed a male to female HNSCCs ratio of $3: 1$, showing males consistently have a higher ratio (Bray et al., 2018).

In terms of susceptibility of cancer incidence, the environment usually has a greater influence than genetics but genetic factors can modulate the effects of environmental factors (Lichtenstein et al., 2000; Dorak and Karpuzoglu, 2012). Environmental factors that have been associated with HNSCCs incidence were excessive tobacco use and alcohol consumption (also both combined) as $70-80 \%$ of new HNSCC diagnoses were interpreted to be due to tobacco and alcohol use (Hashibe et al., 2009; Praud et al., 2016; Jethwa, Khariwala and Surgery, 2018). Cigarette smoke has been shown to be an HNSCC causative agent, and European and Americas region data between 1970-2000 from one study suggested that males consumed tobacco roughly five times more than females which likely increases the risk and contributes to the higher incidence in HNSCCs, but the smoking numbers likely vary as of date due to changes in culture as females smoke as much as their male counterparts (Guindon and Boisclair, 2003; Hashibe et al., 2009; Domingo-vidal et al., 2019).

Though the environmental factors contribute to cancer development, biological factors can also contribute to cancer development. Males generally have been shown to have less competent immune systems in comparison to females (Klein, 2012). Females usually have more competent cell mediated and humoral immune responses which are useful for efficient immune surveillance involved in clearing pathogens (usually viruses that induce tumours such as HPV), and elimination of
nascent tumours by targeting tumour-specific antigens via better extrinsic tumour suppressor mechanisms (Swann and Smyth, 2007; Dorak and Karpuzoglu, 2012). Immune responses are interpreted to be modulated by hormones, namely oestrogens and androgens which both have different effects on the immune response (Dorak and Karpuzoglu, 2012). Oestrogens are thought to enhance the immune response by enhancing the innate immune response and increased cytokine/chemokine levels, whereas in males for instance, as testosterone is an important male androgen, high levels weaken the immune response by reducing antigen expression on antigen presenting cells (Dorak and Karpuzoglu, 2012). Thus, meaning that the immune surveillance in males is likely more incompetent than female immune surveillance, and HNSCCs develop more frequently.

Furthermore, females have two X chromosomes and one of the chromosome is usually inactivated. However, the inactivation is random so usually 50% of the cells contain one copy inactivate and the remaining 50\% contain the other chromosome. Therefore, if there is a deleterious polymorphism or mutation in one X chromosome, 50\% of the other cells contain the functional gene allowing dosage compensation for the mutated gene (Dorak and Karpuzoglu, 2012). However, males only have one X chromosome so if there were mutations within a tumour suppressor gene, the mutation leads to uncontrollable cell proliferation and likely increase the prevalence of HNSCC incidences in males (Dorak and Karpuzoglu, 2012). As males have a Y chromosome, this likely contains genes that can lead to oncogenesis. Ectopic expression of testis-specific Y-linked genes in one study by (Kido, Fai and Lau, 2015) was seen in somatic cells that were cancerous. This study suggested that Y chromosome genes potentially influence cancer development in the context of hepatocellular carcinomas (HCCs), but the same theory could possibly be applied to other cancers. As expression of male specific
region of the Y -chromosome (MSY) genes is usually balanced in cells, lack of other MSY genes exacerbates oncogenesis as gene expression in the cancer cells is not properly regulated (Kido, Fai and Lau, 2015).

A recent qualitative review interpreted the enigmatic sex disparity in HNSCC for instance as being not fully explained by any environmental or genetic factors. Sexspecific biological factors were suggested to either act indirectly by modulating extrinsic oncogenic factors or directly as risk factors (Edgren, Liang and Chang, 2012). Therefore, the following thesis outlines two male-specific candidate oncogenes that could be involved in HNSCC oncogenesis when ectopically expressed. I will focus primarily on the zinc finger Y-chromosomal protein gene (ZFY), the focus of my lab work - however I will also briefly outline the biology of RNA-binding motif gene on Y chromosome (RBMY) as this is a proposed splicing regulator which was co-expressed with a testis-specific ZFY isoform in some HNSCCs cell lines in prior work from the Ellis-Fenton laboratory. It is thus possible that RBMY is responsible for the alternative splicing event generating the testis specific isoform.

1.2 ZFY

1.2.1 ZFY structure

Zinc finger Y-chromosomal protein gene (ZFY gene) is a gene that is principally expressed in placental mammals, is proposed to have an important role in male development, and is situated within the non-recombining region of the Y chromosome (Page et al., 1987; Decarpentrie et al., 2012; Jiang et al., 2012). The ZFY protein is predicted to be located intracellularly in the nucleoplasm and nucleoli, and human ZFY is 801 amino acids long (90.5 kDa) with a predicted charge of -16 , and an isoelectric point between 5.65-5.99. The protein is composed of a large N -terminal acidic activating domain, and a C-terminal DNA
binding domain containing 13 zinc fingers encoded by a single exon, which are separated by what is proposed to be a short basic nuclear localization signal which implies it is a nuclear protein (Koopman, Ashworth and Lovell-Badge, 1991).

Recently, an alternatively spliced version of the ZFY transcript was discovered by reverse transcription polymerase chain reaction (RT-PCR), which lacks the second coding exon that encodes half the acidic domain. Thus, two transcripts of ZFY are produced which are referred to as ZFY-long defined by the inclusion of the second coding exon and ZFY-short which is defined by the exclusion of the second coding exon (Decarpentrie et al., 2012).

Figure 2. Human ZFY gene transcript and predicted protein product. (A.) The ZFY gene transcript shows 8 exons in total with 1 non-coding exon (grey) and 7 coding exons (coloured) not drawn to scale. The exons are all varying in sizes and the total gene (including introns) is 47.13 kb , but the total exon length is 5.239 kb . The resulting translated product is 801 amino acids long with a molecular weight of $90,504.87 \mathrm{Da}$. The diagram is an adaptation of the Archive Ensembl transcript ZFY-201 (transcript ID: ENST00000155093.7). (B.) An adapted depiction of the ZFY protein by (Koopman, Ashworth and Lovell-Badge, 1991) showing the N -terminal acidic domain, nuclear localisation sequence and the C-terminal DNA binding domain with 13 C 2 H 2 zinc fingers (ZF).

ZFY proteins belong to the Krüppel-type family of C2H2-type zinc finger proteins (Koopman, Ashworth and Lovell-Badge, 1991; Poloumienko, 2004; Decarpentrie et al., 2012). The acidic activating domain and the DNA binding domain (DBD) in combination suggested that the protein has hallmarks of conventional eukaryotic transcription factors (TF) (Mardon et al., 1990). The zinc finger domains are usually 21 amino acids long, contain the $\mathrm{C}-\mathrm{X}_{2}-\mathrm{C}-\mathrm{X}_{12}-\mathrm{H}-\mathrm{X}_{3}-\mathrm{H}$ pattern, and are usually referred to as poly-ZF as they contain ≥ 4 zinc finger repeats usually in tandem (Emerson and Thomas, 2009). Zinc fingers interact with nucleic acids, more specifically DNA, and they bind to DNA by binding to the trinucleotide using the 4 canonical positions of the zinc finger recognition helix (Persikov et al., 2015).

The acidic domain was proposed to bind and recruit transcriptional regulatory machinery due to the negative charge (Decarpentrie et al., 2012). As ZFY is a suspected TF, most mammalian transcription factors have been shown to interact with transcription factor II D (TFIID), a transcriptional complex, via the general transcriptional cofactor TATA box binding protein (TBP)-associated factor (TAF9) (Piskacek et al., 2007). This cofactor recognises and interacts via protein-protein interactions with a transactivation domain (TAD) known as the nine amino acid transactivation domain (9aa TAD) and allows the orchestration of regulatory and transcription machinery. The 9aa TAD motif has been the best characterised binding element of various transcription factors. This type of TAD is found in the acidic domain of a group of yeast TFs known as Gal4 transcription factors and is important for Gal4 transactivation activity, as a fusion protein of the Gal4-TAD and a DBD of a repressor protein has been shown to have a similar strong transactivation activity to full length Gal4 in Saccharomyces cerevisiae (S. cerevisiae) reporter system (Piskacek et al., 2007). ZFY-long acidic domain (AD) lacking the DBD has been demonstrated to have transactivation activity when
fused to a Gal4-DBD in a S. cerevisiae reporter system (Piskacek et al., 2007; Decarpentrie et al., 2012). Thus, indicating the AD of ZFY-long possibly contains a 9aa TAD motif that recruits transcriptional machinery enabling transactivating properties. However, the mechanism of endogenous transactivation of full length ZFY is likely varied and does not operate in an identical fashion as shown by the ZFY-Gal4-DBD fusion protein. This transactivation domain is composed of two hydrophobic clusters and a hydrophilic region in between with nine amino acids, but the motif can be up to fourteen amino acids depending on adjacent amino acids as the function of some 9aa TAD is enhanced by adjacent amino acids (Piskacek et al., 2017).

1.2.2 ZFY splicing in relation to transactivation ability

For most mammals such as humans, the general consensus is one $Z F Y$ gene copy on the Y chromosome. However, mice have two Zfy genes (Zfy1 and Zfy2) compared to majority mammalian singular gene expression, and this is possibly a result of intrachromosomal duplication (Nagamine et al., 1989; Mardon et al., 1990).


```
Figure 3. Human ZFY gene transcript variants. (A.) ZFY-long showing the full transcript with the exon-intron
boundaries indicated. This transcript has one non-coding exon present, and eight coding exons as indicated, and the direction of the transcript is via the forward strand, and the total exon length is 5.239 kb . (B.) ZFY-short lacks the second coding exon that is roughly 0.573 kb which is indicated by the red arrow. The length of the transcript is shorter than the longer ZFY transcript with only 1 non-coding exon present and seven coding exons present, with the total coding exon length of 4.666 kb . The diagram is an adaptation of the Archive Ensembl transcript ZFY-201 (transcript ID: ENST00000155093.7).
```

Mouse Zfy1 and Zfy2 are structurally homologous to human ZFY. Zfy1 is expressed as both short and long splice isoforms whereas Zfy2 is almost exclusively expressed as the long Zfy variant (Decarpentrie et al., 2012; Nadège Vernet et al., 2016). Therefore, mouse Zfy1 closely resembles human ZFY in its splicing pattern, while Zfy2 has lost the ability to produce the short isoform (Decarpentrie et al., 2012). A second difference is that while most mammals including humans, the long isoform is ubiquitous and the short form is testis specific, in mouse Zfy1 and Zfy2 are expressed exclusively in the testis as demonstrated by northern blots and RT-PCR (Nagamine et al., 1990). Mouse Zfy1 and Zfy2 have a Zfy promoter which is responsible for the roughly equal expression of the Zfy transcripts observed in spermatogonia (though Zfy 1 is slightly higher) and early spermatocytes, but there was a difference in the expression of the Zfy transcripts in spermatids as mouse Zfy2 transcripts were expressed at a significantly higher level than Zfy1 (Decarpentrie et al., 2012). Mouse Zfy2 contains a promoter that is spermatid-specific, derived from an Xlinked gene known as CYPT, which promotes additional high-level expression of Zfy2 transcripts in spermatids (Decarpentrie et al., 2012). This was shown by the fact that the Zfy promoter has weak reactivation when spermatocytes differentiate into spermatids, revealing that the Cypt-promoter leads to post meiotic spermatids with higher Zfy2 expression (Decarpentrie et al., 2012).

A.
B.

Figure 4. Human ZFY expression profiles in various organ tissues. The expression profiles show that there was ubiquitous expression of human ZFY/ZFX. However, the data is to be treated with caution as the expression was an aggregate of ZFY/ZFX as the homologous X-linked gene, ZFX, was likely mis-mapped. (A.) Consensus data showing the expression profiles of ZFY/ZFX by combining HPA, GTEx and FANTOM5 transcriptomics datasets. This was obtained by RNA-sequencing and it showed that the expression of ZFY RNA was ubiquitous as most of the tissues showed some degree of RNA expression, but the Normalized eXpression(NX) in each tissue was different as the salivary glands exhibited the highest RNA expression, and the cervix and other female reproductive tissue showed little RNA expression profiles likely due to the expression of the homologous gene on the X chromosome known as ZFX to no RNA expression profiles as ZFY is absent in female tissue. (B.) ZFY/ZFX protein expression in 44 tissues. The expression of protein was also shown to be ubiquitous in most tissue, but the degree of expression was shown to vary as some tissue showed little to no expression. The level of expression was measured as: no detection, low detection, medium detection, and high detection. The data presented was from the tissue atlas via the Human Protein Atlas (Ensembl: ENSG00000067646). There was expression seen in female-specific tissue because the antibody recognising ZFY is not specific to ZFY as it also recognises the X homolog (ZFX). Therefore, this data is to be treated with caution as the data represents aggregate expression of ZFY and ZFX

Although human and mouse ZFY variants have been interpreted to have specific roles in spermatogenesis and spermiogenesis in the testis, the complete mechanisms of these genes are yet to be determined. Though, human ZFY-long (hZFY-long), mouse Zfy1-long and Zfy2-long have been shown to possess potent
transactivating activity when the negatively charged acidic domains were fused to the Gal4-DBD in S. cerevisiae reporter systems, with Zfy2-long exhibiting the highest transactivation activity (Mardon et al., 1990; Decarpentrie et al., 2012; Vernet et al., 2014; Nadège Vernet et al., 2016). Human ZFY-short (hZFY-short), mouse Zfy1-short and mouse Zfy2-short however had no transactivation activity likely due to the truncated acidic domain. Thus, the domain acidity has strongly been correlated to potency of activation but however, there could possibly be other factors affecting activation efficiency (Mardon et al., 1990). We hypothesised that hZFY-short, mouse Zfy1-short and Zfy2-short possibly have direct or competitive repressing abilities that antagonize hZFY-long and mouse Zfy2-long.

1.3 Physiological functions of ZFY

1.3.1 MSCI

Male meiosis entails an epigenetic silencing process known as meiotic sex chromosome inactivation (MSCI), which occurs at prophase of meiosis during early pachytene and is vital for sperm development (Turner, 2007; Burgoyne, Mahadevaiah and Turner, 2009; Royo et al., 2010; Vernet et al., 2011). In early spermatocytes (prior prophase I), chromosomes undergo an event at which homologous chromosomes synapse together, and the autosomes X and Y chromosomes are still transcriptionally active at this stage (Turner, 2007). As autosomal chromosomes share homology, they fully synapse together and remain transcriptionally active during in the pachytene spermatocytes during prophase I. This synapsis stage of spermatogenesis is an important aspect referred to as the synapsis checkpoint that facilitates MSCI. However, X and Y chromosomes do not share homology as the X chromosome is larger than the Y chromosome (rest of the regions remain unsynapsed), and the gene content varies significantly
between each chromosome sex chromosome (Turner, 2007). The regions which remain unsynapsed then undergo MSCI and this leads to the eventual silencing of the X and Y chromosomes and a sex body is formed that transcriptionally represses the sex chromosome until the sperm develops. Thereafter, some of the genes of the sex chromosome are then reactivated.

Various experimental mouse models showed MSCI to be implicated in Y chromosome silencing by using XYY spermatocytes. As Y chromosomes are homologous and synapse together fully to form Y-Y bivalents, silencing in XYY spermatocytes was impaired and the spermatocytes did not facilitate MSCI which resulted in apoptosis mid-pachytene (stage IV of pachytene) as the Y chromosomes were still transcriptionally active. However, the X chromosome remained unaffected as it was silenced and there was no transcriptional activity like in wildtype XY mouse when they examined X-linked gene expression (Royo et al., 2010; Nadège Vernet et al., 2016).

Figure 5. Human meiotic sex chromosome inactivation model. As demonstrated in the early spermatocytes, there is synapsis of homologous chromosomes and both the autosomal chromosomes (22A), and sex chromosomes(X and Y) are producing transcripts as they are active during leptotene and zygotene. However, as prophase I continues to pachytene spermatocyte, the autosomal chromosomes are fully synapsed whereas the XY chromosomes are only synapsed at the pseudoautosomal regions (PAR) with the rest of the chromosome portion being unsynapsed, resulting in the formation of a peripheral nuclear subdomain known as the ' $X Y$ body', and eventual silencing of X and Y chromosomes. As the spermatocytes develop and undergo further differentiation by desynapsis and cell division, the X chromosome (in X-bearing cells) is still transcriptionally repressed but then some of the genes eventually are reactivated the further the sperm develops. The image is an adaptation of Current Biology and (Turner, 2007). 22A represents 22 autosomal chromosomes and the red colour in between the homologous chromosomes represent synapse formation.

MSCI is regulated by a chromatin structure comprised of specialized proteins and modifications. For the meiotic silencing to occur in the male gametes, the histone protein H 2 A histone family member $\mathrm{X}(\mathrm{H} 2 \mathrm{AFX})$ is phosphorylated at serine-139 into H2AX phosphorylated on serine 139 (yH 2 AX) as a response to DNA double strand breaks (DSBs) (Rogakou et al., 1999). Subsequently, other histone proteins are modified by methylation and ubiquitination (Mckee and Handel, 1993;

Burgoyne, Mahadevaiah and Turner, 2009; Nadège Vernet et al., 2016; Jan et al., 2018). Thereafter, H2AFX is phosphorylated for the second time by the phosphorylase Ataxia telangiectasia and Rad3-related (ATR), which is recruited to unsynapsed X and Y chromosome axis by Breast cancer type-1 susceptibility protein (BRCA1) to form a stable chromatin structure known as the XY body (Mahadevaiah et al., 2001; Bellani et al., 2005; Murr et al., 2007; Turner, 2007).

1.3.2 Physiological functions of $Z F Y$

ZFY function outside of the testis remains obscure making it difficult to clarify what other roles ZFY genes are involved in. The majority of ZFY studies conducted in the testis have predominantly involved mutant mice rather than human testis, as the mouse model is relatively comparable to a human model. However, demonstrations from mouse models are to be used cautiously when paralleled with unknown mechanisms in humans, but the principles should remain consistent. However, since mouse Zfy1 and Zfy2 are testis-specific, mouse studies cannot inform us about effects of ZFY outside the testis in other species with ubiquitous expression of ZFY-long. Within the testis context, multiple studies point to ZFY preventing aneuploidies or aberrations ensuring viable germ cells survive.

Zfy genes have been implicated in promoting MSCI because when male mouse germ cells were deficient in Zfy1 and Zfy2 ($X^{\mathrm{E}} \mathrm{O}$, Sry, XO males transgenic for Sry [conferring maleness] and Eif2sy [spermatogonia proliferation]), there was MSCI leakage during pachytene (Nadège Vernet et al., 2016). When there was transgenic restoration of Zfy1 or Zfy2 in germ cells with univalent chromosomes, the germ cells with leaky MSCI were reduced as the Zfy genes corrected the MSCI leakage. This implied that premeiotic expression of Zfy genes in juvenile germ cells was essential for the germ cells to progress into MSCI before pachytene (Nadège Vernet et al., 2016). Though essential for germ cells to express Zfy premeiotically, it is essential that Y chromosome silencing occurs before pachytene for the progression of pachytene (Royo et al., 2010).

However, when silencing did not occur in mouse germ cells, Zfy1 and Zfy2 were inappropriately expressed as a result of MSCI leakage. This implied that Zfy genes are executioner genes with possibly a negative feedback loop as they likely upregulate themselves leading up to pachytene, downregulate themselves during
pachytene and then reactivated in spermatids predominantly as Zfy2 due to the Cypt-promoter (Royo et al., 2010; Nadège Vernet et al., 2016). A consequence of MSCI leakage when there was impaired Y -silencing in XYY males for instance was mid-pachytene (stage IV) arrest that eventually led to germ cell apoptosis (Royo et al., 2010; Decarpentrie et al., 2012; Nadège Vernet et al., 2016).

Furthermore, Zfy mediates apoptotic elimination of germ cells at the first meiotic metaphase spindle assembly checkpoint (MI). When mouse germ cells had a univalent chromosome with the Y-chromosome derived sex reversal factor with the testis-determining factor ($\mathrm{XSxr}^{2} \mathrm{O}$), there was observed elimination of spermatocytes at the MI by apoptosis (Kot and Handel, 1990; Vernet et al., 2011). However, germ cells with univalent X chromosome with Y -short arm gene deletion $\left(\mathrm{XS} x \mathrm{r}^{\mathrm{b}} \mathrm{O}\right)$ and $\mathrm{X}^{\mathrm{E}} \mathrm{O}$,Sry males were not eliminated as they completed MI and became interphasic secondary spermatocytes. The secondary spermatocytes however were arrested between the first and second meiotic division and eventually eliminated by the delayed apoptosis (Vernet et al., 2011, 2014; Nadège Vernet et al., 2016). In spite of this, with transgenic restoration of Zfy2 into $X^{E} \mathrm{O}$,Sry males, the secondary spermatocytes rapidly underwent apoptosis at the first meiotic metaphase due to $Z f y 2$ reinstating the efficient apoptotic response (Vernet et al., 2011; Nadège Vernet et al., 2016).

Although Zfy2 enables the efficient apoptosis of germ cells, it has also been shown to promote the second meiotic division. Male mice germ cells deficient in Zfy genes with univalent X chromosomes completed first meiotic phase and were arrested subsequently preventing the second meiotic division (Vernet et al., 2011, 2014). A small number of the germ cells however completed meiosis I and consequently, a large proportion of those germ cells became diploid secondary spermatocytes that entered interphase and became diploid round spermatids
(Mahadevaiah et al., 2012; Vernet et al., 2014). Though, reinstating Zfy2 into the males led to the majority of spermatocytes to complete meiosis I and meiosis II as the frequency of haploid round spermatids increased significantly (Vernet et al., 2014).

Figure 6. Overview of ZFY function. Mouse Zfy transgenes were used experimentally to analyse the physiological functions at various stages of sperm development from spermatogenesis to spermiogenesis. (Turner, 2007),

Zfy has been shown to promote elongation of spermatids and aid in sperm function (Yamauchi et al., 2015; Nadège. Vernet et al., 2016). Germ cells with univalent X chromosomes had abnormal and delayed spermatid development as they did not elongate, and the chromatin was not remodelled which led to round spermatid arrest and elimination by apoptosis (Mahadevaiah et al., 2012; Nadège. Vernet et al., 2016). However, reinstatement of Zfy2 transgenes promoted spermiogenesis progression as it enabled round spermatids that were randomly orientated to transition into spermatids undertaking sperm morphogenesis (spermatid elongation, nuclei condensation and tail formation) (Nadège. Vernet et al., 2016). In addition, CRISPR/Cas9 double knockout of Zfy1 and Zfy2 showed
that the sperm produced had head and tail defects, abnormal mitochondria, and were infertile with chromosome aberrations that led to failure in early embryonic development (Yamauchi et al., 2015; Nakasuji et al., 2017). Combined, research concerning Zfy shows that these genes are crucial factors in spermatogenesis and spermiogenesis for the development of sperm, more significantly Zfy2.

Though the function of Zfy-long primarily concerns sperm development, the function for Zfy-short is yet to be discovered. However, both splice variants must share the same genomic binding sites since they share a common DNA binding domain on the terminal zinc finger exon. Since hZFY-short has been shown to lack transactivation properties, it is likely that it will competitively inhibit the function of hZFY-long, and may potentially even serve to directly repress the same genes activated by hZFY-long (Decarpentrie et al., 2012). As previous papers heavily suggest that Zfy-long genes are involved in promoting apoptosis and cell remodelling, the testis specific $h Z F Y$-short is predicted to have anti-apoptotic properties. Dysregulation in proliferation of cells is a universal trait of cancer, thus it is possible that cancer cells ectopically expressing $h Z F Y$-short survive and become malignant, relative to the head and neck region.

1.3.3 ZFY as an oncogene

ZFY has been proposed to possess indirect oncogenic activity as (Tricoli and Bracken, 1993) insinuated that excessive activation of ZFY transcription in human prostate cancer cells possibly leads to deregulation of growth regulatory genes and consequently prostate malignancy. This was due to the fact that $Z F Y$ was found to be more frequently expressed in malignant prostate tissue, and absent in benign hyperplastic tissue, which postulated that the gene became transcriptionally active during prostate malignancy (Tricoli and Bracken, 1993). This research was conducted before the discovery of a second hZFY-short
transcript variant so there needs to be further research establishing which variant was present in the adenocarcinomas. Interestingly, a novel 4.3 kb transcript was observed by northern analysis which could represent the hZFY-short variant, as the coding exons of the transcript shown by Figure 3B has the same number of bases.

ZFY is interpreted as a favourable prognostic marker in head and neck squamous cell carcinomas by The Human Protein Atlas. However, this data should be interpreted very cautiously as the data does not properly distinguish ZFY from its X chromosome homolog ZFX. Additionally, previous data from a former student showed both $Z F Y$ spliced forms with $\mathrm{h} Z F Y$-long observed in all the male cell lines as expected and hZFY-short in one of the HPV-negative oropharyngeal squamous carcinoma cell lines, which could indicate that the short form of hZFY was oncogenic as it is usually expressed only in the testis.

1.3.4 Regulation of ZFY splicing

It is not properly known how ZFY alternative splicing occurs which means the consequences of mis-splicing these genes are also not fully known. Therefore, questions that can be raised are: how is splicing of $Z F Y$ initiated or triggered and if $Z F Y$ is implicated in cancer does mis-splicing lead to cancer? Another Y-linked gene known as RBMY is expressed in testis upstream of $Z F Y$ and is a known regulator of alternative splicing. RBMY was co-expressed with $\mathrm{h} Z F Y$-short in a OPSCC cell line, thus suggesting that these genes act to collectively promote malignancy in males.

While RBMY is not the focus of this project, I review its known structure and functions below for completeness.

1.4 RBMY

1.4.1 RBMY structure

RNA-binding motif gene on Y chromosome (RBMY) are 30 gene and pseudogenes copies located on Y-chromosome arms, with the functional copies clustered within the azoospermia factor interval known as the AZFb locus. RBMY gene copies encode a male germ cell-specific RNA binding protein (RBMY) composed of 496 amino acids (Tsuei et al., 2004). RBMY is expressed specifically in the testis of all mammals and located in the nucleus of adult male germ cells between spermatogonia and round spermatid phase, with a single RNA recognition motif (RRM) at the N -terminus, a linker region containing RS (arginine/serine) dipeptides, and internally repeating tetrapeptide motif known as the serine-arginine-glycine-tyrosine (SRGY) at the C-terminal domain (Tsuei et al., 2004, 2011; Dreumont et al., 2009; Chua et al., 2015). The protein was demonstrated to be nuclear localised transfected cells showed the protein was concentrated in the nucleus, emphasizing that the protein must have a predominant role in the nucleus (Dreumont et al., 2009; Liu et al., 2009). The RRM is composed of 3 exons and the C-terminal auxiliary domain is made up of 4 tandem exons, with each individual exon coding for repeats of the 37-amino acid SRGY box (Tsuei et al., 2004).

Figure 7. Human RBMY gene and RBMY protein structure. The human RBMY gene transcript consists of 12 exons and is 15 kb in total length. The gene is then transcribed into a transcript of 1878 bases and then spliced into a protein with consisting of an N-terminal RNA recognition motif, RS linker region and a Cterminal domain that contains 4 tandem SRGY boxes. This diagram is an adaptation of (Tsuei et al., 2004).

Human RBMY (hRBMY) has been shown to interact with high affinity with RNA stem-loop structures referred to as pentaloops which contain a conserved CA/UCAA consensus sequence (Skrisovska et al., 2007; Dreumont et al., 2009). This demonstrated the sequence-specific interaction of hRBMY as it recognized specifically the trinucleotide CAA of RNA which was stabilized by the protein main chain and side chain interactions. Additionally, the RRM was shown to stabilize the 5 ' end of the pentaloops to maximise the affinity for the binding target. However, the RRM was also proposed to bind in a shape-specific manner as the hRBMY has $\beta 2-\beta 3$ hairpin loop that is formed from 7 amino acids that inserts into the major groove of the RNA helix and result in stable intermolecular interactions (Skrisovska et al., 2007).

1.4.2 RBMY Physiological Function

As the AZFb locus has been implicated in spermatogenesis of germ cells, RBMY has been suggested to be a component involved in spermatogenesis (Elliott et al., 1997). The deletion of AZFb locus (where the functional RBMY gene was shown to be located) was shown to lead to arrest of germ cells at the meiotic stage of spermatogenesis as germ cells with absent RBMY develop up to meiosis, but failed to complete meiosis signifying its necessity for adult mammalian male fertility (Elliott et al., 1997; Mahadevaiah et al., 1998; Tsuei et al., 2011). This arrest is phenotypically similar to XYY males, and also to transgenic mice overexpressing Zfy-long during pachytene (Royo et al., 2010). This potentially implies that RBMY acts to promote alternative formation of the ZFY/Zfy-short antagonistic isoform. In this case, lack of RBMY would result in excess lead to upregulation of $Z F Y$-long during pachytene, which in turn leads to pachytene arrest and apoptosis.

In spermatogenesis, gene expression changes within spermatozoa during spermatogenesis occur due to tightly regulated processes, and a good regulation process resulting in protein diversity from multiple mRNAs is alternative splicing. RBMY was proposed to be a RNA splicing regulator that modulates activity of splicing factors that are constitutively expressed (Liu et al., 2009; Tsuei et al., 2011). This was because the interacting partners of RBMY included SR-related proteins (SRp20, 9G8 and Tra2ß), STAR proteins (Sam68 and T-STAR proteins), and EJC components (Magoh) which are all RNA binding proteins involved in splicing regulation, signal transduction and activation of RNA (Venables et al., 1999; Elliott et al., 2000; Venables, 2000; Tsuei et al., 2004).

These proteins interact with RBMY by forming protein interactions via the SRGY box and also the linker region as these regions contain RS dipeptides, but the

RRM does not interact due to the lack thereof of RS dipeptides (Venables, 2000; Dreumont et al., 2009). Furthermore, hRBMY interactions with 9G8 and Tra2- β resulted in repression of 9G8 and Tra2- β splicing activity of pre-mRNA substrates, and the ectopic expression of hRBMY led to activation of splicing of a gene that 9G8 and Tra2- β were involved in repressing its splicing (Dreumont et al., 2009). This insinuated that hRBMY functioned in an antagonistic manner in relation to 9G8 and Tra2- β. This therefore suggests that hRBMY possibly has a function in germ cells as a co-regulator of certain alternative splicing events (Dreumont et al., 2009).

1.4.3 Proposed RBMY Oncogenic Effect

As RBMY is a splicing factor within the testis, we hypothesized that it indirectly alters proteins that are involved in splicing of substrates, and one we are suspicious of is ZFY as hZFY-short was inappropriately expressed in OPSCC cell lines as demonstrated by a former Ellis-Fenton laboratory student. In addition, a great number of papers have demonstrated that aberrant expression of RBMY encourages the oncogenic capabilities in hepatocellular carcinomas (HCC), as one third of the male HCC tissue expressed RBMY explaining the prevalence in male HCC (Tsuei et al., 2004). The mechanisms that have been interpreted are that the knockdown of RBMY correlated with increased expression of an androgen receptor (AR) inhibitor which reduced AR transactivation activity in an HCC cell line and allowed regulated AR gene expression. Therefore, expression of RBMY was proposed to be antagonistic as it directly reduced the AR inhibitory protein and this indirectly increased the risk of human male hepatocarcinogenesis by upregulation of AR target genes that have anti-apoptotic abilities (Tsuei et al., 2011).

Although RBMY is a nuclear protein in testes, RBMY has been shown however to be expressed in the cytoplasm of HCC cell lines as RBMY contains a sequence that matches the consensus sequence of a nuclear export signal recognised by nuclear export chromosome region maintenance 1 (CRM1) (Chua et al., 2015). This study showed that cytoplasmic RBMY has kinase activity as it is involved in the inactivation a repressor of the Wnt pathway by serine phosphorylation, but it is unclear whether the kinase activity is direct or indirect. This could lead to malignancy as cells hereby proliferate in an uncontrolled manner due to impeding of β-catenin destruction (Chua et al., 2015). Further research needs to be conducted as these mechanisms could apply to other malignancies, more specifically head and neck cancers.

1.5 Project outline

Aims

As the roles of hZFY variants remain obscure, a few hypotheses have been proposed by (Nadège Vernet et al., 2016) and Ellis-Fenton laboratory.

Based on the background information, we hypothesise that:
a) The difference in transactivation ability between human short and long ZFY isoforms is due to the presence of 9aa TAD motifs within the alternatively spliced second coding exon
b) The short ZFY isoform antagonises the transactivation activity of the long isoform either passively as a competitive inhibitor (by competing for binding at downstream promoters and preventing access by ZFY-long isoform) or by actively recruiting co-repressor complexes
c) hRBMY acts as a splicing factor to promote the production of the hZFYshort isoform
d) hZFY-short isoform will function as an oncogene when transfected into mammalian cell lines

The original project plan was addressing hypotheses (a) and (b) with another student focusing on RBMY function.

Using commercially synthesized constructs, the goals were:

- To express and purify the human ZFY-long and ZFY-short acidic domains (without DNA binding domains) in bacterial culture and do preliminary structural characterization e.g., circular dichroism measurement to assess protein folding
- To use purified human ZFY-long and ZFY-short acidic in a capture experiment to identify potential binding partners
- To use reporter constructs to validate the transactivation data for human ZFY-long and ZFY-short isoforms in mammalian cells, as thus far this work has been done in yeast reporter system
- To search for 9aa TAD domains within the human ZFY-long and ZFY-short sequences via bioinformatic analysis in preparation for future mutagenesis work

Owing to COVID-19 restrictions, the bulk of the laboratory work could not be completed, and thus the project goals were changed to encompass investigation of ZFY structure and sequence conservation across a wide range of species (including 9aa TAD and zinc finger prediction) to highlight key conserved regions likely to be functionally important in its activity. The goals therefore were:

- To use genetic sequence databases to identify ZFY DNA and protein sequences across various species
- To use in silico analysis for sequence alignment, sequence conservation and phylogeny across various species
- To characterise the structure of ZFY using similarities between the various species
- To screen and locate a 9aa TAD and locate binding interfaces of the DNA binding domain.

2 Materials \& Method

2.1 ZFY protein and cDNA (nucleotide) search and alignment

The primary database used for ZFY protein and cDNA sequences are described in Table 1 and Table 2. The search terms used were 'ZFY' and 'zinc finger Ychromosomal protein', and the search was narrowed down by taxonomic groups to vertebrates using the 'Results by taxon' feature on NCBI taking the number of protein entries to 2826 and 466 species, and the number of gene entries to 577 and the 259 species. As most entries were only partial sequences, the number of species with full ZFY sequences was lower resulting in access to only 28 land vertebrates and 16 fish species as shown by Table 1 and Table 2.

For the protein and cDNA sequences absent on NCBI, previous published papers, Uniprot and EMBL-EBI were the alternative databases used to obtain the sequences. In addition, to locate the exon length, we utilised the NCBI gene database and the gene table format to locate the gene.

Table 1. Land vertebrate ZFY/ ZFX protein and nucleotide sequences. The table illustrates each taxa
given their common name and biological classification of each taxa, so that the arrangement is sequential.
The nucleotide/cDNA sequence database is in Italic. Subsequently, the sequences were used for alignment.
As Neophocaena asiaeorientalis is a cetacean, it was grouped as Cetartiodactyla along with Artiodactyla so for the entirety of the experiment they were examined with the rest of the land vertebrates.

