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Summary

This paper investigates the cooperative fault estimation problem for a class of het-
erogeneous multi-agent systems, in which the agent dynamics are governed by linear
discrete time-varying systems with nonidentical dimensions subject to stochastic
nonlinearities. A finite impulse response (FIR) filter based fault estimation scheme is
developed via relative outputs to estimate the possible faults of the local and neigh-
boring agents simultaneously. An analytical redundancy expressed in terms of all the
states in the previous time window is originally established for deriving the fault esti-
mation signal. The prior variance information coupled with fault estimation error in
nonlinear form, is fully considered to design performance index through analysis of
random matrix inequality. The optimal FIR filter gain is analytically obtained with
computational efficiency by searching theminimum point of the relevant matrix trace
function. Illustrative examples are finally provided to demonstrate the effectiveness
and advantages of the developed results.
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1 INTRODUCTION

Thanks to the unique ability of real-time information sharing over a network, autonomous multi-agent systems (MASs) usu-
ally complete more challenging tasks than an individual agent. Consequently, related results on MASs have naturally attached
more attention due to the broad applications such as formation of satellites, flocking of mobile vehicles, smart grids, intelligent
transportation systems, scheduling of automated highway systems, and so forth1,2,3,4. As the size and complexity of the consid-
ered systems rapidly increase and the long-time uninterrupted operation of the equipment or the existence of interactions over
the communication network, MASs are inevitably susceptible to various faults. On the one hand, an undetected fault in any
individual agent may induce interruptions, and even result in synchronization degradation or instability as time evolves and/or
environment changes. What is worse, it may be transmitted and amplified in the whole system through complex communica-
tion networks, further resulting in a disaster. In adiition, for the network of multiagent systems, it is unrealistic and infeasible
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to solve the FDI problem using a centralized architecture, given the stringent constraints on the computational resources and
communication bandwidth in practice. Therefore, detecting and estimating possible faults in each agent at an early stage are of
significant importance to maintain safe and reliable operations for such a class of large scale systems5,6,7,8.
In virtue of the easy expansibility and high efficiency, there has been growing attention in designing distributed fault diagnosis

schemes associated with the practice demand. Up to now, several results for fault diagnosis ofMASs have been achieved based on
adaptive observers9,10; the unknown input observers11,12; the distributed Kalman filter13 and the interval observer technology14.
Nevertheless, all the aforementioned previous works on MASs fault diagnosis only identify the presence of the possible fault,
while further information with regard to its shape and amplitude is not available. As for the pioneer works on fault estimation
for MASs, a sliding mode observer and a robust unknown input observer are established for liner MASs15 and16, as well as the
nonlinear MASs case17, based on the relative state information or relative output. Unfortunately, the fault diagnosis especially
fault estimation schemes of the heterogeneous MASs, which allow the agents dynamics and even their state dimensions to be
nonidentical, have not received much attention. On the one hand, it is usually impossible to access relative state information or
absolute output for heterogeneous MASs. On the other hand, compared with state information transmission, not only process
faults, but also measurement noises and sensor faults corresponding to the local agent are transmitted to neighboring agents in
the transmission process of output information. Accordingly, it will be more challenging to achieve fault estimation from the
available information affected by multi-source disturbance or noise information for a class of heterogeneous MASs.
It is quite common in engineering practice that system parameters may suffer from nonlinearity and stochasticity, which

may cause undesirable dynamic behaviors such as oscillation or even instability. Therefore, the relevant analysis and synthesis
problems have also been one of the main reseearch streams in the area, see e.g.18,19,20,21. Different from the nonlinearities
bounded by the linear-like form (e.g. Lipschitz and sector conditions) or state dependent noise, stochastic nonlinearities described
by statistical means have received particular attention probably due to the high manoeuvrability of the tracked target, intermittent
network congestion, random failures and repairs of the components, changes in the interconnections of subsystems, sudden
environment changes, and modification of the operating point of a linearized model of nonlinear systems. Unfortunately, the
available research on stochastic nonlinearity mainly focuses on the filtering22,23 and control24,25 for the signal system, while that
on the fault estimation of heterogeneous MASs is still far from mature26.
Recall that, no matter whether the homogeneous or heterogeneous agents, almost all of the existing results utilize the infinite

impulse response (IIR) structure based observer to realize fault diagnosis via all the past inputs and outputs in a recursive
manner. Generally speaking, all the possible errors induced by modeling uncertainty, computational error, initial state, noise
covariance and nonlinearity may be accumulated inevitably over time. In such cases, IIR structure based observer may provide
poor performance27,28,29. Besides, if it is intended to estimate all the possible faults of the whole MASs, each individual agent
should be costomarily equipped with a fault estimator from the sporadic applications for MASs. Usually this is cost efficiency
or unnecessary15,16,17. To overcome these shortcomings, a nonlinear observer is established in30 to estimate the possible fault
existing in the local agent and its neighbors via the relative outputs. However, it is applied to a class of heterogeneous MASs
disturbed by the Lipschitz nonlinearity, which is usually more or less conservative among the applications involved randomly
fluctuated network conditions and/or communication constraints.
In view of the robustness advantage brought by the finite impluse response (FIR) based structure, fault diagnosis strategy with

time window constraint (such as parity space method, FIR-type filter and the finite memory observer) has been widely used in
fault detection31,32,33 and fault estimation34,35,36 for a single system. However, it should be pointed out that almost all analytic
redundancies in the work mentioned above are in the form of either current37 or history state34 in the present time window. The
former requires the singularity of the system matrix of the applied systems, while the latter brings a little heavy computation for
updating the filter gain in each time instant, especially with the increasing of the time window length for time-varying systems.
To the best of our knowledge, FIR filter based fault estimtion for heterogeneous MASs with stochastic nonlinearity has not been
paid adequate attention despite its clear engineering significance.
Summarizing the above discussions, the cooperative fault estimation of heterogeneous MASs with stochastic nonlinearity is

considered via the FIR filter in this paper. The main contributions of this paper are summarized as follows:

(i) A more general heterogeneous MASs, whose dynamics are represented by the linear discrete time-varying systems with
unknown disturbances and stochastic nonlinearity, is considered.

(ii) By using the relative output information transmitted by the communication topology, which is also affected by disturbances
and faults of the nearby agents, a FIR filter is established to implement the fault estimation of local and neighboring agents
simultaneously.
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(iii) A novel analytic redundancy expressed in terms of all the states in the previous time window is originally constructed to
derive fault estimation signal, providing significant computational efficiency in calculating the optimal filter gain.

