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Abstract

Traditional supervised machine learning techniques need to be adapted when ap-

plied to longitudinal datasets, due to their specific characteristics such as a large

amount of missing data and the dependency between repeated measurements of

the same variables. These adaptations range from data preprocessing techniques

that maintain and use information from the underlying temporal data structure of

longitudinal datasets, to algorithm adaptations that consider the temporal aspect

of the data when making predictions.

In this thesis we focus on the classification task of supervised learning, in the

context of longitudinal biomedical and health data from ageing studies. More

specifically, we address the problem of predicting the diagnosis of age-related

diseases, given several years of observations about each instance (individual).

In order to evaluate our proposed approaches for longitudinal supervised learn-

ing (described below), we created 30 longitudinal classification datasets. These

datasets are comprised of data from the English and Irish longitudinal studies

of ageing, which collect biomedical and self-reported health information on thou-

sands of participants, over multiple waves carried out throughout the years.

Regarding supervised learning algorithms, we focus on decision tree-based al-

gorithms, namely Random Forests (which learn an ensemble of decision trees) and

a decision tree algorithm (which learns a single decision tree). These algorithms

were chosen because they represent a good trade-off between predictive accu-

racy and interpretability, which is particularly relevant for our health application.

Random Forests are known to achieve high predictive accuracy in general, and

are partially interpretable (via feature importance measures), whilst decision trees

are directly interpretable, although usually less accurate than Random Forests.

This thesis’ main contributions are three new approaches for coping with lon-

gitudinal data in supervised learning (particularly classification). The first two
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main contributions involve data preparation, namely missing value replacement

and the construction of features representing temporal information in the data.

These contributions are independent from the choice of classification algorithm

to be applied to the longitudinal data, so they are widely applicable to longitudi-

nal studies. The third main contribution involves algorithm adaptation, adapting

decision tree-based algorithms to consider the temporal information in the data.

More precisely, the first main contribution of this thesis is the proposal of a

data-driven missing value replacement approach to estimate the missing values

in longitudinal datasets. The proposed approach performs a feature-wise rank-

ing of an input set of missing value replacement methods, using known data as

ground-truth to estimate the error rates of each method. Then it uses that ranking

to choose the best missing value replacement method for each feature. Experi-

ments have shown that this approach improved predictive accuracy in general, by

comparison with several baseline methods for handling missing values.

The second main contribution consists of several types of constructed tempo-

ral features, which are are calculated (in a data preprocessing phase) using the

repeated measurements of the original longitudinal features. These constructed

features represent different types of temporal patterns that can occur in longitu-

dinal datasets. The constructed features are then added to the original dataset,

and used together with the original features when running any chosen classifica-

tion algorithm. Experiments have shown that the constructed features benefited

from datasets with more temporal data available, and that the added features

overall increased the predictive accuracy of the Random Forest classifiers.

The third main contribution of this work is an algorithm adaptation approach

for decision tree-based algorithms (more precisely, Random Forests and decision

tree algorithms) applied to longitudinal data inputs. We adapted the node split

function of such algorithms to consider two criteria, using a lexicographic optimi-

sation approach. This approach first tries to select the best split feature at each

tree node based on the features’ information gain ratio, as the primary criterion.

If, however, two or more features have about the same information gain ratio, as

a tie-breaking (secondary) criterion, the algorithm prefers to select a more recent

feature, since these are assumed to be more relevant for classification than older

features. Experiments have shown that this lexicographic split approach led to

increased predictive accuracy in general for the Random Forest classifier.
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Chapter 1

Introduction

Supervised machine learning (ML) techniques use training data to create a model

able to make predictions about previously unseen data. In addition to the model’s

predictions, the models themselves can represent knowledge about the problem

being studied. By applying these techniques to analyse real-world datasets, we

can partly automate the knowledge discovery process and find patterns that can

be used to reach meaningful conclusions about the domain problem.

Supervised ML is a traditional field with a large number of techniques, and it

is applied to many research areas. However, ML applications to longitudinal data

are under-explored, even though this type of data is becoming more prominent

recently (Ribeiro et al. 2017). Because of its temporal nature, longitudinal data

incurs challenges and opportunities that make it worthwhile exploring creating

novel ML techniques and adapting existing ones, specifically for it.

1.1 Longitudinal Studies of Ageing

The study of human ageing is highly interdisciplinary, with research from vari-

ous areas of knowledge such as biology, medicine, social sciences and economy,

being conducted towards understanding the biological process of ageing and its

impacts both on an individual and on a societal scale (Foos and Clark 2016).

Currently, this area has been getting increased attention from the scientific com-

munity and governmental agencies, especially on countries that have lower birth

rates and greater life expectation, where the populational ageing phenomenon is

more accentuated.
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It is estimated that the global proportion of individuals over 65 years of age will

surpass 16% of the population by 2050 (raising from the current 11%) (United Na-

tions and Social Affairs 2019). This ratio will be more pronounced in some coun-

tries (e.g., 25% in Europe and North America). The populational ageing phe-

nomenon impacts the entire structure of society, including social security issues,

as the ratio of working versus retired people declining can have severe social and

economic implications (Lutz, Sanderson and Scherbov 2008). Naturally, this also

puts a strain on health systems (Cheng et al. 2020). Thus, understanding the hu-

man ageing process is of interest to society as a whole, as it can guide the creation

of public policies aimed at the older segment of the society, in addition to helping

diminishing and treating cognitive losses and many age-related diseases.

Several countries have been running longitudinal populational studies of age-

ing, where they collect data on various aspects of the lives of older individuals,

including physical and mental health, demographics, and socioeconomic aspects.

The data generated by these studies is analysed to determine, for example, the

reaction of a patient to a drug, the evolution of their ageing process, or their

risk of developing a disease. Typically, population studies generate longitudinal

datasets with a large number of variables (hundreds or thousands) describing each

participant (instance), with relatively minor changes to the observed variables and

participant cohort happening between waves (Kaiser 2013).

Analysing longitudinal data may offer insights, for example, on cause and

effect patterns, on how an event affects a variable’s values, or how a pattern

evolves with time. Due to the high number of independent variables in these

studies, ML applications are often needed for performing holistic analyses (i.e.,

considering hundreds or thousands of independent variables simultaneously).

1.2 Supervised ML Applied to Longitudinal Age-

ing Data

Longitudinal datasets are a special case of temporal datasets (i.e., datasets that

store time-related variations of feature values), where the same set of instances

(e.g., patients) is followed through a number of points in time, denominated waves.

Longitudinal datasets from human ageing studies typically span several years, with
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longer intervals of time between waves, and measure a large amount of features.

Applying supervised ML techniques to longitudinal datasets from human age-

ing studies could lead to new insights on how the ageing process is affected by

variables from several different dimensions, and how these variables relate to each

other. The longitudinal data analysis techniques most frequently used in the

literature for these studies are based on classical statistics such as Structural

Equation Modelling (Mueller and Hancock 2018), which are usually parametric

(making strong assumptions about the data distribution) and often detect only

linear correlations in data. By contrast, as mentioned earlier, the use of more flexi-

ble non-parametric, non-linear supervised machine learning (ML) techniques have

been much less explored in the context of longitudinal data (Fabris, de Magalhães

and Freitas 2017).

Intuitively, analysing longitudinal data requires using all information available

simultaneously. This is corroborated in the literature by Hielscher et al. (2014)

who argue that using repeated measures brings better results than considering, for

example, only the most recent measurement of each variable. However, traditional

ML techniques do not consider the temporal information in longitudinal data,

creating a need for adaptations either on the data representation or on the ML

algorithms themselves, in order to use information from the underlying structure

of the temporal data to improve predictive performance.

1.3 Objectives and Contributions

For this research, we focus on the problem of predicting the diagnosis of age-

related diseases (a binary classification problem), using longitudinal data (mainly

biomedical and self-reported health data) collected over several years. Our aim

is to create models capable of receiving data about unseen instances and making

a prediction regarding whether the individual represented by that instance will

develop any of the target age-related diseases in the target (last) wave. We focused

on decision-tree based algorithms, namely Random Forests (RFs) (Breiman 2001)

and C4.5 decision trees (glsDT) (Quinlan 1993). Hence, we are able to generate

insights regarding what variables are more relevant for making those predictions,

or how the variables are related to each other, promoting further research on this

area.
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The models were trained and evaluated using data from 30 real-world longi-

tudinal datasets created and preprocessed for this research. The datasets were

created from three data sources (10 from each source), namely the nurse visit and

core questionnaires of the English Longitudinal Study of Ageing (ELSA), and the

questionnaire from the Irish Longitudinal Study of Ageing (TILDA). The ELSA

is a prominent ageing study based in the United Kingdom (Banks et al. 2019)

that follows thousands of participants from UK households over several years.

Its methodology is the basis for the TILDA, a more recent study that follows

participants from Irish households (Kenny et al. 2010). Both studies focus on

individuals aged 50 and over, and collect data about various aspects of their lives,

including biomedical variables such as blood and mobility test results performed

by professionals who visit the participants on given waves.

As mentioned earlier, longitudinal data has particular characteristics that may

make existing ML techniques less effective. These are: a large number of features

(variables), a high volume of missing data, the correlations between consecutive

measures of a variable, and temporal patterns in the data (Diggle et al. 2013). In

this thesis, we propose contributions in the process of learning knowledge from

longitudinal data using supervised ML, directly coping with the characteristics of

longitudinal data. We highlight the following specific objectives:

• To propose a missing value replacement approach to cope with longitudinal

data.

• To propose a preprocessing approach that adds constructed features as a rep-

resentation of temporal patterns into a longitudinal dataset.

• To propose an adaptation to tree-based classification algorithms that focuses

on longitudinal data inputs, which makes the classifier consider the temporal

nature of the data.

• To evaluate the predictive performance of the methods proposed in the first

three objectives in real-world data from longitudinal studies of ageing.

The proposed contributions focus on these specific objectives, as described in

the following Sections.
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1.3.1 A data-driven missing value replacement approach

The first main contribution of this thesis is a data preparation approach to cope

with the high volume of missing data that is characteristic of longitudinal studies

of ageing. The proposed approach uses a set of missing value replacement (MVR)

methods to estimate each missing value in the dataset. First, it performs a feature-

wise ranking of the MVR methods using their average estimation errors for that

feature, calculated in an internal cross-validation that uses the known values of

the feature as ground truth. Then, the approach applies the MVR methods for

each feature using the ranking as a priority list, going through the methods until

it finds one that is applicable, thus replacing every missing value in the dataset.

For our experiments, we chose methods from basic statistics, a ML method,

and methods devised specifically for longitudinal data. We performed two series

of experiments to evaluate our proposed data-driven MVR approach. The first is

a classifier-independent comparison that calculates the average estimation error

and applicability (percentage of missing values replaced) for each method. The

second is a classifier-dependent comparison of models created from datasets that

used each of the MVR methods in our set, as well as a baseline of not performing

imputation and letting the classification algorithm cope with the missing values

during training.

1.3.2 Constructed temporal features for longitudinal datasets

The second main contribution is the proposal of a series of Constructed Temporal

Features (CTFs), created from the original features in the dataset and added to

it to increase predictive performance. The CTFs are created to directly represent

possible temporal patterns in the data, such as monotonic increase/decrease over

time, or how an instance’s value compares to values from individuals with the

same age. We perform experiments with six different types of CTFs, and three of

them are novel contributions of this work.

Our proposal was to add all six types of CTFs to the longitudinal datasets in a

data preprocessing step, prior to training the models. We performed experiments

with adding each type of CTF individually, as well as adding all of them together.

In the experiments, we compared three feature sets, namely a baseline of using

only the original features, a feature set comprised only of constructed features,
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and the proposed approach of combining original and constructed features in a

single dataset.

1.3.3 A lexicographic bi-objective split for decision tree-

based classification algorithms

The third and final main contribution of this thesis is an adaptation to decision

tree-based classification algorithms for coping with longitudinal data. The adap-

tation adds a bias in favour of feature values measured in the more recent waves

(time-points), following an intuitive notion that such recent feature values are

more closely related to the target (class) variables, which are measured in the

final wave of the dataset. This is done by changing the data-split function in

decision tree-based classification algorithms in such a way that makes them bi-

objective, so that in addition to considering the information gain ratio (or other

entropy metric) as a measure of a feature’s quality, it adds the time-index (wave

id) of the feature as a tie-breaking criterion. That is, when the gain ratios of two

candidate features are very similar, the data-split function chooses the feature

that was most recently measured.

In order to determine when two candidate features have “equivalent” informa-

tion gain ratios, we added a threshold parameter, defined by the user, so that if the

difference between two gain ratios is smaller than the chosen threshold, the fea-

tures are considered tied. However, to avoid the issues caused by having an added

parameter, we also propose an automated data-driven threshold selection, which

chooses a threshold value based on an internal cross-validation process with the

training instances. Thus, the new parameter can be chosen automatically based

on the available data.

The proposed adaptation is tested with Random Forest (RF) classifiers (Breiman

2001), which are ensembles of decision trees, and with decision trees learned by the

well-known C4.5 algorithm (Quinlan 1993). We performed experiments evaluat-

ing the lexicographic split approach with and without the added aforementioned

CTFs, first comparing the proposed automated threshold selection with fixed

threshold values (representing user choices), and then comparing the standard

split criterion with the proposed lexicographic split approach.
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1.3.4 Evaluating the classification models on real-world

data

Another contribution of our work is the fact that all our models are evaluated using

four predictive accuracy measures, using the 30 datasets created from real-world

data created for this thesis. The samples from the source studies are representative

of the populations of the United Kingdom (ELSA) and Ireland (TILDA), and the

chosen problem of predicting the diagnosis of age-related diseases is particularly

relevant given the populational ageing phenomenon.

Therefore, in Chapter 6 we analysed the best classification models generated

during our research, as a contribution to the study of human ageing. For this

analysis, we created Random Forests and C4.5 decision trees for the datasets that

had the best results in our evaluation, for each data source. For each of the selected

models, we discuss how the most important predictive features are associated with

the target variables in the literature, citing peer-reviewed medicine research.

1.4 Thesis Structure

Chapter 2 contains a background review on supervised ML, with a focus on the

classification task, and on decision trees and Random Forests (the types of clas-

sification algorithm most relevant to this research). This review contains all the

information the reader requires to comprehend our work, and various references

to sources for deeper study.

Continuing the review of the literature, we surveyed supervised ML publica-

tions that used data from longitudinal studies. In Chapter 3, we include a review

of related works, within the context of how longitudinal data is represented and

coped with by supervised ML algorithms. In this Chapter we also propose a

new taxonomy of approaches to cope with the temporal information associated

with longitudinal data. This contribution can help researchers starting their own

projects to organise the existing literature, and identify the most important works

for their research.

In Chapter 4 we report the creation and preprocessing of 30 longitudinal

datasets created from the English and Irish Longitudinal Studies of Ageing (ELSA
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and TILDA, respectively), with the diagnosis of age-related diseases as their bi-

nary target variables. The main contribution in this Chapter is a novel data-driven

missing value replacement approach that performs a feature-wise selection of the

best strategy to cope with the missing data, based on an internal cross-validation

process.

After preprocessing the datasets in the previous Chapter, we move on to enrich-

ing them with Constructed Temporal Features (CTFs) in Chapter 5. We propose

3 novel types of CTFs and experiment with adding 6 types of CTF, individually

and simultaneously, to the longitudinal datasets.

Our final main contribution is an algorithm-adaptation approach presented in

Chapter 6: a lexicographic bi-objective split approach for decision tree-based clas-

sifiers. The proposed modification adds the time-index (wave id) of a feature as a

tie-breaking criterion when selecting a data-split feature in a decision tree, adding

a bias in favour of more recent feature values. In this Chapter we also interpret

the best models created in our research, as a human ageing study contribution.

Finally, in Chapter 7 we summarise the contributions of our work, and present

our conclusions and suggestions for future research.

1.5 Publications Derived from this Research

The following papers were published or accepted for publication during the course

of this research, based on our results. For each publication, we briefly mention its

main contributions. The only publication that was not peer-reviewed in this list

is the book chapter, which was an invited book chapter.

Journal publication

C. Ribeiro and A. A. Freitas. (2021). “A data-driven missing value imputa-

tion approach for longitudinal datasets”. Artificial Intelligence Review, 30 pages.

DOI https://doi.org/10.1007/s10462-021-09963-5. In this article we define a novel

missing value replacement approach that employs a series of methods, including

some devised specifically for longitudinal data, using the known information in

the dataset to estimate the best option for replacing each missing data point.
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Conference publications

C. Ribeiro and A. A. Freitas. (2020).“A New Random Forest Method for Longitu-

dinal Data Classification Using a Lexicographic Bi-Objective Approach”. Proceed-

ings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI),

pp. 806-813. IEEE. This paper defines an algorithm adaptation for tree-based

classifiers, tested on the Random Forests algorithm, that changes the split feature

selection function to consider temporal information in longitudinal data inputs.

It also has a contribution about propagating predicted class values from earlier

waves which is not mentioned in this thesis, as it was considered out of scope.

C. Ribeiro and A. A. Freitas. (2021). “Constructed Temporal Features for

Longitudinal Classification of Human Ageing Data”. Proceedings of the 9th IEEE

International Conference on Healthcare Informatics (ICHI’21), 7 pages. IEEE.

In this paper we define six constructed features that explicitly represent temporal

information in longitudinal data, to be added in a preprocessing step for any

longitudinal machine learning application.

Short-papers published on workshop proceedings

C. Ribeiro and A. A. Freitas. (2019). “Comparing the effectiveness of six missing

value imputation methods for longitudinal classification datasets”. Proceedings

of the 3rd Workshop on AI for Aging, Rehabilitation and Independent Assisted

Living (ARIAL) - held as part of the IJCAI-19 international conference. 5 pages.

This short-paper defines a data-driven comparison of different missing value re-

placement approaches that uses known values in the dataset as ground-truth. This

was later expanded in the 2021 article mentioned earlier.

C. Ribeiro and A. A. Freitas. (2019). “A Mini-Survey of Supervised Machine

Learning Approaches for Coping with Ageing-Related Longitudinal Datasets”.

Proceedings of the 3rd Workshop on AI for Aging, Rehabilitation and Independent

Assisted Living (ARIAL) held as part of the IJCAI-19 international conference. 5

pages. This short-paper defines four methods of representing longitudinal datasets

in machine learning applications, and how these representations affect the project.
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Book chapter

F. Pereira, T. Oliveira, A. Duarte, J. Henriques, S. Paredes, T. Rocha, P. Car-

valho, C. Ribeiro and A. A. Freitas. “Chapter 26 Machine learning in the context

of better healthcare in aging” – To appear in: “Aging: From Fundamental Biology

to Societal Impact”. Elsevier. This book chapter summarises some of the contri-

butions in the papers mentioned earlier, namely the lexicographic split and the

data-driven missing value replacement, in the context of healthcare applications

that employ machine learning techniques.
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Chapter 2

Background

In this Chapter we discuss the concepts and methods of supervised machine learn-

ing (ML) related to the work carried out for this thesis. This Chapter is organised

as follows. In Section 2.1, we define the classification and regression tasks of super-

vised ML. Section 2.2 contains a more in-depth discussion of some of the specific

challenges around classification problems, followed by a discussion about evaluat-

ing and comparing different classifiers in Section 2.3. Sections 2.4 and 2.5 review

the two types of supervised machine learning algorithms that are relevant to our

work, namely decision trees and random forests, respectively. Finally, Section

2.6 has our representation of longitudinal datasets as inputs for machine learning

algorithm, used throughout this thesis.

2.1 Supervised Machine Learning

The task of creating algorithms able to learn a model from a set of training

instances (examples) and then using the model to predict a target variable’s value

in a separate set of instances, called testing instances (unobserved during training)

is named supervised machine learning (ML).

In supervised ML, a target variable can either have continuous values, which

characterises a regression problem, or nominal (or categorical) values, character-

ising a classification problem. Models created by supervised learning processes

can be used in many areas with complex problems, such as biology, finance and

physics. In addition to the predictions of target variable values they provide, the

models themselves can often be analysed for insight regarding the collected data
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and relationships between variables (Jiang, Gradus and Rosellini 2020).

Supervised ML problems require that the datasets be composed of instances

(records of cases, or objects) and features (characteristics of each object). The

features must be the same for all instances, and typically they take either nom-

inal (categorical values that can be ordered or unordered, which changes how

the feature can be interpreted and treated) or numeric (often continuous) values

(Quinlan 1993).

2.1.1 Regression

In regression problems, the algorithm creates a model from a set of instances

and aims to correctly predict the value of a continuous target variable for testing

instances. There are many applications for regression algorithms, such as weather

forecasting, stock prediction, measuring the effects of drugs, etc. In this text, we

will focus on linear regression methods, which produce a linear model as described

by Equation 2.1, since they are more relevant to our work.

y = β0 + β1x1 + β2x2 + ...+ βdxd (2.1)

Where y is the target (dependent) variable. X1, ..., Xd are the features (indepen-

dent variables) and d is the number of features in the dataset. β1, ..., βd are the

weights (coefficients) applied to the corresponding features, and β0 is a constant.

The main assumption made by a linear regression model is that the features

used to predict the dependent (target) variable’s value are linearly independent.

That is rarely the case in practice, and it is also difficult to prove that a set of

features is the best to predict a given target variable. When learning a linear

model, the goal is to find a set of features that are as independent from each other

as possible and, at the same time, as related to the target variable as possible.

The most common estimate of the predictive accuracy (or error) of a regression

model is through its root mean squared error (RMSE), depicted in Equation

2.2. The RMSE is measured in the same scale as the target variable, which

can help interpretation, but this can make the results misleading when comparing
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regression models for different problems.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(2.2)

where yi is the actual value for the ith observation (instance), ŷi is the predicted

value, and n is the number of instances.

A well-known regression analysis method, which is mentioned in the Chapter

3 (where we discuss the related works), is the Lasso (least absolute shrinkage

and selection operator), which learns from the data a linear model in the form

of Equation 2.1, by solving the optimisation problem in Equation 2.3 (Tibshirani

1996). The Lasso works under the assumption that, among a large set of features

used as predictors to determine a target variable’s value, only a small subset of

them are actually important for that prediction. The method adjusts the feature’s

weights (the β coefficients in Equation 2.3), ultimately making many of them

have no prediction power (zero weight). This is achieved by using the constraint

in the last part of Equation 2.3, which forces the sum of the absolute values of

the regression coefficients to be less than or equal to a threshold t. The Lasso

performs a feature selection that achieves, in general, good predictive accuracy

if the linear regression model is appropriate for the data, while simultaneously

making the model more interpretable, since fewer variables are considered.

min
β0,β

{
1
n

∑n
i=1(yi − β0 − βixi)2

}
subject to

d∑
j=1

|βj| ≤ t (2.3)

The fused Lasso is a variation of this method devised to account for spatial

or temporal information in the data (Tibshirani et al. 2005). By assuming that

the features in a dataset can be ordered in a meaningful way, the fused Lasso

adjusts the weights of the features and of their temporal (or spatial) successors,

maintaining the relation between those features. In other words, if a given feature

is penalised by the fused Lasso weight adjustment, the features that are temporally

(or spatially) related to it (such as a repeated measure for the same variable in a

longitudinal dataset) are adjusted accordingly.
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2.1.2 Classification

Let the target variable of a supervised ML problem take a known set of nominal

values, called labels. The classification task consists of, given a training set of

labelled instances, creating a model (called classifier) for correctly predicting the

label of an unknown-class instance – i.e., an instance in the testing set.

The most common configuration of a classification problem is the binary classi-

fication, where there are two possible outcomes, usually called positive or negative,

and each instance is assigned one class label. Other configurations, which have

different challenges and specific heuristics and algorithms proposed for them, are

multi-class problems, with more than two labels, and multi-label classification

problems where each instance is assigned multiple classes (Tsoumakas, Katakis

and Vlahavas 2009). Classifiers can be applied in a wide variety of pattern recog-

nition problems in different areas, such as face detection, handwriting recognition,

predicting protein function, etc (Bishop 2006).

In summary, classification models must make a decision between distinct labels

for instances in the testing set, using the information from the feature (indepen-

dent variable) values of these instances. There are many aspects that affect the

performance (predictive accuracy) of a classifier, some related to the data col-

lection and preparation process, and others related to the chosen classification

algorithm, for learning the model. This thesis focuses on the binary classification

task of supervised machine learning, so we will go more in depth about the intrica-

cies of classification problems, including how to evaluate and compare classifiers,

in the following Sections.

2.2 Challenges for the Classification Task

In this Section we discuss various aspects of supervised learning that make the

classification task challenging. Each of these is the focus of entire research projects,

but all of them need to be addressed in some way for any classification project.

In Chapter 4 we discuss in detail how each of these challenges is addressed in our

project.

16



2.2.1 Data collection

For real-world data, the process of creating a dataset for use in supervised ML

starts at the process of collecting data. This collection can be from automated

storage from computer programs (e.g., business transactions in a company), mea-

surements taken by specific tools (e.g., temperature and pressure measurements

in a meteorology station) , or human input (e.g., data from interviews, exam re-

sults or questionnaires). The focus on this work is on human input data from

longitudinal studies of ageing, mainly taken from questionnaires filled by health

professionals or by the participants of the studies.

A classification model needs to be trained with an adequate number of training

instances to be robust enough to be considered reliable when predicting the target

variable’s value for unknown instances. Naturally, more complex problems often

require more data to build a reliable predictive model. In addition, the quality

of the instances also influences in the quality of the model. The data collection

process is designed to provide enough data about the problem domain to allow

for in-depth studies about the variables in the database.

For real-world datasets, it is common to have imprecise values (noise) for some

instances, in all features including the target variable, due to errors in measure-

ment or input (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos 2015). The

values of the target variable are particularly important, as the entire classifier is

built for predicting them. If the ‘ground truth’ is inaccurate for a large number

of the training instances, the model’s predictive performance is hindered, and the

classifier might be rendered useless. Therefore, minimising noisy data, particularly

in the target variable, is an important part of creating the dataset for machine

learning.

The data collection process generates databases that are used as sources for

the creation of ML datasets (some projects require multiple data sources to create

a single dataset). These datasets should go through a cleaning (removing du-

plicates, insertion errors, outliers, etc.) and, when possible, enhancing (missing

values replacement, transformations in the data, etc.) process, to improve the

classification model’s reliability (Garćıa, Luengo and Herrera 2015).

17



2.2.2 Feature selection

In the data collection process, as acquiring and storing data becomes cheaper,

the database designers tend to measure a large number of variables related to the

domain problem, which typically results in high dimensional databases. This adds

unwanted complexity to the problem and may hinder the performance of the ML

algorithms (Verleysen and François 2005). The ideal dataset for ML is composed

only of features highly related to the target variable, and these features should be

as independent of each other as possible.

Feature selection (FS) is the task of finding the optimal subset of features

for an input dataset, given a feature subset evaluation function to be optimised

(typically based on a feature subset’s predictive power). In this Section, we discuss

FS as a data preprocessing task, rather than the “embedded” FS approach, where

features are selected during the construction of the classification model.

In the context of ML, the mains gains of performing this task come from the

added interpretability and improved prediction performance of the model (Bolón-

Canedo, Sánchez-Maroño and Alonso-Betanzos 2015). A well performed FS can

significantly improve the predictive power of a model, if the right features are

kept and irrelevant or uninformative features (i.e., too noisy features, or features

that are too correlated with others) are correctly identified and removed. Feature

selection is also used to reduce chances of overfitting, since having fewer irrelevant

features in the dataset reduces the chances of the model incorporating unnecessary

information.

The FS task can be performed manually, with the help of descriptive statistics

and domain knowledge, but there are also many different automated FS tech-

niques proposed in the literature. Algorithms for FS can be categorised as filters,

wrappers, or embedded techniques (Chandrashekar and Sahin 2014). Filters apply

a quality function independent from the ML algorithm, and are typically faster

but make strong assumptions about the data. Wrappers use the performance of

models generated with different subsets to compare them, which is computation-

ally expensive but makes no assumption about the independence of predictive

features. Embedded techniques reduce the feature set as the model is created, as

part of the ML algorithm that generates the model.
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Feature selection techniques can be adapted to better handle the specific as-

pects of longitudinal datasets (Tsagris, Lagani and Tsamardinos 2018). For ex-

ample, we expect correlation on longitudinal data between features representing

the same variable, measured in different time-points, so the FS technique needs to

take that into account. Moreover, the inclusion of the time-axis into the dataset

often leads to a high-dimensionality scenario (Adhikari et al. 2019; Ribeiro et al.

2017), which can be prohibitive for some FS techniques, but also increases the

need for an initial reduction of the feature set.

Finding an optimal subset is a combinatorial task, so FS is a NP-Hard problem

(Amaldi and Kann 1998). The FS task can be the focus of an entire research, as

it is a challenging task that can generate new insights on the data, and further

understanding of complex problems.

2.2.3 Missing data

It is common in ML datasets to have some unknown values of features for some

instances, due to various different reasons. Instances with missing values add un-

certainty to the data, and can hinder the prediction capabilities of the supervised

ML method. Many ML algorithms have some built-in form of dealing with missing

data, but we can also employ some data preparation techniques to estimate values

for (or remove) missing values in a dataset. Note that, sometimes, the presence

of a missing value can provide useful information, e.g. the result of a medical

test (feature) may be missing because the patient does not need or cannot do the

exam.

A simple way to handle missing values in datasets is to delete instances or

features that have too many missing values, reducing the dataset size. However,

this approach also throws away known values in the deleted instances or features.

For a deletion strategy, as a case by case analysis is often not possible, one would

need to establish a threshold on the maximum acceptable frequency of missing

values for either an instance or feature, for example, deleting features with more

than 20% of missing values.

Another common strategy to handle missing values is to replace them with

an estimated value based on other information present in the dataset. On a non-

temporal dataset, a missing value is typically replaced by the mean or mode of
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the known feature values, for numerical and nominal features, respectively. On a

longitudinal dataset, there is the added possibility of using information from other

time-points, such as the last observation carried forward (LOCF) method, which

replaces a missing value by the last known value for that feature, from the same

instance, in past time-points of the dataset (Minhas et al. 2015). It is also possible

to apply a supervised ML algorithm to estimate missing values, by setting a feature

with missing values as the target variable, using the other features as predictive

features, and using the predictions as estimations. However, this approach is very

computationally expensive when the dataset contains many features with missing

values (Rahman and Davis 2013).

Choosing a strategy for estimating missing data in a dataset is a challenge

because, both in theory and in practice, no method for calculating imputation

values is the optimal choice for all types of features and datasets (Diggle et al.

2013; Hu et al. 2017; Mallinckrodt 2013). The relative performance of a method

depends on several factors, such as: a) the data distribution (Santos et al. 2017);

b) how the missing values occur in the dataset (missing completely at random,

missing at random, or missing not at random) (Diggle et al. 2013; Mallinckrodt

2013); c) the proportion of instances with missing values; d) the availability of

information that can be used to make better imputation. Therefore, when a

dataset has a large volume of missing data, one should dedicate some time and

effort in selecting the best way to handle this issue.

2.2.4 Overfitting

A major issue faced by classifiers is the possibility of overfitting to the training

data, which hinders the model’s ability to generalise, increasing its prediction

errors when classifying previously unseen testing instances (Bramer 2007). Over-

fitting also adds complexity to the model, due to irrelevant features being added

as predictive features, which makes the model harder to interpret, even when it

does not harm the model’s performance (Fawagreh, Gaber and Elyan 2014).

Overfitting is easily identified when the model performs well on its training

data, but significantly worse on testing data. An overfitted model might lead to

the misclassification of instances that are not similar enough to any instance in

the training set.
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This can happen for different reasons, many of those are related to the data

collection task, as discussed earlier. The model’s construction can be affected by

noisy data in the training set, those being either irrelevant features, instances that

are outliers or a wrong value in the target variable. Furthermore, the training set

is a sample of the real population relevant to the problem, and that sample might

not be representative of all possible cases or scenarios.

However, in the context of classification problems, a common cause for overfit-

ting is class imbalance, where the class distribution is highly uneven. Imbalanced

classes can introduce bias in favour of the majority class, because of the ways

models are constructed to maximise quality measures such as accuracy (i.e., a

guess for the majority class has a higher chance of being correct, so the model is

more likely to take it). In real-world datasets, it is common that the class which

is the most important to predict is the one with fewer available instances in the

training set, such as diseased patients, fraudulent clients, defective machines, etc.

Therefore, it is important to handle the class imbalance, either in the design of

the algorithm or in a data preprocessing stage (Kaur, Pannu and Malhi 2019).

There are several strategies to reduce overfitting, implemented in classification

algorithms either during the creation of the model or as a posterior adjustment,

such as pre-pruning and post-pruning in decision trees, discussed later on. Im-

portantly, there is also the concern of underfitting a model to the training data,

where the opposite problem happens: the model becomes so generalised that it

does not reflect the underlying data relationships represented in the training set.

2.2.5 Class imbalance

Many binary classification problems involve datasets where the number of in-

stances in the minority class represents only a small portion of the available data,

but correctly classifying an instance as a part of the minority class is the most

important aspect of the problem. There are many methods devised specifically for

this type of problem, sometimes referred to as rare-event mining (Haixiang et al.

2017), and the most common method for the classification task of machine learn-

ing is to manipulate the training data in an effort to reduce the class imbalance.

Class imbalance handling methods can be summarised as follows. By artificially

changing the proportions or misclassification cost of instances of each class in the
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training set, we skew the classification algorithm into generating models that put

more priority to the minority class, making it more likely to classify previously

unseen instances as minority class instances. Naturally, the test set should not be

changed, as it needs to represent the real observed proportions in the data.

The proportion of instances of each class that will be represented in the bal-

anced training dataset has to be chosen apriori, and is typically 1:1 (for each

instance of the minority class, one instance of the majority class remains in the

dataset). There are two base strategies for changing the class ratio in a train-

ing dataset: reducing majority class instances (undersampling) or increasing the

number of minority class instances (oversampling) (Kaur, Pannu and Malhi 2019).

Undersampling is a class balancing approach that consists of (usually ran-

domly) removing instances of the majority class from the training dataset, to

reduce bias in favour of the majority class. The model is trained with the bal-

anced dataset and then validated in a test set with the original (real) distribution

of instances from each class, hopefully performing better due to the reduced bias.

The trade-off for undersampling approaches is that, by removing instances from

the majority class, the classifier creates models without using all the information

available in the training data. Instances ignored by the undersampling process

potentially represent relevant information for the creation of the model.

On the other hand, oversampling methods increase the number of minority

class instances, reducing the class imbalance of the dataset without removing ma-

jority class examples. This can be achieved either by re-sampling instances of the

minority class (i.e., creating copies of them in the training set, which is the same

as increasing their individual weight) or by artificially creating new minority class

instances, using existing information. The trade-off for oversampling approaches

is that the added minority instances can negatively impact performance. Copied

minority class instances may overfit the model, reducing the classifier’s ability to

generalise for unseen instances, and added synthetic instances might not accu-

rately reflect the reality of the problem being studied.

Some studies compared different approaches for handling class imbalance in

tree-based classifiers, and concluded that both undersampling and oversampling

can be effective, in general (Drummond, Holte et al. 2003; López et al. 2013; Yap

et al. 2014). One strategy to mitigate the downsides, and combine the advantages,

of applying undersampling and oversampling methods is to combine them into
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a hybrid approach (Effendy, Baizal et al. 2014). Hybridising two or more class

imbalance handling methods requires a decision of how each method will affect the

class imbalance of the training set, with the classical approach being combining

an oversampling method to raise minority class instances to 50% of the initial

dataset’s size, and an undersampling method to reduce majority instances down

to 50% of the initial dataset’s size. This results in a dataset with the original

number of instances, but with a class ratio of 1:1.

The datasets used in our experiments have a severe class imbalance ratio (IR).

We chose to investigate variations of the undersampling strategy, as described in

Section 4.7.1 to mitigate this issue. We chose undersampling instead of oversam-

pling as the former is more computationally efficient. In addition to that, we

also wanted to avoid creating artificial instances in biomedical and health data

datasets. Then, we perform experiments in our data preprocessing Chapter, com-

paring two undersampling approaches for Random Forest (RF) classifiers.

2.3 Evaluating and Comparing Classifiers

When choosing strategies in a classification task, we need to be able to compare

different classification models. There are three main considerations when choosing

between different options: how efficient the algorithm is for training a model

and classifying new instances, how interpretable the model is and, often most

importantly, the accuracy of the predictions made by the model.

Efficiency can be an important consideration for applications with large vol-

umes of data to be analysed, or high frequency of use of the model. If a model

needs to constantly make predictions, for example in an on-line learning problem,

the time it takes to classify previously unseen instances becomes more important.

Similarly if the training time increases exponentially with the dataset size, an algo-

rithm may not be recommendable for some problems, even though its predictions

are more accurate.

Regarding model interpretability, some algorithms generate “black box” mod-

els that, although accurate, are very difficult to be interpreted by the user. This

may reduce trust in the model, and users that do not understand how a prediction

is made might disregard them entirely (Freitas 2014; Caruana et al. 2015). As

mentioned earlier, analysing the models themselves can bring insights into the
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complex problems where ML is applied, such as highlighting important features

for a classification problem. Therefore, classification algorithms that generate

interpretable models are generally preferable (Rudin 2019), especially for recom-

mendation applications where the user’s trust in the model is an important factor.

Finally, the quality of a classifier is determined by how accurate its predictions

are for unseen instances. The point of keeping the testing instances from the

classifier, to then compare its predictions of test data to the ground truth, is

that we hope that the model will be able to match its testing performance in

the future, when unlabelled data needs to be labelled. Naturally, this depends

on how representative the sample is, and how much the problem changes in the

future samples.

2.3.1 Measuring predictive performance

In order to evaluate the predictive performance of a classifier, we look into its

predictions on the testing set, for each class label separately (i.e., making a class

label the positive class). Considering a binary classification problem, a prediction

can have one of four outcomes:

• True positive (TP): The model correctly classified an instance as positive.

• False positive (FP): The model wrongly classified an instance as positive.

• True negative (TN): The model correctly classified an instance as nega-

tive.

• False negative (FN): The model wrongly classified an instance as negative.

Naturally, the goal of a predictive model is to increase the rates of TP (True

Positive classifications) and TN (True Negative classifications), which signify cor-

rect predictions, as much as possible. We can analyse the TP and TN rates

individually, as local performance metrics, but it is also important to consider

both types of prediction at once, with global performance metrics that consider

both classes simultaneously. Several predictive performance measures are based

on the above rates, and in this thesis we use the following four evaluation metrics

(Japkowicz and Shah 2011):
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• Sensitivity (or Recall): a local metric of the true positive rate (given

by Equation 2.4, where # denotes “the number of”). For problems where

false negatives are the least desirable outcome, such as clinical diagnosis

applications, the ML algorithm needs to maximise mainly Sensitivity.

• Specificity: a local metric that represents the true negative rate (given by

Equation 2.5). It is a complementary measure to Sensitivity.

• Accuracy: the fraction of correct predictions made by the model over all

predictions (given by Equation 2.6). This is a widely used global perfor-

mance metric, however in highly imbalanced datasets the majority class has

a much bigger impact on Accuracy, which can mask bad results for the

minority class in a model.

• GMean: The geometric mean between Sensitivity and Specificity (given by

Equation 2.7). This is another global performance metric, but it gives the

exact same weight to both classes regardless of the class distribution in the

data.

Sensitivity =
#TP

#TP + #FN
(2.4)

Specificity =
#TN

#FP + #TN
(2.5)

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
(2.6)

GMean =
√
Sensitivity ∗ Specificity (2.7)

To better illustrate the aforementioned issue with the Accuracy metric con-

sider, for example, a case where 90% of the testing instances belong to the positive
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class, and 10% to the negative class. In this case, a classifier that simply guesses

the positive class for every testing instance (regardless of its features’ values) would

have a Accuracy of 90%, even though it has no predictive power. Its GMean value

would be 0, however, correctly reflecting this issue. Note that because GMean is

calculated as a square root of a multiplication, it changes the scale of the values

such as a GMean value close to 0.5, for example. has a different meaning than

it would for Accuracy. This is desirable because of the effect is has on examples

such as the one mentioned here, which keeps overfitted models from appearing

successful, but it is important to remember this change when interpreting GMean

results.

The area under the ROC curve is another quality measure frequently used

to evaluate classifiers. The true positive rate (Sensitivity) is plotted in the Y-

axis against the false positive rate (1 − Specificity) in the X-axis, generating the

Receiver Operating Characteristics (ROC) curve, as a threshold for the probability

of the positive class is varied. The ROC curve can be used to visually demonstrate

the ability of a predictive model to distinguish between two classes. The biggest

the area under the ROC curve, the better the model (Centor 1985; Flach 2016).

2.3.2 Statistical tests for comparing classifiers

In addition to using predictive performance metrics such as Accuracy and GMean,

it is useful to perform statistical tests to determine whether the difference in

performance between classifiers is statistically significant or not.

Statistical tests are used to increase our confidence that observed results did

not happen due to chance. They often output a measure of probability called

p-value, which is compared against a significance level α, chosen by the user, to

determine whether the null hypothesis of the test can be rejected (p-value< α) or

not. In most statistical comparison tests the null hypothesis is that the samples

being compared are from populations with the same distribution. In our context,

this would mean that the classifiers had equivalent performances. Thus, if the

null hypothesis of a test is rejected, we can claim with a confidence level of 1− α
that the classifiers’ performances are not equivalent (Demšar 2006).

There are various tests in statistics that can be used for this type of com-

parison, and their adequacy for a given situation depends mainly on the data
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distribution, sample size and method, and dependence relationships between vari-

ables (Japkowicz and Shah 2011). Over the course of this thesis, we perform

experiments comparing different techniques using multiple (up to 30) longitudinal

datasets. For all our comparisons, we chose non-parametric rank-based tests to

avoid having to assume a normal distribution of the data (Higgins 2004, Chap-

ter 4), which is necessary for several other statistical tests that could be used to

compare classifier results. The tests used in this thesis are the following.

When comparing more than two approaches at once, we use the Friedman’s

test, a rank-based non-parametric version of ANOVA with repeated measures

(Friedman 1940). The Friedman’s test can be used to compare the performance

of several classification models simultaneously, and infer whether their results are

statistically equivalent or not. In the latter case, a second, non-parametric, post-

hoc statistical test would be required to determine whether or not different pairs

of models have equivalent performance.

For Chapter 4, the chosen post-hoc non-parametric test was the Wilcoxon

signed-rank text (Wilcoxon 1992). This test is traditionally used to compare only

two approaches, but we used it in a pairwise comparison for these experiments be-

cause we focused on comparing our proposed approach against each of the others.

Note, however, that when performing multiple comparisons simultaneously, it is

recommendable to adjust the target α value to avoid getting significant results

due to chance. This is because, over multiple consecutive comparisons, a signifi-

cance level of, say, 95% will eventually yield a false result. So, in these tests, we

used Holm’s procedure for multiple tests (Holm 1979). In essence, the procedure

adjusts the α value for each pairwise comparison, based on the number of tests

being done and the rank of each comparison’s p-value (i.e., the α value gets closer

to zero as the number of consecutive comparisons increases, reducing the chances

of wrongly assigning significance in a comparison due to chance).

The post-hoc non-parametric test we chose for the multiple comparisons with

significant Friedman p-values in Chapters 5 and 6 is the Nemenyi test (Nemenyi

1962), which is more suitable for comparing multiple approaches simultaneously.

We use the Nemenyi test to perform a pairwise comparison of the different clas-

sifiers, and determine which pairs had significantly different results.
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2.4 Decision Tree Algorithms

One of the traditional types of classification methods are decision tree algorithms,

which produce a graphical classification model in the form of a tree (Quinlan 1993).

In a decision tree, each node corresponds to either a feature (internal node) or

a class label (leaf node). An example is shown in Figure 2.1. Each edge coming

out from an internal node corresponds to a path for a value or range of values

of that node’s feature. When classifying an instance, we start at the root node

and, according to the value of the root node’s feature, follow one of the possible

paths further down the tree, testing the values of the features in internal nodes

to choose the next path, until a leaf node is reached and the class is decided.

Figure 2.1: Decision tree example.

The decision tree learning strategy belongs to the divide-and-conquer paradigm,

which breaks a complex problem into smaller sub-problems recursively, until the

sub-problems are small enough to be solved, and then combines the solutions to

the sub-problems into a final solution to the initial problem. When building a

tree from a training set, the root node contains all training instances, and at each

subsequent branching, the training set is divided into subsets of instances which

belong to each path of the tree, therefore subsequent nodes are trained with fewer

instances. This reduces training time, but also reduces the reliability of the in-

formation found at lower levels of a decision tree, because they are based on less

evidence (information from fewer instances). Hence, among two or more trees

that are consistent with the training set, in general the smallest tree is preferred.

The problem of finding the smallest decision tree consistent with a training
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set is NP-Complete (Hyafil and Rivest 1976), which creates a need for heuristic

approaches for tree-building. Most decision-tree algorithms are non-backtracking

greedy methods. That means that the decisions about which feature to use for

an internal node and how to partition the data based on that feature’s values is

made based on the local training set at the current node, and is not revisited at

any point. That decision is usually made on the basis of maximising some local

measure of predictive power such as the Information Gain (IG) (Quinlan 1993).

In addition to being fast, decision tree algorithms have the advantage of not

making assumptions about the distribution of feature values (Quinlan 1993).

2.4.1 Interpreting a decision tree

A great advantage of decision trees is that they are easy to interpret – as long

as the tree is not too large. The embedded feature selection performed by the

tree constructing method makes it so that typically a decision tree contains only

a subset of the input features. This makes interpreting the model easier, since the

chosen features (and cutting points chosen by the algorithm to split the data) are

more relevant than those left out by the algorithm (Freitas 2014). In addition,

broadly speaking, features at higher nodes are more relevant for classification than

features at lower nodes, since the former tend to be used to classify more instances.

Since there is only a single path that leads from the root node to each leaf

node of the tree, every tree can be represented by a set of classification rules - one

rule for each leaf node (Quinlan 1987a). Classification rules produced by decision

trees have the form: IF (condition) THEN (class), where the condition is the set

of tests performed in all nodes belonging to a path that leads to the leaf node

with a given class. This representations loses the natural hierarchy of the graph

representation of the decision trees, so we no longer know which features were

more or less relevant to reach the conclusion.

Bologna and Hayashi (2018) compared rules generated by 3 different supervised

ML techniques on datasets from 25 binary classification problems, measuring the

overall fidelity (degree of matching between the model’s and rules classifications)

and rule size of the generated set of rules. They concluded that a decision-tree

based technique, Boosted Shallow Trees (Vezhnevets and Vezhnevets 2005), gen-

erated the set of rules with overall the smallest size and the highest fidelity.
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2.4.2 Split evaluation functions

Decision tree algorithms use a split evaluation function to select the best feature

at each internal node and to decide how to best split the feature values into

paths that will lead to an accurate classification of the instances. These split

evaluation functions typically analyse, for each possible branching, what is the

class distribution of the resulting subsets of instances that would be created. The

chosen branching is the one that divides the dataset into subsets such that, in

each subset, as many instances as possible belong to a single class.

A popular split evaluation function is the Information Gain (IG) measure,

which is based on entropy, a measure from information theory that represents the

amount of uncertainty in the data. For a classification problem, this uncertainty is

the presence of more than one class in a dataset, so a subset of data that contains

only instances of a single class would have no entropy, whereas a subset with the

same ratio of instances of each class would have the highest possible entropy value.

Entropy-based splits have the property of continuously decreasing the entropy

of the subsets, meaning each branching will result in subsets with an entropy value

that is lesser than (or equal to) the previous one, and the greater this difference,

the greater the gain from that split. The IG is a calculation of how much gain a

branching on a given feature (on a given split point) will bring, and the algorithm

chooses the split with the greater IG at each branching. The recursive branching

process of creating a decision tree stops when the entropy of all resulting subsets

is zero (Quinlan 1987b).

An important weakness of the IG is that it is biased towards features with more

values, as those are more likely to be able to divide the data with small subsets

with low entropy (Quinlan 1993). For this reason, that measure was modified

into the Information Gain Ratio (IGR), which is the measurement used in the

split function for our experiments. The IGR avoids the aforementioned bias of

the IG by dividing it by a correction factor that takes into account how many

data subsets will be created by partitioning the data in the current node based

on the values of the selected feature. However, this correction makes IGR favour

the creation of unbalanced trees, where the depths of some branches can be much

greater than others (Harris 2002).
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2.4.3 Decision tree pruning

The decision tree construction process recursively partitions the dataset until each

subset in a partition contains instances of a single class, or until it is not possible

to make any improvements on the partition. Naturally, this results in complex

trees that are prone to overfitting the training data. This especially hinders the

tree’s generalisation capabilities when there is noise in the training data, because

the tree will incorporate noisy data in its structure. As mentioned earlier, nodes

at lower levels of a decision tree are usually created with smaller subsets of the

training set, reducing their reliability.

Tree pruning techniques were devised to reduce the size of decision trees, im-

proving their generalisation capability by reducing overfitting. Decision trees may

be pruned during (pre-pruning) or after (post-pruning) their creation process.

The pre-pruning approach aims to stop a branching process during the creation

of the tree, based on some condition. Some classic pre-pruning techniques are to

stop a branching if the size of the instance subset that will be created for a path is

smaller than a threshold value, or the tree has reached a maximum depth (Bramer

2007). When a branching is stopped, the branch is replaced by a leaf node, which

will predict, for new instances, the most frequent class at that node.

The post-pruning approach involves analysing a tree after its creation and re-

placing subtrees by leaf nodes, or smaller subtrees, in a way that roughly maintains

the classification accuracy of the tree for the training set (typically, a threshold is

defined to decide how much error can be introduced by pruning). This strategy

is slower than pre-pruning, but more reliable, since it performs the pruning using

information from the complete tree, so that the impact of a change can be better

evaluated (Quinlan 1993).

It is worthwhile to note that any pruning naturally incurs in a reduction of

the fitting of the decision tree to the training data. Schaffer (1993) argues that

pruning strategies introduce a bias favouring smaller trees into the algorithm,

and that choosing an inappropriate strategy may actually make its predictive

performance worse.

The goal of pruning is to make the tree better at predicting the class of new

instances, so using a validation set (part of the training set not used for building

the tree) is one approach to evaluate the success of a pruning operation. However,

this approach reduces the number of training instances available to build the
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decision tree. One pruning technique using this approach is the Reduced-error

pruning, proposed by Quinlan (1987b).

2.5 Random Forests

2.5.1 Principles of ensemble learning

According to Condorcet’s jury theorem (Condorcet 1785), under certain assump-

tions, a jury composed of independent voters deciding on a problem tends to reach

the correct decision (with a probability tending to 1) as the number of individu-

als in the jury grows to infinity. Ensemble learning borrows from that concept,

combining different predictive models to solve a problem. Ensembles of classifiers

have been shown to outperform single-classifier models in several empirical studies

(Yan and Goebel 2004; Brazdil et al. 2008; Hosni et al. 2019).

An ensemble’s performance is dependent on two main aspects: the accuracy of

the base learners combined to form it, and how diverse their predictions are (Zhou

2012). The diversity aspect influences how much gain we can get from combining

classifiers, meaning an ensemble of correlated classifiers shows less improvement

on overall accuracy than one of independent classifiers. The task of generating

classifiers that make predictions that are as different as possible, for the same

problem and from the same training data, is challenging, especially considering

that we also want each classifier to be as accurate as possible. This trade-off

between the accuracy of each classifier and the diversity of the ensemble needs to

be addressed by the ensemble method.

After generating the set of base classifiers there is also the task of combining

their results to get the best performance. The simplest combination methods for

a nominal output is to use a voting system, where the majority vote decides the

result for the ensemble (averaging is the equivalent of this strategy for a numeric

output). There are also more advanced methods of combining results, such as

weighted and probability-based votes (Sagi and Rokach 2018).
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2.5.2 The Random Forest algorithm

Decision forests are ensembles of different decision trees created from a dataset.

The main challenge for learning a decision forest is how to obtain the right vari-

ability of the decision trees that compose it, which will increase the generalisation

capability of the model. One of the most used methods of learning a decision

forest is the Random Forests (RFs) algorithm, introduced by Breiman (2001). In

RFs, the ensemble diversity is obtained in two ways:

• Training each decision tree with a different data subset, obtained by ran-

domly sampling instances with replacement from the full dataset. Each

decision tree of a random forest will have a dataset with about 63% of the

instances in the original dataset represented at least once. The remaining

instances, named out-of-bag (OOB) instances, can be used as a test set to

evaluate that decision tree.

• At each internal node, the tree randomly samples a subset of the features

of the dataset, so that the split evaluation function selects the best feature

among those.

By adding that controlled variability into its trees, the RF is able to achieve

a good generalisation capability without the need to apply tree pruning methods,

which makes the computational complexity of the RF significantly smaller than

ensembles of pruned decision trees. After the decision trees are trained, the en-

semble can be used to classify a new instance by first classifying that instance

using each decision tree, and then choosing the class voted by the majority of the

decision trees in the RF.

The RF algorithm has two main parameters (Touw et al. 2012): ntrees, which

is the number of decision trees in the forest, and mtry, which is the number of

features randomly sampled in each node, to be evaluated using the split evaluation

function. Two often used ways to set a value for mtry are using the square root

of the number of features in the dataset d, or using mtry = blog2(d)c+ 1.

The original RF algorithm utilises the Gini Index heuristic, shown in Equation

2.8 as its split evaluation function. In the classification task, the Gini Index

measures the class impurity in a set of instances (i.e., how much the set deviates

from a perfect distribution). For a decision tree branching, the algorithm chooses
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the split which decreases the class impurity of the dataset the most. As with

the IG measure, the Gini Index has a bias in favour of continuous features and

nominal features with many values. In addition to that, it was also found to be

susceptible to be skewed toward the majority class (Flach 2003).

Gini(t) = 1−
N∑
i=1

P (Ci|t)2 (2.8)

Where t represents the branching on a given feature, N is the number of class

labels in the dataset, and P (Ci|t) is the probability of the instance belonging to

class i given that the branching t is carried out.

In general, the RF method achieves good predictive accuracy values when

compared to other state-of-the-art supervised ML techniques. Fernández-Delgado

et al. (2014) performed experiments comparing 17 families of classifiers (179 clas-

sifiers in total) on 121 datasets, and concluded that the RF family obtained overall

the best predictive performance. Another important advantage of the RF is the

possibility of estimating the importance of each feature in predicting the class,

which adds interpretability to the model, and will be further discussed later.

RFs handle well datasets with a high ratio of features/instances, which are

prone to overfitting. Scornet et al. (2015) have shown that RFs are able to adapt

to sparse frameworks. The authors claim that since, the RF selects splits mainly

among the most informative features, the irrelevant features have little impact

on their performance. In addition, ensemble methods allow us to have several

classifiers working in the same problem, which also reduces the problem of lacking

adequate data, and decreases the risk of obtaining a local minimum (Rokach 2016).

Analogously to other types of ensemble, a RF achieves its greatest predictive

accuracy when the trees that compose it are as accurate as possible, and make

prediction errors as diverse as possible. It has been shown that when the errors

made by the decision trees of a decision forest are less correlated, the accuracy of

the entire ensemble is better (Ali and Pazzani 1995).
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2.5.3 Feature importance measures

As a RF is composed of many decision trees, interpreting each tree individually to

assess the importance of the features becomes too cumbersome. However, there

are ways to gauge feature importance in a RF, which improves the method’s

interpretability and allows RFs to be used in feature selection applications (Li

et al. 2020). The most common global feature importance measures (referring

to all instances of the dataset) for RFs are the permutation importance measure

(PIM) and the Gini importance measure (GIM).

The PIM of a feature is calculated by the average over all decision trees of the

difference between the classification accuracy of a decision tree on two different

versions of the OOB instances: with the original feature values and with randomly

permuted values of that same feature. The GIM is the average reduction in

Gini Index over all nodes which use that feature for branching, over all decision

trees in the forest (Touw et al. 2012). The GIM is one measure belonging to

the general category of impurity decrease measure, which measures the average

impurity decrease over all nodes in a decision tree or forest. A related measure is

the average of information gain (or gain ratio) over all nodes, which is the feature

importance measure used in our feature importance analysis in Section 6.5.

Hapfelmeier et al. (2014) proposed a measure that better reflects the impor-

tance of features with missing values. Instead of permuting the values of the

feature to compare with the regular values, they randomly allocate the instances

to one of the child nodes of the node with the feature being analysed. This cir-

cumvents problems with missing values, since the classification of each instance

ignores the value of that feature.