Binomial Nomenclature	Common Species Nomenclature	Taxonomic Classification	Protein Name	Database for Protein \& Nucleotide/ cDNA Sequence	Database Protein Accession	Database Nucleotide Accession
Homo sapiens	Human	Chordata/ Mammalia/ Primates/ Hominidae/ Homo	ZFY	NCBI GenPept NCBI GenBank	NP_001356631.1	NM_003411.4
Pan troglodytes	Chimpanzee	Chordata/ Mammalia/ Primates/ Hominidae/ Pan	ZFY	NCBI GenPept $-\quad$ NCBI GenBank	XP_009443992.1	XM_009445712.3
Gorilla gorilla	Gorilla	Chordatal Mammalia/ Primates/ Hominidae/ Gorilla	ZFY	NCBI GenPept NCBI GenBank	Q52V16.1	AH014841.2
Macaca mulatta	Rhesus monkey	Chordata/ Mammalia/ Primates/ Cercopithecidae/ Macaca	ZFY	NCBI GenPept NCBI GenBank	XP_014984082.1	XM_015128596.2
Trachypithecus francoisi	François' langur	Chordata/ Mammalia/ Primates/ Cercopithecidae/ Trachypithecus	ZFY	NCBI GenPept $-\quad$ NCBI GenBank	XP_033067617.1	XM_033211726.1
Papio anubis	Olive baboon	Chordata/ Mammalia/ Primates/ Cercopithecidae/ Papio	$\underset{\mathrm{X} 1}{\mathrm{ZFY} \text { isoform }}$	NCBI GenPept NCBI GenBank	XP_031516968.1	XM_031661108.1
Chlorocebus sabaeus	Green monkey	Chordata/ Mammalia/ Primates/ Cercopithecidae/ Chlorocebus	ZFY isoform X 1	NCBI GenPept NCBI GenBank	XP_008017167.1	XM_008018975.1
Rhinopithecus roxellana	Golden snubnosed monkey	Chordata/ Mammalia/ Primates/ Cercopithecidae/ Rhinopithecus	ZFY isoform X 1	NCBI GenPept NCBI GenBank	XP_030782172.1	XM_030926312.1
Hylobates moloch	Silvery gibbon	Chordata/ Mammalia/ Primates/ Hylobatidae/ Hylobates	$\underset{\mathrm{X} 1}{\mathrm{ZFY}} \underset{ }{\text { isoform }}$	NCBI GenPept $-\quad$ NCBI GenBank	XP_032612406.1	XM_032756515.1
Callithrix jacchus	White-tufted-ear marmoset	Chordata/ Mammalia/ Primates/ Callitrichidae/ Callithrix	ZFY	NCBI GenPept $-\quad$ NCBI GenBank	XP_035145821.1	FJ527008.1
		Chordata/	Zfy1	NCBI	P10925.3	NM_009570.4
Mus musculus	Mouse	Mammalia Rodentia/ Muridae/ Mus	Zfy2	NCBI GenBank	(P20662.2)	NM_009571.2
Rattus norvegicus	Brown rat	Chordata/ Mammalia/ Rodentia/ Muridae/ Rattus	$\begin{aligned} & \text { Predicted } \\ & \text { ZFY2 } \\ & \text { isoform X1 } \end{aligned}$	NCBI GenPept $-\quad$ NCBI GenBank	XP_008771898.1	XM_017602438.1
Marmota marmota	Alpine marmot	Chordata/ Mammalia/ Rodentia/ Sciuridae/	ZFY	NCBI GenPept	XP_015343506.1	XM_015488020.1

		Marmota		NCBI GenBank		
Bos taurus	Cattle	Chordata/ Mammalia/ Artiodactyla/ Bovidae/ Bos	ZFY	NCBI GenPept NCBI GenBank	Q95LI3.1	NM_177491.1
Bison bison	American bison	Chordata/ Mammalia/ Artiodactyla/ Bovidae/ Bison	ZFY isoform X 1	NCBI GenPept NCBI GenBank	XP_010855418.1	XM_010857116.1
Capra hircus	Goat	Chordata/ Mammalia/ Artiodactyla/ Bovidae/ Capra	Predicted ZFY isoform X1	NCBI GenPept NCBI GenBank	XP_017900383.1	XM_018044894.1
Cervus elaphus	Red deer	Chordata/ Mammalia/ Artiodactyla/ Cervidae/ Cervus	ZFY	NCBI GenPept NCBI GenBank	AMY96563.1	KU041539.1
Odocoileus virginianus	White-tailed deer	Chordata/ Mammalia/ Artiodactyla/ Cervidae/ Odocoileus	$\begin{gathered} \text { ZFY isoform } \\ \quad \mathrm{X} 1 \end{gathered}$	NCBI GenPept NCBI GenBank	XP_020759307.1	XM_020903648.1
Sus scrofa	Pig	Chordata/ Mammalia/ Artiodactyla/ Suidae/ Sus	ZFY	UniProtKB EMBL-EBI	F1SPY3	FQ670201.4
Neophocaena asiaeorientalis	Narrow-ridged finless porpoise	Chordata/ Mammalia/ Artiodactyla/ Phoconidae/ Neophocaena	ZFY	NCBI GenPept NCBI GenBank	XP_024612082.1	XM_024756314.1
Canis lupus	Dog	Chordata/ Mammalia Carnivora/ Canidae/ Canis	ZFY	NCBI GenPept NCBI GenBank	AKI82174.1	JX964866.1 ${ }^{\text {* }}$
Mustela erminea	Ermine	Chordata/ Mammalia/ Carnivora/ Mustelidae/ Mustela	ZFX-like isoform X1	NCBI GenPept NCBI GenBank	XP_032187800.1	XM_032331909.1
Loxodonta africana	African savanna elephant	Chordata/ Mammalia/ Proboscidea/ Elephsntidae/ Loxodonta	ZFY	NCBI GenPept $-\quad$ NCBI GenBank	JAC06687.1	GATM01000012.1 ${ }^{*}$
Equus caballus	Horse	Chordata/ Mammalia/ Perissodactyla/ Equidae/ Equus	Predicted ZFY	Obtained via (Jane et al., 2018)	No_accession ${ }^{\dagger}$	No_accession ${ }^{\dagger}$
Ornithorhynchus anatinus	Platypus	Chordata/ Mammalia/ Monotremata/ Ornithorhynchidae/ Ornithorhynchus	$\begin{aligned} & \text { ZFY isoform } \\ & \quad \text { X2 } \end{aligned}$	NCBI GenPept NCBI GenBank	XP_028935710.1	XM_029079877.1
Monodelphis domestica	Gray short-tailed opossum	Chordata/ Mammalia Didelphimorphia/ Didelphidae/ Monodelphis	ZFY	NCBI GenPept $-\quad$ NCBI GenBank	XP_016288863.1	XM_016433377.1
Gallus gallus	Chicken	Chordata/ Aves/ Galliformes/ Phasianidae/ Gallus	$\begin{aligned} & \text { ZFX isoform } \\ & \quad \mathrm{X} 1 \end{aligned}$	NCBI GenPept $-\quad$ NCBI GenBank	XP_015127980.1	XM_015272494.2
Xenopus laevis	African clawed toad	Chordata/ Amphibia/ Anura/ Pipidae/ Xenopus	ZFY1	NCBI GenPept NCBI GenBank	Q01611.1	BC070611.1 ${ }^{*}$

* cDNA was manually edited using the CDS range from respective database to create the ZFY cDNA sequence
${ }^{\dagger}$ Horse ZFY cDNA sequence prediction published by (Jane et al., 2018). This was derived by using hZFY NM_003411.4 cDNA sequence and pairwise aligning it with the horse Y chromosome and manually editing intron/exon boundaries. The horse protein sequence was derived via horse cDNA in silico translation.

Table 2. Fish ZFY/ZFX sequences. The table shows the different fish species ZFY/ZFX sequences available.
The sequences were obtained from the databases indicated. The nucleotide/cDNA sequence database is in Italic.

Binomial Nomenclature	Common Species Nomenclature	Taxonomic Classification	Protein Name	Database for obtaining Protein \& Nucleotide Sequence	Database Protein Accession	Database Nucleotide Accession
Collichthys lucidus	Big head croaker	Chordata/ Actinopterygii/ Perciformes/ Sciaenidae/ Collichthys	ZFY1	NCBI GenPept NCBI GenBank	TKS65875.1	ML241175.1 ${ }^{\ddagger}$
Perca flavescens	Yellow perch	Chordata/ Actinopterygii/ Perciformes/ Percidae/ Perca	ZFY1-like isoform X1	NCBI GenPept $-\quad$ NCBI GenBank	XP_028451227.1	XM_028595426.1
Parambassis ranga	Indian glassy fish	Chordata/ Actinopterygii/ Perciformes/ Ambassidae/ Parambassis	ZFY1-like isoform X1	NCBI GenPept NCBI GenBank	XP_028276673.1	XM_028420872.1
Larimichthys crocea	Large yellow croaker	Chordata/ Actinopterygii/ Perciformes/ Sciaenidae/ Larimichthys	ZFY isoform X1	NCBI GenPept NCBI GenBank	XP_010749798.1	XM_010751496.3
Amphiprion ocellaris	Ocellaris clownfish	Chordata/ Actinopterygii/ Perciformes/ Pomacentridae/ Amphiprion	ZFY1-like isoform X1	NCBI GenPept NCBI GenBank	XP_023133903.1	XM_023278135.1
Oncorhynchus tshawytscha	Chinook salmon	Chordata/ Actinopterygii/ Salmoniformes/ Salmonidae/ Oncorhynchus	ZFY1-like	NCBI GenPept NCBI GenBank	XP_024253620.1	XM_024397852.1
Salvelinus alpinus	Arctic char	Chordata/ Actinopterygii/ Salmoniformes/ Salmonidae/ Salvelinus	ZFY1	NCBI GenPept NCBI GenBank	XP_023843891.1	XM_023988123.1
Oncorhynchus kisutch	Coho salmon	Chordata/ Actinopterygii/ Salmoniformes/ Salmonidae/ Oncorhynchus	ZFY1-like	NCBI GenPept $-\quad$ NCBI GenBank	XP_020321060.1	XM_020464688.2
Maylandia zebra	Zebra mbuna	Chordata/ Actinopterygii/ Cichliformes/ Cichlidae/ Maylandia	ZFY1 isoform X1	NCBI GenPept $-\quad$ NCBI GenBank	XP_004564062.1	XM_004564005.5
Astatotilapia calliptera	Eastern river bream	Chordata/ Actinopterygii/ Cichliformes/ Cichlidae/ Astatotilapia	ZFY1-like isoform X1	NCBI GenPept $-\quad$ NCBI GenBank	XP_026038267.1	XM_026182482.1
Takifugu rubripes	Japanese puffer	Chordata/ Actinopterygii/ Tetraodointiformes/ Tetraodontidae/ Takifugu	$\begin{gathered} \text { ZFY } \\ \text { isoform } \\ \text { X1 } \end{gathered}$	NCBI GenPept $-\quad$ NCBI GenBank	XP_011609888.1	XM_011611586.2
Betta splendens	Siamese fighting fish	Chordata/ Actinopterygii/ Anabantiformes/ Osphronemidae/ Betta	$\begin{gathered} \text { ZFY } \\ \text { isoform } \\ \text { X1 } \end{gathered}$	NCBI GenPept $-\quad$ NCBI GenBank	XP_029029380.1	XM_029173547.1
Denticeps clupeoides	Denticle herring	Chordata/ Actinopterygii/ Clupeiformes/ Denticipitidae/ Denticeps	ZFY1-ike	NCBI GenPept $-\quad$ NCBI GenBank	XP_028839070.1	XM_028983237.1
Anabarilius grahami	Kanglang fish	Chordata/ Actinopterygii/ Cypriniformes/ Cyprinidae/	ZFY1	NCBI GenPept	ROL53794.1	RJVU01007700.1 ${ }^{\ddagger}$

$\ddagger c D N A$ was manually edited using the CDS range from respective database to create the ZFY cDNA sequence

		Anabarilius		$\begin{gathered} \text { NCBI } \\ \text { GenBank } \end{gathered}$		
Seriola dorsalis	California yellowtail	Chordata/ Actinopterygii/ Carangiformes/ Carangidae/ Seriola	ZFY1-like isoform X1	NCBI GenPept NCBI GenBank	XP_023277193.1	XM_023421425.1
Cynoglossus semilaevis	Tongue sole	Chordata/ Actinopterygii/ Pleuronectiformes/ Cynoglossidae/ Cynoglossus	ZFY1 isoform X1	NCBI GenPept NCBI GenBank	XP_008331409.1	XM_008333187.3

The protein and cDNA (nucleotide) sequences were aligned using the program Molecular Evolutionary Genetic Analysis (MEGAX). The protein and nucleotide sequences were aligned using either the ClustalW or the MUSCLE alignment tools with default parameters as shown by Table 3 and Table 4. As ClustalW alignments treated gaps better, we used this tool for the phylogeny analysis of our project but for completeness, we included the MUSCLE alignment parameters. To calculate the percentage identity of the sequences, we used the formula:

$$
\% \text { identity }=\frac{\text { no. of conserved sites from the multiple sequence alignment }}{\text { all of the sites of the } Z F Y \text { sequence }} \times 100
$$

Subsequently, the resulting alignments were then used to create a model the protein and nucleotide alignments and the parameters were all the same for the protein sequence alignments, but the nucleotide sequence was different in that the selected nucleotide positions needed to be specified and the default parameter was applied. The most suitable substitution model exhibited the lowest Bayesian Information Criterion (BIC) score. Therefore, the lowest BIC was used to compute the suitable substitution model parameter during the construction of the phylogenetic tree.

Table 3. ClustalW/ ClustalW (Codons) alignment parameters. The table shows the parameters used for the alignment of the vertebrate ZFY/ZFX protein and nucleotide sequences to outline the conservation of certain amino acids and bases.

Alignment	
Pairwise Alignment	
Gap Opening Penalty	10.00
Gap Extension Penalty	0.10
Multiple Alignment	
Gap Opening Penalty	10.00
Gap Extension Penalty	0.20
Protein Weight Matrix	Weight
Residue-specific Penalties	Oonnet
Hydrophilic Penalties	ON
Gap Separation Matrix	OFF
End Gap Separation	OFF
	Not selected
Use Negative Matrix	
Delay Divergent Cutoff	
Keep Predefined Gap	

Table 4 .MUSCLE alignment parameters. The table exhibits default parameters used to create alignments by the MUSCLE alignment tool. This includes protein and nucleotide alignments, and the options are all the same except for the nucleotide MUSCLE alignment where the genetic code advanced option is present. [] indicates nucleotide specific parameters

Gap Penalties	
Gap Open	-2.90
Gap Extend	0.00
Hydrophobicity Multiplier	1.20
Memory/ Iterations	
Max Memory in MB	2048
Max Iterations	16
Advanced Options	
[Genetic Code]	[Standard]
Cluster Method (Iterations 1,2)	UPGMA
Cluster Method (Other Iterations)	UPGMA
Min Diag Length (Lambda)	24

For the phylogenetic analysis of the CLUSTALW aligned nucleotide and protein sequences, the tree used was the automatic setting which used the Neighbourjoining tree. The statistical method used was the Maximum Likelihood and the substitution type was dependent on whether the sequences inputted were protein or nucleotide sequence. The parameters for the data subset to use and system resource usage were default parameters, with all sites of the sequences being used including gaps, no site coverage cutoff, no branch swap filter and 3 threads used.

2.2 ZFY Phylogenetic Tree

Thereafter, maximum-likelihood method was used to construct series of land vertebrate ZFY phylogenetic trees, as it allows us to understand what the phylogenetic tree for ZFY proteins looks like. In addition, the Bootstrap method was used for the test of phylogeny and the number of Bootstrap replications was set to 100 . There was a slight variation in the substitution model as the protein sequences used Jones-Taylor-Thornton model and the nucleotide sequence used the Kimura 2-parameter model. However, both methods used a discrete Gamma distribution (5 categories) to model evolutionary rate differences among sites. The phylogenetic tree was then rooted so that the outgroup species was highlighted.

2.3 ZFY 9aaTAD Motif and DNA binding site prediction

ZFY protein sequences were analysed by the 'Nine Amino Acids Transactivation Domain 9aaTAD Prediction Tool' (Piskáček, 2020) at www.med.muni.cz/9aaTAD/index.php. For putative transactivation domain analysis of mammalian transcription factors, the 'Moderately stringent Pattern' was the most suitable
'[MDENQSTYG]\{KRHCGP\}[ILVFWM]\{KRHCGP\}\{CGP\}\{CGP\}[ILVFWM]\{CGP\}\{CG P\}'. The algorithm harnesses a refinement criteria RC1- RC12 which allows the
elimination of false positive results that might be encountered, ensuring precision of the prediction. This is done by comparing the sequence of interest with the hydrophobic profiles of experimentally proven TADs and false positive results located out of region. However, the refinement criteria are ever changing as new orthologs of 9aa TADs and 9aa TADs are identified. Thus, the refinement criteria we used were as following:

Refinement Criteria	Position Criteria
1	Two staple hydrophobic positions (position 3 and 7) with at least one hydrophobic amino acid neighbouring
2	
3	Hydrophilic amino acid (s) between the core hydrophobic residues
4	Pattern limits overall hydrophobic and hydrophilic amino acids (However, serine and threonine residues included in both criteria)
5	
6	Consecutive hydrophobic/hydrophilic residues limited
7	
8	Pattern containing NQRKH amino acids in particular region limited as usually suggestive of false positive prediction
9	
10	
11	Prohibition of helix breaking and bridging residues as 9aa TAD possesses predicted α-helical secondary structure
12	

Table 5. 9aa TAD motif algorithm refinement criteria. The protein sequence is analysed using the criteria above to predict sequences likely to be 9aa TAD motifs.

For the zinc finger domain prediction, we used the tool located on http://zf.princeton.edu/index.php. To determine which regions were zinc finger motifs/domains, the website uses hmmsearch program which incorporates the HMMER 2.3.2 protein sequence homology search software and an HMM profile for ZF-C2H2 family (Finn et al., 2009; Persikov and Singh, 2011). The HMMER
searches sequence databases for homologs of our protein sequence and makes alignments, allowing an accurate prediction of zinc finger domains. This used a zinc finger score (ZF) to determine which regions portrayed high scores as the threshold score for confidence is ≥ 17.7, defined by Pfam (Finn et al., 2009).

Furthermore, zinc finger motif prediction was executed via analysing the binding profile for the domains using the F2+F3 union option on the B 1 H resources. This analysed each sequence which gave us the zinc finger domain sequence that was interpreted to bind DNA and predicted a target by producing a sequence logo and the nucleotide predicted to bind had the highest bit score. To find which four amino acids of the domain sequence bound to DNA, we used the known Krüppel-type zinc finger structure (Stubbs, Sun and Caetano-Anolles, 2011) and this gave us the four positions bind DNA which were the $-1,2,3$ and 6 relative to the zinc finger helix.

2.4 Transformation and plasmid minipreps

Backbone vector	Insert	Tag	Intended purpose
	hZFY-long (full length) hZFY-short isoform	\mathbb{I}	Isolation and purification within mammalian cell lines
	hZFY-long (full length) hZFY-short isoform	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \hline 1 \end{aligned}$	Detection and analysis of function within mammalian cell lines
$\frac{\stackrel{1}{n}}{\stackrel{1}{1}}$	hZFY-long acidic domain hZFY-short acidic domain		Bacterial expression Purification by metal affinity chromatography Transactivation and repression analysis of acidic domains Locating acidic domain binding partners
	hZFY-long acidic domain hZFY-short acidic domain		Gene expression assays of acidic domains at transcriptional level by using luciferase reporter system (Gal4) in mammalian cell lines

Table 6. Plasmid vectors. The table shows plasmid vector maps for the 3 plasmid vectors which are pcDNA3.1+ (Invitrogen) (Cat. \# V79020), pET15b (Novagen [EMD Millipore]) (69661) and pFN26A (Promega) (E1380) used to create 8 constructs containing 4 tags for initial bacterial transformation. Different ZFY genes (full length [with and without DNA binding domain]) and short variant [with and without DNA binding domain]) were inserted into the respective vectors.

Human ZFY (hZFY) genes were inserted into vectors using various restriction enzymes which included: Xhol and Xbal for all pcDNA3.1(+) vector backbones, Xhol and Blpl for all pET15b vector backbones and AsiSI and Blpl for all pFN26A (BIND) vector backbones and ordered from the respective vendors mentioned in the figure legend of Table 6. $1 \mu \mathrm{~L}$ of each plasmid was transformed into $50 \mu \mathrm{~L}$ aliquots of T7 Express Competent E. coli (High Efficiency) (C266I) and successively heat-shocked at $42^{\circ} \mathrm{C}$ for 10 seconds and recovered on ice for 5 minutes. Subsequently, $950 \mu \mathrm{~L}$ SOC media (B9020S) was added to the mixture
and incubated at $37^{\circ} \mathrm{C}$ for 60 minutes in a Multitron Standard shaking incubator at 200 revolution per minute (rpm). The cells were then pelleted by centrifugation at $1500 \times \mathrm{g}$ for 1 minute and resuspended in $200 \mu \mathrm{~L}$ in SOC media. $100 \mu \mathrm{~L}$ of the mixture was then loaded onto Lysogeny Broth agar (LB-agar) plates loaded with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin at $37^{\circ} \mathrm{C}$ overnight. Following, isolated E. coli colonies were used to create 3 mL of LB-ampicillin inoculated starter cultures that were incubated overnight in a shaking incubator at 200 rpm and $37^{\circ} \mathrm{C}$. Subsequently, $500 \mu \mathrm{~L}$ of the culture was used to create 1 mL of ZFY glycerol stocks containing $500 \mu \mathrm{~L}$ of 50% glycerol and were stored in cryovials at $-80^{\circ} \mathrm{C}$. The remainder of each E. coli starter culture were then used for the plasmid extraction using a QIAprep Spin Miniprep Kit (27104).

2.5 E. coli Growth

Glycerol stocks of E. coli expressing pET-15b plasmids (T7 promoter, N-terminal His tag and hZFY long/ short AD) were used to 250 mL starter cultures with LB growth media (40% tryptone, 40% sodium chloride (NaCl) and 20% yeast extract) and $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin. Subsequently, the cultures were grown overnight and shaken at $37^{\circ} \mathrm{C}$ and 200 rpm in a Multitron Standard shaking incubator. For the initiation of the bacterial culture growth, OD_{600} was measured in a Biomate 3 S Spectrophotometer to calculate the volume of starter needed to start at OD_{600} of 0.1. This was calculated by dividing the absorbance of the 250 mL starter culture by 0.1 , and then use this value to divide by the volume of the LB growth media (1L).

2.6 ZFY Induction and Isolation

105 mL of E. coli starter culture expressing hZFY-long and 104 mL of hZFY -short expressing E. coli starter culture were added to traditional separate 1L LBampicillin (40\% tryptone, 40\% sodium chloride (NaCl), 20\% yeast extract and
$100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin), shaken at 200 rpm until mid-log phase of $\mathrm{OD}_{600}=0.7$, and induced overnight with isopropyl β-d-thiogalactopyranoside (IPTG) $(1 \mu \mathrm{~L} / \mathrm{mL})$ at $30^{\circ} \mathrm{C}$. Cells were harvested by centrifugation of the 1 L solutions using a JA10 rotor Beckman Avanti J-25 centrifuge at $4^{\circ} \mathrm{C}$ for 30 minutes, sonicated for 10 minutes using a SoniPrep 150 (with 30 second on and off intervals) and ultracentrifuged in a Beckman ultracentrifuge for an hour in a 70 Ti rotor at $70,000 \mathrm{rpm}$ and $4^{\circ} \mathrm{C}$, and the pellets were frozen at $-80^{\circ} \mathrm{C}$ and suspended in lysis buffer (50 mM Tris, 300 mM NaCl at pH 8) with $1 \mu \mathrm{~L} / \mathrm{mL}$ EDTA-free Pierce Protease and Phosphatase Inhibitor Mini Tablets (A32965). Thereafter, the supernatant was isolated by nickelnitrilotriacetic acid (Ni-NTA) affinity chromatography (88221) using 20 mM phosphate buffered saline (pH 7.4) with 10 mM imidazole (equilibration buffer), 25 mM imidazole (wash buffer) and eluted with 250 mM imidazole (elution buffer).

2.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDSPAGE)

To analyse the contents purified by the nickel-NTA affinity chromatography, a handcast Tris-glycine gel and precast Bis-Tris SDS PAGE gels were utilised. The Tris-glycine gel was composed of a 15% resolving gel containing 40% acrylamide, 1.5 M Tris- HCl at $\mathrm{pH} 8.8,10 \%$ SDS, $36 \% \mathrm{v} / \mathrm{v} \mathrm{DH}_{2} \mathrm{O}, 0.05 \% \mathrm{v} / \mathrm{v}$ TEMED (1610800EDU) and 10\% APS solution (1610700), and a 5% stacking gel composed of 40% acrylamide, 0.5 M Tris-HCI, 10% SDS, $63 \% \mathrm{v} / \mathrm{v} \mathrm{DH}_{2} \mathrm{O}, 0.1 \mathrm{v} / \mathrm{v}$ TEMED and 10% APS solution. To add on, the 1X Tris Glycine running buffer for the gel was composed of 0.0248 M tris base, 0.19 M glycine, $0.0035 \mathrm{M} \mathrm{v} / \mathrm{v}$ SDS solution final concentration, diluted from a 10X Tris Glycine buffer stock. Subsequently, a 2 X Laemmli sample buffer stock was diluted with the sample (1:1 dilution) to 1 X and the final concentration of the Laemmli sample buffer components were 2% SDS, 10% glycerol, 0.063 M tris base, $5 \% ~ \beta-$ mercaptoethanol and 0.002% bromophenol blue at pH 6.8 and heated to $85^{\circ} \mathrm{C}$ for 5 minutes in a Grant Instruments JB Academy unstirred water bath. The gel was submerged in the Tris-Glycine running buffer, and $5 \mu \mathrm{~L}$ of protein ladder was added to the first lane and $20 \mu \mathrm{~L}$ heated sample mixtures were loaded into the other lanes. The gel was run at 150 V for 1 hr and subsequently stained for 1 hr by Coomassie blue (1.21 mM Coomassie Brilliant Blue, $50 \% \mathrm{v} / \mathrm{v}$ methanol, $10 \% \mathrm{v} / \mathrm{v}$ glacial acetic acid, $40 \% \mathrm{v} / \mathrm{v} \mathrm{DH}_{2} \mathrm{O}$) and destained overnight on a see-saw rocker with Coomassie destain ($50 \% \mathrm{v} / \mathrm{v}$ DH2O, 40% methanol $\mathrm{v} / \mathrm{v}, 10 \% \mathrm{v} / \mathrm{v}$ acetic acid). The NuPAGE Bis-Tris gel (NP0321PK2) had a polyacrylamide of $4-12 \%$ and the 20X stock NuPAGE MOPS SDS running buffer [NP0001] was diluted with distilled water to 1 X working solution with a final concentration 2.5 mM MOPS, 2.5 mM Tris Base, 0.005% SDS, 0.05 mM EDTA at pH 7.7. Furthermore, the 4 X stock NuPAGE

LDS Sample Buffer [NP0007] (35.25mM Tris base, 26.50mM Tris-HCI, 0.5\% LDS, 0.13 mM EDTA, 0.06 mM SERVA Blue G-250, 0.04 mM phenol red at pH 8.5,) was diluted 1:3 sample buffer to sample dilution ($5 \mu \mathrm{~L}$ sample buffer and $15 \mu \mathrm{~L}$ sample) and heated for 10 minutes to $70^{\circ} \mathrm{C}$. The gel was submerged in the BisTris running buffer and the wells were loaded with the heated sample mixtures and protein ladder. The runtime, voltage and visualisation were the same as the TrisGlycine method

For visualisation, a G:Box F3 gel imaging system was used, and the relative mobility of the bands were compared to the PageRuler Prestained Protein Ladder (26616) which has 10 recombinant proteins ranging from 10 kDa to 180 kDa , and PageRuler Prestained Protein Ladder (26619), which has 9 recombinant proteins ranging from 10 kDa to 250 kDa .

2.8 Western blot analysis

For the separation process of the western blot, it was done using the tris-glycine gel described without Coomassie staining. For hZFY-long AD protein, the acrylamide gel was incubated in Bjerrum and Schafer-Nielsen transfer buffer (comprised of 48 mM tris, 39 mM glycine and 20% methanol) for 15 minutes and transferred onto Polyvinylidene fluoride (PVDF) membrane that was activated in 100% methanol for 1 minute and equilibrated in Bjerrum and Schafer-Nielsen transfer buffer for 15 minutes. Subsequently, the membrane and gel were sandwiched between equilibrated filter paper (also equilibrated in Bjerrum and Schafer-Nielsen transfer buffer for 15 minutes) on a Trans-Blot SD Semi-Dry Transfer Cell for 20 minutes at 15 V . Following, the membrane was retrieved and blocked with 10 mL of 5% bovine serum albumin (BSA) diluted in tris-buffered saline (20 mM tris and 150 mM NaCl) with 0.025% triton (TBST) for 60 minutes at room temperature on a platform shaker. Thereafter, the blocked membrane was
incubated with an anti His-tag primary antibody overnight at $4^{\circ} \mathrm{C}$. Successively, the PVDF membrane was washed five times with TBST for a total of 25 minutes, and the membrane was incubated for 120 minutes in 1:10,000 diluted HRP-conjugated secondary antibody with 5% BSA-TBST blocking buffer. Then, the membrane was washed a further 5 times in TBST and incubated for 5 minutes in 5 mL total solution of Pierce enhanced chemiluminescence (ECL) western blotting Substrate (32209) for imaging in a G:Box F3 gel imaging system.

For hZFY-short AD, we equilibrated nitrocellulose membrane, gel, and filter paper separately in 50 mL Towbin transfer buffer (25mM Tris, 190mM glycine and 20\% methanol, pH 8.3) for 15 minutes. The gel and nitrocellulose were sandwiched between the equilibrated filter paper in Pierce Power Blotter for 5 minutes at 25 V and 1.3A current, and the membrane with was briefly Ponceau stained to visualise if the transfer was successful. The membrane was then washed with 10 mL TBST (20mM tris and 150 mM NaCl) with 0.025% triton (TBST) for 5 minutes to remove the stain and subsequently blocked in a 1% milk TBST solution for 60 minutes at room temperature on a platform shaker. Then, the membrane was incubated with 0.1\% peroxidase-conjugated anti-his antibody in TBST for 60 minutes at room temperature. The antibody was removed, and the membrane was washed 5 times for a total of 25 minutes and detected using the same method as the PVDF membrane.

3 Results

3.1 ZFY exon length is conserved in majority of the land vertebrates

 We sought to investigate ZFY proteins across as many species as we could access and 45 ZFY protein sequences in total (29 land vertebrate sequences and 16 fish sequences) were used for our investigation. Most animal species have one ZFY gene present, with the exception of mice as two Zfy genes are present. Although the majority of animal species have 7 coding exons, the exon lengths were not always the same length. Therefore, the length of the amino acids between the species varied as the shortest ZFY protein was 701 amino acids long (T. rubripes) and the longest ZFY protein was 814 amino acids long (O. anatinus). The consensus shown by land vertebrates was exons 1,3 , and 6 were highly conserved in length as Table 7 showed the length of these exons were all the same excluding X. laevis exon 1 . It is apparent X. laevis has one more codon in comparison to the rest of the land vertebrates.Exons 4 and 7 were moderately conserved as they had varied lengths in some but not all of the land vertebrates. For example, exon 4 of T. francoisi had 44 codons and N. asiaeorientalis had 47 codons which were different to majority 48 codons for the rest of the land vertebrates. Although N. asiaeorientalis is technically not a land vertebrate, it was grouped in as it is considered a Cetartiodactyla. In addition, exon 7 of land vertebrates was typically 394 codons but O. anatinus had 102 codons and G. gallus had 395, and finally, M. musculus, R. norvegicus and X. laevis both exons 4 and 7 were shorter in length in comparison to the other land vertebrates. Furthermore, exons 2 and 5 were the least conserved in exonic length as the majority of the land vertebrate species had varying exon lengths. These differences in the exon lengths were suggestive of either truncation of some
residues in some of the ZFY proteins due to a base deletion or insertions where the exon length was significantly larger for instance.

Table 7. Land vertebrates ZFY exon length. The table illustrates the exon size of the ZFY transcripts. There are typically 7 coding exons, and the length of base pairs represents the coding regions of the exons. There are 28 land vertebrates in total with 26 of the 28 species were mammals (M. musculus has two Zfy sequences) and the rest of the species were bird and amphibian. N/A represents 'Not Available' for species that do not have any information regarding the exons from databases.

	ZFY Coding Exon Length (bp)						
Species	Exon 1	Exon 2	Exon 3	Exon 4	Exon 5	Exon 6	Exon 7
H. sapiens	61	573	150	144	153	141	1184
P. troglodytes	61	573	150	144	153	141	1184
G. gorilla	61	573	150	144	153	141	1184
M. mulatta	61	573	150	144	153	141	1184
T. francoisi	61	572	150	132	153	141	1184
P. anubis	61	573	150	144	153	141	1184
C. sabaeus	61	573	150	144	153	141	1184
R. roxellana	61	573	150	144	153	141	1184
H. moloch	61	573	150	144	153	141	1184
C. jacchus	61	567	150	144	153	141	1184
M. musculus ZFY1	61	552	150	141	123	141	1181
M. musculus ZFY2	61	552	150	141	123	141	1166
R. norvegicus	61	552	150	141	123	141	1178
M. marmota	61	558	150	144	153	141	1184
B. taurus	61	570	150	144	156	141	1184
B. bison	61	570	150	144	156	141	1184
C. hircus	61	570	150	144	156	141	1184
C. elaphus	N/A						
O. virginianus	61	570	150	144	153	141	1184
S. scrofa	61	561	150	144	156	141	1184
N. asiaeorientalis	61	570	150	141	156	141	1184
C. lupus	N/A						
M. erminea	61	570	150	144	156	141	1184
L. africana	N/A						
E. caballus	N/A						
O. anatinus	61	606	150	144	135	141	1208
M. domestica	61	570	150	144	135	141	1184
G. gallus	61	567	150	144	135	141	1187
X. laevis	64	558	150	141	138	141	1517

Fish species on the other hand exhibited a different pattern in comparison to the land vertebrates as shown in Table 8, but some of the exon lengths were the same as land vertebrates. Exon 1 amongst the fish was highly conserved and in comparison, with most land vertebrates, it contained 1-2 additional codons.

Moreover, exon 2 of fish species was less conserved and significantly shorter than
land vertebrate exon 2 as they had nearly twice the number of base pairs.
Therefore, for the entirety of this project, we focused exclusively on land vertebrate (and N. asiaeorientalis) ZFY protein and nucleotide sequences.

Exon 3 was shown to be the most conserved length wise in all species (fish species and land vertebrate species) as the exon had 150 base pairs. This showed that the exon encodes for exactly 50 codons throughout all ZFY proteins. In addition, exons 4 and 5 were shorter in fish species compared to the land vertebrates, but the difference in the exon length was not strikingly significant. Exons 6 and 7 of fish species were generally longer than land vertebrates. However, exon 6 was roughly 1-2 codons longer whereas exon 7 was significantly longer in fish than some of the land vertebrates by a few 100 base pairs.

Although the exon lengths highlighted some degree of conservation, this did not highlight differences in nucleotide or protein as there was likely gene evolution. Therefore, protein and nucleotide alignments we carried forward bioinformatic techniques to emphasise deviation or conservation of the ZFY sequences.

Table 8. Fish species ZFY exon length. The table illustrates the exonic length of fish ZFY and they have typically 7 coding exons with varying lengths. There are 16 fish species in total and for the fish with a missing exon , they have been indicated by the (-) symbol.

	ZFY Length (bp)						
Species	Exon 1	Exon 2	Exon 3	Exon 4	Exon 5	Exon 6	Exon 7
C. lucidus	67	315	150	129	135	144	1301
P. flavescens	67	330	150	129	135	144	1301
P. ranga	67	315	150	129	135	144	1301
L. crocea	67	315	150	129	135	144	1301
A. ocellaris	67	315	150	129	135	144	1301
O. tshawytscha	67	336	150	108	135	147	1280
S. alpinus	67	336	150	108	135	147	1280
O. kisutch	67	336	150	108	135	147	1280
M. zebra	67	318	150	129	135	144	1301
A. calliptera	67	318	150	129	135	144	1301
T. rubripes	67	315	150	129	-	144	1301
B. splendens	67	315	150	129	135	144	1301
D. clupeoides	67	333	150	120	135	144	1319
A. grahami	67	345	150	120	135	138	1307
S. dorsalis	67	315	150	129	135	144	1301
C. semilaevis	67	315	150	126	-	144	1337

3.2 Vertebrates ZFY protein alignment and phylogeny

We carried out multiple sequence alignments to analyse the ZFY sequences. Table 9 showed low conservation of the ZFY protein as only 284 (281 within the exon and 3 residues on splice junctions) amino acids in all of the vertebrates were conserved of the total 926 aligned sites. Table 9 showed that exon 1 contained gap within the alignment sites. Upon observation, we found that exon 2 of rodents had a 3 amino acid gap between sites 47-49, and that fish species had an exon 2 which diverged highly in comparison to land vertebrates as large gaps occurred between sites 113-146, 153-170 and 191-223. Therefore, as stated in the previous section, the fish species were not used for the remainder of the bioinformatic analysis after this section.