The remainder of this paper is organized as follows. In Section II, preliminaries are presented and the problem under con-
sideration is briefly introduced. In Section III, through analysis of random matrix inequality, the known matrix information
coupled with the corresponding state in nonlinear form induced from the stochastic uncertainty is extracted to construct a novel
performance index to make the fault estimation error as small as possible in stochastic sense. Then, comparison analysis with
the existing similar work is provided regarding the amount of calculation. In Section IV, we present the illustrative examples
to show the effectiveness and the superiority of the proposed algorithm comparing with the existing similar work. Section V
concludes this paper.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Graph theory and notations
Let the logical interdependence between N individuals be described by an wighted graph G = {V ,ℰ ,A}, where V =
{V1,… ,VN} is a nonempty finite set of nodes, and ℰ ⊆ V × V is a set of edges links, in which an edge is represented
by an ordered pair of distinct nodes. A = [aij] ∈ ℝN×N is the adjacency matrix capturing the edge weights with entries
aij > 0 if node Vi can receive the information from node Vj , i.e. (Vj ,Vi) ∈ ℰ . Otherwise aij = 0. Self-loops are not con-
sidered here, i.e. (Vi,Vi) ∉ ℰ . The Laplacian matrix L = [lij] ∈ ℝN×N is defined as lii =

∑N
j=1,j≠i aij ; lij = −aij ,∀i ≠ j.

Mi = {Vj ∈ V ∶ (Vp,Vj) ∈ ℰ , p ≠ j} represents the nearest neighboring set of the agent i. Operator⊗ denotes the Kronecker
product of matrices. In denotes the n-dimensional identify matrix.

2.2 System description
Consider a group of N heterogeneous agents interacted over a known graph to achieve the desired objective. The dynamic of
the i-th individual node is described by the following stochastic discrete time-varying system,

⎧

⎪

⎨

⎪

⎩

xi(q + 1) = Ai(q)xi(q) + Bd,i(q)di(q) + Bf,i(q)fi(q) + gi(q, xi(q), �i(q)),
yi(q) = Ci(q)xi(q) +Dd,i(q)di(q) +Df,i(q)fi(q) + qi(q, xi(q), �i(q)),
xi(0) = x0,i,

(1)

where i = 1, 2,… , N . xi(q) ∈ ℝni is the state vector of the agent i, yi(q) ∈ ℝm is its output vector, di(q) ∈ ℝndi denotes the
unknown disturbance and fi(q) ∈ ℝnfi is the system fault.Ai(q),Bd,i(q),Bf,i(q), Ci(q), Dd,i(q), andDf,i(q) are all of known real
time-varying matrices with compatible dimensions. The stochastic nonlinear functions gi(q, xi(q), �i(q)) and qi(q, xi(q), �i(q))
stand for the stochastic parameter fluctuations. �i(q) and �i(q) aremutually independent zeromeanGaussian noise sequences with
unit variances, which aremutually uncorrelated to the initial state x0,i described by a random vector. The statistical characteristics
are assumed to satisfy

E{gi(q, xi(q), �i(q))|xi(q)} =0, i = 1,… , N,E{qi(q, xi(q), �i(q))|xi(q)} = 0, i = 1,… , N, (2)

E

{

[

gi(q, xi(q), �i(q))
qi(q, xi(q), �i(q))

] [

gj(q, xi(q), �j(q))
qj(q, xi(q), �j(q))

]T
|

|

|

|

xi(q)

}

=0, i ≠ j, (3)

E

{

[

gi(q, xi(q), �i(q))
qi(q, xi(q), �i(q))

] [

gi(t, xi(t), �i(t))
qi(t, xi(t), �i(t))

]T
|

|

|

|

xi(q)

}

=

⎧

⎪

⎨

⎪

⎩

0, q ≠ t;
m1
∑

p=1
Πip(q)x

T
i (q)Γp,i(q)xi(q), q = t.

, (4)

where 0 is the zero vector/matrix with appropriate dimension and m1 is a known nonnegative integer. Πip(q) =
diag{Πip,1(q),Π

i
p,2(q)}, Γp,i(q),Π

i
p,1(q) and Π

i
p,2(q) are positive-definite matrices with compatible dimensions.

Remark 1. Associated with the first- and second-order statistics defined in (2)-(4), the stochastic nonlinearities gi(q, xi(q), �i(q))
and qi(q, xi(q), �i(q)) can characterize several well-studied nonlinear stochastic phenomenons, such as systems with stochastic
vectors whose powers depend on the sector-bounded nonlinear function or signum function of the states, and the correspond-
ing deterministic coefficient matrix (state-dependent multiplicative noises)38. As such, the considered heterogeneous MASs
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(1) involving unpredictable sensor and actuation stochastic uncertainties in this paper are more general than the existing
works10,14,16.

2.3 Problem formulation
Considering that relative states and absolute outputs are not easy or even impossible to obtain in many practice situations,
especially for heterogeneous multi-agents39,40, the relative outputs are employed to achieve the fault estimation for system (1).
Furthermore, through the known communication topology, the relative output information obtained from the i-th agent is

expressed as
ȳi(q) =

∑

j∈Mi

aij(yi(q) − yj(q)). (5)

Remark 2. It is assumed that each agent can measure the relative output ȳi(q), which implies that the output dimension of each
agent should be the same despite the heterogeneity of the considered agents15,41. These non-introspective agents operating in
such cooperative and distributed environments, are practically relevant and widespread in many areas. For example, two vehicles
in close proximity may be able to measure their relative distance without either of them having knowledge of their absolute
positions and the localization problem of the unmanned aerial vehicle-unmanned aerial vehicle joint formation.

From (1) and (5), not only the possible faults and unknown uncertainties of the monitored agent, but also that of the neigh-
boring agents, are injected into the current output ȳi(q). Based on this, the auxiliary augmented model under fault propagation
is ready to be established.
For the selected i-th agent, define

x̄i(q) =

⎡

⎢

⎢

⎢

⎢

⎣

xi(q)
xi1(q)
⋮

xi
|Mi |
(q)

⎤

⎥

⎥

⎥

⎥

⎦

, d̄i(q) =

⎡

⎢

⎢

⎢

⎢

⎣

di(q)
di1(q)
⋮

di
|Mi |
(q)

⎤

⎥

⎥

⎥

⎥

⎦

, f̄i(q) =

⎡

⎢

⎢

⎢

⎢

⎣

fi(q)
fi1(q)
⋮

fi
|Mi |
(q)

⎤

⎥

⎥

⎥

⎥

⎦

, x̄i(0) =

⎡

⎢

⎢

⎢

⎢

⎣

x0,i
x0,i1
⋮

x0,i
|Mi |

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

ḡi(q, xi(q), �i(q)) =

⎡

⎢

⎢

⎢

⎢

⎣

gi(q, xi(q), �i(q))
gi1(q, xi(q), �i(q))

⋮
gi

|Mi |
(q, xi(q), �i(q))

⎤

⎥

⎥

⎥

⎥

⎦

, q̄i(q, xi(q), �i(q)) =

⎡

⎢

⎢

⎢

⎢

⎣

qi(q, xi(q), �i(q))
qi1(q, xi(q), �i(q))

⋮
qi

|Mi |
(q, xi(q), �i(q))