It is also possible to calculate a local measure of feature importance, to assess

the relevance of a feature to classify a single instance. This allows an analysis of

features that are relevant to classify a specific subset of instances in the dataset, al-

beit they might not be much relevant globally. An example of importance measure

that can be calculated either globally or locally is the Intervention in Prediction

Measure (IPM), proposed by Epifanio (2017). The IPM of a feature for a given

instance is the percentage of times that feature was used in a node in a path from

the root node of a tree to the leaf node used to classify that instance in that tree,

over all decision trees in the forest. That is, the IPM is the percentage of all splits

done in paths followed by that instance that used the analysed feature to classify
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that instance.

2.6 Longitudinal Dataset Inputs for Supervised

Machine Learning

As mentioned earlier, ML algorithms take datasets of instances and features as

input, and often raw data sources from real-world data collected for various reasons

require cleaning and preprocessing before becoming viable datasets for learning

models. In some cases, such as data that has a time-axis, this preparation process

includes transforming the data into a two-dimensional representation (instances

and features), which can be achieved in different ways (this is discussed further

in Chapter 3). In order to be able to discuss features with a temporal aspect, we

define a representation of longitudinal datasets used in this thesis as follows.

Consider a longitudinal study that collects data from a set of instances (par-

ticipants) over fixed intervals of time. We call each variable observed in this study

a conceptual feature, and give it an index i to refer to that variable. Thus, we can

say that the study observes a set of conceptual features Fi where i = 1..d, and d is

the number of variables (dimensions) observed. If a feature is observed multiple

times throughout the study, as is the case for most features in a longitudinal study,

we also give it a time-index j referring to the wave (time-point) of the study when

the measurement took place, where j = 1..t and t is the number of waves in the

dataset. We then represent each feature in the longitudinal dataset as Fi,j, using

a combination of both its conceptual feature index i and its time-index j.
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Chapter 3

Supervised Machine Learning for

Longitudinal Datasets

In this Chapter we discuss different representations of longitudinal data as in-

put for supervised machine learning (ML) algorithms, and review various related

studies. As this Chapter’s main contribution, we propose a new taxonomy for

representations of longitudinal datasets for ML, and use it to analyse the related

works of supervised ML applications using real-world longitudinal datasets. The

taxonomy proposed in this Chapter was presented in a short paper published in

the proceedings of a workshop (Ribeiro and Freitas 2019b).

3.1 Representations of Datasets with Multiple

Time-Points

Jie et al. (2017) divide supervised machine learning methods that use data from

multiple time-points into four categories, accordingly to the number of input and

output time-points used by the learning method: 1) Single-time-point Input and

Single-time-point Output (SISO), 2) Single-time-point Input and Multiple-time-

points Output (SIMO), 3) Multiple-time-points Input and Single-time-point Out-

put (MISO), and 4) Multiple-time-points Input and Multiple-time-points Output

(MIMO). In the terminology used in this thesis, the inputs are features, the out-

puts are target variables, and time-points are waves. Note that their representa-

tion can be used for time-series data as well as for longitudinal datasets.
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A SISO dataset consists of a single wave with features and target variables,

that is, a non-temporal dataset. A SIMO dataset also only has features from a

single wave, but the target variables span multiple waves. The former could be

used for prediction problems where it is of interest to investigate how the time

passage would affect a target variable using only features from a single time-point.

Longitudinal ageing studies usually fall into the other two categories. A MISO

dataset has features in multiple waves but target variables only in a single wave

(typically, the last wave of the dataset). A MIMO dataset has both features and

target variables available in multiple waves (typically, all waves). An important

characteristic of longitudinal datasets is that it is possible that the time-points of

features and target variables might not overlap, according to the categorisation of

datasets described in this Section.

3.2 Longitudinal Databases Used in ML research

In this Section we briefly review some of the main longitudinal databases that have

been used in the literature on longitudinal supervised ML methods. It also men-

tions the main goal of the ML studies using datasets derived from those databases,

regarding the type of variable they try to predict. These target variables are typ-

ically age-related diseases.

We characterised the datasets used in each study according to Jie et al. (2017)’s

four categories. All the original general longitudinal databases from which specific

datasets were created for ML purposes are categorised as MIMO, because they

contain time-series of variables that can be used either as features or as class la-

bels in the created ML datasets. If a study chose to, from these MIMO databases,

create a multiple input, single output ML dataset for their experiments, we de-

nominated their dataset as MISO.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study started in

2004, and generated a longitudinal database that has been used by four of the

reviewed studies. The ADNI study follows a sample of over 1000 subjects, visiting

them twice a year (waves 6 months apart from each other) and collecting several

types of biomarkers (potentially used as features by ML algorithms) including

blood tests, tests of cerebrospinal fluid, and MRI/PET imaging for Alzheimer’s

disease (AD) clinical trials and diagnosis. The subjects have a diagnose in each
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wave of the study, being classified as cognitively normal (CN), mild cognitive

impairment (MCI), or Alzheimer’s Disease (AD).

Regarding the four studies that utilised the ADNI database1, Minhas et al.

(2015)’s study focused on subjects that were from the Mild Cognitive Impairment

(MCI) class in the first wave, and investigated the difference between those who

progressed to AD (subjects classified as AD in the last wave) and those who did

not (MISO dataset). Mo et al. (2013)’s and Cui et al. (2019) studies focused

instead on differentiating subjects classified as Cognitively Normal (CN) in the

last wave from those diagnosed as AD in the last wave (MISO datasets). Huang

et al. (2016), and Jie et al. (2017) focused on predicting scores related to AD that

are available in the ADNI database, working with regression algorithms to predict

the scores’ values in each wave of the study (MIMO dataset). Finally, Bhagwat

et al. (2018) predicted the trajectories of scores related to AD, namely whether a

score would be stable or decreasing in the final wave, making this a classification

problem (MISO dataset).

Zhang et al. (2016) created MISO datasets from the database originated by the

Chinese Longitudinal Healthy Longevity Survey (CLHLS)2. The authors created

three datasets, one for each pair of consecutive waves of the survey (2002-2005,

2005-2008, 2008-2011). For each of these datasets, they predicted a target variable,

Activities of Daily Living (ADL) in the last wave.

The database from the Cardiovascular Health Study Cognition Study (CHS-

CS) 3 also has scores related to AD. The database has thousands of cognitive,

metabolic, cardiovascular, cerebrovascular, and neuroimaging variables obtained

twice a year, between 1990 and 2012, from people of ages 65 to 108 years old. In

their study, Adhikari et al. (2019) calculated the odds of death and dementia for

each target wave, and they used features from all waves in the database, creating

a MIMO dataset from the CHS-CS database.

Data from the Study of Health in Pomerania (SHIP) 4 were used by Nie-

mann et al. (2015), in order to predict a liver disorder. The SHIP study aims

to investigate the prevalence and incidence of common risk factors, sub-clinical

1http://adni.loni.usc.edu/
2https://sites.duke.edu/centerforaging/programs/chinese-longitudinal-healthy-longevity-

survey-clhls/
3https://chs-nhlbi.org/
4http://www.bioshare.eu/content/study-health-pomerania
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disorders and clinical diseases, and how these are associated with each other. The

data is collected 5 years apart for each participant, and the study currently has 3

published waves: SHIP-0 (1997-2001), SHIP-1 (2002 -2006), SHIP-2 (2008-2012).

Although the data for the several diseases investigated in the study is available

in every wave, the dataset in Niemann et al. (2015)’s study is MISO, since they

only predicted the target variable in the last wave, for each experiment.

Du et al. (2015)’s study used data from the Phil Bowen Amyotrophic Lateral

Sclerosis (ALS) Prediction Prize4Life challenge5 to predict the progression of the

disease in ALS patients, using their current and past statuses. The monthly

database originated for the challenge has 12 consecutive waves with about 44

time-varying features (features with one value per wave) and 34 time-invariant

features (features with a single value for all waves, such as biological sex), including

demographics, medical history, and lab test data. The target variable, an ALS

score, is predicted in every wave of the dataset used in the study, and the dataset

is categorised as MIMO.

The human viral challenge studies6 generated three gene-expression datasets

that contain gene expression data from human volunteers, who were infected with

H3N2 influenza, rhinovirus (HRV) and respiratory syncytial virus (RSV). The

waves consisted of one set of daily recordings of gene expressions of the individuals

in the study. The class label is available only in the last wave of each dataset,

characterising all three datasets as MISO datasets. Radovic et al. (2017)’s study

aimed to predict whether the samples belonged to symptomatic or asymptomatic

participants of the study.

The database from the English Longitudinal Study of Ageing (ELSA) 7 con-

tains thousands of variables related to several different aspects of the subjects’

lives, including health and disability, socio-economic, well-being and biological

markers of disease. The goal of the study, whose subjects are visited every two

years, is to allow a multidisciplinary analysis of the several aspects that influence

human ageing. In their study, Pomsuwan and Freitas (2017) used data from the

nurse visits in the ELSA study (a special data subset containing mainly biomedical

variables, with 4-year gaps between waves) to predict several age-related diseases.

5https://www.synapse.org/#!Synapse:syn2826267/wiki/71167
6http://hvivo.com/
7https://www.elsa-project.ac.uk/
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The authors only predicted class variables from the wave 7 the study, categorising

the dataset as MISO.

3.3 A Taxonomy for Representing Longitudinal

Data in Machine Learning

As discussed in the previous Section, longitudinal datasets typically fall into the

MISO or MIMO categories, in Jie’s classification, both of which involve multiple-

time-point inputs, i.e., they contain features in multiple waves. This classification

does not give information on how the time-related information in the longitudinal

features is represented when the dataset is used as an input for ML algorithms,

however. Hence, in this Section we propose a new categorisation of approaches for

representing such datasets with multiple waves of features for ML applications.

Consider a longitudinal dataset consisting of t consecutive waves W1,...,t, each

of those comprised by d features and n instances. In such a dataset, there is

time-related information associated with each feature, and this information can

be represented in different ways, when using a longitudinal dataset as the input

for a ML algorithm. Figure 3.1 shows 4 strategies to represent multiple feature

waves for a ML algorithm.

The simplest representation of a multiple-wave longitudinal dataset, consisting

of a separate input file for each wave (denoted by SepW for “separate waves”) as

shown in Figure 3.1(a), is used when one wants to apply a ML algorithm to each

wave of data separately. This representation has the advantage of simplicity and

generality, since any standard (non-longitudinal) ML algorithm can be applied.

However, the ML algorithm will be unable to exploit the temporal information

contained in the full dataset. If one desires to apply a ML algorithm to all waves

at the same time they need to perform some sort of data flattening (i.e., removing

the time dimension to represent the data in two dimensions, instead of three),

which is a way of representing a multi-wave longitudinal dataset on a single input

file.

One form of data flattening is the use of aggregation functions (AGG), which

computes some summary measure (or other types of constructed features using

the original feature values), such as the median, average or mode, over the values
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Figure 3.1: Multiple-wave longitudinal data representation scenarios. For each
feature, Fi,j, i represents its feature index and j represents its time-index.

of a given feature in each wave of the dataset. This approach, shown in Figure

3.1(b), has the advantage of using a data storage space of the same size as a

single wave of the longitudinal dataset, since one aggregate feature represents all

different values of that feature throughout all the waves. However, even though

the time-related information is not completely ignored, its details are lost, and

the ML algorithm will be unable to identify precise time-related changes that a

feature might have exhibited over the waves of the dataset.

In order to keep all the time-related information and still represent the lon-

gitudinal dataset on a single input file, one can perform another type of data

flattening: a Union of the features Keeping Longitudinal Information across time

(UKLI), as shown in Figure 3.1(c). In this approach, the different waves of the

dataset are represented through a single dataset made by the union of all features

in all waves. Hence, the time-related information associated with the features is
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represented by denoting a feature by both its sequential feature id and its time-

index (wave number), and this information is considered by the ML algorithm.

To clarify, let Fi,j denote the value of conceptual feature i (conceptual feature

meaning the variable being measured repeatedly over the waves of the longitudi-

nal study) in wave j. In this representation, the ML algorithm should treat the

relationship between two values of the same feature in different waves, say F1,1

and F1,2, as conceptually different from the relationship between two values of

different features in the same wave, say F1,1 and F2,1.

How that differentiation is made by the ML algorithm is up to the researcher,

but should it not be done, then the time-related information would be irrele-

vant, even if the naming of the features represents their waves. In that case,

corresponding to scenario Union Disregarding Longitudinal Information (UDLI)

in Figure 3.1(d), the longitudinal dataset is merely represented as a merging of

its waves, disregarding the time-index of each feature. Hence, two values of the

same feature in two different waves are treated in the same way as two values of

two different features in the same wave.

In some cases, authors may choose to remove the representation of the time-

index (wave number) entirely as it is not used in the analysis. In such cases, to

avoid that the merged dataset have multiple features with the same feature index,

one could rewrite the feature indexes of all features after the merging of dataset

waves, using sequential incrementing, as shown in the column headings of the

table in Figure 3.1(d).

It is important to highlight that the differentiation between the UKLI and

UDLI representations in this taxonomy do not depend only on how the data is

stored, but on how it is used in the learning process. Even if the time-index is kept

in the naming of the features, if this does not make any difference in the analysis

of the data by the ML algorithm or other tasks of the knowledge discovery process,

we consider the representation UDLI, as the time-index of the features is being

disregarded.

3.4 ML Approaches for Longitudinal Datasets

Some studies used the standard versions of existing ML algorithms in their ex-

periments with longitudinal datasets. Most of these coped with the temporal
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information of the data through its representation of the dataset (data transfor-

mation approach). We reviewed some studies with this type of approach, and

discuss our findings in Section 3.4.1. The other type of approach for coping with

longitudinal data inputs is algorithm adaptation. We revised studies that adapted

existing algorithms to employ strategies that coped with the longitudinal nature

of the data in Section 3.4.2. For each work, we highlight the strategies used to

cope with the longitudinal datasets and the representation of the data based on

our proposed Taxonomy.

3.4.1 Data transformation approaches

Zhang et al. (2016) did not detail the dataset preprocessing in their study, stating

that the features were selected empirically, based on existing research, and merged

data from two consecutive waves into a single dataset, disregarding longitudinal

information (UDLI representation, Figure 3.1(d)). The authors employed the

standard C4.5 decision tree algorithm (Quinlan 1993) to predict the Activities of

Daily Living (ADL) status (healthy or disability) in a given wave of the dataset,

using features from that wave and the previous wave. It is important to note that

the authors used the value of the class label in the previous wave as a feature,

which makes the prediction problem substantially easier. It seems intuitive that

an individual that currently has ADL issues (difficulty to perform daily tasks) will

likely still have them in the next wave.

The study by Mo et al. (2013) fused both waves of a longitudinal dataset into

a single dataset using the UDLI representation, where the class variable actually

belonged to the first wave of the dataset, meaning the authors used features from

the second wave to predict the class in a past wave. They selected features that

were the most relevant for differentiating patients diagnosed with Alzheimer’s

Disease from those diagnosed as Cognitively Normal.

Minhas et al. (2015)’s study compared the AGG (Figure 3.1(b)) and UDLI

representations. The authors used two summary measures, namely the arithmetic

mean and the median of each feature throughout the waves. They used features

from the first 6 waves of the ADNI study to predict the class label on wave 6,

using standard SVM to predict a subject’s conversion from the MCI class to the

AD class. In the first experiment, they used only the first wave’s feature values for
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training, without performing missing value imputations and without adding the

summarising features to the dataset (UDLI). For the rest of their experiments, the

authors compared variants of five different techniques to cope with missing values

(see Section 3.5) and the approach of adding one of the two summarising features

(mean or median) to the dataset (combining scenarios AGG and UDLI, and the

ML algorithm still does not use the time-related information of the features in any

of the experiments). The authors concluded that the added summarised features

improved accuracy and the AUC (Area Under the ROC Curve), even though

a controlled experiment consisting of using only the missing value imputation

techniques, without adding the summarised features, was not done. Using only

the summarised features (AGG representation) was not tested. Therefore, it is not

possible to confirm whether the improvement was caused by adding the aggregated

longitudinal data, due to a lack of a controlled experiment.

A different approach based on combining the UDLI and AGG representations

was used by Niemann et al. (2015), who grouped instances considering the features

observed in each wave, creating features related to clustering information in each

wave (such as an instance’s distance to a cluster’s centroid, the number of members

of each class in the k-nearest neighbours of an instance, the cohesion and silhouette

index of the instance) and how those changed in relation to previous waves. As

mentioned, created features such as these fall into our AGG categorisation. None

of the constructed features used by the authors required a comparison between

instances from different waves. This was by design, to ensure that if the number

of clusters changes, or if a cluster identity changes throughout waves, the features

would still be valid. The temporal features derived from the clustering results were

added to the original dataset prior to feature selection, and the features from the

3 waves were merged and used for learning ignoring their temporal information.

Even though the constructed features consider the waves, meaning some time-

related information is still represented in the dataset, the time-index of the original

features is still disregarded (UDLI and AGG).

A temporal variation of the minimum Redundancy–Maximum Relevance (mRMR)

filter algorithm for feature selection was proposed by Radovic et al. (2017). Putting

it simply, for each feature, they calculated an average of the correlations between

that feature and the class label across all waves. We considered this an aggregation

function, categorising their data representation as AGG. That strategy was better
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than using more complex measures, according to the experiments performed by

the authors. The study aimed to classify patients from a dataset as symptomatic

or asymptomatic using gene expression data.

Pomsuwan and Freitas (2017) joined the waves of the ELSA dataset maintain-

ing the time-related information of the variables (UKLI representation, Figure

3.1(c)). The features were divided into groups; each group containing both vari-

ations of the same base feature across time (i.e., across different waves) and con-

structed features representing the differences (increase and decrease in value) of

the same base feature from wave to wave. They transformed the data so that each

group would be small enough to be inputted into the exhaustive search version

of the Correlation-based Feature Selection (CFS) method (Hall 1999). The study

used medical data from three different previous waves from the ELSA study, pre-

dicting whether individuals would develop an age-related disease in a future wave.

The strategy was tested for 10 different diseases separately (10 binary classifica-

tion problems), using the C4.5 decision-tree and Naive Bayes algorithms. Their

proposed method showed an improvement over the standard CFS greedy forward

search applied to all features (without using temporal information for dividing the

features into groups), and over not performing feature selection when tested with

Naive Bayes, but did not significantly improve the results when tested with the

C4.5 decision tree algorithm.

3.4.2 Algorithm adaptation approaches

Adhikari et al. (2019) created a new dataset from the original CHS-CS database.

Instead of the biannual features from the CHS-CS database, the constructed

dataset had data from individuals of each age in the 65..98 range as waves, to-

talling 34 waves. For example, the wave for age 70 would have data from all

subjects in the CHS-CS study when they were 70, regardless of when that data

was collected. Their model predicted the odds of either death or dementia (differ-

ent models were trained for each type of prediction) of a subject when they reach

t + 10 years of age, where t is the subject’s age at the last wave of the dataset.

The problem tackled by the authors was longitudinal classification, though they

proposed a regression algorithm producing a linear model. The authors used a

Lasso regression model (Tibshirani 1996), and proposed regularizers for it that
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considered the time-related information in the variables (UKLI representation).

The Lasso regularization encourages overall sparsity in the coefficients of the ac-

tive features (i.e. features with coefficient greater than 0 in the linear model)

in each wave. The fused Lasso (Tibshirani et al. 2005) regularisation encourages

contiguity in the coefficients of the active features across waves.

Similarly, Jie et al. (2017) proposed an adaptation to the Lasso algorithm, to

predict Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assess-

ment Scale-Cognitive Subscale (ADAS-Cog) scores using longitudinal magnetic

resonance imaging data. The authors proposed a novel temporally-constrained

group Lasso method, named tgLasso, which uses two different weight smooth-

ing techniques. The first is a fused smoothness term, which requires that two

weights for the same feature at adjacent waves have a small difference (origi-

nated from the fused Lasso). The second is an output smoothness term proposed

by the authors, which requires that the model’s outputs at two adjacent waves

also have a small difference. In their study, in one of the experiments, the four

waves of the dataset were used separately (SepW representation, Figure 3.1(a))

for estimating regression variables. In the other experiments, two or more consec-

utive waves were joined into a single dataset with the time-related information on

the variables being considered by the proposed temporal group Lasso (tgLasso)

algorithm, which included a smoothing technique that considers the time-index

of the features (UKLI representation, Figure 3.1(c)). They tested predicting the

score in all waves, one at a time, using only the first wave’s features, and gradually

incremented the number of feature waves included in the dataset. The experimen-

tal results showed that the tgLasso significantly improved regression performance

when compared with the regular Lasso and the group Lasso methods.

Another regression algorithm adaptation was proposed by Du et al. (2015).

The authors extended a previous longitudinal SVM classification algorithm, LSVC

(Chen and DuBois Bowman 2011), by making it a longitudinal regression algo-

rithm. LSVC extends the well-known support vector machine (SVM) to lon-

gitudinal data by estimating the SVM hyperplane separating parameters using

additional proposed temporal trend parameters, which take into account observa-

tional dependence within subjects. They created two types of datasets, the first

being a merge of the data from all waves considered in each given experiment (1

to t), keeping the temporal information (UKLI representation), which is used to
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calculate temporal trend parameters. The second approach created a new dataset

with only the means of the values of each feature from all waves considered in the

dataset (AGG representation). Their results showed a better performance for the

first type of dataset.

Huang et al. (2016)’s study aims to predict some Alzheimer’s Disease longitu-

dinal clinical scores. The authors tested their model to predict the score for each

individual in all the waves after the first wave, using features from the current

and all past waves of the dataset as input, simultaneously (UKLI representation,

as the features’ time-indexes are used to create these incremental datasets). The

authors presented a Random Forest (RF) regression algorithm adapted for sparse

regression. The authors justified their choice to ignore the complex relations of

longitudinal clinical scores by stating that the RF model can handle non-linearity

in data better than the Lasso regression, and their algorithm outperformed a

previous Lasso study that introduces a smoothness function prior to applying

their regression model, which supports that claim. The proposed RF algorithm

outperformed standard RF and other popular regression methods, namely Lasso

regression, Ridge regression, and SVM. The RF regression model that had the best

prediction results started at the first wave and used its feature values to predict

the score for the second wave, then incorporating this prediction onto the dataset.

Hence, they used multiple instances of the UKLI representation, as stated previ-

ously, since in each run of the algorithm, the dataset is represented by a merging of

the waves currently being used, keeping time-related information in the features.

The algorithm then used features and scores from the first and second waves to

create a new model, to predict the score for the third wave, repeating this process

until the score for the final wave of the dataset was predicted.

Bhagwat et al. (2018) proposed a Longitudinal Siamese Network (LSN) algo-

rithm that combines data from two input time-points, having separate but de-

pendent network branches used for each time-point. Typically, Siamese networks

are used for calculating similarities between inputs, thus their motivation for us-

ing them to represent change over time in longitudinal data. Their classification

problem was predicting the trajectory classes (stable, decline or fast-decline) for

mini-mental state exam and Alzheimer Disease Assessment Scale scores in the

ADNI datasets. The twin branches of the proposed LSN have a weight-sharing

function, which calculates identical weights for the nodes at each layer of both
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networks, whilst each branch receives input data from a given time-point (base-

line and follow-up), which makes their data representation SepW. The output of

the two networks is concatenated, representing the change over time in the input

data, and is then used in the classification task.

Cui et al. (2019) combined Convolutional Neural Network (CNN) and Recur-

rent Neural Networks (RNN) built with cascaded bidirectional gated recurrent

units (BGRU), in a framework to predict Alzheimer’s Disease diagnosis, given the

MRI scan image input data in the ANDI longitudinal dataset. The CNN part of

the framework focuses on learning spatial features from the input data (feature

extraction task), which are then fed to the RNNs. In the RNN/BGRU part the

authors used a SepW representation, feeding data from different time-points to

different BGRUs, in the first layer of their neural network. In subsequent layers,

the data from a time-point is correlated with the previous and next time-points

(using forwards and backwards GRUs, making them bidirectional). The final layer

in the BGRU cascade outputs features that capture the temporal variation of the

input longitudinal features, which are then used in the classification problem. The

creation of these output features is an AGG representation, as they are created

from multiple time-point observations and represent the temporal data as a single

final value. Thus, the representation of longitudinal data in this work is both

SepW (for the training phase) and AGG (for the final classification step).

Lash and Street (2020) applied inverse classification models to longitudinal

data, for recommending behaviours to mitigate risk of cardiovascular disease. In-

verse classification problems aim to find recommendations that lead to changed

feature values that result in a desired classification. Their application compared

the effect of adopting personalised recommendations (such as changes to diet and

exercise frequency) on different time-points on the risk mitigation results. The pro-

posed algorithm adaptation is a framework for inverse classification that considers

longitudinal data inputs, creating temporal links between different measurements

and comparing the temporal effects of implementing recommendations at differ-

ent time-points. Their framework calculates a risk estimation for each wave of

the dataset, and adds these past estimations as predictive features in following

waves, instead of using the repeated measurements of the features. Thus, the data

representation in this work is a combination of SepW (only measurements of the

current wave are used) with AGG (the risk estimation of previous waves is used
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as an aggregated measurement).

3.5 Methods for Coping with Missing Values

One of the challenges of analysing longitudinal data is that studies that follow

individuals for a long period can encounter several issues with obtaining data

across all waves. One of the most relevant of these issues is attrition, which is

the complete absence of an instance in a wave of a longitudinal dataset, either

due to dropping out or joining in later waves. Therefore, it is common that lon-

gitudinal studies face a high number of missing values in their datasets (Saiepour

et al. 2019), and this is a critical aspect of the inherit complexity of analysing

longitudinal data (Anagnostou et al. 2021). There are several strategies that can

be used to address this issue, some of them taking advantage of the longitudinal

nature of the data. In this Section, we mention strategies adopted by some of the

reviewed works to cope with the missing values in their longitudinal datasets.

Minhas et al. (2015) experimented with five different strategies to cope with

missing values in their study in a data preprocessing phase (before applying the

ML algorithm). The authors reported that the last observation carried forward

(LOCF) strategy had the best results, in comparison to the other four strategies:

(a) deleting instances with missing data, (b) not doing any preprocessing on the

original dataset, (c) replacing missing values with the mean value of the feature for

all instances in the same wave, and (d) replacing it with the value from the nearest

neighbour, considering all features in the previous wave. The LOCF technique

assumes that a feature is likely to maintain its previous value in follow up waves, so

when encountering a missing value for an individual (instance), it tries to replace

it with the most recent known value for that feature from the same individual,

from previous waves. It is worthwhile to note that, in the preprocessing phase, the

dataset was in the UKLI representation, which allowed them to use the LOCF and

nearest neighbour (d) strategies, which consider the temporal aspect of the data.

After coping with missing values, the authors represented their dataset using the

AGG and UDLI strategies for their classification experiments.

Adhikari et al. (2019) also used temporal information to cope with the miss-

ing values in their dataset in a data preprocessing phase, applying LOCF when

possible. For cases where there was no previous value available for a feature for
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a given instance (individual), the authors calculated the global median across all

waves, from people of the same age, of the values of that feature. Their justifi-

cation for that approach was that subjects of the same age were more likely to

share similar values for the features, since the features of the CHS-CS dataset are

all health-related.

Huang et al. (2016) proposed a two-stage longitudinal score prediction to input

the missing score values (some of them used as features and others as target

variables) for the subjects of the ADNI study who did not have all the scores

present. The authors argued that, even though the most direct way of predicting

these scores would be through linear interpretation, the performance of the final

predictive model would not be as good due to the subjects whose scores do not

change linearly through time. Therefore, they employed, in the first stage, a

predictive model using only the first wave’s features (which did not have any

missing values), to predict scores at each future wave. Then, in the second stage,

they performed a regression task where the training set was composed of the

baseline features (features from the first wave) and the longitudinal scores, both

the observed and predicted ones. This means that the target-wave scores were

predicted using both known score values and values that were calculated by the

regression model built in the first stage.

3.6 Summary of the Reviewed Studies

Table 3.1 contains a summary of the studies reviewed in this Chapter, ordered by

publication date. For each study revised, we state: (a) the problem type (clas-

sification, regression, or a focus on replacing missing data or feature selection),

(b) the main algorithm proposed or used in the study (a classifier/regression algo-

rithm or a data preprocessing algorithm), (c) the characterisation of the dataset

following the taxonomy proposed by Jie et al. (2017), (d) the time indexes of the

feature waves, (e) the time indexes of the class label waves, and (f) the longitu-

dinal dataset representation scenario used in the main experiments, according to

the representations in the proposed taxonomy.

Regarding columns ‘Feature Waves’ and ‘Class Waves’ in Table 3.1, depend-

ing on the number of experiments performed, we sometimes used a t variable to

represent the time-indexes. In those cases, the range (if separated by two dots,
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e.g. 1..3) or set (if separated by commas, e.g. 2,4,6) of values that t can take are

provided; i.e., in those cases the studies experimented with all variations of t in

the value range or set provided in Table 3.1. By contrast, when no t variable is

used, this means that a single experiment is represented in the Table, even though

other experiments not relevant to our study might have been performed.

Table 3.1: Summary table of the revised studies

Study Problem
Type

Main
Algorithm8

Dataset Feature
waves

Class
waves

Representation
on experiments

Mo et al. (2013) Classification
Ensemble
vs SVM

MISO 1..2 1 UDLI

Minhas et al. (2015) Missing value imputation SVM MISO 1..6 6 AGG + UDLI
Niemann et al. (2015) Classification RF, DT,

NB, KNN
MISO 1..3 3 UDLI

Adhikari et al. (2019) Regression Multinomial
Fused Lasso

MIMO t = 1..24 t+1..t+10 UKLI

Du et al. (2015) Regression Longitudinal SVR* MIMO
t =
9..11

12
AGG
UKLI

Zhang et al. (2016) Classification C5.0 Decision tree MISO
t and t+1,
t = 1..3

t+1 UDLI

Huang et al. (2016) Regression Random forest MIMO
1..t,
t=2..5

t UKLI

Jie et al. (2017) Regression tgLasso* MIMO
1..t,
t = 2..4

t = 2..4
SepW
UKLI

Radovic et al. (2017) Feature selection Temporal mRMR* MISO
1..t,
t=14,16,21

t AGG

Pomsuwan and Freitas (2017) Feature selection CFS MISO 2,4,6 7 UKLI

Cui et al. (2019) Classification CNN and RNN MISO
1..t,
t=1..6

t SepW + AGG

Bhagwat et al. (2018) Classification LSN* MISO 1..2 2 SepW

Lash and Street (2020) Classification SVM MIMO
1..t,
t=1..3

t=1..3 SepW + AGG

The work presented in the next Chapters of this thesis has novel contribu-

tions related to the topics analysed in this review. Chapter 4 has contribution

on handling missing data in longitudinal datasets. The two types of approach

defined in our taxonomy are addressed in the following Chapters. Chapter 5 has a

data transformation proposal for creating constructed features to be added to the

original dataset (UKLI+AGG representation). Finally, Chapter 6 covers an algo-

rithm adaptation approach, changing the standard Random Forest classification

algorithm for coping directly with longitudinal data inputs. The insight obtained

from this related works analysis was fundamental for our decision-making process

in all following Chapters.

8New algorithms that were proposed in the article are marked with a *.
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Chapter 4

Data Preprocessing

In this Chapter we discuss the preprocessing steps taken to create the datasets

used in our research, including a description of the data sources, the missing value

replacement (Section 4.2) and class balancing (Section 2.2.5) tasks. The main

contribution of this Chapter is the proposal of a novel Data-Driven missing value

replacement approach for longitudinal datasets. We present the results from a

series of classifier-independent and classifier-dependent experiments evaluating the

proposed approach and discuss how it can improve both the estimation accuracy

of replaced missing values and the predictive performance of the random forests

generated with fully imputed datasets. Part of the experiments in this Chapter

were published in a conference short-paper (Ribeiro and Freitas 2019a), and the

main contribution was published as a journal article (Ribeiro and Freitas 2021b).

Regarding the implementation and experiments performed in this and the

subsequent Chapters of this thesis, they were done using the developer version of

the Weka data mining toolkit1, using Java 8 (build 1.8.0 311-b11). This tool was

chosen, as opposed to the arguably more popular Python library scikit-learn, for

the following reasons.

The only decision tree algorithm currently implemented in scikit-learn is the

CART tree, and it cannot receive categorical (nominal) variables in its input

(all our datasets have a combination of numeric and nominal features), so we

would have to transform all our features into numeric, likely leading to reduced

performance. Weka has several DTs implemented, including the C4.5 (Quinlan

1993) DT which has desirable properties such as the way it handles missing values

1Weka Version 3.9.1, open-source, available at: https://www.cs.waikato.ac.nz/ml/weka/
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(this is discussed in detail later in Section 4.7). In addition to that, we performed

initial experiments with Python’s scikit-learn implementation and found that the

internal code of the classification algorithms was harder to adapt, compared to

the Java code in Weka. For these reasons, we chose to focus our efforts on the

Weka tool for all experiments reported in this thesis.

4.1 Dataset Creation

4.1.1 The ELSA-core and ELSA-nurse datasets

The English Longitudinal Study of Ageing (ELSA) is currently one of the most

prominent populational studies of ageing (Abell et al. 2018; Banks et al. 2019).

The study is intended for 50 years of age or older respondents, because it aims to

follow the participants for years prior to their retirement and beyond.

The ELSA has, in each of its waves, thousands of respondents from inhabi-

tants of United Kingdom households, which take part of a core interview every

two years (the time interval between two consecutive waves), answering questions

about various aspects of their lives, including demographic, health, wellbeing and

economics. Data from this core questionnaire is used to create the class labels

for all ELSA datasets, and to create the ELSA-core datasets. For this project,

we used data from the core waves 1-8 (2002-2016) - the 9th wave of the study

was published in late 2020, after most of the experiments of this thesis had been

completed.

In addition, special questionnaires are used to collect biomedical data every 2

waves (i.e., roughly every 4 years), when a professional nurse visits the respondents

in their home and performs a face-to-face interview and a series of tests. The

results of these nurse visits are recorded in separate files, which we used to create

our ELSA-nurse datasets. We used data from all four currently published waves of

the ELSA study with data collected by a nurse: waves 2, 4, 6 and 8 (2004-2016).

A total of 20 longitudinal datasets were created with the raw data files from

the ELSA-core and ELSA-nurse questionnaires, each with a combination of one of

two data sources (core data or data collected by a nurse) and one of 10 age-related

diseases used as class (target) variables. The class variable in each dataset refers

to the presence (negative class) or absence (positive class) of a diagnose for an
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age-related disease, for each instance (ELSA respondent), in wave 8. For all 10

diseases, the positive class is the majority class, with an increased degree of class

imbalance for rarer diseases, such as Dementia and Parkinson’s Disease. Note

that, in order to have class labels for all instances (ELSA respondents), we only

utilised data from respondents that participated in the ELSA’s 8th wave. In cases

where a respondent did not participate in any of the other waves in the dataset,

the values for that wave’s features were set as missing for that respondent.

The 10 ELSA-nurse datasets share the same set of predictive features, as do

the 10 ELSA-core datasets, even though they have different class variables (rep-

resenting different age-related diseases), as explained in more detail later.

4.1.2 The TILDA datasets

The Irish Longitudinal Study of Ageing (TILDA) is based on the ELSA study,

with very similar data collection methodology and economic, social and health

data gathered from participants aged 50 and over residing in Ireland (Kenny et al.

2010). The interviews of the participants happen every two years, with separate

health assessments (collecting biomedical information) in waves 1 and 3. The

TILDA started its data collection in October 2009, and up until late 2020 only its

first 4 waves were published, thus we only included the first 4 waves in this study.

Currently, TILDA has 5 waves published and is doing its data collection for wave

6.

For this research, we focused on the health data in the TILDA datasets.

Thus, the selected features for the TILDA datasets are similar to the ELSA-

nurse (biomedical data, collected on health assessments2) and ELSA-core (ques-

tionnaires answered by the participant) features. As with the ELSA-nurse and

ELSA-core datasets, the 10 TILDA datasets share the same predictive features,

with 10 binary class variables representing the reported diagnosis of age-related

diseases.

2TILDA health assessments were on waves 1 and 3 and include the same type of data mea-
sured by nurses in the ELSA-nurse questionnaires, such as blood samples, grip strength and
mobility assessments
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4.1.3 Preparing a base dataset

In this Section we discuss the creation of a base dataset, which has been used for

creating the 30 datasets used in our experiments, and the steps we took to convert

the raw ELSA and TILDA data into datasets suitable for machine learning. These

steps included filtering the features and instances of the datasets, representing the

different types of missing values (as discussed in Section 4.1.4) as a single missing

value symbol (‘?’), and creating the class variables. The data preparation process

is similar to the one applied by Pomsuwan and Freitas (2017), who also created

ELSA-nurse datasets, with a few differences in the feature selection process, and

the fact that our initial datasets do not include constructed temporal features

(discussed in Chapter 5).

Note, however, that Pomsuwan and Freitas (2017) created only 10 ELSA-

nurse datasets, and their datasets contained only data up to wave 6 of the ELSA

study, which was the most recent wave with available nurse-data files when they

created their datasets. By contrast, in this work we not only created 10 more

updated ELSA-nurse datasets (including data from wave 8), but also created 10

new ELSA-core and 10 new TILDA datasets, as mentioned earlier.

As the sets of ELSA and TILDA participants are updated at every wave, with

new respondents being added and others leaving the studies due to various reasons,

each of these databases has partially disjoint sets of instances across their waves.

That is, for any given pair of waves, some participants will occur in both waves,

whilst other participants will occur in only one of those waves. We considered that

every respondent that participated in the interview for the last wave considered

in this project should be included in the dataset. For instance, in the ELSA-nurse

datasets, if a respondent was added to the study in wave 6, and participated in

wave 8, we kept their record, filling in the values for waves 2 and 4 features with

the missing value symbol “?”. The final longitudinal datasets had 7097, 8405 and

5715 instances for ELSA-nurse, ELSA-core and TILDA, respectively.

4.1.4 Feature selection and creation

After the previously described base dataset creation, the next step was to filter

out features that were irrelevant to our classification task.

For the ELSA-nurse datasets, from the initial set of 1041 features (all features

56



from the 4 nurse-data datasets in ELSA’s waves 2, 4, 6 and 8), we removed all re-

dundant features, metadata3, and features deemed irrelevant for our classification

problem (predicting age-related diseases). For the cases of redundant features that

represent different measures of the same variable in the same wave (e.g., multiple

recordings of blood pressure), we replaced those with a new feature defined as

the mean value of the redundant features. After this reduction, the ELSA-nurse

datasets have 141 features.

For the ELSA-core datasets, the initial set of over 7000 features was reduced

to a set of 352 features, following the same process used for ELSA-nurse data. In

this reduced feature set, however, there were several binary variables that stored

whether the respondent had experienced a specific event from a set of related

events. For example, there is a set of binary questions to check how many of a

set of activities from daily life (ADL) the user reported having difficulty. For this

type of feature, we reduced the dataset by merging them into a numeric feature

reporting how many of the set of features the participant responded positively

to, i.e., how many ADL they had difficulty with, etc. After this reduction, the

ELSA-core datasets have 171 features.

For the TILDA datasets, the initial set of over 4000 features was reduced to

a set of 81 features, also following the same process used for ELSA-nurse data.

Note that the reduction in this dataset was the greatest yet, because we only

included in the TILDA datasets the features that were directly related to what

would be ’nurse-data’ information, i.e., biomedical features. As mentioned earlier,

the TILDA dataset has both core and nurse features in its main dataset, hence

the high amount of discarded features.

After this feature selection and creation process, each created dataset has a

unique identifier for each instance (respondent), as well as the predictive features

(including the sex and age of the participant in the final wave), and the class

(target) variable. The predictive features can be divided into ”conceptual fea-

tures”, where a conceptual feature may have several measurements of the same

basic variable taken over the waves of the study. For instance “cholesterol” is a

conceptual feature, and the level of cholesterol at each wave constitutes a specific

3The ELSA-nurse, ELSA-core and TILDA databases have several features that describe
information about the interview itself, or about other features, such as the reason a test was
not conducted. Those were all removed from our dataset because we did not consider them as
potentially predictive of the class label.
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base feature, whose identification includes the wave number. The features in the

ELSA-nurse, ELSA-core and TILDA datasets are described in Appendix A. For

each feature, we indicate the waves in the study it appears in, and the data type

of its values.

All data sources used in this study have multiple representations for responses

that are not one of the expected values, including, e.g., a code for “not applicable”

and another for “refusal to answer”. These values were coded as “?” (the standard

missing value symbol for Weka files), defining the missing values of the dataset.

4.1.5 Creating class labels

For all created datasets, the binary class variable represents the presence or ab-

sence of a positive diagnose for each ELSA or TILDA respondent, for an age-

related disease or condition, at the wave of the class.

This type of information is not represented directly by any of the variables

in the ELSA dataset. Thus, for the ELSA-nurse and ELSA-core datasets we

combined information about the diagnosis of each of the target diseases, present

in several variables of the ELSA-core questionnaire, to create our class labels.

The ELSA class labels represent diagnosis for Angina, Arthritis, Cataract,

Dementia, Diabetes, High blood pressure (HBP), Heart attack, Osteoporosis,

Parkinsons Disease, and Stroke. Starting at the third wave of the ELSA-core

questionnaire, each respondent was asked, in every wave, questions regarding the

diagnosis of these diseases and conditions, and using the answers for these ques-

tions we infer a class label for that respondent, for a given wave. All of these

questions have binary answers (yes or no), and we label an instance as “0”, mean-

ing no diagnosis or “1”, meaning the disease was diagnosed for that respondent,

in that wave, based on whether any of the questions regarding the diagnosis of

that class was answered with a “yes” by the individual.

As an example, for the class Heart Attack, two questions are asked in the ELSA

core questionnaire regarding its diagnosis, represented by two variables: Hedacmi

(Whether the respondent confirms a heart attack diagnosis from a previous wave)

and Hediami (Whether the respondent newly reported a heart attack diagnosis).

Thus, the rule for creating the class label Heart Attack for each instance I, for

each wave t in the range: 3 ≤ t ≤ 8, is as follows.
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IF Hedacmi, for instance I, in wave t = “Yes” (1)

OR Hediami, for instance I, in wave t = “Yes”(1)

THEN HeartAttack t for instance I = “Yes” (1)

OTHERWISE HeartAttack t for instance I = “No” (0)

With these rules, we were able to infer a class label for every respondent that

was participating in the ELSA core study in the waves from 3 to 8. Naturally, all

instances included in the dataset represent subjects who participated in the latest

wave 8, and the final class label added to the base datasets is the one created from

the data in wave 8. This means no instance in the base datasets has a missing

class label in wave 8 (if a respondent did not participate in any of the other waves,

a missing value was assigned for their class label in that wave). The nurse-data

datasets were then created by distributing the 10 class variables across the 10

datasets, so that each dataset has a different class variable (age-related disease or

condition) to be predicted. However, as mentioned earlier, all 10 datasets have

the same instances (ELSA respondents who participated in wave 8 of the study)

and the same predictive features. This approach for dataset creation was also

used by Pomsuwan and Freitas (2017).

It is important to highlight that the ELSA and TILDA participants themselves

are reporting the diagnosis of the target diseases in the interviews, and there is no

clinical data available corroborating their answers. Thus, even though we take the

data available as ground-truth, it is likely that some patients were undiagnosed or

did not report their diagnosis (false negatives), and that some patients wrongly

reported their positive diagnosis (false positives).

Table 4.1 shows the names of the class variables in terms of age-related diseases,

the names of the original ELSA variables used to create the class variables in this

work, and the class imbalance ratios for the ELSA-nurse and ELSA-core class

variables. The class imbalance ratio (IR) is calculated by dividing the number of

majority class instances by the number of minority class instances.

For the TILDA dataset, there were features in the last wave that directly

informed whether the participant had been diagnosed with the target disease.

These features were used as the class variables for the final wave (wave 4) in our

TILDA datasets, and we did not add class variables for other waves. Table 4.2

shows the names of the class variables in terms of age-related diseases, the names

of the original TILDA variables used as class variables in this work, and the class
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Table 4.1: ELSA-nurse and ELSA-core class variables and their class imbalance
ratios.

Class variable Elsa-core variables used to create the class label
ELSA-nurse

Class Imbalance
Ratio

ELSA-core
Class Imbalance

Ratio

Heart Attack
Hedacmi - Whether confirms heart attack diagnosis
Hediami - Heart attack diagnosis newly reported

16.70 19.06

Angina

Hedacan - Whether confirms angina diagnosis
Hedasan - Whether still has angina
Hediaan - Angina diagnosis newly reported
Hediman - Angina diagnosis newly reported (merged)

26.51 29.49

Stroke
Hedacst - Whether confirms stroke diagnosis
Hediast - Stroke diagnosis newly reported

15.86 18.35

Diabetes
Hedacdi - Whether confirms diabetes or high blood sugar diagnosis
Heacd - Whether ever been told has diabetes by doctor
Hediadi - Diabetes or high blood sugar diagnosis newly reported

6.50 7.80

High Blood Pressure

Hedacbp - Whether confirms high blood pressure diagnosis
Hedasbp - Whether still has high blood pressure
Hediabp - High blood pressure diagnosis newly reported
Hedimbp - High blood pressure diagnosis newly reported (merged)

1.49 2.58

Dementia
Hedbdde - Whether confirms dementia diagnosis
Hedbsde - Whether still has dementia
Hedibde - Dementia diagnosis newly reported

56.96 52.20

Cataract
Heopcca - Whether confirms cataract diagnosis
Heopsca - Whether still has cataract
Heoptca - Cataract diagnosis newly reported

2.06 3.38

Arthritis
Hedbdar - Whether confirms arthritis diagnosis
Hedbsar - Whether still has arthritis
Hedibar - Arthritis diagnosis newly reported

1.35 2.52

Osteoporosis
Hedbdos - Whether confirms osteoporosis diagnosis
Hedbsos - Whether still has osteoporosis
Hedibos - Osteoporosis diagnosis newly reported

9.85 11.84

Parkinsons
Hedbdpd - Whether confirms Parkinsons Disease diagnosis
Hedbspd - Whether still has Parkinsons Disease
Hedibpd - Parkinsons Disease diagnosis newly reported

160.30 112.07

imbalance ratios for the TILDA class variables.

4.2 Missing Value Replacement

As discussed in Chapter 3, datasets from longitudinal studies are prone to high

amounts of missing values, mainly due to participants dropping out of the study,

or joining it on a later wave (attrition). For the ELSA-nurse, Elsa-core and TILDA

datasets used in this thesis, 38.5%, 19.1% and 9.5% (respectively) of the values

across all features and waves are missing, which makes the approach to simply

drop instances (or features) with missing values inadvisable.

Another option would be to leave the missing values in the dataset, for the clas-

sification algorithm to cope with. However, we intend to use features constructed

out of temporal data in our project (discussed later, in Chapter 5), and incomplete

datasets would affect the algorithm’s ability to construct these features. In this
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Table 4.2: TILDA class variables and their class imbalance ratios.

Class Variable (Age-related disease)
TILDA variable

used as
class variable

Class
Imbalance

Ratio
High blood pressure or hypertension PH201 01 2.38
Arthritis (including osteoarthritis,

or rheumatism)
PH301 03 2.92

Osteoporosis, sometimes called thin
or brittle bones

PH301 04 9.53

Cataracts PH105 1 10.83
Diabetes or high blood sugar PH201 05 13.44

Cancer or a malignant tumour
(including leukaemia or lymphoma
but excluding minor skin cancers)

PH301 05 17.02

Angina PH201 02 20.70
A heart attack (including myocardial

infarction or coronary thrombosis)
PH201 03 25.24

Ministroke or
Transient Ischemic Attack (TIA) PH201 07 50.74

A stroke (cerebral vascular disease) PH201 06 79.62

context we chose imputation (replacing missing values by estimations) as the main

approach to handle missing values for this study, meaning every missing value was

replaced by an estimated value in a data preprocessing step, before applying the

classification algorithm.

As discussed earlier, there are many ways to estimate missing values (some

particular to longitudinal datasets), and selecting the best imputation method is

challenging. As our approach for handling the missing data in our datasets, in

this Chapter we propose a novel Data-Driven approach to select and apply the

most effective imputation method for each feature. We report the results of exper-

iments using our ELSA-core, ELSA-nurse and TILDA datasets as a benchmark to

compare the effectiveness of the Data-Driven approach against five missing value

replacement methods. These methods were compared in two scenarios: a scenario

independent from any classifier, and another scenario where a Random Forest

(RF) classifier was trained with datasets with estimated missing values.
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4.3 The Chosen Missing Value Replacement Meth-

ods

Our experiments use five missing value replacement methods (Gad and Abdelkhalek

2017; Mallinckrodt 2013; Albridge, Standish and Fries 1988), described in Subsec-

tions 4.3.1 to 4.3.5; as well as a proposed Data-Driven approach combining these

five methods, to be described in Section 4.4. In the following, Fi,t denotes the

value of feature Fi at wave t, and I denotes the instance where the missing value

is being imputed. Furthermore, we specify how each method copes with training

and testing datasets, as preprocessing steps done in a classification (supervised

learning) setting cannot use class labels from the test set, whilst class labels in

the training set can be of course used.

4.3.1 Global mean/mode

One standard statistical approach is to replace the missing values in feature Fi,t

by the mean or mode (for numeric or nominal features, respectively) of Fi,t over

all instances with known values for it in the training set. For this method, the

estimated mean/modes are calculated from training instances and used to replace

the missing values of Fi,t in each instance I, in both the training and test sets.

This method has the advantage of simplicity, but it has important limitations.

Unconditional mean/mode imputation frequently underestimates the variability

represented in the real data, skewing the values towards a more even distribution,

which can lead to false interpretations (Little and Rubin 2019, Chapter 4). The

more variability a feature’s values have in reality, the more bias this method adds

to the data.

4.3.2 Age-based mean/mode

As an extension of the global mean/mode method, the age-based method uses

the age feature to group instances in a way they are intuitively more likely to

be similar. Naturally, the age of an individual impacts their overall health, so it

is expected that, in general, ELSA and TILDA participants with the same age

would have more similar feature values than participants with different ages. As

mentioned earlier, unconditional mean/mode imputation often misrepresents the
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variability of the feature’s values, thus adding the age value of the respondent

as a condition for guiding the imputation process is likely to be a more effective

approach, as long as the features’ values are correlated with age.

The method works as follows. For each instance I with a missing value on

a feature Fi,t, the method defines a set A of measurements of Fi, taken from

instances with the same age value that I had on wave t, in any wave. Thus, the

Fi values in A all correspond to measurements of the same feature with the missing

values, from individuals who, at the time of that measurement, had the same age

as the current instance I at the time t. Then, the missing value is replaced by

the mean/mode (for numeric or nominal features, respectively) of the values in A.

Note that this method assumes that the age value of an instance is always known,

in every wave. This is the case in our datasets, where there are no missing values

for the age variable.

For example, if a respondent was 60 years old on wave 4, and their correspond-

ing instance had a missing value for feature Fi,4, this method would replace that

missing value by the mean/mode of all values of Fi related to respondents who

were 60 years old, at any time of measurement (at any wave), regardless of the

wave where that measurement was obtained. For instances in the test set, as their

age value is still known, the method is applied normally, using only values from

training instances to create the set A. A similar approach has been used in Zhao

et al. (2019), which replaced missing values with the median from individuals with

the same age and sex.

4.3.3 Previous observation carried forward (Prev)

In a longitudinal dataset, a feature typically has repeated measurements through-

out different waves, and it is common to replace a missing value in a certain wave

by its most recent known value from previous waves. This method is known as

Last Observation Carried Forward, and is often used on studies using longitudinal

datasets (Engels and Diehr 2003), (Zhu 2014), (Gad and Abdelkhalek 2017). We

chose to include methods devised specifically for longitudinal data, such as this,

in our study to investigate the impact of using temporal information in estimat-

ing missing data. However, as in our datasets there is a gap of 2 (ELSA-core and

TILDA) to 4 (ELSA-nurse) years between each pair of adjacent waves, we decided
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to consider only values from the previous wave as viable for imputation, to avoid

using data too far in the past.

Therefore, for the Prev (Previous Observation Carried Forward) method, if

the value of feature Fi,t is missing for instance I, the method inputs the value of

Fi,t for I in the previous wave, Fi,t−1, if known. If Fi,t−1 is unknown for I, the Prev

method is not applicable. Because it uses information from the current instance

with a missing value, it is unavoidable to use information from the feature values

of test set instances when applying the Prev method to them. Note, however,

that the class values of test set instances are never used in this method. Note

also that, because this method requires a feature to have been measured in the

previous wave of the dataset, it is inapplicable for the first measurement of a

feature Fi, which includes all features in the first wave of the dataset.

4.3.4 Previous and next observations combined (PrevNext)

As an extension of the Prev method, we also included a method that combines

information from both the previous measurement of a feature and its next mea-

surement, increasing the amount of information used in the estimation of the

missing values.

In the PrevNext (Previous and Next Observations Combined) method, when

the value of feature Fi,t is missing for instance I, if both the values of Fi,t+1 and

Fi,t−1 are known for instance I, the missing value is replaced by: a) for numeric

features, the mean of Fi,t+1 and Fi,t−1 for instance I; b) for nominal features, the

method only replaces the missing value if both values of Fi,t+1 and Fi,t−1 are the

same (in this case, repeat that value for Fi,t).

As with the Prev method, because of the 2 to 4-year time gap between waves

in our datasets, only values from the nearest waves are considered viable for

imputation. This avoids imputations based on values too far into the future or

the past, which are likely inaccurate. For test set instances, the PrevNext method

works the same way, as it uses only information about features of the current

instance I – without using any class information. This method requires known

values for Fi for the current instance I, in both the previous and the next waves of

the dataset (for nominal features, these values also need to be the same). Because

of these restrictions, the PrevNext method is inapplicable in many cases, including
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all features in the first and last waves of the dataset.

4.3.5 K-Nearest Neighbours

This method uses the K-Nearest Neighbours (KNN) algorithm, which is a well-

known supervised machine learning algorithm to estimate missing values in a more

sophisticated way than previously described MVR methods. The KNN algorithm

determines the K training instances most similar to the one with a missing value

to be replaced (instance I), and calculates the mean/mode of Fi,t in that set

of nearest neighbours, using that mean/mode as an estimation of the missing

value. K, the number of neighbours, is a user-defined parameter. Note that the

previously described age-based method can be seen as a particular case of the

KNN method where the similarity between instances is measured using only the

age feature; whereas in the general KNN method any set of features can be used

to define the similarity (or distance) measure between instances.

Importantly, any distance-based algorithm such as KNN can be affected by

the so-called ’curse of dimensionality’ Kouiroukidis and Evangelidis (2011), where

instances appear to be more similar as the number of features (dimensions) used

for the distance calculation increases, making the task of determining an instance’s

neighbours considerably harder. To avoid this issue, we made the KNN algorithm

only consider as features (for distance calculations) the subject’s age, sex, and the

values of Fi in every wave other than t (the wave with the missing value to be

replaced) where the Fi value is not missing. Even though the age and sex values

are available for all instances in the dataset, if a feature has been measured in

only one wave, or the value of Fi was missing in all of the waves other than t for

the current instance, we considered this method could not be applied.

Our initial experiments with the KNN algorithm used only the values of Fi

at waves other than t to calculate distances, but it was common to have several

instances with the same distance to the current instance, especially for nominal

features. This is an issue as the furthest neighbour within the set of K nearest

neighbours could be randomly chosen out of several instances with the same dis-

tance to the current instance I. This would lead to an undesirable stochastic effect

in the choice of K nearest neighbours. To reduce this issue, we added the age and

sex features into all the distance calculations, which reduced the occurrence of
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this issue to under 1% of the instances, for K = 7.

The KNN algorithm is used as a MVR method as follows: replace the missing

value of a feature Fi,t, by the prediction of the KNN algorithm with K = 7

(this method will be referred to as 7NN from here on). The prediction is given

by the mean or the mode value of Fi,t of instance I’s K nearest neighbours, for

numeric and nominal features respectively. For nominal features, if two or more

values are tied with the highest frequency among the K nearest neighbours, one

of those values is randomly chosen as the mode. We evaluated different K values

(1,3,5,7,9) in preliminary experiments, and observed little difference in the average

error values, with K = 7 producing the best results overall. Naturally, 7NN

chooses the nearest neighbours exclusively from training instances, as it cannot

have access to test set instances for that choice.