Although the length of exon 3 was highly conserved across the species as indicated by Table 8 and Table 9, the amino acid sequences were not as well conserved across all species as the length as indicated by Table 10. Moreover, exon 4 in fish species had a gap between sites 298-302 and exon 5 had a gap in 3 of the 4 rodent sequences between sites 334-342, and also in most fish species between sites 352-359. Exon 6 contained a large stretch of basic residues between sites 449-464, likely to be a nuclear localisation sequence. The acidic activation domain lies between exon 2 and exon 6 and has multiple clusters of conserved amino acids usually 5 or more amino acids. In addition, within the acidic activation domain, most land vertebrates between sites 352-361 contained a stretch of alanine residues, likely to be polyalanine motifs and interestingly, marsupial, monotreme, bird and amphibian did not have these alanine clusters. However, this stretch was not well conserved in rodents, and not available in fish species as they had gaps present or different amino acids in this region, but smaller motifs were present between sites 380-384. This indicated that the stretch/
motif likely has some functional role within the placental land vertebrates.
Therefore, within the acidic domain, we located a likely nuclear localisation
sequence and a polyalanine motif in the majority of species.

Lastly, exon 7 was the most highly conserved exon of ZFY and is where the zinc fingers of ZFY are located. This was suggestive of exon 7 having very important function in ZFY and would be studied further in sections ahead. In addition, Exon 7 of the fish sequences showed that fish have two inserts not observed in the land vertebrates as they had gaps between sites 584-600 and 809-842, and the inserts are rich in proline, serine, and lysine residues. Though we interpreted multiple sequence alignments to for sequence conservation, it was important we generated phylogenetic trees which allowed us to see closely related species.

```
NP_001356631.1|ZFY|H_sapiens
XP 009443992.1|ZFY_X1|P_troglodytes
```



```
XP_014984082.1|ZFY_X1|M_mulatta
XP_033067617.1|ZFY|T_francoisi
XP_031516968.1|ZFY X1|P anubis
XP_008017167.1|C_sābaeus
XP 030782172.1|Z\overline{FY}X1|R_roxellana
XP-}032612406.1|ZFY - X1| H moloch
XP-}035145821.1|ZFY- X2|C_jacchus
P10925.3|ZFY1_MOUSE|M_musculus
P20662.2|ZFY2_MOUSE|M_musculus
XP_008771898.1|R_norvegicus
XP_015343506.1|M_marmota
Q95LI3.1|ZFY|B_taurus
XP_010855418.1|B_bison
XP-017900383.1|C-hircus
AMY}96563.1|ZFY|C elaphus
XP_020759307.1|ZFY_X1|O_virginianus
F1SPY3|ZFY|S_scrofā
XP_024612082.1|ZFY|N_asiaeorientalis
AKI82174.1|ZFY|C_lupus
XP 032187800.1|ZFX like X1|M erminea
JAC06687.1|ZFY|L_africana
No_accession|PRED}ICTED ZFY|E_caballus
XP-028935710.1|ZFY X2|O
XP_016288863.1|M_domestica
TKS}65875.1|ZFY1|\overline{C}_lucidus
```



```
XP_028276673.1|ZFY1_like_X1|P_ranga
XP_010749798.1|ZFY1_X1|L_crocea
XP_023133903.1|A_ocèllaris
XP_024253620.1|O_tshawytscha
XP-}023843891.1|Z\overline{FY1|S alpinus
XP 020321060.1|ZFY1 l\overline{ikelO kisutch}
XP_004564062.1|ZFY1_X1|M_zebra
XP_026038267.1|A_calliptēra
XP_011609888.1|Z\overline{FY_X1|T_rubripes}
XP_029029380.1|ZFY X1|B splendens
XP_028839070.1|D_clupeiodes
RO\overline{L}53794.1|ZFY1|\overline{A}_grahami
XP 023277193.1|S dorsalis
XP-008331409.1|C semilaevis
XP_015127980.1|ZFY_X1|G_gallus
Q0\overline{1}611.1|ZFY1_XENL\overline{A}|X_l\overline{aevis}
```

[^0]NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1|P_troglodytes Q52V16.1|ZFY|G_gorilla
XP 014984082.1|ZFY X1|M mulatta XP ${ }^{-} 033067617.1|Z F Y| T$ frāncoisi XP-031516968.1|ZFY X1|P anubis XP_008017167.1|C sabaeus XP_030782172.1|Z $\bar{F} Y$ _X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchus P10925.3|ZFY1 MOUSE|M musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898.1|R norvegicus XP ${ }^{-} 015343506.1 \mid \mathrm{M}^{-}$marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S scrofa
XP 024612082.1|ZFY|N asiaeorientalis AKİ82174.1|ZFY|C lupus
XP_032187800.1|ZFX_like_X1|M_erminea JA $\bar{C} 06687.1 \mid$ ZFY|L_a $\bar{f} r i c a n ̃ a ~$ No_accession|PREDICTED_ZFY|E_caballu XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C lucidus XP_028451227.1|P_flavescens XP_028276673.1|Z $\bar{F} Y 1$ _like_X1|P_ranga XP ${ }^{-} 010749798.1 \mid \mathrm{ZFY1}^{-} \mathrm{X1\mid L}$ crocéa XP_023133903.1|A_ocellaris XP_024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptera XP 011609888.1|ZFY X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP-028839070.1|D clupeiōdes ROL̄53794.1|ZFY1|Ā_grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY_X1|G_gallus Q01̄611.1|ZFY1_XENLĀ|X_1āevis

DDPDSVVIQDVVEDVVIEEDVQCSDILEEADVSENVIIPEQVLD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLE--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVID--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD--------SDVTEELS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSEKVIIPEQVLD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VQCSDILEETDVSENVIIPEQVLD--------SDVTEEVS [120] DNPGSVIIODVIENVLIED-VHCSHILEETDISDNVIIPEQVLN--------LGTAEEVS [120] DDPDSVIIODVIENVLIED-VHCSHILEETDISDNVITPEOVID--------IDTAEEVS [120] DDPDSVIIQDVIENVLIED-VHCSNILEETDISDNVIIPEQVLD--------LDTAEEVS [120] DVQDSVVIQDVIEDVVIED-VQCSDILEEADVSDSVIIPEQVID--------SDVTREVS [120] DDPDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS--------SDVTEEVS [120] DDPDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS--------SDVTEEVS [120] DDPDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLS--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPDQVLS--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLA--------SEVTEEVS [120] DDPDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLIT-------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLG--------SDVTEEVS [120] DDPDSVVIQDVIEDVVIED-VHCSDILEEADISENVIIPEQVLD--------SDVTEEVS [120] EDPDSVVIQDVIEDVVIEN-VQCSDILEEADVSENVIIPEQVLE--------SDISEEVS [120] DGPDSVVIQDVIEDVVIED-VQCSDILEEADVSENVVIPEQVLD--------SDVTEEVS [120 DDPDSVVIQDVIEDVVIED-VQCPDILDEADVSETVIIPEPVLG--------PEVPEEVS [120] DDPDSVVIQDVIEDVVIED-VQCPDIMEEADVSETVIIPEQVID--------TDVTEEVS [120] DE---LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA---------------- [120]
 DE---LVIQDAVEDVVSEY-VHCD---EDED----VVAVETCVMA----------------------- [120] DE---LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA------------------ [120] DE---LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA------------------ [120]

 DE---LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA------------------120]
 DE----LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA-EE---LVVQDAVEDVVAEY-VHCE---EDEG----VAVETCVMS-DE---LVIQDAVEDVVAEY-VHCD---DDEG----VAVETCVMS-DE---LVIQDAVEDVVSEY-VHCD---EDED----VAVETCVMA-DE---LVIQDAVEDVVSEY-VHCD---DDED----VAVETCVMA-DDPDSVVIQDVIEDVVIED-VQCPDIMEEPDVSETVIIPEQVLD----------TDVAEEVS DEGDSVVIQDVIEDVVIED-VQCSDILDGGRVSEAVIIPEQVLEDEVGTGEEEQVLEEDS [120]

NP $001356631.1 \mid$ ZFY|H sapiens XP-009443992.1|ZFY_X1| P_{-}troglodytes Q5 $\overline{2}$ V16.1|ZFY|G_gorílla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T francoisi XP_031516968.1|ZFY X1|P anubis XP-008017167.1|C_sābaeus XP 030782172.1|ZF̄Y X1|R roxellana $\mathrm{XP}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}^{-}$moloch XP_035145821.1|ZFY_X2|C_jacchus P10 $925.3 \mid$ ZFY1_MOUSE|M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP 015343506.1|M marmota Q95LI3.1|ZFY|B_taurus XP 010855418.1|B bison XP ${ }^{-} 017900383.1 / \mathrm{C}^{-}$hircus AMȲ96563.1|ZFY|C-elaphus XP_020759307.1|ZFY_X1|O_virginianus F1 $\bar{S} P Y 3|Z F Y| S _s c r o f a ̄ ~$
XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC06687.1|ZFY|L af̄ricaña
No accession |PREDICTED ZFYIE XP ${ }^{-} 028935710.1 \mid$ ZFY X2|O_anat $\overline{i n u s}$ XP-016288863.1|M domestica TK $\bar{S} 65875.1 \mid$ ZFY1| \bar{C} lucidus XP_028451227.1|P_年lavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1_X1|L_crocea XP 023133903.1|A ocellaris XP 024253620.110 tshawytsch XP ${ }^{-} 023843891.1 \mid \mathrm{Z} \overline{\mathrm{F} Y 1 \mid S}$ alpinus XP $020321060.1 \mid$ ZFY1 likelO kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptera XP_011609888.1|ZFY_X1|T_rubripes XP $029029380.1 \mid$ ZFY X1|B splendens XP 028839070.1|D clupeiodes ROL53794.1|ZFY1|A grahami XP 023277193.1|S dorsalis XP-008331409.1| C^{-}semilaevis XP_015127980.1|ZF̄Y_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis

LPHCTVPDDVLASDITSTSMSMPEHVLTSESMHVCD----IGHVEHMVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSTSMSMPEHVLTSESMHVCD----IEHVEHMVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSTSTSMPEHVLTSESMHVCD----IGHVEHMVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSASMSMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSASMSMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSASISMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIITD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIVTD [180] LPHCTVPDDVLASDITSASMSMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIITD [180] LPHCTVPDDVLASDITSTSMSMPEHVLTSESMHVCD----IGHVEHVVHDSVVEAEIITD [180] VSHCTVPDDVLASDITSSSVSMPEHVLTSESMHVCD----IGHVEHVVRDNVVEAEIITD [180] LAQFLIP-DILTSGITSTSLTMPEHVLMSEAIHVSD----VGHFEQVIHDSLVETEVITD [180] LAQFLIP-DILTSSITSTSLTMPEHVLMSEAIHVSN----VGHEEQVIHDSLVEREIITD [180] LAQEPIP-DILASSITSTSLTMPEHILMSEAIHVSD----VGHIEQVIHDSLVETEVITD [180] LAHCTVPDDVLPSDITSTSMSMPEHVLTSESIHMSN----VGHVEHVVHDSEVEAEIVTD [180] むAHCTVPDDVLASDITSASMSMPEHVLTSESVHVSD----VGHVEHIVHGSVVEAEIVTD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSESVHVSD----VGHVEHIVHGSVVEAEIVTD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSESVHVSD----VGHVEHIVHGSVVEAEIVTD [180] LAHCTVPDDVLASDVTSASMCMPEHVLTSESVHVSD----VGHVEHIVHDSVVEAEIVTD [180] LAHCTVPDDVLASDVTSASMCMPEHVLTSESVHVSD----VGHVEHIVHDSVVEAEIVTD [180] LAHCTVPDDVLASDITSASISMPEQVLTSESIHVS------EHIEH-IHNSVVEAEIVTD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSESIHVSD----IGHVEH-VHDSVVVEAEIITD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSDSIHVSD----VGHVEHVVHDSVVAAEIITD [180] AACIVPDDVLASDITSASMSVPEHVLTSDSIHVSD----IGHVEHMVHDSVVEAEITD [180] LTHCTVPNDVLASDVTSASMSMPEHVLTHEPIRVPD----VGNVEHVVHDNVVEAEIVTD [180] LAHCTVPDDVLASDITSASMSMPEHVLTSESIHVSD----VGHVEHIVHDSVVEAEIVTD [180] LAHCAVPEDVLAPDVPAAVAAVPEHVLAGEPVHIPPAAGHVGHVEHVVHDGVVDAEMVAD [180 LAHCTVPDDVLASDITTATMSIPEHVLTSDSMHVPD----VGHVEHVVHDNVVEAEIVTD [180

-LEGEEE------------------------18MMGIPED [180]					

-LTSCDVPDNVIDPELVDGELTIPDPETGMHS--VS------------GHVVIGEEITDD [180]

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1|P_troglodytes Q52V16.1|ZFY|G_gorilla
XP_014984082.1|ZFY_X1|M_mulatta XP-033067617.1|ZFY|T frāncoisi XP $031516968.1 \mid$ ZFY X1|P anubis XP_008017167.1|C_sabaeus XP_030782172.1|ZF̄Y_X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchus P10925.3|ZFY1 MOUSE|M musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898. $\overline{1} \mid R$ norvēgicus XP ${ }^{-} 015343506.1 \mid \mathrm{M}^{-}$marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP 024612082.1|ZFY|N asiaeorientalis AKİ82174.1|ZFY|C lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC̄ $06687.1 \mid$ ZFY|L_africana No_accession | PREDICTED_ZFY|E_caballu XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C lucidus XP_028451227.1|P_flavescens XP ${ }^{-} 028276673.1 \mid \mathrm{Z} \overline{\mathrm{F}} \mathrm{Y} 1$ like $\mathrm{X1} \mid \mathrm{P}$ ranga XP ${ }^{-} 010749798.1 \mid \mathrm{ZFY1}^{-} \mathrm{X1\mid L}$ crocéa XP_023133903.1|A_ocellaris XP_024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A cal̄liptēra XP-011609888.1|Z $\bar{F} Y$ X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP $028839070.1 \mid \mathrm{D}$ clupeiodes ROL̄53794.1|ZFY1|Ā_grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY X1|G gallus Q01̄611.1|ZFY1_XENLĀ|X_lāevis

PLTSDIVSEEVLVADCAPEAVIDASGISVDQQDND--------KASCEDYLMISLDDAGK [240 PLTSDIVSEEVLVADCAPEAIIDASGISVDQQDND--------KASCEDYLMISLDDAGK [240 PLTSDIVSEEVLVADCAPEAIIDASGISVDQQDND--------KASCEDYLMISLDDAGK [240] PLTSDVVSEEVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTSDIVS?EVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTSDVVSEEVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTTDVVSEEVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTSDIVSEEVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTSDIVSEEVLVADCAPEAIIDASGISVDQQDND--------KANCEDYLMISLDDAGK [240] PLTSDVVSEEVLIADCAPETITDAG-ISVDQRDDD--------KGNCEDYLMISLDDAGK [240] PITADTSD--ILVADCVSEAVLDSSGMPLEQQDND---------KINCEDYLMMSLDEPSK [240] PLTADISD--ILVADWASEAVLDSSGMPLEQQDDA--------RINCEDYLMMSLDEPSK [240] PLTADISE--ILVTDCASEAVLDSSGMPLEQQDDT--------KVNRDDYLMISLDDAGK [240] PLTTNLVS-EVLVADCASEAVIDANGIPVDHQDDD--------KSNCEDYLMISLDDAGK [240] PLTADVVSEEVLVADCASEAVIDANGIPVDQQDDD--------KGNCEDYLMISLDDDGK [240] PLTADVVSEEVLVADCASEAVIDANGIPVDQQDDD--------KGNCEDYLMISLDDDGK [240] PLTDDVVSEEVLVADCASEAVIDANGIPVDQQDDD--------KGNCEDYLMISLDDDGK [240] PLTANIVSEDVLVADCASEAVIDANGIPVDQQDDD--------KGNCEDYLMISLDDDGK [240] PLTTNIVSEDVLVADCASEAVIDANGIPVDQQNDD--------KGNCEDYLMISLDDDGK [240] PLTADVVSEEVLVADCASEAVIDANGIPVDQQDGD--------KSSCEDYLMISLDDAGK [240] PLTTDVVSFFVI VADCASEAVTDANGTPVDOODDD--------KGNCEDYTMTSLDDAGK 240$]$ PLTTDVISEEVLVADCASEAVIDASGIPVEQQDDD--------KNNCEDYLMISLDDAGK [240] PLTADVVSEEVLVADCASEAVIDANGIPVDQQDDD--------KSNCEDYLMISLDDAGK [240] TLTTDIVSEEVLVADCTSEAVIDANGIPVDQQDDD--------KGNCEDYLMISLDDARK [240] PRLTTDVVSEEVLVTDCASEAVIDANGIPVEQQ-DD--------KSNCEDYLMISLDDAGK [240] PLAAGVVSEEVLVADCASEAVIDANGIPVERRDDDEDDEDDDDKGNCEDYLMISLDDAGK [240] PLTTDVVSEEVLVADCASEAVIDANGIPVEQQDDD--------KSNCEDYLMISLDDAGK [240]

 VMVADGHTQDELDPEQD------------------------------TDGCGDYLMISLDEAGK [240]

 GLDPDQQEDD-----------------------------------QDGCGDYLMISLDEAGK [240] TLGTDVVSEEVLVADCASEAVIDANGIPVEHQDE----------KGNCEDYLMISLDDAGK [240] ALEEDMISEEVLVADCVSEAVIDANGIPVHENDSE---------EVNCDDYLMISLDDAEK [240]

NP_001356631.1|ZFY|H_sapiens XP-009443992.1|ZFY_X1|P_troglodytes Q5 $\overline{2} \mathrm{~V} 16.1|\mathrm{ZFY}| \mathrm{G}$ _gorilla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T_francoisi XP_031516968.1|ZFY_X1|P_anubis XP_-008017167.1|C_sābaeus XP 030782172.1|Z $\bar{F} Y$ X1|R roxellana $\mathrm{XP}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}^{-}$moloch XP_-035145821.1|ZFY_X2|C_jacchus P10 $925.3 \mid$ ZFY1_MOUSE|M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|ZFY|B_taurus XP_010855418.1|B bison XP ${ }^{-} 017900383.1 / \mathrm{C}^{-}$hircus AMY $96563.1 \mid$ ZFY|C_elaphus XP_020759307.1|ZF̄Y_X1।O_virginianus F1SㄹP3|ZFY|S_scrofā
XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC06687.1|ZFY|L africana
No_accession|PREDICTED ZFY|E caballu XP_028935710.1|ZFY X2|O_anatinus XP_016288863.1|M_domestica TKS $65875.1 \mid$ ZFY1| \bar{C} _lucidus XP_028451227.1|P_XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1_X1|L_crocea XP_023133903.1|A_ocellaris XP ${ }^{-} 024253620.110^{-}$tshawytscha $\mathrm{XP}^{-} 023843891.1 \mid \mathrm{Z} \overline{\mathrm{F} Y 1 \mid S}$ alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptera XP_011609888.1|ZFY_X1|T_rubripes XP_029029380.1|ZFY X1|B splendens XP_028839070.1|D_clupeiodes ROL53794.1|ZFY1|A grahami XP 023277193.1|S dorsalis XP-008331409.1| C^{-}semilaevis XP_015127980.1|ZFY_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis

IEHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300 IEHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDGESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTIDGESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSTGVTVDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSSGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVENESENDHG [300] ADIEGSSEVTMNAESGTDSSKLDEASPEVIKVCILKADSEVDELGETIHAVESETKNGNE [300] IDHEGSSEVTMNAESETDSSKLDEASPEVIKVCILKADSEVDDVGETIQAVESETDNGNE [300] TENEGSSEVTTNAESESDPYKLNETSPEVIKVYIFKADPEEDDVGETVDIVESKTDNGNE [300] IEHNGSTAVNTSAESDIDSCKVEGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] MEHDCSSGMTMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] MEQDCSAGMTIDRESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEQDCSAGMTIDRESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] MEQDCSAGMTIDAESEIDPCKVDGTCPEVIKVYIFRADPGEDDLGGTVDIVESEPENDHG [300] MEQDCSAGVTIDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSSEMTMDAESEINPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHDGSSGMTMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDRG [300] IEHGGSSGMTIDTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEHGGSSGMTMNTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] LGHDGTSGITMDTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] IEQDGSSGMTMDTELEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHE [300] VDHDGSSEMTMDAEPEIDPCKVDGGCPEVIKVYIFKADPGEDDLGGTVDIVESEPENEHG [300] IEHDGSSEITMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHG [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMAESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTET--- [300] MVSDDGTEVTVEGAEEDQEVEKDEDGQEVIKVYIFKADSGEDDLGETVDISDGDTED--- [300] MVSDDGTEVTVEGAEEDQEVEKDEDGQEVIKVYIFKADSGEDDLGETVDISDGDTED--- [300] MVSDDGTEVTVEGAEEDQEVEKDEDGQEVIKVYIFKADSGEDDLGETVDISDGDTED--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTEN--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTEN--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDAES--- [300] MVSGDGAEVTVEGAVEDQEVEKDEEGQEVIKVYIFKADSGEDDMGETVDIGDGETEG--- [300] MVSGDGEEVTVEGAIDDQEVEKDEDGQEVIKVYIFKADSGEDDLGETVDLG--ENEA--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTES--- [300] MVSEDGTEVTVEGAVEDQEVEKDEDGQEVIKVYIFKADSGEDDMGESVDISDGDTDG--- [300] IEHEGSAEITMEAESESGSCKVDGICPEVIKVYIFKADPGEDDLGGTVDVVESEPENDHA [300] IDEDGAEEITMGSVVEGDSSKIDGSCPEVIKVYIFKADPGEEDLGGTVDIVESESENDHG [300]

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1|P_troglodytes Q52V16.1|ZFY|G_gorilla
XP 014984082.1|ZFY X1|M mulatta XP ${ }^{-} 033067617.1|Z F Y| T$ frāncoisi XP $031516968.1 \mid$ ZFY X1|P anubis XP_008017167.1|C_sabaeus XP_030782172.1|ZF̄Y_X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchus P10925.3|ZFY1 MOUSE|M musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898.1|R norvegicus XP ${ }^{-} 015343506.1 \mid \mathrm{M}^{-}$marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP_024612082.1|ZFY|N_asiaeorientalis AKĪ82174.1|ZFY|C lupūs
XP_032187800.1|ZFX_like_X1|M_erminea JA $\bar{C} 06687.1 \mid$ ZFY|L_a $\overline{f r i c a n ̃ a ~}$ No_accession|PREDICTED_ZFY|E_caballu XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C_lucidus XP_028451227.1|P_flavescens XP ${ }^{-} 028276673.1 \mid Z \bar{F} Y 1$ like $\mathrm{X1} \mid \mathrm{P}$ ranga XP ${ }^{-} 010749798.1\left|\mathrm{ZFY1}{ }^{-} \mathrm{X1}\right| \mathrm{L}^{-}$crocea XP_023133903.1|A_oce-llaris XP_024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M zebra XP_026038267.1|A_calliptera XP 011609888.1|ZFY X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP-028839070.1|D_clupeiodes ROL53794.1|ZFY1|Ā_grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY X1|G gallus Q01̄611.1|ZFY1_XENLĀ|X_lāevis

VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVSDSQQED----VAEIADEVYMEVIVGEEDaaVaaaaa VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELLDQNSSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VELIDQNSSIRVPREKMVYMTVNDSQREDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaVELLEQSSSVRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaPaTVaaaa [360] AEVTDQSTSIRVPRV-NIYMSASDSQKEEED-----------TEVIVGDEDaGGTaaDTP [360 AEVTDQRTSIHVPRV-NIYMLASDSQKEEED-----------TKVIVGDEDaGGTaaDTP [360 AEVIDQSSSIYVPRD-NVYMPVSDSQKEEED-----------TKVIVGDEDaGDTaaDTS [360] VELIDQNSTIRVPREKMVYMTVNDSQQEDEDLNVAEITDEVYMEVIVGEEDaaVTaaaaa [360 VELIDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaT [360 VELIDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaT [360 VELLDQSNSIRMPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaT [360] VEILDQNNSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa [360] VEILDQNNSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEED-aVaaaaaa [360] VELLDQNSSMRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa VETTDQNSSTRVPREKMVYMTVNDSQQ-DEDT NVAETADEVYMEVTVGFFDaaVaaaaaa ELLDONS VELLDQNSSIRVPREKMVYMTVNDSQQEDDDLNVAEIADEVYMEVIVGEEDaaVaaaaaa [360 VELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa [360] VELIDQNNSIRVPRDKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa [360] VGLLDQSSSIRVPREKMVYMTVNDSQQEDEDLSVAEIADEVYMEVIVGEEDaaVa----- [360] VGLLDQSSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVa----- [360]
--VALTSSSGQTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE---------P [360 --VALTESSGQTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE--------P [360] --VALTESSGQALREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE----------P [360] --VALTSSSGQTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE--------P [360] --MALTESSGQTLREKMVYMSVGDSHHNQGSHGGSKVTDEVYMEVVVGGEE---------P [360 --VALTDSTGRTLREKMVYMSQGD-------HGSSKISDEVYMEVVVGGEE---------P [360 --VALTDSTGRTLREKMVYMSQGD-------HGSSKISDEVYMEVVVGGEE----------P [360] --VALTDSTGRTLREKMVYMSQGD-------HGSSKISDEVYMEVVVGGEE---------- [360] --VALTESSGHTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE---------P [360 --VALTESSGHTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE--------P [360
 --VALTESSGQTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE----------P [360] --VALTDSSGRPLREKMVYMSVGDGHHTQ---GVSKLSDEVYMEVVVGGEE--------P [360 --VTLAEPVVRPLREKMVYMSVGDGHHTQ-TDGGSKLSDEVYMEVVVGGEE--------- [360 --VALTESSGQTLREKMVYMSVGDSHHNQGNHGGSKVTDEVYMEVVVGGEE--------P [360 --IHLD-SSGQTLREKMVYMSVGDSRHNQGNHG[360] VGLLDQNSSIRIPREKMVYMTVNDSQHEDEDLNVAEIADEVYMEVIVGEEDaaVa----- [360 DGFLDSHNGGRLPREKMVYMTVNDSQN-DDDLDVAEIADEVYMEVIVGEEDaaVa----- [360

NP_001356631.1|ZFY|H_sapiens XP-009443992.1|ZFY_X1|P_troglodytes Q5 $\overline{2}$ V16.1|ZFY|G_gorílla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T francoisi XP 031516968.1|ZFY X1|P anubis XP-008017167.1|C_sābaeus XP 030782172.1|ZF̄Y X1|R roxellana $\mathrm{XP}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}^{-}$moloch XP_-035145821.1|ZFY_X2|C_jacchus P10 $925.3 \mid$ ZFY1_MOUSE|M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|ZFY|B_taurus XP 010855418.1|B bison XP ${ }^{-} 017900383.1 \mid C^{-}$hircus AMȲ96563.1|ZFY|C elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S_scrofā XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus XP_032187800.1|ZFX like_X1|M erminea JAC06687.1|ZFY|L africana No accession|PREDICTED ZFY।E cabal XP ${ }^{-} 028935710.1 \mid$ ZFY X2|O_anatinus XP-016288863.1|M domestica TK $\bar{S} 65875.1 \mid$ ZFY1। \bar{C} lucidus XP_028451227.1|P_- flavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1 X1|L crocea XP_023133903.1|A ocellaris XP 024253620.110 tshawytscha XP ${ }^{-} 023843891.1 \mid \mathrm{ZFY1\mid S}$ alpinus XP $020321060.1 \mid$ ZFY1 likelO kisutch XP_004564062.1|ZFY1 X1|M zebra XP_026038267.1|A_cal̄liptēra XP_011609888.1|ZFY_X1|T_rubripes XP 029029380.1|ZFY X1 B splendens XP_028839070.1|D_clupeiodes ROL53794.1|ZFY1|A grahami XP 023277193.1|S $\overline{\text { dorsalis }}$ XP-008331409.1| C^{-}semilaevis XP_015127980.1|ZF̄Y_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis

-VHEQQIDEDEMKT-FVPIaWaaaYGNN-------------------------------------- [420]

TVHEQEMDDSEIKT-EMPIaWaaaYGNN------------------------------------- [420]

aVHEQQMDNSEIKT-FMPIaWaaaYGNN--------------------------------------- [420]

aVHEQQMDDNETKT-FMPIaWaaaYGNN------------------------------------- [420]

VTHDRSYDSVSLSKDFMPVaWaaaYGAE------------------------------------- [420

VPHDRPYDGTALSKDEMPVaWaaaYGIHCCLLGPGNKCRYCVTASEGMTTEAFNALSRGG [420]

-IEQR [420]

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1|P troglodytes Q52V16.1|ZFY|G_gorilla
XP 014984082.1|ZFY X1|M mulatta XP ${ }^{-} 033067617.1|Z F Y| T$ frāncoisi XP $031516968.1 \mid$ ZFY X1|P anubis XP_008017167.1|C_sabaeus XP_030782172.1|ZEFY_X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchu P10925.3|ZFY1_MOUSE|M_musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898.1|R norvegicus XP ${ }^{-} 015343506.1$ | M^{-}marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP 024612082.1|ZFY|N asiaeorientalis AKĪ82174.1|ZFY|C lupūs
XP_032187800.1|ZFX_like_X1|M_erminea JA $\bar{C} 06687.1 \mid \mathrm{ZFY\mid L}$ africaña No_accession|PREDICTED_ZFY|E_caballu XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C lucidus XP_028451227.1|P flavescens XP 028276673.1|Z $\bar{F} Y 1$ like X1|P ranga $\mathrm{XP}^{-} 010749798.1 \mid \mathrm{ZFY1}{ }^{-} \mathrm{X1\mid L-} \mathrm{~L}^{-}$crocea XP_023133903.1|A_ocellaris XP_-024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptera XP 011609888.1|ZFY X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP ${ }^{-2} 02839070.1 \mid \mathrm{D}$ clupeiodes ROL53794.1|ZFY1|A grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY_X1|G_gallus Q01̄611.1|ZFY1 XENLĀ|X lāevis
-SDGIENRNGTASALIHIDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLT -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESTGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESTGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESTGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHVDESAGLGRLAKQKPKKKR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGSASAVLHVDESVGLSRLTKQKPKKKR-RSDARQYQTAIIIGPDGHPLTVY -SDEIEDQNVTASALLNQDESGGLDRVPKQKSKKKK-RPESKQYQSAIFVAPDGQTLRVY -SDEIEVQNATASAMLHHDESGGLDRVPKQKSKKKK-RPESKQYQSAIFVAPDGQTLRVY -SDEIEEQNVTASAVLHQNESGGLDRVHKQKAKKKK-RPESKQYQTAIIVAPDGQTLIVY -SDGIENRNGTASALLHIDESAGLSRLAKQKPKKRR-RPDSKQYQTAIIIGPDGHPLT -SDGIENRSGTASALLHIDESAGLGRLTKHKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRSGTASALLHIDESAGLGRLTKHKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPITVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLSRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -SDGIENRNGTASALLHIDESAGLGRVTKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY SDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -TDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY -TDGIENRNGTASALLHIDESAGLGRLAKQKPKKRR-RPDSRQYQTAIIIGPDGHPLTVY DSESCENRNGAASALLHIDESDGIDEINRQRNKSKR-RSEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGVDEINRQRNKSRR-RSEPRQVQTAIIIGPYGQPITVY DGEGCENRNGAASALLHIDESDGVDEINRQRNKSKR-RSEHRQVQTAIIIGPYGQPITVY DSESCENRNGAASALLHIDESDGIDEINRQRNKSKR-RSEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGVDEINRQRSKNKR-RSEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGADKLNRQRNKNKRTRAEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGGDKLNRQRNKNKRTRAEPRQVQTAIIIGPYGQPITV DSESCENRNGAASALLHIDESDGADKLNRQRNKNKRTRAEPRQVQTAIIIGPYGQPITV DSESCENRNGAASALLHIDESDGVDEINRQRNKTKR-RSEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGVDEINRQRNKTKR-RSEPRQVQTAIIIGPYGQPITVY DSESCENRNGAASALLHIDESEGVDDIGRQRSKNKR-RSEHRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALIHIDESDGVDEINRQRAKSRR-RSEPRQVQTAIIIGPYGQPLTVY DSEGCENRNGAASALLHIDESDGVDKLNRQLGKNKR-RAEPRQVQTAIIIGPYGQPITVY ADEGCENRNGAASALLHIDESDALDKLNRQHGKNKR-RAEPRQVQTAIIIGPYGQPLTVY DSESCENRNGAASALLHIDESDGVDEINRQRNKSKR-RSEPRQVQTAIIIGPYGQPLTVY DGDGCENRNGAASALLHIDESDGIDEISRQRTKSRR-RSEPRQVQTAIIIGPYGQPLTVY -NDGIESRNGTASALLHIDESAGLGRLAKQKPKKKR-RPESRQYQTAIIIGPDGHPITVY -TDGIEHRNGTASALLHIDESDGLDRLTKQKLKKKR-RGENRQYQTAIIIGPDGHPLTVY [480

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1| P_troglodytes Q5 $\overline{2} \mathrm{~V} 16.1|\mathrm{ZFY}| \mathrm{G}$ _gorílla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T_francoisi XP 031516968.1|ZFY X1|P anubis XP-008017167.1|C_sābaeus XP $030782172.1 \mid \mathrm{ZF} Y$ X1|R roxellana $\mathrm{XP}^{-} 032612406.1 \mid \mathrm{ZFY}^{-} \mathrm{X1} \mathrm{XH}^{-}$moloch XP-035145821.1|ZFY X2|C_jacchus P10̄925.3|ZFY1_MOUSE|M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP 015343506.1|M marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP ${ }^{-} 017900383.1 / \mathrm{C}^{-}$hircus AMȲ96563.1|ZFY|C-elaphus XP_020759307.1|Z̄̄Y_X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC06687.1|ZFY|L africana
No accession|PREDICTED ZFY|E caballu XP 028935710.1 IZFY X2। \bar{O} anat $\overline{i n u s}$ XP_-016288863.1|M_domestica TKS $65875.1 \mid$ ZFY1| \bar{C} _lucidus XP_028451227.1|P_flavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1 X1|L crocea XP 023133903.1|A ocellaris XP 024253620.110 tshawytscha XP ${ }^{-} 023843891.1 \mid \mathrm{Z} \overline{\mathrm{F} Y 1 \mid S}$ alpinus XP $020321060.1 \mid$ ZFY1 likelo kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptera XP_011609888.1|ZFY_X1|T_rubripes XP 029029380.1 ZFY X1 B splendens XP_028839070.1|D_clupeiodes ROL53794.1|ZFY1|A grahami XP 023277193.1|S $\overline{\text { dorsalis }}$ XP-008331409.1| C^{-}semilaevis XP_015127980.1|Z̄FY_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis
** ******* **** ** *
 PCMICGKKEKSRGELKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540
PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKEKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LAKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMFCGKKFKTKRFLKRHTKNHPEY-LANKKYHCTECDYSTNKKISLHNHMESHKLTI-- [540] PCMFCGKKFKTKRFLKRHIKNHPEY-LANKKYHCTECDYSTNKKISLHNHMESHKLTI-- [540] PCMFCGKKFKTKSFLKRHIKNHPEY-LAKKKYHCTDCDYSTNKKISLHNHMESHKLTI-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-IAKKKYCCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKEKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKMSLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCLICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKEKSRGFLKRHMKNHPEH-LTKKKYHCTACDYTTNKKISFHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LSKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCEYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYHCTDCDYTTNKKISLHNHLESHKLTS-- [540] PCMICGKKEKSRGFLKRHMKNHPEH-LSKKKYRCTDCDYTTNKKVSLHNHLESHKLTG-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LTKKKYRCTDCDYTTNKKI SLHNHLESHKLTN-- [540] PCMLCGKKFKSRGFLKRHTKNNHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNNHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCEFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHTLSN-- [540] PCMLCGKKFKSRGFLKRHTKNHHODVLTRKKYOCTDCDFTTNKKASLHNHMEVHTLSN-- [540] PCMLCGKKFKSRGFLKRHTKNHHODVLTRKKYOCTDCDFTTNKKASLHNHMEVHTLSN-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDILTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLSRKKYQCTDCDFITNKKANLHNHMEVHALST-- [540] PCMLCGKKFKSRGFLKRHTRNHHQDALSRKKYQCTDCDFTTNKKASLHNHMEVHALSN-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMLCGKKFKSRGFLKRHTKNHHQDVLTRKKYQCTDCDFTTNKKASLHNHMEVHALSS-- [540] PCMICGKKFKSRGFLKRHMKNHPEHLLTKKKYRCTDCDYTTNKKISLHNHLESHKLTN-- [540] PCMICGKKFKSRGFLKRHMKNHPEH-LVRKKYRCTDCDYTTNKKVSLHNHLESHKLTATV [540]