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

where the neighbor agents of the i-th agent are labelled as nodes i1,⋯ , i
|Mi|

. |Mi| represents the cardinality of the nearest
neighboring set for the agent i.
With (6) and (7), an auxiliary augmented system interfered by all the possible faults and unknown disturbance of the i-th

agent itself and its neighbors is described as
⎧

⎪

⎨

⎪

⎩

x̄i(q + 1) = Āi(q)x̄i(q) + B̄d,i(q)d̄i(q) + B̄f,i(q)f̄i(q) + ḡi(q, xi(q), �i(q)),
ȳi(q) = CL,i(C̄i(q)x̄i(q) + D̄d,i(q)d̄i(q) + D̄f,i(q)f̄i(q) + q̄i(q, xi(q), �i(q)),
x̄i(0) = x̄0,i,

(8)

where

Āi(q) =diag{Ai(q), Ai1(q),⋯ , Ai
|Mi |
(q)}, C̄i(q) = diag{Ci(q), Ci1(q),⋯ , Ci

|Mi |
(q)}, (9)

B̄d,i(q) =diag{Bd,i(q), Bd,i1(q),⋯ , Bd,i
|Mi |
(q)}, D̄d,i(q) = diag{Dd,i(q), Dd,i1(q),⋯ , Dd,i

|Mi |
(q)}, (10)

D̄f,i(q) =diag{Df,i(q), Df,i1(q),⋯ , Df,i
|Mi |
(q)}, CL,i =

[

Lii Li1 ⋯ Li
|Mi |

]

⊗ Im, (11)

B̄f,i(q) =diag{Bf,i(q), Bf,i1(q),⋯ , Bf,i
|Mi |
(q)}. (12)

Remark 3. Notice that, the change of the considered topology will cause the output matrix CL,iC̄i(q) to change accordingly, but
will not affect the fault estimator design.

In practice, sometimes it is impossible or cost efficiency to construct fault estimators for some specific agents. In such cases,
it is necessary to design fault estimation scheme for some selected agents with higher intelligence to achieve the fault estimation
of the agent itself and its neighbor agents simultaneously. From the augmented system (8), it can be seen that all the possible
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faults from the agent itself and its neighbor agents, are contained. Thus, this provides potential for realizing fault estimation of
the entire MASs while reducing unnecessary hardware cost.
To establish the FIR filter based fault estimator, the corresponding relative outputs should be collected, firstly.
Considering that the analytical redundancy commonly used in the past may induce the calculation burden in obtaining filter

gain34,36, we propose a novel analytical form here.
For a given integer p > 0, combining (8) from time instant q − p to q together yields

Yi,p(q) =C̃L,i(q)C̃i(q)Ãi(q − 1)Xi(q − 1) + C̃L,i(q)C̃i(q)B̃d,i(q − 1)Di(q − 1) + C̃L,i(q)C̃i(q)B̃f,i(q − 1)Fi(q − 1)
+ C̃L,i(q)C̃i(q)Gi(q − 1) + C̃L,i(q)D̃d,i(q)Di(q) + C̃L,i(q)D̃f,i(q)Fi(q) + C̃L,i(q)Qi(q), (13)

where

Yi,p(q) =

⎡

⎢

⎢

⎢

⎢

⎣

ȳi(q − p)
ȳi(q − p + 1)

⋮
ȳi(q)

⎤

⎥

⎥

⎥

⎥

⎦

, Di(q) =

⎡

⎢

⎢

⎢

⎢

⎣

d̄i(q − p)
d̄i(q − p + 1)

⋮
d̄i(q)

⎤

⎥

⎥

⎥

⎥

⎦

, Fi(q) =

⎡

⎢

⎢

⎢

⎢

⎣

f̄i(q − p)
f̄i(q − p + 1)

⋮
f̄i(q)

⎤

⎥

⎥

⎥

⎥

⎦

, Xi(q − 1) =

⎡

⎢

⎢

⎢

⎢

⎣

x̄i(q − p − 1)
x̄i(q − p)

⋮
x̄i(q − 1)

⎤

⎥

⎥

⎥

⎥

⎦

, (14)

Gi(q − 1) =

⎡

⎢

⎢

⎢

⎢

⎣

ḡi(q − p − 1, xi(q − p − 1), �i(q − p − 1))
ḡi1(q − p, xi(q − p), �i(q − p))

⋮
ḡi

|Mi |
(q − 1, xi(q − 1), �i(q − 1))

⎤

⎥

⎥

⎥

⎥

⎦

, Qi(q) =

⎡

⎢

⎢

⎢

⎢

⎣

q̄i(q − p, xi(q − p), �i(q − p))
q̄i1(q − p + 1, xi(q − p + 1), �i(q − p + 1))

⋮
q̄i

|Mi |
(q, xi(q), �i(q))

⎤

⎥

⎥

⎥

⎥

⎦

, (15)

and the diagonal coefficient matrices are given by

C̃i(q) =diag(C̄i(q − p), C̄i(q − p + 1),… , C̄i(q)), C̃L,i = diag(CL,i, CL,i,… , CL,i), (16)
Ãi(q − 1) =diag(Āi(q − p − 1), Āi(q − p),… , Āi(q − 1)), B̃d,i(q − 1) = diag(B̄d,i(q − p − 1), B̄d,i(q − p),… , B̄d,i(q − 1)),

(17)
B̃f,i(q − 1) =diag(B̄f,i(q − p − 1), B̄f,i(q − p),… , B̄f,i(q − 1)), D̃d,i(q) = diag(D̄d,i(q − p), D̄d,i(q − p + 1),… , D̄d,i(q)), (18)

D̃f,i(q) =diag(D̄f,i(q − p), D̄f,i(q − p + 1),… , D̄f,i(q)). (19)

Then, the designed FIR based fault estimator is described by

̂̄f i(q) =

⎡

⎢

⎢

⎢

⎢

⎣

f̂i(q)
f̂i1(q)
⋮

f̂i
|Mi |
(q)

⎤

⎥

⎥

⎥

⎥

⎦

=pi(q)Yi,p(q), i = 1, 2,… , N, (20)

where pi(q) denotes the FIR filter gain for the i-th agent to be designed later. ̂̄f i(q) is the corresponding fault estimation based
on its finite relative output information Yi,p(q).
The fault estimation error ri(q) is defined as

ri(q) = ̂̄f i(q) − f̄ i(q), (21)

where the fault f̄ i(q) defined in (6) can be rewritten by f̄ i(q) = WfFi(q) with Fi(q) defined in (14), and Wf =

p+1
⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

0 ⋯ 0 I
]

∈
R
(nfi+nfi1

+⋯+nfi
|Mi |

)×(p+1)(nfi+nfi1
+⋯+nfi

|Mi |
)
.

Now, it is clear to see that the fault estimation problem for system (1) has been transferred to finding the optimal filter gain
p∗i (q) for the FIR in (20) such that the estimator error ri(q) converges to 0.