4.3.6 A conceptual comparison between the five MVR meth-

ods

When selecting which methods to compare in our experiments (reported later

in Sections 4.6 and 4.7), we aimed to have representations of different types of

methods for missing value replacement. We started with one of the most simplistic

approaches, the Global mean/mode method, representing methods from basic

statistics that are often used as a baseline method. However, the assumption that

the mean/mode value over all known values can accurately replace every missing

value is over optimistic, and it may mask characteristics of the data by adding

noise (i.e., making the data seem more evenly distributed than it is in reality).

Then, we chose to adapt this method to make it somewhat more sophisticated

and related to our specific problem, adding to our experiments the Age-based

mean/mode method, which we hoped would provide more accurate estimates for

the ageing datasets.

In addition, we also selected for our experiments two methods devised specif-

ically for longitudinal data, the Prev and PrevNext methods. These methods

use longitudinal information from known values of feature Fi at other time-points

(waves) in the current instance I to make their estimations, so each estimated

value is arguably more related to the current instance, in comparison to the Global

and Age-based mean/mode methods. One important disadvantage of the Prev
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and PrevNext methods is that they require a known value of Fi in the previous

of both the previous and next waves to t (wave with the current missing value to

be replaced), which may not be available.

Finally, there are approaches for estimating missing values that are more so-

phisticated and more computationally demanding. To represent those, we selected

the 7NN method, which is a supervised machine-learning algorithm that outputs

estimated values computed from instances considered most similar to the current

instance with a missing value, which are intuitively likely to have a similar value

for the current feature. The 7NN method requires O(n2) distance calculations to

compute its distance matrix (where n is the number of instances in the dataset)

when performing cross-validation, and has the added challenge of the curse of

dimensionality, where using too many features to calculate the distance between

neighbours hinders the effectiveness of the method (Beyer et al. 1999). Our im-

plementation of 7NN greatly reduces the number of features used in the distance

calculation, by only considering measurements of the current feature Fi at waves

other than the current wave t, as well as the age and sex features, to calculate

the distance. Thus, it can be considered a longitudinal missing value replace-

ment method (akin to the Prev and PrevNext methods), as it uses time-related

information to find the nearest neighbours.

4.4 The Proposed Data-Driven Missing Value

Replacement Approach

In addition to the five selected missing value replacement methods discussed in

Section 4.3, we propose an approach that selects these methods dynamically,

feature-wise, ranking the methods based on information contained in the dataset

itself. This strategy, referred to as the Data-Driven approach from here on, can

be implemented with any set of missing value replacement methods, in principle.

The procedure for applying this method is as follows.

Consider a set of n missing value replacement methods S = {M1, ...,Mn}, and

a dataset with a set of d features {F1, ..., Fd}. For each feature Fi at wave t (Fi,t)

in a dataset, the method creates a subset of the original dataset, composed of all

the instances with known values for Fi,t (removing instances where Fi,t’s value is
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missing). This subset is hereafter called the known data subset for Fi,t. Then,

each method from S has its average estimation error rate measured in a 5-fold

cross-validation performed in that known data subset. That is, the known data

subset for the current feature Fi,t is randomly partitioned into 5 folds of about the

same size, and each MVR method is executed 5 times, each time using a different

fold as a held-out “validation” subset, and the other four folds as the “estimation”

subset. This process is summarised in Figure 4.1.

Figure 4.1: Cross-validation approach to evaluate missing value replacement meth-
ods.

In the validation subset, the known values of Fi,t are temporarily hidden from

the MVR method being evaluated, and the method uses all instances in the esti-

mation subset to determine the best value to be imputed for each instance in the

validation subset. The estimated values are then compared with the true, known

values of Fi,t in the validation set, and an error measure is computed. If Fi,t is

nominal, the error value, for each instance, is 0 or 1, depending on whether or

not the estimated value matched the known value. If Fi,t is numeric, the error is
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the absolute value of the difference between the estimated and known values of

Fi,t. The estimation error associated with each method is the average of its errors

over the instances for which the method could be applied. If a method cannot

be applied to any given instance in the validation set, we assigned the maximum

average error value of 1 for that instance. Note that information in the valida-

tion sets is not used to calculate estimated values, except for the Prev, PrevNext

and 7NN methods, which use information about the feature values in the current

instance I, but not its known Fi,t value.

The methods are then ranked based on their average error, where the smallest-

error method is assigned rank 1 and the largest-error method is assigned the worst

rank (5). If two methods have the same average error, they share a rank (e.g., if

two methods tie for the first place, both get a rank of 1.5).

For each feature Fi,t, the Data-Driven approach performs the imputation of

missing values (in the data subset where the Fi,t value is really unknown) using

the methods’ rankings obtained for Fi,t. First, it tries to use the first-ranked

method to estimate the missing value. If the method cannot be applied to the

current instance, it then tries the second-ranked method, and so on, until it either

finds a method that can estimate a value for the current instance, or runs out

of methods to try. In our experiments, the latter case is not an issue as the

Global mean/mode method can be applied to any instance. With a different set

of methods, the Data-Driven approach may fail to replace a missing value, if none

of the methods can be used to replace it.

In summary, the Data-Driven approach uses the data to calculate an approx-

imation of how accurate each of the available methods will be to estimate the

missing values of a feature, then ranks these methods and applies the best-suited

method (for that feature) to make its estimation. Naturally, this process is costly,

especially if one or more of the MVR methods is computationally expensive (such

as the 7NN algorithm in our experiments). However, intuitively the Data-Driven

approach’s estimations are more flexible and sophisticated, and make use of the

different advantages provided by each method. As there is no “one-size-fits-all”

approach when imputing missing data (i.e., no MVR method is the best for all

features), a method that is able to make feature-wise decisions is intuitively more

effective. However, this effectiveness depends on the reliability of its computed

ranking of missing value replacement methods, and for features with few known
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values, the Data-Driven approach might be misled into selecting a poor method.

4.5 Methodology for Evaluating the Proposed

Missing Value Replacement Approach

There are two main approaches to evaluate the performance of missing value

replacement methods, in the area of supervised machine learning (classification

or regression tasks). The first is to use a MVR method to estimate the missing

values in a data preprocessing phase, and then evaluate how that imputation

changes the performance of the classification/regression model trained with the

imputed values. The results of such evaluations, referred to as classifier-dependent

evaluations from now on in this thesis, are dependent on the algorithm used to

create the model, but provide a direct measure of the impact of a missing value

handling method on the predictive accuracy of a particular classification model.

The second approach, classifier-independent evaluation, is to use an imputation

method to replace known values in a synthetic or real dataset, and comparing the

estimated values to the ground-truth, calculating estimation quality metrics such

as error rate and bias. The advantage of this type of evaluation is that it provides

a comparison that is unrelated to how the chosen machine learning algorithm

handles missing values, providing a more generic measure of how accurate the

MVR methods are at estimating ’artificial’ missing values (as it is not possible to

compare estimations of real missing values to a ground-truth).

In our study, we use both approaches: firstly, we use data from each of our

datasets and estimate every known value in the dataset using six MVR methods,

and rank them for each feature in the dataset, based on their average estimation

error (classifier-independent evaluation). Then, we employed the Random Forest

(RF) classification algorithm to evaluate models generated by datasets prepared

with each method, and a baseline approach of performing no missing value re-

placement in a preprocessing step (letting the RF algorithm use its own method

for handling missing values).
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4.5.1 Related work on classifier-independent comparisons

of MVR methods

Several studies discuss handling missing values on longitudinal datasets, and eval-

uate the performance of different MVR methods. In this Section, we compare

some of these evaluation studies to our own. Table 4.3 contains characteristics

that describe the selected related works, for comparison with our own study. Re-

garding the amount of missing data in the datasets, as mentioned earlier, it is

common for longitudinal datasets to have a high number of missing values, and

that is observed in all studies that mentioned the ratio of missing values. One im-

portant characteristic that sets our approach apart from the related works is the

number of features in our datasets. The cited studies performed experiments using

datasets with very few (Belger et al. 2016), (Gad and Abdelkhalek 2017), (Zhu

2014), or between 16 and 48 features (Engels and Diehr 2003). The datasets used

in our experiments have 68 (TILDA), 125 (ELSA-core) and 138 (ELSA-nurse)

features with missing values.

Among the cited related works, (Engels and Diehr 2003) has the most similar

approach for evaluating MVR methods. However, in (Engels and Diehr 2003) the

imputation methods were evaluated on just 4 longitudinal features, whereas in

this work the methods are evaluated 26 (TILDA), 30 (ELSA-core) and 45 (ELSA-

nurse) longitudinal features, representing a wider diversity of feature types and

distributions. In addition, our work includes several nominal features over all

datasets, which are treated differently from the numeric features by our MVR

methods. In their conclusion, the authors mention that a method able to select the

best-fitting MVR method for each feature in a dataset would likely provide better

estimations. We have proposed such a method in our Data-Driven approach,

discussed in Section 4.4.

The missing value replacement methods compared in each of the aforemen-

tioned studies are shown in Table 4.44, for comparison with our work. The mean

imputation and previous observation (usually LOCF) methods are the most com-

mon approaches for estimating missing values in longitudinal datasets, and among

the more complex methods the Linear Regression and KNN algorithms are often

4In Table 4.4, the studies were categorised by the types of methods employed to handle the
missing values, so similar methods, such as our Prev (previous observation carried forward) and
the LOCF, were considered part of the same category.
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Table 4.3: Number of waves, features with missing values and percentage of miss-
ing data in the related works about comparing MVR methods for longitudinal
datasets in a classifier-independent scenario. The names in the first four rows
refer to the first authors in the references used in the comparison, respectively:
(Engels and Diehr 2003), (Belger et al. 2016), (Gad and Abdelkhalek 2017), and
(Zhu 2014).

Reference Waves
Number of Features Missing

Values
Type of
DatasetsNumeric Nominal Total

Engels 10 40 0 40 21.8% Real
Zhu 5 2 0 2 4-22% Artificial

Belger 4 1 0 1 10-40% Artificial

Gad 6 1 1 2 45.6%
Artificial
and Real

This study:
ELSA-nurse

4 99 39 138 38.5% Real

This study:
ELSA-core

8 7 117 125 19.1% Real

This study:
TILDA

4 39 29 68 9.5% Real

used. As discussed in Section 4.3, our study contains methods representing differ-

ent strategies for estimating missing values. These include statistics-based meth-

ods (Global mean/mode, Feature-based input using Age as the feature), meth-

ods devised for longitudinal data (Prev, PrevNext), and complex methods, based

on machine learning (KNN) and our proposed Data-Driven approach, combining

these 5 methods. This selection was made to include representative methods from

very different approaches to missing value estimation in our experiments.

4.6 Comparing MVR Methods on a Classifier-

Independent Scenario

We performed a series of experiments to evaluate the estimation accuracy of the

six missing value replacement (MVR) methods (the five methods described in

Section 4.3 and the proposed Data-Driven missing value replacement approach

described in Section 4.4), in the classifier-independent scenario. The setup used

in these experiments can be replicated for comparing any number of missing value
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Table 4.4: Missing value replacement methods used in the related works. The
names in the columns refer to the first authors in the references used in the
comparison, respectively: (Engels and Diehr 2003), (Belger et al. 2016), (Gad and
Abdelkhalek 2017), and (Zhu 2014).

Method/Reference Engels Belger Gad Zhu This study
Case deletion X X X
Random value X X

Mean input X X X X X
Class-based input X

Feature-based input X
Previous observations X X X X
Posterior observations X
Previous and posterior

observations
X X

Multiple imputation X X
Monte Carlo Markov

Chains
X

Expectation maximisation X
Linear Regression X X

K-nearest neighbours X X
Data-driven method

selection
X

replacement methods, even outside of the area of classification.

For each MVR method we compute: a) its applicability, i.e., for which pro-

portion of the missing values in the dataset the method can be applied; and b) its

normalised average error rate, for nominal and numeric features separately, and

over all features. The error values are obtained through the same process used in

the Data-Driven approach (Section 4.4) to rank the methods for each feature in

the dataset: a 5-fold cross-validation where we create known data subsets for each

feature, then hide the known values of each feature in the validation fold in turn,

and estimate these hidden values using each of the MVR methods, comparing the

estimated values to the known values to get an error value.

Regarding the applicability of each method, the 7NN method could not be

applied to features that did not have repeated measurements in other waves (2/138

features with missing values in ELSA-nurse, 0/125 in ELSA-core and 3/68 in

TILDA), or to instances where all of the other measurements for the current
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feature (whose missing value is being replaced) had missing values. The Global

mean/mode method can be applied to every missing value in the dataset. The

Age-based method was not applicable in relatively rare cases where there were

no known values of the current feature for any subjects with the same age of the

current instance’s subject.

The PrevNext and Prev methods, however, could not be applied in many cases,

since the Prev method requires the current feature to have a known value in the

previous wave, and the PrevNext method requires the current feature to have a

known value in both the previous and the next waves in the dataset, which is even

less common. By definition, Prev is inapplicable for features in the first wave, and

PrevNext is inapplicable for both the first and last wave features (note that, in

the ELSA-nurse and TILDA datasets used in our experiments, there are only

four waves). In addition, in many other cases these two methods are potentially

applicable for a feature, but cannot be applied in practice because the current

instance does not have the required known values.

All experiments were ran with the datasets derived from the 3 types of data

sources used in this research (ELSA-nurse, ELSA-core and TILDA), and the re-

sults of this classifier-independent evaluation is shown separately for each data

source, in Sections 4.6.1, 4.6.2 and 4.6.3. Note that, since this set of classifier-

independent experiments does not depend at all on the class label variable, we

only need to run it once for each set of 10 datasets from each data source, as all

datasets from the same source share the same predictive features.

The applicability percentage (over all missing values in the dataset, how many

could be replaced using the method) of each method is shown in the last row

of Tables 4.5, 4.6 and 4.7 in the following Sections. These Tables also present

the mean error rate over the nominal features, the mean absolute error over the

numeric features and over all features, for each MVR method. The mean error of

a method is calculated considering only the instances where it could be applied, so

for features where only some of the missing values could be replaced, the average

error was calculated only over those values.

Note that every feature in the dataset has had its values normalised before

the missing value replacement methods were applied. For numerical features,

the normalisation method used was min-max, where the normalised value of a

74



feature is given by the formula: (f−fmin)/(fmax−fmin), where f is the raw (non-

normalized) value of the feature, fmin and fmax are the minimum and maximum

values of the feature in the dataset. Note that this formula produces normalised

values in the [0..1] range. For nominal features, we created equidistant values in

the [0..1] range for all response options. Therefore, the average error values were

also in this range, as nominal features had 0 or 1 error values (for a match and

non-match, respectively), and numerical features had the difference between the

estimated and real value as the error.

4.6.1 ELSA-nurse classifier-independent scenario results

Table 4.5 shows the results of the classifier-independent experiments for the ELSA-

nurse dataset.

Table 4.5: Classifier-independent scenario: Elsa-nurse error rates (in [0..1]) of the
MVR methods, computed by 5-fold cross-validation, considering only instances
where the methods were applicable. For nominal features each value represents
the mean error rate (over 39 features) and for numeric features each value is the
mean absolute error (over 99 features). The last row shows the applicability (%)
of each method. The best result for each row is shown in boldface font.

ELSA-nurse GlobalMean AgeBased Prev PrevNext KNN DataDriven
Nominal (39) 0.068 0.078 0.055 0.048 0.049 0.048
Numeric (99) 0.082 0.083 0.078 0.075 0.083 0.077
Total (138) 0.078 0.082 0.07 0.068 0.077 0.068

Applicability 100% 97.08% 35.57% 2.95% 81.79% 100%

The Data-Driven and PrevNext methods obtained the smallest average errors

overall, with both methods getting the same average when considering only nom-

inal features, and when considering all features together. For numeric features,

PrevNext had the upper hand by a small margin. However, these values need to

be interpreted together with the applicability of each method.

The Prev method had a low applicability, meaning it was only able to estimate

feature values for 35.57% of the missing values in the dataset. This was even worse

for the PrevNext method, which was able to estimate only 2.95% of the missing

values in ELSA-nurse datasets. As mentioned earlier, this is due to the fact

that these methods require a known value of the current feature in the previous

(Prev) or in both the previous and next (PrevNext) measurements (waves) of that
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feature, and those values may not exist (if there is no previous or next wave) or

also be missing for some instances in the dataset. The Data-Driven approach has

an applicability of 100%, because it ranks every method and, if the first-ranked

method is unable to estimate the current missing value, it tries the next method

in the ranking, and so on, until an applicable method is found or all methods have

been tried. Hence, the fact that the Global mean/mode method has applicability

of 100% guarantees that the Data-Driven approach also has an applicability of

100%.

It is worthwhile to mention that, although it did not obtain the best results,

the 7NN method also performed remarkably well, with its performance for nom-

inal features being surpassed only by the proposed Data-Driven approach and

the PrevNext method. The 7NN method has longitudinal characteristics in our

specification, as it calculates the distance between instances using measurements

of the current feature in different waves. Note that 7NN achieved an applicability

of 81.78%.

Considering both the applicability and the mean error results, the most ade-

quate method is clearly the Data-Driven approach, as it obtained low error values

while also successfully estimating every missing value in the ELSA-nurse datasets.

The Data-Driven approach makes use of the advantages presented by different

methods, and is able to reliably choose, in feature-wise manner, which out of a set

of missing value replacement methods is the most effective. However, this may be

due to the characteristics of the ELSA-nurse datasets, so I performed this same

set of experiments with the ELSA-core and TILDA dataset to confirm whether

this pattern would be the same.

4.6.2 ELSA-core classifier-independent scenario results

Table 4.6 shows the results of the classifier-independent experiments for the ELSA-

core dataset. The ELSA-core datasets have more waves than our other datasets

(7 feature waves, with the class variables being set on the 8th and final wave),

which yielded greater applicability to the MVR methods that use longitudinal

information.

For the ELSA-core datasets, we see a similar pattern of the MVR methods

devised specifically for longitudinal data having small average error rates, while
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Table 4.6: Classifier-independent scenario: Elsa-core error rates (in [0..1]) of the
MVR methods, computed by 5-fold cross-validation, considering only instances
where the methods were applicable. For nominal features each value represents
the mean error rate (over 117 features) and for numeric features each value is the
mean absolute error (over 7 features). The last row shows the applicability (%)
of each method. The best result for each row is shown in boldface font.

ELSA-core GlobalMean AgeBased Prev PrevNext KNN DataDriven
Nominal (117) 0.08 0.083 0.059 0.054 0.071 0.06
Numeric (7) 0.104 0.105 0.096 0.097 0.101 0.096
Total (125) 0.082 0.086 0.06 0.058 0.073 0.062

Applicability 100% 100% 44.61% 5.02% 91.78% 100%

also having lower applicability. The proposed Data-Driven approach is, again, one

of the best methods regarding its average error rates, and has 100% applicability

by definition.

The PrevNext method obtained the smallest error rates considering only nom-

inal features, and considering all features together. The Prev and Data-Driven

methods tied for smallest error in the numeric features, which are only 7 out of

the 125 predictive features with missing values in the ELSA-core dataset.

Considering both the average error rates and applicability, the Data-Driven

approach remains arguably the best choice, even though the applicability of Prev,

PrevNext and KNN increased in the ELSA-core datasets, as mentioned.

4.6.3 TILDA classifier-independent scenario results

Table 4.7 shows the results for the classifier-independent experiments with the

feature set from the TILDA dataset. This dataset had the lowest applicability for

the methods that use longitudinal information. Noticeably, the KNN method’s

applicability was reduced to 59.45%, from 81.79% on ELSA-nurse and 91.78%

on ELSA-core. This is mainly due to the several features in TILDA that were

measured in only two waves. Those features were still eligible for replacement

using our implementation of KNN, which needs a known value for at least one

different measure of the conceptual feature. If we only have one other measurement

of a conceptual feature, and its value is also missing, the KNN method could

not be applied. Conversely, in a dataset such as ELSA-core, which has several

measurements of each feature, the method is much more likely to be applicable.
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Table 4.7: Classifier-independent scenario: TILDA error rates (in [0..1]) of the
MVR methods, computed by 5-fold cross-validation, considering only instances
where the methods were applicable. For nominal features each value represents
the mean error rate (over 117 features) and for numeric features each value is the
mean absolute error (over 7 features). The last row shows the applicability (%)
of each method. The best result for each row is shown in boldface font.

TILDA GlobalMean AgeBased Prev PrevNext KNN DataDriven
Nominal (29) 0.085 0.091 0.06 0.058 0.07 0.061
Numeric (39) 0.102 0.102 0.092 0.091 0.101 0.094

Total (68) 0.095 0.097 0.077 0.076 0.088 0.081
Applicability 100% 96.17% 16.82% 2.41% 59.45% 100%

In this set of experiments PrevNext got the smallest average error in all cases,

followed by the Prev method, then by the Data-Driven approach in third place.

However, as mentioned earlier, the applicabilities of the longitudinal MVR meth-

ods were hindered by characteristics of the TILDA dataset, with only 2.41% and

16.82% of the missing values being replaced by the PrevNext and Prev methods,

respectively.

As the average error values of the proposed Data-Driven approach were still

considerably close to the winner method, and it is applicable to every single miss-

ing value in the dataset, the recommendation for this method as the best choice

remains, even for the TILDA feature set.

4.6.4 Classifier-independent results summary

To summarise, in this Section we performed a classifier-independent comparison

of a set of missing value replacement methods. The experimental results showed

that each of the six tested MVR methods was the most accurate for some features

in the datasets, which corroborates the notion that no single MVR method is the

best for every feature.

The most sophisticated method, the proposed Data-Driven approach, was con-

sidered the best-performing method overall, due to its 100% applicability rate and

low mean error values. The superiority of the Data-Driven approach can be sum-

marised by focusing on the error rate over all features (i.e. both nominal and nu-

merical features) across all three tables with results for the classifier-independent

scenario – i.e. Tables 4.5, 4.6 and 4.7 – and focusing only on the approaches
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that had an applicability rate greater than 50%. In this context, the Data-Driven

approach always achieved the smallest error among all such approaches in all the

three aforementioned Tables, often by a substantial difference with respect to the

error rate of the second best method with applicability rate over 50%, which was

always KNN. More precisely, over all features, in Table 4.5 the Data-Driven ap-

proach obtained an error rate of 6.8% against 7.7% of KNN; in Table 4.6 the

Data-Driven approach and KNN obtained error rates of 6.2% and 7.3% respec-

tively; and in Table 4.7 they obtained error rates of 8.1% and 8.8% respectively.

As mentioned earlier, the two methods devised specifically for longitudinal

data (Prev and PrevNext) had very low applicability. However, they had some

of the smallest average error rates in all datasets. That, together with the good

performance of the 7NN method (which also had longitudinal characteristics in

our implementation), shows the value of considering the often ignored temporal

aspect of the data when handling missing values in a longitudinal dataset.

4.7 Comparing MVR Methods on a Classifier-

Dependent Scenario

In this Section, we evaluate the effect of using each of the missing value handling

methods, discussed in Sections 4.3 and 4.4, on the predictive accuracy of Random

Forest (RF) classifiers, using 10-fold cross-validation in all our 30 datasets.

All datasets had their missing values replaced in a data preprocessing step. For

all experiments in this Section, each missing value replacement (MVR) method

was used in a data preprocessing phase, before training the classifier, using only

training set instances to compute replacement values for every missing value in the

training and test datasets. The Prev, PrevNext and 7NN methods are exceptions,

in the sense that they use feature values (but not class labels) of the current

instance in the test set, as mentioned earlier. In addition to the MVR methods

compared in the classifier-independent scenario (Section 4.6), for the experiments

in this current Section with the Random Forest (RF) classifier we added a baseline

approach of not using any of the MVR methods. Thus, the baseline consists of

not changing the missing values in a preprocessing step, and instead let the RF

algorithm handle them during its execution.
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We used the RF implementation in Weka, which uses the C4.5 algorithm’s

technique to cope with missing values when building its decision trees, as follows.

Initially, each instance is assigned an instance weight of 1. When an instance has

a missing value for a feature which is a candidate to be selected for the current

tree node, for the purpose of computing that feature’s information gain (or other

feature evaluation measure, depending on the RF implementation), the weight

of that instance is distributed across the child nodes, based on the distribution

of the known values of that feature in the local training set associated with the

current node. To clarify, suppose that a binary feature fj,t has 70% of its known

local samples valued as 0 and the remaining 30% valued as 1. The 0 and 1 child

nodes of fj,t would receive, for each instance with a missing value of that feature,

a fractional instance with weights 0.7 and 0.3, respectively. The same fractional

distribution of the instance is performed during the testing phase, when the built

tree is used to classify previously unseen test instances.

As mentioned earlier, the other MVR methods compared in this Section are

each of the five methods described in Section 4.3 and our Data-Driven approach

(Section 4.4), where the methods are ranked for each feature based on their mean

errors, calculated using an internal cross-validation on the training set (i.e., with-

out using the test set). We emphasise that the Data-Driven approach, in this

scenario, ranks the methods for the current feature based on an internal cross-

validation, iteratively dividing the training set instances into its estimation and

validation sets, to avoid using test set instances in its decision-making process.

In all result Tables reported in this Section, the datasets are ordered based on

their class Imbalance Ratio (IR), calculated by dividing the number of instances

in the majority class by the number of instances in the minority class. Classifiers

trained from datasets with higher IR values usually have decreased performance,

due to an added bias for classifying instances in the majority class (to artificially

increase the overall accuracy), as discussed in Section 2.2.5. The IR value is

an indication of how imbalanced the class distribution of a dataset is, and our

30 datasets have very different levels of class imbalance, with IR values ranging

from 1.35 (Arthritis on ELSA-nurse datasets) to 160.3 (Parkinson’s Disease on

ELSA-nurse datasets), depending on how rare the age-related disease is and the

distribution of the data available.

As mentioned earliler, the RFs were trained and tested using the Weka. The
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RFs were trained with the default parameters ntrees = 100 (number of decision

trees) and mtry = blog2(d)c+ 1 = 8 (number of features randomly sampled to be

used as candidate features at each tree node), where the total number of features

is d = 140, and bxc is the “floor” of x, i.e., the biggest integer which is smaller

than or equal to x.

4.7.1 Comparing undersampling strategies on the ELSA-

nurse datasets

Because of the class imbalance problem present in all our datasets, before com-

paring the MVR methods we needed to decide on a strategy to reduce the bias

towards the majority class in our datasets. Thus, we performed experiments us-

ing the ELSA-nurse datasets, with two random undersampling methods that bring

the ratio of positive to negative instances in the training set down to a 1:1 ratio.

This 1:1 ratio (for each instance of the minority class in the training set, only one

instance of the majority class is kept) is a default approach adopted by several

studies (López et al. 2013; Weiss and Provost 2003), including a study that used

similar datasets to the ones used in our experiments (Pomsuwan 2017).

The set of experiments reported in this Section was not executed with the

ELSA-core and TILDA datasets because those were prepared at a later stage

of our project, and it would be too time-consuming to have a separate set of

experiments with each data source for this part of the thesis. We deemed this not

cost-effective because we are using standard class-balancing strategies which are

well established in the literature, since proposing a class-balancing strategy is not

an objective in this project.

In the class imbalance experiments, the ELSA-nurse training sets were bal-

anced through the following strategies: a) removing instances from the majority

class in a data preprocessing step, then performing the bootstrapping for every

tree in the forest with the same pool of training instances, or b) undersampling

the majority class when creating each bootstrap sample of instances to be used

to learn each tree of the RF, so that undersampling is performed within the RF

algorithm. We compare these two methods in this Section, and apply the chosen

method in all experiments in this thesis.

The first method, which we are calling Undersampling Before Bootstrapping
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(UBB), is simpler to implement, since it does not require any modification of the

standard RF algorithm. When applying the UBB method, the decision trees in the

RF are built from bootstrap samples of a training set with balanced class propor-

tions, and the majority class instances that were discarded in the undersampling

process are never seen by the RF.

The second method of applying undersampling to RFs is the Balanced Ran-

dom Forest (BRF) algorithm (Chen et al. 2004). The BRF receives the entire

imbalanced training set as input. Then, for each tree in the forest, it draws a

bootstrap sample of minority class instances, and randomly draws the same num-

ber of instances from the majority class instances, meaning the subset of instances

used to generate the tree has the desired ration (1:1) of instances in each class.

The rest of the RF algorithm remains unchanged. In this method, all training

instances of the majority class have a chance of being used in the creation of the

model, increasing the variability of training instances, a desirable characteristic

for the RF algorithm. Because of this increased variability, intuitively the UBB

method would generate classifiers that are more overfitted to a part of the training

set than classifiers generated with the BRF. In order to confirm that notion, and

to analyse the overfitting in our RFs, we performed experiments comparing the

UBB and BRF methods.

In all experiments comparing classification models in this thesis, the RF clas-

sifiers were evaluated based on the following metrics: Sensitivity (True Positive

Rate), Specificity (True Negative Rate), Accuracy (percentage of correct classifi-

cations) and GMean (Geometric mean between Sensitivity and Specificity). These

metrics were chosen based on (Malley, Malley and Pajevic 2011, Chapter 4), who

claim that for imbalanced biomedical data, models should have their results anal-

ysed using metrics that consider their ability to predict each class separately (i.e.,

Sensitivity and Specificity) and at least one “global” measure of performance con-

sidering both classes – in our case, we chose Accuracy, which is the complement

of the Error measure suggested by the authors. We chose to use Accuracy rather

than Error so that all 3 metrics are to be maximised, for consistency in the analy-

sis of the results. We also use GMean, as a global performance metric that assigns

equal importance to the correct prediction of both classes unlike Accuracy, which

assigns much greater importance to the correct prediction of majority-class in-

stances (which are easier to be predicted in general).
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Tables 4.8 and 4.9 show the average Sensitivity (True Positive rate) and Speci-

ficity (True Negative rate) of the RF models, over a 10-fold cross-validation. Recall

that in this work the positive (negative) class is the majority (minority) class. In

the last row of the Tables, we report how many times each class-balancing method

(UBB and BRF) got a higher value (i.e., was the winner) across the 10 datasets –

equal values, with 3 decimal places being considered, meant each method got 0.5

’win’ points.

Table 4.8: ELSA-nurse average Sensitivity values for the UBB and BRF under-
sampling methods for each dataset/method combination, over a 10-fold cross-
validation. The last row contains the number of wins of each method, and the
best value in each row is in boldface.

Dataset
(IR)

Baseline Globalmean Agebased Prev PrevNext KNN Data-Driven
BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB

Art. (1.35) 0.72 0.695 0.661 0.664 0.649 0.678 0.729 0.665 0.729 0.645 0.658 0.681 0.667 0.679
HBP (1.49) 0.641 0.652 0.656 0.692 0.653 0.705 0.647 0.647 0.644 0.644 0.642 0.700 0.659 0.697
Cat. (2.06) 0.663 0.660 0.626 0.673 0.612 0.670 0.693 0.659 0.671 0.630 0.611 0.676 0.629 0.672
Dia. (6.5) 0.744 0.654 0.84 0.765 0.83 0.752 0.794 0.680 0.746 0.653 0.841 0.782 0.841 0.781
Ost. (9.85) 0.632 0.632 0.647 0.688 0.656 0.700 0.65 0.638 0.641 0.630 0.655 0.685 0.653 0.689
Str. (15.86) 0.602 0.616 0.675 0.699 0.681 0.705 0.625 0.622 0.601 0.574 0.672 0.697 0.675 0.691
H. A. (16.7) 0.657 0.626 0.681 0.699 0.671 0.696 0.642 0.615 0.664 0.624 0.7 0.702 0.678 0.718
Ang. (26.51) 0.619 0.611 0.659 0.698 0.657 0.694 0.641 0.633 0.625 0.611 0.678 0.689 0.653 0.702
Dem. (56.96) 0.695 0.703 0.728 0.745 0.75 0.755 0.696 0.675 0.691 0.671 0.729 0.764 0.728 0.753
P. D. (160.3) 0.625 0.567 0.624 0.656 0.632 0.664 0.606 0.541 0.618 0.537 0.588 0.660 0.616 0.633

Wins 6.5 3.5 1 9 1 9 9.5 0.5 9.5 0.5 1 9 1 9

Table 4.9: ELSA-nurse average Specificity values for the UBB and BRF under-
sampling methods for each dataset/method combination, over a 10-fold cross-
validation. The last row contains the number of wins of each method, and the
best value in each row is in boldface.

Dataset
(IR)

Baseline Globalmean Agebased Prev PrevNext KNN Data-Driven
BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB

Art. (1.35) 0.542 0.548 0.593 0.510 0.587 0.501 0.531 0.545 0.521 0.556 0.591 0.502 0.598 0.507
HBP (1.49) 0.738 0.701 0.747 0.629 0.742 0.601 0.717 0.666 0.727 0.679 0.744 0.601 0.752 0.610
Cat. (2.06) 0.662 0.674 0.702 0.601 0.733 0.596 0.652 0.637 0.645 0.694 0.728 0.596 0.715 0.599
Dia. (6.5) 0.87 0.795 0.864 0.698 0.84 0.655 0.883 0.803 0.871 0.826 0.871 0.661 0.878 0.686
Ost. (9.85) 0.735 0.716 0.723 0.606 0.688 0.601 0.703 0.673 0.73 0.702 0.713 0.624 0.714 0.578
Str. (15.86) 0.737 0.727 0.715 0.596 0.667 0.572 0.774 0.696 0.721 0.734 0.72 0.577 0.732 0.558
H. A. (16.7) 0.735 0.718 0.731 0.564 0.728 0.581 0.781 0.736 0.716 0.703 0.736 0.586 0.723 0.611
Ang. (26.51) 0.737 0.729 0.721 0.585 0.682 0.496 0.767 0.667 0.708 0.721 0.686 0.566 0.733 0.570
Dem. (56.96) 0.754 0.791 0.736 0.662 0.73 0.676 0.804 0.784 0.754 0.743 0.709 0.635 0.743 0.615
P. D. (160.3) 0.672 0.591 0.682 0.561 0.667 0.545 0.621 0.621 0.689 0.561 0.636 0.485 0.636 0.470

Wins 7 3 10 0 10 0 8.5 1.5 6 4 10 0 10 0

Table 4.8 shows a noticeable trend for higher Sensitivity values when using the

UBB method, except for the Baseline MVR (no replacement). For all other MVR

method the Sensitivity values of UBB models were higher in at least 9 out of 10

cases.
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On the other hand, as seen in Table 4.9, overall higher Specificity values were

observed when using the BRF method, for all 7 MVR methods. The BRF won for

all 10 datasets in 4 of these methods, showing a clear trend of better Specificity

values.

The opposing results between Sensitivity and Specificity measures are ex-

pected, since these performance metrics evaluate the classifier’s abilities to predict

different classes, and usually the prediction of one class can be improved, but in

detriment of the other class.

As global measures of the RF models’ performances, their average Accuracy

values are reported in Table 4.10 and the GMean values are reported in Table

4.11.

Table 4.10: ELSA-nurse average Accuracy values for the UBB and BRF under-
sampling methods for each dataset/method combination, over a 10-fold cross-
validation. The last row contains the number of wins of each method, and the
best value in each row is in boldface.

Dataset
(IR)

Baseline Globalmean Agebased Prev PrevNext KNN Data-Driven
BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB

Art. (1.35) 0.641 0.672 0.632 0.667 0.623 0.664 0.645 0.655 0.637 0.658 0.629 0.66 0.638 0.662
HBP (1.49) 0.681 0.632 0.693 0.599 0.689 0.603 0.675 0.614 0.679 0.607 0.683 0.605 0.697 0.606
Cat. (2.06) 0.663 0.665 0.651 0.649 0.651 0.645 0.68 0.652 0.662 0.651 0.649 0.65 0.657 0.648
Dia. (6.5) 0.762 0.673 0.843 0.756 0.831 0.739 0.805 0.696 0.763 0.676 0.845 0.766 0.846 0.768
Ost. (9.85) 0.642 0.639 0.654 0.68 0.659 0.691 0.655 0.641 0.649 0.636 0.661 0.679 0.658 0.679
Str. (15.86) 0.61 0.615 0.677 0.694 0.68 0.687 0.634 0.634 0.608 0.615 0.675 0.684 0.678 0.697
H. A. (16.7) 0.662 0.623 0.684 0.693 0.675 0.697 0.65 0.627 0.667 0.584 0.702 0.69 0.681 0.683
Ang. (26.51) 0.624 0.632 0.661 0.692 0.658 0.689 0.645 0.622 0.628 0.629 0.678 0.695 0.656 0.712
Dem. (56.96) 0.696 0.704 0.728 0.743 0.749 0.754 0.698 0.677 0.692 0.672 0.728 0.761 0.728 0.75
P. D. (160.3) 0.625 0.568 0.624 0.655 0.632 0.663 0.606 0.542 0.619 0.537 0.589 0.658 0.616 0.632

Wins 5 5 3 7 3 7 8.5 1.5 7 3 3 7 3 7

Table 4.11: ELSA-nurse average GMean values for the UBB and BRF under-
sampling methods for each dataset/method combination, over a 10-fold cross-
validation. The last row contains the number of wins of each method, and the
best value in each row is in boldface.

Dataset
(IR)

Baseline Globalmean Agebased Prev PrevNext KNN Data-Driven
BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB BRF UBB

Art. (1.35) 0.625 0.617 0.626 0.582 0.617 0.583 0.622 0.602 0.616 0.598 0.623 0.585 0.632 0.587
HBP (1.49) 0.688 0.676 0.7 0.660 0.696 0.651 0.681 0.657 0.684 0.661 0.691 0.648 0.704 0.652
Cat. (2.06) 0.663 0.667 0.663 0.636 0.669 0.632 0.672 0.648 0.658 0.661 0.667 0.634 0.671 0.635
Dia. (6.5) 0.804 0.721 0.852 0.731 0.835 0.702 0.837 0.739 0.806 0.734 0.856 0.719 0.86 0.732
Ost. (9.85) 0.682 0.672 0.684 0.645 0.672 0.649 0.676 0.655 0.684 0.665 0.683 0.654 0.683 0.631
Str. (15.86) 0.666 0.669 0.694 0.646 0.674 0.635 0.696 0.658 0.658 0.649 0.695 0.634 0.703 0.621
H. A. (16.7) 0.695 0.671 0.706 0.628 0.699 0.636 0.708 0.673 0.69 0.662 0.717 0.641 0.7 0.663
Ang. (26.51) 0.676 0.667 0.689 0.639 0.67 0.587 0.701 0.650 0.665 0.664 0.682 0.624 0.692 0.632
Dem. (56.96) 0.724 0.745 0.732 0.702 0.74 0.714 0.748 0.727 0.721 0.706 0.719 0.697 0.736 0.681
P. D. (160.3) 0.648 0.579 0.652 0.606 0.649 0.602 0.613 0.580 0.652 0.549 0.612 0.566 0.626 0.545

Wins 7 3 10 0 10 0 10 0 9 1 10 0 10 0
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In the Accuracy analysis, the UBB method performs better than the BRF

class-balancing method with 4 out of 7 MVR methods. The trend in favour of

UBB is slightly less clear, with BRF getting more wins for the Prev and PrevNext

methods and a tie of 5 wins for the Baseline method. It is important to note

that Accuracy favours the Sensitivity results, as the positive (majority) class has

a bigger weight in its values, thus the trend in favour of UBB was to be expected,

since it got the best Sensitivity results overall.

The other global measure, GMean, clearly trends towards the BRF method,

with more wins for all MVR methods, including wins for all 10 datasets for 5 out

of 7 MVR methods. This means that, when we consider the classification of both

positive and negative cases as equally important, the BRF models were clearly

superior.

Therefore, when analysing the performance of the RF models, the BRF method

was overall superior to the UBB method. Note that, when applying the BRF

method, the models are trained with a wider variety of positive class instances

due to the undersampling happening inside each bootstrapping process (for each

tree in the RF), so different decision trees in the RF are likely to learn to detect

different aspects of the majority class.

In conclusion, overall the BRF method performed better than the UBB method

in our experiments, and is intuitively better due to using more varied training in-

stances of the majority class, so from here on all our experiments will be performed

with datasets where the majority-class instances are undersampled using the BRF

method. Note that this also applies to the ELSA-core and TILDA datasets, in

addition to the ELSA-nurse datasets we experimented with in this Section.

4.7.2 Comparing the MVR Methods

Once we have chosen the BRF undersampling as the default method for handling

the class imbalance in all our datasets, as discussed in the previous Section, in

this Section we analyse which of the missing value replacement (MVR) methods

is the most adequate for our datasets.

For this set of experiments, we will again present the results for the ELSA-

nurse, ELSA-core and TILDA datasets separately, in the following Subsections.
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Elsa-nurse classifier-dependent results

The Sensitivity and Specificity results obtained on ELSA-nurse datasets by each

MVR method (with BRF undersampling) are presented in Tables 4.12 and 4.13,

respectively. For this analysis, we ranked all 7 methods from the best (rank 1) to

the worst (rank 7) based on each of the measures, using three decimal places, and

having tied methods share the same average rank – e.g., if two methods are joint

first, each is assigned a rank of 1.5 (average between ranks 1 and 2).

Table 4.12: Elsa-nurse: average Sensitivity values for the Random Forest algo-
rithm, over a 10-fold cross-validation, using different missing value handling meth-
ods. The last row contains the average rank of each method, and the best value
in each row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (1.35) 0.720 0.661 0.649 0.729 0.729 0.658 0.667

HBP (1.49) 0.641 0.656 0.653 0.647 0.644 0.642 0.659
Cataract (2.06) 0.663 0.626 0.612 0.693 0.671 0.611 0.629
Diabetes (6.5) 0.744 0.840 0.830 0.794 0.746 0.841 0.841

Osteoporosis (9.85) 0.632 0.647 0.656 0.650 0.641 0.655 0.653
Stroke (15.86) 0.602 0.675 0.681 0.625 0.601 0.672 0.675

HeartAttack (16.7) 0.657 0.681 0.671 0.642 0.664 0.700 0.678
Angina (26.51) 0.619 0.659 0.657 0.641 0.625 0.678 0.653

Dementia (56.96) 0.695 0.728 0.750 0.696 0.691 0.729 0.728
Parkinsons (160.3) 0.625 0.624 0.632 0.606 0.618 0.588 0.616

Average Rank 5.4 3.3 3.1 4.4 5.0 3.8 3.2

Table 4.13: Elsa-nurse: average Specificity values for the Random Forest algo-
rithm, over a 10-fold cross-validation, using different missing value handling meth-
ods. The last row contains the average rank of each method, and the best value
in each row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (1.35) 0.542 0.593 0.587 0.531 0.521 0.591 0.598

HBP (1.49) 0.738 0.747 0.742 0.717 0.727 0.744 0.752
Cataract (2.06) 0.662 0.702 0.733 0.652 0.645 0.728 0.715
Diabetes (6.5) 0.870 0.864 0.840 0.883 0.871 0.871 0.878

Osteoporosis (9.85) 0.735 0.723 0.688 0.703 0.730 0.713 0.714
Stroke (15.86) 0.737 0.715 0.667 0.774 0.721 0.720 0.732

HeartAttack (16.7) 0.735 0.731 0.728 0.781 0.716 0.736 0.723
Angina (26.51) 0.737 0.721 0.682 0.767 0.708 0.686 0.733

Dementia (56.96) 0.754 0.736 0.730 0.804 0.754 0.709 0.743
Parkinsons (160.3) 0.672 0.682 0.667 0.621 0.689 0.636 0.636

Average Rank 3.4 3.8 5.2 3.7 4.5 4.2 3.3

Regarding the Sensitivity values (Table 4.12), the Age-based mean/mode method
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obtained the lowest (best) average rank (3.1) and 4 best values across the 10

datasets, closely followed by the Data-Driven method with the second lowest av-

erage rank (3.2) and 2 best values.

Regarding the Specificity results (Table 4.13), the Age-based mean/mode

method obtained the highest (worst) average rank, showing the typical trade-

off between Sensivity and Specificity. However, the Data-Driven approach still

presented good results for Specificity, with the smallest (best) average rank (3.3),

followed by the Baseline approach (3.4). This indicates that the classifiers created

with the Data-Driven approach were balanced enough to obtain the best Speci-

ficity and the second best Sensitivity among the 7 MVR methods, despite the

trade-off usually associated with these two metrics.

For the global analysis of the classifiers generated with ELSA-nurse datasets,

we present the models’ Accuracy and GMean results in Tables 4.14 and 4.15.

Table 4.14: Elsa-nurse: average Accuracy values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (1.35) 0.641 0.632 0.623 0.645 0.637 0.629 0.638

HBP (1.49) 0.681 0.693 0.689 0.675 0.679 0.683 0.697
Cataract (2.06) 0.663 0.651 0.651 0.680 0.662 0.649 0.657
Diabetes (6.5) 0.762 0.843 0.831 0.805 0.763 0.845 0.846

Osteoporosis (9.85) 0.642 0.654 0.659 0.655 0.649 0.661 0.658
Stroke (15.86) 0.610 0.677 0.680 0.634 0.608 0.675 0.678

HeartAttack (16.7) 0.662 0.684 0.675 0.650 0.667 0.702 0.681
Angina (26.51) 0.624 0.661 0.658 0.645 0.628 0.678 0.656

Dementia (56.96) 0.696 0.728 0.749 0.698 0.692 0.728 0.728
Parkinsons (160.3) 0.625 0.624 0.632 0.606 0.619 0.589 0.616

Average Rank 5.0 3.4 3.2 4.6 5.4 3.6 2.9

Accuracy values reflect how well a model predicts both positive and negative

class instances. Note, however, that the proportion to which each class contributes

to the accuracy value is dependent on the proportion of instances of each class in

the dataset. As the Accuracy values are calculated by dividing the sum of true

positive and true negative predictions by the total number of predictions, and the

positive class represents the majority of instances, the number of true positive

predictions has a bigger impact on the accuracy value than the number of true

negative predictions.
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Table 4.15: Elsa-nurse: average GMean values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (1.35) 0.625 0.626 0.617 0.622 0.616 0.623 0.632

HBP (1.49) 0.688 0.700 0.696 0.681 0.684 0.691 0.704
Cataract (2.06) 0.663 0.663 0.669 0.672 0.658 0.667 0.671
Diabetes (6.5) 0.804 0.852 0.835 0.837 0.806 0.856 0.860

Osteoporosis (9.85) 0.682 0.684 0.672 0.676 0.684 0.683 0.683
Stroke (15.86) 0.666 0.694 0.674 0.696 0.658 0.695 0.703

HeartAttack (16.7) 0.695 0.706 0.699 0.708 0.690 0.717 0.700
Angina (26.51) 0.676 0.689 0.670 0.701 0.665 0.682 0.692

Dementia (56.96) 0.724 0.732 0.740 0.748 0.721 0.719 0.736
Parkinsons (160.3) 0.648 0.652 0.649 0.613 0.652 0.612 0.626

Average Rank 5.2 3.0 4.5 3.5 5.6 4.0 2.4

In the Accuracy results the Data-Driven approach had the smallest aver-

age rank (2.9), followed by the proposed Age-based mean/mode (average rank

of 3.2), a similar trend to what we observed when analysing Sensitivity (Table

4.13). When considering Accuracy (Table 4.14), the Baseline models (learned from

datasets without any missing value replacement) only outperformed the PrevNext

method.

The GMean results (Table 4.15) also have the Data-Driven approach as the

method with the smallest average rank (2.4). This other global performance metric

puts the same weight in the Sensitivity and Specificity of the classifier, meaning it

is not very affected by the class imbalance in the datasets. Based on these results

we can claim that models created with the proposed Data-Driven approach tend

to have better performance, which corroborates our previous results from the

classifier-independent evaluation, which had the proposed method as the best

choice overall, considering applicability and error rate. Importantly, the Baseline

approach of doing no missing value replacement at all is outperformed by the

proposed method in all four metrics.

ELSA-core classifier-dependent results

We ran the same set of classifier-dependent experiments using the 10 ELSA-core

datasets, to investigate whether the proposed Data-Driven approach would still
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outperform the other methods in a different scenario. As mentioned earlier, ELSA-

core datasets have more waves than our other datasets, which yielded greater

applicability to the MVR methods that use longitudinal information.

Tables 4.16 and 4.17 show the Sensitivity and Specificity results for the ELSA-

core datasets, respectively.

Table 4.16: Elsa-core: average Sensitivity values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (2.52) 0.775 0.750 0.749 0.803 0.773 0.748 0.754

HBP (2.58) 0.638 0.644 0.630 0.700 0.632 0.634 0.641
Cataract (3.38) 0.694 0.598 0.607 0.740 0.696 0.607 0.600
Diabetes (7.80) 0.634 0.670 0.668 0.690 0.640 0.677 0.679

Osteoporosis (11.84) 0.721 0.697 0.695 0.748 0.726 0.700 0.695
Stroke (18.35) 0.660 0.689 0.690 0.737 0.667 0.694 0.690

HeartAttack (19.06) 0.673 0.674 0.671 0.721 0.692 0.676 0.668
Angina (29.49) 0.695 0.710 0.713 0.735 0.696 0.715 0.709

Dementia (52.20) 0.716 0.761 0.765 0.791 0.717 0.760 0.763
Parkinsons (112.07) 0.723 0.694 0.702 0.761 0.722 0.694 0.692

Average Rank 4.7 4.55 4.75 1 4.2 4.1 4.7

Table 4.17: Elsa-core: average Specificity values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (2.52) 0.680 0.714 0.718 0.676 0.681 0.718 0.714

HBP (2.58) 0.658 0.671 0.671 0.614 0.654 0.663 0.667
Cataract (3.38) 0.564 0.730 0.755 0.569 0.560 0.730 0.736
Diabetes (7.80) 0.791 0.746 0.745 0.725 0.787 0.758 0.737

Osteoporosis (11.84) 0.626 0.668 0.665 0.592 0.622 0.665 0.673
Stroke (18.35) 0.719 0.707 0.729 0.659 0.696 0.699 0.718

Heart Attack (19.06) 0.677 0.683 0.676 0.642 0.661 0.696 0.680
Angina (29.49) 0.766 0.733 0.761 0.730 0.742 0.737 0.758

Dementia (52.20) 0.821 0.789 0.764 0.733 0.807 0.776 0.783
Parkinson’s (112.07) 0.754 0.707 0.733 0.653 0.738 0.720 0.760

Average Rank 3.3 3.55 3.05 6.8 4.7 3.65 2.95

For these models, the Prev method (which has a 44.61% applicability in the

ELSA-core datasets) got the best Sensitivity results in all 10 datasets. The Sen-

sitivity values from the other methods were closer together, with average ranks
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varying from 4.1 (KNN) to 4.75 (Age-based mean/mode). The high Sensitivity of

the Prev models is, in this case, an indication of a tendency to classify instances

as the majority class, which increases the True Positive Rate while simultaneously

decreasing the True Negative Rate.

This is made clear on the Specificity results in Table 4.17, where Prev has

one of the highest (worst) average ranks (6.8). For this metric, the Data-Driven

method obtained the best results (average rank of 2.95), although the pattern of

’wins’ was not as clear as in the ELSA-nurse datasets.

The Accuracy and GMean results for the ELSA-core datasets are presented in

Tables 4.18 and 4.19, as global performance measures.

Table 4.18: Elsa-core: average Accuracy values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (2.52) 0.734 0.736 0.737 0.752 0.734 0.736 0.738

HBP (2.58) 0.647 0.654 0.646 0.667 0.641 0.646 0.651
Cataract (3.38) 0.649 0.637 0.651 0.689 0.650 0.644 0.640
Diabetes (7.80) 0.656 0.679 0.677 0.694 0.660 0.687 0.687

Osteoporosis (11.84) 0.712 0.694 0.692 0.735 0.717 0.697 0.693
Stroke (18.35) 0.663 0.690 0.692 0.733 0.668 0.695 0.691

Heart Attack (19.06) 0.673 0.674 0.671 0.717 0.690 0.677 0.668
Angina (29.49) 0.697 0.711 0.714 0.735 0.698 0.716 0.711

Dementia (52.20) 0.718 0.761 0.765 0.790 0.719 0.760 0.763
Parkinson’s (112.07) 0.723 0.694 0.702 0.760 0.722 0.694 0.692

Average Rank 5.25 4.55 4.05 1 4.75 3.9 4.5

As mentioned earlier, the Accuracy metric is more heavily influenced by the

Sensitivity (as the positive class is the majority class), and this led to the same

pattern: the Prev method obtained the best result for every single ELSA-core

dataset. The other methods in Table 4.18 have average ranks ranging from 3.9

(KNN) to 5.25 (Baseline), a slightly broader range when compared to the Sensi-

tivity results in Table 4.16.

Regarding the GMean results (Table 4.19), which put the same weight into

correctly classifying majority and minority class instances, we see the Data-driven

approach as the best method (average rank 2.8). In this case, as the Prev models

seem to have a heavy bias towards the majority class, the GMean metric is the

most indicated out of the two to show which method generated the models with
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Table 4.19: Elsa-core: average GMean values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
Arthritis (2.52) 0.726 0.732 0.733 0.736 0.726 0.733 0.734

HBP (2.58) 0.648 0.657 0.650 0.656 0.643 0.649 0.654
Cataract (3.38) 0.625 0.661 0.677 0.649 0.624 0.666 0.664
Diabetes (7.80) 0.708 0.707 0.705 0.707 0.710 0.716 0.708

Osteoporosis (11.84) 0.671 0.682 0.680 0.665 0.672 0.682 0.684
Stroke (18.35) 0.689 0.698 0.709 0.697 0.681 0.697 0.704

Heart Attack (19.06) 0.675 0.678 0.673 0.680 0.677 0.686 0.674
Angina (29.49) 0.730 0.722 0.737 0.733 0.719 0.726 0.733

Dementia (52.20) 0.767 0.775 0.765 0.761 0.761 0.768 0.773
Parkinson’s (112.07) 0.738 0.700 0.717 0.705 0.730 0.707 0.725

Average Rank 4.8 3.8 3.75 4.2 5.4 3.25 2.8

better predictive accuracy.

TILDA classifier-dependent results

Finally, we also ran the classifier-dependent scenario experiments with the 10

TILDA datasets. The Irish study datasets have the lowest applicabilities for the

methods that use longitudinal information, which means the Prev and PrevNext

have very similar effect to using the Baseline approach, since every instance for

which the method is not applicable stays with a missing value to be handled by

the classification algorithm.

The Sensitivity and Specificity results for the models created with TILDA

datasets are shown in Tables 4.20 and 4.21, respectively.

In these experiments, the Data-Driven approach obtained the lowest average

rank for Specificity (2.95), although the ’wins’ were relatively well-distributed,

with Data-Driven getting the best Sensitivity value only twice. The Age-based

and Global mean/mode methods follow with average ranks of 3.25 and 3.3, re-

spectively.

For the Specificity results, the Baseline method got the lowest average rank

(2.95), with our proposed Data-Driven approach having the second-to-highest

rank (4.65). This may be an indication of a small bias in favour of the majority

class in the Data-Driven models, but it is not nearly as strong as the one observed

in the Prev models from the ELSA-core experiments. The highest Specificity
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Table 4.20: TILDA: average Sensitivity values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
HBP (2.38) 0.635 0.677 0.673 0.625 0.633 0.653 0.684

Arthritis (2.92) 0.747 0.724 0.726 0.742 0.737 0.734 0.734
Osteoporosis (9.53) 0.688 0.680 0.676 0.680 0.672 0.681 0.677

Cataract (10.83) 0.710 0.698 0.715 0.703 0.633 0.691 0.706
Diabetes (13.44) 0.744 0.781 0.776 0.741 0.746 0.749 0.776
Cancer (17.02) 0.573 0.551 0.553 0.583 0.572 0.557 0.562
Angina (20.70) 0.729 0.751 0.750 0.730 0.729 0.735 0.749

Heart Attack (25.24) 0.728 0.747 0.749 0.727 0.733 0.733 0.747
Mini-stroke (50.74) 0.696 0.707 0.707 0.707 0.688 0.704 0.711

Stroke (79.62) 0.705 0.724 0.722 0.706 0.708 0.702 0.713
Average Rank 4.15 3.3 3.25 4.45 5.3 4.6 2.95

Table 4.21: TILDA: average Specificity values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
HBP (2.38) 0.795 0.760 0.767 0.802 0.792 0.789 0.764

Arthritis (2.92) 0.646 0.650 0.651 0.649 0.636 0.649 0.649
Osteoporosis (9.53) 0.801 0.797 0.796 0.781 0.794 0.807 0.796

Cataract (10.83) 0.736 0.743 0.743 0.738 0.720 0.749 0.724
Diabetes (13.44) 0.826 0.823 0.818 0.836 0.823 0.842 0.834
Cancer (17.02) 0.612 0.595 0.592 0.576 0.595 0.599 0.599
Angina (20.70) 0.908 0.892 0.896 0.908 0.908 0.900 0.884

Heart Attack (25.24) 0.912 0.873 0.873 0.917 0.907 0.912 0.878
Mini-stroke (50.74) 0.794 0.725 0.765 0.735 0.765 0.755 0.755

Stroke (79.62) 0.754 0.738 0.785 0.754 0.785 0.738 0.754
Average Rank 2.95 5.05 4.15 3.8 4.3 3.1 4.65

values are well-distributed between methods, with the Baseline approach getting

3 out of 10 wins.