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY X1|P troglodytes Q52V16.1|ZFY|G_gorilla
XP 014984082.1|ZFY X1|M mulatta XP ${ }^{-} 033067617.1|Z F Y| T$ frāncoisi XP $031516968.1 \mid$ ZFY X1|P anubis XP $008017167.1 \mid \mathrm{C}$ sabaeus XP_030782172.1|ZFY_X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchus P10925.3|ZFY1 MOUSE|M musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898.1|R norvegicus XP ${ }^{-} 015343506.1 \mid \mathrm{M}^{-}$marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP 024612082.1|ZFY|N asiaeorientalis AKİ82174.1|ZFY|C lupūs
XP_032187800.1|ZFX_like_X1|M_erminea JAC̄06687.1|ZFY|L_africaña No_accession|PREDICTED_ZFY|E_caballus XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C lucidus XP_028451227.1|P_flavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP^{-}010749798.1|ZFY1 ${ }^{-}$X1| L^{-}crocea XP_023133903.1|A_ocellaris XP_024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1 X1|M zebra XP_026038267.1|A_calliptera XP 011609888.1|ZFY X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP $028839070.1 \mid \mathrm{D}$ clupeiodes ROL53794.1|ZFY1|Ā_grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY X1|G gallus Q01611.1|ZFY1_XENLA|X_laevis

NP 001356631.1|ZFY|H sapiens XP_009443992.1|ZFY_X1|P_troglodytes Q5 $\overline{2} \mathrm{~V} 16.1|\mathrm{ZFY}| \mathrm{G}$ _gorilla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T_francoisi XP_031516968.1|ZFY_X1|P_anubis XP_008017167.1|C_sābaeus XP 030782172.1|ZF̄Y X1|R roxellana $\mathrm{XP}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}^{-}$moloch XP_-035145821.1|ZFY_X2|C_jacchus P10 $925.3 \mid$ ZFY1_MOUSE|M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M marmota Q95LI3.1|ZFY|B_taurus XP_010855418.1|B bison XP ${ }^{-} 017900383.1 / \mathrm{C}^{-}$hircus AMȲ $96563.1|\mathrm{ZFY}| \mathrm{C}$ elaphus XP_020759307.1|Z̄̄Y_X1।O_virginianus F1SPY3|ZFY|S_scrofa
XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC06687.1|ZFY|L africana
No accession|PREDICTED ZFY|E caballu XP 028935710.1 IZFY X2। \bar{O} anat $\overline{i n u s}$ XP_016288863.1|M_domestica TKS $65875.1 \mid$ ZFY1| \bar{C} _lucidus XP_028451227.1|P_flavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1_X1|L_crocea XP 023133903.1|A ocellaris XP 024253620.110 tshawytscha XP ${ }^{-} 023843891.1 \mid \mathrm{ZF} \mathrm{F}_{1} \mathrm{~S}$ alpinus XP $020321060.1 \mid$ ZFY1 likelO kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptēra XP_011609888.1|ZFY_X1|T_rubripes XP_029029380.1|ZFY XI|B splendens XP_028839070.1|D_clupeiodes ROL53794.1|ZFY1|A grahami XP 023277193.1|S $\overline{\text { dorsalis }}$ XP-008331409.1| C^{-}semilaevis XP_015127980.1|ZEYY_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis

- KMHKCRECEY -KMHKCKFCEYETAEQGLINRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLINRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNEPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KTCKCKFCDYETAEQTLLNHHLLVVHRKKFPHICGECGKGFRHPSALKKHIRVHTGEKP -KTCKCKFCDYETAEQTLLNHHLLVVHRKKFPHICGECGKGFRHPSALKKHIRVHTGEKP -KTYKCKFCDYETAEQTSLNHHLLAVHSKKYPHVCVECGKGFRHPSELKKHIRVHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRTHTGFKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELRKHMRIHTGEKP -KMHKCKFCEYGTAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLINRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCEYETAEQGLINRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -KMHRCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP -RTHKCKFCDYETAEQGLLNRHLIAVHSKNFPHVCVECGKGFRHPSELKKHMRIHTGEKP -KMHKCKFCDYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHP SELKKHMRIHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP NKMHKCKFCDYETAEQGLLNRHLIAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP NKMHKCKFCDYETAEQGLLNRHLLAVHSKSEPHICVECGKGFRHPSELKKHMRTHTGEKP NKMHKCKFCDYETAEQGLLNRHLIAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP NKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSEPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSEPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSEPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCNYETAEQGLINRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKTHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP TKMHKCKFCDYETAEQGLLNRHLIAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP -KMHKCKFCDYE -KMHKCKFCDYETAEQGLLSHHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTGEKP [660] -KMHICKFCDYETAEQGLINRHLIAVHSKSFPHICVECGKGFRHPSELKKHMRTHTGEKP [660

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY X1|P troglodytes Q52V16.1|ZFY|G_gorilla
XP 014984082.1|ZFY X1|M mulatta XP ${ }^{-} 033067617.1|Z F Y| T$ frāncoisi XP_031516968.1|ZFY_X1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|ZFY_X1|R_roxellana XP_032612406.1|ZFY_X1|H_moloch XP_035145821.1|ZFY_X2|C_jacchus P10925.3|ZFY1_MOUSE|M musculus P20662.2|ZFY2 MOUSE|M musculus XP 008771898.1|R norvegicus XP ${ }^{-} 015343506.1$ | M^{-}marmota Q95LI3.1|ZFY|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|ZFY|C_elaphus XP_020759307.1|ZFY X1|O_virginianus F1SPY3|ZFY|S_scrofa
XP 024612082.1|ZFY|N asiaeorientalis AKĪ82174.1|ZFY|C lupūs
XP_032187800.1|ZFX_like_X1|M_erminea JA $\bar{C} 06687.1 \mid$ ZFY|L_a $\overline{f r} r i c a n ̃ a ~$ No_accession|PREDICTED_ZFY|E_caballu XP_028935710.1|ZFY_X2|O_anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C lucidus XP_028451227.1|P_flavescens XP ${ }^{-} 028276673.1 \mid \mathrm{Z} \overline{\mathrm{F}} \mathrm{Y} 1$ like $\mathrm{X1} \mid \mathrm{P}$ ranga $\mathrm{XP}^{-} 010749798.1 \mathrm{ZFY1}^{-} \mathrm{X1} \mathrm{LI}^{-}$crocēa XP_023133903.1|A_ocellaris XP_024253620.110_tshawytscha XP_023843891.1|ZFY1|S_alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A calliptera XP 011609888.1|ZFY X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP ${ }^{-} 028839070.1 \mid \mathrm{D}$ clupeiodes ROL53794.1|ZFY1|A grahami XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY X1|G gallus Q01̄611.1|ZFY1_XENLĀ|X_lāevis

YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHIKTKHSKEMPLKCDICLLTFSDTKEVQQHTLVHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ENKTHQ [720] YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ENKTHQ [720 YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ESKTHQ [720 YCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHALIHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQHHTLVHQ-ENRTHQ [720 YCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ESRTHQ [720 YECQYCEYKSADSSNLKTHIKSKHSKEIPLKCGICLLTESDNKEAQQHAVLHQ-ESRTHQ [720] YECQYCEYKSADSSNLKTHIKSKHSKEIPLKCGICLLTFSDTKEAQQHAVLHQ-ESRTHQ [720 YQCQYCEYKSADSSNLKTHIKTKHSKDIPLKCGICLMTESDTKEAQQHALIHQ-ENRTHQ [720 YQCQYCEYRSADSSNLKTHVKTKHTKEMPFKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720 YRCQYCEYRSADSSNLKTHVKTKHSKEMSEKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720 YQCQYCEYRSADSSNLKTHVKTKHSKEMSFNCDICLLTFSDTKEVQQHALIHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKDVQQHALIHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDSCLLTESDTKEVQQHALIHQ-ESKTHQ [720] YQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTFSDTKEVQQHAVIHQ-ESKTHQ [720] YCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKEVQQHALIHQ-ESKTHQ [720] צQCQYCEYRSADSSNLKTHVKTKHSKEMPYRCDICLLTESDTKEVQQHAVIHQ-ESKTHQ [720] YHCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKEVQQHGLIHQ-ESKTHQ [720] YQCQECPYRSADSSNLKTHVKTKHSKETPFRCEACPLTFADPKELQQHALLHHQESRAHQ [720] YQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCEICLLTESDTKEVQQHALIHQ-ESKTHQ [720] YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEDELMQHGLTHE-ENKTHH [720 YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELMQHGLTHE-ENKTHH [720 YCCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELMQHGLTHE-ENKTHH [720] YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEDELMQHGLTHE-ENKTHH [720 YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELMQHGLTHE-ENKTHH [720 YSCLYCDYKSADSSNLKTHVKTKHSKEMPFKCERCFQTFAEEEELLQHGLTHE-EAKTHQ [720] YSCLYCDYKSADSSNLKTHVKTNHSKEMPFKCDRCFQTFAEEEELLQHGLTHE-EAKTQ? [720] YSCLYCDYKSADSSNLKTHVKTKHSKEMPFKCERCFQTFAEEEELLQHGLTHE-EAKTHQ [720] ZSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELMQHGLTHE-ENKTHH [720] YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCEQTEAEEEELMQHGLTHE-ENKTHH [720 YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELMQHGLTHE-ENKTHL [720] YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCFQTFAEEEELIQHGLTHE-ENKTHH [720] YSCLYCDYKSADSSNLKTHVKTKHSREMPYKCERCCQTESEEEELAQHATTHE-EARTHQ [720 YSCLYCDYKSADSSNLKTHVKTKHSRELPFRCERCGQTEAEEDELTQHAATHE-DARGHQ [720 YSCLYCDYKSADSSNLKTHIKTKHSKEMPYKCERCEQTEAEEEELMQHGLTHE-ENKTHH [720 YSCLYCDYKSADSSNLKTHIKTKHSKELPYKCERCFQTFAEEEELIQHGLTHE-ENKTHH [720] YQCQYCEYRSADSSNLKTHVKTKHSKETSSKCDICFQTESDTKELQQHTLMHQ-ESKTHQ [720] YLCQYCDYRSADSSNLKTHVKTKHSKEMPFKCDICLQTFTDSKDLQEHAILHQ-ESKNHQ [720]

CLHCDHKSSNSSDTKRHVISVHTKDYPHKCEMCFKGFHRPSETKKHVAVHKGKKMHOCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780 CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780 CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780 CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQCRH [780] CLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCDKGFHRPSELKKHVAVHKGKKMHQCRH [780] CSHCNHKSSNSSDLKRHIISVHTKAYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQCRH [780 CSHCNHKSSNSSDLKRHIISVHTKAYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQCRH [780] CSYCNHKSSNSSDLKRHIISVHTKDYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQCRH [780] CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CVHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHOCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCEMCEKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHOCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH SCLHCDHKSSNSSDLKRHIISVHTKDYPHKCEMCDKGFHRPSELKKHVAAHKGKKMHQCRH CLHCDHKSSNSSDLKRHVISVHTKDYPHKCDTCDKGFHRPSELKKHAAAHRGRKLHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAICGKGFHRPSELKKHSLSHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAICGKGFHRPSELKKHSVSHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSASHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAICGKGFHRPSELKKHSLSHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVSHRTKKLHQCRH CAHCEHKSSNSSDLKRHIISVHTKDYPHKCAVCDKGFHRPSELKKHSASHRAKKLHQCRH CAQCEHKSSNSSDLKRHIISVHTKDYPHKCAVCDKGFHRPSELKKHSASHRAKKLHQCRH CAHCEHKSSNSSDLKRHIISVHTKDYPHKCAVCDKGFHRPSELKKHSASHRAKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVSHRTKKVHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVSHRTKKVHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSMSHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVAHRTKKLHQCRH CAHCDHRSSNSSDLKRHIISVHTKDYPHKCAICGKGFHRPSELKKHSAAHRTKKLHQCRH CSHCEHRSSNSSDLKRHVISVHTKDYPHKCAICGKGFHRPSELKKHSASHKAKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVSHRTKKLHQCRH CAHCDHKSSNSSDLKRHIISVHTKDYPHKCAVCGKGFHRPSELKKHSVAHRTKKLHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKLHQCRH CLHCDHKSSNSSDLKRHIISVHTKDYPHKCEVCEKGFHRPSELKKHEAAHKGKKMHQCRH [780]

NP_001356631.1|ZFY|H_sapiens XP_009443992.1|ZFY_X1|P_troglodytes Q52V16.1|ZFY|G_gorilla
XP_014984082.1\ZFY X1|Mmulatta XP - $033067617.1 \mid \mathrm{ZFY\mid T}$ francoisi XP_-031516968.1|ZFY_X̄1|P_anubis XP_008017167.1।C_sābaeus $\mathrm{XP}_{-}^{-} 030782172.1 \mid \mathrm{Z} \overline{\mathrm{FY}}$-X1|R_roxellana $\mathrm{XP}_{-}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}_{-}^{-}$moloch $\mathrm{XP}_{-}^{-} 035145821.1\left|\mathrm{ZFY}_{-}^{-} \mathrm{X} 2\right| C_{-}^{-}$jacchus P10925.3|ZFY1_MOUSE|M_musculus P20662.2|ZFY2 MOUSEIM musculus XP_008771898.1 |R_norvēgicus XP ${ }^{-} 015343506.1$ I M^{-}marmota Q95LI3.1|ZFY|B_taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMȲ96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1 $\bar{S} P Y 3|Z F Y| S _s c r o f a ~$
XP_024612082.1|ZFY|N_asiaeorientalis AKİ82174.1|ZFY|C lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC̄06687.1|ZFY|L_ā̄ricaña No_accession|PREDICTED_ZFY|E_caballu XP_-028935710.1|ZFY_X2|O__anatinus XP_016288863.1|M_domestica TKS65875.1|ZFY1|C_lucidus XP_028451227.1|P \bar{f} lavescens XP_028276673.1|ZF̄Y1_like_X1|P_ranga XP $010749798.1 \mid$ ZFY1 X1|L- crocea XP_023133903.1|A_ocellaris XP_024253620.110_tshawytscha XP_-023843891.1|Z $\bar{F} Y 1 \mid S$ _alpinus XP_020321060.1|ZFY1_like|O_kisutch XP_004564062.1|ZFY1_X1|M_zebra XP_026038267.1|A_calliptēra XP_-011609888.1|Z $\overline{\mathrm{F}} \mathrm{Y}$ X1|T rubripes XP ${ }^{-} 029029380.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{B}^{-}$splendens XP_028839070.1|D_clupeiōdes RO $\bar{L} 53794.1 \mid$ ZFY1| $\bar{A} _g r a h a m i$ XP_023277193.1|S_dorsalis XP_008331409.1|C_semilaevis XP_015127980.1|ZFY_X1|G_gallus Q01611.1|ZFY1_XENLAA|X_laevis

NP_001356631.1|ZFY|H_sapiens XP-009443992.1|ZFY_X1|P_troglodytes Q5 $\overline{2} \mathrm{~V} 16.1|\mathrm{ZFY}| \mathrm{G}$ _gorilla XP_014984082.1|ZFY_X1|M_mulatta XP_033067617.1|ZFY|T francoisi XP_031516968.1|ZFY_X1|P_anubis XP $-008017167.1 \mid \mathrm{C}$ sabaeus XP_030782172.1|Z $\bar{F} Y$ _X1|R_roxellana $\mathrm{XP}^{-} 032612406.1\left|\mathrm{ZFY}^{-} \mathrm{X1}\right| \mathrm{H}^{-}$moloch XP-035145821.1|ZFY_X2|C_jacchus P10 $925.3 \mid$ ZFY1_MOUSE \mid M_musculus P20662.2|ZFY2_MOUSE|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota
Q95LI3.1|ZFY|B_täurus XP_010855418.1|B_bison XP ${ }^{-} 017900383.1 \mid \mathrm{C}^{-}$hircus AMȲ96563.1|ZFY|C_elaphus XP_020759307.1|ZFY_X1|O_virginianus F1SPY3|ZFY|S_scrofā
XP_024612082.1|ZFY|N_asiaeorientalis AKI82174.1|ZFY|C_lupus
XP_032187800.1|ZFX_like_X1|M_erminea JAC06687.1|ZFY|L_africana
No accession|PREDICTED ZFY|E caballus XP_028935710.1|ZFY_X2|O__anat $\bar{i} n u s$ XP_016288863.1|M_domestica TKS $65875.1 \mid$ ZFY1| \bar{C} _lucidus XP_028451227.1|P_flavescens XP_028276673.1|ZFY1_like_X1|P_ranga XP_010749798.1|ZFY1_X1|L_crocea XP_023133903.1|A_ocēllaris XP-024253620.110-tshawytscha XP-023843891.1|ZF̄Y1|S alpinus XP_020321060.1|ZFY1_líikelo_kisutch XP_-004564062.1|ZFY1_X1|M_zēbra XP_026038267.1|A_cal̄liptēra XP_011609888.1|ZFY_X1|T_rubripes XP 029029380.1|ZFY X1|B splendens XP_028839070.1|D_c̄̄upeiōdes ROL̄53794.1|ZFY1|Ā_grahami XP_023277193.1|S_dorsalis XP-008331409.1| C^{-}semilaevis XP_-015127980.1|Z्̄FY_X1|G_gallus Q01611.1|ZFY1_XENLĀ|X_lāevis

*** ** ****	
IADPFVLSRHILSVH	[840]
CDEKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDEKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPF	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDEKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFNSPDPFLLSHHILSAHTKNVPFKCK	[840]
CDFKSPDPFLLSHHILSAHTKNVPFKCK	[840]
CDFKSPDPELLSRHILSVHTKNVPFKCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFR	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDEKIADPFVLSRHILSIHTKDLPFRCK	[840]
CDFRIADPEVLSRHILSVHAKDLPFRCK	[840]
CDEKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRC	[840]
CDEKIADPFVLSRHILSV	[840]
CDEKIADPFVLSRHILSVHTKDLPFRCK	[840]
SCDFKIADPEVLSRHILSVHTKDLPF	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CDFKIADPFVLSRHILSVHTKDLPFRCK	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSEAKRTETHTPVATPKKSGPSGSSSSGP	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSESKRTETHAPVVTPKKSAPSASSASGP	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSETKRTETHTPAVTPKKSAPSGSSSAGP	[840]
CNEKIADPFVLSRHILSVHTKEQQASPE---KSEAKRTETHTPVATPKKSGPSGSSSSGP	[840]
CNEKIADPFVLSRHILSVHTKEQQASPE---KSEAKRTETHTPVATPKKSAPSGSSASGP	[840]
CNEKIADPFVLSRHILSVHTKEQQASPE------KNGSKRTLLGPSPASASASAPVAKKQ	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE------KNGAKRTLLGSSPASASASAPVAKKQ	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE------KNGSKRTLLGPSPASASASAPVAKKQ	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSETKRTETHTPAVTPKKSGPSGSSSSGP	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSETKRTETHTPAVTPKKSGPSGSSSSGP	[840]
CNYKNADPFVLSRHILSVHTKEQQASPE---KTEVKRTETHTPVATPKKAASTASGASNA	[840]
CNFKIADPFVLSRHILSVHTKEQQASPE---KSEPKRTETHTSVATPKKSAASGSSSSAP	[840]
CNFKIADPFVLSRHILSVHTKEPQQQPPPQLQAQQQPAQQPAQPPPPPPQAPVEKSAPKR	[840]
CNFKIADPFILSRHILSVHTKE-QQQPP-----QQPTPPTSESPPPQ-APPTEKSATKR	[840]
CNEKIADPFVLSRHILSVHTKEQQASPE---KSEGKRTETHTPVVTPKKSAPSGSSGAGP	[840]
CNFKNADPFVLSRHILSVHTKEQQSPPE---KSESKRTETHSAPATPKKSAPGGSSGAAP	[840]
CDFKIADPEILSRHILSVHTKDLPFRC	[840]
CEFHIADPFVLSRHILSVHTKELPYRCK-	[840]

--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFNQQNELKKHMKTHSGRKVYQCEYCEYNTTDASGEKRHVISIHTKDYPHRCEY [900]
--RCKKEFQQQCELQTHMKTHSSRKVYQCEYCEYSTKDASGFKRHVISIHTKDYPHSCDF [900]
--RCKKEFQQQCELQTHMKTHSSRKVYQCEYCEYSTKDASGFKRHVISIHTKDYPHRCDF [900]
--RCKKGFRQQCELQKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCKKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCKKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGEKRHVISIHTKDYPHRCEY [900]
--RCKKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCKKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCKKGFRQQNDLKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRSS- [900]
--RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGEKRHVISIHTKDYPHRCEH [900] S--RCRKGFRQQTELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCRKGFRQQGELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCDF [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] PGRVSAASLASSVIVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] PGRVSAASLASSVTVVIGKGQKERRIYQCQYCDYSTGDASGEKRHVISIHTKDYPHRCEI [900] PARVSAASLASSVIVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] PGRVSAASLASSVTVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] PARVSAASLASSVTVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] VLVPGASSS----AAGLATGPRERRVYQCQYCDYSSGDASGFKRHVISIHTKDYPHRCEI [900] VLVPGASSS----AAGLATGPRERRVYQCQYCDYSSGDASGEKRHVISIHTKDYPHRCEI [900] VLVPGASSS----AAGLATGPRERRVYQCQYCDYSSGDASGFKRHVISIHTKDYPHRCEI [900] PARVSAASLASSVIVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] PARVSAASLASSVTVVIGKGQKERRIYQCQYCDYSTGDASGEKRHVISIHTKDYPHRCEI [900] KGRVSAASLASSVIVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] PARVSAASLASSVTVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] TLGGGAAGKKGGGGGGGAKGHRERRVYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEF [900] TIGAAQLAAPSVKKAGGSKGPRERRVYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCQY [900] PARVSAASLASSVIVVIGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] AVRVSAASLASSVTVVVGKGQKERRIYQCQYCDYSTGDASGFKRHVISIHTKDYPHRCEI [900] --RCRKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEY [900] --RCKKGFRQQIELKKHMKTHSGKKVYQCEYCEYNTTDASGFKRHVISIHTKDYPHRCDY [900]

	* ************ ***		
NP_001356631.1\|ZFY	H_sapiens	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_009443992.1\|ZFY_X1	P_troglodytes	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
Q52V16.1\|ZFY	G_gorilla	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_014984082.1\|ZFY_X1	M_mulatta	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_033067617.1\|ZFY	T_frāncoisi	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_031516968.1\|ZFY_X1	P_anubis	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_008017167.1\|C_sabaeus	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]	
XP_030782172.1\|ZF̄Y_X1	R_roxellana	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_032612406.1\|ZFY_X1	H_moloch	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_035145821.1\|ZFY_X2	C_jacchus	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
P10925.3\|ZFY1_MOUSE	M_musculus	CKKGFRRPSEKNQHIMRHHK-VGLP-	[926]
P20662.2\|ZFY2_MOUSE	M_musculus	CKKGFRRPSEKNQHIMRHHKEVGLA-	[926]
XP_008771898.ī\|R_norvēgicus	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]	
XP_015343506.1\|M_marmota	CKKGFRRPSEKNQHIMRHHKEVSLS-	[926]	
Q95LI3.1\|ZFY	B_taurus	CKKGFRRPSEKNQHITRHHKEVGLP-	[926]
XP_010855418.1\|B_bison	CKKGFRRPSEKNQHITRHHKEVGLP-	[926]	
XP_017900383.1\|C_hircus	CKKGFRRPSEKNQHITRHHKEVGLP-	[926]	
AMY 96563.1\|ZFY	C_elaphus	CKKGFRRPSEKNQHITRHHKEVGLP-	[926]
XP_020759307.1\|ZFY_X1	O_virginianus	CKKGFRRPSEKNQHITRHHKEVGLP-	[926]
F1SPY3\|ZFY	S_scrofa	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_024612082.1\|ZFY	N_asiaeorientalis	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
AKI82174.1\|ZFY	C_lupus	---------------------------	[926]
XP_032187800.1\|ZFX_like_X1	M_erminea	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
JA $\bar{C} 06687.1 \mid$ VFY\|L_a ${ }^{\text {fricaña }}$	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]	
No_accession\|PREDICTED_ZFY	E_caballus	CKKGFRRPSEKNQHIMRHHKEVGLP-	[926]
XP_-028935710.1\|ZFY_X2	O__anatinus	CKKGFRRPSEKNQHIMRHHKDLGLP-	[926]
XP_016288863.1\|M_domestīca	CKKGFRRPSEKNQHIMRHHKDVGLP-	[926]	
TKS65875.1\|ZFY1	${ }^{\text {C_lucidus }}$	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]
XP_028451227.1\|P_flavescens	CSKGFRRPSEKNQHIMRHHKDVVQAD	[926]	
XP_028276673.1\|ZF̄Y1_like_X1	P_ranga	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]
XP_010749798.1\|ZFY1_X1	L_crocēa	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]
XP_023133903.1\|A_ocellaris	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]	
XP_024253620.110_tshawytscha	CSKGFRRPSEKNQHIARHHKDLVQAE	[926]	
XP_023843891.1\|ZFY1	S_alpinus	CSKGFRRPSEKNQHIARHHKDLVQAE	[926]
XP_020321060.1\|ZFY1_likelo_kisutch	CSKGFRRPSEKNQHIARHHKDLVQAE	[926]	
XP_004564062.1\|ZFY1_X1	M_zēbra	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]
XP_-026038267.1\|A_calliptēra	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]	
XP_-011609888.1\|Z̄̄YY X1	T_rubripes	CSKGFRRPSEKNQHIMRHHKDVVQTD	[926]
XP_029029380.1\|ZFY_X1	B_splendens	CSKGFRRPSEKNQHIMRHHKDVVQTE	[926]
XP_028839070.1\|D_clupeiodes	CSKGFRRPSEKNQHIMRHHKDMVQAE	[926]	
ROL̄53794.1\|ZFY1	$\overline{\text { A }}$ _grahami	CSKGFRRPSEKNQHIMRHHKDIVPAE	[926]
XP_023277193.1\|S_dorsalis	CSKGFRRPSEKNQHIMRHHKDVVQAE	[926]	
XP_-008331409.1\|C_semilaevis	CSKGFRRPSEKNQHIMRHHKDVVQTE	[926]	
XP_015127980.1\|Z $\overline{\mathrm{F}} \mathrm{Y}$ _X1\|G_gallus	CKKGFRRPSEKNQHIMRHHKDVGLP-	[926]	
	CKKGFRRPSEKNQHTLKHHKEASLM-	[926]	

Table 9. Multiple sequence alignment of the primary sequence of vertebrate ZFY. The ZFY primary sequences were aligned using the MEGA-X programme's ClustalW alignment tool and used to analyse percentage identities. The conserved amino acids are represented by the YELLOW highlight and the (*) symbol above the conserved amino acid(s). Where there was no conservation, there are no symbols or highlights present. Each exon has exon colour coding with RED representing Exon 1, GREEN representing Exon 2, CYAN representing Exon 3, MAGENTA representing Exon 4, BROWN representing Exon 5, PURPLE representing Exon 6 and GREY representing Exon 7. The BLACK represents amino acids across a splice junction The nuclear localization sequence (NLS) is labelled in UPPERCASE BOLD text between residues 449-464. The polyalanine motif is represented by LOWERCASE BOLD alanine residues .

Vertebrate Exons	Percentage Identity (\%) of sequence alignment	Number of conserved sites of sequence alignment	Number of Parsimony informative sites of sequence alignment
Exon 1	8.7	2	17
Exon 2	15.7	33	134
Exon 3	20.4	10	34
Exon 4	10.6	5	41
Exon 5	30.8	16	33
Exon 6	16.3	13	31
Exon 7	44.0	202	192

Table 10. Table demonstrating the percentage identity, conserved sites, and parsimony informative site of the
vertebrate species. The table shows the percentage identity, calculated using the conserved sites and the total number of sites in aligned sequence (by exon).

Phylogenetic tree (Figure 8) analysis showed primate ZFY proteins were closely related, more specifically H. sapiens and P. troglodytes as they had an identical branch length. Figure 8 also showed that carnivores and artiodactyls were closely related to each other. However, rodents had unusual phylogeny as they were phylogenetically discordant as M. musculus and R. norvegicus were expected to be grouped with M. marmota but instead were dispersed in between the artiodactyls and monotremes. Furthermore, the rest of the mammalian, bird and amphibian species indicated that they were distantly related to the primates as the branch lengths progressively get longer. The outgroup species (fish species) were distantly related to the land vertebrates, indicating evolutionary events possibly occurred resulting in the long branches. Therefore, the next step of the sequence analysis was investigating the land vertebrates and excluding fish species as they were very distantly related to the land vertebrates.

12. The tree inferred by Maximum Likelihood method and JTT matrix-based model shows relationships of the most closely related ZFY species and the most distantly related ZFY species. The species were grouped taxonomically with placental mammalian species all grouped together along with marsupials, monotremes and amphibians and the outgroup species were the fish. The branches were grouped into the orders as indicated by the various coloured text and labelling The scale bar corresponds to 0.10 estimated amino acid substitutions per site.

3.3 Land vertebrates ZFY protein alignment and phylogeny

When the alignments were performed on land vertebrates alone (and N. asiaeorientalis), the number of conserved amino acids increased from 284 (as mentioned in sections before) to 375 amino acids (371 within the exons and 4 splice junction residues conserved), which showed that the fish ZFY proteins were distantly related as the majority of the differences arose from fish species. Firstly, the alignment showed that there was an increase in the percentage identity of the ZFY protein of land vertebrates and Cetartiodactyla shown by Table 11 and Table 12. For exon 2, there was roughly 7% increase in comparison to when the fish species were included in the alignment (Table 11), and for exon 3 there was a 4\% increase. In addition, the increase in conservation became more significant as the increase was approximately 18% for exon 4 , 20% for exon 5 and 21% exon 6 , which highlighted the high divergence of these exons in fish species. Lastly, exon 7 had a 17\% increase in percentage identity, and this outlined that exon 7 possibly had a very significant role as the conservation is very high.

```
NP 001356631.1|H sapiens
XP-009443992.1|P-}\mathrm{ troglodytes
Q5
XP_0149840琣.1|M_mulatta
XP_033067617.1|T_francoisi
XP_031516968.1|P_anubis
XP_008017167.1|C_sabaeus
XP_030782172.1|R_roxellana
XP-032612406.1|H_moloch
XP-035145821.1|C_jacchus
P10}0925.3|M_musculus
P20662.2|M_musculus
XP_0087718\overline{98.1|R_norvegicus}
XP_015343506.1|M_marmota
Q95LI3.1|B taurus
XP_010855418.1|B_bison
XP_-017900383.1|C_hircus
AMȲ96563.1|C elaphus
XP_020759307.1।O_virginianus
F1\overline{SPY3।S_scrofa}
XP_02461\overline{2}082.1|N_asiaeorientalis
AKİ82174.1|C_lupus
XP_032187800.1|M_erminea
JAC}06687.1|L_afrícana
No accession\E_caballus
XP 028935710.1|O anatinus
XP_028935710.11O_anatinus
XP_016288863.1|M_domestica
XP_015127980.1|G_gallus
Q01611.1|X_laevis
``` -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDIAVHNFVPDD [60 -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSFFDGIGAGATHMDGDQIVVEVQETVFVSNIVDSDVTVHNFVPDD [60] -MDEDEIELTPEEEKSFFDGIGADAVHMDSDQIVVEVQETVELA---NSDVTVHNFVPDN [60 -MDEDEIELTPEEEKSLFDGIGADAVHMDSDQISVEVQETVELS---NSDVTVHNFVPDD [60] -MDEEEIELTPQEENSLFDGIGADAVHMDGDQIIVEVQETVELS---NSDVTVHNFVPDD [60] \(-M D E D E F E L Q P Q E P N S F F D G I G T D S T H M D G D Q I V V E V Q E T V F V S---N S D I T V H N F V P D V\) [60] -MDEDEFELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDEFELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDEFEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELELQPQETNTFFDEIGADDTHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVEVSDVVDSDITVHNFVPDD [60] -MDEDELALQPREPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDELELQPQEPNSFFDGIGADVTHMVGDQIVVEVQETVFVSDVVDSDITVHNFPPED [60] -MDEDELELRQQEPDSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFAPDG [60] -MDEDGLELQPHEPNSFFDATGAAASHMDGGQILVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDGLELQPQEPNSFFDATGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] -MDEDGLELQPHEPNAFFDPTGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60] MEDVAELELQTTEPHAFFHASGVGERHLNGNEIIVEIQETVFVADG-DGNMAVQGFGPDE [60]

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP_014984082.1|Mmulatta XP \(033067617.1 \mid T^{-}\)francoisi XP-031516968.1|P anubis XP_008017167.1|C_sabaeus XP_030782172.1|R_roxellana XP_032612406.1|H_moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|Mmusculus XP_0087718 \(\overline{9} 8.1 \mid R\) norvegicus XP \({ }^{-} 015343506.1\) | \(\mathrm{M}^{-}\)marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O virginianus F1S̄PY3|S_scrofa
XP \(024612082.1 \mid \mathrm{N}\) asiaeorientalis AKİ82174.1।C lupūs
XP 032187800.1|M erminea
JAC̄ 0687.1 IL_africana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M_domestica XP 015127980.1।G gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP 009443992.1|P-troglodytes Q5 \(\overline{2}\) V16.1|G_goril̄̄a XP_014984082.1|M_mulatta XP_033067617.1|T francoisi XP_031516968.1|P_anubis XP \({ }^{-} 008017167.1 \mid C^{-}\)sabaeus XP \(030782172.1 \mid \mathrm{R}^{-}\)roxellana XP_032612406.1| H_moloch XP_035145821.1| C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M marmota Q95LI3.1|B taurus XP 010855418.1|B bison XP \({ }^{-} 017900383.1 \mid \mathrm{C}^{-}\)hircus AMȲ96563.1|C_elaphus XP_020759307.1।O_virginianus F1SPY3|S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus
XP 032187800.1|M erminea JA \(\bar{C} 06687.1 \mid L\) afr \(\bar{i} c a n a ~\) No accession|E caballus XP_028935710.1才O_anatinus XP_-016288863.1| \(\mathrm{M}^{-}\)domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP \({ }^{-} 009443992.1 \mid P^{-}\)troglodytes Q5̄̄V16.1|G_goril̄a XP_0149840 \(\overline{8} 2.1 \mid \mathrm{M}\) _mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|R_roxellana XP 032612406.1|H moloch XP- \(035145821.1 \mid \mathrm{C}^{-}\)jacchus P10̄925.31M musculus P20662.2 1 M musculus XP_0087718998.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B_taurus
XP_010855418.1|B_bison XP 017900383.1|C hircus AMȲ96563.1।C elā̄hus XP 020759307.110 virginianus F1S
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus XP_032187800.1|M_erminea JAC06687.1|L_africana No_accession|E_caballus XP 028935710.1|O anatinus XP \(016288863.1 \mathrm{M}^{-}\)domestica XP \({ }^{-} 015127980.1\) |G_gallus Q01611.1|X_laevis

PDSVVIQDVVEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLE-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD-SDVT--------EELSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDVT---------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSEKVIIPEQVLD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDVT---------EEVSL [120] PDSVVIQDVIEDVVIED-VQCSDILEETDVSENVIIPEQVLD-SDVT--------EEVVV [120] PGSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLN-LGTA---------EEVSL [120] PDSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLD-LDTA--------EEVSL [120] PDSVIIQDVIENVLIED-VHCSNILEETDISDNVIIPEQVLD-LDTA--------EEVSL [120] QDSVVIQDVIEDVVIED-VQCSDILEEADVSDSVIIPEQVLD-SDVT---------REVSL [120] PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS-SDVT--------EEVSL [120] PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS-SDVT-------EEVSL [120] PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLS-SDVT---------EEVSL [120] PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPDQVLS-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLA-SEVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVITSDVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLG-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VHCSDILEEADISENVIIPEQVLD-SDVT--------EEVSL [120] PDSVVIQDVIEDVVIEN-VQCSDILEEADVSENVIIPEQVLE-SDIS--------EEVSL [120] PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVVIPEQVID-SDVT---------EEVSL [120] PDSVVIQDVIEDVVIED-VQCPDILDEADVSETVIIPEPVLG-PEVP--------EEVVL [120] PDSVVIQDVIEDVVIED-VQCPDIMEEADVSETVIIPEQVID-TDVT--------EEVSL [120] PDSVVIQDVIEDVVIED-VQCPDIMEEPDVSETVIIPEQVLD-TDVA---------EEVSL [120] GDSVVIQDVIEDVVIED-VQCSDILDGGRVSEAVIIPEQVLE-DEVGTGEEEQVLEEDSL [120]

PHCTVPDDVLASDITSTSMSMPEHVLTSES-MHVCDIGHVEHMVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSTSMSMPEHVLTSES-MHVCDIEHVEHMVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSTSTSMPEHVLTSES-MHVCDIGHVEHMVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSASMSMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSASMSMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSASISMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIITDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIVTDP [180] PHCTVPDDVLASDITSASMSMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIITDP [180] PHCTVPDDVLASDITSTSMSMPEHVLTSES-MHVCDIGHVEHVVHDS---VVEAEIITDP [180] SHCTVPDDVLASDITSSSVSMPEHVLTSES-MHVCDIGHVEHVVRDN---VVEAEIITDP [180] AQFLIP-DILTSGITSTSLTMPEHVLMSEA-IHVSDVGHFEQVIHDS---LVETEVITDP [180] AQFLIP-DILTSSITSTSLTMPEHVLMSEA-IHVSNVGHFEQVIHDS---LVEREIITDP [180] AQFPIP-DILASSITSTSLTMPEHILMSEA-IHVSDVGHIEQVIHDS---LVETEVITDP [180] AHCTVPDDVLPSDITSTSMSMPEHVLTSES-IHMSNVGHVEHVVHDS---EVEAEIVTDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTDP [180] AHCTVPDDVLASDVTSASMCMPEHVLTSES-VHVSDVGHVEHIVHDS---VVEAEIVTDP [180] AHCTVPDDVLASDVTSASMCMPEHVLTSES-VHVSDVGHVEHIVHDS---VVEAEIVTDP [180] AHCTVPDDVLASDITSASISMPEQVLTSES-IHVS--EHIEH-IHNS---VVEAEIVTDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-IHVSDIGHVEH-VHDS---VVEAEIITDP [180] AHCTVPDDVLASDITSASMSMPEHVLTSDS-IHVSDVGHVEHVVHDS---VVAAEIITDP [180] AHCTVPDDVLASDITSASMSVPEHVLTSDS-IHVSDIGHVEHMVHDS---VVEAEIITDP [180] THCTVPNDVLASDVTSASMSMPEHVLTHEP-IRVPDVGNVEHVVHDN---VVEAEIVTDT [180] AHCTVPDDVLASDITSASMSMPEHVLTSES-IHVSDVGHVEHIVHDS---VVEAEIVTDP [180] AHCAVPEDVLAPDVPAAVAAVPEHVLAGEPVHIPPAAGHVGHVEHVVHDGVVDAEMVADP [180] AHCTVPDDVLASDITTATMSIPEHVLTSDS-MHVPDVGHVEHVVHDN---VVEAEIVTDP [180] AHCTVPDDVLASDITAEAMSIPEHVLTSES-MHVPEVGHVEHVVHDN---VEEADIVTDT [180] TSCDVPDNVLDPELVDGELTIPDPETG-----MHSVSGHV-----------VIGEEITDDA [180]

LTSDIVSEEVLVADCAPEAVIDASGISVD--------QQDNDKASCEDYLMISLDDAGKI [240] LTSDIVSEEVLVADCAPEAIIDASGISVD--------QQDNDKASCEDYLMISLDDAGKI LTSDIVSEEVLVADCAPEAIIDASGISVD--------QQDNDKASCEDYLMISLDDAGK LTSDVVSEEVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGK LTSDIVS?EVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGKI [240] LTSDVVSEEVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGKI [240] LTTDVVSEEVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGKI [240] LTSDIVSEEVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGKI [240] LTSDIVSEEVLVADCAPEAIIDASGISVD--------QQDNDKANCEDYLMISLDDAGKI [240] LTSDVVSEEVLIADCAPETITDAG-ISVD-------QRDDDKGNCEDYLMISLDDAGKI [240] ITADTSD--ILVADCVSEAVLDSSGMPLE-------QQDNDKINCEDYLMMSLDEPSKA [240] LTADISD--ILVADWASEAVLDSSGMPLE--------QQDDARINCEDYLMMSLDEPSKT [240] LTADISE--ILVTDCASEAVLDSSGMPLE--------QQDDTKVNRDDYLMISLDDAGKT [240] LTTNLVS-EVLVADCASEAVIDANGIPVD--------HQDDDKSNCEDYLMISLDDAGKI [240] LTADVVSEEVLVADCASEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDDGKM [240] LTADVVSEEVLVADCASEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDDGKM [240] LTDDVVSEEVLVADCASEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDDGKI [240] LTANIVSEDVLVADCASEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDDGKM [240] LTTNIVSEDVLVADCASEAVIDANGIPVD-------QQNDDKGNCEDYLMISLDDDGKM [240] LTADVVSEEVLVADCASEAVIDANGIPVD-------QQDGDKSSCEDYLMISLDDAGKI [240] LTTDVVSEEVLVADCASEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDAGKI [240] LTTDVISEEVLVADCASEAVIDASGIPVE--------QQDDDKNNCEDYLMISLDDAGKI [240] LTADVVSEEVLVADCASEAVIDANGIPVD--------QQDDDKSNCEDYLMISLDDAGKI [240] LTTDIVSEEVLVADCTSEAVIDANGIPVD--------QQDDDKGNCEDYLMISLDDARKL [240] LTTDVVSEEVLVTDCASEAVIDANGIPVE--------QQ-DDKSNCEDYLMISLDDAGKI [240] LAAGVVSEEVLVADCASEAVIDANGIPVERRDDDEDDEDDDDKGNCEDYLMISLDDAGKV [240] LTTDVVSEEVLVADCASEAVIDANGIPVE-------QQDDDKSNCEDYLMISLDDAGKI [240] LGTDVVSEEVLVADCASEAVIDANGIPVE---------HQDEKGNCEDYLMISLDDAGKI [240] LEEDMISEEVLVADCVSEAVIDANGIPVH-------ENDSEEVNCDDYLMISLDDAEKI [240]

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP_014984082.1|M mulatta XP \({ }^{-} 033067617.1 \mid T^{-}\)francoisi XP-031516968.1|P-anubis XP_008017167.1|C_sabaeus XP_-030782172.1|R_roxellana XP_032612406.1|H_moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_0087718 \(\overline{9} 8.1 \mid R _n o r v e g i c u s\) XP-015343506.1|M marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O_virginianus F1SPY3|S_scrofa XP 024612082.1|N asiaeorientalis AKİ82174.1।C lupūs XP 032187800.1|M erminea JA 0 06687.1।L_afrícana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M_domestica XP 015127980.1।G gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP \(009443992.1 \mid P_{-}^{-}\)troglodytes Q52̄V16.1|G_goril̄̄a XP_014984082.1|M_mulatta XP_033067617.1|T francoisi XP_031516968.1|P_anubis XP \({ }^{-} 008017167.1 \mid C^{-}\)sabaeus XP \({ }^{-} 030782172.1 \mid \mathrm{R}^{-}\)roxellana XP_-032612406.1|H_moloch XP_035145821.1| C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M marmota Q95LI3.1|B taurus XP 010855418.1|B bison XP \({ }^{-} 017900383.1 \mid \mathrm{C}^{-}\)hircus AMȲ96563.1|C_elaphus XP_020759307.110_virginianus F1SPY3|S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus XP 032187800.1|M erminea JA \(\bar{C} 06687.1\) IL_afrícana No accession|E caballus XP_-028935710.1|O_anatinus XP_016288863.1|M_domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP 009443992.1|P \({ }^{-}\)troglodytes Q52̄V16.1|G_gorilla XP_014984082.1|M_mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C sabaeus XP_030782172.1|R roxellana XP 032612406.1|H moloch XP- \(035145821.1 \mid \mathrm{C}^{-}\)jacchus P10925.3।M musculus P20662.2 1 M musculus XP_0087718998.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B_taurus
XP_010855418.1|B_bison XP \({ }^{-} 017900383.1 \mid C^{-}\)hircus AMY96563.1।C elap̄hus XP 020759307.110 virginianus F1S̄PY3।S scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus XP_032187800.1|M_erminea JAC06687.1|L_africana No_accession|E_caballus XP 028935710.110 anatinus XP \({ }^{-} 016288863.1 \mid \mathrm{M}^{-}\)domestica XP_-015127980.1|G_gallus Q01611.1|X_laevis

EHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTIDAESEMDPCKVDSTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDIGGIVDIVESEPENDHGV [300] EHDGSTGVTIDGESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDIGGTVDIVESEPENDHGV [300] EHDGSTGVTIDGESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSTGVTVDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSSGVTIDAESEMDPCKVDGTCPEVIKVYIFKADPGEDDLGGIVDIVENESENDHGV [300] DLEGSSEVTMNAESGTDSSKLDEASPEVIKVCILKADSEVDELGETIHAVESETKNGNEA [300] DHEGSSEVTMNAESETDSSKLDEASPEVIKVCILKADSEVDDVGETIQAVESETDNGNEA [300] ENEGSSEVTTNAESESDPYKLNETSPEVIKVYIFKADPEEDDVGETVDIVESKTDNGNEA [300] EHNGSTAVNTSAESDIDSCKVEGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDCSSGMTMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EQDCSAGMTIDRESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EQDCSAGMTIDRESEIDPCKVDGTCPEVIKVYIFKADPGEDDIGGTVDIVESEPENDHGV [300] EQDCSAGMTIDAESEIDPCKVDGTCPEVIKVYIFRADPGEDDLGGTVDIVESEPENDHGV [300] EQDCSAGVTIDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHDGSSEMTMDAESEINPCKVDGTCPEVIKVYIFKADPGEDDLGGIVDIVESEPENDHGV [300] EHDGSSGMTMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDRGV [300] EHGGSSGMTIDTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EHGGSSGMTMNTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] GHDGTSGITMDTESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGV [300] EQDGSSGMTMDTELEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHEV [300] DHDGSSEMTMDAEPEIDPCKVDGGCPEVIKVYIFKADPGEDDLGGTVDIVESEPENEHGV [300] EHDGSSEITMDAESEIDPCKVDGTCPEVIKVYIFKADPGEDDLGGIVDIVESEPENDHGV [300] EHEGSAEITMEAESESGSCKVDGICPEVIKVYIFKADPGEDDLGGTVDVVESEPENDHAV [300] DEDGAEEITMGSVVEGDSSKLDGSCPEVIKVYIFKADPGEEDLGGTVDIVESESENDHGD [300]

ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaa-- [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELIDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELLDQNSSIRVPREKMVYMTVSDSQQED----VAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELLDQNSSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa- [360] ELIDQNSSIRVPREKMVYMTVNDSQREDEDINVAEIADEVYMEVIVGEEDaaVaaaaa-- [360] ELLEQSSSVRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaPATVaaaa- [360] EVTDQSTSIRVPRV-NIYMSASDSQKEEED----------TEVIVGDEDaGGTaaDTP- [360] EVTDQRTSIHVPRV-NIYMLASDSQKEEED-----------TKVIVGDEDaGGTaaDTP- [360] EVIDQSSSIYVPRD-NVYMPVSDSQKEEED-----------TKVIVGDEDaGDTaaDTS- [360] ELLDQNSTIRVPREKMVYMTVNDSQQEDEDLNVAEITDEVYMEVIVGEEDaaVTaaaaa- [360] ELLDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaTT [360] ELLDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaTT [360] ELIDQSNSIRMPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaTT [360] EILDQNNSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaaT [360] EILDQNNSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEED-aVaaaaaaT [360] ELIDQNSSMRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaaa [360] ELLDQNSSIRVPREKMVYMTVNDSQQ-DEDLNVAEIADEVYMEVIVGEEDaaVaaaaaaa [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaaa [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDDDLNVAEIADEVYMEVIVGEEDaaVaaaaaaa [360] ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVaaaaaa [360] ELIDQNNSIRVPRDKMVYMTVNDSQQEDEDINVAEIADEVYMEVIVGEEDaaVaaaaaaa [360] GLLDQSSSIRVPREKMVYMTVNDSQQEDEDISVAEIADEVYMEVIVGEEDaaVa------ [360] GLLDQSSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDaaVa------ [360] GLLDQNSSIRIPREKMVYMTVNDSQHEDEDLNVAEIADEVYMEVIVGEEDaaVa------
GFLDSHNGGRLPREKMVYMTVNDSQNDD-DIDVAEIADEVYMEVIVGEEDaaVa-----
** * * * ** *** ** * ** *** * ** ** * * * **
VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK [420] VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK MHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGSASAVLHVDESVGLSRLTKQKPKK EHEQQMDVSEIKAAFLPIAWTAAYDNNSDEIEDQNVTASALLNQDESGGLDRVPKQKSKK EHEQQMDVSEIKAAFLPIAWTAAYDNNSDEIEVQNATASAMLHHDESGGLDRVPKQKSKK EHEQQMDDSEIKAAFLPIAWAAAYDNNSDEIEEQNVTASAVLHQNESGGLDRVHKQKAKK VHEQQIDDSEM-KAFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLSRLAKQKPKI VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRSGTASALLHIDESAGLGRLTKHKPKK VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRSGTASALLHIDESAGLGRLTKHKPKK VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQEMDDNEM-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQEMDDSEM-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDNSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDDNEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDDNEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLSRLAKQKPKK VHEQQMDDSEI-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRVTKQKPKK VHEQQMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQMDDTEI-KTFMPIAWAAAYGNNTDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQIDDTEI-KTFMPIAWAAAYGNNTDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQIDDNEI-KTEMPIAWAAAYGNNNDGIESRNGTASALLHIDESAGLGRLAKQKPKK -HEHQLEDAELSKTEMPVAWAAAYGNNTDGIEHRNGTASALLHIDESDGLDRLTKQKLKK

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP \(0149840 \overline{8} 2.1 \mid M\) mulatta XP \(033067617.1 \mid T^{-}\)francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|R_roxellana XP_032612406.1|H_moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|Mmusculus XP \(0087718 \overline{9} 8.1 \mid R\) norvegicus XP \({ }^{-} 015343506.1\) | \(\mathrm{M}^{-}\)marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O_virginianus F1SPY3|S_scrofa
XP \(024612082.1 \mid \mathrm{N}\) asiaeorientalis AKİ82174.1।C lupūs
XP 032187800.1|M erminea
JAC̄ 0687.1 IL_africana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M_domestica XP 015127980.1।G gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP-009443992.1| \(P^{-}\)troglodytes Q5̄̄V16.1।G_goril̄̄a XP_014984082.1|M_mulatta XP_033067617.1|T francoisi XP_031516968.1|P_anubis XP \(-008017167.1 \mid C^{-}\)sabaeus \(\mathrm{XP}^{-} 030782172.1 \mid \mathrm{R}^{-}\)roxellana XP-032612406.1| \(\mathrm{H}_{-}\)moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M marmota Q95LI3.1|B taurus
XP 010855418.1|B bison XP \({ }^{-} 017900383.1 \mid \mathrm{C}^{-}\)hircus AMȲ96563.1|C_elaphus XP_020759307.110_virginianus F1SPY3|S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus
XP 032187800.1|M erminea JA \(\bar{C} 06687.1 \mid L\) afr \(\bar{i} c a n a ~\) No accession|E caballus XP-028935710.1脌anatinus XP_-016288863.1|M_domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCI KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCT KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCT KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHC KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCI KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCI KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCI KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGELKRHMKNHPEHLA-KKKYHC KRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLA-KKKYHCI KRRSDARQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGELKRHMKNHPEHLA-KKKYHCI KKRPESKQYQSAIFVAPDGQTLRVYPCMFCGKKFKTKRFLKRHTKNHPEYLA-NKKYHCT KKRPESKQYQSAIFVAPDGQTLRVYPCMFCGKKFKTKRFLKRHIKNHPEYLA-NKKYHC7 KKRPESKQYQTAIIVAPDGQTLIVYPCMFCGKKFKTKSFLKRHIKNHPEYLA-KKKYHC RRRPDSKQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHIA-KKKYCC RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRC RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCT RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCT RRRPDSRQYQTAIIIGPDGHPLTVYPCLICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYHCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLS-KKKYRC RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYHCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLS-KKKYRCI RRRPDSRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLT-KKKYRCT
KRRPESRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLLTKKKYRCI KRRGENRQYQTAIIIGPDGHPLTVYPCMICGKKFKSRGFLKRHMKNHPEHLV-RKKYRCT

\begin{abstract}
DCDYTTNKKISLHNHLESHKLTSKAEK-----AIECDECGKHFSHAGALFTHKMVHKEK [540]
DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK [540] DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMUHKE [540] DCDYTTNKKISLHNHLESHKLISKAEK------AIQCDECGKHFSHAGALFTHKMVHKE DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALETHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHESHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKE DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------TIECVECGKHFSHAGALFTHKMVHKEK ECDYSTNKKISLHNHMESHKLTIKTEK------TTECDDCRKNLSHAGTLCTHKTMHTEK ECDYSTNKKISLHNHMESHKLTIKTEK------TTECDDCRKNLSHAG------TMHTE DCDYTTNKKISLHNHLESHKLISKVEK-------VIECDECGKHFSHTGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKSEK------AIECDDCGKHFSHAGALFTHKMVHKE DCDYTTNKKISLHNHLESHKLTSKSEK------AIECDDCGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKE DCDYTTNKKMSLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKE DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------SIECEECGKHFSHAGALFTHKMVMKE DCEYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHTGALFTHKMVHKE DCDYTTNKKISLHNHLESHKLTSKAEK------AIECDECGKHFSHAGALFTHKMVHKEK DCDYTTNKKVSLHNHLESHKLTGKAEKAAAPGAGAECDECGKHFSHAGALFTHKTVHKE DCDYTTNKKISLHNHLESHKLTNKTEKAIEC------DECGKHESHAGALFTHKMVHKEK DCDYTTNKKISLHNHLESHKLTNKTEKLIER------DECGKSESHAGALEAHKMVHRDK DCDYTTNKKVSLHNHLESHKLTATVIKTEKD---LECEECGKIFLHANALFAHKLTHNEK
\end{abstract}

\section*{[480]}

NP \(001356631.1 \mid \mathrm{H}\) sapiens XP_009443992.1|P_troglodytes Q5 \(\overline{2} \mathrm{~V} 16.1\) |G_goril̄\(a\) XP_0149840 \(\overline{8} 2.1 \mid M\) mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP \({ }^{-} 030782172.1 \mid R^{-}\)roxellana XP- \(032612406.1 \mid \mathrm{H}^{-}\)moloch XP \({ }^{-} 035145821.1 \mid \mathrm{C}^{-}\)jacchus P10925.3।M_musculus P20662.2|Mmusculus XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP 017900383.1 IC \({ }^{-}\)hircus AMȲ96563.1।C elaphus XP_020759307.110_virginianus F1SPY3।S_scrofa XP_024612082.1|N_asiaeorientalis AKI82174.1|C_lupus XP_032187800.1|M erminea JA \(\bar{C} 06687.1 \mid L _a f r \bar{i} c a n a\) No_accession|E_caballus XP \({ }^{-} 028935710.1\) 〇O anatinus XP \({ }^{-} 016288863.1 \mid \mathrm{M}^{-}\)domestica XP_015127980.1|G_gallus Q01611.1|X_laevis
-GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELRKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEOGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRTHTC -GANKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG G-VNKTCKCKFCDYETAEQTLLNHHLLVVHRKKFPHICGECGKGFRHPSALKKHIRVHTG G-VNKTCKCKFCDYETAEQTLLNHHLLVVHRKKFPHICGECGKGFRHPSALKKHIRVHTG EKVSKTYKCKFCDYETAEQTSLNHHLIAVHSKKYPHVCVECGKGFRHPSELKKHIRVHTG -GNNKMHKCKFCEYETAEQGLLNRHLIAVHSKSFPHICVECGKGFRHPSELKKHMRIHTG -GASKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GASKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GASKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELRKHMRIHTG -GANKMHKCKFCEYGTAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GTNKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GSSKMHKCKFCEYETAEQGLLNRHLLAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GANKMHRCKFCEYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG GAGGRTHKCKFCDYETAEQGLLNRHLLAVHSKNFPHVCVECGKGFRHPSELKKHMRIHTG -GANKMHKCKFCDYETAEQGLLNRHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -GVNKMHKCKFCDYETAEQGLISHHLIAVHSKNFPHICVECGKGFRHPSELKKHMRIHTG -AGNKMHICKFCDYETAEQGLLNRHLLAVHSKSFPHICVECGKGFRHPSELKKHMRTHTG

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP_014984082.1|M mulatta XP \({ }^{-} 033067617.1 \mid T^{-}\)francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|R_roxellana XP_032612406.1|H_moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_0087718 \(\overline{9} 8.1 \mid R\) norvegicus XP \({ }^{-} 015343506.1\) | \(\mathrm{M}^{-}\)marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O_virginianus F1S̄PY3|S_scrofa
XP \(024612082.1 \mid \mathrm{N}\) asiaeorientalis AKİ82174.1।C lupūs
XP 032187800.1|M erminea
JAC̄ 0687.1 IL_africana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M_domestica XP 015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP 009443992.1| \({ }^{-}\)troglodytes Q5 \(\overline{2}\) V16.1|G_goril̄̄a XP_014984082.1|M_mulatta XP_033067617.1|T francoisi XP_031516968.1|P_anubis XP-008017167.1|C-sabaeus XP \(030782172.1 \mid \mathrm{R}^{-}\)roxellana XP-032612406.1| \(\mathrm{H}_{-}\)moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M_musculus XP_008771898.1|R_norvegicus XP_015343506.1|M marmota Q95LI3.1|B taurus
XP 010855418.1|B bison XP \({ }^{-} 017900383.1 \mid \mathrm{C}^{-}\)hircus AMȲ96563.1|C_elaphus XP_020759307.1।O_virginianus F1SPY3|S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus
XP 032187800.1|M erminea JA \(\bar{C} 06687.1 \mid L\) afr \(\bar{i} c a n a ~\) No accession\E caballus XP-028935710.1脌anatinus XP_-016288863.1|M_domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

NP \(001356631.1 \mid \mathrm{H}\) sapiens XP \({ }^{-} 009443992.1 \mid P^{-}\)troglodytes Q5 2 V 16.1 G gorilla XP_0149840 \(\overline{8} 2.1 \mid M\) mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|R_roxellana XP 032612406.1|H moloch XP- \(035145821.1 \mid \mathrm{C}^{-}\)jacchus P10̄925.31M musculus P20662.2 1 M musculus XP_0087718998.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B_taurus
XP_010855418.1|B_bison XP 017900383.1|C hircus AMȲ96563.1।C elā̄hus XP 020759307.110 virginianus F1S
XP_024612082.1|N_asiaeorientalis AKI82174.1।C_lupus XP_032187800.1|M_erminea JAC06687.1|L_africana No_accession|E_caballus XP 028935710.1।O anatinus XP \({ }^{-} 016288863.1 \mid \mathrm{M}^{-}\)domestica XP \({ }^{-} 015127980.1\) |G_gallus Q01611.1|X_laevis

EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPLKCDICLLTESDTKEVQQHTLVHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ENK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ENK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTFSDTKEVQQHTLVHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPEKCDICLITESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQHHTLVHQ-ENR [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLLTESDTKEVQQHTLVHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHIKTKHSKEMPFKCDICLITESDTKEVQQHTLVHQ-ESR [660] EKPYECQYCEYKSADSSNLKTHIKSKHSKEIPLKCGICLLTESDNKEAQQHAVLHQ-ESR [660] EKPYECQYCEYKSADSSNLKTHIKSKHSKEIPLKCGICLLTESDTKEAQQHAVLHQ-ESR [660] EKPYQCQYCEYKSADSSNLKTHIKTKHSKDIPLKCGICLMTESDTKEAQQHALIHQ-ENR [660] EKPYQCQYCEYRSADSSNLKTHVKTKHTKEMPFKCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTFSDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMSFKCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYRCQYCEYRSADSSNLKTHVKTKHSKEMSEKCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMSENCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKDVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDSCLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKEVQQHAVIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPYRCDICLLTESDTKEVQQHAVIHQ-ESK [660] EKPYHCQYCEYRSADSSNLKTHVKTKHSKEMPFKCDICLLTESDTKEVQQHGLIHQ-ESK [660] EKPYQCQFCPYRSADSSNLKTHVKTKHSKETPERCEACPLTEADPKELQQHALLHHQESR [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKEMPFKCEICLLTESDTKEVQQHALIHQ-ESK [660] EKPYQCQYCEYRSADSSNLKTHVKTKHSKETSSKCDICFQTESDTKELQQHTLMHQ-ESK [660] EKPYLCQYCDYRSADSSNLKTHVKTKHSKEMPFKCDICLQTETDSKDLQEHAILHQ-ESK [660]

THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCEKGFHRPSELKKHVAVHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCEMCDKGFHRPSELKKHVAVHKGKKMHQ [720] THQCSHCNHKSSNSSDLKRHIISVHTKAYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQ [720] THQCSHCNHKSSNSSDLKRHIISVHTKAYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQ [720] THQCSYCNHKSSNSSDLKRHIISVHTKDYPHKCDMCSKGFHRPSELKKHVATHKSKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCVHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHI ISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCEMCEKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ THOCT HCDHKS SNSSDT KRHTTSVHTKDYPHKCDMCDKGFHRPSET KKHVAAHKGKKMHO THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCEMCDKGFHRPSELKKHVAAHKGKKMHQ [720] AHQCLHCDHKSSNSSDLKRHVISVHTKDYPHKCDTCDKGFHRPSELKKHAAAHRGRKLHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKMHQ [720] THQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCDMCDKGFHRPSELKKHVAAHKGKKLHQ [720] NHQCLHCDHKSSNSSDLKRHIISVHTKDYPHKCEVCEKGFHRPSELKKHEAAHKGKKMHQ [720]

CRHCDEKIADPEVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY [780] CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCE CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNEIKKHMKTHSGRKVYQCEY CRHCDFKIADPEVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCE CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFNQQNELKKHMKTHSGRKVYQCE CRHCDENSPDPFLLSHHILSAHTKNVPFKCKRCKKEFQQQCELQTHMKTHSSRKVYQCE CRHCDFKSPDPFLLSHHILSAHTKNVPFKCKRCKKEFQQQCELQTHMKTHSSRKVYQCE CRHCDEKSPDPFLLSRHILSVHTKNVPFKCKRCKKGFRQQCELQKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCE CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCKKGFRQQNELKKHMKTHSGRKVYQCE CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCKKGFRQQNEIKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHILSIHTKDLPFRCKRCKKGERQQNELKKHMKTHSGRKVYQCEY CRHCDERIADPFVLSRHILSVHAKDLPFRCKRCKKGFRQQNELKKHMKTHSGRKVYQCE CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCKKGFRQQNDLKKHMKTHSGRKVYQCE CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNEIKKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCE CRHCDEKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHIISVHTKDIPFRCKRCRKGFRQQNEIKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQTELKKHMKTHSGRKVYQCEY CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQGELKKHMKTHSGRKVYQCE CRHCDFKIADPFVLSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCE CRHCDEKIADPEILSRHILSVHTKDLPFRCKRCRKGFRQQNELKKHMKTHSGRKVYQCEY CRHCEFHIADPFVLSRHILSVHTKELPYRCKRCKKGFRQQIELKKHMKTHSGKKVYQCEY
```

NP_001356631.1|H_sapiens
XP_009443992.1|P troglodytes
Q5\overline{2V16.1|G_goril\}a
XP 0149840
XP_033067617.1|T francoisi
XP_031516968.1|P_anubis
XP_0008017167.1|C_sabaeus
XP_030782172.1|R_roxellana
XP_032612406.1|H_moloch
XP_035145821.1|C_jacchus
P10925.3|M_musculus
P20662.2 1M-musculus
XP 0087718}\overline{9}8.1|R norvegicus
XP_-008771898.1|R_norvegic
XP_015343506.1|M_marmota
Q95LI3.1|B_taurus
XP_010855418.1|B_bison
XP_-017900383.1|C_hircus
AMȲ96563.1|C_elaphus
XP 020759307.1।O virginianus
F1\overline{SPY3|S scrofa}
XP_02461\overline{2}082.1|N asiaeorientalis
AKİ82174.1|C lupus
AKI82174.1|C_lupus
XP_032187800.1|M_ermine
No_accession|E_caballus
XP_028935710.1\O_anatinus
XP 016288863.1|M domestica
XP_015127980.1|G_gallus
Q01611.1|X_laevis

```
CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP [834]
CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP
CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP [834]
\begin{tabular}{|c|c|}
\hline & \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYNTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYSTKDASGFKRHVISIHTKDYPHSCDFCKKGFRRPSEKNQHIMRHHK-VGLP & [834] \\
\hline CEYSTKDASGFKRHVISIHTKDYPHRCDFCKKGFRRPSEKNQHIMRHHKEVGIA & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVSLS & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHITRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHITRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHITRHHKEVGIP & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHITRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHITRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRSS & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGLP & [834] \\
\hline CEYSITDASGFKRHVISIHTKDYPHRCEHCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKEVGIP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCDFCKKGFRRPSEKNQHIMRHHKDLGLP & [834] \\
\hline CEYSTTDASGFKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKDVGLP & [834] \\
\hline CEYSTTDASGEKRHVISIHTKDYPHRCEYCKKGFRRPSEKNQHIMRHHKDVGLP & [834] \\
\hline CEYNTTDASGEKRHVISIHTKDYPHRCDYCKKGFRRPSEKNQHTLKHHKEASLM & [834] \\
\hline
\end{tabular}

Table 11. Multiple CLUSTALW sequence alignment of land vertebrate ZFY primary sequence. The alignment shows conserved amino acids indicated by the YELLOW highlight and the asterisk (*). Each exon has exon colour coding with RED representing Exon 1, GREEN representing Exon 2, CYAN representing Exon 3, MAGENTA representing Exon 4, BROWN representing Exon 5, PURPLE representing Exon 6 and GREY representing Exon 7. The BLACK represents amino acids across a splice junction. lowercase a represents alanine residues in polyalanine motif and BOLD UPPERCASE residues represent amino acids that are not conserved throughout the whole aligned species.
\begin{tabular}{|c|c|c|c|}
\hline Exons & Percentage Identity (\%) & \begin{tabular}{c}
Number of conserved \\
sites
\end{tabular} & \begin{tabular}{c}
Number of Parsimony \\
informative sites
\end{tabular} \\
\hline Exon 1 & 14.3 & 3 & 11 \\
\hline Exon 2 & 22.3 & 47 & 93 \\
\hline Exon 3 & 24.5 & 12 & 27 \\
\hline Exon 4 & 29.8 & 14 & 22 \\
\hline Exon 5 & 50.0 & 26 & 20 \\
\hline Exon 6 & 47.8 & 22 & 18 \\
\hline Exon 7 & 61.4 & 247 & 98 \\
\hline
\end{tabular}

Table 12. Table demonstrating the percentage identity, conserved sites, and parsimony informative sites of land
vertebrates and Cetartiodactylaa. The table shows the percentage identity, calculated using the conserved sites and the total number of sites in aligned sequence (by exon).

Phylogenetic analysis of the land vertebrates as illustrated by Figure 9 indicated that ZFY was highly conserved within the primates, and they were closely related.

Figure 9 shows similarly to Figure 8 that \(M\). musculus and R. norvegicus were phylogenetically discordant as they were not in the expected region of the tree. The outgroup species was the \(X\). laevis as this is the most distantly related to the warm-blooded land vertebrates (and \(N\). asiaeorientalis) and as Figure 9 indicated,
the branch was long showing it was distantly related to the other land vertebrates. However, as genes display codon redundancy as some amino acids have multiple codons due to there being 64 codons and only 20 amino acids, the alignment and phylogenetic tree were done on a nucleotide level to further observe the conservation of the nucleotide sequence (cDNA).

```

Figure 9. Maximum likelihood (Bootstrap) tree of land vertebrate ZFY protein sequences shown by Table 10. The tree was inferred by Maximum Likelihood method and JTT matrix-based model. The tree represents the coding exons of different ZFY species. Species were grouped taxonomically and each order is indicated by the coloured text and labelling. The scale as indicated represents 0.050 amino acid substitutions per site. The species used as an outgroup was $X$. laevis.

```

The nucleotide alignment showed that 1065 nucleotides of the aligned sequences were conserved (2568 aligned sites in total). Though most nucleotides of the different land vertebrate species were not conserved, most of the change in amino acids resulted in the same codon because of codon degeneracy as the translated nucleotide sequence resulted in also 375 conserved amino acids in total. This nucleotide alignment was used to generate a phylogenetic tree shown by Figure 10, which showed the rodents were all grouped together. Though, the branch length in the phylogenetic tree consistently remains longer than the other placental mammals as previously observed also in Figure 8 and Figure 9.

Figure 10. Maximum likelihood (Bootstrap) tree of multiple ZFY nucleotide sequence alignment. The tree was inferred by Maximum Likelihood method and Kimura 2-parameter model. The tree was generated using cDNA sequences obtained from NCBI GenBank, Uniprot, Ensembl, EMBL-EBI and published papers. The sequences were labelled by order and the outgroup species used was the \(X\). laevis. The scale represents 0.10 nucleotide substitutions per site. The accession numbers correspond to the nucleotide accession numbers provided by Table 1.