3 MAIN RESULT

In this section, a cooperative fault estimation algorithm is to be presented based on the FIR filters for heterogeneous MASs with
stochastic nonlinearities.
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3.1 Problem analysis and reformulation
Associated with (13), the fault estimation error dynamics are given as

ri(q) =pi(q)Yi,p(q) −WfFi(q)
=pi(q)C̃L,i(q)C̃i(q)Ãi(q − 1)Xi(q − 1) + pi(q)C̃L,i(q)C̃i(q)B̃d,i(q − 1)Di(q − 1)
+ pi(q)C̃L,i(q)C̃i(q)B̃f,i(q − 1)Fi(q − 1) + pi(q)C̃L,i(q)C̃i(q)Gi(q − 1)
+ pi(q)C̃L,i(q)D̃d,i(q)Di(q) + pi(q)C̃L,i(q)D̃f,i(q)Fi(q) + pi(q)C̃L,i(q)Qi(q) −WfFi(q)

≜Ti(q)Wi(q), (22)

where

X̄i(q) =
⎡

⎢

⎢

⎣

Xi(q − 1)
Gi(q − 1)
Qi(q)

⎤

⎥

⎥

⎦

, D̄i(q) =
[

Di(q − 1)
Di(q)

]

, F̄i(q) =
[

Fi(q − 1)
Fi(q)

]

, Ti(q) =
[

T ai (q) T
b
i (q) T

c
i (q)

]

, Wi(q) =
⎡

⎢

⎢

⎣

X̄i(q)
D̄i(q)
F̄i(q)

⎤

⎥

⎥

⎦

, (23)

T ai (q) =
[

pi(q)C̃L,i(q)C̃i(q)Ãi(q − 1) pi(q)C̃L,i(q)C̃i(q) pi(q)C̃L,i(q)
]

, (24)
T bi (q) =

[

pi(q)C̃L,i(q)C̃i(q)B̃d,i(q − 1) pi(q)C̃L,i(q)D̃d,i(q)
]

, (25)
T ci (q) =

[

pi(q)C̃L,i(q)C̃i(q)B̃f,i(q − 1) pi(q)C̃i(q)D̃f,i(q) −Wf
]

. (26)

Considering both the target system (1) and the fault estimator (20) contain the stochastic information, the performance index
is selected as:

E(rTi (q)ri(q)) =E(W
T
i (q)T

T
i (q)Ti(q)Wi(q)) = tr(E(W T

i (q)T
T
i (q)Ti(q)Wi(q))) = tr(T Ti (q)Ti(q)E(Wi(q)W T

i (q))). (27)

Different from the deterministic system with Lipschitz nonlinearity14 or sector bounded nonlinearity42, and the stochastic
system with additive noise26, multiplicative noise43 or stochastic nonlinear system where stochastic property is independent of
the state44, the variance information of the stochastic nonlinear considered in this paper is coupled with the state information
via a non-linear form in E(Wi(q)W T

i (q)), which cannot be ignored in E(rTi (q)ri(q)) for obtaining satisfactory fault estimation
in (27). Consequently, how to extract the prior known matrices Πp(q) and Γp,i(q) from the variance information of stochastic
nonlinearity, is of intractable challenge.
According to36, any quadratic matrices T Ti (q)Ti(q) and E(Wi(q)W T

i (q)) satisfy

E(rTi (q)ri(q)) ≤ tr(T
T
i (q)Ti(q))tr(E(Wi(q)W T

i (q))). (28)

Associated with (28) and the stochastic property of the augmented vector X̄i(q), we proceed with extracting the stochastic
property from random nonlinearity in E(Wi(q)W T

i (q)) and further deriving a novel performance index, which is completely
decoupled from unknown variables Xi(q), D̄i(q), and F̄i(q) to constrain fault estimation error. To this end, the following
propositions are provided firstly.

Proposition 1. The variances of the stochastic nonlinear functions Gi(q − 1) and Qi(q) in (15) are bounded by

E(Gi(q − 1)GT
i (q − 1)) ≤Mgi(q − 1)Ngi(q − 1), (29)

E(Qi(q)QT
i (q)) ≤Mqi(q)Nqi(q), (30)

where

Mgi(q − 1) =diag{m11gi ,… , m1|Mi|

gi , m21gi ,… , m2|Mi|

gi ,… , m(p+1)1gi ,… , m(p+1)|Mi|

gi }, (31)

Ngi(q − 1) =diag{n11gi ,… , n1|Mi|

gi , n21gi ,… , n2|Mi|

gi ,… , n(p+1)1gi ,… , n(p+1)|Mi|

gi }, (32)

Mqi(q) =diag{m11qi ,… , m1|Mi|

qi , m21qi ,… , m2|Mi|

qi ,… , m(p+1)1qi ,… , m(p+1)|Mi|

qi }, (33)

Nqi(q) =diag{n11qi ,… , n1|Mi|

qi , n21qi ,… , n2|Mi|

qi ,… , n(p+1)1qi ,… , n(p+1)|Mi|

qi }, (34)
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with

m11gi =
m
∑

p=1
Πip,1(q − p − 1)tr(Γp,i(q − p − 1)), m

1|Mi|

gi =
m
∑

p=1
Π
i
|Mi |

p,1 (q − p − 1)tr(Γp,i
|Mi |
(q − p − 1)), (35)

m21gi =
m
∑

p=1
Πip,1(q − p)tr(Γp,i(q − p)), m

2|Mi|

gi =
m
∑

p=1
Π
i
|Mi |

p,1 (q − p)tr(Γp,i
|Mi |
(q − p)), (36)

m(p+1)1gi =
m
∑

p=1
Πip,1(q − 1)tr(Γp,i(q − 1)), m

(p+1)|Mi|

gi =
m
∑

p=1
Π
i
|Mi |

p,1 (q − 1)tr(Γp,i
|Mi |
(q − 1)), (37)

n11gi = tr(xi(q − p − 1)x
T
i (q − p − 1))⊗ Ini , n

1|Mi|

gi = tr(xi
|Mi |
(q − p − 1)xTi

|Mi |
(q − p − 1))⊗ Ini

|Mi |
, (38)

n21gi = tr(xi(q − p − 1)x
T
i (q − p − 1))⊗ Ini , n

2|Mi|

gi = tr(xi
|Mi |
(q − p − 1)xTi

|Mi |
(q − p − 1))⊗ Ini

|Mi |
, (39)

n(p+1)1gi = tr(xi(q − 1)xTi (q − 1))⊗ Ini , n
(p+1)|Mi|

gi = tr(xi
|Mi |
(q − 1)xTi

|Mi |
(q − 1))⊗ Ini

|Mi |
. (40)

The termMqi(q) in (33) can be obtained directly by replacing Πip,1(q − p−1) and Γp,i(q − p−1) with Π
i
p,2(q − p) and Γp,i(q − p)

respectively, inMgi(q − 1), and Nqi(q − 1) can be obtained directly by replacing xi(q − p − 1) and Ini with xi(q − p) and Im
respectively, inNgi(q), which are omitted here.

Proof. See Appendix A.