The Accuracy and GMean results for the TILDA datasets are shown in Tables

4.22 and 4.23, respectively.

The Accuracy results have the Data-Driven approach with the lowest average

rank (2.9), which is expected since it had the best Sensitivity results as well.

However, this time the GMean results have the Baseline approach as the lowest

ranked method on average (3.2), very closely followed by the Age-based approach

(3.3) and the Data-Driven approach (3.4).
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Table 4.22: TILDA: average Accuracy values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods.
The last row contains the average rank of each method, and the best value in each
row is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
HBP (2.38) 0.696 0.709 0.709 0.693 0.693 0.704 0.714

Arthritis (2.92) 0.716 0.701 0.703 0.713 0.706 0.708 0.707
Osteoporosis (9.53) 0.698 0.691 0.687 0.690 0.684 0.693 0.689

Cataract (10.83) 0.712 0.702 0.717 0.706 0.640 0.696 0.707
Diabetes (13.44) 0.750 0.784 0.778 0.748 0.751 0.755 0.780
Cancer (17.02) 0.575 0.553 0.555 0.582 0.574 0.559 0.564
Angina (20.70) 0.737 0.757 0.756 0.738 0.736 0.743 0.755

Heart Attack (25.24) 0.734 0.752 0.753 0.734 0.739 0.739 0.751
Mini-stroke (50.74) 0.698 0.707 0.708 0.707 0.690 0.705 0.711

Stroke (79.62) 0.705 0.724 0.723 0.707 0.709 0.702 0.714
Average Rank 4.15 3.3 3.15 4.45 5.6 4.45 2.9

Table 4.23: TILDA: average GMean values for the Random Forest algorithm, over
a 10-fold cross-validation, using different missing value handling methods. The
last row contains the average rank of each method, and the best value in each row
is in boldface.

Class (IR) Baseline GlobalMean AgeBased Prev PrevNext KNN DataDriven
HBP (2.38) 0.711 0.717 0.719 0.708 0.708 0.718 0.723

Arthritis (2.92) 0.695 0.686 0.688 0.694 0.685 0.690 0.690
Osteoporosis (9.53) 0.742 0.736 0.733 0.729 0.730 0.741 0.734

Cataract (10.83) 0.723 0.720 0.729 0.721 0.675 0.719 0.715
Diabetes (13.44) 0.784 0.802 0.797 0.787 0.784 0.794 0.804
Cancer (17.02) 0.592 0.573 0.572 0.579 0.584 0.577 0.580
Angina (20.70) 0.814 0.818 0.820 0.814 0.813 0.814 0.814

Heart Attack (25.24) 0.815 0.808 0.809 0.816 0.816 0.818 0.810
Mini-stroke (50.74) 0.743 0.716 0.735 0.721 0.726 0.729 0.732

Stroke (79.62) 0.729 0.731 0.753 0.730 0.745 0.720 0.733
Average Rank 3.2 4.5 3.3 4.55 5.15 3.9 3.4

Therefore, for the TILDA datasets, the proposed Data-Driven missing value

replacement approach still presented good results in the comparison against the 6

other approaches, but it is not a clear best choice when compared to the Baseline

approach of not doing any imputation.

Statistical analysis

To further investigate the difference between the RF models’ performances, we

compared their results over all 30 datasets using two non-parametric statistical
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significance tests, as follows. We applied the Friedman’s test (multiple simultane-

ous comparisons) to the results of all 4 metrics, for the 7 missing value-handling

techniques, with the usual significance level of α = 0.05. The tests resulted in

the following p-values : 1.529e − 05, 2.554e − 08, 1.112e − 09 and 1.48e − 10, for

Sensitivity, Specificity, Accuracy and GMean respectively. This means that, for

all four measures, there was enough evidence to reject the null hypothesis (that

the models’ performances were equivalent).

As a post-hoc statistical test, using the Data-Driven approach as a control

classifier (i.e., the one classifier we intend to compare against each of the others),

we applied the Wilcoxon signed-rank test to compare the control against the other

methods pairwise, and adjusted the α values using Holm’s procedure for multiple

tests (Wilcoxon 1992; Holm 1979), as recommended in (Demšar 2006).

Figures 4.2, 4.3, 4.4 and 4.5 presents the Critical Difference diagrams, for each

metric. In each diagram, the methods connected to the Data-Driven control by

a horizontal line were those for which the null hypothesis of the statistical test

was not rejected, meaning their differences in performance were not statistically

significant.

Figure 4.2: Critical Difference Diagram for Sensitivity metric. No method was
significantly different from the Data-Driven approach.

Summary of classifier-dependent results

In this Section we compared the effects of employing different strategies to handle

missing values in our longitudinal datasets. We analysed the performances of
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Figure 4.3: Critical Difference Diagram for Specificity metric. No method was
significantly different from the Data-Driven approach.

RF models trained with these datasets using four metrics: Sensitivity, Specificity,

Accuracy and GMean.

Overall, the proposed Data-Driven missing value replacement approach achieved

the best results. To be more precise, it was the lowest-ranked method on average

in all three sets of experiments (with three dataset sources) for the Sensitivity

measure, and in two out of three for the other metrics: Specificity (ELSA-nurse

and ELSA-core), Accuracy (TILDA and ELSA-nurse), and GMean (ELSA-nurse,

ELSA-core). In our statistical analysis, the Data-Driven approach was deemed

significantly superior to all methods but the PrevNext regarding its ranking, for

all measures.

The proposed approach selects the best MVR method for every feature in

the dataset, and guarantees that every missing value will be replaced. This is

relevant for other experiments later in this thesis, where it is beneficial to have

a fully imputed dataset, with no missing values. This is because we will create

temporal features from the longitudinal values of the conceptual features in our

datasets (e.g.: creating features reporting whether a conceptual feature’s values

have monotonically increased or decreased throughout the waves) in Chapter 5,

and the creation of these temporal features is enabled by a dataset without missing

values.

Thus, based on the results of our classifier-independent experiments in Section

4.6, and the classifier-dependent experiments in this current Section, we chose to
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Figure 4.4: Critical Difference Diagram for Accuracy metric. The Data-Driven
approach significantly outperformed the Baseline (p-value 0.01108) and PrevNext
(p-value 0.00438) methods.

adopt the Data-Driven approach as our default method for handling missing values

in all 30 of our datasets (ELSA-nurse, ELSA-core and TILDA datasets). For the

experiments performed in later Chapters of this thesis, all datasets will have their

missing values imputed on a preprocessing step, using the proposed Data-Driven

approach (with the same set of base MVR methods from Section 4.3), and the

training sets will be undersampled using the Balanced Random Forest method, as

discussed in Section 4.7.1.
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Figure 4.5: Critical Difference Diagram for GMean metric. The Data-Driven
approach significantly outperformed the PrevNext method (p-value 0.0009).
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Chapter 5

Constructed Temporal Features

for Longitudinal Classification

Longitudinal datasets contain multiple measures of a set of features taken over

different time-points, following the same group of instances. Because standard

classification algorithms do not cope directly with the temporality of longitudinal

data, they disregard time-related information that may be relevant to the problem.

One way to address this issue in a data preparation step is to explicitly add a

representation of the time-related information, inherent to longitudinal data, as

additional features in the dataset.

In this Chapter we discuss the creation of additional features from longitudi-

nal datasets, as a strategy to increase predictive accuracy of our classifiers. This

is a data preparation approach, using both the UKLI (union keeping longitudi-

nal information) and AGG (aggregated data) representations (see taxonomy on

Chapter 3), the latter referring to the new constructed features. The performance

of the proposed Constructed Temporal Features (CTFs) was evaluated on the

30 real-world datasets created from the English Longitudinal Study of Ageing

(ELSA) and Irish Longitudinal Study of Ageing (TILDA) databases, after their

preprocessing, carried out as discussed in Chapter 4.

Constructing temporal features in a preprocessing step is only one of the possi-

ble approaches for considering temporal patterns in classification problems. Other

strategies include Structural Pattern Detection Morid et al. (2020), Recurrent

Neural Networks (often Long-Short Term Memory) Aghili et al. (2018), and Deep

Learning Luo et al. (2020). Although we are using only standard classifiers in our
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experiments, our approach may be combined with more sophisticated algorithms

tailored to longitudinal analysis.

By itself, CTF creation has the advantages of being simple to implement and

adapt, and generating interpretable features that clearly represent temporal pat-

terns. This is in contrast e.g. to deep neural networks, where the constructed

features are not directly interpretable by users.

We performed experiments adding 6 types of CTF to the 30 longitudinal

datasets, and compare them using four predictive performance metrics and two

classification algorithms (Random Forests and the C4.5 Decision Tree algorithm).

The experiments compared the results of those algorithms on different versions

of the datasets, with and without the CTFs, in order to determine the impact of

those CTFs on predictive performance. The contributions in this Chapter were

published in a conference paper (Ribeiro and Freitas 2021a).

5.1 Adding CTFs in a Data Preprocessing Step

For each set of features representing measurements of the same variable at different

time-points (e.g. for the features with values of “cholesterol” in different waves),

we will create 6 types of CTFs to represent changes in their values across waves.

These constructed features can be relevant information for class prediction, for

example, an increase in cholesterol level across waves can indicate a higher risk of

a heart attack for an individual.

The CTFs are created in a data preprocessing step, before running the clas-

sification algorithm, meaning they can be used with any classifier. Note that, in

order to precisely calculate the CTF values, ideally the values of all temporally

related (source) features should be known. For our experiments, all missing values

in the datasets have been replaced by estimations using the Data-Driven missing

value imputation approach, discussed in Chapter 4.

Note that the amount of temporal information available in our different datasets

varies. For the Elsa-nurse dataset, as mentioned before, we have a total of 4 waves

(each separated by 4 years from the next), where most original features are mea-

sured repeatedly. For the Elsa-core dataset there are 8 waves (separated by 2

years), and we use up to 7 measurements of each conceptual feature (as we did

not include predictive features measured in the 8th wave). For the TILDA dataset,
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although it also has 4 waves, about half of the conceptual features have only two

measurements, as they are taken from the equivalent of the nurse-data interviews

in ELSA, which happen every two waves. Because of this, we are able to anal-

yse the impact of CTFs in longitudinal datasets with a small (TILDA), average

(ELSA-nurse) or high (ELSA-core) amount of temporal information available.

5.1.1 Related work on CTFs

Niemann et al. (2015) generated evolution features by comparing instance clus-

tering results at different time-points in a longitudinal dataset. The CTFs used

in this study included the differences between feature measurements at each wave

and cluster metrics taken from the clustering results. They performed experi-

ments with different classifiers, and concluded that the added temporal features

improved predictive accuracy for most classifiers.

In addition, Buizza et al. (2018) created longitudinal pattern features by com-

paring distances and means related to two subsequent images (PET/CT scans).

The authors claimed that single time-point features were limited in describing

local tumour characteristics that may affect treatment outcome. In their exper-

iments, classification models created from datasets with the longitudinal pattern

features generally outperformed those without them.

Both works are quite different from our study since they focus on specific types

of CTFs involving clustering results and images, which are out the scope for this

thesis.

In a more similar context to ours, Pomsuwan and Freitas (2017) have also used

CTFs for longitudinal data, using datasets created from the ELSA-nurse database.

The author added three types of CTFs to their original dataset: Up (whether the

feature value increased between two consecutive waves), Monotonicity and Diff.

The latter two features are also used in our study, and are described in detail in

Section 5.2. However, their study focused on proposing a new longitudinal feature

selection algorithm, rather than on the CTFs. Hence, they did not perform con-

trolled experiments comparing the predictive accuracy of classification algorithms

with and without CTFs, as performed in this thesis. Rather, they simply reported

the relative frequencies with which the CTFs were selected by the random forest

algorithm. The conclusion from their experiments was that CTFs can have a
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positive impact on the predictive accuracy of longitudinal classifiers, but not all

CTFs were selected often.

The work presented in this Chapter differs from these related studies as it is

the first that focuses specifically on the creation of CTFs for longitudinal data

(including the proposal of new types of CTFs) and the evaluation of their impact

on the predictive accuracy of the classifiers by performing controlled experiments

with and without the CTFs. We also propose a larger number of types of CTFs

(6 types, as opposed to 3 types in Pomsuwan and Freitas (2017)), experiment

with a larger number of datasets (30 datasets from real-world longitudinal data,

as opposed to 10 datasets in Pomsuwan and Freitas (2017)).

5.2 The Proposed Constructed Temporal Fea-

tures

In this section, we define six types of Constructed Temporal Features (CTFs), that

represent temporal patterns that might be otherwise disregarded by a classification

algorithm applied to longitudinal data. We describe each CTF’s calculation for

the numeric and ordered nominal features in our datasets.

However, before defining our proposed CTFs, it is important to recall our def-

inition of conceptual features in longitudinal datasets. Features in a longitudinal

dataset are often repeated measures of the same variable across waves (time-

points). As mentioned earlier, the evolution of these features’ values throughout

the study’s waves represents temporal information we intend to exploit, because

the changes in values can represent relevant information.

We use the term “conceptual feature” to refer to the abstract definition of

a feature, without specifying the wave where the feature was measured. For

instance, cholesterol is a conceptual feature; whilst, in concrete terms, the dataset

will contain different cholesterol features which are distinguished by the time-

points (waves) where they were measured. The proposed CTFs are calculated

using values of different measurements of the same conceptual feature. Thus, all

features that have multiple measurements are eligible for the creation of CTFs.

Regarding the novelty of our proposed CTFs, the Monotonicity and Diff have

been applied to similar longitudinal datasets in Pomsuwan and Freitas (2017),
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as mentioned earlier. We could not find an example of the Ratio feature being

applied to longitudinal datasets, but it is a small variation from the Diff feature.

The Percentile and the two CTFs based on the age mean/mode, DiffAgeMean

and AvgDiffAgeMean, are novel contributions.

Throughout the next sections, we will use Table 5.1 to give examples of CTF

calculations, using real data from Elsa-nurse instances, of ldl (Blood LDL choles-

terol level in mmol/l) measurements over the 4 waves in the dataset. The most

common age value in this sample Table is 68, so we boldfaced the measurements

for this age value, which will be useful in several of the examples used.

Table 5.1: A small sample from Elsa-Nurse data for examples of CTF calculation.

Instance ldl w2 Age w2 ldl w4 Age w4 ldl w6 Age w6 ldl w8 Age w8
1 0.125 65 0.548 68 0.421 72 0.618 76
2 0.271 57 0.479 60 0.605 64 0.632 68
3 0.271 61 0.589 64 0.579 68 0.632 71
4 0.146 68 0.315 72 0.276 76 0.324 79
5 0.208 55 0.274 58 0.342 61 0.338 64
6 0.25 57 0.384 61 0.289 64 0.353 68
7 0.229 57 0.411 61 0.395 64 0.632 68
8 0.25 53 0.589 57 0.263 60 0.309 64
9 0.521 59 0.151 62 0.237 66 0.279 68
10 0.458 60 0.534 64 0.303 68 0.338 71

5.2.1 Monotonicity

A monotonic increase or decrease of a feature’s values over its consecutive measure-

ments in a longitudinal dataset may be a temporal pattern useful for predicting

the value of the class variable. To represent these patterns, we created a Mono-

tonicity CTF with three possible values: +1 indicating a monotonic increase in the

feature’s values across all its measurements, −1 indicating a monotonic decrease

and 0 indicating no monotonicity pattern.

The calculation of a Monotonicity feature value is shown in Equation 5.1,

where Fi,t denotes the value of the i-th feature at time-point (wave) t. Note that

it first checks if all feature values are equal; if so, it assigns a 0 value. Hence, the

rules for the -1 and 1 values apply only if there has been at least one change to

102



the feature’s values over time.

Monotonicity(Fi) = 0 : Fi,0 = Fi,1 = · · · = Fi,T

OR


1 : Fi,0 ≤ Fi,1 ≤ · · · ≤ Fi,T

−1 : Fi,0 ≥ Fi,1 ≥ · · · ≥ Fi,T

0 : otherwise

(5.1)

Note that we do not use a strict monotonicity definition with < and > oper-

ators. Rather, we use a more flexible monotonicity definition with the ≤ and ≥
operators. Hence, if the feature’s value increased or decreased at least once, as

long as the feature’s values do not change in the opposite direction in other waves,

we consider this a monotonic change.

The motivation for this more flexible definition is that it can be applied to

both numeric and ordered nominal features. Our datasets contain several ordered

nominal features taking between 2 and 8 possible values, and the above strict

definition of monotonicity would not be flexible enough to cope with such ordered

nominal features. For example, if a dataset has 4 waves but the feature can

take only two ordered values, say “low” and “high”, it is impossible to detect

a monotonic change according to the strict definition, but a sequence of feature

values such as “low”, “low”, “high”, “high” would be recognised as a monotonic

increase, a potentially useful pattern for classification.

In Table 5.1, Instance 2 would get the value 1 for its Monotonicity for the ldl

conceptual feature, indicating its values for ldl cholesterol have steadily increased

over the 4 consecutive measurements, from wave 2 to wave 8. All other instances

would get the value 0, indicating no Monotonicity pattern.

5.2.2 Diff - difference between last two measurements

Feature measurements taken closer in time to the class wave (the last wave) ar-

guably have more impact on the model’s output, as they are likely more closely

related to the class variable than measurements of the same feature taken fur-

ther in the past (earlier waves). In this context, we consider that the most recent

changes to a feature’s value may represent an important temporal trend. Thus, we

created the Diff CTF to measure the numerical difference between the conceptual
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features last and second to last measurements.

The calculation of the Diff CTF is shown in Equation 5.2, where T is the

index of the class variable’s wave (the last wave). For ordered nominal features,

Diff represents the degree of difference between the nominal values. This is only

possible because all nominal features in our datasets are ordered, so we can assign

numerical values to them and calculate the difference between these values as a

degree of difference. Note that this degree of difference measurement is precise only

for cases where the response options in the nominal features are equidistant, and

we do not make that assumption, as we did not design the data. However, after

inspecting all nominal features in our datasets, we decided that their values can be

considered similarly distant enough that the Diff calculation would be acceptable.

The same decision was made for Percentile, DiffAgeMean and AvgDiffAgeMean,

where we also calculate degrees of difference for nominal features.

Diff(Fi) = Fi,T − Fi,T−1 (5.2)

In Table 5.1, the ldl Diff value for Instance 1 would be 0.618− 0.421 = 0.197,

the positive value indicating an increase in the feature’s value from wave 6 to wave

8. Conversely, Instance 5 would get a ldl Diff of 0.338 − 0.342 = −0.004, with a

negative value indicating that the feature’s value has decreased from wave 6 to

wave 8.

5.2.3 Ratio between last two measurements

The Ratio CTF functions similarly to the Diff CTF. However, instead of the

difference, it calculates the result of dividing the value of the conceptual features

last measurement by its second to last measurement. We chose not to calculate

this CTF for nominal features, as the assumption of equidistance between the

possible values is much more important for the Ratio CTF, which is more sensitive

to changes in the values of a feature than the Diff CTF. As stated before, we do

not assume equidistance in the values of all our nominal features, although they

are similar enough that we considered plausible to calculate degrees of difference

between them using subtraction (for the Diff CTF). Hence, in this work the Ratio

CTF is used only for numeric features.
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Note that the Ratio CTF can capture patterns quite different from patterns

captured by the Diff CTF. For example, Diff has the same value (0.2) for the

feature value pairs (0.2, 0.4) and (0.6, 0.8), whilst Ratio has value 2 for the

former pair and 1.33 for the latter.

The calculation of the Ratio CTF is shown in Equation 5.3. To avoid a division

by zero error, before performing the division we add 1 to both feature values. Note

that this change can have different effects depending on the unit of measure. In

our case, as all values in the dataset are normalised between 0 and 1, this changes

the range of Ratio value beyond this range, and may make the interpretation of

these values more challenging. Another possibility to address this issue would be

to add a small epsilon value to the denominator; this alternative approach could

be investigated in future work.

Ratio(Fi) =
Fi,T + 1

Fi,T−1 + 1
(5.3)

Using the same example as the one used for Diff, in Table 5.1 we have Instance

1 with a ldl Ratio value of 0.618/0.421 = 1.4679, and Instance 5 with a value of

0.338/0.342 = 0.9883. A value smaller than 1 denotes a decrease in the measure-

ments from wave 6 to wave 8, and vice-versa. The main point of Ratio is that

smaller differences will produce values closer to 1, so the further from 1 a result

is, the bigger the difference found in the last two measurements of a feature.

5.2.4 DiffAgeMean - last measurement’s difference from

age-based mean/mode

The age of the subjects is intuitively a very relevant variable in our datasets, as

they contain data about human ageing. In the experiments with missing value

replacement in these datasets, we have found that the mean (or mode, for nominal

features) value of subjects of the same age as the current instance is a good esti-

mation for an expected value of a feature (Ribeiro and Freitas 2021b). Therefore,

we propose a CTF to calculate the difference between a feature’s value in the last

wave (the class variable’s wave) and its “expected” value, which is an age-based

mean/mode.
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The calculation of the DiffAgeMean CTF is shown in Equation 5.4. To calcu-

late the expected value for a feature Fi’s last measurement (Fi,T ) for each subject

(instance), we get the value of that subject’s age at wave T (Agei,T ) and calculate

the mean over all measurements of Fi, over all waves and subjects where a sub-

ject’s age equals Agei,T . For nominal features, the expected value becomes the

mode among individuals of the same age, instead of the mean, and DiffAgeMean

measures the degree of difference (instead of the numerical difference) from that

mode.

DiffAgeMean(Fi) = Fi,T − Exp(Fi, Agei,T ) (5.4)

For the DiffAgeMean example in Table 5.1, we will consider Instance 2, which

has the most common age value in the Table, 68. First, the CTF calculates the

average ldl value for all individuals aged 68, across all waves (0.434, averaged from

individuals 1, 2, 3, 4, 6, 7, 9 and 10). Then, the ldl value for Instance 2 at wave 8

is compared to this average, getting a DiffAgeMean value of 0.632−0.434 = 0.198,

indicating this ELSA participant has a higher ldl cholesterol value than the average

of other individuals of their age.

5.2.5 AvgDiffAgeMean - average difference from age-based

mean/mode

As an expansion of the DiffAgeMean feature, we calculate the DiffAgeMean for all

different measurements of a feature, then average these results (dividing the sum

of DiffAgeMean’s by the number of measurements), to get an average difference

from the expected values. Note that at each wave of the study, the subject’s age

changes, so we need to recalculate the expected value for each measurement of

the current feature.

The AvgDiffAgeMean CTF is calculated as shown in Equation 5.5. Again, for

nominal features, we use the mode as the expected values, instead of the mean.

AvgDiffAgeMean(Fi) =

∑T
k=1 Fi,k − Exp(Fi,k, Agei,k)

T
(5.5)
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Using the same example from DiffAgeMean in Table 5.1, the calculation for

AvgDiffAgeMean for Instance 2 is as follows. We have shown that their DiffAge-

Mean for wave 8 is 0.632 − 0.434 = 0.198. For Wave 6, we calculate the aver-

age measurements for individuals aged 64, and calculate the DiffAgeMean for

Instance 2, getting 0.605 − 0.437 = 0.168. The same procedure is followed

for Wave 4, using individuals aged 60, getting 0.479 − 0.4 = 0.079, and for

Wave 2, using individuals aged 57, getting 0.271 − 0.335 = −0.064. The ldl

AvgDiffAgeMean value for Instance 2 is the mean of these 4 DiffAgeMean values:

(0.198 + 0.168 + 0.079 − 0.064)/4 = 0.095. This value indicates that this ELSA

participant tends to have a ldl cholesterol value slightly higher (about 9.5%, as

these values are normalised between 0 and 1) than other participant of their age,

considering all age values of the current ELSA participant across all waves.

5.2.6 Age-based Percentile

This proposed CTF is also based on the measurement taken from subjects with

the same age as the current subject (Agei,T ). However, instead of choosing one

expected value, we rank all values of the current conceptual feature from all sub-

jects with age = Agei,T , and compute in what Percentile the current subject’s last

measurement for the conceptual feature is. We consider the last measurement of

the feature, as it is intuitively the most relevant.

This CTF was inspired by the percentile feature used in Al-Otaibi et al. (2015),

but that work did not use any other variable to compute percentiles and did

not use longitudinal datasets. By contrast, in this work we compute age-based

percentiles and adapt DiffAgeMean’s calculation to cope with a feature’s multiple

measurements across time-points in longitudinal datasets.

Thus, the Age-based Percentile CTF indicates what percentage of the other

subjects with the same age as the current subject had measurements with lower

values than the current subject’s measurement. For example, the Percentile 30%

for a feature means that, among the subjects of the same age as the current

subject’s age in wave T, only 30% of those subjects have a feature value lower

than the current subject’s feature value in wave T. The temporal aspect of the

Percentile CTF is the calculation of the Ranks, which happens over all different

measurements of the current feature.
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The calculation of the Percentile CTF is shown in Equation 5.6. Note that

the term Agei,T in this equation is indexed by T because we compute the rank

of a subject’s feature value at wave T , considering all subjects with the same age

as the current subject’s age at wave T . However, when computing the rank, we

consider any measurement from subjects of that age, regardless of the wave. In

Equation 5.6, NV alues(Fi,T , Agei,T ) is the number of values used to compute the

ranking. This CTF is calculated for numeric and ordered nominal features in the

same way.

Percentile(Fi) =
Rank(Fi,T , Agei,T )

NV alues(Fi,T , Agei,T )
(5.6)

For the Percentile example, let’s consider Instances 2, 6 and 9 in Table 5.1.

First, we rank the 8 values of ldl for individuals aged 68 in this sample table,

from lowest to highest. The Percentile value is simply the rank of an individual’s

value divided by the number of samples, in this case 8. As Instance 2’s ldl value is

ranked 7.5 (tied for last place alongside Instance 7), both Instances 2 and 7 get a

Percentile value of 7.5/8 = 0.9375. For Instance 6, its value is the 4th lowest, so it

gets a ldl Percentile value of 4/8 = 0.5. For Instance 9, that has the second lowest

value, it’s Percentile is 2/8 = 0.25. Thus, we can interpret that Instances 2 and

7 have high ldl cholesterol values, when compared to other participants of their

age, while Instance 6 has a medium value, and Instance 9 has lower cholesterol

than most people of their age.

5.3 Experimental Setup

For our experiments with the proposed CTFs, we created classification models us-

ing the Random Forest (RF) (Breiman 2001) and the C4.5 Decision Tree (Quinlan

1993) algorithms. The results from the latter were moved to Appendix C to reduce

the size of this Chapter.

This work is the first to test CTFs for longitudinal data using the RF algo-

rithm. As discussed in Chapter 2, The RF algorithm is among the state-of-the-art

classification algorithms (Fernández-Delgado et al. 2014), while still maintaining

some interpretability of its models, mainly through feature importance measures.
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In addition, RFs handle well datasets with a high ratio of features to instances,

which are prone to overfitting (Scornet et al. 2015). This is desirable as our

proposal can add up to 6 CTFs for each conceptual feature in the longitudinal

datasets.

Recall that, because of the class imbalance problem in our datasets, we de-

cided to apply a majority class undersampling strategy to our training datasets.

In the RF experiments, all training sets were balanced using the Balanced Ran-

dom Forest (BRF) method, defined in section 2.2.5. For the C4.5 experiments,

we performed random undersampling of majority class instances in the training

dataset, to obtain a ratio of 1:1 for the frequencies of the two classes.

The RFs were trained and tested using the Weka data mining toolkit, with the

default parameters ntrees = 100 (number of trees) and mtry = blog2(d)c+ 1 = 8

(number of features randomly sampled to be used as candidate features at each

tree node), where the total number of features is d, and bxc is the “floor” of x,

i.e., the biggest integer which is smaller than or equal to x. The C4.5 decision

trees were also trained with default parameters C = 0.25, which is the confidence

factor used for pruning the trees, and M = 2, which is the minimum number of

instances that can constitute a leaf node.

As defined in Section 4.7.1 in the previous Chapter, all experiments comparing

classifiers in the thesis were evaluated using four metrics: Sensitivity (True Pos-

itive Rate), Specificity (True Negative Rate), GMean (geometric mean between

Sensitivity and Specificity) and Accuracy (percentage of correct classifications).

The experiments used the well-known 10-fold cross-validation procedure, and we

compared the results of three feature sets (defined in the following Sections 5.3.1

and 5.3.2) for each metric using two statistical significance tests, as follows.

As we did in Section 4.7.2 in the previous Chapter, we first applied the Fried-

man’s test, which compares all features sets at once. If this test indicated the

results are significantly different, we then applied the Nemenyi post-hoc test in

a pairwise, using Holm’s procedure to correct the significance level for multiple

tests, to determine which combinations of methods were significantly different.

The tests were applied with the usual initial significance level α = 0.05.

In the following sections, we describe the two scenarios created for our analysis

of the effect of adding CTFs to longitudinal datasets in the predictive accuracy

of classifiers. The same experimental setup described here was applied in both
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scenarios, for each of our 30 longitudinal datasets.

5.3.1 Scenario 1 - controlled experiments with only eligi-

ble original features

For these experiments, our objective was to evaluate the potential increase in

predictive accuracy for classifiers learned from baseline datasets containing the

proposed CTFs as added features. First, we identify all conceptual features that

can be used in the creation of the CTFs, called the set of “eligible” features. This

set consists of all conceptual features that had at least two measurements (across

waves).

We experimented with each CTF separately first, then with adding all 6 CTFs

simultaneously. In order to have a fair evaluation of the proposed CTFs in a

controlled experiment, we created datasets from the Elsa-nurse, Elsa-core and

TILDA databases with the following three different feature sets:

• Base-el: The eligible original features for creating the CTF being evaluated;

no CTF.

• CTFs-only: The proposed CTF being evaluated (AvgDiffAgeMean, DiffAge-

Mean, Diff, Monotonicity, Age-based Percentile, Ratio, or all 6 at once),

created for each eligible conceptual feature; no original features.

• Base-el+CTFs: Both the above feature sets combined, i.e. both eligible

original and CTF features.

These three feature sets represent different strategies for handling the con-

struction of temporal features for longitudinal dataset. The baseline is simply

not creating them, and trusting that the temporal information inherent to the

longitudinal data is not relevant for the classification task. The second strategy

is to completely replace the original features by the CTFs, which is not recom-

mended, as they represent different information, but we are using it to investigate

how much the information represented by the CTFs can contribute towards clas-

sification on its own. The third strategy is what we propose, adding the CTFs

in a preprocessing step to the existing features in the dataset. Our hypothesis is
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that the latter is the best strategy out of the three in general, for longitudinal

classification problems.

Note that, depending on the CTF being evaluated, the baseline changed based

on how many measurements of the conceptual features were used in the CTF

creation: for the Percentile and DiffAgeMean features, only the last measurement

of each conceptual feature is used; for the Diff and Ratio features, the last two

measurements are used; for the Monotonicity and AvgDiffAgeMean features, we

use all measurements available (up to 4 in Elsa-core and TILDA datasets and up

to 7 in Elsa-nurse datasets). This means that, for example, the Base-el feature

set for the Percentile analysis corresponds only to the last measurement of each

eligible conceptual feature in the original dataset.

All result tables shown in this Section and in Section 5.3.2 have the same

structure: each column corresponds to the feature set that composes the dataset

(Base-el, CTFs only, and both the Base-el and the CTFs combined), and each row

shows the results for one dataset – defined by a combination of a class variable and

a data source (EN for Elsa-nurse, EC for Elsa-core and TI for TILDA datasets).

In each row, the best result is shown in boldface. In the last four rows, we show

the average rank for each feature set, over the Elsa-nurse, Elsa-core and TILDA

datasets, and over all 30 datasets, respectively. When ties happened, the rank

was divided among the tied feature sets (i.e., if two sets are tied for first place,

they would both get a 1.5 rank). Each result table reports two measurements,

either Sensitivity and Specificity or Accuracy and GMean.

5.3.2 Scenario 2 - experiments including both eligible and

ineligible original features

In a second set of experiments, we evaluated the use of CTFs in a less controlled

scenario than Scenario 1. Arguably, in real-world applications it would make sense

to use all available features, and so the features ineligible for CTF calculation (i.e.,

those with only one measurement in the longitudinal dataset) would be kept in

the dataset regardless of whether or not CTF features are added to the dataset.

So, we decided to make a separate set of experiments (Scenario 2) where this is

the case. Thus, instead of comparing feature sets using only the “eligible” original

features (from which CTFs are constructed), the new experiments in this current
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section compare the following three feature sets:

• Base-el-in: All original features, i.e. both the eligible original features for

creating the CTF being evaluated and the original features ineligible for

CTF creation (features measured just once); no CTF.

• CTFs+in: The proposed CTF being evaluated (AvgDiffAgeMean, DiffAge-

Mean, Diff, Monotonicity, Age-based Percentile, Ratio, or all 6 at once),

created for each eligible conceptual feature, plus the features ineligible for

CTF creation (features measured just once).

• Base-el-in+CTFs: Both the above feature sets combined.

The reason for having the two separate Scenarios for our experiments with

CTFs is as follows. The features that are ineligible for CTF creation include im-

portant features such as the age and sex of the respondent, demographic features

that have high predictive power and were considered among the most relevant

(based on feature importance metrics) in previous models we created. Thus, Sce-

nario 2 is more realistic than Scenario 1 because the former uses the ineligible

features in the evaluated feature sets (exploiting as much information from the

data as possible), unlike Scenario 1. However, Scenario 2 involves a less controlled

experiment to measure the effectiveness of CTFs, since in this Scenario the pre-

dictive accuracy of CTFs is measured together with ineligible features, unlike

Scenario 1, where one of the feature subsets consists of CTFs only.

5.4 Random Forest Experimental Results

In this Section, we first briefly discuss the overall results of experiments with each

individual CTF (the detailed results and discussion for these sets experiments

using RFs and DTs are presented in Appendices B and C, respectively). Then,

we report the RFs and DT results for experiments using Scenarios 1 and 2 (defined

in Sections 5.3.1 and 5.3.2), for all 6 CTFs combined. After discussing the overall

results for the Sensitivity, Specificity, Accuracy and GMean metrics, we also report

the results of the Friedman’s rank-based test and (if applicable) the Nemenyi post-

hoc test for each experiment.
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5.4.1 Summary of the RF Results for Individual CTF Ex-

periments

The Diff, Ratio and Monotonicity CTFs, the simplest among the CTFs tested in

our experiments, were not proposed in this thesis. All three of these CTFs had sim-

ilar results to the baseline approach, when comparing it to the BL+CTFs (Base-

el+CTFs and Base-el-in+CTFs, in each Scenario, i.e., our proposal of adding the

CTFs to the original features) feature set, for both classifiers.

The three CTFs proposed in this work had better RF results in the indi-

vidual experiments compared to the other three. DiffAgeMean and Percentile

obtained better results for the BL+CTFs feature sets overall for both scenarios.

For AvgDiffAgeMean there was not a clear winner in either scenario, but this CTF

notably got the best results overall for the CTFs-in feature set, which included

only constructed and ineligible features: smallest average rank for Specificity and

GMean, in ELSA-core datasets.

In summary, individually most of the proposed CTFs did not lead to a clear

increase in predictive accuracy, with the exception of DiffAgeMean and Percentile.

However, as we believe the information represented by each CTF to be possibly

relevant for classification, and not a detriment to the classification algorithm, we

still included all six of them in our main approach, of adding all CTFs to the

longitudinal dataset.

5.4.2 Results for all 6 types of CTFs combined

The set of experiments presented in this Section is the most important one for

this Chapter, as our goal was always to propose the addition of all 6 CTFs to a

longitudinal dataset, as opposed to choosing one of them. As each CTF represents

a different type of trend calculated from longitudinal data, we believe that they

can be used in tandem to improve the predictive accuracy of classifiers, when

added to longitudinal datasets. Thus, we included both the Random Forest and

the Decision Tree results in this section.
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RF results for all 6 types of CTFs

The Random Forest results for the experiments including all 6 CTFs in the

datasets, for Scenario 1, are shown in Tables 5.2 (for Sensitivity and Specificity)

and 5.3 (for Accuracy and GMean). The results for Scenario 2 are shown in Tables

5.4 (for Sensitivity and Specificity) and 5.5 (for Accuracy and GMean).

For Scenario 1, the BL+CTFs feature set had the smallest average ranks over-

all for all 4 metrics. The Friedman test p-values for Scenario 1 were 0.0121,

0.0780, 0.0006 and 0.0322 for Sensitivity, Specificity, Accuracy and GMean, re-

spectively; so we ran the post-hoc Nemenyi test for all metrics except Specificity.

For Sensitivity, the only pair with a significant p-value was BL+CTFs vs. CTFs-

only (0.0102). For Accuracy, both Base-el and BL+CTFs had significant p-values

when compared to CTFs-only (0.0184 and 0.001, respectively). For GMean, again,

only BL+CTFs vs. CTFs-only had a significant p-value of 0.0266.

The Base-el-in feature set results were slightly improved in Scenario 2, with the

inclusion of the highly predictive ineligible features, with the Base-el-in set achiev-

ing the smallest average rank overall for Sensitivity and Accuracy, and BL+CTFs

winning for Specificity and GMean. The Friedman test p-values for Scenario 2

had p-values 0.0215, 0.2328, 0.0481 and 0.0247 for Sensitivity, Specificity, Accu-

racy and GMean, respectively; so again we did not run Nemenyi post-hoc tests

for Specificity. In the post-hoc tests, for Sensitivity, only the pair Base-el-in vs.

CTFs-in got a significant result with p-value 0.0221. For Accuracy none of the

pairs had significant p-values. For GMean, only the pair BL+CTFs vs. CTFs-in

had a significant p-value, 0.0184.

Notably, the Base-el and Base-el-in were the best for TILDA datasets in all 4

metrics, but its average rank was always second or third for Elsa-nurse and Elsa-

core datasets. This may be due to the reduced temporal information represented

in the TILDA dataset which, as discussed before, has on average fewer measure-

ments in its longitudinal features. It is also important to highlight the good results

in Scenario 1 from CTFs-only and BL+CTFs in the Elsa-core datasets, with the

former achieving the smallest average ranks for Specificity (1.6, against 1.7 of

BL+CTFs), and the latter winning for the other 3 metrics. This is important be-

cause the Elsa-core datasets have the most temporal information in their features,

due to their highest number of waves.

The Random Forest results for adding all 6 CTFs to the longitudinal datasets
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showed that the predictive performance of classifiers was improved in the majority

of the cases, although that majority was not large enough to be deemed significant

when comparing the BL+CTFs and the baseline feature sets. Having more or less

temporal information in the datasets seemed to influence the effectiveness of the

CTF, which is a good indication that they do represent the temporal trends we

hoped, and can be a criterion for deciding on their inclusion in other longitudinal

datasets. In addition, although the results of these experiments were not the best

overall results obtained by the BL+CTFs feature sets, we believe that in principle

adding all CTFs combined could be a preferable (more robust) strategy to only

adding, for example, the DiffAgeMean CTF, which had the best individual results.
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Table 5.2: All 6 CTFs Sensitivity and Specificity results for the Scenario 1 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.680 0.672 0.683 0.678 0.709 0.713
EN Arthritis 0.669 0.655 0.670 0.594 0.604 0.593
EN Cataract 0.615 0.576 0.601 0.723 0.754 0.729
EN Dementia 0.737 0.729 0.752 0.716 0.709 0.703
EN Diabetes 0.843 0.841 0.846 0.865 0.870 0.863
EN HBP 0.653 0.647 0.650 0.747 0.730 0.751
EN Heartattack 0.698 0.698 0.698 0.731 0.696 0.718
EN Osteoporosis 0.655 0.629 0.643 0.699 0.716 0.717
EN Parkinsons 0.604 0.630 0.634 0.636 0.591 0.652
EN Stroke 0.667 0.679 0.678 0.710 0.694 0.701
EC Angina 0.710 0.691 0.706 0.723 0.765 0.772
EC Arthritis 0.741 0.752 0.750 0.717 0.721 0.726
EC Cataract 0.601 0.626 0.617 0.675 0.750 0.751
EC Dementia 0.757 0.771 0.773 0.727 0.832 0.776
EC Diabetes 0.671 0.691 0.674 0.750 0.748 0.759
EC HBP 0.625 0.640 0.634 0.662 0.671 0.669
EC Heartattack 0.673 0.654 0.669 0.689 0.721 0.705
EC Osteoporosis 0.690 0.680 0.691 0.635 0.661 0.638
EC Parkinsons 0.685 0.714 0.715 0.720 0.720 0.747
EC Stroke 0.689 0.685 0.692 0.694 0.758 0.747
TI Angina 0.748 0.695 0.743 0.876 0.772 0.848
TI Arthritis 0.731 0.686 0.710 0.652 0.614 0.655
TI Cancer 0.542 0.548 0.526 0.595 0.497 0.526
TI Cataract 0.660 0.695 0.698 0.705 0.676 0.734
TI Diabetes 0.737 0.712 0.744 0.795 0.732 0.795
TI HBP 0.678 0.630 0.662 0.763 0.657 0.750
TI Heartattack 0.750 0.707 0.745 0.863 0.751 0.829
TI Ministroke 0.704 0.660 0.704 0.765 0.696 0.745
TI Osteoporosis 0.670 0.638 0.662 0.772 0.681 0.762
TI Stroke 0.717 0.657 0.694 0.738 0.631 0.754
AvgRank E-Nurse 1.9 2.6 1.5 2.0 2.1 1.9
AvgRank E-Core 2.4 2.0 1.6 2.9 1.7 1.5
AvgRank TILDA 1.5 2.7 1.9 1.4 3.0 1.7
AvgRank Overall 1.9 2.4 1.7 2.1 2.3 1.7
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Table 5.3: All 6 CTFs Accuracy and GMean results for the Scenario 1 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

Accuracy GMean
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.680 0.673 0.684 0.679 0.690 0.698
EN Arthritis 0.637 0.633 0.637 0.630 0.629 0.630
EN Cataract 0.650 0.634 0.643 0.667 0.659 0.662
EN Dementia 0.736 0.729 0.751 0.726 0.719 0.727
EN Diabetes 0.846 0.844 0.848 0.854 0.855 0.854
EN HBP 0.691 0.681 0.691 0.699 0.688 0.699
EN Heartattack 0.700 0.698 0.699 0.714 0.697 0.708
EN Osteoporosis 0.659 0.637 0.649 0.676 0.671 0.679
EN Parkinsons 0.605 0.629 0.634 0.620 0.610 0.643
EN Stroke 0.670 0.680 0.680 0.688 0.686 0.689
EC Angina 0.711 0.694 0.708 0.716 0.727 0.738
EC Arthritis 0.731 0.740 0.741 0.729 0.737 0.738
EC Cataract 0.623 0.663 0.657 0.637 0.685 0.681
EC Dementia 0.757 0.772 0.773 0.742 0.801 0.774
EC Diabetes 0.681 0.699 0.685 0.709 0.719 0.715
EC HBP 0.639 0.652 0.647 0.643 0.656 0.651
EC Heartattack 0.674 0.658 0.671 0.681 0.687 0.687
EC Osteoporosis 0.686 0.678 0.687 0.662 0.670 0.664
EC Parkinsons 0.685 0.714 0.715 0.702 0.717 0.731
EC Stroke 0.689 0.689 0.695 0.692 0.721 0.719
TI Angina 0.753 0.699 0.748 0.809 0.733 0.794
TI Arthritis 0.706 0.664 0.693 0.690 0.649 0.682
TI Cancer 0.545 0.545 0.526 0.568 0.522 0.526
TI Cataract 0.664 0.694 0.701 0.682 0.685 0.716
TI Diabetes 0.741 0.713 0.747 0.765 0.722 0.769
TI HBP 0.710 0.640 0.695 0.719 0.644 0.704
TI Heartattack 0.755 0.708 0.748 0.805 0.729 0.786
TI Ministroke 0.705 0.661 0.705 0.734 0.678 0.724
TI Osteoporosis 0.680 0.642 0.671 0.719 0.659 0.710
TI Stroke 0.717 0.657 0.694 0.728 0.644 0.723
AvgRank E-Nurse 1.8 2.8 1.5 1.9 2.7 1.5
AvgRank E-Core 2.5 2.1 1.5 3.0 1.4 1.7
AvgRank TILDA 1.4 2.8 1.9 1.3 2.9 1.8
AvgRank Overall 1.9 2.5 1.6 2.1 2.3 1.6
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Table 5.4: All 6 CTFs Sensitivity and Specificity results for the Scenario 2 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.684 0.673 0.681 0.702 0.702 0.686
EN Arthritis 0.671 0.658 0.671 0.586 0.609 0.594
EN Cataract 0.620 0.593 0.605 0.723 0.751 0.736
EN Dementia 0.729 0.748 0.743 0.709 0.696 0.736
EN Diabetes 0.841 0.836 0.845 0.866 0.863 0.868
EN HBP 0.651 0.644 0.650 0.749 0.724 0.745
EN Heartattack 0.700 0.694 0.700 0.738 0.711 0.713
EN Osteoporosis 0.649 0.633 0.643 0.696 0.723 0.716
EN Parkinsons 0.628 0.650 0.627 0.712 0.652 0.727
EN Stroke 0.670 0.681 0.674 0.724 0.698 0.720
EC Angina 0.711 0.699 0.706 0.723 0.765 0.761
EC Arthritis 0.749 0.747 0.756 0.717 0.722 0.720
EC Cataract 0.609 0.623 0.613 0.717 0.760 0.764
EC Dementia 0.764 0.765 0.766 0.770 0.845 0.807
EC Diabetes 0.674 0.686 0.682 0.747 0.743 0.758
EC HBP 0.641 0.642 0.637 0.662 0.677 0.673
EC Heartattack 0.678 0.669 0.680 0.692 0.714 0.717
EC Osteoporosis 0.700 0.687 0.702 0.676 0.696 0.666
EC Parkinsons 0.697 0.714 0.694 0.693 0.693 0.733
EC Stroke 0.694 0.683 0.696 0.721 0.751 0.747
TI Angina 0.748 0.697 0.739 0.916 0.756 0.896
TI Arthritis 0.729 0.685 0.721 0.646 0.623 0.642
TI Cancer 0.549 0.554 0.555 0.579 0.526 0.599
TI Cataract 0.706 0.706 0.699 0.724 0.686 0.741
TI Diabetes 0.775 0.752 0.755 0.831 0.756 0.818
TI HBP 0.678 0.625 0.669 0.765 0.679 0.754
TI Heartattack 0.751 0.719 0.743 0.878 0.761 0.849
TI Ministroke 0.712 0.668 0.706 0.735 0.647 0.716
TI Osteoporosis 0.677 0.665 0.670 0.807 0.761 0.759
TI Stroke 0.728 0.663 0.708 0.800 0.600 0.754
AvgRank E-Nurse 1.7 2.4 1.9 2.0 2.3 1.8
AvgRank E-Core 2.2 2.1 1.7 2.8 1.6 1.7
AvgRank TILDA 1.3 2.8 2.0 1.2 2.9 1.9
AvgRank Overall 1.7 2.4 1.9 2.0 2.2 1.8
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Table 5.5: All 6 CTFs Accuracy and GMean results for the Scenario 2 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.684 0.675 0.681 0.693 0.687 0.684
EN Arthritis 0.635 0.637 0.639 0.627 0.633 0.632
EN Cataract 0.654 0.645 0.648 0.670 0.667 0.667
EN Dementia 0.729 0.747 0.742 0.719 0.722 0.740
EN Diabetes 0.845 0.840 0.848 0.854 0.849 0.856
EN HBP 0.690 0.676 0.688 0.698 0.683 0.696
EN Heartattack 0.702 0.695 0.701 0.719 0.702 0.707
EN Osteoporosis 0.654 0.641 0.650 0.672 0.677 0.679
EN Parkinsons 0.629 0.650 0.628 0.669 0.651 0.675
EN Stroke 0.674 0.682 0.677 0.697 0.690 0.697
EC Angina 0.711 0.701 0.708 0.717 0.731 0.733
EC Arthritis 0.736 0.737 0.741 0.733 0.734 0.738
EC Cataract 0.641 0.663 0.658 0.661 0.688 0.685
EC Dementia 0.764 0.767 0.767 0.767 0.804 0.787
EC Diabetes 0.684 0.693 0.692 0.710 0.714 0.719
EC HBP 0.649 0.655 0.651 0.651 0.659 0.655
EC Heartattack 0.679 0.671 0.682 0.685 0.691 0.698
EC Osteoporosis 0.698 0.688 0.699 0.688 0.692 0.684
EC Parkinsons 0.697 0.713 0.694 0.695 0.703 0.713
EC Stroke 0.695 0.686 0.699 0.707 0.716 0.721
TI Angina 0.756 0.700 0.746 0.828 0.726 0.814
TI Arthritis 0.703 0.666 0.697 0.686 0.654 0.681
TI Cancer 0.550 0.552 0.557 0.564 0.540 0.576
TI Cataract 0.707 0.704 0.702 0.715 0.696 0.719
TI Diabetes 0.779 0.752 0.760 0.803 0.754 0.786
TI HBP 0.711 0.645 0.701 0.720 0.651 0.710
TI Heartattack 0.756 0.720 0.747 0.812 0.740 0.794
TI Ministroke 0.712 0.668 0.706 0.724 0.658 0.711
TI Osteoporosis 0.689 0.674 0.679 0.739 0.711 0.713
TI Stroke 0.728 0.662 0.709 0.763 0.631 0.731
AvgRank E-Nurse 1.8 2.3 1.9 1.9 2.5 1.7
AvgRank E-Core 2.4 2.0 1.7 2.9 1.6 1.5
AvgRank TILDA 1.2 2.8 2.0 1.2 3.0 1.8
AvgRank Overall 1.8 2.4 1.9 2.0 2.4 1.7
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Decision tree results for all 6 types of CTFs

The C4.5 Decision Tree results for the experiments including all 6 CTFs in the

datasets, for Scenario 1, are shown in Tables 5.6 (for Sensitivity and Specificity)

and 5.7 (for Accuracy and GMean). The results for Scenario 2 are shown in Tables

5.8 (for Sensitivity and Specificity) and 5.9 (for Accuracy and GMean).

In the Decision Tree experiments, the baseline approach usually got a clear

advantage when compared to the other two feature sets, obtaining the small-

est average ranks for all 4 metrics in both Scenarios, with only two ties with

BL+CTFs: Specificity for Scenario 2 and GMean for Scenario 1, both in the Elsa-

core datasets. The same trend of better baseline results for TILDA datasets, and

better CTF results in Elsa-core datasets (when compared to the BL+CTFs and

CTFs-only results with Elsa-nurse and TILDA datasets) we saw in the Random

Forest experiments can be observed in these Decision Tree experiments. However,

we believe that adding CTFs to the longitudinal dataset (BL+CTFs feature set)

did not have the desired effect in the decision tree classifiers mainly because of the

dimensionality increase caused by creating new features. As the depth of the tree

increases, the sample size diminishes, so the tree has fewer data points to make a

decision about its split point, and when it is considering all features at once, as is

the case in C4.5, having too many features to choose from can negatively impact

the performance of the resulting model.

The Friedman test p-values for Scenario 1 had p-values 0.0001, 0.0272, 9E−5

and 0.0007 for Sensitivity, Specificity, Accuracy and GMean, respectively. In

the Nemenyi post-hoc test, for Sensitivity, the pair Base-el vs. BL+CTFs got

a p-value of 0.0125, and the pair Base-el vs. CTFs-only got a p-value of 0.001.

For Specificity, only Base-el vs. CTFs-only had a significant p-value, 0.0266. For

Accuracy, both the pair Base-el vs. CTFs-only and the pair Base-el vs. BL+CTFs

got significant p-values, of 0.001 and 0.0184 respectively. The same for GMean,

with a p-value of 0.001 for Base-el vs. CTFs-only, and a p-value of 0.0377 for

Base-el vs. BL+CTFs.

The Friedman test p-values for Scenario 2 had p-values 6e−05, 0.3710, 0.0002

and .0322 for Sensitivity, Specificity, Accuracy and GMean, respectively; so we

did not run the Nemenyi post-hoc test for Specificity. The post-hoc results for

Sensitivity and Accuracy had significant p-values for the pair Base-el-in vs. CTFs-

in (0.001 for both metrics) and for the pair Base-el-in vs. BL+CTFs (0.0011 and
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0.0055, respectively). For GMean, the only pair with a significant p-value was

Base-el-in vs. CTFs-in, with 0.0266.