\subsection*{3.4 9aa TAD and DNA binding site prediction}
\begin{tabular}{|c|c|c|}
\hline hZFY_long & MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVPDDP & [60] \\
\hline hZFY_short & MDEDEFELQPQEPNSFFDGI & [60] \\
\hline hZFY_long & DSVVIQDVVEDVVIEEDVQCSDILEEADVSENVIIPEQVLDSDVTEEVSLPHCTVPDDVI & [120] \\
\hline hZFY_short & & [120] \\
\hline hZFY_long & ASDITSTSMSMPEHVLTSESMHVCDIGHVEHMVHDSVVEAEIITDPLTSDIVSEEVLVAD & [180] \\
\hline hZFY_short & & [180] \\
\hline hZFY_long & CAPEAVIDASGISVDQQDNDKASCEDYLMISLDDAGKIEHDGSTGVTIDAESEMDPCKVD & [240] \\
\hline \multirow[t]{2}{*}{hZFY_short} & --VDDAGKIEHDGSTGVTIDAESEMDPCKVD & [240] \\
\hline & & \\
\hline hZFY_long & STCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGVELLDQNSSIRVPREKMVYMTVN & [300] \\
\hline \multirow[t]{2}{*}{hZFY_short} & STCPEVIKVYIFKADPGEDDLGGTVDIVESEPENDHGVELLDQNSSIRVPREKMVYMTVN & [300] \\
\hline & & \\
\hline hZFY_long & DSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAAVHEQQIDEDEMKTFVPIAWAAAY & [360] \\
\hline \multirow[t]{2}{*}{hZFY_short} & DSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAAVHEQQIDEDEMKTFVPIAWAAAY & [360] \\
\hline & & \\
\hline hZFY_long & GNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKKKRRPDSRQYQTAIIIGPDGHPLTV & [420] \\
\hline \multirow[t]{2}{*}{hZFY_short} & GNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKKKRRPDSRQYQTAIIIGPDGHPLTV & [420] \\
\hline & & \\
\hline hZFY_long & YPCMICGKKFKSRGFLKRHMKNHPEHLAKKKYHCTDCDYTTNKKISLHNHLESHKLTSKA & [480] \\
\hline \multirow[t]{2}{*}{hZFY_short} & YPCMICGKKFKSRGFLKRHMKNHPEHLAKKKYHCTDCDYTTNKKISLHNHLESHKLTSKA & [480] \\
\hline & & \\
\hline hZFY_long & EKAIECDECGKHFSHAGALFTHKMVHKEKGANKMHKCKFCEYETAEQGLLNRHLLAVHSK & [540] \\
\hline \multirow[t]{2}{*}{hZFY_short} & EKAIECDECGKHFSHAGALFTHKMVHKEKGANKMHKCKFCEYETAEQGLLNRHLLAVHSK & [540] \\
\hline & & \\
\hline hZFY_long & NFPHICVECGKGFRHPSELRKHMRIHTGEKPYQCQYCEYRSADSSNLKTHIKTKHSKEMP & [600] \\
\hline \multirow[t]{2}{*}{hZFY_short} & NFPHICVECGKGFRHPSELRKHMRIHTGEKPYQCQYCEYRSADSSNLKTHIKTKHSKEMP & [600] \\
\hline & *** & * \\
\hline hZFY_long & FKCDICLLTFSDTKEVQQHTLVHQESKTHQCLHCDHKSSNSSDLKRHVISVHTKDYPHKC & [660] \\
\hline \multirow[t]{2}{*}{hZFY_short} & FKCDICLLTFSDTKEVQQHTLVHQESKTHQCLHCDHKSSNSSDLKRHVISVHTKDYPHKC & [660] \\
\hline & & \\
\hline hZFY_long & EMCEKGFHRPSELKKHVAVHKGKKMHQCRHCDFKIADPFVLSRHILSVHTKDLPFRCKRC & [720] \\
\hline \multirow[t]{2}{*}{hZFY_short} & EMCEKGFHRPSELKKHVAVHKGKKMHQCRHCDFKIADPFVLSRHILSVHTKDLPFRCKRC & [720] \\
\hline & & \\
\hline hZFY_long & RKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEYCKKG & [780] \\
\hline \multirow[t]{2}{*}{hZFY_short} & RKGFRQQNELKKHMKTHSGRKVYQCEYCEYSTTDASGFKRHVISIHTKDYPHRCEYCKKG & [780] \\
\hline & ********************* & \\
\hline hZFY_long & FRRPSEKNQHIMRHHKEVGLP & [801] \\
\hline hZFY_short & FRRPSEKNQHIMRHHKEVGLP & [801] \\
\hline
\end{tabular}

Table 13. Human ZFY (hZFY) spliced variants alignment for 9aa TAD prediction. The sequences were individually used for 9aa TAD prediction using the 9aa TAD prediction tool. As indicated by the names, the long (full length ZFY) and short (lacks half the acidic domain) isoforms of the proteins were used and then aligned using the CLUSTALW tool on the MEGAX programme. The 9aa TAD motifs are identified by highlights, with the 9aa TAD predictions that displayed 100\% match highlighted in yellow and the grey highlight signifying the match of the 9aa TAD prediction being \(\geq 67 \%\). RED represents the acidic portion and BLACK represents the remaining zinc finger domain portion of the protein. * represents amino acids that are conserved, and BoLD represents amino acids not conserved.

\section*{Table 13 showed that hZFY-long had three transactivation domains predictions} within the acidic domain with perfect matches (100\%), whereas the hZFY-short only had one motif with a perfect match, which it shared with hZFY-long between
```

NP_001356631.1|H_sapiens
XP_009443992.1|P-troglodytes
Q52V16.1|G-gorilla
XP_014984082.1|M_mulatta
XP-033067617.1|T- francoisi
XP_031516968.1|P_anubis
XP_031516968.1|P_anubis
XP_030782172.1|R_roxellana
XP_032612406.1|H_moloch
XP_032612406.1|H_moloch
XP_035145821.1|C_jac
P20662.2|M-musculus
XP_0087718\overline{9}8.1|R_norvegicus
XP_015343506.1|M_marmota
Q95LI3.1|B_taurus
XP_010855418.1|B_bison
XP_017900383.1|C_hircus
AMY}96563.1|C_elaphus
AMP_020759307.1|O_virginianus
F1SPY3।S scrofa
XP_024612082.1|N_asiaeorientalis
AKİ82174.1|C_lupūs
XP_032187800.1|M_erminea
JA\overline{C}06687.1|L_afr\overline{icana}
No_accession\E_caballus
XP_028935710.1\O_anatinus
XP_016288863.1|M_domestica
XP_015127980.1|G_gallus
Q01611.1|X_laevis
NP_001356631.1|H_sapiens
XP_009443992.1|P_troglodytes
Q5\overline{2}V16.1|G_goril\overline{la}
XP_0149840-82.1|M_mulatta
XP_014984082.1|M_mulatta
XP_033067617.1|T_francoi
XP_008017167.1|C_sabaeus
XP_030782172.1|R_roxellana
XP_032612406.1|H_moloch
XP_035145821.1|C_jacchus
P10}0925.3|M_musculus
P20662.2|Mmusculus
XP 008771898.1|R norvegicus
XP_015343506.1|M_marmota
Q95LI3.1|B taurus
XP_010855418.1|B_bison
XP_-017900383.1|C_hircus
AMȲ96563.1|C_elaphus
XP_020759307.1।O_virginianus
F1SPY3|S_scrofa
XP 024612082.1|N asiaeorientalis
XP_024612082.1/N_a
AKİ82174.1।C_lupus
XP 032187800.1|M erminea
JA\overline{C}06687.1|L_afrícana
No_accession\E_caballus
XP_028935710.1|O_anatinus
XP_016288863.1|M_domestica
XP_015127980.1|G_gallus
Q01611.1|X_laevis
NP_001356631.1|H_sapiens
XP_009443992.1|P_troglodytes
Q52VV16.1|G_goril\̄a
XP_014984082.1|M_mulatta
XP_033067617.1|T_francoisi
XP_031516968.1|P_anubis
XP 008017167.1|C_sabaeus
XP-030782172.1|R_roxellana
XP-032612406.1| H moloch
XP_035145821.1|C_jacchus
P1\overline{0}925.3|M_musculus
P20662.2|Mmusculus

```
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVPDD
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDIAVHNFVPDD
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDIAVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDIAVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
\(-M D E D E F E L Q P Q E P N S F F D G I G A D A T H M D G D Q I V V E V Q E A V F V S N I V D S D I T V H N F V P D D\)
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD
-MDEDEFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVPDD
-MDEDEFELQPQEPNSFFDGIGAGATHMDGDQIVVEVQETVFVSNIVDSDVTVHNFVPDD
-MDEDEFELQPQEPNSFFDGIGAGATHMDGDQIVVEVQETVFVSNIVDSDVTVHNFVPDD [60]
-MDEDEIELTPEEEKSFFDGIGADAVHMDSDQIVVEVQETVFLA---NSDVTVHNFVPDN [60]
-MDEDEIELTPEEEKSFFDGIGADAVHMDSDQIVVEVQETVFLA---NSDVTVHNFVPDN [60]
-MDEDEIELTPEEEKSLFDGIGADAVHMDSDQISVEVQETVFLS---NSDVTVHNFVPDD [60]
-MDEDEIELTPEEEKSLFDGIGADAVHMDSDQISVEVQETVFLS---NSDVTVHNFVPDD [60]
-MDEEEIELTPQEENSLFDGIGADAVHMDGDQIIVEVQETVFLS---NSDVTVHNFVPDD [60]
-MDEDEFELQPQEPNSFFDGIGTDSTHMDGDQIVVEVQETVFVS---NSDITVHNFVPDV [60]
-MDEDEFELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDEFELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDEFELQPOEPNSCFDGIGTDATHMDGDOIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDEFELQPQE PNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELELQPQE PNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDEFEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDEFEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD
-MDEDELEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD
-MDEDELELQPQETNTFFDEIGADDTHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD
-MDEDELELQPQETNTFFDEIGADDTHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD
[60]
-MDEDELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELALQPREPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELALQPREPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDELELQPQEPNSFFDGIGADVTHMVGDQIVVEVQETVFVSDVVDSDITVHNFPPED [60]
-MDEDELELQPQEPNSFFDGIGADVTHMVGDQIVVEVQETVFVSDVVDSDITVHNFPPED [60]
-MDEDELELRQQEPDSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFAPDG [60]
-MDEDELELRQQEPDSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFAPDG [60]
-MDEDGLELQPHEPNSFFDATGAAASHMDGGQILVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDGLELQPQEPNSFFDATGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDGLELQPQE PNSFFDATGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
-MDEDGLELQPHEPNAFFDPTGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD
-MDEDGLELQPHEPNAFFDPTGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVPDD [60]
MEDVAELELQTTEPHAFFHASGVGERHLNGNEIIVEIQETVFVADG-DGNMAVQGFGPDE
\begin{tabular}{|c|c|}
\hline PDSVVIQDVVEDVVIEEDVQCSDILEEADVSENVIIPEQV & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SD & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLE & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD-SD & EELSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD-SDV & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSEKVIIPEQVLD-SDVT & EEVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVD & EVVSI \\
\hline PDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLD & EVSI \\
\hline PDSVVIQDVIEDVVIED-VQCSDILEETDVSENVIIPEQVLD-SDVI & EEVSV \\
\hline PGSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLN & EVSL \\
\hline PDSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLD & EEVSL \\
\hline PDSVIIQDVIENVLIED-VHCSNILEETDISDNVIIPEQVLD & EEVSL \\
\hline QDSVVIQDVIEDVVIED-VQCSDILEEADVSDSVIIPEQVLD & REVSI \\
\hline PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS & EVVSI \\
\hline PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS- & EEVSI \\
\hline PDSVVIQDVIENVVIED-VQCSDILEEADVSENVIIPEQMLS-SD & SI \\
\hline PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLS-SDV & EEVSI \\
\hline PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPDQVLS-SDVT & VSI \\
\hline PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLA-SEV & EVSI \\
\hline PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLI & EEVSI \\
\hline PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLG-SDV & EVSI \\
\hline PDSVVIQDVIEDVVIED-VHCSDILEEADISENVIIPEQVLD-SD & EEVSI \\
\hline PDSVVIQDVIEDVVIEN-VQCSDILEEADVSENVIIPEQVLE-SDI & EEVSI \\
\hline PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVVIPEQVLD-SDV & -EEVSI \\
\hline PDSVVIQDVIEDVVIED-VQCPDILDEADVSETVIIPEPVLG-PEV & EEVSL \\
\hline PDSVVIQDVIEDVVIED-VQCPDIMEEADVSETVIIPEQVLD-TDVT & EEVSI \\
\hline PDSVVIQDVIEDVVIED-VQCPDIMEEPDVSETVIIPEQVLD-TDV & EV \\
\hline & \\
\hline
\end{tabular}
PDSVVIQDVIEDVVIED-VQCPDIMEEPDVSETVIIPEQVLD-TDVA--------EEVSI
GDSVVIODVIEDVVIED-VOCSDILDGGRVSEAVIIPEQVLE-DEVGTGEEEOVLEEDSIPDSVVIQDVIEDVVIEFDVQCSDIIFEADVSENVIIPEQVIEPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEOVIDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSEKVIIPEQVLDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVVDPDSVVIQDVIEDVVIEEDVQCSDILEEADVSENVIIPEQVLDPGSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLN-LGTA--------EEVSL [120]PDSVIIQDVIENVLIED-VHCSHILEETDISDNVIIPEQVLD-LDTA-_-_-_-_EEVSIPDSVVIODVIEDVVIED-VOCSDILEEADVSENVIIPDOVLS
--EEVSL [120]
PDSVIQDVIEDVVIED-VQCSDILEEADVSENVIIPDQVLS-SDVT--------EEVSL [120]
PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPDQVLS-SDVT---------EEVSL [120]
PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLA-SEVT------EEVSL [120]
PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLA-SEVT-
[120]
PDSVVIQDVIEDVVIED-VQCSDILEEADVSENVIIPEQVLITSDVT
PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLG-SDVT--PDSVVIQDVIEDVVIED-VHCSDILEEADVSENVIIPEQVLG-SDVT--
PDSVVIQDVIEDVVIED-VHCSDILEEADISENVIIPEQVLD-SDVT--[120]PDSVVIQDVIEDVVIEN-VQCSDILEEADVSENVIIPEQVLE-SDIS--

XP_-0871898.1|R_norvegicus XP-015343506.1|M_marmota
Q95LI3.1|B_taurus
XP_010855418.1|B_bison XP 017900383.1|C hircus AMȲ96563.1।C elaphus XP 020759307.110 virginianus F1S̄PY3।S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1|C_lupus
XP_032187800.1|M_erminea JAC06687.1|L_africana No_accession|E_caballus XP \({ }^{-} 028935710.1\) †O anatinus \(\mathrm{XP}^{-} 016288863.1 \mathrm{M}^{-}\)domestica XP_-015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP_009443992.1|P troglodytes Q52V16.1|G_gorilla XP 014984082.1|M mulatta XP \({ }^{-} 033067617.1 \mid T^{-}\)francoisi XP \({ }^{-} 031516968.1 \mid P^{-}\)anubis XP \(-008017167.1 \mid \mathrm{C}\) sabaeu XP_030782172.1|R_roxellana XP_032612406.1|H_moloch XP \(035145821.1 \mid\) C jacchus P10925.3|M musculus P20662.2|M musculus XP 008771898.1|R norvegicus XP 015343506.1 | \(\mathrm{M}^{-}\)marmota Q95LI3.1|B_taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O_virginianus F1S̄SY3|S scrofa XP_024612082.1|N asiaeorientalis AKİ82174.1।C lupus XP 032187800.1|M_erminea JA \(\bar{C} 06687.1 \mid\) L_afrícana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M domestica XP_015127980.1।G gallus 01611.1|X laevis

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q5̄̄V16.1|G_goril̄̆a XP_014984082.1|M_mulatta XP 033067617.1|T francoisi XP_031516968.1|P anubis XP_008017167.1|C_sabaeus XP 030782172.1|R roxellana XP \({ }^{-} 032612406.1 \mid \mathrm{H}^{-}\)moloch XP \({ }^{-} 035145821.1 \mid \mathrm{C}^{-}\)jacchu P10925.3।M musculus 220662.2|M-musculus XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B_taurus XP 010855418.1|B bison XP \({ }^{-} 017900383.1 \mid C^{-}\)hircus AMȲ96563.1।C_elaphus XP_020759307.1।O_virginianus F1SPY3।S scrofa XP_024612082.1|N_asiaeorientalis AKI82174.1|C_lupus XP_032187800.1|M erminea JAC06687.1|L_africana No accession|E caballus \(\mathrm{XP}^{-} 028935710.1\) †O anatinus XP \(016288863.1 \mid \mathrm{M}^{-}\)domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP-009443992.1|P \({ }^{-}\)troglodytes Q52V16.1|G gorilla XP \(0149840 \overline{8} 2.11 \mathrm{M}\) mulatt XP \(033067617.1 \mid T\) francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP_030782172.1|R roxellana XP_032612406.1|H_moloch XP 035145821.1|C jacchus P10925.3|Mmusculus P20662.2 \(\mathrm{M}^{-}\)musculus XP \(0087718 \overline{9} 8.1 \mid R\) norvegicus XP_015343506.1|M_marmota Q95LI3.1।B_taurus XP_010855418.1|B_bison XP \(017900383.1 \mid C\) hircus AMY96563.1|C_elaphus XP_020759307.1।O_virginianus F1S̄PY3।S scrofa XP \(02461 \overline{2} 082.1 \mid N\) asiaeorientalis

AQFPIP-DILASSITSTSLTMPEHILMSEA-IHVSDVGHIEQVIHDS---LVETEVITDP AHCTVPDDVLPSDITSTSMSMPEHVLTSES-IHMSNVGHVEHVVHDS---EVEAEIVTDP AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTDP AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTD AHCTVPDDVLASDITSASMSMPEHVLTSES-VHVSDVGHVEHIVHGS---VVEAEIVTDP AHCTVPDDVLASDVTSASMCMPEHVLTSES-VHVSDVGHVEHIVHDS---VVEAEIVTDP AHCTVPDDVLASDVTSASMCMPEHVLTSES-VHVSDVGHVEHIVHDS---VVEAEIVTDP AHCTVPDDVLASDITSASISMPEQVLTSES-IHVS--EHIEH-IHNS---VVEAEIVTDP AHCTVPDDVLASDITSASMSMPEHVLTSES-IHVSDIGHVEH-VHDS---VVEAEIITDP AHCTVPDDVLASDITSASMSMPEHVLTSDS-IHVSDVGHVEHVVHDS---VVAAEIITD AHCTVPDDVLASDITSASMSVPEHVLTSDS-IHVSDIGHVEHMVHDS---VVEAEIITDP THCTVPNDVLASDVTSASMSMPEHVLTHEP-IRVPDVGNVEHVVHDN---VVEAEIVTD AHCTVPDDVLASDITSASMSMPEHVLTSES-IHVSDVGHVEHIVHDS---VVEAEIVTDE AHCAVPEDVLAPDVPAAVAAVPEHVLAGEPVHIPPAAGHVGHVEHVVHDGVVDAEMVADP AHCTVPDDVLASDITTATMSIPEHVLTSDS-MHVPDVGHVEHVVHDN---VVEAEIVTDP AHCTVPDDVLASDITAEAMSIPEHVLTSES-MHVPEVGHVEHVVHDN---VEEADIVTDT TSCDVPDNVLDPELVDGELTIPDPETG-----MHSVSGHV------------VIGEEITDDA
ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAFTADEVYMEVIVGFEDAAVAAAAAAEIIDQNSSIRVPREKMVYMTVIDSQQEDEDINVABTADEVYMEVIVGEDDAVAAAAAAELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAA-ELLDQNSSIRVPREKMVYMTVSDSQQED----VAEIADEVYMEVIVGEEDAAVAAAAAA-ELLDQNSSIRVPREKMVYMTVNSSQED----VAELADEVYMEVIVGEEDAAVAAAAAA- [360]ELDASNEREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAA- [360]ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAA- [360]ELLDQNSSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAA- [360]ELLDQNSSIRVPREKMVYMTVNDSQREDEDLNVAEIADEVYMEVIVGEEDAAVAAAAA-- [360]ELLEQSSSVRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAPATVAAAA- [360]EVTDQSTSIRVPRV-NTYMSASDSQKEEED-----------TEVIVGDEDAGGTAADTP-EVTDQRTSIHVPRVEVIDQSSSIYVPRD-NVYMPVSDSQKEEED-----------TKVIVGDEDAGDTAADTSELLDQNSTIRVPREKMVYMTVNDSQQEDEDLNVAEITDEVYMEVIVGEEDAAVTAAAAA-ELLDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAATTELLDQNNSIRMPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAATTELLDQSNSIRMPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAATIEILDQNNSIRVPREKMVYMTVSDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAATEILDQNNSIRVPREKMVYMTVSDSQOEDEDLNVAEIADEVYMEVIVGEED-AVAAAAAATELLDQNS ELLDQNSSIRVPREKMVYMTVNDSQQ-DEDLNVAEIADEVYMEVIVGEEDAAVAAAAAAA

AKI82174.1|C_Iupus
XP_032187800.11M_erminea
JAC06687.1|L_africana
No_accession|E_caballus XP_028935710.1|O_anatinus \(\mathrm{XP}^{-} 016288863.1 \mathrm{M}^{-}\)domestica XP \({ }^{-} 015127980.1 \mid \mathrm{G}^{-}\)gallus Q01611.1|X_laevis

NP_001356631.1|H_sapien XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP 014984082.1|M mulatta XP \({ }^{-} 033067617.1 \mid T^{-}\)francoisi XP \(031516968.1 \mid P^{-}\)anubis XP \({ }^{-} 008017167.1 \mid \mathrm{C}^{-}\)sabaeu XP_030782172.1|R_roxellana XP_032612406.1| H_moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M musculus XP 008771898.1|R norvegicus \(\mathrm{XP}^{-} 015343506.1\) | \(\mathrm{M}^{-}\)marmota 295LI3.1|B taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1|O_virginianus F1SPY3|S_scrofa XP_024612082.1|N_asiaeorientalis AKĪ82174.1।C lupus XP 032187800.11 M ermine JA 0 0 6687.1 IL_afrícana No_accession |E_caballus XP_028935710.1才O_anatinus XP_016288863.1|M_domestica XP_015127980.1|G_gallus Q01611.1|X_laevis

NP 001356631.1|H sapiens XP \({ }^{-} 009443992.1 \mid P^{-}\)troglodytes Q52ेV16.1।G_gorilla XP_0149840 \(\overline{8} 2.1 \mid M\) mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C_sabaeus XP 030782172.1|R roxellana XP \({ }^{-} 032612406.1 \mid \mathrm{H}^{-}\)moloch XP \({ }^{-} 035145821.1 \mid \mathrm{C}^{-}\)jacchus P10925.3|M musculus P20662.2|M_musculu XP_008771898.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP 017900383.1।C hircus AMȲ96563.1|C_elaphus XP_020759307.1।O_virginianus F1 \(\bar{S} P Y 3 \mid S\) scrofa XP_024612082.1|N_asiaeorientalis AKI82174.1|C_lupus XP 032187800.1|M erminea JAC06687.1|L_africana No_accession|E_caballus XP \({ }^{-} 028935710.1\) †O anatinus \(\mathrm{XP}^{-} 016288863.1 / \mathrm{M}^{-}\)domestica XP-015127980.1|G_gallus Q01611.1|X_laevis

NP_001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla XP 0149840 \(\overline{8} 2.1 \mid \mathrm{M}\) mulatta XP \({ }^{-} 033067617.1 \mid T\) francoisi XP_-031516968.1|P_anubis XP_-008017167.1|C_sabaeu XP_030782172.1|R_roxellana XP_032612406.1|H_moloch XP 035145821.1|C jacchu P10925.3|M_musculus P20662.21 M \({ }^{-}\)musculus XP \(0087718 \overline{9} 8.1 \mid R\) norvegicus XP 015343506.1 | M marmota Q95LI3.1|B_taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1|C_elaphus XP_020759307.1।O_virginianus F1SPY3।S scrofa XP 024612082.1 N asiaeorientalis AKİ82174.1।C lupus XP_032187800-1|M_ermine JAC \(06687.1 \mid L\) _africana No_accession|E_caballus XP_028935710.1।O_anatinus XP 016288863.1|M domestica \(\mathrm{XP}^{-} 015127980.1 \mathrm{G}^{-}\)gallus 201611.1|X laevis

ELLDQNSSIRVREKM ELLDQNSSIRVPREKMVYMTVNDSQQEDDDLNVAEIADEVYMEVIVGEEDAAVAAAAAAA ELLDQNSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAAA ELLDQNNSIRVPRDKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVAAAAAAA GLLDQSSSIRVPREKMVYMTVNDSQQEDEDLSVAEIADEVYMEVIVGEEDAAVA-GLLDQSSSIRVPREKMVYMTVNDSQQEDEDLNVAEIADEVYMEVIVGEEDAAVA------GLLDQNSSIRIPREKMVYMTVNDSQHEDEDLNVAEIADEVYMEVIVGEEDAAVA-----GFLDSHNGGRLPREKMVYMTVNDSQNDD-DLDVAEIADEVYMEVIVGEEDAAVA------

VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESTGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK VHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGTASALLHVDESAGLGRLAKQKPKK MHEQQIDEDEM-KTFVPIAWAAAYGNNSDGIENRNGSASAVLHVDESVGLSRLTKQKPKK EHEQQMDVSEIKAAFLPIAWTAAYDNNSDEIEDQNVTASALLNQDESGGLDRVPKQKSKK EHEQQMDVSEIKAAFLPIAWTAAYDNNSDEIEVQNATASAMLHHDESGGLDRVPKQKSKK EHEQQMDDSEIKAAFLPIAWAAAYDNNSDEIEEQNVTASAVLHQNESGGLDRVHKQKAKK VHEQQIDDSEM-KAFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLSRLAKQKPKK VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRSGTASALLHIDESAGLGRLTKHKPKK VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRSGTASALLHIDESAGLGRLTKHKPKK VHEQEMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQEMDDNEM-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQEMDDSEM-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDNSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKOKPKK VHEQQMDDNEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK VHEQQMDDNEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLSRLAKQKPKK VHEQQMDDSEI-KTFVPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRVTKQKPKK VHEQQMDDSEI-KTFMPIAWAAAYGNNSDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQMDDTEI-KTFMPIAWAAAYGNNTDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQIDDTEI-KTFMPIAWAAAYGNNTDGIENRNGTASALLHIDESAGLGRLAKQKPKK -HEQQIDDNEI-KTFMPIAWAAAYGNNNDGIESRNGTASALLHIDESAGLGRLAKQKPKK -HEHQLEDAELSKTFMPVAWAAAYGNNTDGIEHRNGTASALLHIDESDGLDRLTKQKLKK

KRRPDSRQYOTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYP cmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KRRSDARQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLA-KKKYHct KKRPESKQYQSAIFVAPDGQTLRVYPcmfcgkkfkTKRFLKRhtknhPEYLA-NKKYHct KKRPESKQYQSAIFVAPDGQTLRVYPcmfcgkkfkTKRFLKRhiknhPEYLA-NKKYHct KKRPESKQYQTAIIVAPDGQTLIVYPcmfcgkkfkTKSFLKRhiknhPEYLA-KKKYHct RRRPDSKQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHIA-KKKYCct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPclicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYHct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLS-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYHct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLS-KKKYRct RRRPDSRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLT-KKKYRct KRRPESRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLLTKKKYRct KRRGENRQYQTAIIIGPDGHPLTVYPcmicgkkfkSRGFLKRhmknhPEHLV-RKKYRct
dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIQcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------TIEcvecgkhfsHAGALFThkmvhKEK ecdystnKKISLHNhmeshKLTIKTEK------TTEcddcrknlshagtlcthktmhTEK ecdystnKKISLHNhmeshKLTIKTEK------TTECDDCRKNLSHAG------TMHTEK dcdystnKKISLHNhmeshKLTIKTEK------TTEcddcgkhlshagtlcthk---kek dcdyttnKKISLHNhleshKLTSKVEK------VIEcdecgkhfsHTGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKSEK------AIEcddcgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKSEK------AIEcddcgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKMSLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK acdyttnkkisfhnhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------SIEceecgkhfsHAGALFThkmvhKEK dceyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK-------AIEcdecgkhfsHTGALFThkmvhKEK dcdyttnKKISLHNhleshKLTSKAEK------AIEcdecgkhfsHAGALFThkmvhKEK dcdyttnKKVSLHNhleshKLTGKAEKAAAPGAGAEcdecgkhfsHAGALFThktvhKEK dcdyttnKKISLHNhleshKLTNKTEKAIEc------decgkhfsHAGALFThkmvhKEK dcdyttnKKISLHNhleshKLTNKTEKLIEr------decgksfshagalfahkmvhRDK dcdyttnKKVSLHNhleshKLTATVIKTEKD---LEceecgkiflHANALFAhklthNEK

\section*{420]}

\section*{420]}

\section*{420]}

\section*{420]}

NP_-001356631.1|H_sapiens XP_009443992.1|P_troglodytes Q52V16.1|G_gorilla
XP_014984082.1|M mulatta XP 033067617.1।T francoisi \(\mathrm{XP}^{-}\)031516968.1| \(\mathrm{P}^{-}\)anubis \(\mathrm{XP}^{-} 008017167.1\) / \(\mathrm{C}^{-}\)sabaeus XP_030782172.1|R_roxellana XP-032612406.1| \(\mathrm{H}_{-}^{-}\)moloch XP_035145821.1|C_jacchus P10925.3|M_musculus P20662.2|M musculus XP_008771898.1|R_norvegicus XP 015343506.1|M-marmota Q95̄LI3.1।B taurus XP 010855418.1|B bison XP-017900383.1|C_hircus AMȲ96563.1।C_elaphus XP_020759307.1IO_virginianus F1SPY3|S_scrofa XP_024612082.1|N asiaeorientalis AKĪ82174.1।C lupū XP 032187800-1 1 M ermine JAC \(06687.1 \mid \mathrm{L}\) africana No_accession|E_caballus XP_028935710.1 \({ }^{\text {O__anatinus }}\) XP_016288863.1|M_domestica XP_015127980.1|G_gallus Q01611.1|X laevis

NP \(001356631.1 \mid \mathrm{H}\) sapiens XP-009443992.1| \(\mathrm{P}^{-}\)troglodytes Q52̄V16.1|G_gorilīa XP_0149840 \(\overline{8} 2.1\) IM_mulatta XP_033067617.1|T_francoisi XP_031516968.1|P_anubis XP_008017167.1|C sabaeus XP_030782172.1|R_roxellana XP 032612406.1| \(\mathrm{H}^{-}\)moloch \(\mathrm{XP}^{-} 035145821.1 \mathrm{CC}^{-}\)jacchus P10̄925.3।M_musculus 20662.2 1 M \({ }^{-}\)musculus XP_0087718998.1|R_norvegicus XP_015343506.1|M_marmota Q95LI3.1|B taurus XP_010855418.1|B_bison XP 017900383.1|C hircus AMȲ96563.1।C elaphus XP 020759307.110 virginianus F1SPY3।S_scrofa
XP_024612082.1|N_asiaeorientalis AKI82174.1|C_lupus XP_032187800.1|M_erminea JAC06687.1|L_africana No accessionİE caballus XP 028935710.110 anatinus \(\mathrm{XP}^{-} 016288863.1 \mathrm{M}^{-}\)domestica XP-015127980.1| \(\mathrm{G}^{-}\)gallus Q01611.1|x_laevis

NP_001356631.1|H_sapien XP 009443992.1|P troglodytes Q52V16.1।G gorilla XP_014984082.1|M_mulatta \(\mathrm{XP}^{-}\)033067617.1|TT francoisi \(\mathrm{XP}^{-} 031516968.1 \mid \mathrm{P}^{-}\)anubis XP-008017167.1| \(\mathrm{C}^{-}\)sabaeu XP \(030782172.1 \mid \mathrm{R}^{-}\)roxellana XP_032612406.1|H_moloch XP \(035145821.1 \mid C\) jacchus P10925.3|M_musculus P20662.2।M musculus XP 008771898.1|R norvegicus XP \({ }^{-} 015343506.1\) M \(\mathrm{M}^{-}\)marmota Q95LII3.1|B_taurus XP_010855418.1|B_bison XP_017900383.1|C_hircus AMY96563.1।C_elaphus XP_020759307.1।O_virginianus F1SPY3|S_scrofa XP 024612082.1|N asiaeorientalis AKĪ82174.1।C lupūs XP 032187800 . 1 M M erminea JAC̄06687.1|L africana No_accession|E_caballus XP_028935710.1|O_anatinus XP_016288863.1|M domestica XP_015127980.1|G_gallus Q01611.1|X_laevis
-GANKMHKckfceyetaE -GANKMHKckfceyetaE HSKNFPHIcvecgkgfrHPSELRKhmrihTG hSKNFPHIcvecgkgfrHPSELKKhmrihTG hSKNFPHIcvecgkgfrHPSELKKhmrihTG hSKNFPHIcvecgkgfrHPSELKKhmrihTG 600\(]\) hSKNFPHIcvecgkgfrHPSELKKhmrihTG 600] SKNFPHTcvecgkgfrise mkhminic [600] hSKNFPHIcvecgkgfrHPSELKKhmrihTG [600] vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600]
vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600] vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600]
vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600] vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600]
vhSKNFPHIcvecgkgfrHPSELKKhmrihTG [600] hRKKFPPHIcgecgkgfrHPSALKKhirvhTG [600] hRKKFPHIcgecgkgfrHPSALKKhirvhTG SKKKYPHVcvecgkgfrHPSELKKhirvhTG SSKSFPHIcvecgkfrHPSETKKhmrih vhSKNFPHIcvecgkgfrHPSELKKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG thSKNFPHIcvecgkgfrHPSELRKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG hSKNFPHIcvecgkgfrHPSELKKhmrihTG SKNNFPHIcvecgkgfrHPSELKKhmrihTG ShKNFPHI cvecgkgfrHPSELKKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG vhSKNFPHIcvecgkgfrHPSELKKhmrihTG hSKNFPHVcvecgkgfrHPSELKKhmrihTG चhSKNFPHIcvecgkgfrHPSELKKhmrihTG nSKNFPHIcvecgkgfrHPSELKKhmrihTG vhSKSFPHIcvecgkgfrHPSELKKhmrthTG
eyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVOOhtlvhQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPLKcdiclltfsDTKEVQQhtlvhQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-EN EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-ENK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVOHhtlvhQ-ENR EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-ESK EKPYQcqyceyrsaDSSNLKThiktkhSKEMPFKcdiclltfsDTKEVQQhtlvhQ-ESR EKPYEcqyceyksaDSSNLKThikskhSKEIPLKcgiclltfsdnkeaqqhavlhQ-ESR EKPYEcqyceyksaDSSNLKThikskhSKEIPLKcgiclltfsdtkeaqqhavlhQ-ESR EKPYQcqyceyksaDSSNLKThiktkhSKDIPLKcgiclmtfsdtkeaqqhalihQ-ENR EKPYQcqyceyrsaDSSNLKThvktkhTKEMPFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMSFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMSFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMSFKcdiclltfsDTKEVQQhalihQ-ESK EKPYRcqyceyrsaDSSNLKThvktkhSKEMSFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMSFNcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMPFKcdiclltfsDTKDVQQhalihQ-ESK EKPYQcqyceyrsadSSNLKThvktkhSKEMPFKcdsclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMPFKcdiclltfsDTKEVQQhavihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMPFKcdiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsaDSSNLKThvktkhSKEMPYRcdiclltfsDTKEVQQhavihQ-ESK EKPYHcqyceyrsaDSSNLKThvktkhSKEMPFKcdiclltfsDTKEVQQhglihQ-ESK EKPYQcqfcpyrsaDSSNLKThvktkhSKETPFRceacpltfaDPKELQQhallhHQESR EKPYQcqyceyrsaDSSNLKThvktkhSKEMPFKceiclltfsDTKEVQQhalihQ-ESK EKPYQcqyceyrsadSSNLKThvktkhSKETSSKcdicfqtfsDTKELQQhtlmhQ-ESK EKPYLcqycdyrsaDSSNLKThvktkhSKEMPFKcdiclqtftDSKDLQEhailhQ-ESK

THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMH THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcekgfhRPSELKKhvavhKGKKMHQ THQclhcdhkssNSSDLKRhvisvhTKDYPHKcemcdkgfhRPSELKKhvavhKGKKMHQ THQcshcnhkssNSSDLKRhiisvhTKAYPHKcdmcskgfhRPSELKKhvathKSKKMHQ THQcshcnhkssNSSDLKRhiisvhTKAYPHKcdmcskgfhRPSELKKhvathKSKKMHQ THQcsycnhkssNSSDLKRhiisvhTKDYPHKcdmcskgfhRPSELKKhvathKSKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQcvhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcemcekgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcemcdkgfhRPSELKKhvaahKGKKMHQ AHQclhcdhkssNSSDLKRhvisvhTKDYPHKcdtcdkgfhRPSELKKhaaahRGRKLHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKMHQ THQclhcdhkssNSSDLKRhiisvhTKDYPHKcdmcdkgfhRPSELKKhvaahKGKKLHQ NHQclhcdhkssNSSDLKRhiisvhTKDYPHKcevcekgfhRPSELKKheaahKGKKMHQ
] -GANKMHKckfceyetaEQ -GANKMHKckfceyetaED -GANKMHKckfceyetaE@ -GANKMHKckfceyetaE? -GANKMHKckfceyetaEd -GANKMHKckfceyetaEQ -GANKMHKckfceyetaE? -GANKMHKckfceyetaE? G-VNKTCKckfcdyetaeq G-VNKTCKckfcdyetaec EKVSKTYKckfcdyetaEq -GNNKMHKckfceyetaE? -GASKMHKckfceyetaE? -GASKMHKckfceyetaE -GASKMHKckfceyetaEQ -GANKMHKckfceygtaE? -GANKMHKckfceyetaEQ -GANKMHKckfceyetaE -GANKMHKckfceyetaEQ -GTNKMHKckfceyetaE -GANKMHKckfceyetaEC -GSSKMHKckfceyetaEC -GANKMHRckfceyetaE! GAGGRTHKckfcdyetaE -GANKMHKckfcdyetaEQ -GVNKMHKckfcdyetaec -AGNKMHIckfcdyetaEOcrhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrOONELKKhmkthSGRKVYQceycrhcdfki

\begin{abstract}
crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfnspdpfllshhilsahTKNVPFKckrckkefqQQCELQThmkthSSRKVYQce crhcdfkspdpfllshhilsahTKNVPFKckrckkefqQQCELQThmkthSSRKVYQcey crhcdfkspdpfllsrhilsvhTKNVPFKckrckkgfrQQCELQKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrckkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrckkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsihTKDLPFRckrckkgfrQQNELKKhmkthSGRKVYQcey crhcdfriadpfvlsrhilsvhAKDLPFRckrckkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrckkgfrQQNDLKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilswhTKDTPFRckrcrkgfroonetkKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQTELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQGELKKhmkthSGRKVYQcey crhcdfkiadpfvlsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcdfkiadpfilsrhilsvhTKDLPFRckrcrkgfrQQNELKKhmkthSGRKVYQcey crhcefhiadpfvlsrhilsvhTKELPYRckrckkgfrQQIELKKhmkthSGKKVYQcey [780]
[780]
[780]
[780]
\([780]\)
\([780]\)
\([780]\)
\([780]\)
[780]
[780]
[780]
[780]
[780]
[780]
[780]
[780]
[780]
[780]
780]
[780]
[780]
[780]
\([780]\)
[780]
[780]
[780]
[780]
[780]
\end{abstract}
ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceynttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceystkDASGFKRhvisihTKDYPHScdfckkgfrRPSEKNQhimrhHK-VGLP [834] ceystkDASGEKRhvisihTKDYPHRcdfckkgfrRPSEKNQhimrhHKEVGLA [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVSLS [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhitrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhitrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhitrhHKEVGLP [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhitrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhitrhHKEVGLP [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRSS--------------------------------- [834] ceysttDASGEKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRcehckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKEVGLP [834] ceysttDASGFKRhvisihTKDYPHRcdfckkgfrRPSEKNQhimrhHKDLGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKDVGLP [834] ceysttDASGFKRhvisihTKDYPHRceyckkgfrRPSEKNQhimrhHKDVGLP [834]

Table 14. Multiple CLUSTALW sequence alignment of ZFY outlining the 9 amino acid transactivation domains and DNA binding sites predictions. (A) The 9aa TAD motifs are identified by highlights, with the 9aa TADs that displayed \(100 \%\) match highlighted in yellow and the grey highlight signifying the match of the 9aa TAD being \(\geq 67 \%\). (B) The DNA binding sites are indicated by coloured upper/lowercase text; ZF1 = GREEN, ZF2 = RED, ZF3 = MAGENTA, ZF4 = ORANGE, ZF5 = BROWN, ZF6 = CYAN, ZF7 = PURPLE, ZF8 = SAPPHIRE, ZF9 = OLIVE, ZF10 = GREY,ZF11 =

LAVENDER, ZF12 = PEACH, ZF13 = DARK RED. The predicted sequence responsible for zinc finger binding is indicated by UPPERCASE LETTERS within the zinc finger DNA binding site predictions.