From Proposition 1, it follows that
tr(E(X̄i(q)X̄T

i (q))) ≤ tr(M
a
i (q)N

a
i (q)), (41)

where X̄i(q) defined in (23), and

Ma
i (q) =

⎡

⎢

⎢

⎣

IXi
0

Mgi(q − 1)
0 Mqi(q)

⎤

⎥

⎥

⎦

, Na
i (q) =

⎡

⎢

⎢

⎣

E(Xi(q − 1)XT
i (q − 1)) 0

Ngi(q − 1)
0 Nqi(q)

⎤

⎥

⎥

⎦

, (42)

with the (ni + ni1 +⋯ + ni
|Mi |
) dimensional identify matrix denoted by IXi

.
Based on Proposition 1 and (41), we can extract the prior variance information (4) in the nonlinear functions gi(q, xi(q), �i(q))

and qi(q, xi(q), �i(q)) from E(Wi(q)W T
i (q)) and directly have

E(rTi (q)ri(q)) ≤tr(Ti
T (q)Ti(q))tr(Mb

i (q)N
b
i (q)) ≤ tr(Ti

T (q)Ti(q))tr(Mb
i (q))tr(N

b
i (q)), (43)

where

Mb
i (q) =

[

M1
i (q) 0
0 INi

]

, Nb
i (q) =

⎡

⎢

⎢

⎣

N1
i (q) 0 0
0 D̄i(q)D̄T

i (q) D̄i(q)F̄ T
i (q)

0 F̄i(q)D̄T
i (q) F̄i(q)F̄

T
i (q)

⎤

⎥

⎥

⎦

, (44)

with the 2(ndi + ndi1 +⋯ + ndi
|Mi |

+ nfi + nfi1 +⋯ + nfi
|Mi |
)(p + 1) dimensional identify matrix denoted by INi

.
Thus, the coupling problem caused by the complex analytical expressions of stochastic nonlinearity has been solved. Similar to36,
tr(Nb

i (q)) is a determined term, which can be ignored in E(rTi (q)ri(q)). Then, the minimum point of tr(TiT (q)Ti(q))tr(Mb
i (q))

can be found to realize the fault estimation under the satisfactory fault estimation level.
Furthermore, to analysis the term tr(TiT (q)Ti(q))tr(Mb

i (q)) for the performance index selection process, the following
proposition in45 is needed.

Proposition 2 (45). Assume that the Hessian matrix ▽2
p(q)J (p

∗(q)) of J (p∗q) is continuous, matrix p∗(q) is the only minimum
point of convex function J (p(q)) if and only if the Gradient and Hessian matrices satisfy

▽p(q)J (p∗(q)) = 0, (45)
▽2

p(q)J (p
∗(q)) > 0. (46)

Following Proposition 2, no matter whether tr(T Ti (q)Ti(q)) or tr(T
T
i (q)Ti(q))tr(M

b
i (q)) is chosen as the performance index,

the prior variance information of the stochastic nonlinearity cannot affect the selection of the optimal FIR filter due to deriva-
tive operation. Thus, it is somewhat conservative to select the upper bound on tr(T Ti (q)Ti(q))tr(M

b
i (q)) to constrain the fault

estimation error.
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In view of the semi-definite property of matrices T Ti (q)Ti(q) andM
b
i (q), we have

tr(T Ti (q)Ti(q)M
b
i (q)) ≤ tr(T

T
i (q)Ti(q))tr(M

b
i (q)). (47)

Then, the prior variance information aboutΠip(q) and Γp,i(q) of stochastic nonlinearities qi(q, xi(q) and �i(q)), gi(q, xi(q), �i(q))
is separated fromWi(q). Based on this, we are now in a position to reformulate the problem in the following manner.
For the heterogeneous stochastic nonlinear system (1), find FIR filter gain pi(q) satisfying

E(rTi (q)ri(q)) < tr(Ti(q)M
b
i (q)T

T
i (q))min (48)

such that the transient characteristics of the fault estimation error dynamics are boundedwithin aminimum range in the stochastic
sense.

Remark 4. Considering the randomness of the new augmented disturbance vector Ti(q), it is impossible to achieve complete
decoupling from the fault of interest. Therefore, an upper bound on the error estimation error tr(Ti(q)Mb

i (q)T
T
i (q))min, where

includes the prior variance information (4), is developed as the performance index to achieve the optimal robust fault estimation
for the heterogeneous MASs (1) with the unknown disturbances and stochastic nonlinearities.

3.2 FIR based cooperative fault estimation algorithm
For the fault estimator (20), the main result for system (1) is ready to be presented based on the Proposition 2.

Theorem 1. For the heterogeneous stochastic nonlinear system (1), the faults of itself and its neighbor agents can be estimated
by the the optimal FIR filter (20) under the performance index (48), if the gain pi(q) is chosen as

pi(q) = Wf D̃
T
f,i(q)C̃

T
L,i(q)R

−T
i (q), (49)

and Ri(q) defined by

Ri(q) =C̃L,i(q)(C̃i(q)Ãi(q − 1)ÃTi (q − 1)C̃
T
i (q) + C̃i(q)B̃d,i(q − 1)B̃

T
d,i(q − 1)C̃

T
i (q)

+ C̃i(q)B̃f,i(q − 1)B̃Tf,i(q − 1)C̃
T
i (q) + C̃i(q)Mgi(q − 1)C̃T

i (q)

+ D̃d,i(q)D̃T
d,i(q) + D̃f,i(q)D̃T

f,i(q) +Mqi(q))C̃T
L,i(q),

(50)

is positive definite.

Proof. From (23)-(26) and (44), it follows that

tr(Ti(q)Mb
i (q)T

T
i (q))) =pi(q)Ri(q)p

T
i (q) − pi(q)C̃L,i(q)D̃f,i(q)W T

f −Wf D̃
T
f,i(q)C̃

T
L,i(q)p

T
i (q) +WfW

T
f .

If the existence condition in Proposition 2 holds, the optimal solution p∗(q) for the minimum point of tr(Ti(q)Mb
i (q)T

T
i (q))) can

be derived by solving the first order differential equation

▽pi(q)J (p
∗
i (q)) = 2p

∗
i (q)Ri(q) − 2Wf D̃

T
f,i(q)C̃

T
L,i(q) = 0. (51)

Furthermore, it can easily get

▽2
pi(q)

J (p∗i (q)) =
)

)T (vec(p∗i (q)))

( )J (p∗i (q)
)T (vec(p∗i (q)))

)T

= 2Infi×nfi ⊗Ri(q). (52)

Suppose that Ri(q) is positive definite, it follows that the corresponding minimum solution p∗i (q) for pi(q) exists and the optimal
FIR filter with gain p∗i (q) is expressed as in (49). This completes the proof.