The statistical analysis of the results with decision tree classifiers show the

baseline sets as the clear winners for all 6 CTFs together, which agrees with what

we observed in the Tables. Therefore, we cannot claim that adding constructed

features to the original longitudinal dataset is a good strategy when the classifica-

tion algorithm is sensitive to increasing the dataset’s dimensionality. It is worth-

while to highlight that the BL+CTFs feature set did have comparable results to

the baseline in some cases, having no significant difference in most comparisons,

and achieving a tie in average rank for Specificity in Scenario 1 and GMean in

Scenario 2, both for Elsa-core datasets (which have more temporal information

available). This indicates that the strategy may be feasible in scenarios with a

high amount of temporal information available.
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Table 5.6: All 6 CTFs Sensitivity and Specificity results for the Scenario 1 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

Sensitivity Specificity
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.611 0.576 0.603 0.570 0.535 0.570
EN Arthritis 0.558 0.551 0.551 0.555 0.553 0.564
EN Cataract 0.594 0.596 0.596 0.573 0.578 0.581
EN Dementia 0.643 0.662 0.660 0.655 0.608 0.601
EN Diabetes 0.812 0.791 0.804 0.792 0.782 0.789
EN HBP 0.624 0.603 0.617 0.615 0.592 0.597
EN Heartattack 0.643 0.610 0.618 0.631 0.648 0.581
EN Osteoporosis 0.598 0.582 0.589 0.622 0.598 0.607
EN Parkinsons 0.587 0.596 0.557 0.515 0.470 0.576
EN Stroke 0.630 0.629 0.620 0.594 0.606 0.572
EC Angina 0.688 0.681 0.672 0.660 0.660 0.660
EC Arthritis 0.724 0.695 0.701 0.679 0.661 0.674
EC Cataract 0.599 0.638 0.642 0.571 0.622 0.604
EC Dementia 0.684 0.732 0.729 0.714 0.702 0.702
EC Diabetes 0.672 0.658 0.657 0.684 0.635 0.647
EC HBP 0.621 0.582 0.600 0.590 0.587 0.574
EC Heartattack 0.636 0.607 0.625 0.576 0.605 0.592
EC Osteoporosis 0.651 0.592 0.615 0.569 0.579 0.555
EC Parkinsons 0.642 0.655 0.652 0.573 0.600 0.667
EC Stroke 0.665 0.644 0.654 0.600 0.598 0.640
TI Angina 0.745 0.675 0.738 0.732 0.612 0.768
TI Arthritis 0.603 0.580 0.612 0.614 0.610 0.603
TI Cancer 0.533 0.530 0.510 0.543 0.539 0.595
TI Cataract 0.691 0.648 0.659 0.628 0.628 0.669
TI Diabetes 0.768 0.744 0.763 0.758 0.738 0.738
TI HBP 0.652 0.609 0.640 0.640 0.603 0.640
TI Heartattack 0.760 0.671 0.737 0.751 0.673 0.693
TI Ministroke 0.684 0.638 0.679 0.676 0.578 0.667
TI Osteoporosis 0.671 0.650 0.654 0.650 0.667 0.622
TI Stroke 0.687 0.589 0.610 0.646 0.631 0.631
AvgRank E-Nurse 1.5 2.3 2.2 1.7 2.4 2.0
AvgRank E-Core 1.6 2.3 2.1 1.9 2.1 2.1
AvgRank TILDA 1.1 2.9 2.0 1.5 2.6 2.0
AvgRank Overall 1.4 2.5 2.1 1.7 2.3 2.0
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Table 5.7: All 6 CTFs Accuracy and GMean results for the Scenario 1 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

Accuracy GMean
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.609 0.574 0.602 0.590 0.555 0.586
EN Arthritis 0.557 0.552 0.556 0.557 0.552 0.557
EN Cataract 0.587 0.590 0.591 0.583 0.587 0.588
EN Dementia 0.644 0.661 0.658 0.649 0.634 0.630
EN Diabetes 0.809 0.789 0.802 0.802 0.786 0.796
EN HBP 0.620 0.598 0.609 0.619 0.597 0.607
EN Heartattack 0.643 0.612 0.616 0.637 0.629 0.599
EN Osteoporosis 0.601 0.584 0.591 0.610 0.590 0.598
EN Parkinsons 0.586 0.595 0.557 0.550 0.529 0.566
EN Stroke 0.628 0.627 0.617 0.612 0.617 0.596
EC Angina 0.687 0.680 0.671 0.674 0.670 0.666
EC Arthritis 0.706 0.681 0.691 0.701 0.678 0.688
EC Cataract 0.591 0.633 0.631 0.585 0.630 0.623
EC Dementia 0.684 0.731 0.729 0.699 0.717 0.715
EC Diabetes 0.673 0.655 0.656 0.678 0.646 0.652
EC HBP 0.609 0.584 0.590 0.605 0.585 0.587
EC Heartattack 0.633 0.607 0.623 0.605 0.606 0.608
EC Osteoporosis 0.644 0.591 0.610 0.608 0.585 0.584
EC Parkinsons 0.641 0.654 0.652 0.606 0.627 0.659
EC Stroke 0.662 0.642 0.653 0.632 0.621 0.647
TI Angina 0.744 0.672 0.739 0.738 0.643 0.753
TI Arthritis 0.606 0.589 0.609 0.608 0.595 0.608
TI Cancer 0.533 0.530 0.515 0.538 0.535 0.551
TI Cataract 0.686 0.647 0.659 0.659 0.638 0.664
TI Diabetes 0.768 0.744 0.761 0.763 0.741 0.750
TI HBP 0.648 0.607 0.640 0.646 0.606 0.640
TI Heartattack 0.760 0.671 0.736 0.756 0.672 0.715
TI Ministroke 0.684 0.637 0.679 0.680 0.607 0.673
TI Osteoporosis 0.669 0.652 0.651 0.661 0.658 0.638
TI Stroke 0.687 0.589 0.610 0.666 0.609 0.620
AvgRank E-Nurse 1.5 2.4 2.1 1.5 2.5 2.1
AvgRank E-Core 1.6 2.3 2.1 1.9 2.2 1.9
AvgRank TILDA 1.1 2.8 2.1 1.4 2.9 1.75
AvgRank Overall 1.4 2.5 2.1 1.6 2.5 1.9
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Table 5.8: All 6 CTFs Sensitivity and Specificity results for the Scenario 2 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

SENSITIVITY SPECIFICITY
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.616 0.592 0.600 0.593 0.535 0.574
EN Arthritis 0.570 0.562 0.567 0.555 0.569 0.580
EN Cataract 0.591 0.612 0.586 0.584 0.591 0.568
EN Dementia 0.675 0.673 0.665 0.628 0.601 0.628
EN Diabetes 0.809 0.794 0.803 0.797 0.773 0.785
EN HBP 0.624 0.600 0.617 0.618 0.589 0.596
EN Heartattack 0.643 0.627 0.630 0.633 0.608 0.579
EN Osteoporosis 0.614 0.603 0.603 0.593 0.581 0.592
EN Parkinsons 0.631 0.630 0.629 0.500 0.652 0.545
EN Stroke 0.615 0.622 0.634 0.591 0.610 0.575
EC Angina 0.669 0.679 0.661 0.681 0.674 0.663
EC Arthritis 0.727 0.693 0.709 0.677 0.660 0.668
EC Cataract 0.647 0.641 0.635 0.653 0.624 0.612
EC Dementia 0.742 0.742 0.728 0.758 0.720 0.801
EC Diabetes 0.678 0.654 0.657 0.676 0.635 0.655
EC HBP 0.621 0.602 0.603 0.582 0.584 0.586
EC Heartattack 0.637 0.628 0.637 0.626 0.635 0.596
EC Osteoporosis 0.687 0.667 0.676 0.606 0.634 0.625
EC Parkinsons 0.664 0.651 0.632 0.547 0.627 0.667
EC Stroke 0.638 0.655 0.656 0.616 0.587 0.635
TI Angina 0.751 0.675 0.737 0.724 0.612 0.784
TI Arthritis 0.614 0.580 0.610 0.598 0.610 0.605
TI Cancer 0.547 0.530 0.527 0.572 0.539 0.592
TI Cataract 0.617 0.648 0.626 0.619 0.628 0.596
TI Diabetes 0.719 0.744 0.696 0.730 0.738 0.704
TI HBP 0.653 0.609 0.642 0.646 0.603 0.640
TI Heartattack 0.742 0.671 0.728 0.688 0.673 0.683
TI Ministroke 0.693 0.638 0.673 0.706 0.578 0.676
TI Osteoporosis 0.667 0.650 0.640 0.624 0.667 0.641
TI Stroke 0.682 0.589 0.609 0.631 0.631 0.600
AvgRank E-Nurse 1.3 2.5 2.3 1.7 2.2 2.2
AvgRank E-Core 1.4 2.4 2.3 1.9 2.2 1.9
AvgRank TILDA 1.3 2.4 2.3 1.9 2.1 2.1
AvgRank Overall 1.3 2.4 2.3 1.8 2.2 2.1

124



Table 5.9: All 6 CTFs Accuracy and GMean results for the Scenario 2 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

ACCURACY GMEAN
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.615 0.590 0.599 0.604 0.563 0.587
EN Arthritis 0.563 0.565 0.573 0.562 0.565 0.574
EN Cataract 0.589 0.605 0.580 0.587 0.602 0.577
EN Dementia 0.674 0.672 0.664 0.651 0.636 0.646
EN Diabetes 0.808 0.791 0.800 0.803 0.783 0.794
EN HBP 0.622 0.596 0.608 0.621 0.595 0.606
EN Heartattack 0.642 0.626 0.627 0.638 0.618 0.604
EN Osteoporosis 0.612 0.601 0.602 0.604 0.592 0.597
EN Parkinsons 0.630 0.630 0.628 0.562 0.641 0.586
EN Stroke 0.614 0.621 0.631 0.603 0.616 0.604
EC Angina 0.670 0.679 0.662 0.675 0.676 0.662
EC Arthritis 0.707 0.680 0.693 0.701 0.676 0.688
EC Cataract 0.649 0.636 0.628 0.650 0.632 0.623
EC Dementia 0.742 0.742 0.729 0.750 0.731 0.764
EC Diabetes 0.677 0.652 0.657 0.677 0.645 0.656
EC HBP 0.606 0.595 0.596 0.601 0.593 0.594
EC Heartattack 0.637 0.629 0.635 0.632 0.632 0.617
EC Osteoporosis 0.680 0.664 0.672 0.645 0.650 0.650
EC Parkinsons 0.663 0.651 0.632 0.603 0.639 0.649
EC Stroke 0.637 0.651 0.654 0.627 0.620 0.645
TI Angina 0.750 0.672 0.739 0.737 0.643 0.760
TI Arthritis 0.609 0.589 0.609 0.606 0.595 0.608
TI Cancer 0.548 0.530 0.531 0.559 0.535 0.559
TI Cataract 0.617 0.647 0.623 0.618 0.638 0.611
TI Diabetes 0.719 0.744 0.696 0.724 0.741 0.700
TI HBP 0.651 0.607 0.641 0.650 0.606 0.641
TI Heartattack 0.740 0.671 0.727 0.714 0.672 0.705
TI Ministroke 0.694 0.637 0.673 0.700 0.607 0.675
TI Osteoporosis 0.663 0.652 0.640 0.645 0.658 0.640
TI Stroke 0.682 0.589 0.609 0.656 0.609 0.604
AvgRank E-Nurse 1.6 2.4 2.1 1.7 2.2 2.1
AvgRank E-Core 1.4 2.4 2.3 1.8 2.3 2.0
AvgRank TILDA 1.4 2.5 2.2 1.6 2.3 2.2
AvgRank Overall 1.4 2.4 2.2 1.7 2.3 2.1

125



5.5 Discussion

5.5.1 Feature importance analysis

In order to further evaluate the impact of adding CTFs to the baseline dataset, we

used a feature importance metric to analyse how often the proposed CTFs were

selected as the best features in the RF models. For this, we used the Scenario 2

Base-el-in+CTFs datasets for the experiments with all 6 CTFs, as it includes all

original features and all proposed constructed features at once.

For this analysis, we considered the feature importance metric implemented

for RF in the Weka data mining tool, which is based on the average class-impurity

decrease over all nodes where the feature was selected. We selected the top 10

features with the highest average impurity decrease for the RF produced in each

of the 10 folds in the cross-validation process, totalling 100 top-ranking features,

for each of the 10 classes in each dataset. Tables 5.10, 5.11 and 5.12 show how

many times the original (baseline) features and each type of CTF were selected

in the Elsa-nurse, Elsa-core and TILDA datasets, respectively. The numbers in

brackets after each class (dataset) name in these tables are the corresponding class

imbalance ratios for each dataset.

Table 5.10: Feature importance analysis summary, Elsa-nurse datasets.

Class Original Fs CTFs Diff Ratio Monot. DiffAM AvgDiffAM Percentile
Arthritis (1.35) 96 4 3 0 0 1 0 0
HBP (1.49) 98 2 1 0 0 1 0 0
Cataract (2.06) 93 7 3 0 0 3 1 0
Diabetes (6.5) 82 18 7 0 4 4 1 2
Osteoporosis (9.85) 90 10 5 0 1 0 4 0
Stroke (15.86) 88 12 4 1 2 3 1 1
Heart Attack (16.7) 72 28 10 0 11 2 2 3
Angina (26.51) 74 26 5 0 7 6 2 6
Dementia (56.96) 64 36 5 1 22 3 1 4
Parkinson’s D. (160.3) 55 45 8 5 20 3 5 4
TOTAL 812 188 51 7 67 26 17 20

The trends shown in these Tables confirm our hypothesis that the datasets

with more temporal information available seem to benefit more from the added

CTFs. The Elsa-core datasets (Table 5.11), which have more measurements for its

conceptual features, had more CTF selections overall, while the opposite case is

seen in TILDA datasets (Table 5.12), which have less temporal information. Note
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Table 5.11: Feature importance analysis summary, Elsa-core datasets.

Class Original Fs CTFs Diff Ratio Monot. DiffAM AvgDiffAM Percentile
Arthritis (2.52) 2 98 1 8 12 8 0 69
HBP (2.58) 2 98 1 9 4 8 0 76
Cataract (3.38) 6 94 0 4 7 11 0 72
Diabetes (7.80) 16 84 3 5 14 13 0 49
Osteoporosis (11.84) 14 86 3 6 21 16 0 40
Stroke (18.35) 25 75 12 1 23 12 4 23
Heart Attack (19.06) 22 78 9 3 16 23 0 27
Angina (29.49) 29 71 17 0 15 13 9 17
Dementia (52.20) 33 67 13 0 21 15 7 11
Parkinson’s D. (112.07) 36 64 10 0 23 18 5 8
TOTAL 185 815 69 36 156 137 25 392

Table 5.12: Feature importance analysis summary, TILDA datasets.

Class Original Fs CTFs Diff Ratio Monot. DiffAM AvgDiffAM Percentile
HBP (2.38) 100 0 0 0 0 0 0 0
Arthritis (2.92) 100 0 0 0 0 0 0 0
Osteoporosis (9.53) 86 14 0 1 0 8 0 5
Cataract (10.83) 92 8 0 0 0 3 0 5
Diabetes (13.44) 89 11 1 0 0 4 0 6
Cancer (17.02) 89 11 0 1 0 4 0 6
Angina (20.70) 81 19 2 3 3 7 0 4
Heart Attack (25.24) 83 17 0 1 1 10 0 5
Ministroke (50.74) 80 20 0 1 4 7 0 8
Stroke (79.62) 74 26 4 3 1 8 0 10
TOTAL 874 126 7 10 9 51 0 49

that a selection, in this context, means that the feature was among the 10 best-

ranked features in the classifier, across all features in the dataset. Overall, 18.8%,

81.5% and 12.6% of the best ranked features were CTFs, for the ELSA-nurse,

ELSA-core and TILDA datasets, respectively.

For the Elsa-nurse and TILDA datasets, as the class imbalance ratio increased

the number of CTFs selected as the top-ranked features also increased in general.

Notably, for Arthritis and High Blood Pressure, the classes with more information

on the minority class available for training, the CTFs were chosen very few times

for the Elsa-nurse datasets, and not at all for TILDA. This indicates that when the

classifier has enough training information it tends to select the original features,

which is a negative point against the effectiveness of the CTFs. However, we must

also consider that the opposite scenario happened for Elsa-core datasets, where

increased imbalance reduced the number of CTFs chosen. One possible reason for

that is that Elsa-core original features were not very predictive, compared to Elsa-

nurse and TILDA original features, but it is also likely that the added temporal

information in Elsa-core contributed towards this result.
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Regarding the frequency each type of CTF was selected, for classifiers trained

with Elsa-nurse datasets the Monotonicity was selected in total 67 times (roughly

a third of the times CTFs were selected for these datasets), followed by Diff

(51 times) and DiffAgeMean (26 times). For classifiers trained with Elsa-core

datasets the Percentile was selected most often (392 times in total, almost half of

all selections), followed by Monotonicty (156) and DiffAgeMean (137). Finally,

for the classifier trained with TILDA datasets, the best CTFs were DiffAgeMean

(51) and Percentile (49), with Ratio being the third best with only 10 selections.

The AvgDiffAgeMean CTF was selected the least often for all cases.

From these results, we can conclude that Percentile, DiffAgeMean and Mono-

tonicity were the most successful CTFs in this analysis, even though the latter did

not perform well by itself. Percentile and DiffAgeMean both focus on the most

recent measurement of a feature, and compare it to the measurements of other

individuals of the same age of the respondent. Monotonicity aims to identify

upwards or downwards trends in the values of a feature over all measurements.

However, although there is a big difference between the selection frequencies

of the different types of CTFs, it is important to highlight that each of them

was selected among the best in some cases (except AvgDiffAgeMean in TILDA

datasets). Hence, there is no incentive for removing any of them in a data prepro-

cessing phase if we are using Random Forests or other classifiers that are robust

against high dimensionality data, as such classifiers’ performance is not in prin-

ciple significantly hindered by the addition of features. Note that these temporal

trends would be ignored by the classification algorithm applied to the original

dataset, so adding the proposed CTFs to the dataset in a preprocessing phase is

an effective and computationally non-expensive approach.

5.5.2 Summary of the results

We have proposed 3 new types of Constructed Temporal Features (CTFs) and

investigated whether adding 6 different CTFs to longitudinal datasets increases

predictive accuracy. CTFs are inherent to longitudinal data, as they relate to

changes over time captured by different measurements of the same features, but

they are ignored by standard supervised machine learning algorithms.

In our experiments, we used 30 real-world datasets created from the English
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and Irish Longitudinal Studies of Ageing. The datasets have both numeric and

nominal features, so we adapted our proposed CTFs to handle both types of

data whenever possible. To assess the effect of adding the proposed CTFs to

longitudinal datasets, we ran two sets of experiments.

First, we ran a controlled experiment to measure the impact of the CTFs in

predictive accuracy. These experiments compared three different feature sets: (a)

a baseline set with only the original features used for constructing the CTF being

tested, (b) the proposed CTFs only (no original features), and (c) an extended

feature set combining sets (a) and (b). In the second set of experiments, we

included the original features that were ineligible for CTF creation in all three

feature sets. These include highly predictive features such as age and sex, which

improved the learned RF models.

Table 5.13 contains a summary of our main experimental results with the RF

classifier. The Diff, Ratio and Monotonicity CTFs, which were not proposed in

this work and are conceptually simpler, did not perform as well as the DiffAge-

Mean, AvgDiffAgeMean and Percentile CTFs proposed in this thesis, when eval-

uated individually. When we added all 6 types of CTFs to the dataset, there was

in general an increase in predictive performance for all metrics in Scenario 1, and

for Specificity and GMean in Scenario 2. However, when performing the same set

of experiments using the C4.5 decision tree algorithm, the baseline feature sets

(no CTF addition) outperformed the alternatives in the majority of the cases.

Table 5.14 shows a summary of the statistical significance results obtained by

applying the Friedman and Nemenyi tests to the experiments with the DiffAge-

Mean CTFs, AvgDiffAgeMean CTFs, Percentile CTFs and all 6 types of CTFs

together. The first two columns of this table show the type of CTF and the sce-

nario (1 or 2). The last column shows the predictive performance measure and

the comparisons whose results were statistically significant when applying the Ne-

menyi post-hoc test (ran after a significant p-value in the Friedman’s test), using

the symbol > to indicate significantly better than.

As shown in Table 5.14, the vast majority of the statistically significant results

involve the CTFs-only and CTFs-in feature sets being significantly outperformed

by either the baseline or BL+CTFs feature sets. There are only four cases in

the table where there was a statistically significant difference between the Base-el
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Table 5.13: Best feature subset for each combination of Scenario and predictive
performance measure, considering the Overall Average Rank results (30 datasets,
including all 3 data sources), for the random forest classifier. In the Table, BL
represents the Base-el and Base-el-in datasets (for Scenarios 1 and 2, respectively),
which include only original features used for generating the CTF, and BL+CTFs
represents Base-el+CTFs and Base-el-in+CTFs (for Scenarios 1 and 2, respec-
tively), which includes both original features and the proposed CTFs. Ineligible
features that cannot be used for CTF creation are included in all feature sets in
Scenario 2, and excluded in Scenario 1.

CTF Type
Scenario 1 Scenario 2

Sensitivity Specificity Accuracy GMean Sensitivity Specificity Accuracy GMean
Diff BL BL BL BL BL BL BL BL
Ratio BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL BL+CTFs BL BL

Monotonicity BL BL+CTFs BL
Tie: BL,

BL+CTFs
BL BL BL BL

DiffAgeMean BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL BL+CTFs BL+CTFs

AvgDiffAgeMean BL BL+CTFs
Tie: BL,

BL+CTFs
BL+CTFs BL BL+CTFs BL

Tie: BL,
BL+CTFs

Percentile BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL+CTFs
Tie: BL,

BL+CTFs
Tie: BL,

BL+CTFs
All 6 CTFs BL+CTFs BL+CTFs BL+CTFs BL+CTFs BL BL+CTFs BL BL+CTFs

and BL+CTFs sets (Scenario 1), and in all these four cases BL+CTFs signifi-

cantly outperformed the Base-el (i.e. the reverse was not true in any case). These

four significant results were obtained by DiffAgeMean for three performance met-

rics (Sensitivity, Accuracy and GMean) and by AvgDiffAgeMean for one metric

(Specificity).

We also looked at feature importance measurements in the Random Forests

generated with the full datasets combined with all 6 types of CTFs. Consider-

ing the 10 best-ranked features in each RF learned in the 10-fold cross-validation

process, for all datasets, we verified that the Percentile, Monotonicity and DiffAge-

Mean CTFs were the most commonly selected types of CTF. Percentile and

DiffAgeMean are new contributions of this work, whilst Monotonicity was pro-

posed by Pomsuwan and Freitas (2017) for numerical features only, and in this

work they were also extended to ordered nominal features. In the feature impor-

tance analysis we also observed that the datasets with more temporal information

(i.e., more consecutive measurements of conceptual features) had benefited con-

siderably more from the added CTFs.

Note that, for the majority of our RF experiments, and all DT experiments,

the proposed approach was not able to significantly outperform the Baseline ap-

proach of not including CTFs in the dataset. Therefore, we cannot currently claim
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Table 5.14: Summary of statistical significance results when using the RF classi-
fier, by type of CTF, experimental scenario and performance metric (in the last
column, ‘>’ denotes ‘significantly better than’.

CTF Scenario Statistical significance results by performance metric

DiffAgeMean
1

Sensitivity: BL+CTFs >{Base-el, CTFs},
Specificity: {Base-el, BL+CTFs} >CTFs,
Accuracy: BL+CTFs >{Base-el, CTFs},
G-mean: BL+CTFs >Base-el >CTFs

2

Sensitivity: BL+CTFs >CTFs-in,
Specificity: {Base-el-in, BL+CTFs} >CTFs-in,
Accuracy: BL+CTFs >CTFs-in,
G-mean: {Base-el-in, BL+CTFs} >CTFs-in

AvgDiffAgeMean
1

Sensitivity: {Base-el, BL+CTFs} >CTFs,
Specificity: BL+CTFs >{Base-el, CTFs},
Accuracy: {Base-el, BL+CTFs} >CTFs,
G-mean: BL+CTFs >CTFs

2
Sensitivity: {Base-el-in, BL+CTFs} >CTFs-in,
Accuracy: {Base-el-in, BL+CTFs} >CTFs-in

Percentile
1

Sensitivity: BL+CTFs >CTFs,
Specificity: {Base-el, BL+CTFs} >CTFs,
Accuracy: BL+CTFs >CTFs,
G-mean: BL+CTFs >CTFs

2 Sensitivity: {Base-el-in, BL+CTFs} >CTFs-in

All 6 CTFs
1

Sensitivity: BL+CTFs >CTFs,
Accuracy: {Base-el, BL+CTFs} >CTFs,
G-mean: BL+CTFs >CTFs

2
Sensitivity: Base-el-in >CTFs-in,
G-mean: BL+CTFs >CTFs-in

that including CTFs in a preprocessing step will lead to better models for other

longitudinal datasets. However, our results do have enough promise in them, we

believe, to encourage further efforts in this direction, as the BL+CTFs set did

perform well in some scenarios, and more longitudinal data seems to benefit this

approach, based on our observations.

The results in this Chapter show that adding features representing tempo-

ral information into longitudinal datasets is a feasible, albeit still not completely

matured, strategy to mitigate the issue of having this information ignored by clas-

sification algorithms. A more sophisticated version of this CTF creation approach

would be implementing a data-driven selection of which CTFs increase the pre-

dictive accuracy of a target longitudinal dataset, adapting the proposal to have

only the CTFs that reached a set threshold of performance being added to the

dataset. In addition, it would be interesting to ask healthcare professionals to
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analyse our proposed CTFs and give feedback about their clinical validity and

interest, possibly proposing new features based on what type of temporal pattern

would be considered relevant for clinical or healthcare research purposes.
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Chapter 6

A New Lexicographic Split

Criterion for Decision Tree-based

Classification Algorithms

As discussed in previous Chapters, longitudinal datasets contain information about

the same cohort of individuals followed through a long period of time, with the

same set of variables being measured repeatedly. Supervised machine learning

(ML) methods can be adapted to cope with longitudinal data and use the time-

related information of the data. However, few existing supervised ML methods

directly cope with longitudinal datasets. In this Chapter we propose an algorithm

adaptation approach, using the UKLI representation of longitudinal data (see

taxonomy on Chapter 3). The proposal is an adaptation to decision tree-based

classification algorithms that uses the time-related information of longitudinal

data to increase predictive accuracy.

The contribution of this Chapter, described in Section 6.1, is a new lexico-

graphic bi-objective split-feature selection procedure that considers both the in-

formation gain ratio and the time index of the candidate features when selecting

the split feature of each node in the process for learning a decision tree. In essence,

the proposed lexicographic approach gives priority to select features with a higher

information gain ratio, but when candidate features have approximately the same

highest gain ratio, the most recent feature among those is selected. The contribu-

tions in this Chapter were published in a conference paper (Ribeiro and Freitas

2020).
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6.1 Lexicographic Approach Definition

The lexicographic split adaptation for tree-based classifiers consists of considering

not only the features’ information gain ratios but also their time-points (wave ids)

when choosing the split feature inside a decision tree’s node, making the decision

bi-objective. More precisely, when choosing the feature to be used in a node’s split,

the decision trees in our adapted algorithms (C4.5 decision tree and Random

Forests) will consider maximising the gain ratio as the primary objective and

maximising the time-index of the features (wave ids) as the secondary objective.

The rationale for this bi-objective feature evaluation is that we intend to add

a bias favouring more recent information. This is based on the heuristic that

more recent values of biomedical features tend to be more useful for predicting

future occurrences of diseases than older values of the same features. Intuitively,

the further in the past a feature value was measured, the less it is related to the

class label. However, we always prioritise gain ratio over the time index as this

is clearly the most important criterion for improving predictive accuracy, whilst

preferring more recent feature values as a tie-breaking criterion is a heuristic for

improving accuracy.

Another argument for using the proposed lexicographic split is that it leads

to classification models that are less dependent on older data. This is desirable

because longitudinal datasets created for classification problems, especially in the

ageing studies used as data sources in this thesis, tend to have more missing values

in the earlier waves. As many instances are added to study as it has new waves

added, and instances from participants who left the study will not be present in

the target wave (so they don’t have a class value, and must be discarded for the

classification datasets), the tendency is that the closer to the target wave, the less

likely a feature is to have a missing value due to attrition (naturally, this has no

effect on other reasons for missing data). Note that, although all missing values

in the datasets used in our experiments have been imputed using the approach

proposed in Chapter 4, the estimated values are inherently less precise, thus this

argument is still valid for datasets with no missing values left in them.

This approach of optimising objectives in priority order is sometimes called the

lexicographic approach (Freitas 2004), and it has been used in decision tree algo-

rithms for conventional (non-longitudinal) classification before (Basgalupp et al.
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2009). However, to the best of our knowledge, a lexicographic approach such as

the one proposed in this Chapter has never been used for longitudinal classifica-

tion before. However, a similar strategy of using time-related information in the

split decision was used in (Deng et al. 2013), where the authors combine entropy

gain and a time-related distance measure in their split criteria, for an application

in time series datasets.

We implemented and tested the proposed lexicographic split approach for Ran-

dom Forest and C4.5 decision trees, but it can be applied to any decision tree-based

classification algorithm. In order to make our approach compatible with but in-

dependent from previous contributions of this thesis, we propose two versions of

the lexicographic approach, i.e., for datasets with and without the constructed

temporal features proposed in Chapter 5. We report the results of a series of ex-

periments using RF on Sections 6.2 and 6.3, using Baseline datasets with only the

original features and datasets with added Constructed Temporal Features (CTFs),

respectively. The decision tree results are presented in Appendix D.

6.1.1 Lexicographic approach for Baseline datasets

The base version of the proposed lexicographic split approach involves longitudinal

datasets that do not have Constructed Temporal Features (CTFs). Most features

in these datasets (with the exception of some demographic features such as sex,

which are set with the most recent feature wave as their time-index by default)

take a value associated with a single wave of the study, regardless of whether

they have multiple measurements or not. For instance, cholesterol is a feature

measured in multiple waves, taking a value for each wave. By contrast, in general

a CTF does not have a single time index, since each CTF takes a value that is

typically calculated from the values of original features in multiple waves (multiple

time indexes), which complicates the definition of the lexicographic approach, as

discussed in more detail later. Thus, the lexicographic approach for baseline

datasets (the focus of this Section) is defined as follows.

For the C4.5 decision tree algorithm, the standard split-feature selection con-

siders every feature of the dataset in each node of the tree, ordering them based

on their Information gain ratio g(fi,j) (feature i measured at time j) for that node,

selecting the feature with the greater gain value for splitting the data.
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In the standard split-feature selection used by Random Trees in the RF algo-

rithm, instead of using all available features, the algorithm first randomly samples

a set of candidate features S from the dataset (|S| = mtry, with mtry being a

user-defined parameter for how many of the features are sampled). Then, it orders

the features in S based on their information gain ratio and selects the one with

greater gain value.

For the lexicographic split-feature selection approach, we consider a threshold

th as an additional parameter, and consider two features equivalent when the

difference between their gain ratios is lower than this threshold. All eligible (i.e.,

all features in C4.5 decision trees and the randomised pool of features sampled

for the current node in Random Trees) features that were considered equivalent

to the initial best feature are compared based on their time-indexes (wave id),

and the most recent feature is selected. This process is described in Algorithm

6.1. Note that, although we are considering the gain ratio function g(fi,j) as the

primary metric for selecting the split feature, it could be replaced by other metrics

such as the information gain.

Algorithm 6.1 Base version of the Lexicographic Split Feature Selection function,
applied at each node of a decision tree, for a dataset without CTFs. It receives
a set of eligible features S and a user-specified tie-threshold th, and returns the
selected splitfeature, based on gain ratio and the feature’s time index.

1: function LexicographicSplitFeatureSelection(S, th)
2: S.DescendingOrder(gainratio)
3: splitfeature← S[0]
4: CandidateFeatures.add(splitfeature)
5: pos← 1
6: while |g(splitfeature)− g(S[pos])| < th AND pos < S.length do
7: CandidateFeatures.add(S[pos])
8: pos+ +
9: end while

10: CandidateFeatures.DescendingOrder(time-index)
11: splitfeature← CandidateFeatures[0]
12: return splitfeature
13: end function

As an example of how the lexicographic feature-split approach works, consider

a set S (the set of eligible features to be selected on a given node split) consisting of

a feature f1,1 with a gain ratio of g(f1,1) = 0.7, and a feature f2,2 with a gain ratio
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of g(f2,2) = 0.67. In the standard decision tree algorithm, f1,1 would be selected

for the split as it has the greater gain value. In the lexicographic approach, that

depends on the value of th. If th = 0.05, we have |g(f1,1) − g(f2,2)| < th, so the

features’ gain ratios are considered equivalent and f2,2 is selected instead, because

it was measured at time-point 2 instead of 1 (giving it a greater time-index value).

However, if th = 0.01, we have |g(f1,1)− g(f2,2)| > th, so the features’ gain ratios

are not considered equivalent, and the selection proceeds normally, selecting f1,1

based on its higher gain ratio. In case of a tie for both the gain ratio value and

the time-index criterion, a random selection is performed (the algorithm’s default

tie break).

The disadvantage of the lexicographic approach is the additional parameter to

be selected by the user, the tie-definition threshold th. To address that disadvan-

tage, we implemented a data-driven approach that selects a value for th using an

internal cross-validation. More precisely, this data-driven selection of the th value

performs an internal 5-fold cross-validation using only the training set instances.

This internal cross-validation creates classifiers using 11 possible threshold values

(0.0, to 0.05, with 0.005 increments), and chooses the value that yields the model

with the best average GMean over its 5 folds.

Note that a th value of 0.0 does not mean that the lexicographic split would

not be applied (i.e., two features would never be considered tied). The gain values

are often very close, with differences small enough that a subtraction operation in

Java would return a 0 value. For nodes in lower depths of a decision tree, where

the number of instances in the dataset is very low, exact ties happen often and

are detected even with a 0.0 threshold. The threshold value th is selected using

this data-driven approach for each fold in the external cross-validation process. In

our experiments, we first show a comparison of using this data-driven threshold

selection against fixing the threshold value as each of the 11 values tested in the

approach, to show that this automated selection is superior to asking the user to

define the parameter.

6.1.2 Lexicographic approach for Baseline+CTF datasets

In the case of the Constructed Temporal Features (CTFs) proposed in Chapter 5,

they do not have a single, precise time index. Even though CTFs are calculated
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using measurements of original features, meaning we could analyse them in the

context of how recent they are, or have other reasoning for considering a partic-

ular time index for a CTF (such as its performance in previous experiments), we

decided to disregard them in the lexicographic split approach. The rationale for

this choice was that attributing a time index for the CTFs would be subjective,

and would require separate experiments to justify each choice (which we leave for

future research).

For CTFs or any other features without a single, precise time index, the lex-

icographic approach disregards them as candidate features for the tie-breaking

criterion of the bi-objective split. In essence, if a feature without a single, precise

time index is selected as the split feature for having the greatest information gain

ratio, the split is done using that feature (no tie threshold is considered). However,

if it would be considered by the lexicographic approach as a candidate feature (i.e.,

if it has a gain ratio difference within the threshold against the currently selected

split feature), it will be disregarded as well. Thus, features without time indexes

are never replaced nor used as a replacement by the lexicographic approach. This

modified version of the lexicographic approach split, which considers CTFs, is

described in Algorithm 6.2.
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Algorithm 6.2 Modified version of the Lexicographic Split Feature Selection
function, applied at each node of a decision tree, for a dataset with added CTFs.
Receives a set of eligible features S and a tie-threshold th (set by the user), and
returns the selected splitfeature, based on gain ratio and the feature’s time-index.

1: function LexicographicSplitFeatureSelection(S, th)
2: S.DescendingOrder(gainratio)
3: splitfeature← S[0]
4: if !IsCTF (splitfeature) then
5: CandidateFeatures.add(splitfeature)
6: pos← 1
7: while |g(splitfeature)− g(S[pos])| < th AND pos < S.length do
8: pos+ +
9: if !IsCTF (S[pos]) then

10: CandidateFeatures.add(S[pos])
11: end if
12: end while
13: CandidateFeatures.DescendingOrder(time-index)
14: splitfeature← CandidateFeatures[0]
15: end if
16: return splitfeature
17: end function

6.2 RF Results for Baseline Datasets

We compared the RF with the lexicographic approach against the standard RF

(without the lexicographic approach) in experiments using the ELSA-nurse, ELSA-

core and TILDA datasets, both without (Baseline datasets) and with (Base-

line+CTF datasets) the addition of the 6 constructed feature types proposed in

Chapter 5. For each set of experiments, we also compared fixing the threshold

value as each of the values tried by the data-driven threshold selection to using it.

For all experiments, we report the Sensitivity, Specificity, Accuracy and GMean

results for each of our 30 datasets, as well as the average ranks obtained by each

approach, both for each type of dataset (ELSA-nurse, ELSA-core and TILDA)

separately and for all datasets together. The experimental setup is the one used

in our previous experiments: all missing values in the datasets were estimated

using our data-driven approach proposed in Chapter 4, all training datasets were

undersampled using the Balanced Random Forest method (i.e., individual un-

dersampling for each tree in the RF), and all reported results are the average
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values from a 10-fold cross-validation process, with the default RF parameters

(ntrees = 100 and mtry = blog2(d)c+ 1).

The lexicographic split approach requires a threshold value for defining gain

ratio ties (i.e., how close the difference between the gain values must be for them

to be considered equivalent), and this added parameter would need to be defined

by the user. However, we propose a data-driven automated threshold value se-

lection that uses an internal cross-validation process with training set instances

and chooses a threshold value for each RF (each fold of the external, main cross-

validation). In order to confirm that this automated process is preferable to having

the user define the threshold value, we compared fixing the threshold value as each

of the 11 values tested by the automated approach (0.0 to 0.05 with 0.005 incre-

ments, range defined after preliminary experiments) against using it. Tables 6.1

and 6.2 contain the Accuracy and GMean results of those experiments, respec-

tively. The Sensitivity and Specificity results for the threshold experiments are

presented in Appendix D.1.
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Table 6.1: Accuracy results for threshold selection experiments in the Baseline
datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.678 0.683 0.681 0.682 0.686 0.685 0.695 0.683 0.687 0.685 0.684 0.693
EN Arthritis 0.633 0.634 0.636 0.634 0.633 0.632 0.623 0.634 0.633 0.632 0.625 0.635
EN Cataract 0.655 0.655 0.657 0.659 0.657 0.659 0.67 0.652 0.656 0.661 0.656 0.66
EN Dementia 0.732 0.733 0.733 0.733 0.737 0.737 0.734 0.733 0.734 0.733 0.732 0.74
EN Diabetes 0.847 0.847 0.846 0.848 0.848 0.847 0.856 0.845 0.847 0.846 0.845 0.845
EN HBP 0.687 0.689 0.689 0.686 0.68 0.683 0.695 0.685 0.685 0.679 0.676 0.688
EN HeartAttack 0.704 0.705 0.702 0.699 0.701 0.699 0.707 0.701 0.701 0.701 0.699 0.705
EN Osteoporosis 0.656 0.658 0.661 0.657 0.657 0.653 0.674 0.654 0.652 0.657 0.658 0.66
EN Parkinsons 0.633 0.633 0.632 0.632 0.634 0.636 0.658 0.646 0.642 0.645 0.644 0.634
EN Stroke 0.674 0.673 0.673 0.672 0.672 0.682 0.686 0.677 0.677 0.678 0.683 0.679
EC Angina 0.711 0.711 0.713 0.713 0.713 0.705 0.708 0.714 0.714 0.714 0.712 0.71
EC Arthritis 0.735 0.737 0.735 0.734 0.736 0.738 0.736 0.74 0.736 0.734 0.735 0.739
EC Cataract 0.644 0.642 0.643 0.644 0.645 0.649 0.65 0.652 0.654 0.651 0.652 0.651
EC Dementia 0.765 0.764 0.766 0.766 0.767 0.769 0.767 0.769 0.77 0.772 0.772 0.768
EC Diabetes 0.686 0.682 0.683 0.685 0.681 0.679 0.68 0.679 0.672 0.677 0.675 0.684
EC HBP 0.64 0.649 0.65 0.647 0.645 0.647 0.642 0.642 0.649 0.645 0.647 0.645
EC HeartAttack 0.68 0.679 0.682 0.682 0.687 0.685 0.684 0.684 0.683 0.684 0.681 0.684
EC Osteoporosis 0.695 0.694 0.697 0.693 0.695 0.701 0.699 0.696 0.697 0.696 0.697 0.699
EC Parkinsons 0.695 0.698 0.704 0.699 0.698 0.7 0.702 0.701 0.701 0.701 0.704 0.702
EC Stroke 0.693 0.694 0.699 0.695 0.694 0.695 0.697 0.699 0.698 0.699 0.699 0.699
TI Angina 0.755 0.756 0.755 0.755 0.756 0.754 0.751 0.75 0.748 0.748 0.745 0.755
TI Arthritis 0.711 0.702 0.706 0.709 0.699 0.7 0.698 0.686 0.694 0.695 0.694 0.706
TI Cancer 0.558 0.556 0.544 0.545 0.541 0.54 0.54 0.544 0.55 0.541 0.541 0.542
TI Cataract 0.705 0.701 0.703 0.708 0.704 0.701 0.7 0.701 0.697 0.7 0.696 0.701
TI Diabetes 0.78 0.782 0.78 0.783 0.781 0.779 0.779 0.778 0.772 0.772 0.772 0.776
TI HBP 0.71 0.709 0.706 0.707 0.706 0.705 0.704 0.709 0.702 0.701 0.701 0.711
TI HeartAttack 0.757 0.755 0.756 0.754 0.754 0.755 0.753 0.753 0.755 0.749 0.749 0.753
TI Ministroke 0.709 0.707 0.712 0.705 0.705 0.704 0.708 0.71 0.705 0.7 0.701 0.707
TI Osteoporosis 0.693 0.691 0.69 0.69 0.688 0.682 0.683 0.678 0.675 0.677 0.678 0.683
TI Stroke 0.726 0.728 0.728 0.726 0.722 0.724 0.721 0.721 0.72 0.714 0.711 0.718
AvgRank Elsanurse 8.20 6.50 6.55 7.60 6.60 6.75 2.45 7.70 6.70 6.70 8.25 4.00
AvgRank Elsacore 9.55 8.80 5.75 8.05 7.20 5.95 6.55 5.00 5.05 5.85 5.55 4.70
AvgRank TILDA 2.35 3.35 3.65 3.90 5.55 7.25 7.95 7.25 8.90 10.60 11.00 6.25
AvgRank Overall 6.70 6.22 5.32 6.52 6.45 6.65 5.65 6.65 6.88 7.72 8.27 4.98
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Table 6.2: GMean results for threshold selection experiments in the Baseline
datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.687 0.695 0.678 0.697 0.695 0.689 0.695 0.683 0.69 0.705 0.685 0.692
EN Arthritis 0.626 0.628 0.629 0.627 0.625 0.625 0.623 0.628 0.627 0.626 0.618 0.628
EN Cataract 0.67 0.669 0.672 0.674 0.672 0.673 0.67 0.666 0.67 0.675 0.669 0.674
EN Dementia 0.734 0.725 0.731 0.731 0.736 0.73 0.734 0.728 0.728 0.725 0.728 0.732
EN Diabetes 0.853 0.852 0.852 0.858 0.856 0.855 0.856 0.851 0.853 0.85 0.852 0.853
EN HBP 0.695 0.696 0.697 0.694 0.687 0.691 0.695 0.693 0.693 0.687 0.684 0.696
EN HeartAttack 0.708 0.71 0.719 0.712 0.714 0.709 0.707 0.712 0.71 0.711 0.71 0.722
EN Osteoporosis 0.676 0.68 0.676 0.678 0.673 0.675 0.674 0.679 0.675 0.678 0.676 0.684
EN Parkinsons 0.671 0.671 0.664 0.649 0.643 0.644 0.658 0.649 0.661 0.67 0.67 0.635
EN Stroke 0.7 0.688 0.697 0.682 0.686 0.699 0.686 0.69 0.692 0.689 0.698 0.695
EC Angina 0.718 0.725 0.734 0.73 0.741 0.724 0.73 0.746 0.743 0.741 0.738 0.723
EC Arthritis 0.732 0.733 0.731 0.73 0.733 0.735 0.732 0.734 0.73 0.729 0.73 0.735
EC Cataract 0.662 0.66 0.662 0.66 0.662 0.665 0.666 0.668 0.671 0.666 0.668 0.668
EC Dementia 0.762 0.767 0.762 0.759 0.766 0.769 0.766 0.775 0.77 0.762 0.771 0.772
EC Diabetes 0.716 0.71 0.711 0.716 0.712 0.71 0.709 0.71 0.704 0.707 0.709 0.717
EC HBP 0.644 0.653 0.653 0.649 0.647 0.648 0.645 0.645 0.652 0.648 0.651 0.649
EC HeartAttack 0.692 0.689 0.69 0.694 0.697 0.693 0.69 0.702 0.69 0.691 0.688 0.686
EC Osteoporosis 0.688 0.682 0.684 0.677 0.678 0.688 0.683 0.683 0.689 0.687 0.686 0.689
EC Parkinsons 0.687 0.702 0.699 0.696 0.709 0.703 0.717 0.717 0.711 0.717 0.705 0.717
EC Stroke 0.7 0.704 0.707 0.706 0.704 0.705 0.713 0.709 0.705 0.71 0.71 0.713
TI Angina 0.824 0.828 0.822 0.822 0.819 0.822 0.817 0.812 0.811 0.82 0.815 0.812
TI Arthritis 0.692 0.688 0.689 0.695 0.684 0.686 0.686 0.674 0.683 0.685 0.684 0.691
TI Cancer 0.577 0.582 0.564 0.555 0.548 0.561 0.567 0.571 0.581 0.56 0.554 0.544
TI Cataract 0.715 0.713 0.721 0.716 0.721 0.722 0.716 0.712 0.704 0.718 0.707 0.707
TI Diabetes 0.8 0.808 0.807 0.806 0.804 0.806 0.806 0.803 0.8 0.805 0.809 0.802
TI HBP 0.718 0.717 0.716 0.717 0.715 0.714 0.714 0.718 0.712 0.71 0.711 0.72
TI HeartAttack 0.806 0.809 0.812 0.807 0.811 0.82 0.817 0.819 0.812 0.81 0.813 0.809
TI Ministroke 0.722 0.716 0.728 0.71 0.72 0.719 0.721 0.722 0.72 0.713 0.708 0.73
TI Osteoporosis 0.742 0.737 0.741 0.741 0.737 0.736 0.739 0.735 0.734 0.732 0.736 0.732
TI Stroke 0.732 0.725 0.725 0.717 0.715 0.723 0.73 0.73 0.729 0.719 0.709 0.713
AvgRank Elsanurse 5.80 6.10 5.20 5.20 6.95 7.30 7.30 7.65 7.25 6.55 8.40 4.30
AvgRank Elsacore 8.45 7.90 7.05 8.20 6.70 6.20 6.75 4.25 5.50 6.65 6.20 4.15
AvgRank TILDA 4.55 5.10 4.10 6.25 7.40 5.55 5.30 6.40 8.45 8.25 8.65 8.00
AvgRank Overall 6.27 6.37 5.45 6.55 7.02 6.35 6.45 6.10 7.07 7.15 7.75 5.48
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The results in these tables show that the proposed automated threshold se-

lection approach is the most consistent, as it often obtains the smallest average

rank values. Considering all 30 datasets, the only measure where the automated

approach did not have the best (smallest) average rank was Accuracy (including

Sensitivity and Specificity, see Tables in Appendix D.1), where it was the second

best with a 6.02 average rank against 5.97 for the 0.04 threshold. Note that we are

comparing a single approach against 11 others, so the consistency the data-driven

automated threshold selection obtained is impressive. Even though in some situa-

tions a specific threshold value obtained considerably smaller average ranks (e.g.,

the 2.35 average Accuracy rank for the 0.0 threshold in TILDA datasets, com-

pared to the 6.25 obtained by the automated selection), it is clear that fixing the

value for this parameter is an unnecessary risk that most users would not want to

take. This result is positive for our proposed lexicographic approach; even though

it does require an additional user-defined parameter, the value of this parameter

can be reliably chosen via an automated approach.

Although the sample sizes for comparing 12 different approaches is arguably

small, we ran Friedman’s rank-based tests (comparing all methods simultaneously)

to investigate whether differences between these approaches can be considered sta-

tistically significant. In the cases where the Friedman p-value was smaller than

the 0.05 threshold, we ran the post-hoc Nemenyi test (pairwise comparison), but

only report here on the results comparing the proposed data-driven automated

threshold selection (referred to as DD in these results) to each fixed threshold

value, as differences between different fixed values were not relevant for this anal-

ysis. For this set of experiments with Baseline datasets, the statistical analysis

results were as follows.

In the comparison for all 30 datasets, we had a significant Friedman p-value

(0.0233) for the Accuracy measure, and the post-hoc test only had a significant

p-value (0.0215) when comparing DD vs the 0.05 threshold. Regarding the Elsa-

nurse datasets, again, Accuracy had a significant Friedman p-value of 0.0095, but

none of the DD comparisons in the post-hoc test had a significant result. For Elsa-

core datasets we had two significant Friedman p-values: 0.0128 for Sensitivity and

0.0276 for Accuracy, but both post-hoc tests did not have significant p-values with

DD comparisons. Finally, when testing for the TILDA datasets, we had significant

Friedman p-values for Sensitivity (< 1E−16), which had one significant post-hoc

143



p-value (0.0318) when comparing DD and the 0.05 threshold, and for Accuracy

(< 1E − 16), which did not have any significant post-hoc p-values for DD.

After these initial experiments confirmed that the automated threshold selec-

tion is the most reliable way to define the value for the tie threshold parameter,

we performed experiments comparing using the proposed lexicographic approach

(with the data-driven threshold selection) against not using it (we named these

approaches Lexic and NoLexic, respectively). The results are reported in Table

6.3, where, for each metric, the best average ranks are shown in bold font.
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Table 6.3: Comparison of Lexic and NoLexic approaches for Baseline datasets.

Datasets
SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

EN Angina 0.693 0.684 0.69 0.702 0.693 0.684 0.692 0.693
EN Arthritis 0.669 0.671 0.589 0.586 0.635 0.635 0.628 0.627
EN Cataract 0.63 0.62 0.72 0.723 0.66 0.654 0.674 0.67
EN Dementia 0.74 0.729 0.723 0.709 0.74 0.729 0.732 0.719
EN Diabetes 0.843 0.841 0.863 0.866 0.845 0.845 0.853 0.854
EN HBP 0.647 0.651 0.749 0.749 0.688 0.69 0.696 0.698
EN HeartAttack 0.703 0.7 0.741 0.738 0.705 0.702 0.722 0.719
EN Osteoporosis 0.654 0.649 0.716 0.696 0.66 0.654 0.684 0.672
EN Parkinsons 0.634 0.628 0.636 0.712 0.634 0.629 0.635 0.669
EN Stroke 0.677 0.67 0.713 0.724 0.679 0.674 0.695 0.697
EC Angina 0.709 0.711 0.737 0.723 0.71 0.711 0.723 0.717
EC Arthritis 0.752 0.749 0.719 0.717 0.739 0.736 0.735 0.733
EC Cataract 0.625 0.609 0.715 0.717 0.651 0.641 0.668 0.661
EC Dementia 0.768 0.764 0.776 0.77 0.768 0.764 0.772 0.767
EC Diabetes 0.672 0.674 0.764 0.747 0.684 0.684 0.717 0.71
EC HBP 0.633 0.641 0.665 0.662 0.645 0.649 0.649 0.651
EC HeartAttack 0.683 0.678 0.689 0.692 0.684 0.679 0.686 0.685
EC Osteoporosis 0.701 0.7 0.677 0.676 0.699 0.698 0.689 0.688
EC Parkinsons 0.701 0.697 0.733 0.693 0.702 0.697 0.717 0.695
EC Stroke 0.697 0.694 0.729 0.721 0.699 0.695 0.713 0.707
TI Angina 0.749 0.748 0.88 0.916 0.755 0.756 0.812 0.828
TI Arthritis 0.729 0.729 0.654 0.646 0.706 0.703 0.691 0.686
TI Cancer 0.542 0.549 0.546 0.579 0.542 0.55 0.544 0.564
TI Cataract 0.699 0.706 0.715 0.724 0.701 0.707 0.707 0.715
TI Diabetes 0.771 0.775 0.834 0.831 0.776 0.779 0.802 0.803
TI HBP 0.679 0.678 0.764 0.765 0.711 0.711 0.72 0.72
TI HeartAttack 0.749 0.751 0.873 0.878 0.753 0.756 0.809 0.812
TI Ministroke 0.706 0.712 0.755 0.735 0.707 0.712 0.73 0.724
TI Osteoporosis 0.671 0.677 0.799 0.807 0.683 0.689 0.732 0.739
TI Stroke 0.718 0.728 0.708 0.8 0.718 0.728 0.713 0.763
AvgRank Elsanurse 1.20 1.80 1.55 1.45 1.20 1.80 1.50 1.50
AvgRank Elsacore 1.30 1.70 1.20 1.80 1.25 1.75 1.10 1.90
AvgRank TILDA 1.75 1.25 1.70 1.30 1.85 1.15 1.75 1.25
AvgRank Overall 1.42 1.58 1.48 1.52 1.43 1.57 1.45 1.55

For the Lexic and NoLexic comparison across all 30 datasets, for all 4 metrics

the Lexic overall average rank was smaller, albeit only slightly. The greatest

difference between the overall average rank values values was 0.1, for GMean.

When considering each data source separately, we observed a pattern where

datasets with more measurements for their conceptual features had better results

for the Lexic approach. Thus, considering only the Elsa-core datasets, with 7
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feature waves, Lexic wins for all 4 metrics with large differences in the average

ranks. Regarding the Elsa-nurse datasets, with 4 feature waves (that are 4 years

apart from each other, instead of 2), Lexic wins for Sensitivity and Accuracy, but

loses for Specificity and ties for GMean. Finally, regarding the TILDA datasets,

which have 4 feature waves (2 years apart from each other) but do not have 4

measurements for most features, NoLexic wins for all 4 metrics.

This pattern corroborates the core principle of the lexicographic split approach,

that adding a bias in favour of more recent features would increase predictive accu-

racy. However the impact of this approach on longitudinal datasets is proportional

to the number of waves of data available. The reason for this is twofold: first, the

gap in time between a selected feature and its replacement in the lexicographic

approach is, on average, larger for datasets with more waves (for example, in

Elsa-core datasets it can get to 14 years, between waves 1 to 7), so making a re-

placement can be more meaningful in that regard; second, a replacement is more

likely if there are more recent features to choose from, so the lexicographic ap-

proach makes more difference in datasets that have a greater likelihood of ties and

replacements (for example, in TILDA datasets there are usually only two measure-

ments of a conceptual feature, so the likelihood that a more recent measurement

is equivalent to the one selected is smaller, compared to the 7 measurements in

Elsa-core features).

We also compared the ranks of the Lexic and NoLexic approaches using the

Wilcoxon signed-rank test. For this analysis, we ran the Wilcoxon test with all

30 datasets, then considering each data source separately. In the overall results

analysis, none of the p-values were significant. When considering only Elsa-nurse

datasets, Lexic was significantly better than NoLexic for Sensitivity (p-value of

0.0248) and Accuracy (0.0170). In Elsa-core datasets there was a significant differ-

ence in Specificity (0.0364) and GMean (0.0142), both in favour of Lexic. Finally,

TILDA datasets had a significant result in favour of NoLexic in the Sensitivity

(0.0205) Accuracy (0.0204) metrics.

We also measured the effect the proposed lexicographic split approach has

on the resulting Random Forest models, i.e., how different the models generated

with this split were from the baseline models. For this, we counted in every RF

model the proportion of nodes where a tie happened (nodes where more than one
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candidate feature had equivalent information gain ratios, according to the tie-

threshold parameter) and the proportion of nodes where a replacement happened

(nodes where the tie led to a different, more recent feature being selected for the

split function).

For the baseline datasets used in these experiments, in the ELSA-nurse models

we had an average of 50.3% of nodes where a tie occurred (at least one candidate

feature had an equivalent information gain ratio to the first-ranked feature), mak-

ing them eligible for changing the split feature based on the secondary objective,

the time-index. About half of these nodes switched the chosen feature for a more

recent feature, resulting in final models that were 26.6% different from the base-

line models (standard split function), for these datasets. In the ELSA-core and

TILDA datasets we had less frequent ties in the nodes (42.9% and 39.6% average

nodes with ties, for ELSA-core and TILDA respectively), thus the final models

were not changed as much (23.1% and 25.4% average difference, for ELSA-core

and TILDA respectively).

Even though there was clearly a significant change in the final Random Forests,

for all data sources, the resulting reflection on predictive accuracy is not expected

to be large. This is because the split features eligible for replacement are, by

design, equivalent from each other in terms of information gain. However, the

chosen split feature dictates the division of the instances among the child nodes,

so there is some cascading effect of changing a split feature as the instance subsets

going into the child nodes are changed.

In summary, when experimenting with only original features (i.e. no con-

structed feature) we observed that the proposed lexicographic split approach has

a positive impact on predictive accuracy for longitudinal datasets with many mea-

surements of their conceptual features (Elsa-core, Elsa-nurse), but this impact is

small or nonexistent in datasets with fewer measurements in their conceptual fea-

tures (TILDA). Therefore, our recommendation is that the decision about whether

to apply this approach be based on the number of waves in the dataset, and the

time-gap between those waves, with higher number of waves and larger time gaps

increasing the benefits of using the lexicographic split.
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6.3 RF Results for Baseline+CTF Datasets

Our second set of experiments combines the original features in the datasets with

all 6 types of Constructed Temporal Features (CTFs) proposed in Chapter 5. As

explained earlier, the lexicographic approach disregards the CTFs as they do not

have a specific, well-defined time-index.