Table 14 showed that four regions within the ZFY protein were consistently predicted to have 9 amino acid TADs throughout the majority of the species, and three of the four regions were located exon 2 and the other region located on exon

\section*{5. These four regions contained perfect matches throughout most of the species}
as indicated by the highlight in Table 14. Though, H. sapiens, majority of the primates, rodents and amphibians do not have the 9aa TAD predicted in other species between sites 40-48 because they do not meet criteria RC4 \& RC5 and also RC6 \& RC7 as there were four consecutive hydrophobic residues and no
threonine or serine present. However, other species such as \(C\). jacchus meet every criteria apart from possessing three consecutive hydrophilic residues between sites 41-43, so it was predicted to be a perfect match for a 9aa TAD (tVFVsnIVd) along with the other species that have perfect match prediction. The next region was between residue sites 63-76 (sVVIqdVVedVVIe) and what we observed was that this region had three different perfect matches, but the arrangement of the 9aa TAD sequences would be different. For example, in \(H\). sapiens, the sequence arrangements for the motifs were SVVIQDVVE, QDVVEDVVI and DVVEDVVIE, but the program conjoined these and they produced a 14 amino acid TAD. This pattern remained consistent in the rest of the species between those specific amino acid sites and the majority of the species contained either a doublet or triplet di-valine cluster.

The conservation of the 9 amino acid TAD was different for each section as the first cluster between residue sites 40-48 had a \(78 \%\) identity (7 of 9) in species that possessed the 9aa TAD for this particular region, and the second cluster of 9 amino acids TAD had a percentage identity of \(71 \%\) (10 of 14). Additionally, the third cluster between sites 167-178 (gap between 168-170) had the lowest percentage identity of \(44 \%\) (4 of 9), and this region is also where \(O\). anatinus has 3 more amino acids that the rest of the species. The final cluster of residues between sites 338-346 has a 100\% identity and interestingly, in the rodents \(M\). musculus and \(R\). norvegicus there was a gap of 4 amino acids in the same region which indicated some divergence within this region which explained the lack of a 9aa TAD prediction in this region.

Table 14 also shows the zinc finger predictions, with the majority of the species containing 13 zinc fingers on the seventh exon and only \(M\). musculus and \(C\). lupus having 11 zinc fingers because of a missing portion of the sequence of zinc finger

3 and also because of an incomplete sequence of the zinc finger 13. The predicted zinc fingers contained the classic C 2 H 2 characteristics. For instance, the H . sapiens zinc finger 1 has the sequence CMICGKKFKSRGFLKRHMKNH and as outlined by the bold letters, the cysteine and histidine residues are present. However, the first residue of predicted zinc finger 3 of \(G\). gallus did not have a cysteine and contained an arginine residue instead. It was also observed that the zinc finger 3 was the least conserved zinc finger as it had only a percentage identity of \(20 \%\). Furthermore, this zinc finger region was missing 6 amino acids in M. musculus Zfy2 and R. norvegicus was missing 3 amino acids. Another zinc finger with a low percentage identity was zinc finger 7 as it had a percentage identity of \(38 \%\). Nevertheless, the remainder of the zinc fingers (ZF1-ZF2, ZF4ZF6 and ZF8-ZF13) contained a percentage identity \(\geq 64 \%\) with zinc finger 12 having the highest conservation as it had \(91 \%\) identity.

Another interesting observation was that Krüppel-type C 2 H 2 zinc fingers usually have the conserved linker sequence TGEKPY and in all this can be seen in all of the species in Table 9,Table 11, and Table 14. In addition, \(\operatorname{TKDYPH}(\mathrm{R} / \mathrm{K})\) (Table 14) were also conserved sequences seen frequently as zinc finger linker regions (between sites 686-692 and 800-806) contained this sequence across most of the species, only differing in the last amino acid as one contained arginine (\(R\)) and the other lysine \((K)\). The rest of the linker regions between the zinc fingers had no conserved regions or patterns.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{13}{|c|}{Zinc Finger (ZF) Scores} \\
\hline Species & ZF1 & ZF2 & ZF3 & ZF4 & ZF5 & ZF6 & ZF7 & ZF8 & ZF9 & ZF10 & ZF11 & ZF12 & ZF13 \\
\hline H. sapiens & 31.7 & 20.3 & 27.5 & 18.3 & 35.1 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline P. troglodytes & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 18.2 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline G. gorilla & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline M. mulatta & 31.7 & 20.3 & 27.8 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline T. francoisi & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline \(P\). anubis & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline C. sabaeus & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.1 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline R. roxellana & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 20.7 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline H. moloch & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 27.6 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline C. jacchus & 31.7 & 20.3 & 27.5 & 18.3 & 35.4 & 29.5 & 21.3 & 19.5 & 29.3 & 16.0 & 30.7 & 23.8 & 25.6 \\
\hline M. musculus (ZFY1) & 24.7 & 20.9 & 15.5 & 15.8 & 35.6 & 27.8 & 13.8 & 21.6 & 27.1 & 14.7 & 24.0 & 25.3 & 22.9 \\
\hline \[
\begin{aligned}
& \text { M. musculus } \\
& \text { (ZFY2) }
\end{aligned}
\] & 27.5 & 20.9 & \[
(-)^{\S}
\] & 15.8 & 35.6 & 27.8 & 12.5 & 21.6 & 27.1 & 14.7 & 24.0 & 25.3 & 23.5 \\
\hline R. norvegicus & 30.4 & 21.7 & 4.1 & 19.9 & 35.4 & 29.0 & 15.5 & 23.3 & 27.1 & 17.4 & 27.8 & 25.5 & 25.6 \\
\hline M. marmota & 31.7 & 18.8 & 26.2 & 18.3 & 35.4 & 28.2 & 21.1 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline B. taurus & 31.7 & 23.4 & 28.2 & 18.3 & 35.4 & 28.2 & 21.1 & 21.3 & 27.9 & 16.0 & 31.4 & 25.5 & 24.3 \\
\hline B. bison & 31.7 & 23.4 & 28.2 & 18.3 & 35.4 & 28.2 & 21.1 & 20.8 & 27.9 & 16.0 & 31.4 & 25.5 & 24.3 \\
\hline C. hircus & 31.7 & 23.4 & 27.5 & 18.3 & 35.1 & 28.2 & 21.1 & 20.8 & 27.9 & 15.7 & 31.4 & 25.5 & 24.3 \\
\hline C. elaphus & 31.7 & 24.0 & 27.5 & 18.0 & 35.4 & 27.7 & 21.1 & 20.8 & 27.9 & 16.5 & 31.4 & 25.5 & 24.3 \\
\hline O. virginianus & 31.7 & 23.4 & 27.5 & 18.3 & 35.4 & 28.2 & 18.8 & 20.8 & 27.9 & 16.0 & 31.5 & 25.5 & 24.3 \\
\hline S .scrofa & 32.0 & 23.4 & 27.5 & 18.3 & 35.4 & 28.2 & 21.1 & 20.8 & 26.8 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline \(N\). asiaeorientalis & 31.7 & 14.2 & 27.5 & 18.3 & 35.4 & 28.2 & 18.9 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline C. lupus & 31.7 & 23.4 & 28.0 & 18.3 & 35.4 & 28.2 & 19.7 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & N/A** \\
\hline M. erminea & 31.7 & 21.7 & 27.5 & 18.3 & 35.4 & 28.2 & 21.1 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline L. africana & 31.7 & 23.4 & 26.2 & 18.3 & 35.4 & 28.2 & 19.8 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 23.9 \\
\hline E. caballus & 31.7 & 20.3 & 27.5 & 18.0 & 35.4 & 24.7 & 19.7 & 20.8 & 28.5 & 16.0 & 31.2 & 25.5 & 25.6 \\
\hline O. anatinus & 31.7 & 24.2 & 23.5 & 19.9 & 36.2 & 27.1 & 22.2 & 19.5 & 26.3 & 16.0 & 32.2 & 25.5 & 23.5 \\
\hline M. domestica & 31.7 & 23.4 & 27.5 & 19.9 & 35.4 & 28.2 & 21.7 & 20.8 & 27.9 & 16.0 & 30.8 & 25.5 & 25.6 \\
\hline G. gallus & 31.7 & 23.4 & 13.2 & 16.6 & 35.4 & 28.2 & 21.2 & 20.8 & 27.9 & 11.7 & 30.8 & 25.5 & 25.6 \\
\hline X. laevis & 31.7 & 24.2 & 23.0 & 18.6 & 35.9 & 25.7 & 25.6 & 20.8 & 27.0 & 13.0 & 31.4 & 23.8 & 22.1 \\
\hline
\end{tabular}

Table 15. Zinc finger scores of each individual zinc finger domain. The table illustrates the zinc finger scores of the 13
predicted zinc fingers. As shown, Mus musculus has a missing zinc finger 3 which is indicated by the symbol (-), and Canis lupus sequence is incomplete at the end which signifies that the database has the incomplete partial sequence and not the complete full sequence, and this is indicated by N/A. The HMMER algorithm was used to detect the zinc fingers and the ZF or HMMER score is 'most confident' when > 17.7. Values lower are considered not to be a confident result. We created subcategories for confidence to distinguish significant results from moderately significant results. Therefore: GREEN = Most Confident (\(\geq 30.0\)), ORANGE \(=\) Fairly Confident (20.0-29.9) , BLACK \(=\) Least Confident (17.8-19.9) and RED \(=\) No Confidence (<17.7).

Table 15 showed zinc fingers 1, 5-6, 8-9 and 11-13 had a ZF score value above

\section*{17.7 in almost all of the land vertebrates. A few anomalies were observed in zinc}
fingers 2-4 and 7 of some species as their ZF scores were below 17.7. Though zinc finger 10 was predicted in all of the species initially shown by Table 14, the

\footnotetext{
\({ }^{5} M\). musculus Zfy2 shows that there was no predicted zinc finger 3 due to the truncation within that region of the sequence
** C. Iupus ZFY shows an incomplete sequence, thus the reason zinc finger 13 was not predicted
}

ZF scores of all the land vertebrates were below 17.7, thus highlighting that though some of the criteria was met by the sequence, it could not confidently be considered a zinc finger. Therefore, we concluded the majority of ZFY sequences had roughly 12 zinc fingers in total (excluding G. gallus, \(N\). asiaeorientalis, \(R\). norvegicus, M. musculus and C. lupus).

\subsection*{3.5 ZFY domain binding}

To investigate the possible binding motifs of each zinc finger, we analysed the predicted binding target of each using the B 1 H screens Nearest Neighbour Prediction tool using the F2F3union data. This tool predicted that a pattern could be established as the majority of the land vertebrates had the same trinucleotide target. For example, as Table 16 shows zinc fingers 2,6,8, 9, 12 and 13 all had a \(100 \%\) match for the trinucleotide target per zinc finger which indicates that these trinucleotides are highly likely to be the targets for these specific zinc fingers. However, we noticed instances where M. musculus Zfy1 and Zfy2, and R. norvegicus zinc fingers \(1,3,4,5,7\) and 11 had either predicted different trinucleotide targets, no predicted targets or the trinucleotides could be anything as the score for each amino acid was equal. In addition, as indicated by Table 16, \(R\). roxellana, \(N\). asiaeorientalis and S. scrofa had one zinc finger each which contained either a different trinucleotide or no predicted trinucleotide at all, and G. gallus and \(X\). laevis had two zinc fingers with either different or no predicted trinucleotides. The prediction tool result for zinc finger 10 showed that it had no predicted trinucleotide target for all land vertebrates which corresponded with Table 15 as this zinc finger had a weak HMMER score, further confirming this zinc finger could not be confirmed as a zinc finger.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{13}{|c|}{Predicted Trinucleotide Target} \\
\hline Species & ZF1 & ZF2 & ZF3 & ZF4 & ZF5 & ZF6 & ZF7 & ZF8 & ZF9 & ZF10 & ZF11 & ZF12 & ZF13 \\
\hline H. sapiens & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline P. troglodyte & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline G. gorilla & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline M. mulatta & GXC & GGC & ATA & GCC & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline T. francoisi & GXC & GGC & ATA & GCC & \(\mathbf{C}(\mathbf{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline P.anubis & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline C. sabaeus & GXC & GGC & ATA & GCC & C(G/T) \({ }^{\text {c }}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline R. roxellana & GXC & GGC & ATA & GCC & C(G/T) C & CAC & GGA & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline H. moloch & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline C. jacchus & GXC & GGC & ATA & GCC & C(G/T) \({ }^{\text {c }}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline M. musculus ZFY1 & ATC & GGC & N/A & N/A & ATC & CAC & N/A & GCC & GTG & N/A & XXX & GGC & ATG \\
\hline M. musculus ZFY2 & ATC & GGC & \((-)^{\dagger+}\) & N/A & ATC & CAC & N/A & GCC & GTG & N/A & XXX & GGC & ATG \\
\hline R. norvegicus & GTT & GGC & N/A & AAC & C(G/T)C & CAC & N/A & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline M. marmota & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline B. taurus & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline B. bison & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline C. hircus & GXC & GGC & ATA & GCC & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline C. elaphus & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline O. virginianus & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & XXX & GGC & ATG \\
\hline S. scrofa & GXC & GGC & ATA & GCC & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & CGT & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline \(N\). asiaeorientalis & GXC & N/A & ATA & GCC & \(\mathbf{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline C. lupus & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & \((-)^{\ddagger \ddagger}\) \\
\hline M. erminea & GXC & GGC & ATA & GCC & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline L. africana & GXC & GGC & ATA & GCC & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline E. caballus & GXC & GGC & ATA & GCC & C(G/T)C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline O. anatinus & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline M. domestica & GXC & GGC & ATA & GCC & C(G/T) C & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline G. gallus & GXC & GGC & N/A & N/A & \(\mathrm{C}(\mathrm{G} / \mathrm{T}) \mathrm{C}\) & CAC & XXX & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline \(X\). laevis & GXC & GGC & CTC & GCC & C(G/T)C & CAC & XGT & GCC & GTG & N/A & GCC & GGC & ATG \\
\hline
\end{tabular}

Table 16. ZFY domain trinucleotide prediction. ZFY domain binding partners are yet to be properly elucidated, but the
prediction was made using the domain analysis via the Nearest Neighbour Prediction algorithm and using the F2F3 union
data. The majority of the species have 12 zinc finger target predictions, but some species have less than 12 predictions. X indicates that the nucleotide could be any one of the four nucleotides. N/A indicates that there was no prediction at all made by the algorithm. YELLOW highlight outlines zinc fingers that have different trinucleotides to the main pattern shown, BOLD
\(=\) conserved, and GREEN \(=100 \%\) conserved trinucleotides in land vertebrates. \((-)\) indicates that either the zinc finger is absent either because of truncation or incomplete sequence.

The DNA targets shown by Table 16 interact with the DNA binding interfaces predicted in Table 15 and Table 17. Table 17 indicated 50\% of the predicted DNA binding interfaces (6 out of 12 [excluding ZF10]) across all species had \(100 \%\) identity located on ZF2,ZF6, ZF8, ZF9, ZF12, and ZF13 which showed that these amino acids are well conserved throughout the evolution from the common ancestor, whereas \(50 \%\) of the DNA binding interfaces had identities varying from 25-75\% as ZF1,ZF3-ZF5, ZF7 and ZF11 had slight variation of amino acids at

\footnotetext{
\({ }^{+\dagger}\) M. musculus Zfy2 shows that there was no predicted trinucleotide target as there was no predicted zinc finger 3 due to the truncation within that region of the sequence
\({ }^{\ddagger \ddagger}\) C. lupus ZFY shows an absence of a predicted trinucleotide target as the sequence was incomplete and there was no zinc finger 13 predicted
}
canonical positions across all species. Although, \(83 \%\) of the zinc fingers (10 out of 12 [excluding ZF10]) DNA binding interfaces had identities of 50-100\%, which shows that the fingers were mostly conserved.

The general consensus from Table 17 was that rodent DNA binding interfaces exhibited the most variation as four of the zinc fingers (ZF1, ZF4,ZF5 and ZF11) had differing amino acids at certain canonical positions. As expected, ZF10 had no DNA binding interface prediction as this particular zinc finger prediction in Table 15 had the lowest HMMER score and Table 16 had no predicted target.

Table 17. Predicted binding interface of each zinc finger. The table illustrates the DNA binding interface of ZF1-ZF13, which consists of 4 amino acids that are found on the helix of the zinc fingers. These 4 'canonical' positions that interact with the DNA target are in positions \(-1,2,3\) and +6 relative to the zinc finger helix. Some of the species had the same DNA binding interface so the overlap in some of the zinc fingers indicate that the residues interacting with DNA are all the same. Zinc fingers that have no predicted binding residues are indicated by \(N / A\) and (-) indicates that there was truncation within the sequence. GREEN represents that the canonical position amino acid was not conserved across all species but has the same hydrophobicity (\(\mathrm{S}, \mathrm{T}, \mathrm{H}, \mathrm{Q}\) and E are hydrophilic). RED represents that the canonical position amino acid as not conserved across all species but have the same charge (\(R\) and \(H\) are basic \(+D\) and \(E\) are acidic). BOLD represents the amino acids are conserved throughout all the species and lowercase letters represents amino acids not conserved throughout all the land vertebrate species.

\footnotetext{
§§ \(M\). musculus Zfy2 shows that there was no DNA binding interface as there was no predicted zinc finger 3 due to the truncation within that region of the sequence
*** C. lupus ZFY shows an absence of a DNA binding interface as the sequence was incomplete and there was no zinc finger 13 predicted
}

\subsection*{3.6 Transformations}

As indicated by Table 8, eight of the constructs were transformed into E. coli competent cells and the transformation of the plasmid vectors into the E. coli was successful as every plate developed colonies, expected as each of the vector had ampicillin resistance. However, upon observation the E. coli transformants expressing hZFY-long AD had a significantly lower number of colonies compared to E. coli transformants expressing hZFY-short AD. Subsequently after the transformation, we focused first on protein expression.

\subsection*{3.7 Growth of pET15b transformed E. coli cells}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
\end{tabular}

To obtain the protein, we used the growth method described in Section 2.5.
Transformed E. coli cells with pET15b vectors, expressing hZFY-long AD and hZFY-short AD exhibited exponential growth. Additionally, Figure 11 indicates that
E. coli cells expressing hZFY-long AD were growing at a slower rate than the \(E\). coli expressing hZFY-short AD.

\subsection*{3.8 Recombinant hZFY-long AD expression was absent, but hZFY-short AD was abundant}

We tried to express both hZFY-long AD and hZFY-short AD (both without the DBD) in the bacterial expression system. We carried out SDS-PAGE to analyse the presence and expression of hZFY variants indicated by Figure 12 after nickel column chromatography using the protocol from Thermo Scientific (available at https://www.thermofisher.com/order/catalog/product/88221\#/88221). The Coomassie stained gel showed that both expression experiments shared bands roughly at \(20 \mathrm{kDa}, 25 \mathrm{kDa}, 32 \mathrm{kDa}, 66 \mathrm{kDa}\) and 90kDa. These bands were likely contaminants non-specifically bound from each hZFY isoform protein products.

Figure 12 shows that the expression of hZFY-long AD was unsuccessful as there was no expression of a band between \(40-55 \mathrm{kDa}\). hZFY-short AD showed two bands roughly at 35 kDa and 39 kDa that were specific only in the hZFY-short expression. These bands suggested hZFY-short AD protein expression had been successful as, but they were at a higher molecular weight than we expected. The expected molecular weight of the hZFY-short AD was estimated to be approximately 28.3 kDa when including the hexahistidine tag and thrombin cleavage site, so to confirm that the protein bands expressed were truly hZFYshort AD, we checked by western blot and confirmed these two bands represented his-tagged products. We can therefore conclude that the expression of hZFY-long AD was unsuccessful, and hZFY-short AD was successful.

Figure 12. Expression of hZFY AD variants without (w/o) DBD. Parallel comparison of Coomassie stained gel of hZFY-long AD and hZFY-short AD expression. The expected molecular weight of hZFY-short AD was roughly 28.3 kDa with the hexahistidine tag and thrombin cleavage site but the arrows indicated the molecular weight to be roughly 35 kDa with an unexpected band around 39 kDa as indicated by the BLACK arrows.

\subsection*{3.9 Western Blot analysis shows hZFY-short AD protein was present}

Figure 13 shows hZFY-short protein was present and hexahistidine tagged as the capturing device detected the 2 bands, showing 2 possible molecular weights for the protein at 35 kDa and 39 kDa , although the size of the protein was expected to be roughly 28.3 kDa . We also identified faint bands at lower molecular weights in the same elution lanes characteristic of hexahistidine tagged proteins that were likely bound non-specifically. We can therefore conclude that the expression of hZFY-short AD was successful.

Figure 13. hZFY-short AD protein without the DBD expression shown using horse radish peroxidase tagged
primary antibody. The nitrocellulose membrane showed protein expression and an anomalous band higher than hZFYshort AD expression. The protein was present due to the hexahistidine tag for isolation as nickel chromatography isolates the proteins based on the metal ion attached to the protein. Therefore, non-specific binding is removed. The capture time for the membrane image was 59 seconds.

Though the attempt of purification of hZFY-short AD was successful, expression and isolation of hZFY-long AD was unsuccessful. We attempted SDS-PAGE runs and neither runs were successful. Figure 14A shows a band between \(35-55 \mathrm{kDa}\) amidst the other non-specific bands within the elution fraction which we suggested it could be our protein of interest. Therefore, for confirmation, western blot (Figure 14B) did not show any bands between \(35-55 \mathrm{kDa}\), invalidating the assumption that this was hZFY-long AD.

We lowered the imidazole concentration of the nickel column chromatography wash buffer only from 25 mM to 10 mM and Figure 14 C shows the elution lane still had non-specific bands and hZFY-long AD purification was still unsuccessful due to a lack of an intense band at roughly 48.6 kDa (hZFY-long AD molecular weight
and the tags), but for further validation that hZFY-long AD was not present, we did a western blot (Figure 14D) that confirmed that the extraction was unsuccessful.

Figure 14. Expression patterns on SDS PAGE and Western blots of hZFY-long AD without DBD. hZFY was harvested as described in section 2.4. (A) Coomassie stained gel with wash buffer imidazole concentration of 25 mM and PageRuler Plus Prestained Protein Ladder (26619). (B) Polyvinylidene fluoride (PVDF) membrane visualized in a G:Box F3 gel imaging system with a capture time of 1 minute and 37 seconds, and the same imidazole concentration as gel A. (C) Coomassie stained gel with wash buffer imidazole concentration of 10 mM and PageRuler Prestained Protein Ladder (26616). (D) PVDF membrane with the same imidazole concentration as gel \(\mathbf{C}\), and a capture time of 2 minutes 29 seconds.

\section*{4 Discussion}

\subsection*{4.1 ZFY N-terminus is less conserved than the C-terminus}

Our bioinformatic analysis showed ZFY proteins had a highly conserved DNA binding domain (across the 44 species) at the C-terminal portion in comparison to the N -terminal portion, as the majority of conserved amino acids as well as the nucleotides were within the final exon of each of the species. This highlighted that the ZFY acidic activation domain likely went through a series of diverging evolutionary events in the majority of species.

The N -terminal portion of ZFY seems to have clusters of conserved amino acid patches typically \(\geq 4\) residues. This likely stabilises the interactions of the transactivation domain with transcription regulation machinery, and these specific amino acids are possibly redundant in all the species as they are well preserved across all the species (Ahmad et al., 2010). Conserved residue clusters have been implied to be the 'energy hotspots' for protein-protein complexes, as they stabilise the protein's core and interfaces for better interactions (Ma et al., 2003; Ahmad et al., 2010). Therefore, with the conservation of the N -terminal residues being relatively low in ZFY, some of these clusters likely stabilise the protein-protein complexes that arise from interaction with other transcription regulatory elements. There are several of these clusters dispersed over the span of the N -terminal activation domain likely so the ZFY interface remains flexible but maintain the critical interactions (Ma et al., 2003). This pattern is typical for acidic transactivation domains, where the conserved regions represent the relatively small hydrophobic binding interface, while the less-conserved regions are highly charged "spacer" regions that act to prevent the protein from folding and remain in an unstructured configuration that presents the hydrophobic patches to the
surrounding medium. As such, the precise sequence is not important for these spacer regions, only that they should be highly charged in solution.

It is important to note that some of the exon sequences used for the protein alignments were predicted. Predicted sequences are usually modelled by studying the conservation of the DNA sequences across related species and using sequence homology of a characterised sequence to identify the exon sequence. As these predicted ZFY genes display high sequence similarity to the characterised ZFY genes, the functions are likely to be similar. However, as the proteins have not been isolated or characterised in the species that have the exon sequences as predicted, any functionality inferred is to be treated cautiously.

Although fish species were included in the initial sequence alignment, there was a possibility of misidentification of ZFY as most sequences were ZFY-like isoforms and were likely generated from ZFX as they are homologous to ZFY. Therefore, it is a possibility that the reason why there is a divergence as we proposed is due to ZFY sequences of the land vertebrates being compared to the misidentified fish ZFY.

\subsection*{4.2 Nine amino acid TAD motif predictions are highly conserved, and two additional motifs located on the \(5^{\text {th }}\) and \(6^{\text {th }}\) exon}

Although four possible (perfect) 9aa TAD regions were predicted all within the N terminal region of the protein, only one of these regions was highly conserved across all land vertebrates from residues 63-76. It is therefore likely that this motif is of key functional significance in ZFY proteins. In addition, the motif between 338-346 (Table 14) was also predicted throughout all land vertebrates with the exception of three of the four rodent sequences, and it showed a percentage identity of \(78 \%\). It is a possibility that rodents had a high degree of divergent
evolution in comparison to the other land vertebrates which retained this sequence.

Our data suggests residues between the sites 62-75 (Table 13) or 63-76 (Table 14) are responsible for the majority of transactivation activity of ZFY. As the 9aa TAD motif (Table 14) between sites \(40-48\) was not predicted in most mammals including \(H\). sapiens and \(M\). musculus Zfy2, this was suggestive that this motif was not essential for transactivation as \(M\). musculus Zfy2 and \(H\). sapiens full-length ZFY had putative transactivating acidic domains without this motif (Decarpentrie et al., 2012). In addition, the 9aa TAD motifs between sites 167-178 (Table 14) and 338-346 (Table 14 DEVYMEVIV) were predicted in H. sapiens ZFY but not predicted in M. musculus Zfy2, and the transactivating activity of M. musculus Zfy2 was higher when fused to Gal4-DBD.

Much remains to be understood about the biology of 9aa TAD motifs, and it is possible that they are repressor as well as activator motifs. Notably, hZFY-short also possesses the DEVYMEVIV motif between sites 316-324 (Table 13) motif but does not have transactivating properties when fused to Gal4-DBD (Decarpentrie et al., 2012). It is thus plausible that the DEVYMEVIV motif - present in both short and long forms - acts to repress transcription while the longer SVVIQDVVEDVVIE motif present in the alternatively spliced second coding exon acts to promote transcription. The increased transactivation ability of mouse Zfy2 could therefore be due to the selective loss of the (potentially inhibitory) DEVYMEVIV motif.

Overall, hydrophobic clusters separated by hydrophilic regions within the 9 amino acids TAD motifs were suggestive that these are essential for transcriptional activation. A study by (Almlöf, Gustafsson and Wright, 1997) established a relationship that hydrophobic patches increased transactivation activity of a nuclear transcription factor, and the mechanism that was demonstrated to
increase the transactivation activity was because of better interactions with coactivators. Furthermore, studies of transactivation domains of Gcn4 and p53 (Jackson et al., 1996; Krois et al., 2016) have also demonstrated that hydrophobic clusters within the transactivation domain were likely important for mediation of hydrophobic interactions with transcriptional machinery. Therefore, future studies addressing if there are any effects from mutagenesis of hydrophobic residue to hydrophilic residues (specifically on SVVIQDVVEDVVIE) on transactivation activity will be useful to confirm the theories. It is uncharacteristic however for 9aa TAD transcription factors to have unusually high valine content as they inactivate 9 aa TAD motifs (Piskacek et al., 2019), but ZFY possesses valine rich 9aa TAD motifs which could indicate a new class of 9aa TAD motifs.

Interestingly, we located possibly another conserved motif adjacent the DEVYMEVIV motif referred to as the polyalanine motif located within the acidic domain. (Poloumienko, 2004). As this motif was conserved in placental mammals other than rodents, this suggested that the motif was likely specific to placental mammals. Polyalanine tracts have been associated with transcription regulation molecular binding and transcription regulator, as motifs with 5-7 alanine residues or >7 alanine residues in human genes were mostly involved in these molecular functions, thus these motifs likely play a significant role in the various placental ZFY proteins (Lavoie et al., 2003). However, further mutagenesis studies can be conducted to analyse if there are detrimental effects to ZFY function.

In addition, another motif was located in all of the land vertebrates and fish species within the acidic domain, more specifically the \(6^{\text {th }}\) exon and this we concluded to be an NLS due to the basic nature of the region as it contains the \(K(K / R) X(K / R)\) consensus sequence that binds an importin (\(\alpha\)-importin) for nuclear localization (Mardon and Page, 1989; Lange et al., 2007). The proposed nuclear localisation
motif however was not highly conserved as the basic amino acids can be interchangeable. Nonetheless, this region remained basic across all the land vertebrates and fish species.

\subsection*{4.3 ZFY zinc fingers are highly conserved}

We found the general consensus was ZFY contained 12 zinc fingers. Zinc finger 10 was not confidently predicted as a zinc finger and, it did not have predicted binding targets or DNA binding interface, contradictory of the previous (Page et al., 1987; Mardon and Page, 1989) findings in which the protein was predicted to have 13 zinc fingers in humans and mouse Zfy2. In addition, zinc fingers 3,4 and 7 within most of the rodent lineage seemed to be not well retained (low ZF score) which could indicate that they were likely functionally insignificant resulting in their loss over time. The majority of the zinc fingers were conserved in most mammals which suggested that there is some constraint which enforced the DNA binding domain in exon 7 to be very well conserved.

Fish species however have two inserts in the C-terminus in the region where the linker region between ZF3 and ZF4, and also one imbedded where ZF11 was predicted for land vertebrates. As the two inserts were rich in proline, this likely has an effect on the zinc finger motif arrays as proline residues kink amino acid backbones, thus inhibiting \(\alpha\) helix formation needed along with two \(\beta\)-sheets (\(\beta \beta \alpha\) structure) to form a zinc finger. This suggested possibly that fish species have a modular DNA binding domain that has different functions at different regions, thus not behaving as one unit but multiple units that work congruently to execute a task.

Figure 15. Zinc finger structure with a C2H2 motif. Diagram represents zinc finger 12 of the DNA binding domain of hZFY. CYAN represents paired cysteine \((\mathrm{C})\) and histidine \((\mathrm{H})\) residues that interact with the GREY zinc ion (Zn) which stabilises the structure of the zinc finger via a tetrahedral coordination complex. The finger contains two \(\beta\)-sheets and an \(\alpha\)-helix (indicated by BLACK) which holds the DNA binding interface containing 4 canonical positions \((-1,2,3\), and 6) that are interpreted to interact with DNA indicated by AMBER. This image is an adaptation of (Stubbs, Sun and Caetano-

Anolles, 2011)

\subsection*{4.4 ZFY zinc finger binding sites}

It was important to investigate the conservation of the zinc fingers binding sites. The majority of the ZFY binding interfaces (Table 14) had high conservation between the different species which was suggestive of these amino acids having the general function of enabling the DNA binding specificities and result in high affinity binding, though great care should be taken as affinity and specificity are not coupled. Though the same amino acids were not conserved in some of the DNA binding interfaces, the properties were conserved. For example, some of the fingers would retain hydrophobicity or charge in some species as shown by Table 14 implying that the binding of the zinc fingers is likely dependent on the properties
of the amino acids rather than the shape for lock and key type interactions. As three of the four rodent sequences had the most variation in most of the DNA binding interfaces, this implied that there was a high selective pressure not to maintain the regulatory target elements of these specific zinc fingers (Sommer et al., 1992).