Remark 5. Ri(q), defined in (52), is the key matrix that needs to be calculated to obtain the optimal filter gain. Associated with
(16)-(19), (31) and (33),Ri(q) can be calculated from the known system parameter matricesAi(q), Bd,i(q), Bf,i(q), Ci(q), Dd,i(q),
Df,i(q), and the statistical characteristics Πip(q),Γp,i(q). According to the structure reflected in (50), Ri(q) is a semi-
positive definite symmetric matrix. Furthermore, as long as any one of C̃L,i(q)C̃i(q)Ãi(q − 1)ÃTi (q − 1)C̃

T
i (q)C̃

T
L,i(q),

C̃L,i(q)C̃i(q)B̃d,i(q − 1)B̃Td,i(q − 1)C̃
T
i (q)C̃

T
L,i(q), C̃L,i(q)C̃i(q)B̃f,i(q − 1)B̃

T
f,i(q − 1)C̃

T
i (q)C̃

T
L,i(q), C̃L,i(q)D̃f,i(q)D̃T

f,i(q)C̃
T
L,i(q),

C̃L,i(q)C̃i(q)Mgi(q − 1)C̃T
i (q)C̃

T
L,i(q), C̃L,i(q)D̃d,i(q)D̃T

d,i(q)C̃
T
L,i(q), and C̃L,i(q)Mqi(q))C̃T

L,i(q), is positive definite, then Ri(q)
satisfies the positive definite condition.
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As it is assumed that the stochastic nonlinearity is independent of each other in section 2.2, then Dd,i(q) has full row rank for
all q > 046. Consequently, with the definitions of (10) and (18), D̃d,i(q)D̃T

d,i(q) satisfies positive definite property. From (9) and
(11), C̃L,i is full row rank, which implies Ri(q) positive definite. If the positive definite condition does not hold, an alternative
way is to replaceRi(q) withR∗i (q) = Ri(q)+ iIi to obtain an alternative suboptimal solution, where i is a positive real number
as small as possible and Ii is an identity matrix with compatible dimensions.

The whole fault estimation framework can be described by a block diagram in Figure. 1

FIGURE 1 Block diagram of cooperative fault estimation for the selected key agent i
.

The specific fault estimators design steps for the whole MASs can be summarized as follows:

Algorithm 1 FIR filter based fault estimation for the whole MASs with stochastic nonlinearities

S1: Give appropriate time window length p for the selected i-th agent and initialize q = p + 1;

S2: Collect the measurement Yi,p(q) within the time window [q − p, q];

S3: Calculate C̃L,i(q), D̃f,i(q), Ri(q) according to (16),(19) and (50) and select the correspondingWf according to different
purposes;

S4: Obtain the optimal FIR filter gain p∗i (q) based on Theorem 1;

S5: Construct the FIR filter based estimator as (20) and derive the corresponding fault estimation results for each selected
agent;

S6: Increase q by one and return to S2.

Remark 6. It should be noted that many practical systems can be described by the discrete time-varying stochastic nonlinear
state space model (1), such as mobile robots, cooperating UAV team operations (surveillance and reconnaissance), formation
flying of UAV’s and satellites, vehicle platoons. For these systems, we can calculate the optimal filter gain p∗i (q) and construct
the FIR filter based estimator as (20) to derive the corresponding fault estimation following the Algorithm 1 above. Considering
the difference between practical application and theoretical research, if necessary, the optimal filter gain may need to be slightly
adjusted to obtain better performance. The practical verification of the theoretical results developed in this paper will be further
considered in the future.
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4 COMPUTATIONAL COST ANALYSIS

Generally speaking, the computational cost of updating the filter gain at each time instant can inevitably be increased substantially
over the time window p47. Compared with the analytic redundancy derived in37, which is expressed in terms of x(q − p), all the
coefficient matrices involved in the newly established one in (13) in the paper possess easy-to-obtain diagonal structures, as it is
originally formulated in terms of all the state information (x(q−p−1),… , x(q−1)) in the previous time window [q−p−1, q−1].
Usually in the multi-agents system, the computing power of a sub-agent is often very limited. It is thus very necessary to develop
a computationally efficient fault estimation algorithm. In the following, we will demonstrate that the proposed method indeed
possesses computational advantages over the scenario considered in37 owing to the new proposed redundancy in (13).
Introducing the notations

Hi,dp(q) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D̄d,i(q − p) 0
CL,iC̄i(q − p + 1)B̄d,i(q − p) D̄d,i(q − p + 1)

CL,iC̄i(q − p + 2)Āi(q − p + 1)B̄d,i(q − p)
⋮

CL,iC̄i(q)Āi(q − 1)⋯Ai(q − p + 1)B̄d,i(q − p)

CL,iC̄i(q − p + 2)B̄d,i(q − p + 1)
⋱
⋯

⋯
0

D̄d,i(q − p + 2)
⋱

CL,iC̄i(q)Āi(q − 1)B̄d,i(q − 2)

⋯
⋯
⋯
⋱

CL,iC̄i(q)B̄d,i(q − 1)

0
0
0
⋮

D̄d,i(q)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (53)

Hi,gp(q) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ ⋯ 0
CL,iC̄i(q − p + 1) 0 0 ⋯ 0

CL,iC̄i(q − p + 2)Ai(q − p + 1) CL,iC̄i(q − p + 2) 0
⋯ ⋱ ⋱ ⋱ ⋮

CL,iC̄i(q)Āi(q − 1)⋯ Āi(q − p + 1) ⋯ CL,iC̄i(q)Āi(q − 1) CL,iĀi(q) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (54)

Hi,op(q) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

CL,iC̄i(q − p)
CL,iC̄i(q − p + 1)Āi(q − p)

CL,iC̄i(q − p + 2)Āi(q − p + 1)Āi(q − p)
⋮

CL,iC̄i(q)Āi(q − 1)⋯ Āi(q − p)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Xi1(q − p) =

⎡

⎢

⎢

⎢

⎢

⎣

xi(q − p)
xi1(q − p)

⋮
xi

|Mi |
(q − p)

⎤

⎥

⎥

⎥

⎥

⎦

, (55)

which allow to express the analytic redundancy based on the form proposed in37 in the following compact form

Yi,p(q) = Hi,op(q)Xi1(q − p) +Hi,dp(q)Di(q) +Hi,fp(q)Fi(q) +Hi,gp(q)Gi(q) +Qi(q). (56)

Following the similar way with the definition of Hi,dp(q), Hi,fp(q) can be constructed by replacing B̄d,i(q − p) and D̄d,i(q − p)
with the corresponding B̄f,i(q − p) and D̄f,i(q − p), respectively.
In order to realize the fault estimation of system (1), the following optimal filter gain is employed based on (56)

pi1(q) = WfH
T
i,fp(q)R

−T
i,1 (q), (57)

where

Ri,1(q) =Hi,op(q)HT
i,op(q) +Hi,dp(q)HT

i,dp(q) +Hi,fp(q)HT
i,fp(q) +Hi,gp(q)Mgi(q)HT

i,gp(q) +Mqi(q) (58)

In comparison with the existing fault estimation framework in37, the computation complexity of Ri(q) is much reduced in
this work. As addition is much easier than multiplication in practice, letMD denote the number of multiplication and division
involved in calculating the optimal FIR filter gain in48.
Considering that the quadratic matrix needed to calculate the optimal filter gain is composed of the coefficient matrices in

analytical redundancy, it is reasonable to evaluate the computational complexity by comparing the calculation cost differences
between these two algorithms in obtaining the coefficient matrices involved in corresponding analytical redundancy. Please refer
to the Table 1 for more details, where the argument ‘k’ is omitted for the convenience of analysis.
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TABLE 1 Calculation cost differences for obtaining the coefficient matrices involved in corresponding analytical redundancy
between our proposed algorithm and that in37

Our proposed algorithm Algorithm presented in37

The frequency of calculating C̄iĀi p + 1 3p2−p
2

The frequency of calculating CL,iC̄i 4(p + 1) 3p2+5p+2
2

The frequency of calculating C̄iB̄d,i p + 1 p

The frequency of calculating C̄iB̄f,i p + 1 p

The frequency of calculating ĀiĀi 0 p3+6p2−p
6

The frequency of calculating ĀiB̄d,i 0 p

The frequency of calculating ĀiB̄f,i 0 p

Obviously, our proposed analytical redundancy usually brings significant computational reduction in the application of single
multi-agent fault estimation, especially with the increase of p.
In summary, different from the existing results in15,16,17, the derived established filter can estimate the possible faults in the

individual agent and its neighbors simultaneously utilizing the available relative output information only. This implies that some
key nodes could be selected to be equipped with the desired FIR filter so as to estimate the faults in the whole MASs, which
potentially reduces hardware cost. Moreover, due to the originality derived analytical redundancy, it also provides computational
efficiency for calculating the filter gain in each time instant.