As with the previous experiments, we first compared using the automated data-

driven threshold selection approach to fixing the threshold values. Tables 6.4 and

6.5 show the Accuracy and GMean results for these experiments, respectively. The

Sensitivity and Specificity results for the threshold experiments are presented in

Appendix D.1.
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Table 6.4: Accuracy results for threshold selection experiments in the Base-
line+CTF datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.682 0.684 0.688 0.687 0.686 0.684 0.686 0.682 0.677 0.677 0.68 0.684
EN Arthritis 0.636 0.644 0.638 0.641 0.639 0.646 0.637 0.637 0.634 0.638 0.639 0.637
EN Cataract 0.649 0.645 0.65 0.657 0.648 0.651 0.646 0.649 0.649 0.644 0.647 0.654
EN Dementia 0.742 0.743 0.743 0.741 0.741 0.741 0.743 0.742 0.74 0.742 0.743 0.745
EN Diabetes 0.846 0.845 0.845 0.846 0.845 0.845 0.847 0.846 0.848 0.846 0.845 0.849
EN HBP 0.687 0.688 0.684 0.69 0.679 0.683 0.682 0.68 0.684 0.689 0.686 0.686
EN HeartAttack 0.7 0.701 0.704 0.704 0.705 0.704 0.701 0.702 0.703 0.704 0.706 0.703
EN Osteoporosis 0.652 0.654 0.652 0.651 0.652 0.648 0.646 0.646 0.647 0.647 0.647 0.649
EN Parkinsons 0.631 0.632 0.635 0.634 0.639 0.64 0.642 0.644 0.643 0.646 0.648 0.644
EN Stroke 0.677 0.681 0.679 0.681 0.678 0.68 0.677 0.682 0.677 0.682 0.676 0.682
EC Angina 0.71 0.706 0.707 0.709 0.708 0.705 0.706 0.709 0.709 0.707 0.705 0.707
EC Arthritis 0.741 0.738 0.737 0.738 0.74 0.736 0.737 0.738 0.741 0.739 0.735 0.739
EC Cataract 0.66 0.658 0.658 0.659 0.66 0.66 0.659 0.664 0.659 0.659 0.665 0.664
EC Dementia 0.767 0.769 0.769 0.766 0.769 0.771 0.767 0.768 0.77 0.771 0.772 0.773
EC Diabetes 0.691 0.687 0.688 0.692 0.689 0.691 0.688 0.684 0.686 0.689 0.689 0.684
EC HBP 0.652 0.648 0.653 0.647 0.653 0.66 0.653 0.65 0.655 0.651 0.656 0.65
EC HeartAttack 0.68 0.675 0.678 0.68 0.677 0.674 0.675 0.679 0.676 0.677 0.678 0.678
EC Osteoporosis 0.694 0.698 0.695 0.695 0.692 0.692 0.69 0.693 0.695 0.694 0.692 0.694
EC Parkinsons 0.697 0.695 0.695 0.697 0.698 0.697 0.7 0.701 0.7 0.701 0.703 0.709
EC Stroke 0.698 0.699 0.699 0.702 0.698 0.699 0.7 0.701 0.697 0.699 0.701 0.698
TI Angina 0.748 0.748 0.75 0.75 0.747 0.748 0.748 0.752 0.75 0.746 0.747 0.746
TI Arthritis 0.693 0.698 0.694 0.696 0.695 0.693 0.69 0.695 0.694 0.69 0.694 0.697
TI Cancer 0.554 0.549 0.548 0.548 0.553 0.555 0.558 0.551 0.554 0.555 0.552 0.557
TI Cataract 0.704 0.7 0.696 0.702 0.702 0.704 0.702 0.704 0.707 0.705 0.702 0.702
TI Diabetes 0.761 0.761 0.759 0.755 0.756 0.758 0.76 0.757 0.755 0.754 0.755 0.76
TI HBP 0.698 0.698 0.703 0.704 0.7 0.699 0.7 0.697 0.695 0.695 0.693 0.701
TI HeartAttack 0.745 0.746 0.744 0.745 0.745 0.748 0.746 0.745 0.751 0.746 0.747 0.747
TI Ministroke 0.709 0.706 0.703 0.702 0.704 0.703 0.702 0.7 0.701 0.698 0.699 0.706
TI Osteoporosis 0.677 0.678 0.678 0.683 0.681 0.679 0.68 0.682 0.681 0.677 0.677 0.679
TI Stroke 0.705 0.704 0.704 0.705 0.706 0.709 0.708 0.706 0.708 0.706 0.706 0.709
AvgRank Elsanurse 7.90 6.25 5.60 4.65 6.90 6.35 7.70 7.30 8.25 6.20 6.55 4.35
AvgRank Elsacore 5.40 8.45 7.35 5.80 6.45 7.20 8.25 5.95 6.05 6.00 5.30 5.80
AvgRank TILDA 6.55 6.60 7.80 6.40 6.50 5.10 5.70 6.25 5.40 8.65 8.65 4.40
AvgRank Overall 6.62 7.10 6.92 5.62 6.62 6.22 7.22 6.50 6.57 6.95 6.83 4.85
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Table 6.5: GMean results for threshold selection experiments in the Baseline+CTF
datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.68 0.683 0.698 0.675 0.686 0.679 0.686 0.686 0.683 0.687 0.685 0.692
EN Arthritis 0.629 0.637 0.631 0.635 0.633 0.639 0.63 0.63 0.628 0.633 0.634 0.63
EN Cataract 0.669 0.664 0.668 0.676 0.665 0.669 0.665 0.667 0.667 0.662 0.667 0.672
EN Dementia 0.733 0.733 0.723 0.725 0.729 0.725 0.72 0.715 0.718 0.729 0.726 0.741
EN Diabetes 0.854 0.851 0.85 0.854 0.853 0.854 0.853 0.85 0.855 0.85 0.849 0.855
EN HBP 0.696 0.696 0.691 0.698 0.686 0.69 0.69 0.687 0.692 0.696 0.694 0.693
EN HeartAttack 0.705 0.706 0.71 0.712 0.713 0.714 0.713 0.715 0.718 0.711 0.72 0.714
EN Osteoporosis 0.681 0.682 0.678 0.676 0.679 0.674 0.673 0.669 0.671 0.671 0.67 0.677
EN Parkinsons 0.67 0.684 0.686 0.664 0.674 0.675 0.676 0.677 0.662 0.671 0.672 0.64
EN Stroke 0.689 0.69 0.69 0.698 0.69 0.69 0.693 0.699 0.689 0.694 0.685 0.694
EC Angina 0.729 0.719 0.726 0.727 0.722 0.72 0.725 0.727 0.74 0.741 0.737 0.738
EC Arthritis 0.737 0.735 0.735 0.735 0.737 0.733 0.734 0.735 0.737 0.735 0.731 0.735
EC Cataract 0.686 0.683 0.684 0.685 0.685 0.687 0.685 0.69 0.684 0.685 0.69 0.686
EC Dementia 0.79 0.791 0.793 0.783 0.775 0.774 0.79 0.79 0.803 0.794 0.798 0.802
EC Diabetes 0.722 0.717 0.712 0.719 0.716 0.726 0.722 0.717 0.715 0.719 0.718 0.705
EC HBP 0.655 0.653 0.657 0.651 0.655 0.663 0.657 0.653 0.658 0.654 0.659 0.655
EC HeartAttack 0.689 0.683 0.684 0.688 0.697 0.693 0.7 0.698 0.698 0.69 0.695 0.684
EC Osteoporosis 0.68 0.683 0.682 0.691 0.682 0.679 0.681 0.68 0.678 0.686 0.678 0.678
EC Parkinsons 0.708 0.707 0.714 0.708 0.722 0.715 0.71 0.704 0.703 0.71 0.705 0.714
EC Stroke 0.721 0.719 0.719 0.724 0.714 0.716 0.722 0.717 0.718 0.714 0.714 0.723
TI Angina 0.808 0.806 0.809 0.802 0.801 0.804 0.803 0.81 0.807 0.803 0.802 0.814
TI Arthritis 0.68 0.686 0.681 0.686 0.684 0.682 0.68 0.686 0.683 0.679 0.682 0.681
TI Cancer 0.566 0.561 0.555 0.55 0.549 0.562 0.561 0.545 0.558 0.558 0.548 0.576
TI Cataract 0.72 0.719 0.713 0.721 0.715 0.724 0.714 0.716 0.721 0.716 0.713 0.719
TI Diabetes 0.785 0.788 0.782 0.784 0.778 0.785 0.785 0.786 0.785 0.782 0.78 0.786
TI HBP 0.706 0.707 0.711 0.712 0.709 0.708 0.71 0.707 0.705 0.704 0.702 0.71
TI HeartAttack 0.798 0.791 0.788 0.793 0.789 0.792 0.796 0.791 0.799 0.798 0.797 0.794
TI Ministroke 0.712 0.711 0.709 0.718 0.724 0.714 0.714 0.712 0.713 0.712 0.702 0.711
TI Osteoporosis 0.711 0.718 0.717 0.723 0.724 0.72 0.721 0.722 0.722 0.713 0.711 0.713
TI Stroke 0.699 0.706 0.706 0.714 0.714 0.716 0.715 0.722 0.723 0.722 0.722 0.731
AvgRank Elsanurse 6.75 5.65 6.25 5.45 6.60 6.05 7.30 7.30 8.00 6.80 7.20 4.65
AvgRank Elsacore 5.60 8.40 6.95 6.55 6.70 6.50 5.70 6.95 6.10 5.80 6.55 6.20
AvgRank TILDA 6.80 6.30 8.40 5.25 7.35 5.25 6.30 5.75 4.60 7.80 9.40 4.80
AvgRank Overall 6.38 6.78 7.20 5.75 6.88 5.93 6.43 6.67 6.23 6.80 7.72 5.22
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For the threshold comparison experiments with the Baseline+CTF datasets,

the pattern in favour of the DD approach (data-driven threshold selection) was

slightly less clear as it was for the Baseline datasets. The best (smallest) over-

all average rank for Specificity (see Appendix D.1 for Sensitivity and Specificity

Tables) was obtained by the 0.015 threshold, while the DD overall average ranks

were the best for Sensitivity, Accuracy and GMean. The consistency of the DD

approach is still noticeable; its average ranks never reached very high values – the

only DD average ranks above 6 were for Specificity (7) and Accuracy (6.20), both

for Elsa-core datasets. Therefore, the automated selection of the best threshold

value was considered the best approach for these datasets as well. In the statis-

tical analysis with the Friedman’s test, there were no significant p-values for any

of the tests (for types of datasets or all datasets combined).

Thus, we kept the conclusion that the automated threshold selection is the

most reliable way to define the value for the tie threshold parameter, and per-

formed experiments comparing the Lexic and NoLexic approaches. The results

for these experiments are reported in Table 6.6.
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Table 6.6: Comparison of Lexic and NoLexic approaches for Baseline+CTF
datasets.

Baseline+CTFs
Datasets

SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

EN Angina 0.683 0.681 0.702 0.686 0.684 0.681 0.692 0.684
EN Arthritis 0.669 0.671 0.594 0.594 0.637 0.639 0.63 0.632
EN Cataract 0.614 0.605 0.734 0.736 0.654 0.648 0.672 0.667
EN Dementia 0.745 0.743 0.736 0.736 0.745 0.742 0.741 0.74
EN Diabetes 0.846 0.845 0.864 0.868 0.849 0.848 0.855 0.856
EN HBP 0.648 0.65 0.742 0.745 0.686 0.688 0.693 0.696
EN HeartAttack 0.702 0.7 0.726 0.713 0.703 0.701 0.714 0.707
EN Osteoporosis 0.643 0.643 0.713 0.716 0.649 0.65 0.677 0.679
EN Parkinsons 0.644 0.627 0.636 0.727 0.644 0.628 0.64 0.675
EN Stroke 0.681 0.674 0.708 0.72 0.682 0.677 0.694 0.697
EC Angina 0.705 0.706 0.772 0.761 0.707 0.708 0.738 0.733
EC Arthritis 0.751 0.756 0.719 0.72 0.739 0.741 0.735 0.738
EC Cataract 0.627 0.613 0.75 0.764 0.664 0.658 0.686 0.685
EC Dementia 0.772 0.766 0.832 0.807 0.773 0.767 0.802 0.787
EC Diabetes 0.677 0.682 0.734 0.758 0.684 0.692 0.705 0.719
EC HBP 0.632 0.637 0.678 0.673 0.65 0.651 0.655 0.655
EC HeartAttack 0.677 0.68 0.692 0.717 0.678 0.682 0.684 0.698
EC Osteoporosis 0.697 0.702 0.659 0.666 0.694 0.699 0.678 0.684
EC Parkinsons 0.709 0.694 0.72 0.733 0.709 0.694 0.714 0.713
EC Stroke 0.695 0.696 0.751 0.747 0.698 0.699 0.723 0.721
TI Angina 0.739 0.742 0.896 0.88 0.746 0.748 0.814 0.808
TI Arthritis 0.721 0.713 0.642 0.648 0.697 0.693 0.681 0.68
TI Cancer 0.555 0.552 0.599 0.579 0.557 0.554 0.576 0.566
TI Cataract 0.699 0.701 0.741 0.741 0.702 0.704 0.719 0.72
TI Diabetes 0.755 0.757 0.818 0.813 0.76 0.761 0.786 0.785
TI HBP 0.669 0.668 0.754 0.746 0.701 0.698 0.71 0.706
TI HeartAttack 0.743 0.741 0.849 0.859 0.747 0.745 0.794 0.798
TI Ministroke 0.706 0.709 0.716 0.716 0.706 0.709 0.711 0.712
TI Osteoporosis 0.67 0.668 0.759 0.757 0.679 0.677 0.713 0.711
TI Stroke 0.708 0.705 0.754 0.692 0.709 0.705 0.731 0.699
AvgRank Elsanurse 1.25 1.75 1.70 1.30 1.30 1.70 1.60 1.40
AvgRank Elsacore 1.70 1.30 1.60 1.40 1.70 1.30 1.45 1.55
AvgRank TILDA 1.40 1.60 1.30 1.70 1.40 1.60 1.30 1.70
AvgRank Overall 1.45 1.55 1.53 1.47 1.47 1.53 1.45 1.55

For the Lexic vs NoLexic comparison with Baseline+CTFs datasets, the Lexic

approach got the smallest overall average rank for Sensitivity, Accuracy and

GMean, and NoLexic got a smaller overall average rank for Specificity. Again,

the greatest difference between the overall average rank values values was 0.1,

indicating that the approaches had very similar performances.
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When looking at each data source individually, we now see a different pattern

than the one observed in the first set of experiments. In the Elsa-core datasets,

which previously had benefited the most from the lexicographic split, NoLexic got

smaller average ranks for Sensitivity, Specificity and Accuracy. Another difference

between these experiments and the previous one was for the TILDA datasets,

where Lexic won for all four metrics. The Elsa-nurse results had no clear win-

ner, with Lexic getting smaller ranks for Sensitivity and Accuracy, but NoLexic

winning for Specificity and GMean. In the Wilcoxon signed-rank test analysis for

these experiments, none of the p-values were significant. We tested for each data

source separately and for all 30 datasets together.

The reason for the reduced impact of the lexicographic approach is due to the

added CTFs. The most important change in the results was the inversion for the

Elsa-core datasets, where Lexic was still better for GMean (arguably the most

important metric for evaluating a classifier out of the 4 considered), but lost for

the other metrics. One explanation for this change is that, as shown in the feature

importance experiments from Chapter 5, in Table 5.11, the CTFs are often the

best-ranked features in Elsa-core classifiers (over 80% of the top-10 features in

the Elsa-core classifiers were CTFs). Therefore, the lexicographic split was not

as effective for Elsa-core datasets because most of the top-ranked features, which

have a bigger impact in the classification, were disregarded because they were

CTFs.

Regarding the effect of the proposed lexicographic split approach in the datasets

used in this set of experiments, which have a large volume of added constructed

features which are ignored by the approach, we observed an expected reduction

in applicability for the replacements. In the RF models generated with the Base-

line+CTF feature sets, the average percentage of nodes where a tie happened

was 60.7%, for ELSA-nurse datasets, considerably higher than the 50.3% in the

Baseline datasets. However, in less than a third of the nodes this resulted in a

replacement of the chosen split feature, so there was a 16% average difference in

the models, down from 26.6% in the Baseline ELSA-nurse datasets. The smaller

impact of the lexicographic split in this second set of experiments is due to the

large portion of CTFs in the dataset, as those are not eligible for being replaced or

used as replacement even if their gain ratios are equivalent to the other candidate

features in a node.
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In the ELSA-core datasets, both the number of ties and the change in the

final model were reduced. Ties happened in 31.7% of the nodes (down from

42.9%), less than half of them resulted in a different split feature being selected,

as the final models were 13.7% (down from 23.1%) different from the ones trained

without the lexicographic split function. As the ELSA-core datasets seem to select

CTFs as split features more often (see Section 5.5), it is not surprising that the

lexicographic approach was less effective in these models.

For the TILDA datasets, we had the same pattern as the ELSA-nurse with

more ties but fewer replacements. In average, for 53.2% of the nodes (up from

39.6%) we had multiple candidate features to select from, but less than a third of

these resulted in a change in the selected feature based on the secondary objective.

The final TILDA models with Baseline+CTF datasets were 14.5% different from

the models created without the lexicographic split.

However, the overall results of our experiments still favour the lexicographic

split approach. Even though its impact is reduced when the dataset has added

features without time-indexes, which are disregarded, the proposed lexicographic

split still favours models based on more recent features, which led to slightly

improved predictive performance.

6.4 Summarising and Comparing the Experimen-

tal Results Regarding Predictive Accuracy

In this Section, we summarise our experimental results in Tables comparing the

two sets of experiments, with Baseline datasets and datasets with added CTFs.

The summarised results for the threshold selection experiments are shown in Ta-

bles 6.7, 6.8, 6.9 and 6.10.

154



Table 6.7: RF Threshold selection, Sensitivity average rank results summary for
Baseline and Baseline+CTF datasets.

BASELINE DATASETS (ORIGINAL FEATURES ONLY)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 8.30 5.95 6.80 8.00 5.80 6.25 6.05 7.30 6.20 6.25 7.20 3.90
AvgRank Elsacore 9.85 9.55 5.95 7.15 7.00 5.60 6.30 5.15 5.15 4.70 5.75 5.85
AvgRank TILDA 2.60 3.10 3.75 3.95 5.65 7.30 8.10 7.45 8.70 10.60 11.15 5.65
AvgRank Overall 6.92 6.20 5.50 6.37 6.15 6.38 6.82 6.63 6.68 7.18 8.03 5.13

BASELINE+CTF DATASETS (ADDED FEATURES WITHOUT TIME-INDEX)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 8.40 6.40 5.10 5.50 6.95 6.80 7.90 6.65 7.90 6.05 6.70 3.65
AvgRank Elsacore 5.40 7.85 7.45 6.10 6.15 7.45 8.95 6.15 6.20 5.95 5.15 5.20
AvgRank TILDA 6.05 7.25 7.45 6.50 5.75 5.95 5.90 6.50 5.30 8.85 8.10 4.40
AvgRank Overall 6.62 7.17 6.67 6.03 6.28 6.73 7.58 6.43 6.47 6.95 6.65 4.42

Table 6.8: RF Threshold selection, Specificity average rank results summary for
Baseline and Baseline+CTF datasets.

BASELINE DATASETS (ORIGINAL FEATURES ONLY)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 5.10 6.00 5.75 5.05 6.45 6.20 9.80 7.65 6.30 6.55 7.80 5.35
AvgRank Elsacore 6.75 6.80 7.30 7.95 6.55 7.20 7.35 5.20 5.70 7.35 5.60 4.25
AvgRank TILDA 7.30 6.85 5.15 7.30 8.15 5.55 4.70 5.90 5.90 6.00 6.75 8.45
AvgRank Overall 6.38 6.55 6.07 6.77 7.05 6.32 7.28 6.25 5.97 6.63 6.72 6.02

BASELINE+CTF DATASETS (ADDED FEATURES WITHOUT TIME-INDEX)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 5.65 5.65 6.75 5.35 6.80 6.70 7.05 7.50 7.55 7.05 6.85 5.10
AvgRank Elsacore 5.60 7.45 6.25 6.40 7.55 6.10 5.05 6.65 6.85 6.10 7.00 7.00
AvgRank TILDA 7.55 6.25 8.55 5.20 7.75 5.40 6.30 5.20 4.85 6.40 9.20 5.35
AvgRank Overall 6.27 6.45 7.18 5.65 7.37 6.07 6.13 6.45 6.42 6.52 7.68 5.82

For the Sensitivity and Specificity comparisons, we can observe that the DD ap-

proach (data-driven automated threshold selection using an internal cross-validation

process) got smaller average ranks for the Baseline+CTF datasets than for the

Baseline datasets, in all cases. For Accuracy and GMean, this is true only for the

TILDA datasets and the overall average ranks.

The overall average ranks of the DD approach were the smallest in most cases,

with the exception of GMean for the Baseline datasets and Specificity for the

Baseline+CTF datasets. However, it is still clear that in both cases the DD

approach is the most reliable, when compared to having a user-chosen fixed value

for the threshold parameter for defining ties.

Table 6.11 shows the summarised results for the Lexic vs NoLexic comparisons.

For these, the only overall average rank result where NoLexic wins is for Specificity

in the Baseline+CTF datasets. Over all comparisons, the overall average rank
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Table 6.9: RF Threshold selection, Accuracy average rank results summary for
Baseline and Baseline+CTF datasets

BASELINE DATASETS (ORIGINAL FEATURES ONLY)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 8.20 6.50 6.55 7.60 6.60 6.75 2.45 7.70 6.70 6.70 8.25 4.00
AvgRank Elsacore 9.55 8.80 5.75 8.05 7.20 5.95 6.55 5.00 5.05 5.85 5.55 4.70
AvgRank TILDA 2.35 3.35 3.65 3.90 5.55 7.25 7.95 7.25 8.90 10.60 11.00 6.25
AvgRank Overall 6.70 6.22 5.32 6.52 6.45 6.65 5.65 6.65 6.88 7.72 8.27 4.98

BASELINE+CTF DATASETS (ADDED FEATURES WITHOUT TIME-INDEX)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 7.90 6.25 5.60 4.65 6.90 6.35 7.70 7.30 8.25 6.20 6.55 4.35
AvgRank Elsacore 5.40 8.45 7.35 5.80 6.45 7.20 8.25 5.95 6.05 6.00 5.30 5.80
AvgRank TILDA 6.55 6.60 7.80 6.40 6.50 5.10 5.70 6.25 5.40 8.65 8.65 4.40
AvgRank Overall 6.62 7.10 6.92 5.62 6.62 6.22 7.22 6.50 6.57 6.95 6.83 4.85

Table 6.10: RF Threshold selection, GMean average rank results summary for
Baseline and Baseline+CTF datasets

BASELINE DATASETS (ORIGINAL FEATURES ONLY)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 5.80 6.10 5.20 5.20 6.95 7.30 7.30 7.65 7.25 6.55 8.40 4.30
AvgRank Elsacore 8.45 7.90 7.05 8.20 6.70 6.20 6.75 4.25 5.50 6.65 6.20 4.15
AvgRank TILDA 4.55 5.10 4.10 6.25 7.40 5.55 5.30 6.40 8.45 8.25 8.65 8.00
AvgRank Overall 6.27 6.37 5.45 6.55 7.02 6.35 6.45 6.10 7.07 7.15 7.75 5.48

BASELINE+CTF DATASETS (ADDED FEATURES WITHOUT TIME-INDEX)
Threshold 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD

AvgRank Elsanurse 6.75 5.65 6.25 5.45 6.60 6.05 7.30 7.30 8.00 6.80 7.20 4.65
AvgRank Elsacore 5.60 8.40 6.95 6.55 6.70 6.50 5.70 6.95 6.10 5.80 6.55 6.20
AvgRank TILDA 6.80 6.30 8.40 5.25 7.35 5.25 6.30 5.75 4.60 7.80 9.40 4.80
AvgRank Overall 6.38 6.78 7.20 5.75 6.88 5.93 6.43 6.67 6.23 6.80 7.72 5.22

results are very close (maximum 0.1 difference), which is not unexpected as we

are comparing the rankings of two similar approaches over 30 datasets.

There were, however, cases where the ranks were very distinct, getting signif-

icant Wilcoxon p-values. All of these cases were in the first set of experiments,

with Baseline datasets. Four of the significantly different results were in favour

of Lexic (namely Sensitivity and Accuracy for Elsa-nurse datasets and Specificity

and GMean for Elsa-core datasets), and two were in favour of NoLexic (Sensitivity

and Accuracy for TILDA datasets).
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Table 6.11: RF Lexic vs NoLexic comparison, summary of average rank results
for Baseline and Baseline+CTF datasets.

BASELINE DATASETS (ORIGINAL FEATURES ONLY)

Dataset
SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

AvgRank Elsanurse 1.20 1.80 1.55 1.45 1.20 1.80 1.50 1.50
AvgRank Elsacore 1.30 1.70 1.20 1.80 1.25 1.75 1.10 1.90
AvgRank TILDA 1.75 1.25 1.70 1.30 1.85 1.15 1.75 1.25
AvgRank Overall 1.42 1.58 1.48 1.52 1.43 1.57 1.45 1.55

BASELINE+CTF DATASETS (ADDED FEATURES WITHOUT TIME-INDEX)

Dataset
SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

AvgRank Elsanurse 1.25 1.75 1.70 1.30 1.30 1.70 1.60 1.40
AvgRank Elsacore 1.70 1.30 1.60 1.40 1.70 1.30 1.45 1.55
AvgRank TILDA 1.40 1.60 1.30 1.70 1.40 1.60 1.30 1.70
AvgRank Overall 1.45 1.55 1.53 1.47 1.47 1.53 1.45 1.55

6.5 Interpreting the Best Random Forest and

Decision Tree Classification Models

As our case-study classification problem of predicting age-related diseases has

health applications, it is important to discuss what insight we can get from

analysing our classification models. Thus, as an additional contribution, in this

Section we interpret the best C4.5 decision trees (as a directly interpretable type

of model) and report the most important features in the best RF models, as an

“indirect” interpretation of RF models. The list of top-ranked features for the RF

models not discussed in this Section are presented in Appendix E.

Decision tree models are very interpretable in general (Quinlan 1993; Freitas

2014), unless the tree is too large. In particular, since the top nodes (closer to

the root node) are used to classify more instances than lower nodes, and the

features selected to split the data in top nodes were chosen using more data,

we can consider that features at those top nodes have more predictive power for

labelling instances in the test set. In addition, we can create classification rules

based on the split decisions at each node leading to a leaf node, and determine

combinations of feature values that lead to a classification.

In the case of RF models, directly interpreting each random tree in the forest

is not feasible, due to the large number of trees. However, we can calculate feature

importance measures such as the average value of information gain ratio across
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the nodes where the feature was selected (used in our RFs), which allows the user

to see which features are considered most important for classification across all

trees in the forest.

For selecting the best classification models to be interpreted, we considered

the average GMean results from the models from the first scenario (Section 6.2),

trained using the proposed lexicographic split approach. These models combine

two of our main contributions (the data-driven MVR approach from Chapter 4

and the lexicographic split from this Chapter). We use GMean for this analysis

because it is a global measure that summarises predictive accuracy in both classes,

and is not as sensitive to class imbalance as the Accuracy measure (the other global

measure of accuracy used in this thesis).

In this section, for each data source (ELSA-Nurse, ELSA-Core and TILDA),

we report the interpretation of the best RF and the best decision tree model

among the 10 datasets from that data source. These are the Diabetes models

(classifiers) from the ELSA-nurse and TILDA datasets, and the Dementia models

from the ELSA-core dataset. The GMean values of the chosen RF models were:

0.855 (ELSA-nurse Diabetes), 0.802 (ELSA-core Dementia), and 0.786 (TILDA

Diabetes). For the C4.5 decision tree models, the GMean values were: 0.805

(ELSA-nurse Diabetes), 0.771 (ELSA-core Dementia), and 0.756 (TILDA Dia-

betes).

After choosing the best models based on their GMean values, we trained new

models using the entire datasets (no training and test set division), to ensure the

model-interpretability analysis would consider all data available. The full datasets

were undersampled to a 1:1 ratio using the Balanced Random Forest approach,

and had their missing values replaced using the data-driven MVR approach from

Chapter 4. The C4.5 decision trees were trained with the default Weka parameter

settings, including C = 0.2 (confidence factor used in pruning). For the RF

models, we kept the default setting of mtry but increased the number of trees

from the default 100 to 1000, to have a better representation of the top features.

All Figures and Tables in this Section correspond to these full-dataset models.

ELSA-nurse Diabetes models

Figure 6.1 shows a summarised version of the Diabetes decision tree classifier

trained with the ELSA-nurse dataset, displaying the root node and the features in
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the top 2 levels (as features higher in the tree are used to classify more instances).

In this figure – and other similar figures in this Section – a node at the third

level of the tree may be either a real leaf node (with the positive or negative class

label) or a “summarised” node, which contains an ellipsis (‘...’) followed by an

indication of a class (positive for no diagnosis, and negative for diagnosis of the

target disease). These summarised nodes represent a subtree that was omitted

from this representation, with multiple internal and leaf nodes, and the class

label in these summarised nodes indicates the label assigned to the majority of

instances from the undersampled training set that were in the path leading to that

summarised node. Note that all summarised subtrees have real leaf nodes with

both class labels, but we are only indicating the class of the majority of instances

within that summarised subtree.

Figure 6.1: ELSA-nurse Diabetes C4.5 summarised decision tree model.

In the ELSA-nurse Diabetes tree, only four conceptual features were chosen

in the top levels. The first is the hba1c, a blood glycated haemoglobin level

(mmol/mol), with its two most recent measurements (waves 6 and 8) being used

in two of the three highest nodes of the tree. This is not surprising, as the hba1c

is a measurement of blood sugar, and it is used to diagnose diabetes, although the

hba1c value by itself is likely not sufficient for an accurate diagnosis (Cavagnolli

et al. 2011). The other feature in one of the three highest nodes of the decision

tree was hdl, representing blood high-density lipoprotein level (mmol/l), and this

feature is known to be correlated with type 2 diabetes (Farbstein and Levy 2012).
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Two other top level features in the decision tree classifier were ldl, fglu and

wstval. The first is the blood LDL cholesterol level (mmol/l), which is commonly

connected to heart diseases instead of diabetes. The fglu feature is a measurement

of blood glucose level while fasting (mmol/L), another measurement of blood

sugar (notably a high level of fglu lead to a negative class label, meaning diabetes

diagnosis). The third feature is wstval, which represents the waist measurement

(cm) of the participant. The waist measurement is connected with obesity, and

has been used as a predictor of diabetes previously (Janiszewski, Janssen and Ross

2007).

Table 6.12 shows the 10 best-ranked features for the Diabetes RF classifier

trained with the ELSA-nurse dataset. The ranking is based on the average im-

purity decrease (AID, the arithmetic mean of information gain ratio), calculated

over all nodes where the feature was selected, in all trees in the RF. This measure

represents the predictive power associated with the feature in the trees.

Table 6.12: ELSA-nurse Diabetes RF model, 10 features with the greatest average
impurity decrease (AID) values.

Feature Description AID
sex Sex of the participant 0.6
indager w8 Age at wave 8 0.51
cfib w8 Blood Fibrinogen level (g/l) 0.49
chestin w6 Whether had any respiratory infection in last 3 weeks 0.48
clotb w8 Blood sample: whether has clotting disorder 0.48
hgb w8 Blood haemoglobin level (g/dl) 0.46
diaval w8 Mean diastolic blood pressure 0.46
igf1 w8 Blood insulin-like growth factor (IGF-1) level (nmol/l) 0.46
hscrp w8 Blood C-reactive protein (CRP) level (mg/l) 0.46
mmgsnavg w8 Mean grip strength with non-dominant hand 0.46

For the ELSA-nurse RF model, the age (indager w8) and sex features were

the highest ranked. Naturally, all age-related diseases are correlated with the age

feature, and diabetes is more prevalent among men (Gale and Gillespie 2001).

There are 5 blood sample features in this set of top-ranked features, namely cfib,

clotb, hgb, igf1 and hscrp, and one blood pressure feature, diaval. Although the

blood glucose level is the simplest way to detect this disease, diabetes is also known

to increase the chance of heart diseases, so it is possible the RF models detected

patterns among ELSA respondents with heart or blood pressure problems. The
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other two features in the list are chestin, related to respiratory infections, which

may be correlated to type 1 diabetes (Lönnrot et al. 2017), and mmgsnavg, mean

grip strength, a test used as a general health indicator, which has been connected

to diabetes and hypertension (Mainous III et al. 2015).

Notably, most of the top-ranked features in the RF models are wave 8 mea-

surements (the class wave in ELSA-nurse), with the exception of chestin. This is

in part due to the use of our lexicographic split approach, which adds a bias in

favour of more recent features.

ELSA-core Dementia models

Figure 6.2 shows a summarised version of the Dementia decision tree classifier

trained with the ELSA-core dataset, displaying the features in its root node and

top 2 levels.

Figure 6.2: ELSA-core Dementia C4.5 summarised decision tree model.

The age feature is selected at the root node, followed by heiadlXof9 and heacta,

all measured at the last feature wave (wave 7 for ELSA-core). The heiadlXof9

counts how many out of the 9 Instrumental Activities of Daily Living (IADL) in

the questionnaire the respondent reported having difficulty with. The ADL and

IADL measurements are related with disability, a defining feature of dementia
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(Desai, Grossberg and Sheth 2004). The heacta feature measures frequency of

vigorous sports and activities, and the responses corresponding to high frequency

resulted in a positive class (no dementia diagnosis) prediction. The other two

top level features are helng, a binary feature reporting whether the respondent

takes medication for a lung condition (resulting in a negative class label if so),

and hepawXof7, a count of body parts the respondent reported often felling pain

in. Pain has been correlated with dementia in the sense that patients may report

pain less often if they are suffering from cognitive decline, due to a difficulty

in communicating or recognising pain (McAuliffe, Brown and Fetherstonhaugh

2012).

Table 6.13 shows the 10 best-ranked features for the Diabetes RF classifier

trained with the ELSA-core dataset.

Table 6.13: ELSA-core Dementia RF model, 10 features with the greatest average
impurity decrease (AID) values.

Feature Description AID
helng w1 Whether taking medication for lung condition 0.82
hecanaa w2 Organ or part of body which cancer started 0.66
hefrac w6 Whether has fractured hip 0.64
sex Sex of the participant 0.61
cesd w7 Depression questionnaire score 0.61
indager w7 Age at wave 7 0.61
headlXof6 w6 Reported ADL difficulties (count) 0.59
dicdnm w7 Cause of death of mother of respondent 0.59
cfmetper w7 Perception of memory compared to 2 years ago 0.59
hechm w4 Cholesterol: whether taking cholesterol medication 0.58

The age and sex features are, again, among the top-ranked features in the

RF classifier. Interestingly, there is no consensus regarding a direct effect of the

sex of an individual on the likelihood of dementia (Ruitenberg et al. 2001), but

it has been connected to other environmental factors such as loneliness, which is

correlated to diagnosis (Zhou, Wang and Fang 2018). The feature with the highest

AID was helng, and it was also an important feature in the decision tree model,

used to confirm a negative class (dementia diagnosis) label. Two mental health

features, cesd and cfmetper, were included in the set of top-ranked features. The

latter is obviously associated with the class, and the former was also correlated
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to an increased likelihood of dementia (Bennett and Thomas 2014). The other

top-ranked features are about the medical history and current health status of the

respondent, namely helng, hecanaa, hefrac, dicdnm and hechm.

TILDA Diabetes models

Figure 6.3 shows a summarised version of the Diabetes decision tree classifier

trained with the TILDA dataset, displaying the features in the root node and top

2 levels. Although the class variable is the same as the one in the ELSA-nurse

model, some of the features in the datasets are different, so it is interesting to see

that both models performed well for predicting diabetes.

Figure 6.3: TILDA Diabetes C4.5 summarised decision tree model.

For the TILDA decision tree, we again see hba1c as the root node feature, un-

surprisingly. The next nodes both split on the mdmeds feature, which counts how

many medications the respondent reported taking currently, excluding nutrition

supplements. In the case of respondents with hba1c above 37, taking no medica-

tion led to a positive class label (no diabetes diagnosis), and otherwise they were

labelled as diabetic. The other three features in the top levels of the decision tree

are frwhr (waist-to-hip ratio), ph008 (whether the respondent has recently lost

weight), and ph406 (how many times the respondent has fainted in this last year).

The former two are related to weight, which is connected to diabetes’ symptoms
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and diagnosis (Kim et al. 2018). Notably, a low waist-to-hip ratio led to a positive

class label (no diabetes). We were not able to find a direct correlation between

fainting and diabetes diagnosis in the literature, however. It is possible that this

feature was associated with additional factors which are correlated to the class.

Table 6.14 shows the 10 best-ranked features for the diabetes RF classifier

trained with the TILDA dataset.

Table 6.14: TILDA Diabetes RF model, 10 features with the greatest average
impurity decrease (AID) values.

Feature Description AID
ph505 w3 Whether takes pain medication to control pain 0.45
indager w4 Age at wave 4 0.43
bh107 w3 Hours spent sitting in a typical day 0.43
ph505 w1 Whether takes pain medication to control pain 0.43
behalc freq week w1 Average amount of time respondent drinks a week 0.43
bphypertension w3 Objective measured hypertension 0.42

ipaqmetminutes w3
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.41

ph505 w2 Whether takes pain medication to control pain 0.41
ph601 w1 Did you lose any urine beyond your control in the last year 0.41
behcage w1 Count of CAGE questionnaire responses (measures alcoholism) 0.41

The TILDA RF has age (indager w4) among the top-ranked features, but not

sex. The ph505 binary feature was selected remarkably often, with three of its

measurements appearing in the top-10. Frequent pain is more prevalent among

older people with diabetes (Karjalainen et al. 2018), and it is associated with

several comorbidities. The bh107 and ipaqmetminutes features are measurements

of physical fitness and activity, which are often correlated with weight and diabetes

(Gill and Cooper 2008). The ph601 is related to urinary incontinence, which was

correlated to type 2 diabetes (Lifford et al. 2005). Finally, behalc and behcage are

related to alcohol consumption, commonly associated with diabetes risk (DPPRG

2009).

6.6 Summary of the Results

In this Chapter, we proposed a novel adaptation to tree-based classifiers for lon-

gitudinal datasets. The proposed adaptation is a lexicographic bi-objective split

approach, which uses time-related information available in longitudinal data. We
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performed experiments comparing two versions of this adaptation to the standard

classifiers, using our 30 real-world longitudinal classification datasets. The pro-

posed lexicographic approach improved the predictive accuracy of RF classifiers,

when compared to the standard split criterion based only on the information gain

ratio, in the majority of the experiments.

The proposed approach can be summarised as follows. When multiple features

have about the same information gain ratio, the time-index information is used

to favour more recent measurements, as intuitively those are more valuable for

increasing predictive accuracy. More recent features are also less likely to have

missing data due to attrition, so adding a bias in their favour reduces the chances

of using missing or estimated data in the classification task.

The lexicographic approach led to the choice of a different feature in a sub-

stantial number of nodes (on average 25% over all 30 RFs in the Baseline datasets,

and 14.7% over all 30 Baseline+CTF datasets), which shows that the added bias

in favour of more recent features was a noticeable change to the RFs algorithm,

for our longitudinal datasets.

In our experiments with Baseline datasets (without CTFs), we observed that

the datasets with more waves benefited the most from our proposed approach,

likely because of the greater time-gap covered in the dataset and the greater

likelihood of the lexicographic approach causing a change on the selected split

features. It is important to highlight that longitudinal datasets tend to grow over

time, so the impact of the lexicographic approach also tends to increase as new

waves are added to longitudinal datasets.

Regarding the experiments with datasets with added CTFs, we saw a reduced

increase in predictive performance overall. This was expected, as the lexicographic

approach has a diminished impact in these datasets because there are fewer op-

portunities to cause changes in the classification model. Even though the lexico-

graphic approach still obtained slightly better results, meaning the two approaches

(creating CTFs and applying the lexicographic split) can be applied together, our

main recommendation from these results is applying the Lexicographic approach

on its own. This follows from our results in the previous Chapter, where we

concluded that the CTFs approach needs to be further explored before being

considered fully matured.

Finally, we interpreted the best models as an additional contribution. We were
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able to find several existing connections between the high-ranking features in RF

models and decision tree models and peer-reviewed medical research.
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Chapter 7

Conclusions

Developing supervised ML methods for longitudinal data is an under-explored

area with many opportunities for research. The temporal nature of the data allows

for different analysis techniques, considering the changes that the values of each

conceptual feature undergo throughout the study’s waves. It also presents new

challenges, such as increased dimensionality and different forms of dependency

between features, i.e., not only dependency between different features in the same

wave, but also dependency between different values of a conceptual feature across

waves.

In this thesis, we focused on proposing new supervised ML approaches for

longitudinal data and applying them to longitudinal datasets of human ageing

studies, due to the rising importance of this type of study, considering that the

proportion of old people in the world population is increasing and old age is the

greatest risk factor for a number of diseases.

Overall, we succeeded in exploring different strategies for handling longitudinal

data in supervised ML. Our contributions have considerable limitations, and may

require further experiments to be optimised to their full potential, but throughout

all our experiments we always found evidence that considering temporal informa-

tion had a positive impact.

In this Chapter we start by summarising our contributions and results. Then,

we propose extensions for this work, and new research directions following the

results of this thesis.
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7.1 Summary of Contributions

7.1.1 A taxonomy of longitudinal dataset representations

We reviewed studies that have applied supervised ML techniques to longitudinal

datasets from human ageing studies, highlighting the techniques and data repre-

sentation strategies each study employed. In our review we observed that most

studies adapted their data preparation process, whereas few studies proposed algo-

rithm adaptations that made the ML algorithm consider the temporal information

in the data.

The data preparation approaches have the advantage of being simpler and

less dependent on the algorithm choice. However, algorithm adaptations are more

robust, requiring less human-made decisions and data-specific preprocessing. Nat-

urally, both types of approach can be used in combination – in addition to changes

in the preparation process, researchers might also employ adapted algorithms for

longitudinal analysis.

We believe there is a gap in the literature for classification algorithms adapted

to cope with longitudinal data, handling the specific characteristics that this type

of dataset brings to the knowledge discovery task. In our review, we noted that

most of the works in the literature that proposed algorithm adaptations or new

algorithms for longitudinal analysis focus on regression algorithms, rather than

classification ones. Notably, there are several decision support tasks in health

and ageing research that are framed as classification problems, such as diagnosis

prediction, identifying risk groups, or predicting needs for specialised care. Thus,

we highlight the need to propose new or adapt existing classification algorithms to

learn from longitudinal datasets, which are common in health and ageing research.

As a contribution derived from our review, we introduced a new taxonomy

that characterises four ways to represent longitudinal data for supervised ML

problems, and divides the adopted approaches into data preparation or algorithm

adaptation approaches. The taxonomy can help future researchers in their own

literature reviews, facilitating the selection of relevant works and identification of

gaps in the literature, such as the aforementioned lack of classifiers adapted for

longitudinal data input. For our research, we use the UKLI (union keeping longi-

tudinal information representation) and AGG (aggregated data – when we create

constructed features) approaches for representing the datasets, and propose both
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a data preparation and an algorithm adaptation for our longitudinal classification

problem.

7.1.2 Data-driven missing value replacement approach

Longitudinal datasets often have a high ratio of missing values due to attrition.

Thus, the choice of missing value replacement (MVR) strategy is particularly

important in ML applications with longitudinal datasets. In our case the overall

percentage of missing data was 38.5%, 19.1% and 9.5% for the ELSA-nurse, ELSA-

core and TILDA datasets, respectively. This varies considerably between different

features in the same dataset, and there were several cases where over half of the

values are missing. Thus, our first specific objective was to propose a MVR

approach for longitudinal data inputs.

Different replacement methods can achieve more accurate estimations depend-

ing on the situation, as the performance of the MVR method depends on several

aspects, including whether the data is longitudinal or not. Therefore, the choice

of MVR method is not a trivial one. As a contribution of this thesis, we developed

a new approach to address this issue.

The proposed approach is a data-driven MVR method created with a rationale

that the known feature values are a good source of information to determine how

accurate a method’s estimations are. Strictly speaking, this holds true for data

that is missing completely at random, which is often not the case for real-world

data collected through interviews and exams, such as our datasets. However, we

believe that the available known data can still be used as a “heuristic” approach for

estimating missing values in our datasets, which has been empirically confirmed

by the good results obtained by the proposed data-driven MVR approach in our

experiments.

In our implementation of the proposed data-driven MVR approach, we selected

a set of five MVR methods. These are: the global mean/mode; the age-based

mean/mode; a longitudinal implementation of the k-nearest-neighbours algorithm;

the previous observation from the same instance; the mean/mode of both the

previous and next observations of the same instance. This set of MVR methods

was chosen because it represents different strategies, namely traditional statistics,
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machine learning, and methods devised for longitudinal data. Notably, the data-

driven approach can be used with any set of MVR methods, limited only by the

time available for preprocessing the data and by the method’s applicability to the

dataset.

The proposed approach performs a feature-wise ranking of the MVR methods,

based on their estimation error for known values of each feature, performing the

following steps for each MVR method. First, the instances with missing values

for the current target feature are removed from the dataset. Then, the resulting

subset is divided into an estimation set and a validation set, the former being

used to calculate the estimated values for the hidden values in the latter, for the

current feature. Finally, the estimated values in the validation sets are compared

to the previously hidden ground truth, and an error value is calculated (average

absolute difference for numerical features or mismatch ratio for nominal features).

Thus, the method calculates an estimation error value for each MVR method, for

each feature. The methods are then ranked feature-wise and applied starting from

the best-ranked one, until all missing values in the feature are replaced or there

are no more possible methods to apply.

We ran two sets of experiments to compare our proposed data-driven MVR

approach to the alternatives. The first was a classifier-independent comparison of

each MVR method and the proposed data-driven approach, which calculated the

average estimation error and applicability (percentage of missing values replaced)

of each method. This analysis showed that the methods devised specifically for

longitudinal data had low estimation errors, but they were not applicable in many

of the cases. Overall, the data-driven approach outperformed the individual meth-

ods, considering both error rate and applicability, with KNN performing the best

among individual methods.

The second set of experiments was a classifier-dependent comparison of the pre-

dictive accuracy of models generated with each strategy to handle missing data,

including a baseline of not performing any replacement. For this, we trained

RF classifiers with each individual method, the data-driven approach and the

baseline, adopting an undersampling strategy that was successful in preliminary

experiments comparing two undersampling strategies for RFs. For this compari-

son, the proposed data-driven approach outperformed the other methods in most

cases.
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In summary, the proposed data-driven MVR approach is recommendable for

any dataset, longitudinal or not, where the known data can be used to determine

how well a MVR method is able to calculate its estimations. It can be expanded

with more MVR methods, and used for datasets with any number of features or

volume of missing data. The lower-bound applicability of the approach approach

is the upper-bound of the most applicable method in the chosen set of MVR

methods, which is usually 100% as many simple methods, such as the global

mean/mode, are applicable in any case. An important limitation is that, although

the data-driven MVR approach can be used for any set of MVR methods and any

dataset, it is the most computationally expensive of the contributions in this

thesis, as it combines the run times of all selected MVR methods and requires

them to be run multiple times, in the feature-wise comparisons.

7.1.3 Constructed temporal features for longitudinal datasets

The second specific objective set in our research regarded modifying the dataset,

before training the supervised ML model, to include temporal information that

will be considered by the algorithm during training. For this, we proposed a data

preparation approach of creating constructed temporal features (CTFs), using the

conceptual features in the longitudinal datasets, and adding those to the original

feature set in a preprocessing step.

We experimented with adding six different types of CTFs. Three of them

had been used before (Pomsuwan and Freitas 2017): the Monotonicity, which

represents the presence and direction of a monotonic change in the feature values

over time; the Diff, which is the result of a simple subtraction between the two last

measurements of a feature, representing actual difference or degree of difference,

for numeric and nominal features respectively; and the Ratio (there was no specific

mention of the Ratio CTF in previous work, but it is conceptually very similar to

Diff), applicable only to numeric features, which divides the last measurement of

a feature by the penultimate, and also represents recent change in values.

The other three types of CTFs are original contributions of this research: the

DiffAgeMean is a difference between the last measurement of a feature and the

mean/mode over all measurements taken from instances with the same age of the
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current individual (which we consider a viable expected value); the AvgDiffAge-

Mean expands the former to include the average differences of each measurement

and the expected values for the ages at time of measurement; the Percentile ranks

the feature values of all individuals of the same age, and places the current value

in that rank, representing how much an individual’s measurement was low or high

compared to similar individuals.

We ran experiments with each type of CTF individually, then with all 6 com-

bined, comparing three feature sets in two scenarios. We reported the RF exper-

iments in the main text, and C4.5 decision tree experiments in Appendix C.

The first experimental scenario excluded, from all feature sets, the original

features that were ineligible for CTF creation (features that were not measured

multiple times), as a way to make more a controlled experiment comparing the

impact of the CTFs in predictive accuracy. The second scenario includes ineligible

features in all feature sets. The three feature sets compared in each experiment

are: (a) a baseline set with the original features used for creating the type of

CTF being tested (e.g., only the last two measurements in the Diff test); (b) a

CTF set with only the constructed features, without the original features used for

creating them; and (c) a combination of the two previous sets, with both original

and constructed features (the proposed approach).

For the RF experiments, four of the CTFs did not increase predictive accuracy

in general on their own, namely the Diff, Ratio and Monotonicity and AvgDiffAge-

Mean; while the Diff and Percentile did increase the predictive accuracy in most

cases. The main experiments, with all six types of CTFs combined, had good RF

results for the proposed approach of adding CTFs to the original dataset. For DT

experiments, the results tended in favour of the Baseline approach of not adding

constructed features in a preprocessing step.

In addition to the predictive accuracy of the models, we also reported the

feature importance analysis results, to investigate whether the CTFs were having

a significant impact in the models themselves. We noted that the frequency of

CTFs selected among the top 10 features in a RF (considering the average fea-

ture importance over all trees in the forest) seems related to how much temporal

information is available in the dataset. To be precise: the TILDA dataset had

12.6% CTFs among the top features, and it is the dataset with the least tempo-

ral information; the ELSA-nurse had 18.8% CTFs among the top features; the
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ELSA-core had 87.4%, and it has the most temporal information (up to 7 mea-

surements of each feature). Interestingly, although its individual results were not

good, the Monotonicity was among the CTFs appearing the most often among

the top-ranked features, possibly due to a bias in favour of categorical features in

the tree split function (all other CTFs have continuous numeric values).

Although the predictive accuracy results were not very consistent in our exper-

iments with CTFs, we believe that this data preparation approach is a promising,

computationally inexpensive way to modify longitudinal datasets in a preprocess-

ing step and increase the predictive accuracy of supervised ML models. We believe

that the temporal patterns in longitudinal data can become important predictors,

particularly for datasets that have more temporal data available, as we have seen

that those benefit the most from the CTFs. The main limitation of this approach

is the significant increase in dimensionality caused by the added features, which

can hinder the performance of some classification algorithms. One important ad-

vantage is that, as a data preparation approach, it does not depend on the ML

algorithm, so it is applicable even for regression or unsupervised ML problems.

Note, however, that evaluating the CTFs on the latter types of tasks is out of the

scope of this thesis.

7.1.4 Lexicographic split for tree-based classifiers

The third specific objective posed for this research was about adapting standard

supervised ML algorithms. As the model’s interpretability is particularly impor-

tant in health applications such as diagnosis prediction, we chose to focus on

tree-based classifiers. Thus, we proposed an adaptation to the split function of

tree-based classifiers, which select which feature will be used for splitting the data

at each node.

The proposed algorithm is based on a new lexicographic bi-objective split

function which, as a secondary objective for feature selection, prioritises more

recent features. The feature’s time-index as secondary objective is used as a tie-

breaking criterion, when candidate features being compared have approximately

the same predictive power, i.e., their information gain ratio differences fall within a

predefined threshold. In order to avoid having an added user-specified parameter,

we also proposed a data-driven automated threshold selection, which uses an

173



internal cross-validation process to choose an adequate threshold value based on

the training data.

We tested the proposed approach using mainly the RF classifier, as it tends to

generate high-quality models, compared to other state-of-the-art classifiers, while

also maintaining some partial interpretability, mainly indirectly through feature

importance metrics. Additional experiments with the C4.5 decision tree algorithm

were added to Appendix D.

We ran two sets of experiments, in two scenarios. The first set of experiments

compared the automated threshold selection to fixed threshold values in the same

range of the values tested internally by the automated selection, and the second

set of experiments compared using the proposed lexicographic approach (with

automated threshold selection) to using the unchanged algorithm. In the first

scenario, we used only the original features in our datasets, most of which have

time indexes. In a second scenario, we used datasets with added CTFs, which do

not have time indexes, in an adapted version of the lexicographic approach that

ignores CTFs in its internal logic.

The results of these experiments showed that the lexicographic approach slightly

improved the predictive performance in most cases, especially for datasets that

had more temporal data (i.e., more consecutive measurements of the same fea-

tures). This pattern of better performance when more temporal data is available

corroborates the rationale for this adaptation, that data measured closer to the

target wave is more relevant for classification. Note, however, that when we com-

bined both the data preparation approach of adding CTFs and the algorithm

adaptation approach of the lexicographic split, the latter had worse results com-

pared to the first scenario of using only the original features. As CTFs do not

have inherent time indexes, they are ignored by the lexicographic split, reducing

its impact on the generated models.

Overall, the proposed adaptation increased the predictive performance for the

majority of the RF classifiers. It can be implemented for any tree-based classifier,

with a small increase to computational cost (as the standard split function already

compares the information gain ratios of the candidate features by default), with

the caveat of an added parameter. The proposed automated threshold selection

is our recommended approach for selecting this parameter’s value, and although
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it does require an internal cross-validation using the training data, this is not pro-

hibitive for tree-based classifiers, that tend to have short training times compared

to, for example, support vector machines and neural network classifiers.

7.1.5 Evaluation of the proposed approaches in longitudi-

nal datasets of human ageing

Our final contribution was applying and evaluating our proposed approaches using

real-world datasets, and comparing them to baseline models using 4 predictive ac-

curacy measures. For this, we created 30 longitudinal classification datasets using

data from the nurse-data and core-data questionnaires from the ELSA (UK study)

and TILDA (Irish study) databases. The longitudinal datasets have 7097/141/4,

8405/172/7 and 5715/81/4 instances/features/waves for ELSA-nurse, ELSA-core

and TILDA sources, respectively (the feature sets include repeated measures of

conceptual features, see Appendix A).

All datasets produced in this work include data from up until 2018 (wave 8

from the ELSA study and wave 4 from the TILDA study). TILDA has concluded

its fifth wave in 2018, but the data for it is still not available for research, and

they are currently collecting data for wave 6. ELSA has published its 9th wave in

2020, which so far only includes the core questionnaire data (a special nurse-data

questionnaire was conducted on wave 9, but its data is currently not available), so

the ELSA-core datasets can be updated using the most recent data. As both the

ELSA and TILDA studies are ongoing, our datasets can be incrementally updated

as new waves are released, following the chosen conceptual features and updating

the target variables to reflect the new last wave of the dataset. Notably, as more

temporal information is aggregated into the dataset, the techniques proposed in

this thesis become more relevant and have a bigger impact on the results.

To create these datasets, we did a manual feature selection for each data

source, starting from the full database with thousands of features and discarding

those that were unrelated to the target variables, or unusable for ML, and per-

forming data transformations such as merging similar features together to reduce

the dimensionality of the final datasets. The chosen predictive features represent

mainly biomedical information collected by health professionals (ELSA-nurse and

TILDA) and self-reported mental and physical health data answered by the study
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participants (ELSA-core), measured repeatedly over the waves of the source stud-

ies. For each source, we have 10 binary class variables (thus, 10 datasets for each

source) that represent the diagnosis, on the last wave of the dataset, of an age-

related disease. Importantly, the datasets also have different amounts of temporal

information represented, as their conceptual features can be measured over fewer

or more waves (from 2 to 7 measurements).

For every main contribution in this work, we ran experiments using these

datasets and evaluated the performance of the models created using our proposed

approaches. The models were compared in terms of Sensitivity (true positive

rate), Specificity (true negative rate), Accuracy and GMean, with focus on the

two latter measures as they are global measures of performance. We also ran

non-parametric statistical tests to compare the results of different approaches, to

determine whether the changes in predictive accuracy were significant.

In the human ageing study context, interpreting the classification models gen-

erated from these datasets can bring new insights regarding how the predictive

features relate to the target variables. Therefore, as an additional contribution

in the field of human ageing research, we analysed the best RF and decision tree

classification models in each data source. In this analysis, we highlighted the most

important features (top nodes of a decision tree and top-ranked features in the

RF) in the models, and referenced existing works in the literature that link these

features to the target classes. As mentioned earlier, being able to observe how the

labelling of an unseen instance is done (decision trees) or what features are com-

monly selected and have a significant impact in the labelling (Random Forests) is

an important advantage of more interpretable classifiers that is particularly rele-

vant for health applications. In addition to corroborating previous results in the

medicine literature, our analysis may motivate new research to investigate con-

nections between different predictive features, such as the medications a patient is

currently taking, associated with weight loss, being used as a predictor of diabetes

(see the TILDA decision tree model, Figure 6.3).

7.2 Future Work

The contributions in this thesis can be improved and further explored in future

works, increasing their positive impact on predictive accuracy. In this Section we
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highlight some ideas for further research.

7.2.1 Extensions to the contributions

As mentioned, our contributions can all be used together in any longitudinal clas-

sification project, and we hope to expand this framework to include new data

preparation and algorithm adaptation approaches. We can also expand the ex-

isting proposals to make this framework more robust and applicable to datasets

from different problems.