As DNA binding of ZFY is not known exclusively, some theories suggest that all zinc fingers are involved in binding to DNA, and some explain not all of the zinc finger domains of ZFY are involved in binding DNA. But the general suggestions have implied that all zinc fingers bind to DNA but in varying ways. For instance, one mechanism for transcription factor binding has been interpreted in which some of the transcription factor zinc fingers bind DNA at nonspecific sites while the other fingers scan and direct the transcription factor to the target sites. Therefore, some of the ZFY zinc fingers could be involved in binding at nonspecific sites when the protein is scanning DNA targets sites and when the zinc fingers locate the target site, the rest of the ZFY zinc fingers bind their specific DNA target for a 'recognition' mode until dissociation of the zinc finger for the repeat of the process (Zandarashvili et al., 2015; Zuo et al., 2019). This implies that some zinc fingers (primary binding sites) within ZFY modulate DNA binding as they increase the affinity and stability of secondary binding sites. As ZFY zinc fingers were proposed to bind typically to 3 bases of DNA, the interactions of a single zinc finger are not likely strong as the zinc finger DNA binding interface is large so secondary binding sites stabilise existing primary binding site interactions. In addition, greater affinity allows a sufficient window for ZFY interaction with regulatory elements, resulting in
efficient repression or activation (Zuo et al., 2019).

\subsection*{4.5 ZFY phylogeny}

The two protein phylogenetic trees showed as expected that ZFY proteins of the different primate species were consistently grouped. Unexpectedly, the majority of rodents had unique evolution pathways as they separated from M. marmota. This similar pattern was also observed less severely in artiodactyls as they exhibited a similar dispersal across the evolutionary tree (\(N\). asiaeorientalis and S. scrofa dispersed). Additionally, as expected the fish species were all distantly related to the other species. The nucleotide phylogenetic tree showed however that the rodents and artiodactyls do not exhibit the unique evolution pathways as they are all grouped respectively, but the rodent lineage still displayed a long branch indicating higher nucleotide substitutions. These results indicated that there was a higher proportion of nonsynonymous substitutions, such that the correct phylogeny was recovered from the nucleotide sequence alignment and not from the protein sequence alignment. Usually, synonymous substitutions are higher in proportion to nonsynonymous substitutions. Thus, excess nonsynonymous substitutions are suggestive of positive selection in the common ancestor of rat and mouse and are
evidence for the rapid evolution of the rodent protein sequence (McDonald and Kreitman, 1991). Due to time constraints limiting our experiments, future experiments should incorporate the codeml Phylogenetic Analysis by Maximum Likelihood (PAML) software package to quantify the ratio of nonsynonymous substitutions per nonsynonymous site to the number of synonymous substitutions per synonymous site and determine if there was selective pressure on the rodent lineage.

\subsection*{4.6 E. coli expression of recombinant hZFY proteins}

As much of the research conducted for ZFY was mostly pre 2000s, there has been a gradual decline in interest since it was determined ZFY was not the testisdetermining factor. Bacterial expression of hZFY has been scarce as many papers usually analyse \(Z F Y\) expression in mouse germ cells, abnormal expression of \(Z F Y\) in HNSCC cell lines, and hZFY transactivation activity has been conducted in \(S\). cerevisiae. Therefore, there was a need for hZFY to be expressed and purified for structural and biochemical assays.

Our data suggested that the length of the acidic domain determined how bacterial colonies and bacterial cultures grow. As the Figure 11 demonstrated, E. coli expressing hZFY-short AD grew approximately 1.3 times quicker than E. coli expressing hZFY-long AD prior IPTG induction. A similar outcome was observed by (Decarpentrie et al., 2012) and colleagues, in S. cerevisiae, where they observed smaller colonies of yeast transformants of (highly active) mouse Zfy2long, extended growth time in liquid media, and lower expression of Zfy2-long AD. They concluded that there possibly was a selection against high expression clones.

This similar hypothesis could be applied to our experiments as there were lower observed E. coli transformant colonies expressing the hZFY-long AD and higher
overall growth time in the liquid culture (Figure 11). It was a possibility that the hZFY-long AD had a toxic effect on the bacterial cells, and this perturbed the proliferative capabilities of the cells, likely leading to apoptosis or defects in the growth mechanism of the E. coli (Dumon-Seignovert, Cariot and Vuillard, 2004; Saida et al., 2006). As our plasmid contained a T7-based promoter and contained a lac operon, these allow leaky gene expression which is a process by which bacterial systems have basal expression of a protein (Nielsen, Willis and Lin, 2007). This is because the transcriptional control is not \(100 \%\) efficient as the promoter does not turn off completely even when an inducer is not present, due to the lac repressor protein binding DNA operator sites with an efficiency lower than 100\% (Nielsen, Willis and Lin, 2007).

Leaky expression of genes increases in LB-media growths as bacterial cultures enter the stationery phase likely due to scarcity of nutrients acting as a limitation (Nielsen, Willis and Lin, 2007). Therefore, we assumed that the promoter and element allowed hZFY-long AD leaky expression before induction by IPTG, and as we suggested that the gene was toxic to our E. coli strain, the leaky expression of the toxic gene in bacteria before induction likely eliminated some of the bacteria and induction increased the rate of elimination. Leaky expression has been associated with plasmid instability, so we also assumed that this also likely led to a poor yield in hZFY-long AD protein (Rosano and Ceccarelli, 2014).

To formally test for leaky expression of hZFY-long AD, future experiments should include small-scale expression tests (Figure 17). This involves growing our pET15b transformants in small quantities (i.e., 6 mL) and collecting uninduced aliquots (roughly \(400 \mu \mathrm{l}\)) at consistent intervals until \(\mathrm{OD}_{600}\) of 0.7 . Then, we induce the samples with varied IPTG concentration (i.e., \(0.1-1.0 \mathrm{mM}\)), also collecting induced aliquots (roughly \(400 \mu \mathrm{l}\)) at consistent intervals. For every aliquot of
induced and uninduced, we prepare samples for SDS PAGE by microcentrifugation and denature samples by boiling. The samples will then be run on SDS PAGE gels (for western blot also) and analysed to identify if cells exhibit basal or 'leaky' expression of the hZFY-long AD. In addition, toxicity of the hZFYlong AD can be tested directly by IPTG induction of the E. coli cells and performing colony counts on agar plates to observe the number of cells that remain viable after a certain period.

Figure 17. Flow chart for the small-scale expression test adaptation (Zerbs, Giuliani and Collart, 2014). If hZFYlong acidic domain is expressed prior induction (step 1.3B) and after IPTG induction there is lack of expression, this shows that the leaky expression has an impeding effect on E.coli expression. Step 1.3B and 1.5B are useful for collecting cells at varied times of growth to see progression of expression.

For the other constructs such as pFN26A or pcDNA3.1(+) (Table 6), the growth rates of the transformed bacteria would be expected to have no difference in growth as these contain eukaryotic promoters so will only be active in mammalian cells.

\subsection*{4.7 Electrophoresis and western blot analysis}

Both SDS and western blot data for hZFY-short AD protein without the DBD showed evidence that the expression was successful in the elution fractions of the purified E.coli supernatant. High intensity bands indicated by Figure 12 and

Figure 13 suggested that the his-tagged protein was present, with the bands seen at an estimated size of 35 kDa and 39 kDa . This differs from the https://web.expasy.org/protparam/ prediction (Gasteiger et al., 2005), as the predicted size was estimated to be 28.3kDa including the vector-derived his-tag and thrombin cleavage site.

An explanation for an anomalously high observed molecular weight could be the high proportion of negatively charged amino acids in this protein domain, as \(24 \%\) of the residues were aspartic and glutamic acid (51 of 216 amino acids). Negatively charged amino acids impede SDS binding to the protein and thus alter their migration in an SDS-PAGE gel (Graceffa, Jancsó and Mabuchi, 1992), and mutation of these residues is shown to restore migration to the normal expected.

An equation was therefore derived to account for negatively charged residues by (Guan et al., 2015) and colleagues which is \(y=276.5 x-31.33\) (where \(x\) is the percentage of negatively charged amino acids and \(y\) is the average MW per amino acid). Using this equation, our ZFY-S construct is predicted to run at 35.03 kDa , very similar to the lower band observed experimentally. However, a useful technique in verifying the identity of the protein band is mass spectrometry as it digests the protein and produces fragmented peptide ion peaks (Wang and Wilson, 2013).

As yet the secondary upper band at 39kDa remains unexplained. This could be potentially due to incomplete reduction of disulphide bonds in the protein, due to the reducing agent used. As \(\beta\)-mercaptoethanol is a volatile reducing agent, the concentration in solution usually decreases with time which likely resulted in poor ZFY reduction or reoxidation and thereby result in an extra and heavier band (https://www.bio-
rad.com/webroot/web/html//sr/tech support faqs/FAQ268440261.html). As
dithiothreitol (DTT) is less volatile, it is probably more likely to reduce ZFY properly and provide a better result with just one distinct band. A useful experiment to distinguish which of the 2 bands is hZFY-short AD is via mass spectrometry of each band.

An explanation on two bands being present could be representative of folded and aggregated protein. As the lower band is closer to the expected molecular mass, we can assume that the lower band was the fully denatured protein, and the upper band could be an aggregated protein. This is likely because of the conditions at which the ZFY expression was performed as (Wang et al., 2011) demonstrated that high expression situations lead to more aggregation of protein in inclusion bodies and produces lower bands that are less aggregated. Therefore, the 39kDa band could also be a result of protein aggregation.

\subsection*{4.8 Future Work}

Due to the COVID-19 pandemic, we only touched the surface on ZFY's expression and isolation. To overcome the problems we encountered, future bacterial growth and expression experiments need to be optimized (as previously stated) to allow us to harvest pET 15 b constructs expressing the hZFY-long AD. Future experiments could include circular dichroism, which is a useful technique for secondary structure determination of our recombinant protein to also reveal the folding property of the protein (Greenfield, 2007). Structure and folding of proteins reveal the protein function as change in conformation of the protein likely affects the function, and in addition interacting regions/ partners are likely to be determined by assays such as pull-down assays. The structure of the acidic domain of hZFY in particular will likely reveal the conformation responsible for the transactivating properties of the hZFY-long AD.

The direction of the research should also include analysing the function of the two hZFY protein variants. These experiments include mammalian cell line expression after transfections from pCDNA3.1(+) constructs. As a pair of the constructs have eGFP tags, signals should be detected in the nuclei of mammalian cells if the protein is expressed, and it allows us to perform reporter assays using the hZFY protein variants within the mammalian cell lines. The other pair of constructs have a HA tag which is useful for western blotting, immunoprecipitation, and immunofluorescence experiments, which will allow us to isolate and purify hZFY variant proteins after detection. It is worth noting that as hZFY-long function is thought to be proapoptotic as in spermatogenesis, thus hZFY-short is likely antiapoptotic when transfected in mammalian cells as it has no transactivation abilities and likely antagonistic.

The other pair of constructs had a pFN26A vector backbone containing a luciferase reporter, that is useful for luciferase reporter assays. As we determined that the potent 9aa TAD motif of hZFY was SVVIQDVVEDVVIE, an assumption is that when hZFY-long AD is fused to Gal4-DBD, the cells should exhibit higher luminescence than in hZFY-short AD fused to Gal4-DBD. This is because hZFYlong transactivates the Gal4-DBD, so the activity is likely significant in comparison to a hZFY-short and Gal4-DBD fusion. Therefore, mutagenesis of specific amino acids within this region can be analysed to show any change in transactivation, should the 9aa TAD motif be experimentally confirmed to be the motif responsible for transactivation.

As the in-silico results suggested that ZFY sequences were largely conserved across various species, further research would be useful to analyse whether the sequence conservation is related to the molecular functionality of the gene. For instance, a useful experiment would be to analyse the highly conserved zinc finger
domains and create zinc finger constructs of various species to closely monitor which of the residues are involved in DNA binding. This also includes experiments to show how changes of these residues affect the binding mechanism of the zinc fingers with the target nucleotides. In addition, this also includes further investigation of the 9aa TAD and analysing the one with the highest percentage identity as usually sequences that have a high homology usually suggest similar function.

\subsection*{4.9 Conclusions}

Whilst the project failed to express the hZFY-long AD from E. coli cells, this was likely because of the limitations presented by the lac operator as it is known to cause protein expression before induction by IPTG, therefore impeding the growth of the cells after induction and the outcome is no protein expression and 1.3-fold difference in the \(E\). coli growth. Nonetheless, the presence of the lac operator in \(E\). coli cells had no negative impact on hZFY-short AD expression as the protein was present, suggesting that the longer variant likely had a toxic phenotype on our bacterial cells. Intriguingly, hZFY-short AD was shown via SDS-PAGE and western blot analysis to have a higher observed molecular weight than the predicted, and an anomalous band was also located above the hZFY-short AD. The acidic domain appeared to be the least conserved region of ZFY across several species. Nevertheless, the acidic domain has been shown to possess several motifs which include 9aa TAD motifs, polyalanine motifs and a nuclear localisation motif, all with varying conservation throughout several species. Most importantly, residues 63-76 are predicted to be the 9aa TAD motif responsible for transactivation in hZFY-long. The DNA binding domain of ZFY appears to be highly conserved in comparison to the acidic domain and has 12 zinc fingers that
vary in conservation across several species, and these bind 3 nucleotides at specific DNA sites using specific residues at the DNA binding interface.

\section*{5 References}

Ahmad, S. et al. (2010) 'CCRXP : exploring clusters of conserved residues in protein structures', Nucleic Acids Research, 38(May), pp. 398-401. doi: 10.1093/nar/gkq360.

Almlöf, T., Gustafsson, J. A. and Wright, A. P. (1997) 'Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor.', Molecular and Cellular Biology, 17(2), pp. 934-945. doi: 10.1128/mcb.17.2.934. Bellani, M. A. et al. (2005) 'SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes', Journal of Cell Science, 118(15), pp. 3233-3245. doi: 10.1242/jcs.02466.

Božinović, K. et al. (2019) 'Genome-wide miRNA profiling reinforces the importance of miR-9 in human papillomavirus associated oral and oropharyngeal head and neck cancer', Scientific Reports, 9(1), pp. 1-13. doi: 10.1038/s41598-019-38797-z.

Bray, F. et al. (2018) 'Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries', CA: A Cancer Journal for Clinicians, 68(6), pp. 394-424. doi: 10.3322/caac.21492.

Burgoyne, P. S., Mahadevaiah, S. K. and Turner, J. M. A. (2009) ‘The consequences of asynapsis for mammalian meiosis', Nature Review Genetics, 10(3), pp. 207-216. doi: 10.1038/nrg2505.

Chua, H. H. et al. (2015) 'RBMY, a novel inhibitor of glycogen synthase kinase \(3 \beta\), increases tumor stemness and predicts poor prognosis of hepatocellular carcinoma', Hepatology, 62(5), pp. 1480-1496. doi: 10.1002/hep.27996.

Decarpentrie, F. et al. (2012) 'Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential', Human Molecular Genetics, 21(12), pp. 2631-2645. doi: \(10.1093 / \mathrm{hmg} / \mathrm{dds} 088\).

Domingo-vidal, M. et al. (2019) ‘Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma', American Association for Cancer Research, 17(9), pp. 1893-1910. doi: 10.1158/1541-7786.MCR-18-1191.

Dorak, M. T. and Karpuzoglu, E. (2012) 'Gender differences in cancer susceptibility : an inadequately addressed issue', Frontiers in Genetics, 3(November), pp. 1-11. doi: 10.3389/fgene.2012.00268.

Dreumont, N. et al. (2009) 'Human RBMY regulates germline-specific splicing events by modulating the function of the serine / arginine-rich proteins 9G8 and Tra2- \(\beta\) ', Journal of Cell Science, 123, pp. 40-50. doi: 10.1242/jcs. 055889.

Dumon-Seignovert, L., Cariot, G. and Vuillard, L. (2004) 'The toxicity of recombinant proteins in Escherichia coli: A comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3)', Protein Expression and Purification, 37(1), pp. 203-206. doi: 10.1016/j.pep.2004.04.025.

Edgren, G., Liang, L. and Chang, E. T. (2012) 'Enigmatic sex disparities in cancer incidence', European Journal of Epidemiology, 27, pp. 187-196. doi: 10.1007/s10654-011-9647-5.

Elliott, D. J. et al. (1997) 'Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the \(Y\) chromosome long arm', Proceedings of the National Academy of Sciences of the United States of America, 94(8), pp. 38483853. doi: 10.1073/pnas.94.8.3848.

Elliott, D. J. et al. (2000) 'A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection', Proceedings of the National Academy of Sciences of the United States of America, 97(11), pp. 5717-5722. doi: 10.1073/pnas.97.11.5717.

Emerson, R. O. and Thomas, J. H. (2009) 'Adaptive evolution in zinc finger transcription factors', PLoS Genetics, 5(1). doi: 10.1371/journal.pgen.1000325.

Finn, R. D. et al. (2009) 'The Pfam protein families database’, Nucleic Acids Research, 38(SUPPL.1), pp. 211-222. doi: 10.1093/nar/gkp985.

Gasteiger, E. et al. (2005) 'The Proteomics Protocols Handbook’, The Proteomics Protocols Handbook, pp. 571-608. doi: 10.1385/1592598900.

Guan, Y. et al. (2015) 'An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide', Scientific Reports. Nature Publishing Group, 5(1), pp. 1-11. doi: 10.1038/srep13370.

Guindon, G. and Boisclair, D. (2003) Past, Current and Future Trends in Tobacco Use, UCSF: Center for Tobacco Control Research and Education. Available at: https://escholarship.org/uc/item/4q57d5vp.

Graceffa, P., Jancsó, A. and Mabuchi, K. (1992) 'Modification of acidic residues normalizes sodium dodecyl sulfate-polyacrylamide gel electrophoresis of caldesmon and other proteins that migrate anomalously', Archives of Biochemistry and Biophysics, 297(1), pp. 46-51. doi: 10.1016/0003-9861(92)90639-E.

Greenfield, N. J. (2007) 'Using circular dichroism spectra to estimate protein secondary structure', Nature Protocols, 1(6), pp. 2876-2890. doi:
10.1038/nprot.2006.202.

Hashibe, M. et al. (2009) 'Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the INHANCE consortium', Cancer Epidemiol Biomarkers Prev, 18(2), pp. 541-550. doi: 10.1158/1055-9965.EPI-08-0347.Interaction.

Jackson, B. M. et al. (1996) 'Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation.', Molecular and Cellular Biology, 16(10), pp. 5557-5571. doi: 10.1128/mcb.16.10.5557.

Jan, S. Z. et al. (2018) 'Distinct prophase arrest mechanisms in human male meiosis', Development (Cambridge), 145(16). doi: 10.1242/dev.160614. Jane, J. E. et al. (2018) 'Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes', Nat Commun, p. 15. doi: 10.1038/s41467-018-05290-6.

Jethwa, A. R., Khariwala, S. S. and Surgery, N. (2018) ‘Tobacco-related carcinogenesis in head and neck cancer', Cancer and Metastasis Reviews, 36(3), pp. 612-626. doi: 10.1007/s10555-017-9689-6.

Jiang, H. et al. (2012) 'Knockdown of zinc finger protein X-linked inhibits prostate cancer cell proliferation and induces apoptosis by activating caspase-3 and caspase-9', Cancer Gene Therapy, 19(10), pp. 684-689. doi:
10.1038/cgt.2012.53.

Kido, T., Fai, Y. and Lau, C. (2015) 'Roles of the Y chromosome genes in human cancers', Asian Journal of Andrology, 17(3), pp. 373-380. doi: 10.4103/1008682X. 150842.

Klein, S. L. (2012) 'Immune Cells Have Sex and So Should Journal Articles', Endocrinology, 153(June), pp. 2544-2550. doi: 10.1210/en.2011-2120.

Koopman, P., Ashworth, A. and Lovell-Badge, R. (1991) 'The ZFY gene family in humans and mice', Trends in Genetics, 7(4), pp. 132-136. doi: 10.1016/0168-9525(91)90458-3.

Kot, M. C. and Handel, M. A. (1990) 'Spermatogenesis in XO , Sxr Mice : Role of the Y Chromosome', Journal of Experimental Biology, 256(1), pp. 92-105. doi: 10.1002/jez. 1402560112.

Krois, A. S. et al. (2016) 'Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein', Proceedings of the National Academy of Sciences of the United States of America, 113(13), pp. E1853-E1862. doi: 10.1073/pnas.1602487113.

Lavoie, H. et al. (2003) 'Polymorphism , shared functions and convergent evolution of genes with sequences coding for polyalanine domains', Human Molecular Genetics, 12(22), pp. 2967-2979. doi: 10.1093/hmg/ddg329.

Lichtenstein, P. et al. (2000) 'Environmental and Heritable Factors in the Causation of Cancer - Analyses of Cohorts of Twins from Sweden, Denmark, and Finland', The New England Journal of Medicine, 343(2), pp. 78-85. doi: 10.1056/NEJM200007133430201.

Liu, Y. et al. (2009) ‘The Germ Cell Nuclear Proteins hnRNP G-T and RBMY Activate a Testis-Specific Exon', PLoS Genetics, 5(11). doi:
10.1371/journal.pgen. 1000707.

Ma, B. et al. (2003) 'Protein - protein interactions : Structurally conserved residues distinguish between binding sites and exposed protein surfaces', Proceedings of the National Academy of Sciences of the United States of America, 100(10), pp. 5772-5777. doi: 10.1073/pnas. 1030237100.

Mahadevaiah, S. K. et al. (1998) 'Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a \(Y\) chromosome deletion interval associated with a high incidence of sperm abnormalities', Oxford University Press, 7(4), pp. 715-727. doi:
10.1093/hmg/7.4.715

Mahadevaiah, S. K. et al. (2001) 'Recombinational DNA double-strand breaks in mice precede synapsis', Nature Genetics, 27(3), pp. 271-276. doi: 10.1038/85830.

Mahadevaiah, S. K. et al. (2012) 'Spermatid development in XO male mice with varying \(Y\) chromosome short-arm gene content: evidence for a \(Y\) gene controlling the initiation of sperm morphogenesis ", Reproduction (Cambridge, England), 144(4), pp. 433-445. doi: 10.1530/REP-12-0158.

Mardon, G. and Page, D. C. (1989) 'The Sex-Determining Region of the Mouse Y Chromosome Encodes a Protein with a Highly Acidic Domain and 13 Zinc Fingers', Cell, 56(5), pp. 765-770. doi: 10.1016/0092-8674(89)90680-6.

Mardon, G. et al. (1990) 'Mouse Zfx protein is similar to Zfy-2: each contains an acidic activating domain and 13 zinc fingers.', Molecular and Cellular Biology, 10(2), pp. 681-688. doi: \(10.1128 / \mathrm{mcb} .10 .2 .681\).

McDonald, J. H. and Kreitman, M. (1991) 'Adaptive protein evolution at the Adh locus in Drosophila', Nature, 351(6328), pp. 652-654. doi: 10.1038/351652a0.

Mckee, B. D. and Handel, M. A. (1993) 'Sex chromosomes, recombination, and chromatin conformation', Chromosoma, 102(2), pp. 71-80. doi: 10.1007/BF00356023.

Murr, R. et al. (2007) 'Orchestration of chromatin-based processes: Mind the TRRAP', Oncogene, 26(37), pp. 5358-5372. doi: 10.1038/sj.onc. 1210605.

Nagamine, C. M. et al. (1990) 'The two candidate testis-determining Y genes (Zfy1 and Zfy-2) are differentially expressed in fetal and adult mouse tissues', Genes and Development, 4(1), pp. 63-74. doi: 10.1101/gad.4.1.63.

Nagamine, C. M. et al. (1989) 'Chromosome mapping and expression of a putative testis-determining gene in mouse', Science, 243(4887), pp. 80-83. doi: 10.1126/science. 2563174.

Nakasuji, T. et al. (2017) ‘Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction', PLoS Genetics, 13(1), pp. 1-20. doi: 10.1371/journal.pgen. 1006578.

Nielsen, B. L., Willis, V. C. and Lin, C. (2007) 'Western Blot Analysis to Illustrate Relative Control Levels of the lac and ara Promoters in Escherichia coli', Biochemistry and Molecular Biology Education, 35(2), pp. 133-137. doi: 10.1002/bmb. 25 .

Page, D. C. et al. (1987) 'The sex-determining region of the human Y chromosome encodes a finger protein', Cell, 51(6), pp. 1091-1104. doi: 10.1016/0092-8674(87)90595-2.

Persikov, A. V. and Singh, M. (2011) 'An expanded binding model for Cys2His2 zinc finger protein-DNA interfaces', Physical Biology, 8(3). doi: 10.1088/14783975/8/3/035010

Persikov, A. V. et al. (2015) 'A systematic survey of the Cys2His2 zinc finger DNAbinding landscape', Nucleic Acids Research, 43(3), pp. 1965-1984. doi: 10.1093/nar/gku1395.

Piskacek, S. et al. (2007) 'Nine-amino-acid transactivation domain: Establishment and prediction utilities', Genomics, 89(6), pp. 756-768. doi:
10.1016/j.ygeno.2007.02.003.

Piskacek, M. et al. (2017) 'The 9aaTAD is exclusive activation domain in Gal4’, PLoS ONE, 12(1), pp. 1-13. doi: 10.1371/journal.pone.0169261.

Piskacek, M. et al. (2019) 'The evolution of the 9aaTAD domain in Sp2 proteins: Inactivation with valines and intron reservoirs', bioRxiv. doi: 10.1101/570598.

Poloumienko, A. (2004) 'Cloning and comparative analysis of the bovine, porcine, and equine sex chromosome genes ZFX and ZFY', Genome, 47(1), pp. 74-83. doi: 10.1139/g03-099.

Praud, D. et al. (2016) 'Cancer incidence and mortality attributable to alcohol consumption', International Journal of Cancer, 138(6), pp. 1380-1387. doi: 10.1002/ijc.29890.

Rogakou, E. P. et al. (1999) 'Megabase chromatin domains involved in DNA double-strand breaks in vivo', Journal of Cell Biology, 146(5), pp. 905-915. doi: 10.1083/jcb.146.5.905.

Rosano, G. L. and Ceccarelli, E. A. (2014) 'Recombinant protein expression in Escherichia coli : advances and challenges', Frontiers in Microbiology, 5(172), pp. 1-17. doi: 10.3389/fmicb.2014.00172.

Royo, H. et al. (2010) 'Evidence that meiotic sex chromosome inactivation is essential for male fertility', Current Biology, 20(23), pp. 2117-2123. doi: 10.1016/j.cub.2010.11.010.

Saida, F. et al. (2006) 'Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools', Current Protein and Peptide Science, 7(1), pp. 4756. doi: 10.2174/138920306775474095.

Skrisovska, L. et al. (2007) 'The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction', EMBO Reports, 8(4), pp. 372-379. doi: 10.1038/sj.embor. 7400910.

Sommer, R. J. et al. (1992) 'Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes', Proceedings of the National Academy of Sciences of the United States of America, 89(22), pp. 10782-10786. doi: 10.1073/pnas.89.22.10782.

Stoyanov, G. S. et al. (2017) 'Demographics of Head and Neck Cancer Patients : A Single Institution Experience', Cureus, 9(7), p. E1418. doi: 10.7759/cureus.1418.

Stubbs, L., Sun, Y. and Caetano-Anolles, D. (2011) 'Function and Evolution of C2H2 Zinc Finger Arrays', in Hughes, T. R. (ed.) A Handbook of Transcription Factors. Dordecht: Springer Netherlands, pp. 75-94. doi: 10.1007/978-90-481-9069-0_4.

Swann, J. B. and Smyth, M. J. (2007) 'Immune surveillance of tumors', The Journal of Clinical Investigation, 117(5), pp. 1137-1146. doi:
10.1172/JCl31405.antigens.

Tricoli, J. V. and Bracken, R. B. (1993) 'ZFY gene expression and retention in human prostate adenocarcinoma', Genes, Chromosomes and Cancer, 6(2), pp. 65-72. doi: \(10.1002 /\) gcc. 2870060202.

Tsuei, D. J. et al. (2004) ‘RBMY, a male germ cell-specific RNA-binding protein, activated in human liver cancers and transforms rodent fibroblasts', Oncogene, 23(34), pp. 5815-5822. doi: 10.1038/sj.onc.1207773.

Tsuei, D. J. et al. (2011) 'Male germ cell-specific RNA binding protein RBMY: A new oncogene explaining male predominance in liver cancer', PLoS ONE, 6(11), pp. 1-9. doi: 10.1371/journal.pone.0026948.

Turner, J. M. A. (2007) 'Meiotic sex chromosome inactivation', Development, 134(10), pp. 1823-1831. doi: 10.1242/dev.000018.

Venables, J. P. et al. (1999) ‘T-STAR/ETOILE: A novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis', Human Molecular Genetics, 8(6), pp. 959-969. doi: 10.1093/hmg/8.6.959.

Venables, J. P. (2000) 'RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing', Human Molecular Genetics, 9(5), pp. 685-694. doi: 10.1093/hmg/9.5.685.

Vernet, N. et al. (2011) 'The Y-encoded gene Zfy2 acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice', Current Biology, 21(9), pp. 787-793. doi: 10.1016/j.cub.2011.03.057.

Vernet, N. et al. (2014) 'Mouse Y-Linked Zfy1 and Zfy2 Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2nd Meiotic Division’, PLoS Genetics, 10(6). doi: 10.1371/journal.pgen.1004444.

Vernet, N. et al. (2016) 'Mouse Y-encoded transcription factor Zfy2 is essential for sperm head remodelling and sperm tail development', PLoS ONE, 11(1), pp. 1-15. doi: 10.1371/journal.pone.0145398.

Vernet, N. et al. (2016) 'Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes', Human Molecular Genetics, 25(24), pp. 5300-5310. doi: 10.1093/hmg/ddw344.

Vigneswaran, N. and Williams, M. D. (2014) 'Epidemiologic Trends in Head and Neck Cancer and Aids in Diagnosis', Oral Maxillofac Surgery Clinics of North America, 26(2), pp. 123-141. doi: 10.1016/j.coms.2014.01.001.

Wang, P. and Wilson, S. R. (2013) 'Mass spectrometry-based protein identification by integrating de novo sequencing with database searching.', BMC bioinformatics. BioMed Central Ltd, 14 Suppl 2(Suppl 2), p. S24. doi: 10.1186/1471-2105-14-S2S24.

Wang, Z. et al. (2011) 'Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12by using GFP fusion', Genetics and Molecular Biology, 34(4), pp. 661-668. doi: 10.1590/S1415-47572011005000043.

Yamauchi, Y. et al. (2015) 'Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Formation and Function in Assisted Fertilization', PLoS Genetics, 11(12), pp. 1-18. doi: 10.1371/journal.pgen.1005476.

Zandarashvili, L. et al. (2015) 'Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble', Proceedings of the National Academy of Sciences of the United States of America, 112(37), pp. E5142-E5149. doi: 10.1073/pnas.1507726112.

Zerbs, S., Giuliani, S. and Collart, F. (2014) Small-scale expression of proteins in E. coli, Methods in Enzymology. Edited by J. Lorsch. Elsevier Inc. doi: 10.1016/B978-0-12-420070-8.00011-8.

Zuo, Z. et al. (2019) Why Do Long Zinc Finger Proteins have Short Motifs?, bioRxiv. doi: 10.1101/637298.

\section*{6 Supplementary data}

Supplementary Figure 1. Vector plasmid maps used for cloning hZFY genes. (A.) pET15b plasmid map, (B.)pcDNA3.1(+) plasmid map, (C.) pFN26A (BIND) plasmid map```

[^0]: MDED--EFELQPQEPNSFFDGIGADATHMDGDQIVVEIQEAVFVSNIVDSDITVHNFVP [60] $-M D E D--E F E L Q P Q E P N S F F D G I G A D A T H M D G D Q I V V E I Q E A V F V S N I V D S D I A V H N F V P$ [60] $-M D E D--E F E L Q P Q E P N S F F D G I G A D A T H M D G D Q I V V E I Q E A V F V S N I V D S D I T V H N F V P ~[60]$ -MDED--EFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVP [60] -MDED--EFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVP [60] $-M D E D--E F E L Q P Q E P N S F F D G I G A D A T H M D G D Q I V V E V Q E A V F V S N I V D S D I T V H N F V P ~[60]$ $-M D E D--E F E L Q P Q E P N S F F D G I G A D A T H M D G D Q I V V E V Q E A V F V S N I V D S D I T V H N F V P ~[60]$ MDED--FFFLQPQEPNSFFDGIGADATHMDGDQTVVEVQEAVFVSNTVDSDTTVHNFVP [60] MDED--EFELQPQEPNSFDGGADAHMDGQ MDED--EFELQPQEPNSFFDGIGADATHMDGDQIVVEVQEAVFVSNIVDSDITVHNFVP [60] $-M D E D--E F E L Q P Q E P N S F F D G I G A G A T H M D G D Q I V V E V Q E T V E V S N I V D S D V I V H N F V P ~[60]$
 $-M D E D--E I E L T P E E E K S F F D G I G A D A V H M D S D Q I V V E V Q E T V E L A---N S D V T V H N F V P ~[60]$ -MDED--EIELTPEEEKSLFDGIGADAVHMDSDQISVEVQETVFLS---NSDVTVHNFVP [60 $-M D E E--E I E L T P Q E E N S L F D G I G A D A V H M D G D Q I I V E V Q E T V F L S---N S D V T V H N F V P ~[60]$ -MDED--EFELQPQEPNSFFDGIGTDSTHMDGDQIVVEVQETVFVS---NSDITVHNFVP [60 $-M D E D--E F E L Q P Q E P N S C F D G I G T D A T H M D G D Q I V V E V Q E T V F V S D V V D S D I T V H N F V P ~[60 ~]$ -MDED--EFELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60] -MDED--ELELQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60 -MDED--EFEIQPQEPNSCFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60] $-M D E D--E L E I Q P Q E P N S C F D G I G T D A T H M D G D Q I V V E V Q E T V F V S D V V D S D I T V H N F V P ~[60 ~$ $-M D E D--E L E L Q P Q E T N T F F D E I G A D D T H M D G D Q I V V E V Q E T V F V S D V V D S D I T V H N F V P$ [60 $-M D E D--E L E L Q P Q E P N S F F D G I G T D A T H M D G D Q I V V E V Q E T V F V S D V V D S D I T V H N F V P$ [60 -MDED--ELALQPREPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60] -MDED--ELELQPQEPNSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60 -MDED--ELELQPQEPNSFFDGIGADVTHMVGDQIVVEVQETVFVSDVVDSDITVHNFPP [60] -MDED--ELELRQQEPDSFFDGIGTDATHMDGDQIVVEVQETVFVSDVVDSDITVHNFAP [60] -MDED--GLELQPHEPNSFFDATGAAASHMDGGQILVEVQETVFVSDVVDSDITVHNFVP [60 -MDED--GLELQPQEPNSFFDATGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60 -MDEEVTRLSIRAEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHREAP [60 -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60 -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60 -MDEEVTRLSIRAEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60 -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60] -MDEDETRLALHSQEPKIILH--GSDEGGAAGEEFVVELQETVLVSEGEGEGMAVHGFAS [60 -MDEDETRLALHSQEPKIILH--GSDEGGAAGEEFVVELQETVLVSEGEGEGMAVHGFAS [60 -MDEDETRLALHSQEPKIILH--GSDEGGAAGEEFVVELQETVLVSEGEGEGMAVHGFAS [60 MDEDETRLALHSQEPKIILH--GSDEGGAAGEEFVVELQETVLVSEGEGEGMAVHGFAS [60]
 $-M D E D V T R L A I H S E E P K I I L H--G S D E G G A G G Q E F V V E L Q E T V L V S E G E G E G M A V H R F A P ~[60] ~$ $-M D E D V T R L A I H S E E P K I I L H--G S D E G G A G G Q E F V V E L Q E T V L V S E G E G E G M A V H R E A P ~[60] ~$ -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGESMAVHRFAP [60 -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60 -MDEDVARLALHSQEPKIILH--GSDDGGGGEGEFVVELQETVLVSEVDGEGVAVHGFAP [60 -MDEEVTRLALRSQEPKIILH--GSDEGGAGEEEYVVELQETVLVSEVEGEGASVQGFSS [60] -MDEDVTRLAIHSEEPKIILH--GSDEGGAGGQEFVVELQETVLVSEGEGEGMAVHRFAP [60 -MDEDVTRLAIHSEEPKIILH--GSDEGGVGGQEFVVELQETVLVSEGDGEGMAVHRFAP [60 -MDED--GLELQPHEPNAFFDPTGADATHMDGDQIVVEVQETVFVSDVVDSDITVHNFVP [60 MEDVA--ELELQTTEPHAFFHASGVGERHLNGNEIIVEIQETVFVADG-DGNMAVQGFGP [60]