5 ILLUSTRATIVE EXAMPLE

In this section, illustrative examples are introduced to demonstrate the flexibility and effectiveness of the developed FDI
algorithm for a class of heterogeneous MASs subject to stochastic nonlinearity.
Consider a group of five heterogeneous agents whose dynamics are represented by (1), and the corresponding matrix

coefficients are described as

A1(q) =A3(q) = A5(q) =

⎡

⎢

⎢

⎢

⎣

−0.8100 −0.15sin(0.39�q) −0.0420
−0.45e(

q
q+1
) 0.1500 −0.2250

0.1650 −0.3000 −0.15 q
q+1

⎤

⎥

⎥

⎥

⎦

, A2(q) = A4(q) =

[

0.4050 0.297( q
q+1
)

0.4698 0.405e(0.2�
q
q+1
)

]

, (59)

C1(q) =C3(q) = C5(q) =
[

−1.3440 0.56sin(0.49�q) 1.9040
−1.3440 0.56sin(0.49�q) 1.9040

]

, C2(q) = C4(q) =
[

1.0790 1.2450
1.1620 1.2450

]

, (60)

Bd,1(q) = Bd,3(q) = Bd,5(q) =
⎡

⎢

⎢

⎣

1.3
1.82
1.69

⎤

⎥

⎥

⎦

, Bd,2(q) = Bd,4(q) =
[

1.17
1.69

]

, Bf,1(q) = Bf,3(q) = Bf,5(q) =
⎡

⎢

⎢

⎣

0.72
0.6
0.44

⎤

⎥

⎥

⎦

, (61)

Bf,2(q) =Bf,4(q) =
[

0.66
1.14

]

, Dd,1(q) = Dd,3(q) = Dd,5(q) =
[

1.17
1.69

]

, Dd,2(q) = Dd,4(q) =
[

1.26
1.82

]

, (62)

Df,1(q) =Df,3(q) = Df,5(q) =
[

2.52
2.1

]

, Df,2(q) = Df,4(q) =
[

0.88
1.12

]

. (63)

The initial states x1(0),… , x5(0) for each of agents are selected randomly with compatible dimensions. The stochastic
nonlinearities gi(q, xi(q), �i(q)) and qi(q, xi(q), �i(q)) are selected as in26, which are independent of the random initial states.



12 WU AND MAO ET AL

gi(q, xi(q), �i(q)) =
⎡

⎢

⎢

⎣

0.2
0.12
0.14

⎤

⎥

⎥

⎦

(0.3sign(x(1)i (q))x
(1)
i (q)�

(1)
i (q) + 0.2sign(x

(2)
i (q))x

(2)
i (q)�

(2)
i (q)

+ 0.3sign(x(3)i (q))x
(3)
i (q)�

(3)
i (q)), i ∈ {1, 3, 5}, (64)

gi(q, xi(q), �i(q)) =
[

0.2
0.15

]

(0.1sign(x(1)i (q))x
(1)
i (q)�

(1)
i (q) + 0.2sign(x

(2)
i (q))x

(2)
i (q)�

(2)
1 (q)), i ∈ {2, 4}, (65)

qi(q, xi(q), �i(q)) =
[

0.2
0.15

]

(0.3sign(x(1)i (q))x
(1)
i (q)�

(1)
i (q) + 0.2sign(x

(2)
i (q))x

(2)
i (q)�

(2)
i (q)

+ 0.3sign(x(3)i (q))x
(3)
i (q)�

(3)
i (q)), i ∈ {1, 3, 5}, (66)

qi(q, xi(q), �i(q)) =
[

0.3
0.14

]

(0.1sign(x(1)i (q))x
(1)
i (q)�

(1)
i (q) + 0.2sign(x

(2)
i (q))x

(2)
i (q)�

(2)
i (q), i ∈ {2, 4}. (67)

The terms x(j)i (q), �
(j)
i (q) and �

(j)
i (q) denote the jtℎ elements of the system state xi(q), the stochastic variables �i(q) and �i(q),

respectively. �i(q) and �i(q) are independent of the zero mean Gaussian noise sequences with unit variances. Obviously, the
expectations and the covariances of the above stochastic nonlinearities meet the form defined in (2)-(4) with the integer m = 1.
The parameter matrices involved are naturally arranged as

Πjp,1(q) =
⎡

⎢

⎢

⎣

0.2
0.12
0.14

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0.2
0.12
0.14

⎤

⎥

⎥

⎦

T

, j = 1, 3, 5, Πjp,1(q) =
[

0.2
0.15

] [

0.2
0.15

]T

, j = 2, 4, (68)

Πjp,2(q) =
[

0.2
0.15

] [

0.2
0.15

]T

, j = 1, 3, 5, Πjp,2(q) =
[

0.3
0.14

] [

0.3
0.14

]T

, j = 2, 4, (69)

Γp,i(q) =diag{0.09, 0.04, 0.09}, i = 1, 3, 5, Γp,i(q) = diag{0.01, 0.04}, i = 2, 4. (70)

Suppose the topology utilized to exchange information is shown by the undirected graph in Figure. 2, where all the edge
weights between the corresponding two agents are 1.

1

3 4

2 5

1 1

1

1

1

FIGURE 2 Communication topology of the considered MASs

Set the finite time window length p = 3. It it supposed that the sine-wave signal, acted in the following manner, affects the agents
1 and 3.

f1(q) =

{

1.6sin(0.24�q), 35 ≤ q ≤ 70,
0, others,

, f3(q) =

{

0.8cos(0.25�q), 35 ≤ q ≤ 70,
0, others.