Extending the data-driven MVR approach

The data-driven MVR approach is the most widely applicable of our contributions,

as it can be used for any dataset with missing data. To improve this approach, we

would like to perform new experiments using more MVR methods. One possible

extension is to use our classifier-independent comparison method to recommend

a set of MVR methods for a given input dataset, considering the time required to

run the approach in the feature-wise ranking. In the case of longitudinal datasets,

we will also include more methods devised specifically for longitudinal data, as

the three of these methods in our work (Prev, PrevNext, and our implementation

of KNN) had low estimated errors.

Extending the constructed temporal features

The CTF addition proposal can be expanded by testing new CTFs, and by in-

cluding a data-driven approach for automatically selecting a set of CTFs that

work well with a given longitudinal dataset input, considering the dimensionality

increase trade-off. To be specific, we are most interested in CTFs that reflect the

evolution of a feature’s value over consecutive measurements, possibly with a nu-

merical CTF similar to Monotonicity that reflects change over time considering all

waves. We believe such temporal patterns can be interesting predictive features

and might be used in tandem with the original biomedical features in the dataset,

in decision support applications.
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Extending the adaptations to tree-based classifiers

Finally, we can propose further algorithm adaptations to tree-based classifiers for

coping with longitudinal data. As our results combining the CTF addition ap-

proach and the lexicographic split were not as good as we hoped, it would be

interesting to propose adaptations that try to combine the strengths of both con-

tributions. The current lexicographic split could be changed to, instead of ignoring

CTFs as they don’t have time-indexes, incorporate a ranking system that can be

used for both original and constructed features. This would require experiment-

ing with different ranking strategies that consider the temporal information in the

CTFs, and how it compares to the time-indexes of the original features.

Another idea we are interested in exploring is creating specialised nodes (or

specialised trees within the RF) that deal differently with original and constructed

features. For example, some of the nodes could select only constructed features

as their candidates. This is an interesting way we could promote diversity within

a RF, as trees with different ratios of specialised nodes would use different feature

sets. However, this approach would require careful testing to ensure that the

artificially reduced randomness does not negatively impact the RF classifier.

7.2.2 Experiments with other datasets

There are several populational studies of ageing available for research, and our

framework (including the data preparation process) can be replicated to their

longitudinal data. Importantly, as some of the ageing studies being conducted in

other countries have compatible frameworks to the ELSA, we could create datasets

combining data from different populations, and also perform cohort effect studies

to create more generalised models.

Some of the longitudinal studies of ageing we are interested in are: The Survey

of Health Ageing and Retirement in Europe (SHARE), which has 8 published

waves and includes data from over 20 countries (Börsch-Supan et al. 2013); the

Chinese Longitudinal Healthy Longevity Survey (CLHLS) which has 8 published

waves and has data on many 90+ year old participants (Gu et al. 2020); the

Wisconsin Longitudinal Study (WLS), which has data collected since 1957, and

could provide insights on the passage of great periods of time (Sewell et al. 2003).

In addition to creating entirely new datasets, we can also test with different
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classification problems using our current datasets. For this, we could use other

predictive features in ELSA and TILDA and create new class variables, such as

health status variables or risk level classifications.

7.2.3 Experiments with other techniques

Decision tree classifiers output a defined classification for each input instance, but

they are also able to output class probabilities using the information in each leaf

node. That is, if a leaf node has, for example, 8 out of 10 training instances in

class 0, it will classify any input instance that lands on that leaf node as class 0,

but it could instead output the 80% probability attached to that classification.

This information can be used in tandem with classification accuracy to evaluate

the performance of a decision tree classifier, possibly leading to a more robust

classifier. Several techniques were proposed taking class probabilities into account

(Jiang, Li and Cai 2009; Liu et al. 2010), and in general they tend to outperform

standard DTs for imbalance datasets.

As future work, we would like to perform experiments with this type of decision

tree in the future, as they might perform better for our data, and the adaptations

proposed in this work can still be applied to them. In addition to probability-

based decision trees, we would also like to experiment with decision trees that use

skew-insensitive split criteria, which were designed for imbalanced data (Cieslak

et al. 2012; Mulyar and Krawczyk 2018).

7.2.4 Deeper analysis of the ML results

As we focused in our contributions to the supervised ML process in this thesis,

we only briefly analysed the best models from each data source, in Section 6.5.

We would like to invest more time analysing all classification models and their

contribution to ageing research. The RF and decision tree classifiers could go

through parameter optimisation processes, to generate more accurate models that

we could analyse, possibly with help from domain experts (health professionals).

We do not claim that our models are adequate decision support applications

for diagnosis prediction, as this would likely require more specialised data and

fully optimised classifiers. However, discovering features that have a connection

to the target variables could prompt further research into the dynamics of ageing
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and the development of age-related diseases. It would be especially interesting

to investigate the constructed features as predictors, as if the temporal patterns

represented in them are connected to accurate predictions, this could lead to new

data collection methodologies in the studies themselves.

7.2.5 Multi-label classification

Traditional classification problems assume that every instance can be classified as

a single label from a predefined set of labels. Problems where that assumption

is not met because an instance can be attributed to more than one labels at the

same time are named multi-label classification problems (Tsoumakas, Katakis and

Vlahavas 2009; Al-Otaibi, Flach and Kull 2014). Naturally, simultaneously con-

sidering whether an instance belongs or not to each of the class labels considerably

changes the way the classification is approached.

There are two main strategies to address a multi-label classification problem:

(a) transforming the problem into a set of single-label classification problems, and

applying standard classification algorithms to those, merging the results after-

wards (i.e., not performing multi-label classification), or (b) adapting classifica-

tion algorithms to make them predict a set of labels for each instance (Tsoumakas,

Katakis and Vlahavas 2009). The second strategy has the advantage of taking into

account the correlations between labels, but as the number of labels grows, con-

sidering all correlations between labels becomes exponentially more difficult.
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The age-related disease prediction problem can be considered a multi-label

classification problem, as different diseases may be connected. Our strategy so far

has been to treat each classification problem separately, removing all class labels

except one for each dataset. However, it would be interesting to investigate multi-

label longitudinal classifiers in our age-related prediction context, as it could lead

to discoveries about how the target diseases influence one another. The datasets

we prepared from each data source share the same predictive features, so we

already have three multi-label datasets we could use for this possible extension.
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Appendix A

Dataset Feature Descriptions

Tables A.1, A.2 and A.3 show the conceptual features selected for the longitudinal

datasets used in our experiments. For each feature we state in which waves of the

study it was measured, and its data type. Note that, for the age variable (indager),

we only used the most recent measurement as a predictive feature when training

the models, but some methods such as the age-based mean/mode missing value

replacement used the indager values for other waves.

Table A.1: Description of the selected features for the ELSA-nurse datasets.

Feature name Description W2W4W6W8 Type

indager Age of the participant at a given wave X Numeric

sex Sex of the participant (male/female) Not applicable Binary

sysval Mean systolic blood pressure X X X X Numeric

diaval Mean diastolic blood pressure X X X X Numeric

pulval Pulse pressure X X X X Numeric

mapval Mean arterial pressure X X X X Numeric

mmgsd avg Mean grip strenght with dominant hand X X X X Numeric

mmgsn avg Mean grip strenght with non-dominant hand X X X X Numeric

clotb Blood sample: whether has clotting disorder X X X X Binary

cfib Blood Fibrinogen level (g/l) X X X X Numeric

chol Blood total cholesterol level (mmol/l) X X X X Numeric

hdl
Blood High-density lipoprotein (HDL)

level (mmol/l)
X X X X Numeric

trig Blood triglyceride level (mmol/l) X X X X Numeric
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Table A.1 continued from previous page

Feature name Description W2W4W6W8 Type

ldl Blood LDL cholesterol level (mmol/l) X X X X Numeric

fglu Blood glucose level while fasting (mmol/L) X X X X Numeric

rtin Blood ferritin level (ng/ml) X X X X Numeric

hscrp Blood C-reactive protein (CRP) level (mg/l) X X X X Numeric

hgb Blood haemoglobin level (g/dl) X X X X Numeric

hba1c
Blood glycated haemoglobin

level (mmol/mol)
X X X X Numeric

htval Height (cm) X X X Numeric

wtval Weight (Kg) X X X Numeric

bmiobe
Body mass index grouped according

to WHO definitions
X X X

Ordered

Nominal (4)

wstval Mean waist (cm) X X X Numeric

hipval Mean hip (cm) X X Numeric

whval Mean waist/hip ratio X X Numeric

hasurg
Whether had abdominal or chest

surgery in the past 3 months
X X X Binary

eyesurg
Whether have a detached retina or

had eye or ear surgery in the past 3 months
X X X Binary

hastro
Whether been admitted to hospital

with a heart complaint in the past month
X X X Binary

chestin
Lung function: Whether had any

respiratory infection in last 3 weeks
X X X Binary

htfvc
LUNG: Highest technically satisfactory

value for Forced Vital Capacity
X X X Numeric

htfev
LUNG: Highest technically satisfactory

value for Forced Expiratory Volume
X X X Numeric

htpf
LUNG: Highest technically satisfactory

value for Peak Flow
X X X Numeric

mmssre Outcome of side-by-side stand X X X
Ordered

Nominal (3)

mmstre Outcome of semi-tandem stand X X X
Ordered

Nominal (3)
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Table A.1 continued from previous page

Feature name Description W2W4W6W8 Type

mmftre2 Outcome of full tandem stand according to age X X X
Ordered

Nominal (5)

mmlore Leg raise (eyes open): Outcome X X X
Ordered

Nominal (3)

mmlsre Leg raise (eyes shut): Outcome X X X
Ordered

Nominal (3)

mmcrre Single chair rise outcome X X X
Ordered

Nominal (3)

mmrroc Outcome of multiple chair rises, split by age X X X
Ordered

Nominal (5)

igf1
Blood insulin-like growth factor (IGF-1)

level (nmol/l)
X X X Numeric

wbc
White blood cell count

(x 10ˆ9 cells/litre)
X X X Numeric

mch
Blood mean corpuscular haemoglobin

level (pg/cell)
X X X Numeric

apoe
Blood apolipoprotein E (apoE) level

(mmol/l)
X Numeric

dheas
Blood dehydroepiandrosterone (DHEAS)

level (umol/l)
X Numeric

vitd Vitamin D level (unit) X X Numeric
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Table A.2: Description of the selected features for the ELSA-core datasets.

Feature name Description W1 W2 W3 W4 W5 W6 W7 Type
indager Age of the participant at a given wave X Numeric

sex Sex of the participant (male/female) Not applicable Binary
cesd Depression questionnaire score X X X X X X X Numeric

cfmetm Self-rated memory X X X X X
Ordered

Nominal (5)

cfmetper Perception of memory compared to 2 years ago X X X X
Ordered

Nominal (5)

dicdnf Cause of death of father of respondent Not applicable
Unordered

Nominal (7)

dicdnm Cause of death of mother of respondent Not applicable
Unordered

Nominal (7)

heacta Frequency does vigorous sports or activities X X X X X X X
Ordered

Nominal (4)

heactb Frequency does moderate sports or activities X X X X X X X
Ordered

Nominal (4)

heactc Frequency does mild sports or activities X X X X X X X
Ordered

Nominal (4)
headlno Reported difficulty with ADL or IADL X X X X X Binary

headlxof6 Reported ADL difficulties (count) X X X X X Numeric
heam Whether taking medication for asthma X X X X X X X Binary

hecanaa Organ or part of body which cancer started X X X X X X X
Ordered

Nominal (9)
hecanb Cancer: whether received treatment in last 2 years X X X X X X X Binary
hechm Cholesterol: whether taking cholesterol medication X X X X X Binary
hefrac Whether has fractured hip X X X X X X X Binary

hehelf Self-reported general health X X X X X X
Ordered

Nominal (5)
heiadlxof9 Reported IADL difficulties (count) X X X X X Numeric

heill Whether has self-reported long-standing illness X X X X X X X Binary
heji Whether had joint replacement X X X X X X X Binary

helng Whether taking medication for lung condition X X X X X X X Binary
hemobno Reported difficulties with mobility X X X X X Binary

hemobxof10 Reported mobility issues (count) X X X X X Numeric

hepaa Severity of pain most of the time X X X X X X X
Ordered

Nominal (4)
hepain Whether often troubled with pain X X X X X X X Binary

hepawxof7 Pain reported (count) X X X X X Numeric
hepsyxof9 Psychiatric problems reported (count) X X X X X Numeric

heyrc Experienced psychiatric problems in last 2 years X X X X X X X Binary
memtotb Index of memory function (0-29) X Numeric

scako How often had alcoholic drinks in last 12 months X X X X X X
Ordered

Nominal (8)

smokerstat Smoker status (past or present) X X X X X X X
Ordered

Nominal (5)
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Table A.3: Description of the selected features for the TILDA datasets.

Feature name Description W1 W2 W3 W4 Type
indager Age of the participant at a given wave X Numeric

sex Sex of the participant (male/female) Not Applicable Binary

behalc freq week
Average amount of time respondent drinks
a week

X Numeric

bh004
For how many years have you smoked
altogether

X Numeric

hba1c w1
Blood glycated haemoglobin level
(mmol/mol)

X Numeric

ph008
Have you lost at least 4.5kg without trying
in the past year

X X X X Binary

ph402
How many times have you fallen in this last
year

X X X X Ordered Nominal (3)

ph406
How many times have you fainted in this
last year

X X X X Binary

ph415 Had any joint replacements X X X X Binary
ph505 Takes pain medication to control pain X X X X Binary

ph601
Did you lose any urine beyond your control
in the last year

X X X X Binary

mdmeds excl supps
Number of medications reported by
respondent (excluding supplements)

X X X X Numeric

disimpairments
Physical impairments count (activities the
respondent can’t do)

X X X X Ordered Nominal (4)

disadl
Count of ADLs the respondent reported
difficulty with (top coded at 5)

X X X X Ordered Nominal (3)

disiadl
Count of IADLs the respondent reported
difficulty with (top coded at 5)

X X X X Ordered Nominal (3)

behcage
Score of CAGE questionnaire responses
(measures alcoholism)

X X X X Numeric

ipaqmetminutes
Total met (metabolic equivalent) minutes
spent on physical activities in last 7 days

X X X X Numeric

bh107 Hours spent sitting in a typical day X X X Numeric
bh202 How often do you have trouble sleeping X X Ordered Nominal (3)
frbmi Body-mass index X X Numeric
frwhr Waist-to-Hip ratio X X Numeric

frgripstrengthd Mean grip strength for dominant hand (kg) X X Numeric

frgripstrengthnd
Mean grip strength for non-dominant hand
(kg)

X X Numeric

frtugtimesec
Timed ”Up and Go” mobility test where
respondent needs to get up from a chair

X X Numeric

bpseatedsystolicmean
Mean seated systolic blood pressure
(mm Hg)

X X Numeric

bpseateddiastolicmean
Mean seated diastolic blood pressure
(mm Hg)

X X Numeric

bphypertension Objective measured hypertension X X Binary
bloods chol Cholesterol (mmol/l -millimoles per litre) X X Numeric
bloods hdl HDL (mmol/l -millimoles per litre) X X Numeric
bloods ldl LDL (mmol/l -millimoles per litre) X X Numeric
bloods trig Triglycerides (mmol/l -millimoles per litre) X X Numeric
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Appendix B

Detailed Random Forests results

for the individual CTF

experiments

In Tables B.1 to B.24, we report on the individual CTF experiments results using

the RF classifier. For each CTF, there are four tables, reporting Sensitivity and

Specificity results, then Accuracy and GMean results, for scenarios 1 and 2, in this

order. The setup is exactly the same for these experiments, with two scenarios

(i.e., with and without ineligible features in the dataset) comparing three feature

sets, namely a Baseline set with only the features used to create the CTFs, a

CTFs-only set without original features, and a BL+CTFs set combining both

original and constructed features.

B.1 Diff Results for Random Forests

The Diff CTF is a representation of the most recent change in the value of a

longitudinal feature, either as a real difference value (for numeric features) or a

degree of difference (for ordered nominal features). Using the sign of the Diff value,

one can interpret the changes in the value of the feature from the penultimate

wave to the last wave as possible temporal trends in the Diff values (upwards

or downwards). The results for Scenario 1 are shown in Tables B.1 (Sensitivity

and Specificity results) and B.2 (Accuracy and GMean results). The results for

187



Scenario 2 are shown in Tables B.3 (Sensitivity and Specificity results) and B.4

(Accuracy and GMean results).

For the Scenario 1 experiments, where ineligible features were not used, the

CTFs+inel set got the worst result (largest average rank) in most experiments,

for all 4 metrics. The Baseline and BL+CTFs sets had closer results, with the

former achieving the smallest (best) average ranks overall – except Specificity for

ELSA-nurse datasets, where BL+CTFs had a smaller rank, as well as Specificity

for ELSA-core datasets, Accuracy for ELSA-core datasets, and GMean for TILDA

datasets, where both tied. This indicates that, by itself, the Diff CTF does not

represent enough information to work as a feasible substitute for the original

information represented in the longitudinal dataset, although it can still be a

good addition to a longitudinal dataset. The Friedman test p-values for Scenario

1 were all 1E−16. Thus, we ran the post-hoc Nemenyi pairwise test for all pairs

of feature sets, and got significant values for all 4 metrics in the comparison of the

Baseline set against the CTFs-only set, and BL+CTFs against CTFs-only, with

p-value 0.001 for all 4 metrics.

The Scenario 2 experiments had similar results, but the addition of ineligible

features with high predictive power, such as age and gender, slightly improved the

results of the CTFs+inel feature set. The Friedman and Nemenyi test p-values for

Scenario 2 were the same as Scenario 1 for all metrics except Specificity, which got

a Friedman p-value of 0.0027. In the Nemenyi tests the comparison of Baseline

and CTFs-only got a p-value of 0.0036, and the comparison of BL+CTFs and

CTFs-only got a p-value of 0.0266, both still rejecting the null hypothesis. As in

Scenario 1, the comparison of the Baseline set against the BL+CTFs did not get

significant p-values for any of the metrics.
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Table B.1: Diff Sensitivity and Specificity results for the Scenario 1 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.678 0.639 0.691 0.721 0.609 0.690
EN Arthritis 0.667 0.568 0.659 0.580 0.587 0.586
EN Cataract 0.654 0.584 0.648 0.672 0.670 0.680
EN Dementia 0.724 0.701 0.741 0.750 0.615 0.723
EN Diabetes 0.843 0.686 0.839 0.868 0.681 0.872
EN HBP 0.631 0.613 0.621 0.715 0.609 0.723
EN Heartattack 0.689 0.635 0.697 0.711 0.606 0.721
EN Osteoporosis 0.652 0.614 0.651 0.683 0.633 0.694
EN Parkinsons 0.627 0.552 0.622 0.697 0.576 0.621
EN Stroke 0.667 0.664 0.676 0.732 0.596 0.715
EC Angina 0.692 0.625 0.694 0.761 0.656 0.754
EC Arthritis 0.730 0.659 0.724 0.711 0.705 0.710
EC Cataract 0.584 0.545 0.575 0.631 0.588 0.629
EC Dementia 0.758 0.728 0.759 0.745 0.720 0.770
EC Diabetes 0.653 0.553 0.655 0.760 0.607 0.754
EC HBP 0.627 0.531 0.615 0.656 0.581 0.661
EC Heartattack 0.659 0.592 0.657 0.687 0.603 0.680
EC Osteoporosis 0.663 0.622 0.671 0.648 0.644 0.646
EC Parkinsons 0.705 0.643 0.698 0.693 0.680 0.747
EC Stroke 0.686 0.639 0.687 0.710 0.657 0.731
TI Angina 0.737 0.689 0.737 0.828 0.752 0.864
TI Arthritis 0.694 0.669 0.685 0.644 0.583 0.640
TI Cancer 0.529 0.529 0.527 0.566 0.503 0.559
TI Cataract 0.669 0.631 0.671 0.690 0.646 0.674
TI Diabetes 0.739 0.702 0.732 0.782 0.719 0.782
TI HBP 0.641 0.622 0.644 0.738 0.635 0.745
TI Heartattack 0.740 0.706 0.746 0.834 0.780 0.829
TI Ministroke 0.690 0.649 0.695 0.745 0.667 0.745
TI Osteoporosis 0.633 0.608 0.630 0.751 0.672 0.755
TI Stroke 0.709 0.651 0.695 0.738 0.569 0.708
AvgRank E-Nurse 1.4 3.0 1.6 1.7 2.8 1.5
AvgRank E-Core 1.5 3.0 1.5 1.4 3.0 1.6
AvgRank TILDA 1.5 2.9 1.7 1.4 3.0 1.6
AvgRank Overall 1.5 3.0 1.6 1.5 2.9 1.6
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Table B.2: Diff Accuracy and GMean results for the Scenario 1 experiments with
Random Forest classifiers. The best result for each row is boldfaced, and the av-
erage ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and overall
are presented in the last 4 rows of the Table.

Accuracy GMean
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.679 0.638 0.691 0.699 0.624 0.690
EN Arthritis 0.630 0.576 0.628 0.622 0.578 0.621
EN Cataract 0.660 0.612 0.659 0.663 0.626 0.664
EN Dementia 0.725 0.699 0.741 0.737 0.657 0.732
EN Diabetes 0.847 0.685 0.844 0.856 0.683 0.856
EN HBP 0.665 0.611 0.662 0.672 0.611 0.670
EN Heartattack 0.690 0.633 0.698 0.700 0.620 0.709
EN Osteoporosis 0.655 0.616 0.655 0.667 0.623 0.672
EN Parkinsons 0.628 0.552 0.622 0.661 0.564 0.621
EN Stroke 0.671 0.660 0.678 0.698 0.629 0.695
EC Angina 0.694 0.626 0.696 0.726 0.640 0.724
EC Arthritis 0.723 0.677 0.719 0.721 0.682 0.717
EC Cataract 0.598 0.558 0.591 0.607 0.566 0.602
EC Dementia 0.758 0.728 0.760 0.752 0.724 0.765
EC Diabetes 0.666 0.560 0.667 0.704 0.579 0.703
EC HBP 0.638 0.550 0.633 0.641 0.555 0.637
EC Heartattack 0.661 0.592 0.658 0.673 0.597 0.669
EC Osteoporosis 0.662 0.624 0.669 0.655 0.633 0.659
EC Parkinsons 0.705 0.643 0.699 0.699 0.661 0.722
EC Stroke 0.687 0.640 0.690 0.698 0.648 0.709
TI Angina 0.741 0.692 0.742 0.781 0.720 0.798
TI Arthritis 0.678 0.642 0.671 0.668 0.625 0.662
TI Cancer 0.531 0.528 0.528 0.547 0.516 0.543
TI Cataract 0.671 0.632 0.671 0.680 0.639 0.672
TI Diabetes 0.742 0.703 0.736 0.760 0.711 0.757
TI HBP 0.678 0.627 0.682 0.687 0.629 0.693
TI Heartattack 0.743 0.708 0.749 0.785 0.742 0.786
TI Ministroke 0.691 0.650 0.696 0.717 0.658 0.720
TI Osteoporosis 0.644 0.614 0.642 0.689 0.639 0.690
TI Stroke 0.709 0.650 0.695 0.723 0.609 0.701
AvgRank E-Nurse 1.5 3.0 1.6 1.4 3.0 1.7
AvgRank E-Core 1.5 3.0 1.5 1.4 3.0 1.6
AvgRank TILDA 1.5 3.0 1.6 1.5 3.0 1.5
AvgRank Overall 1.5 3.0 1.6 1.4 3.0 1.6
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Table B.3: Diff Sensitivity and Specificity results for the Scenario 2 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.681 0.624 0.675 0.733 0.671 0.721
EN Arthritis 0.672 0.600 0.663 0.587 0.603 0.585
EN Cataract 0.650 0.614 0.651 0.702 0.714 0.692
EN Dementia 0.736 0.775 0.743 0.770 0.682 0.723
EN Diabetes 0.847 0.684 0.842 0.874 0.687 0.873
EN HBP 0.627 0.601 0.631 0.718 0.649 0.726
EN Heartattack 0.697 0.648 0.686 0.733 0.646 0.738
EN Osteoporosis 0.660 0.624 0.653 0.699 0.709 0.700
EN Parkinsons 0.654 0.627 0.647 0.697 0.727 0.515
EN Stroke 0.671 0.669 0.680 0.703 0.648 0.701
EC Angina 0.695 0.640 0.702 0.751 0.656 0.772
EC Arthritis 0.740 0.669 0.732 0.709 0.715 0.716
EC Cataract 0.627 0.621 0.630 0.730 0.744 0.729
EC Dementia 0.770 0.758 0.775 0.801 0.783 0.776
EC Diabetes 0.657 0.572 0.657 0.759 0.616 0.753
EC HBP 0.637 0.568 0.626 0.660 0.604 0.672
EC Heartattack 0.671 0.622 0.669 0.739 0.719 0.698
EC Osteoporosis 0.684 0.656 0.687 0.717 0.725 0.685
EC Parkinsons 0.715 0.677 0.713 0.720 0.707 0.733
EC Stroke 0.694 0.659 0.694 0.731 0.712 0.731
TI Angina 0.743 0.702 0.741 0.852 0.744 0.836
TI Arthritis 0.690 0.674 0.694 0.641 0.602 0.649
TI Cancer 0.531 0.546 0.534 0.543 0.493 0.553
TI Cataract 0.710 0.698 0.708 0.718 0.713 0.732
TI Diabetes 0.778 0.779 0.769 0.821 0.779 0.821
TI HBP 0.645 0.627 0.646 0.742 0.652 0.724
TI Heartattack 0.755 0.725 0.747 0.834 0.800 0.829
TI Ministroke 0.695 0.675 0.693 0.696 0.657 0.706
TI Osteoporosis 0.648 0.641 0.645 0.797 0.788 0.805
TI Stroke 0.712 0.663 0.703 0.738 0.615 0.692
AvgRank E-Nurse 1.5 2.8 1.7 1.7 2.2 2.1
AvgRank E-Core 1.5 3.0 1.5 1.8 2.3 2.0
AvgRank TILDA 1.5 2.6 1.9 1.6 3.0 1.5
AvgRank Overall 1.5 2.8 1.7 1.7 2.5 1.8
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Table B.4: Diff Accuracy and GMean results for the Scenario 2 experiments with
Random Forest classifiers. The best result for each row is boldfaced, and the av-
erage ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and overall
are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.683 0.626 0.677 0.706 0.647 0.698
EN Arthritis 0.636 0.601 0.630 0.628 0.601 0.623
EN Cataract 0.667 0.647 0.665 0.676 0.662 0.671
EN Dementia 0.736 0.773 0.742 0.753 0.727 0.733
EN Diabetes 0.851 0.684 0.846 0.861 0.685 0.857
EN HBP 0.664 0.620 0.669 0.671 0.624 0.677
EN Heartattack 0.699 0.648 0.689 0.715 0.647 0.712
EN Osteoporosis 0.663 0.632 0.657 0.679 0.665 0.676
EN Parkinsons 0.655 0.628 0.646 0.675 0.675 0.577
EN Stroke 0.673 0.668 0.681 0.687 0.659 0.690
EC Angina 0.696 0.640 0.704 0.722 0.648 0.736
EC Arthritis 0.728 0.687 0.726 0.724 0.691 0.724
EC Cataract 0.658 0.657 0.659 0.676 0.680 0.678
EC Dementia 0.771 0.759 0.775 0.785 0.770 0.776
EC Diabetes 0.670 0.577 0.669 0.706 0.593 0.703
EC HBP 0.646 0.582 0.644 0.648 0.586 0.649
EC Heartattack 0.674 0.627 0.671 0.704 0.668 0.684
EC Osteoporosis 0.687 0.662 0.687 0.700 0.690 0.686
EC Parkinsons 0.715 0.677 0.713 0.717 0.691 0.723
EC Stroke 0.696 0.662 0.696 0.713 0.685 0.712
TI Angina 0.748 0.704 0.745 0.796 0.723 0.787
TI Arthritis 0.675 0.652 0.680 0.665 0.637 0.671
TI Cancer 0.532 0.544 0.535 0.537 0.519 0.543
TI Cataract 0.710 0.700 0.710 0.714 0.706 0.720
TI Diabetes 0.781 0.779 0.773 0.799 0.779 0.795
TI HBP 0.682 0.637 0.676 0.692 0.640 0.684
TI Heartattack 0.757 0.728 0.750 0.793 0.762 0.787
TI Ministroke 0.695 0.675 0.693 0.695 0.666 0.699
TI Osteoporosis 0.662 0.655 0.660 0.719 0.711 0.721
TI Stroke 0.712 0.663 0.703 0.725 0.639 0.698
AvgRank E-Nurse 1.4 2.8 1.8 1.3 2.9 1.9
AvgRank E-Core 1.4 3.0 1.6 1.6 2.7 1.8
AvgRank TILDA 1.4 2.7 2.0 1.5 3.0 1.5
AvgRank Overall 1.4 2.8 1.8 1.4 2.9 1.7
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B.2 Ratio Results for Random Forests

Similarly to the Diff, The Ratio CTF is also related to the most recent change in

the value of a longitudinal feature (change from the last but one to the last wave),

but this type of CTF was created only for numeric features. The Ratio is more

sensitive to changes in the values than the Diff, so it might be able to capture

some trends more effectively. The results for Scenario 1 are shown in Tables B.5

(for Sensitivity and Specificity) and B.6 (for Accuracy and GMean). The results

for Scenario 2 are shown in Tables B.7 (for Sensitivity and Specificity) and B.8

(for Accuracy and GMean).

For the Scenario 1 experiments, the BL+CTFs set had the smallest (best)

average ranks overall in most cases – except for the Accuracy in TILDA datasets,

where Baseline had the smallest rank, and both tied for Sensitivity in TILDA

datasets, Accuracy in Elsa-core datasets and GMean in Elsa-nurse datasets. The

better performance of the Ratio CTF compared to Diff may be due to the lack

of nominal features in the datasets from these experiments, which considerably

reduced the information available for the classifier, giving more importance to the

added features overall. The Friedman test p-values for Scenario 1 were 1E−16

for all 4 metrics. We ran the Nemenyi post-hoc test and confirmed that the

Baseline and BL+CTFs sets had significantly superior results to CTFs+inel for

all 4 metrics, with p-values 0.001 in all cases. The p-values for the comparison

between the Baseline and BL+CTFs sets were not significant in any of the metrics.

The apparent superiority of BL+CTFs in Scenario 1 changed for Scenario

2. The Baseline set got the smallest average ranks more often, and the results

were closer, with the CTFs+inel set still getting the worst results. The Friedman

tests returned significant p-values for all 4 metrics in this scenario as well, with

p-values 1E−16 for Sensitivity, Accuracy and GMean, and 0.00011 for Specificity.

Thus, we ran the Nemenyi post-hoc test for all 4 metrics. For all 4 metrics, the

test confirmed that the Baseline set was superior to the CTFs+inel set (p-values

0.001 for Sensitivity, Accuracy and GMean, and 0.00286 for Specificity), and that

the BL+CTFs set was also superior to CTFs+inel (p-values 0.001 for Specificity,

Accuracy and GMean, and 0.00143 for Sensitivity). This inversion in the Ratio

results from one Scenario to the other gives more weight to our initial assumption

that the lack of nominal features in the dataset heavily influenced the classifiers.

193



Table B.5: Ratio Sensitivity and Specificity results for the Scenario 1 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.678 0.606 0.678 0.721 0.597 0.705
EN Arthritis 0.667 0.561 0.660 0.580 0.592 0.584
EN Cataract 0.654 0.563 0.651 0.672 0.664 0.679
EN Dementia 0.724 0.680 0.744 0.750 0.669 0.723
EN Diabetes 0.843 0.687 0.845 0.868 0.688 0.871
EN HBP 0.631 0.601 0.633 0.715 0.615 0.717
EN Heartattack 0.689 0.624 0.696 0.711 0.613 0.716
EN Osteoporosis 0.652 0.616 0.656 0.683 0.642 0.699
EN Parkinsons 0.627 0.578 0.630 0.697 0.515 0.652
EN Stroke 0.667 0.636 0.679 0.732 0.601 0.715
EC Angina 0.692 0.615 0.692 0.761 0.632 0.765
EC Arthritis 0.730 0.724 0.724 0.711 0.607 0.715
EC Cataract 0.584 0.624 0.575 0.631 0.510 0.622
EC Dementia 0.758 0.700 0.762 0.745 0.683 0.752
EC Diabetes 0.653 0.631 0.655 0.760 0.519 0.762
EC HBP 0.627 0.654 0.630 0.656 0.458 0.657
EC Heartattack 0.659 0.585 0.657 0.687 0.560 0.673
EC Osteoporosis 0.663 0.637 0.671 0.648 0.590 0.661
EC Parkinsons 0.705 0.574 0.694 0.693 0.640 0.720
EC Stroke 0.686 0.627 0.687 0.710 0.618 0.738
TI Angina 0.737 0.689 0.733 0.828 0.748 0.864
TI Arthritis 0.694 0.671 0.695 0.644 0.591 0.629
TI Cancer 0.529 0.529 0.519 0.566 0.507 0.516
TI Cataract 0.669 0.633 0.673 0.690 0.646 0.686
TI Diabetes 0.739 0.694 0.736 0.782 0.719 0.784
TI HBP 0.641 0.621 0.646 0.738 0.633 0.746
TI Heartattack 0.740 0.708 0.749 0.834 0.771 0.849
TI Ministroke 0.690 0.647 0.690 0.745 0.676 0.765
TI Osteoporosis 0.633 0.596 0.635 0.751 0.650 0.733
TI Stroke 0.709 0.649 0.695 0.738 0.646 0.754
AvgRank E-Nurse 1.8 3.0 1.3 1.7 2.8 1.5
AvgRank E-Core 1.8 2.6 1.7 1.8 3.0 1.2
AvgRank TILDA 1.6 2.9 1.6 1.6 3.0 1.4
AvgRank Overall 1.7 2.8 1.5 1.7 2.9 1.4
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Table B.6: Ratio Accuracy and GMean results for the Scenario 1 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.679 0.606 0.679 0.699 0.602 0.692
EN Arthritis 0.630 0.574 0.628 0.622 0.576 0.621
EN Cataract 0.660 0.596 0.660 0.663 0.612 0.665
EN Dementia 0.725 0.680 0.744 0.737 0.674 0.733
EN Diabetes 0.847 0.687 0.849 0.856 0.688 0.858
EN HBP 0.665 0.607 0.667 0.672 0.608 0.674
EN Heartattack 0.690 0.623 0.697 0.700 0.619 0.706
EN Osteoporosis 0.655 0.618 0.660 0.667 0.629 0.677
EN Parkinsons 0.628 0.577 0.630 0.661 0.545 0.641
EN Stroke 0.671 0.634 0.681 0.698 0.618 0.697
EC Angina 0.694 0.615 0.694 0.726 0.623 0.727
EC Arthritis 0.723 0.678 0.721 0.721 0.663 0.720
EC Cataract 0.598 0.590 0.589 0.607 0.564 0.598
EC Dementia 0.758 0.700 0.762 0.752 0.692 0.757
EC Diabetes 0.666 0.617 0.669 0.704 0.572 0.706
EC HBP 0.638 0.578 0.641 0.641 0.547 0.643
EC Heartattack 0.661 0.584 0.658 0.673 0.573 0.665
EC Osteoporosis 0.662 0.633 0.670 0.655 0.613 0.666
EC Parkinsons 0.705 0.574 0.694 0.699 0.606 0.707
EC Stroke 0.687 0.626 0.689 0.698 0.622 0.712
TI Angina 0.741 0.691 0.738 0.781 0.718 0.796
TI Arthritis 0.678 0.646 0.674 0.668 0.630 0.661
TI Cancer 0.531 0.528 0.519 0.547 0.518 0.518
TI Cataract 0.671 0.634 0.674 0.680 0.639 0.679
TI Diabetes 0.742 0.696 0.740 0.760 0.707 0.760
TI HBP 0.678 0.625 0.684 0.687 0.627 0.694
TI Heartattack 0.743 0.711 0.753 0.785 0.739 0.797
TI Ministroke 0.691 0.648 0.692 0.717 0.662 0.726
TI Osteoporosis 0.644 0.601 0.644 0.689 0.622 0.682
TI Stroke 0.709 0.649 0.696 0.723 0.648 0.724
AvgRank E-Nurse 1.8 3.0 1.2 1.5 3.0 1.5
AvgRank E-Core 1.6 2.9 1.6 1.7 3.0 1.3
AvgRank TILDA 1.5 2.9 1.7 1.6 3.0 1.5
AvgRank Overall 1.6 2.9 1.5 1.6 3.0 1.4

195



Table B.7: Ratio Sensitivity and Specificity results for the Scenario 2 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and the
average ranks per dataset (ELSA-Nurse, ELSA-Core or TILDA) and overall are
presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.681 0.617 0.680 0.733 0.647 0.702
EN Arthritis 0.672 0.599 0.668 0.587 0.616 0.579
EN Cataract 0.650 0.607 0.648 0.702 0.719 0.697
EN Dementia 0.736 0.771 0.742 0.770 0.709 0.709
EN Diabetes 0.847 0.685 0.844 0.874 0.677 0.862
EN HBP 0.627 0.600 0.630 0.718 0.643 0.728
EN Heartattack 0.697 0.639 0.693 0.733 0.658 0.733
EN Osteoporosis 0.660 0.608 0.660 0.699 0.706 0.711
EN Parkinsons 0.654 0.609 0.640 0.697 0.652 0.606
EN Stroke 0.671 0.655 0.678 0.703 0.639 0.705
EC Angina 0.695 0.610 0.698 0.751 0.621 0.775
EC Arthritis 0.740 0.646 0.735 0.709 0.689 0.716
EC Cataract 0.627 0.624 0.620 0.730 0.722 0.733
EC Dementia 0.770 0.753 0.782 0.801 0.789 0.832
EC Diabetes 0.657 0.531 0.660 0.759 0.574 0.763
EC HBP 0.637 0.555 0.634 0.660 0.589 0.671
EC Heartattack 0.671 0.608 0.671 0.739 0.698 0.753
EC Osteoporosis 0.684 0.642 0.688 0.717 0.699 0.689
EC Parkinsons 0.715 0.612 0.704 0.720 0.680 0.720
EC Stroke 0.694 0.642 0.691 0.731 0.699 0.734
TI Angina 0.743 0.699 0.741 0.852 0.764 0.836
TI Arthritis 0.690 0.673 0.684 0.641 0.617 0.641
TI Cancer 0.531 0.541 0.532 0.543 0.516 0.523
TI Cataract 0.710 0.701 0.696 0.718 0.728 0.722
TI Diabetes 0.778 0.780 0.771 0.821 0.779 0.821
TI HBP 0.645 0.627 0.644 0.742 0.656 0.748
TI Heartattack 0.755 0.724 0.748 0.834 0.776 0.805
TI Ministroke 0.695 0.669 0.693 0.696 0.716 0.696
TI Osteoporosis 0.648 0.642 0.649 0.797 0.785 0.807
TI Stroke 0.712 0.661 0.696 0.738 0.646 0.754
AvgRank E-Nurse 1.5 2.8 1.8 1.7 2.4 2.0
AvgRank E-Core 1.5 2.9 1.7 1.9 2.9 1.3
AvgRank TILDA 1.4 2.5 2.1 1.8 2.6 1.7
AvgRank Overall 1.4 2.7 1.8 1.8 2.6 1.6
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Table B.8: Ratio Accuracy and GMean results for the Scenario 2 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.683 0.618 0.681 0.706 0.632 0.691
EN Arthritis 0.636 0.606 0.630 0.628 0.607 0.622
EN Cataract 0.667 0.644 0.664 0.676 0.661 0.672
EN Dementia 0.736 0.770 0.741 0.753 0.740 0.726
EN Diabetes 0.851 0.684 0.846 0.861 0.681 0.853
EN HBP 0.664 0.617 0.670 0.671 0.621 0.678
EN Heartattack 0.699 0.640 0.695 0.715 0.649 0.713
EN Osteoporosis 0.663 0.617 0.664 0.679 0.656 0.685
EN Parkinsons 0.655 0.610 0.640 0.675 0.630 0.623
EN Stroke 0.673 0.654 0.680 0.687 0.647 0.692
EC Angina 0.696 0.611 0.701 0.722 0.616 0.736
EC Arthritis 0.728 0.663 0.728 0.724 0.667 0.726
EC Cataract 0.658 0.653 0.654 0.676 0.671 0.674
EC Dementia 0.771 0.754 0.783 0.785 0.771 0.807
EC Diabetes 0.670 0.537 0.673 0.706 0.552 0.710
EC HBP 0.646 0.568 0.649 0.648 0.572 0.653
EC Heartattack 0.674 0.613 0.675 0.704 0.652 0.711
EC Osteoporosis 0.687 0.646 0.688 0.700 0.669 0.689
EC Parkinsons 0.715 0.613 0.704 0.717 0.645 0.712
EC Stroke 0.696 0.645 0.694 0.713 0.670 0.712
TI Angina 0.748 0.702 0.745 0.796 0.731 0.787
TI Arthritis 0.675 0.656 0.671 0.665 0.644 0.662
TI Cancer 0.532 0.540 0.532 0.537 0.529 0.528
TI Cataract 0.710 0.703 0.698 0.714 0.714 0.709
TI Diabetes 0.781 0.780 0.774 0.799 0.779 0.795
TI HBP 0.682 0.638 0.683 0.692 0.642 0.694
TI Heartattack 0.757 0.726 0.750 0.793 0.750 0.776
TI Ministroke 0.695 0.670 0.693 0.695 0.692 0.694
TI Osteoporosis 0.662 0.655 0.664 0.719 0.710 0.723
TI Stroke 0.712 0.661 0.696 0.725 0.653 0.724
AvgRank E-Nurse 1.5 2.8 1.7 1.3 2.8 1.9
AvgRank E-Core 1.7 3.0 1.4 1.6 3.0 1.4
AvgRank TILDA 1.4 2.6 2.1 1.3 2.8 2.0
AvgRank Overall 1.5 2.8 1.7 1.4 2.9 1.8
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B.3 Monotonicity Results for Random Forests

This CTF represents clear temporal patterns of monotonic increase or decrease

over all stored values of a longitudinal feature. The Monotonicity values repre-

sent the pattern itself, so this feature can be an important asset in identifying

temporal trends in data, such as a tendency to decreasing values of consecutive

measures of a conceptual feature for instances of the positive class, for example.

The Monotonicity results for Scenario 1 are shown in Tables B.9 (for Sensitivity

and Specificity) and B.10 (for Accuracy and GMean). The results for Scenario 2

are shown in Tables B.11 (for Sensitivity and Specificity) and B.12 (for Accuracy

and GMean).

As with the Diff and Ratio, the CTFs+inel feature set got the worst results

overall, and the other two feature sets got closer results. The Friedman test p-

values for Scenario 1 were 1E−16 for all metrics, and the Nemenyi test results

confirmed that the Baseline and BL+CTFs sets were superior to CTFs+inel (p-

values 0.001 in all cases), but not to each other (no significant p-values).

Once again, adding the highly predictive ineligible features in Scenario 2 fur-

ther skewed the results in favour of the Baseline feature set, which got the lowest

average ranks in all cases except Specificity for Elsa-nurse and Elsa-core datasets.

The Friedman test p-values for Scenario 2 were 1E−16 for Sensitivity, Accuracy

and GMean, and 0.0022 for Specificity. In the Nemenyi post-hoc test, for Sen-

sitivity, the p-value for comparing Baseline and CTFs+inel was 0.0010, and for

comparing BL+CTFs to CTFs+inel it was 0.0014. For Specificity, the only pair

with a significant p-value was BL+CTFs vs CTFs+inel, with p-value 0.01028.

For Accuracy, both Baseline and BL+CTFs, when compared to CTFs+inel, got a

p-value of 0.001. For GMean, Baseline and CTFs+inel had a p-value of 0.001, and

BL+CTFs and CTFs+inel got 0.0023. For none of the post-hoc tests the Baseline

and BL+CTF tests had significant p-values in their comparison with each other.

From these results, we can surmise that the Monotonicity CTF did not get

good results by itself, likely because the information it represents is very coarse-

grained, and decision tree classifiers tend to select the features with more fine-

grained information, such as numerical features. However, the BL+CTF feature

set was still comparable to the Baseline in most cases, so the addition of this CTF

by itself was arguably not a detriment to the classifiers.
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Table B.9: Monotonicity Sensitivity and Specificity results for the Scenario 1
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.680 0.588 0.681 0.678 0.574 0.682
EN Arthritis 0.669 0.543 0.672 0.594 0.591 0.597
EN Cataract 0.615 0.548 0.614 0.723 0.711 0.729
EN Dementia 0.737 0.679 0.733 0.716 0.676 0.736
EN Diabetes 0.843 0.674 0.841 0.865 0.682 0.862
EN HBP 0.653 0.560 0.647 0.747 0.625 0.755
EN Heartattack 0.698 0.603 0.697 0.731 0.643 0.733
EN Osteoporosis 0.655 0.581 0.653 0.699 0.602 0.690
EN Parkinsons 0.604 0.594 0.596 0.636 0.621 0.621
EN Stroke 0.667 0.631 0.666 0.710 0.651 0.713
EC Angina 0.710 0.645 0.710 0.723 0.635 0.716
EC Arthritis 0.741 0.640 0.740 0.717 0.575 0.719
EC Cataract 0.601 0.584 0.597 0.675 0.541 0.680
EC Dementia 0.757 0.657 0.746 0.727 0.634 0.720
EC Diabetes 0.671 0.588 0.669 0.750 0.601 0.743
EC HBP 0.625 0.585 0.630 0.662 0.540 0.669
EC Heartattack 0.673 0.596 0.671 0.689 0.601 0.685
EC Osteoporosis 0.690 0.600 0.687 0.635 0.562 0.651
EC Parkinsons 0.685 0.633 0.705 0.720 0.627 0.680
EC Stroke 0.689 0.625 0.692 0.694 0.583 0.710
TI Angina 0.748 0.639 0.743 0.876 0.584 0.872
TI Arthritis 0.731 0.608 0.722 0.652 0.559 0.648
TI Cancer 0.542 0.531 0.539 0.595 0.477 0.592
TI Cataract 0.660 0.608 0.658 0.705 0.548 0.713
TI Diabetes 0.737 0.582 0.743 0.795 0.535 0.808
TI HBP 0.678 0.557 0.677 0.763 0.534 0.765
TI Heartattack 0.750 0.584 0.746 0.863 0.532 0.863
TI Ministroke 0.704 0.643 0.711 0.765 0.667 0.775
TI Osteoporosis 0.670 0.566 0.654 0.772 0.551 0.777
TI Stroke 0.717 0.610 0.718 0.738 0.538 0.692
AvgRank E-Nurse 1.2 3.0 1.8 1.7 3.0 1.4
AvgRank E-Core 1.4 3.0 1.7 1.5 3.0 1.5
AvgRank TILDA 1.3 3.0 1.7 1.6 3.0 1.5
AvgRank Overall 1.3 3.0 1.7 1.6 3.0 1.4
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Table B.10: Monotonicity Accuracy and GMean results for the Scenario 1 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

Accuracy GMean
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.680 0.588 0.681 0.679 0.581 0.681
EN Arthritis 0.637 0.563 0.641 0.630 0.566 0.634
EN Cataract 0.650 0.601 0.652 0.667 0.624 0.669
EN Dementia 0.736 0.679 0.733 0.726 0.678 0.735
EN Diabetes 0.846 0.675 0.844 0.854 0.678 0.851
EN HBP 0.691 0.586 0.690 0.699 0.592 0.699
EN Heartattack 0.700 0.605 0.699 0.714 0.623 0.715
EN Osteoporosis 0.659 0.583 0.656 0.676 0.591 0.671
EN Parkinsons 0.605 0.594 0.597 0.620 0.607 0.609
EN Stroke 0.670 0.633 0.669 0.688 0.641 0.689
EC Angina 0.711 0.645 0.710 0.716 0.640 0.713
EC Arthritis 0.731 0.614 0.732 0.729 0.607 0.729
EC Cataract 0.623 0.571 0.622 0.637 0.562 0.638
EC Dementia 0.757 0.657 0.745 0.742 0.645 0.733
EC Diabetes 0.681 0.590 0.679 0.709 0.594 0.705
EC HBP 0.639 0.568 0.645 0.643 0.562 0.649
EC Heartattack 0.674 0.597 0.672 0.681 0.599 0.678
EC Osteoporosis 0.686 0.597 0.684 0.662 0.581 0.669
EC Parkinsons 0.685 0.633 0.704 0.702 0.630 0.692
EC Stroke 0.689 0.623 0.693 0.692 0.604 0.701
TI Angina 0.753 0.637 0.749 0.809 0.611 0.805
TI Arthritis 0.706 0.593 0.699 0.690 0.583 0.684
TI Cancer 0.545 0.528 0.542 0.568 0.503 0.565
TI Cataract 0.664 0.603 0.663 0.682 0.577 0.685
TI Diabetes 0.741 0.578 0.747 0.765 0.558 0.775
TI HBP 0.710 0.548 0.710 0.719 0.545 0.720
TI Heartattack 0.755 0.582 0.750 0.805 0.557 0.802
TI Ministroke 0.705 0.643 0.712 0.734 0.655 0.742
TI Osteoporosis 0.680 0.565 0.665 0.719 0.558 0.713
TI Stroke 0.717 0.609 0.717 0.728 0.573 0.705
AvgRank E-Nurse 1.3 3.0 1.7 1.7 3.0 1.4
AvgRank E-Core 1.4 3.0 1.6 1.5 3.0 1.6
AvgRank TILDA 1.3 3.0 1.7 1.4 3.0 1.6
AvgRank Overall 1.3 3.0 1.7 1.5 3.0 1.5
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Table B.11: Monotonicity Sensitivity and Specificity results for the Scenario 2
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.684 0.595 0.678 0.702 0.632 0.686
EN Arthritis 0.671 0.574 0.662 0.586 0.612 0.593
EN Cataract 0.620 0.605 0.615 0.723 0.734 0.734
EN Dementia 0.729 0.719 0.734 0.709 0.743 0.757
EN Diabetes 0.841 0.673 0.839 0.866 0.680 0.854
EN HBP 0.651 0.567 0.650 0.749 0.641 0.746
EN Heartattack 0.700 0.631 0.689 0.738 0.686 0.736
EN Osteoporosis 0.649 0.626 0.652 0.696 0.691 0.708
EN Parkinsons 0.628 0.612 0.604 0.712 0.727 0.712
EN Stroke 0.670 0.657 0.664 0.724 0.677 0.708
EC Angina 0.711 0.629 0.707 0.723 0.667 0.758
EC Arthritis 0.749 0.629 0.747 0.717 0.646 0.714
EC Cataract 0.609 0.615 0.609 0.717 0.739 0.718
EC Dementia 0.764 0.739 0.759 0.770 0.789 0.758
EC Diabetes 0.674 0.581 0.675 0.747 0.619 0.763
EC HBP 0.641 0.580 0.631 0.662 0.607 0.666
EC Heartattack 0.678 0.620 0.675 0.692 0.683 0.694
EC Osteoporosis 0.700 0.650 0.699 0.676 0.711 0.652
EC Parkinsons 0.697 0.661 0.696 0.693 0.747 0.680
EC Stroke 0.694 0.633 0.696 0.721 0.703 0.725
TI Angina 0.748 0.681 0.747 0.916 0.736 0.888
TI Arthritis 0.729 0.644 0.724 0.646 0.612 0.650
TI Cancer 0.549 0.550 0.557 0.579 0.530 0.589
TI Cataract 0.706 0.700 0.691 0.724 0.720 0.741
TI Diabetes 0.775 0.768 0.766 0.831 0.730 0.829
TI HBP 0.678 0.592 0.676 0.765 0.595 0.760
TI Heartattack 0.751 0.671 0.744 0.878 0.727 0.859
TI Ministroke 0.712 0.673 0.716 0.735 0.657 0.706
TI Osteoporosis 0.677 0.633 0.675 0.807 0.779 0.799
TI Stroke 0.728 0.636 0.719 0.800 0.615 0.785
AvgRank E-Nurse 1.2 2.9 1.9 1.9 2.4 1.8
AvgRank E-Core 1.4 2.8 1.9 2.0 2.2 1.8
AvgRank TILDA 1.3 2.7 2.0 1.3 3.0 1.7
AvgRank Overall 1.3 2.8 1.9 1.7 2.5 1.8
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Table B.12: Monotonicity Accuracy and GMean results for the Scenario 2 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs+inel BL+CTFs Baseline CTFs+inel BL+CTFs

EN Angina 0.684 0.596 0.678 0.693 0.613 0.682
EN Arthritis 0.635 0.590 0.633 0.627 0.592 0.626
EN Cataract 0.654 0.647 0.654 0.670 0.666 0.672
EN Dementia 0.729 0.720 0.734 0.719 0.731 0.745
EN Diabetes 0.845 0.674 0.841 0.854 0.676 0.846
EN HBP 0.690 0.597 0.689 0.698 0.603 0.696
EN Heartattack 0.702 0.634 0.691 0.719 0.658 0.712
EN Osteoporosis 0.654 0.632 0.657 0.672 0.658 0.679
EN Parkinsons 0.629 0.613 0.605 0.669 0.667 0.656
EN Stroke 0.674 0.658 0.667 0.697 0.667 0.686
EC Angina 0.711 0.630 0.709 0.717 0.647 0.732
EC Arthritis 0.736 0.636 0.734 0.733 0.637 0.730
EC Cataract 0.641 0.651 0.641 0.661 0.674 0.661
EC Dementia 0.764 0.740 0.759 0.767 0.763 0.758
EC Diabetes 0.684 0.586 0.686 0.710 0.600 0.718
EC HBP 0.649 0.590 0.645 0.651 0.593 0.648
EC Heartattack 0.679 0.623 0.676 0.685 0.650 0.685
EC Osteoporosis 0.698 0.655 0.695 0.688 0.680 0.675
EC Parkinsons 0.697 0.662 0.695 0.695 0.702 0.688
EC Stroke 0.695 0.636 0.698 0.707 0.667 0.711
TI Angina 0.756 0.683 0.754 0.828 0.708 0.815
TI Arthritis 0.703 0.634 0.701 0.686 0.628 0.686
TI Cancer 0.550 0.549 0.559 0.564 0.540 0.573
TI Cataract 0.707 0.702 0.695 0.715 0.710 0.715
TI Diabetes 0.779 0.765 0.770 0.803 0.749 0.796
TI HBP 0.711 0.593 0.708 0.720 0.593 0.717
TI Heartattack 0.756 0.673 0.748 0.812 0.699 0.799
TI Ministroke 0.712 0.672 0.716 0.724 0.665 0.711
TI Osteoporosis 0.689 0.647 0.687 0.739 0.702 0.735
TI Stroke 0.728 0.636 0.719 0.763 0.625 0.751
AvgRank E-Nurse 1.3 2.9 1.9 1.4 2.8 1.8
AvgRank E-Core 1.4 2.8 1.9 1.6 2.4 2.0
AvgRank TILDA 1.2 2.9 1.9 1.2 3.0 1.8
AvgRank Overall 1.3 2.9 1.9 1.4 2.7 1.9
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B.4 Results for DiffAgeMean

This CTF, proposed in this thesis, measures the deviation of a feature’s last

measure from an expected value computed from individuals of the same age –

the expected value is the mean for numerical features and the mode for nominal

features. As our datasets are from ageing studies, the age of the participant is

arguably the most important feature to determine what a “normal” value would

be for the features being measured, thus this CTF can help identify recent trends

of deviation from the norm.

The DiffAgeMean results for Scenario 1 are shown in Tables B.13 (for Sensitiv-

ity and Specificity) and B.14 (for Accuracy and GMean). The results for Scenario

2 are shown in Tables B.15 (for Sensitivity and Specificity) and B.16 (for Accuracy

and GMean).

DiffAgeMean obtained better results for the BL+CTFs feature sets overall,

in both Scenarios, which is encouraging. The CTF feature sets (CTFs-only and

CTFs+in, in each Scenario) had the worst results overall.

For Scenario 1, the BL+CTFs feature set had the smallest average rank in all

cases except Specificity for the ELSA-nurse datasets, where the Base-el approach

had an average rank of 1.5, against BL+CTF’s 1.7 average. The Friedman test

p-values for Scenario 1 were 0.0006, 1E−5, , 2E−5 and 1E−16 (the smallest thresh-

old for a number to be shown in our implementation for these tests) for Sensitivity,

Specificity, Accuracy and GMean, respectively. In the Nemenyi post-hoc test, the

Sensitivity metric had significant p-values when comparing the BL+CTFs set to

the baseline (0.0084) and to the CTFs-only set (0.001). The Specificity metric had

significant Nemenyi p-values (0.001) for the comparisons of Base-el vs. CTFs-only

and BL+CTFs vs. CTFs-only. For Accuracy, BL+CTFs had significant p-values

when compared to both the Base-el (0.0036) and CTFs-only (0.001) sets. Finally,

for GMean, all 3 set comparisons had significant p-values: BL+CTFs and CTFs

got 0.001, BL+CTFs and Base-el got 0.0266, and Base-el and CTFs got 0.0266.