(71)

And the disturbance di(q) (i = 1, 2,… , 5) corresponding to each agent is illustrated by Figure. 3.
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FIGURE 3 The distuabance involued in each agent

Select the agent 1 as the key agent and equip it with FIR filter based fault estimator (20), whereWf =
[

0 0 0 I
]

,Wf ∈ R3×12.
Apply the proposed method, it can be clearly seen from Figure. 4 and Figure. 5 that the fault characteristics corresponding to
agents 1 and 3 are tracked timely and accurately even in the presence of stochastic nonlinearity.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T/step

 

 

The fault estimation 

The fault

FIGURE 4 The time response of the fault signal and its estimation for agent 1
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0
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0.6

0.8

T/step

 

 

The fault estimation
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FIGURE 5 The time response of the fault signal and its estimation for agent 3

As described in38, multiplicative noise acts as a special case of stochastic nonlinearity. Following the inequality (43), obtaining
the optimal filter by directly solving the minimum points of tr(T Ti (q)Ti(q)) or tr(T

T
i (q)Ti(q))tr(M

b
i (q)) is the way that adopted

in36 for fault estimation of linear discrete time-varying systems with multiplicative noise. Now, let’s compare our work with36

in this regard to further illustrate the advantage of the proposed fault estimation algorithm.
In this part, define mean square error (MSE) as

MSE =

∑M
j=1(f̄

j
i (q) −

̂̄f ji (q))
2

M
, (72)

to quantify howmuch improvement our novel performance index has beenmade, where f̄ ji (q) is the real fault of the jtℎ simulation
for the itℎ agent, ̂̄f

j
i is the corresponding fault estimation, andM is the total number of simulations.

Set M = 200. The MSE at each time instant in36 and this paper is calculated respectively following (72) under the same
conditions within the time interval [0, 100]. Obviously, the novel performance index can provide more accurate fault estimation
results according to Figure. 6.
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FIGURE 6 Comparision between the algorithm proposed in this paper and36

Furthermore, the actual calculation amount between the two algorithms can be obtained by following Table 1, and specifically,

MDours =3m(n1 + n3 + n4)2(p + 1) + 36m3(p + 1) + 3m(n1 + n3 + n4)(nd1 + nd3 + nd4 + nf1 + nf3 + nf4)(p + 1)
=744, (73)

MD[32] =3m(n1 + n3 + n4)2
3p2 − p
2

+ 9m3
3p2 + 5s + 2

2
+ 3m(n1 + n3 + n4)(nd1 + nd3 + nd4 + nf1 + nf3 + nf4)p

+ (n1 + n3 + n4)3
p3 + 6p2 − p

6
+ (n1 + n3 + n4)2(nd1 + nd3 + nd4 + nf1 + nf3 + nf4)p

=14000. (74)

It is clear to see that our proposed algorithm based on the novel analytical redundancy (13) enjoys obvious computational
advantages. To summarize, all the simulation results lead to the conclusion that the proposed algorithm provides clear evidences
for the effectiveness and flexibility of the developed FIR based fault estimator for a class of heterogeneous multi-agents with
stochastic nonlinearities.

6 CONCLUSION

In this paper, FIR filter has been utilized to deal with cooperative fault estimation problem for a class of heterogeneous MASs
with stochastic nonlinearities. To this end, an auxiliary augmentation system has been presented via integrating possible faults
from each agent and its neighbors induced from the interconnections. This allows the filter to be equipped on a selected key
agent to realize the fault estimation of itself and its neighbors simultaneously. All the system states in the previous time window
have been originally utilized to construct analytical redundancy. The challenge of extracting prior variance information coupled
with fault estimation error in nonlinear form to design performance index is solved. By solving the minimum point problem of
the matrix trace function, the optimal FIR filter gain has been obtained with obvious computational advantages, which has been
shown by the specific calculation cost analysis when compared with the previous work. At last, the numerical simulations have
been provided to verify the feasibility and superiority of the proposed fault estimation approach.
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APPENDIX A: PROOF OF PROPOSITION 1

Associated with (2)-(4), it can be easily obtained that

E(Gi(q − 1)GT
i (q − 1)) = diag{g

11
i ,… , g1(p+1)i , g21i ,… , g2(p+1)i ,… , gN1i ,… , gN(p+1)i }, (75)

where

g11i =gi(q − p − 1)gTi (q − p − 1) =
m
∑

p=1
Πip,1(q − p − 1)tr(Γp,i(q − p − 1)xi(q − p − 1)x

T
i (q − p − 1)),

g1(p+1)i =gi
|Mi |
(q − p − 1)gTi

|Mi |
(q − p − 1) (76)

=
m
∑

p=1
Π
i
|Mi |

p,1 (q − p − 1)tr(Γp,i(q − p − 1)xi
|Mi |
(q − p − 1)xTi

|Mi |
(q − p − 1)), (77)

g21i = gi(q − p)gTi (q − p) =
m
∑

p=1
Πip,1(q − p)tr(Γp,i(q − p)xi(q − p)x

T
i (q − p)), (78)

g2(p+1)i = g
i
|Mi |

i (q − p)gTi
|Mi |
(q − p) =

m
∑

p=1
Π
i
|Mi |

p,1 (q − p)tr(Γp,i(q − p)xi
|Mi |
(q − p)xTi

|Mi |
(q − p)), (79)

gN1i = gi(q − 1)gTi (q − 1) =
m
∑

p=1
Πip,1(q − 1)tr(Γp,i(q − 1)xi(q − 1)x

T
i (q − 1)), (80)

gN(p+1)i = g
i
|Mi |

i (q − 1)gTi
|Mi |
(q − 1) =

m
∑

p=1
Π
i
|Mi |

p,1 (q − 1)tr(Γp,i(q − 1)xi
|Mi |
(q − 1)xTi

|Mi |
(q − 1)). (81)
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In light of the semi-positive nature of known matrix Γp,i(q) and the quadratic matrix xi(q)xTi (q), the following inequalities hold:

g11i ≤
m
∑

p=1
Πip,1(q − p − 1)tr(Γp,i(q − p − 1))tr(xi(q − p − 1)x

T
i (q − p − 1)), (82)

g1(p+1)i ≤
m
∑

p=1
Π
i
|Mi |

p,1 (q − p − 1)tr(Γp,i
|Mi |
(q − p − 1))tr(xi

|Mi |
(q − p − 1)xTi

|Mi |
(q − p − 1)), (83)

g21i ≤
m
∑

p=1
Πip,1(q − p)tr(Γp,i(q − p))tr(xi(q − p)x

T
i (q − p)), (84)

g2(p+1)i ≤
m
∑

p=1
Π
i
|Mi |

p,1 (q − p)tr(Γp,i
|Mi |
(q − p))tr(xi

|Mi |
(q − p)xTi

|Mi |
(q − p)), (85)

gN1i ≤
m
∑

p=1
Πip,1(q − 1)tr(Γp,i(q − 1))tr(xi(q − 1)x

T
i (q − 1)), (86)

gN(p+1)i ≤
m
∑

p=1
Π
i
|Mi |

p,1 (q − 1)tr(Γp,i
|Mi |
(q − 1))tr(xi

|Mi |
(q − 1)xTi

|Mi |
(q − 1)). (87)

Recalling the definition ofMgi(q − 1) andNgi(q − 1) in (31)-(32), one obtains

E(Gi(q − 1)GT
i (q − 1)) ≤Mgi(q − 1)Ngi(q − 1). (88)

It can be obtained that E(Qi(q)QT
i (q)) ≤Mqi(q)Nqi(q) following the same reasoning as for (88). This completes the proof.
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