For Scenario 2, the best Specificity average ranks were all from the Base-el-in

feature set, but for the Sensitivity, Accuracy and GMean metrics the BL+CTFs

approach had the smallest average ranks in all cases. The Friedman test p-values

for Scenario 2 were 0.0022, 0.0004, 0.0015 and 8E−5 for Sensitivity, Specificity,

Accuracy and GMean, respectively. In the Nemenyi post-hoc tests, for Sensitivity,
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only the BL+CTFs vs. CTFs-in comparison got a significant p-value (0.0014).

For Specificity, the significant p-values were obtained for Base-el-in vs. CTFs-in

(0.001) and BL+CTFs vs. CTFs-in (0.0222). For Accuracy, only the BL+CTFs

vs. CTFs-in got a significant p-value (0.001). Finally, for GMean, the significant

p-values were obtained for Base-el-in vs. CTFs-in (0.0036) and BL+CTFs vs.

CTFs-in (0.001).

These these results are a clear indication that the addition of the DiffAgeMean

CTF to the datasets led to an overall increased predictive accuracy for the RF

classifiers, although the comparison between BL+CTFs and the Base-el-in set did

not get significant results in the Nemenyi post-hoc tests.
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Table B.13: DiffAgeMean Sensitivity and Specificity results for the Scenario 1
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.672 0.662 0.670 0.729 0.674 0.729
EN Arthritis 0.671 0.653 0.669 0.579 0.570 0.576
EN Cataract 0.667 0.622 0.674 0.646 0.612 0.649
EN Dementia 0.714 0.695 0.722 0.743 0.669 0.757
EN Diabetes 0.844 0.847 0.850 0.864 0.847 0.856
EN HBP 0.619 0.634 0.630 0.701 0.668 0.698
EN Heartattack 0.692 0.688 0.692 0.726 0.688 0.741
EN Osteoporosis 0.647 0.590 0.637 0.702 0.691 0.682
EN Parkinsons 0.637 0.631 0.652 0.667 0.636 0.652
EN Stroke 0.669 0.669 0.674 0.727 0.653 0.734
EC Angina 0.677 0.693 0.689 0.744 0.740 0.754
EC Arthritis 0.696 0.712 0.724 0.705 0.688 0.693
EC Cataract 0.564 0.627 0.625 0.622 0.723 0.743
EC Dementia 0.763 0.770 0.783 0.764 0.801 0.832
EC Diabetes 0.635 0.671 0.649 0.742 0.690 0.735
EC HBP 0.583 0.614 0.617 0.648 0.644 0.660
EC Heartattack 0.639 0.639 0.655 0.723 0.694 0.705
EC Osteoporosis 0.660 0.663 0.667 0.638 0.670 0.666
EC Parkinsons 0.702 0.716 0.723 0.667 0.707 0.680
EC Stroke 0.673 0.677 0.682 0.714 0.742 0.755
TI Angina 0.715 0.606 0.715 0.820 0.672 0.808
TI Arthritis 0.665 0.616 0.688 0.629 0.559 0.645
TI Cancer 0.509 0.556 0.548 0.543 0.530 0.526
TI Cataract 0.664 0.684 0.701 0.688 0.630 0.703
TI Diabetes 0.734 0.571 0.729 0.761 0.545 0.753
TI HBP 0.631 0.557 0.636 0.721 0.547 0.727
TI Heartattack 0.732 0.618 0.731 0.785 0.620 0.761
TI Ministroke 0.677 0.617 0.678 0.706 0.588 0.716
TI Osteoporosis 0.626 0.557 0.639 0.729 0.584 0.751
TI Stroke 0.701 0.554 0.679 0.662 0.569 0.708
AvgRank E-Nurse 1.9 2.7 1.5 1.5 2.9 1.7
AvgRank E-Core 3.0 1.8 1.3 2.2 2.3 1.5
AvgRank TILDA 1.9 2.7 1.5 1.6 2.9 1.5
AvgRank Overall 2.2 2.4 1.4 1.8 2.7 1.6
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Table B.14: DiffAgeMean Accuracy and GMean results for the Scenario 1 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

Accuracy GMean
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.674 0.663 0.673 0.700 0.668 0.699
EN Arthritis 0.632 0.618 0.629 0.623 0.610 0.620
EN Cataract 0.660 0.618 0.666 0.656 0.617 0.661
EN Dementia 0.715 0.695 0.722 0.729 0.682 0.739
EN Diabetes 0.847 0.847 0.851 0.854 0.847 0.853
EN HBP 0.652 0.648 0.657 0.659 0.651 0.663
EN Heartattack 0.694 0.688 0.695 0.709 0.688 0.716
EN Osteoporosis 0.652 0.600 0.641 0.674 0.639 0.659
EN Parkinsons 0.637 0.631 0.652 0.652 0.634 0.652
EN Stroke 0.672 0.668 0.677 0.697 0.661 0.703
EC Angina 0.680 0.694 0.691 0.710 0.716 0.721
EC Arthritis 0.700 0.702 0.712 0.701 0.700 0.709
EC Cataract 0.581 0.655 0.660 0.593 0.673 0.682
EC Dementia 0.763 0.771 0.784 0.764 0.786 0.808
EC Diabetes 0.649 0.673 0.660 0.686 0.680 0.690
EC HBP 0.608 0.626 0.634 0.615 0.629 0.638
EC Heartattack 0.644 0.642 0.657 0.680 0.666 0.680
EC Osteoporosis 0.658 0.663 0.667 0.649 0.667 0.667
EC Parkinsons 0.702 0.716 0.722 0.684 0.711 0.701
EC Stroke 0.675 0.681 0.686 0.693 0.709 0.718
TI Angina 0.720 0.609 0.719 0.766 0.638 0.760
TI Arthritis 0.654 0.599 0.675 0.647 0.587 0.666
TI Cancer 0.511 0.554 0.546 0.526 0.543 0.537
TI Cataract 0.666 0.680 0.701 0.676 0.656 0.702
TI Diabetes 0.736 0.570 0.730 0.747 0.558 0.741
TI HBP 0.665 0.553 0.671 0.675 0.552 0.680
TI Heartattack 0.734 0.618 0.732 0.758 0.619 0.746
TI Ministroke 0.677 0.616 0.678 0.691 0.602 0.696
TI Osteoporosis 0.636 0.560 0.650 0.676 0.570 0.693
TI Stroke 0.701 0.554 0.679 0.681 0.561 0.693
AvgRank E-Nurse 1.8 3.0 1.3 1.6 3.0 1.5
AvgRank E-Core 2.9 1.9 1.2 2.7 2.2 1.2
AvgRank TILDA 1.8 2.7 1.5 1.8 2.8 1.4
AvgRank Overall 2.2 2.5 1.3 2.0 2.7 1.4
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Table B.15: DiffAgeMean Sensitivity and Specificity results for the Scenario 2
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.666 0.671 0.674 0.736 0.709 0.752
EN Arthritis 0.671 0.661 0.666 0.586 0.604 0.584
EN Cataract 0.642 0.622 0.649 0.704 0.724 0.700
EN Dementia 0.709 0.730 0.719 0.757 0.736 0.757
EN Diabetes 0.843 0.845 0.850 0.857 0.849 0.855
EN HBP 0.622 0.624 0.625 0.698 0.680 0.691
EN Heartattack 0.690 0.694 0.692 0.756 0.728 0.731
EN Osteoporosis 0.649 0.629 0.648 0.714 0.722 0.716
EN Parkinsons 0.660 0.668 0.668 0.682 0.697 0.667
EN Stroke 0.663 0.681 0.677 0.720 0.689 0.720
EC Angina 0.694 0.691 0.698 0.775 0.754 0.758
EC Arthritis 0.727 0.729 0.732 0.693 0.689 0.697
EC Cataract 0.629 0.627 0.623 0.752 0.748 0.768
EC Dementia 0.780 0.766 0.777 0.826 0.801 0.826
EC Diabetes 0.642 0.674 0.657 0.749 0.724 0.746
EC HBP 0.622 0.615 0.621 0.664 0.658 0.657
EC Heartattack 0.668 0.653 0.669 0.737 0.739 0.741
EC Osteoporosis 0.678 0.670 0.686 0.738 0.715 0.707
EC Parkinsons 0.714 0.719 0.724 0.720 0.720 0.733
EC Stroke 0.687 0.670 0.685 0.736 0.762 0.731
TI Angina 0.719 0.645 0.723 0.804 0.708 0.800
TI Arthritis 0.680 0.637 0.685 0.636 0.577 0.641
TI Cancer 0.541 0.558 0.552 0.536 0.526 0.586
TI Cataract 0.717 0.698 0.720 0.730 0.686 0.705
TI Diabetes 0.788 0.766 0.783 0.803 0.722 0.800
TI HBP 0.635 0.581 0.641 0.721 0.584 0.720
TI Heartattack 0.747 0.655 0.741 0.795 0.688 0.820
TI Ministroke 0.679 0.645 0.675 0.716 0.657 0.686
TI Osteoporosis 0.654 0.649 0.659 0.792 0.768 0.792
TI Stroke 0.702 0.585 0.676 0.708 0.569 0.646
AvgRank E-Nurse 2.5 2.0 1.6 1.7 2.2 2.1
AvgRank E-Core 1.9 2.5 1.6 1.7 2.5 1.9
AvgRank TILDA 1.7 2.8 1.5 1.4 3.0 1.7
AvgRank Overall 2.0 2.4 1.6 1.6 2.6 1.9
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Table B.16: DiffAgeMean Accuracy and GMean results for the Scenario 2 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.669 0.672 0.676 0.700 0.690 0.712
EN Arthritis 0.635 0.637 0.631 0.627 0.632 0.623
EN Cataract 0.663 0.655 0.666 0.673 0.671 0.674
EN Dementia 0.710 0.730 0.720 0.733 0.733 0.738
EN Diabetes 0.845 0.846 0.851 0.850 0.847 0.852
EN HBP 0.653 0.647 0.651 0.659 0.652 0.657
EN Heartattack 0.694 0.696 0.694 0.722 0.711 0.711
EN Osteoporosis 0.655 0.637 0.655 0.681 0.674 0.681
EN Parkinsons 0.661 0.668 0.668 0.671 0.682 0.668
EN Stroke 0.667 0.682 0.679 0.691 0.685 0.698
EC Angina 0.697 0.693 0.700 0.734 0.722 0.727
EC Arthritis 0.713 0.713 0.718 0.710 0.709 0.714
EC Cataract 0.665 0.663 0.666 0.688 0.685 0.692
EC Dementia 0.781 0.766 0.778 0.803 0.783 0.801
EC Diabetes 0.656 0.680 0.668 0.693 0.698 0.700
EC HBP 0.638 0.632 0.635 0.643 0.636 0.639
EC Heartattack 0.672 0.658 0.672 0.702 0.695 0.704
EC Osteoporosis 0.683 0.673 0.688 0.707 0.692 0.696
EC Parkinsons 0.714 0.719 0.724 0.717 0.719 0.729
EC Stroke 0.690 0.675 0.687 0.711 0.715 0.708
TI Angina 0.723 0.648 0.726 0.760 0.676 0.760
TI Arthritis 0.666 0.619 0.671 0.658 0.606 0.663
TI Cancer 0.541 0.556 0.554 0.539 0.542 0.569
TI Cataract 0.718 0.697 0.719 0.724 0.692 0.713
TI Diabetes 0.789 0.763 0.784 0.795 0.744 0.791
TI HBP 0.668 0.582 0.671 0.677 0.582 0.679
TI Heartattack 0.749 0.656 0.744 0.771 0.671 0.779
TI Ministroke 0.679 0.645 0.676 0.697 0.651 0.681
TI Osteoporosis 0.667 0.661 0.671 0.720 0.706 0.722
TI Stroke 0.702 0.585 0.676 0.705 0.577 0.661
AvgRank E-Nurse 2.4 1.9 1.8 1.8 2.5 1.7
AvgRank E-Core 1.9 2.7 1.5 1.8 2.6 1.6
AvgRank TILDA 1.7 2.8 1.5 1.7 2.9 1.5
AvgRank Overall 2.0 2.4 1.6 1.8 2.7 1.6
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B.5 Results for AvgDiffAgeMean

The AvgDiffAgeMean is an extension of the DiffAgeMean, which considers all

measurements of a longitudinal feature instead of only the most recent, comparing

each measurement to the expected value for the age of the respondent at the time

of measurement. The value of the trends identified by this feature, compared to

the DiffAgeMean, hinges on the importance of older values and on the importance

of a consistent deviation from the expected value. The AvgDiffAgeMean results

for Scenario 1 are shown in Tables B.17 (for Sensitivity and Specificity) and B.18

(for Accuracy and GMean). The results for Scenario 2 are shown in Tables B.19

(for Sensitivity and Specificity) and B.20 (for Accuracy and GMean).

For the AvgDiffAgeMean CTF, the Scenario 1 results did not have a clear

winner between the Base-el and the BL+CTFs feature sets. The Base-el had

the smallest average ranks overall for Sensitivity and Accuracy (although the av-

erage rank for the latter is tied between the Base-el and BL+CTFs sets), while

BL+CTFs won in the Specificity and GMean metrics. The Friedman test p-values

were significant for all metrics in Scenario 1 (p-values 0.0072, 0.0005, 0.0015

and 0.0015 for Sensitivity, Specificity, Accuracy and GMean, respectively). In

the Nemenyi post-hoc tests, for Sensitivity the significant p-values were obtained

when comparing Base-el vs. CTFs-only (0.01254) and BL+CTFs vs. CTFs-only

(0.02657). For Specificity, BL+CTFs was significantly superior to both other

feature sets, with p-value 0.001 when compared to CTFs-only and 0.0266 when

compared to the Base-el. For Accuracy, both the Base-el and BL+CTFs had sig-

nificant p-values when compared to CTFs-only, with p-values 0.0023 and 0.0126,

respectively. Finally, for GMean, only the BL+CTFs vs. CTFs-only comparison

had a significant p-value (0.001).

The Scenario 2 results also did not have a clear winning feature set. Unlike

most other experiments, the CTFs-in feature set achieved the smallest average

ranks in two instances: for Specificity and GMean in Elsa-core datasets. This

is an interesting indication that this CTF was able to generate feasible models

when replacing the original features, in some cases. It is possible that the fact

that Elsa-core datasets had more measurements of the longitudinal features (up

to 7, against up to 4 from the Elsa-nurse and TILDA datasets) has increased

the predictive power of the AvgDiffAgeMean CTF, for Elsa-core datasets. The
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Friedman test p-values for Scenario 2 were 2E−5, 0.1799, 3E−5 and 0.1224 for

Sensitivity, Specificity, Accuracy and GMean, respectively; so we only ran the Ne-

menyi post-hoc tests for Sensitivity and Accuracy. Both Sensitivity and Accuracy

had significant p-values when comparing the Base-el-in vs. CTFs-in feature sets

(p-values 0.001 for both measures), and BL+CTFs vs. CTFs-in sets (p-values

0.0036 and 0.0014, respectively).

The AvgDiffAgeMean results show that this CTF is also promising for increas-

ing predictive accuracy, but it seems to be more situational than the DiffAgeMean,

likely due to how it is constructed as an average of several measurements. It is

important to highlight that this CTF achieved more competitive results for the

CTFs-in feature sets (by comparison with experiments with other types of CTF),

as the Friedman test did not have significant p-values for Specificity and GMean

when comparing CTFs-in to the other two feature sets.
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Table B.17: AvgDiffAgeMean Sensitivity and Specificity results for the Scenario
1 experiments with Random Forest classifiers. The best result for each row is
boldfaced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core
or TILDA) and overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.680 0.670 0.683 0.678 0.674 0.690
EN Arthritis 0.669 0.658 0.664 0.594 0.595 0.598
EN Cataract 0.615 0.590 0.612 0.723 0.738 0.728
EN Dementia 0.737 0.681 0.734 0.716 0.696 0.703
EN Diabetes 0.843 0.839 0.842 0.865 0.836 0.867
EN HBP 0.653 0.637 0.643 0.747 0.725 0.748
EN Heartattack 0.698 0.685 0.694 0.731 0.691 0.728
EN Osteoporosis 0.655 0.640 0.645 0.699 0.696 0.706
EN Parkinsons 0.604 0.612 0.605 0.636 0.742 0.652
EN Stroke 0.667 0.650 0.667 0.710 0.670 0.701
EC Angina 0.710 0.692 0.703 0.723 0.751 0.768
EC Arthritis 0.741 0.757 0.744 0.717 0.710 0.718
EC Cataract 0.601 0.635 0.613 0.675 0.732 0.734
EC Dementia 0.757 0.746 0.760 0.727 0.832 0.758
EC Diabetes 0.671 0.697 0.674 0.750 0.735 0.750
EC HBP 0.625 0.646 0.644 0.662 0.669 0.670
EC Heartattack 0.673 0.662 0.672 0.689 0.698 0.703
EC Osteoporosis 0.690 0.680 0.692 0.635 0.661 0.651
EC Parkinsons 0.685 0.683 0.696 0.720 0.640 0.733
EC Stroke 0.689 0.683 0.689 0.694 0.751 0.734
TI Angina 0.748 0.500 0.747 0.876 0.500 0.892
TI Arthritis 0.731 0.401 0.728 0.652 0.601 0.644
TI Cancer 0.542 0.699 0.543 0.595 0.289 0.586
TI Cataract 0.660 0.598 0.658 0.705 0.381 0.711
TI Diabetes 0.737 0.600 0.743 0.795 0.408 0.813
TI HBP 0.678 0.695 0.679 0.763 0.293 0.767
TI Heartattack 0.750 0.699 0.747 0.863 0.268 0.873
TI Ministroke 0.704 0.201 0.711 0.765 0.843 0.755
TI Osteoporosis 0.670 0.499 0.658 0.772 0.490 0.764
TI Stroke 0.717 1.000 0.710 0.738 0.000 0.815
AvgRank E-Nurse 1.4 2.8 1.9 2.0 2.5 1.5
AvgRank E-Core 2.2 2.2 1.7 2.7 2.0 1.4
AvgRank TILDA 1.7 2.4 1.9 1.7 2.8 1.5
AvgRank Overall 1.7 2.5 1.8 2.1 2.4 1.5
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Table B.18: AvgDiffAgeMean Accuracy and GMean results for the Scenario 1
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

Accuracy GMean
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.680 0.670 0.684 0.679 0.672 0.687
EN Arthritis 0.637 0.631 0.636 0.630 0.626 0.630
EN Cataract 0.650 0.639 0.650 0.667 0.660 0.668
EN Dementia 0.736 0.682 0.734 0.726 0.689 0.718
EN Diabetes 0.846 0.839 0.846 0.854 0.838 0.855
EN HBP 0.691 0.673 0.685 0.699 0.680 0.693
EN Heartattack 0.700 0.685 0.696 0.714 0.688 0.711
EN Osteoporosis 0.659 0.645 0.651 0.676 0.667 0.675
EN Parkinsons 0.605 0.614 0.605 0.620 0.674 0.628
EN Stroke 0.670 0.651 0.669 0.688 0.660 0.684
EC Angina 0.711 0.694 0.705 0.716 0.721 0.735
EC Arthritis 0.731 0.738 0.733 0.729 0.733 0.731
EC Cataract 0.623 0.664 0.648 0.637 0.682 0.670
EC Dementia 0.757 0.748 0.760 0.742 0.788 0.759
EC Diabetes 0.681 0.702 0.684 0.709 0.716 0.711
EC HBP 0.639 0.655 0.654 0.643 0.657 0.657
EC Heartattack 0.674 0.664 0.674 0.681 0.680 0.687
EC Osteoporosis 0.686 0.679 0.689 0.662 0.670 0.671
EC Parkinsons 0.685 0.682 0.696 0.702 0.661 0.714
EC Stroke 0.689 0.687 0.691 0.692 0.716 0.711
TI Angina 0.753 0.500 0.753 0.809 0.500 0.816
TI Arthritis 0.706 0.463 0.702 0.690 0.491 0.684
TI Cancer 0.545 0.677 0.545 0.568 0.450 0.564
TI Cataract 0.664 0.580 0.662 0.682 0.477 0.684
TI Diabetes 0.741 0.587 0.748 0.765 0.495 0.777
TI HBP 0.710 0.542 0.713 0.719 0.451 0.722
TI Heartattack 0.755 0.684 0.752 0.805 0.433 0.808
TI Ministroke 0.705 0.212 0.712 0.734 0.411 0.733
TI Osteoporosis 0.680 0.498 0.668 0.719 0.494 0.709
TI Stroke 0.717 0.989 0.711 0.728 0.000 0.761
AvgRank E-Nurse 1.4 2.8 1.9 1.6 2.8 1.7
AvgRank E-Core 2.3 2.2 1.6 2.8 1.7 1.6
AvgRank TILDA 1.6 2.6 1.8 1.6 3.0 1.4
AvgRank Overall 1.7 2.5 1.7 2.0 2.5 1.5
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Table B.19: AvgDiffAgeMean Sensitivity and Specificity results for the Scenario
2 experiments with Random Forest classifiers. The best result for each row is
boldfaced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core
or TILDA) and overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.684 0.670 0.678 0.702 0.686 0.705
EN Arthritis 0.671 0.660 0.668 0.586 0.594 0.586
EN Cataract 0.620 0.612 0.613 0.723 0.727 0.733
EN Dementia 0.729 0.716 0.737 0.709 0.723 0.716
EN Diabetes 0.841 0.834 0.839 0.866 0.837 0.859
EN HBP 0.651 0.641 0.649 0.749 0.730 0.754
EN Heartattack 0.700 0.688 0.693 0.738 0.713 0.743
EN Osteoporosis 0.649 0.647 0.652 0.696 0.713 0.697
EN Parkinsons 0.628 0.632 0.612 0.712 0.712 0.636
EN Stroke 0.670 0.655 0.669 0.724 0.691 0.708
EC Angina 0.711 0.698 0.704 0.723 0.737 0.744
EC Arthritis 0.749 0.755 0.754 0.717 0.715 0.715
EC Cataract 0.609 0.633 0.609 0.717 0.762 0.749
EC Dementia 0.764 0.745 0.761 0.770 0.845 0.776
EC Diabetes 0.674 0.697 0.680 0.747 0.733 0.750
EC HBP 0.641 0.641 0.637 0.662 0.672 0.678
EC Heartattack 0.678 0.667 0.685 0.692 0.735 0.696
EC Osteoporosis 0.700 0.678 0.701 0.676 0.713 0.662
EC Parkinsons 0.697 0.673 0.692 0.693 0.667 0.653
EC Stroke 0.694 0.670 0.695 0.721 0.747 0.721
TI Angina 0.748 0.657 0.749 0.916 0.720 0.900
TI Arthritis 0.729 0.582 0.728 0.646 0.554 0.658
TI Cancer 0.549 0.546 0.546 0.579 0.572 0.579
TI Cataract 0.706 0.686 0.696 0.724 0.701 0.728
TI Diabetes 0.775 0.762 0.772 0.831 0.745 0.829
TI HBP 0.678 0.552 0.672 0.765 0.548 0.757
TI Heartattack 0.751 0.671 0.753 0.878 0.717 0.863
TI Ministroke 0.712 0.635 0.711 0.735 0.608 0.745
TI Osteoporosis 0.677 0.635 0.675 0.807 0.748 0.812
TI Stroke 0.728 0.588 0.722 0.800 0.646 0.769
AvgRank E-Nurse 1.3 2.8 1.9 2.1 2.2 1.8
AvgRank E-Core 1.9 2.3 1.9 2.4 1.7 2.0
AvgRank TILDA 1.2 3.0 1.9 1.5 3.0 1.6
AvgRank Overall 1.5 2.7 1.9 2.0 2.3 1.8
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Table B.20: AvgDiffAgeMean Accuracy and GMean results for the Scenario 2
experiments with Random Forest classifiers. The best result for each row is bold-
faced, and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or
TILDA) and overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.684 0.670 0.679 0.693 0.678 0.692
EN Arthritis 0.635 0.632 0.633 0.627 0.626 0.625
EN Cataract 0.654 0.650 0.652 0.670 0.667 0.670
EN Dementia 0.729 0.716 0.737 0.719 0.719 0.727
EN Diabetes 0.845 0.834 0.842 0.854 0.835 0.849
EN HBP 0.690 0.676 0.691 0.698 0.684 0.700
EN Heartattack 0.702 0.689 0.696 0.719 0.700 0.718
EN Osteoporosis 0.654 0.653 0.656 0.672 0.679 0.674
EN Parkinsons 0.629 0.633 0.613 0.669 0.671 0.624
EN Stroke 0.674 0.657 0.671 0.697 0.673 0.688
EC Angina 0.711 0.699 0.706 0.717 0.717 0.724
EC Arthritis 0.736 0.739 0.738 0.733 0.735 0.734
EC Cataract 0.641 0.671 0.651 0.661 0.694 0.676
EC Dementia 0.764 0.747 0.761 0.767 0.793 0.769
EC Diabetes 0.684 0.701 0.689 0.710 0.715 0.714
EC HBP 0.649 0.653 0.653 0.651 0.656 0.657
EC Heartattack 0.679 0.671 0.685 0.685 0.700 0.690
EC Osteoporosis 0.698 0.681 0.697 0.688 0.695 0.681
EC Parkinsons 0.697 0.672 0.692 0.695 0.670 0.672
EC Stroke 0.695 0.674 0.696 0.707 0.707 0.708
TI Angina 0.756 0.660 0.756 0.828 0.688 0.821
TI Arthritis 0.703 0.574 0.707 0.686 0.568 0.692
TI Cancer 0.550 0.547 0.548 0.564 0.559 0.562
TI Cataract 0.707 0.688 0.699 0.715 0.694 0.712
TI Diabetes 0.779 0.761 0.776 0.803 0.754 0.800
TI HBP 0.711 0.551 0.704 0.720 0.550 0.713
TI Heartattack 0.756 0.672 0.757 0.812 0.694 0.806
TI Ministroke 0.712 0.635 0.711 0.724 0.621 0.728
TI Osteoporosis 0.689 0.646 0.688 0.739 0.689 0.740
TI Stroke 0.728 0.589 0.723 0.763 0.617 0.745
AvgRank E-Nurse 1.4 2.8 1.8 1.6 2.5 2.0
AvgRank E-Core 2.0 2.3 1.8 2.6 1.6 1.8
AvgRank TILDA 1.3 3.0 1.8 1.3 3.0 1.7
AvgRank Overall 1.6 2.7 1.8 1.8 2.4 1.8
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B.6 Results for Percentile

The last CTF proposed in this thesis is the most complex one regarding its defi-

nition, but it simply represents, for each conceptual feature, where the last value

measured for an individual measures up when compared to other individuals of

the same age. The highest percentile values indicate that the individual’s mea-

surement were the highest among individuals of that age, and vice-versa for the

lowest percentile values, which can be interesting trends to consider in classifica-

tion problems. The Percentile results for Scenario 1 are shown in Tables B.21 (for

Sensitivity and Specificity) and B.22 (for Accuracy and GMean). The results for

Scenario 2 are shown in Tables B.23 (for Sensitivity and Specificity) and B.24 (for

Accuracy and GMean).

The Scenario 1 results for Percentile had the BL+CTFs feature set achieving

the best overall average rank for all 4 metrics. The CTFs-only set tied with

BL+CTFs for the smallest Sensitivity rank for Elsa-core datasets (1.9), and had

the smallest GMean rank for Elsa-core datasets (1.6), this being the first time

this feature set had competitive results in Scenario 1. The Friedman test p-values

for Scenario 1 were 0.0291, 8E−5, 0.0082 and 0.0004 for Sensitivity, Specificity,

Accuracy and GMean, respectively. In the Nemenyi post-hoc tests, for Sensitivity

the only pair with a significant p-value was BL+CTFs and CTFs-only, which

got 0.0221. For Specificity the significant p-values were 0.0018 for Base-el and

CTFs-only, and 0.001 for BL+CTFs and CTFs-only. For Accuracy, again, only

BL+CTFs and CTFs-only got a significant result of 0.0068. Same for GMean,

with p-value 0.001 in the comparison between BL+CTFs and CTFs-only.

The Scenario 2 results had BL+CTFs still having the smallest average rank

values across all 4 metrics, but the Base-el-in approach tied with it for both

Accuracy and GMean. The CTFs-in had the smallest average rank for Specificity

in Elsa-core datasets, and tied with the Base-el-in for the GMean metric, also

in Elsa-core datasets (rank 2.0, considerably close to BL+CTFs’ 2.1, so this was

almost a three-way tie). The Friedman test p-values for Scenario 2 had significant

p-values 0.0092, 0.1715, 0.0273 and 0.0273 for Sensitivity, Specificity Accuracy

and GMean, respectively, so we did not run the post-hoc test for Specificity. In

the Nemenyi post-hoc tests, the Sensitivity comparisons that got a significant

p-value were Base-el-in and CTFs-in, with p-value 0.0377, and BL+CTFs and
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CTFs-in, with p-value 0.0152. For the Accuracy and GMean post-hoc tests, none

of the pairwise comparisons got significant p-values, so the null hypothesis that

the feature sets’s performances were different could not be rejected.

The Percentile results also show a promising CTF, especially considering that

it managed to get good results by itself (CTFs-only set) in Scenario 1, without

the added ineligible features to boost the predictive accuracy of its models. We

believe that the Percentile feature could be used by health experts to get additional

information when diagnosing a patient, so it is encouraging to see that it had an

impact on the predictive accuracy of some models, although it seems situational

enough that this impact was not positive across all experiments.
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Table B.21: Percentile Sensitivity and Specificity results for the Scenario 1 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

Sensitivity Specificity
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.672 0.653 0.672 0.729 0.690 0.729
EN Arthritis 0.671 0.655 0.664 0.579 0.572 0.585
EN Cataract 0.667 0.644 0.669 0.646 0.614 0.649
EN Dementia 0.714 0.722 0.721 0.743 0.689 0.743
EN Diabetes 0.844 0.835 0.843 0.864 0.851 0.858
EN HBP 0.619 0.629 0.623 0.701 0.685 0.694
EN Heartattack 0.692 0.678 0.687 0.726 0.688 0.696
EN Osteoporosis 0.647 0.613 0.646 0.702 0.694 0.700
EN Parkinsons 0.637 0.637 0.648 0.667 0.591 0.606
EN Stroke 0.669 0.659 0.672 0.727 0.667 0.724
EC Angina 0.677 0.677 0.676 0.744 0.733 0.779
EC Arthritis 0.696 0.713 0.708 0.705 0.696 0.697
EC Cataract 0.564 0.564 0.577 0.622 0.705 0.691
EC Dementia 0.763 0.768 0.768 0.764 0.783 0.783
EC Diabetes 0.635 0.652 0.640 0.742 0.742 0.754
EC HBP 0.583 0.612 0.600 0.648 0.653 0.664
EC Heartattack 0.639 0.650 0.653 0.723 0.694 0.701
EC Osteoporosis 0.660 0.653 0.658 0.638 0.673 0.669
EC Parkinsons 0.702 0.690 0.687 0.667 0.747 0.733
EC Stroke 0.673 0.669 0.676 0.714 0.736 0.718
TI Angina 0.715 0.672 0.703 0.820 0.752 0.812
TI Arthritis 0.665 0.670 0.678 0.629 0.604 0.645
TI Cancer 0.509 0.534 0.529 0.543 0.487 0.520
TI Cataract 0.664 0.712 0.702 0.688 0.669 0.713
TI Diabetes 0.734 0.684 0.735 0.761 0.732 0.777
TI HBP 0.631 0.608 0.633 0.721 0.640 0.712
TI Heartattack 0.732 0.700 0.736 0.785 0.751 0.824
TI Ministroke 0.677 0.654 0.673 0.706 0.647 0.735
TI Osteoporosis 0.626 0.617 0.637 0.729 0.657 0.727
TI Stroke 0.701 0.648 0.685 0.662 0.631 0.646
AvgRank E-Nurse 1.8 2.6 1.7 1.3 3.0 1.7
AvgRank E-Core 2.3 1.9 1.9 2.5 1.9 1.7
AvgRank TILDA 2.0 2.5 1.5 1.5 3.0 1.5
AvgRank Overall 2.0 2.3 1.7 1.8 2.6 1.6
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Table B.22: Percentile Accuracy and GMean results for the Scenario 1 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

Accuracy GMean
Base-el CTFs-only BL+CTFs Base-el CTFs-only BL+CTFs

EN Angina 0.674 0.655 0.674 0.700 0.671 0.700
EN Arthritis 0.632 0.620 0.630 0.623 0.612 0.623
EN Cataract 0.660 0.634 0.663 0.656 0.629 0.659
EN Dementia 0.715 0.721 0.721 0.729 0.705 0.732
EN Diabetes 0.847 0.837 0.845 0.854 0.843 0.851
EN HBP 0.652 0.651 0.652 0.659 0.656 0.658
EN Heartattack 0.694 0.678 0.687 0.709 0.683 0.691
EN Osteoporosis 0.652 0.621 0.651 0.674 0.652 0.672
EN Parkinsons 0.637 0.637 0.647 0.652 0.614 0.627
EN Stroke 0.672 0.659 0.675 0.697 0.663 0.698
EC Angina 0.680 0.679 0.679 0.710 0.705 0.725
EC Arthritis 0.700 0.706 0.703 0.701 0.704 0.702
EC Cataract 0.581 0.606 0.611 0.593 0.631 0.631
EC Dementia 0.763 0.768 0.768 0.764 0.775 0.775
EC Diabetes 0.649 0.663 0.654 0.686 0.696 0.695
EC HBP 0.608 0.628 0.625 0.615 0.632 0.631
EC Heartattack 0.644 0.653 0.656 0.680 0.672 0.676
EC Osteoporosis 0.658 0.654 0.659 0.649 0.663 0.663
EC Parkinsons 0.702 0.690 0.687 0.684 0.718 0.710
EC Stroke 0.675 0.673 0.678 0.693 0.702 0.697
TI Angina 0.720 0.675 0.708 0.766 0.711 0.756
TI Arthritis 0.654 0.650 0.668 0.647 0.636 0.661
TI Cancer 0.511 0.532 0.528 0.526 0.510 0.524
TI Cataract 0.666 0.708 0.703 0.676 0.690 0.708
TI Diabetes 0.736 0.688 0.737 0.747 0.708 0.755
TI HBP 0.665 0.620 0.663 0.675 0.624 0.671
TI Heartattack 0.734 0.702 0.739 0.758 0.725 0.779
TI Ministroke 0.677 0.654 0.674 0.691 0.650 0.703
TI Osteoporosis 0.636 0.620 0.645 0.676 0.637 0.681
TI Stroke 0.701 0.648 0.685 0.681 0.639 0.666
AvgRank E-Nurse 1.7 2.8 1.6 1.4 3.0 1.6
AvgRank E-Core 2.4 1.9 1.7 2.7 1.6 1.8
AvgRank TILDA 1.8 2.6 1.6 1.7 2.9 1.4
AvgRank Overall 2.0 2.4 1.6 1.9 2.5 1.6
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Table B.23: Percentile Sensitivity and Specificity results for the Scenario 2 exper-
iments with Random Forest classifiers. The best result for each row is boldfaced,
and the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA)
and overall are presented in the last 4 rows of the Table.

SENSITIVITY SPECIFICITY
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.666 0.674 0.673 0.736 0.729 0.736
EN Arthritis 0.671 0.661 0.665 0.586 0.590 0.580
EN Cataract 0.642 0.630 0.656 0.704 0.723 0.692
EN Dementia 0.709 0.749 0.721 0.757 0.696 0.784
EN Diabetes 0.843 0.838 0.845 0.857 0.858 0.860
EN HBP 0.622 0.625 0.626 0.698 0.690 0.704
EN Heartattack 0.690 0.687 0.699 0.756 0.723 0.723
EN Osteoporosis 0.649 0.634 0.643 0.714 0.703 0.719
EN Parkinsons 0.660 0.666 0.666 0.682 0.697 0.682
EN Stroke 0.663 0.672 0.674 0.720 0.694 0.722
EC Angina 0.694 0.682 0.685 0.775 0.775 0.786
EC Arthritis 0.727 0.720 0.727 0.693 0.692 0.690
EC Cataract 0.629 0.622 0.609 0.752 0.762 0.763
EC Dementia 0.780 0.773 0.783 0.826 0.832 0.839
EC Diabetes 0.642 0.649 0.643 0.749 0.763 0.761
EC HBP 0.622 0.632 0.632 0.664 0.666 0.661
EC Heartattack 0.668 0.662 0.671 0.737 0.732 0.732
EC Osteoporosis 0.678 0.674 0.681 0.738 0.730 0.713
EC Parkinsons 0.714 0.714 0.705 0.720 0.787 0.760
EC Stroke 0.687 0.678 0.685 0.736 0.766 0.745
TI Angina 0.719 0.693 0.708 0.804 0.776 0.820
TI Arthritis 0.680 0.670 0.683 0.636 0.610 0.640
TI Cancer 0.541 0.539 0.539 0.536 0.533 0.533
TI Cataract 0.717 0.723 0.711 0.730 0.703 0.734
TI Diabetes 0.788 0.780 0.778 0.803 0.784 0.797
TI HBP 0.635 0.625 0.640 0.721 0.679 0.715
TI Heartattack 0.747 0.727 0.741 0.795 0.780 0.800
TI Ministroke 0.679 0.671 0.673 0.716 0.686 0.745
TI Osteoporosis 0.654 0.653 0.660 0.792 0.781 0.775
TI Stroke 0.702 0.652 0.693 0.708 0.631 0.677
AvgRank E-Nurse 2.3 2.3 1.5 2.0 2.3 1.8
AvgRank E-Core 1.8 2.4 1.8 2.3 1.7 2.1
AvgRank TILDA 1.4 2.7 2.0 1.5 2.9 1.7
AvgRank Overall 1.8 2.4 1.7 1.9 2.3 1.8
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Table B.24: Percentile Accuracy and GMean results for the Scenario 2 experiments
with Random Forest classifiers. The best result for each row is boldfaced, and
the average ranks per type of dataset (ELSA-Nurse, ELSA-Core or TILDA) and
overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Base-el-in CTFs-in BL+CTFs Base-el-in CTFs-in BL+CTFs

EN Angina 0.669 0.676 0.675 0.700 0.701 0.704
EN Arthritis 0.635 0.631 0.629 0.627 0.624 0.621
EN Cataract 0.663 0.660 0.667 0.673 0.674 0.673
EN Dementia 0.710 0.747 0.722 0.733 0.722 0.752
EN Diabetes 0.845 0.841 0.847 0.850 0.848 0.852
EN HBP 0.653 0.651 0.657 0.659 0.656 0.664
EN Heartattack 0.694 0.689 0.700 0.722 0.705 0.711
EN Osteoporosis 0.655 0.641 0.650 0.681 0.668 0.680
EN Parkinsons 0.661 0.666 0.667 0.671 0.681 0.674
EN Stroke 0.667 0.673 0.676 0.691 0.682 0.697
EC Angina 0.697 0.685 0.689 0.734 0.727 0.734
EC Arthritis 0.713 0.709 0.712 0.710 0.706 0.708
EC Cataract 0.665 0.664 0.654 0.688 0.688 0.682
EC Dementia 0.781 0.774 0.784 0.803 0.802 0.810
EC Diabetes 0.656 0.663 0.658 0.693 0.703 0.699
EC HBP 0.638 0.645 0.643 0.643 0.649 0.646
EC Heartattack 0.672 0.666 0.674 0.702 0.696 0.701
EC Osteoporosis 0.683 0.679 0.684 0.707 0.701 0.697
EC Parkinsons 0.714 0.715 0.706 0.717 0.749 0.732
EC Stroke 0.690 0.683 0.689 0.711 0.721 0.714
TI Angina 0.723 0.697 0.713 0.760 0.733 0.762
TI Arthritis 0.666 0.651 0.670 0.658 0.639 0.661
TI Cancer 0.541 0.539 0.538 0.539 0.536 0.536
TI Cataract 0.718 0.721 0.713 0.724 0.713 0.723
TI Diabetes 0.789 0.781 0.780 0.795 0.782 0.788
TI HBP 0.668 0.645 0.669 0.677 0.651 0.677
TI Heartattack 0.749 0.729 0.743 0.771 0.753 0.770
TI Ministroke 0.679 0.671 0.675 0.697 0.678 0.708
TI Osteoporosis 0.667 0.665 0.671 0.720 0.714 0.716
TI Stroke 0.702 0.652 0.693 0.705 0.641 0.685
AvgRank E-Nurse 2.2 2.3 1.5 2.0 2.4 1.7
AvgRank E-Core 1.8 2.3 1.9 2.0 2.0 2.1
AvgRank TILDA 1.4 2.6 2.0 1.4 3.0 1.7
AvgRank Overall 1.8 2.4 1.8 1.8 2.4 1.8
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Appendix C

Constructed Feature Experiments

with C4.5 Decision Trees

In Tables C.1 to C.24, we report on the individual CTF experiments results using

the C4.5 decision tree classifier, instead of the Random Forest classifier. For

each CTF, there are four tables, reporting Sensitivity and Specificity results, then

Accuracy and GMean results, for scenarios 1 and 2, in this order. The setup is

exactly the same for these experiments, with two scenarios (i.e., with and without

ineligible features in the dataset) comparing three feature sets, namely a Baseline

set with only the features used to create the CTFs, a CTFs-only set without

original features, and a BL+CTFs set combining both original and constructed

features.

Overall, in the decision tree experiments the baseline approach outperformed

the CTFs-only and BL+CTFs feature sets in the majority of the cases. There is

still little difference between the baseline and the proposed approach of adding

constructed features to the original feature set (with the latter getting the smallest

average ranks in some cases), but it seems that the added CTFs did not have the

desired effect in these experiments. This points to a need for further developing

CTFs for them to be able to compete on equal grounds with all original features,

as in the C4.5 decision tree every single feature has its information gain tested in

every node, and it seems like original features tend to be selected more often in this

case. Note that, in our RF experiments in Chapter 5, we saw that constructed

features were selected among the top-ranked features, and tended to improve

predictive accuracy results.
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Table C.1: Diff Sensitivity and Specificity results for the Scenario 1 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.623 0.553 0.623 0.535 0.531 0.523
EN Arthritis 0.570 0.594 0.563 0.540 0.526 0.556
EN Cataract 0.583 0.618 0.591 0.575 0.557 0.577
EN Dementia 0.670 0.561 0.678 0.649 0.581 0.622
EN Diabetes 0.809 0.682 0.813 0.797 0.584 0.789
EN HBP 0.601 0.609 0.604 0.574 0.520 0.574
EN Heartattack 0.636 0.624 0.649 0.599 0.539 0.594
EN Osteoporosis 0.583 0.519 0.589 0.610 0.630 0.581
EN Parkinsons 0.560 0.526 0.555 0.500 0.561 0.636
EN Stroke 0.610 0.657 0.617 0.637 0.496 0.625
EC Angina 0.684 0.608 0.666 0.681 0.533 0.691
EC Arthritis 0.731 0.712 0.733 0.674 0.618 0.649
EC Cataract 0.610 0.610 0.598 0.547 0.499 0.544
EC Dementia 0.738 0.729 0.705 0.708 0.652 0.696
EC Diabetes 0.678 0.594 0.680 0.667 0.545 0.661
EC HBP 0.636 0.626 0.629 0.596 0.498 0.570
EC Heartattack 0.657 0.646 0.649 0.619 0.517 0.612
EC Osteoporosis 0.644 0.656 0.613 0.607 0.572 0.611
EC Parkinsons 0.620 0.679 0.643 0.787 0.613 0.707
EC Stroke 0.665 0.655 0.669 0.616 0.537 0.590
TI Angina 0.725 0.629 0.719 0.772 0.676 0.684
TI Arthritis 0.598 0.640 0.584 0.595 0.576 0.591
TI Cancer 0.533 0.532 0.517 0.507 0.523 0.559
TI Cataract 0.673 0.615 0.675 0.655 0.519 0.665
TI Diabetes 0.750 0.654 0.750 0.777 0.644 0.748
TI HBP 0.634 0.581 0.618 0.626 0.640 0.620
TI Heartattack 0.749 0.675 0.710 0.761 0.717 0.761
TI Ministroke 0.674 0.603 0.667 0.647 0.608 0.578
TI Osteoporosis 0.661 0.601 0.655 0.648 0.567 0.674
TI Stroke 0.625 0.615 0.625 0.677 0.508 0.569
AvgRank E-Nurse 2.2 2.2 1.7 1.6 2.6 1.9
AvgRank E-Core 1.7 2.4 2.0 1.2 3.0 1.8
AvgRank TILDA 1.3 2.7 2.0 1.6 2.6 1.9
AvgRank Overall 1.7 2.4 1.9 1.4 2.7 1.8
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Table C.2: Diff Accuracy and GMean results for the Scenario 1 experiments with
J48 Decision Tree classifiers. The best result for each row is boldfaced, and the
average ranks per dataset and overall are presented in the last 4 rows of the Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.620 0.552 0.620 0.577 0.542 0.571
EN Arthritis 0.557 0.565 0.560 0.555 0.559 0.560
EN Cataract 0.581 0.598 0.586 0.579 0.587 0.584
EN Dementia 0.669 0.561 0.677 0.659 0.571 0.649
EN Diabetes 0.807 0.669 0.810 0.803 0.631 0.801
EN HBP 0.590 0.573 0.592 0.587 0.563 0.589
EN Heartattack 0.634 0.619 0.646 0.617 0.580 0.621
EN Osteoporosis 0.585 0.529 0.588 0.596 0.572 0.585
EN Parkinsons 0.560 0.526 0.556 0.529 0.543 0.594
EN Stroke 0.611 0.647 0.617 0.623 0.571 0.621
EC Angina 0.684 0.606 0.667 0.682 0.570 0.678
EC Arthritis 0.709 0.675 0.700 0.702 0.663 0.690
EC Cataract 0.591 0.577 0.582 0.578 0.552 0.570
EC Dementia 0.737 0.727 0.705 0.723 0.689 0.700
EC Diabetes 0.677 0.588 0.678 0.673 0.569 0.671
EC HBP 0.621 0.576 0.606 0.616 0.558 0.599
EC Heartattack 0.655 0.640 0.647 0.638 0.578 0.630
EC Osteoporosis 0.641 0.649 0.613 0.625 0.613 0.612
EC Parkinsons 0.622 0.678 0.644 0.699 0.645 0.674
EC Stroke 0.662 0.649 0.664 0.640 0.593 0.628
TI Angina 0.727 0.631 0.717 0.748 0.652 0.701
TI Arthritis 0.597 0.620 0.586 0.597 0.607 0.587
TI Cancer 0.532 0.532 0.520 0.520 0.528 0.538
TI Cataract 0.671 0.607 0.674 0.664 0.565 0.670
TI Diabetes 0.752 0.654 0.750 0.763 0.649 0.749
TI HBP 0.631 0.603 0.618 0.630 0.610 0.619
TI Heartattack 0.749 0.677 0.712 0.755 0.696 0.735
TI Ministroke 0.673 0.603 0.666 0.660 0.605 0.621
TI Osteoporosis 0.660 0.598 0.657 0.655 0.584 0.664
TI Stroke 0.626 0.614 0.625 0.651 0.559 0.597
AvgRank E-Nurse 2.2 2.4 1.5 1.8 2.6 1.6
AvgRank E-Core 1.5 2.5 2.0 1.0 2.9 2.1
AvgRank TILDA 1.3 2.7 2.1 1.5 2.7 1.8
AvgRank Overall 1.6 2.5 1.9 1.4 2.7 1.8
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Table C.3: Diff Sensitivity and Specificity results for the Scenario 2 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.618 0.572 0.615 0.593 0.570 0.535
EN Arthritis 0.566 0.588 0.558 0.552 0.579 0.560
EN Cataract 0.615 0.606 0.600 0.587 0.658 0.582
EN Dementia 0.675 0.658 0.684 0.655 0.703 0.669
EN Diabetes 0.810 0.645 0.812 0.797 0.614 0.779
EN HBP 0.604 0.576 0.604 0.577 0.556 0.590
EN Heartattack 0.652 0.601 0.653 0.611 0.613 0.589
EN Osteoporosis 0.605 0.589 0.593 0.610 0.641 0.592
EN Parkinsons 0.622 0.623 0.615 0.439 0.667 0.576
EN Stroke 0.610 0.614 0.622 0.613 0.582 0.618
EC Angina 0.667 0.604 0.677 0.712 0.607 0.691
EC Arthritis 0.729 0.697 0.737 0.660 0.646 0.647
EC Cataract 0.638 0.645 0.651 0.699 0.664 0.634
EC Dementia 0.732 0.752 0.723 0.826 0.739 0.758
EC Diabetes 0.682 0.580 0.669 0.665 0.539 0.666
EC HBP 0.629 0.591 0.610 0.614 0.545 0.607
EC Heartattack 0.655 0.616 0.646 0.635 0.594 0.626
EC Osteoporosis 0.665 0.673 0.680 0.682 0.620 0.669
EC Parkinsons 0.678 0.621 0.674 0.747 0.707 0.707
EC Stroke 0.658 0.624 0.651 0.618 0.624 0.607
TI Angina 0.731 0.658 0.732 0.768 0.636 0.716
TI Arthritis 0.589 0.583 0.595 0.592 0.588 0.590
TI Cancer 0.534 0.530 0.523 0.533 0.500 0.497
TI Cataract 0.612 0.640 0.602 0.603 0.644 0.565
TI Diabetes 0.699 0.739 0.701 0.701 0.761 0.699
TI HBP 0.642 0.594 0.621 0.623 0.579 0.638
TI Heartattack 0.719 0.676 0.710 0.737 0.659 0.766
TI Ministroke 0.667 0.616 0.661 0.676 0.510 0.627
TI Osteoporosis 0.628 0.639 0.619 0.635 0.646 0.632
TI Stroke 0.631 0.616 0.622 0.662 0.492 0.508
AvgRank E-Nurse 1.8 2.4 1.9 2.1 1.7 2.2
AvgRank E-Core 1.7 2.6 1.7 1.2 2.7 2.2
AvgRank TILDA 1.6 2.3 2.1 1.5 2.3 2.2
AvgRank Overall 1.7 2.4 1.9 1.6 2.2 2.2
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Table C.4: Diff Accuracy and GMean results for the Scenario 2 experiments with
J48 Decision Tree classifiers. The best result for each row is boldfaced, and the
average ranks per dataset and overall are presented in the last 4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.617 0.572 0.612 0.605 0.571 0.573
EN Arthritis 0.560 0.584 0.559 0.559 0.584 0.559
EN Cataract 0.606 0.623 0.594 0.601 0.631 0.591
EN Dementia 0.674 0.659 0.684 0.665 0.680 0.676
EN Diabetes 0.808 0.641 0.808 0.803 0.629 0.795
EN HBP 0.593 0.568 0.598 0.590 0.566 0.597
EN Heartattack 0.650 0.602 0.650 0.631 0.607 0.620
EN Osteoporosis 0.605 0.594 0.593 0.607 0.614 0.593
EN Parkinsons 0.621 0.623 0.614 0.523 0.644 0.595
EN Stroke 0.611 0.612 0.622 0.612 0.598 0.620
EC Angina 0.668 0.604 0.678 0.689 0.605 0.684
EC Arthritis 0.702 0.677 0.701 0.694 0.671 0.691
EC Cataract 0.656 0.651 0.646 0.668 0.654 0.643
EC Dementia 0.734 0.752 0.724 0.778 0.746 0.740
EC Diabetes 0.680 0.575 0.669 0.673 0.559 0.668
EC HBP 0.623 0.573 0.609 0.622 0.568 0.608
EC Heartattack 0.654 0.615 0.645 0.645 0.605 0.636
EC Osteoporosis 0.667 0.668 0.679 0.673 0.646 0.675
EC Parkinsons 0.679 0.622 0.674 0.712 0.663 0.690
EC Stroke 0.656 0.624 0.649 0.638 0.624 0.629
TI Angina 0.732 0.657 0.731 0.749 0.647 0.724
TI Arthritis 0.590 0.584 0.594 0.591 0.585 0.593
TI Cancer 0.534 0.528 0.522 0.534 0.515 0.510
TI Cataract 0.611 0.640 0.599 0.607 0.642 0.583
TI Diabetes 0.699 0.741 0.701 0.700 0.750 0.700
TI HBP 0.635 0.588 0.627 0.633 0.586 0.629
TI Heartattack 0.720 0.675 0.712 0.728 0.667 0.738
TI Ministroke 0.667 0.615 0.660 0.672 0.561 0.644
TI Osteoporosis 0.629 0.640 0.620 0.632 0.643 0.625
TI Stroke 0.631 0.615 0.620 0.646 0.551 0.562
AvgRank E-Nurse 1.8 2.2 2.0 2.0 2.0 2.1
AvgRank E-Core 1.4 2.6 2.0 1.1 2.8 2.1
AvgRank TILDA 1.5 2.3 2.2 1.6 2.3 2.2
AvgRank Overall 1.6 2.4 2.1 1.5 2.4 2.1
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Table C.5: Ratio Sensitivity and Specificity results for the Scenario 1 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.623 0.474 0.619 0.535 0.578 0.570
EN Arthritis 0.570 0.564 0.550 0.540 0.570 0.566
EN Cataract 0.583 0.520 0.595 0.575 0.658 0.571
EN Dementia 0.670 0.444 0.663 0.649 0.736 0.615
EN Diabetes 0.809 0.645 0.812 0.797 0.651 0.808
EN HBP 0.601 0.642 0.606 0.574 0.529 0.578
EN Heartattack 0.636 0.671 0.636 0.599 0.489 0.626
EN Osteoporosis 0.583 0.468 0.590 0.610 0.688 0.587
EN Parkinsons 0.560 0.704 0.566 0.500 0.318 0.606
EN Stroke 0.610 0.578 0.622 0.637 0.553 0.618
EC Angina 0.684 0.748 0.679 0.681 0.411 0.684
EC Arthritis 0.731 0.691 0.727 0.674 0.680 0.668
EC Cataract 0.610 0.520 0.601 0.547 0.644 0.553
EC Dementia 0.738 0.771 0.722 0.708 0.602 0.733
EC Diabetes 0.678 0.540 0.680 0.667 0.635 0.668
EC HBP 0.636 0.545 0.632 0.596 0.602 0.602
EC Heartattack 0.657 0.680 0.652 0.619 0.438 0.626
EC Osteoporosis 0.644 0.666 0.632 0.607 0.576 0.606
EC Parkinsons 0.620 0.693 0.624 0.787 0.360 0.773
EC Stroke 0.665 0.604 0.665 0.616 0.627 0.616
TI Angina 0.725 0.627 0.706 0.772 0.656 0.696
TI Arthritis 0.598 0.645 0.589 0.595 0.567 0.589
TI Cancer 0.533 0.539 0.515 0.507 0.507 0.543
TI Cataract 0.673 0.603 0.675 0.655 0.542 0.661
TI Diabetes 0.750 0.649 0.737 0.777 0.592 0.756
TI HBP 0.634 0.583 0.622 0.626 0.638 0.601
TI Heartattack 0.749 0.653 0.706 0.761 0.732 0.746
TI Ministroke 0.674 0.608 0.661 0.647 0.539 0.588
TI Osteoporosis 0.661 0.580 0.648 0.648 0.628 0.681
TI Stroke 0.625 0.594 0.616 0.677 0.538 0.615
AvgRank E-Nurse 2.0 2.3 1.8 2.1 2.0 1.9
AvgRank E-Core 1.8 2.0 2.3 2.1 2.3 1.7
AvgRank TILDA 1.3 2.6 2.1 1.5 2.8 1.8
AvgRank Overall 1.7 2.3 2.0 1.9 2.3 1.8
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Table C.6: Ratio Accuracy and GMean results for the Scenario 1 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.620 0.477 0.617 0.577 0.523 0.594
EN Arthritis 0.557 0.566 0.557 0.555 0.567 0.558
EN Cataract 0.581 0.565 0.587 0.579 0.585 0.583
EN Dementia 0.669 0.450 0.662 0.659 0.572 0.638
EN Diabetes 0.807 0.646 0.811 0.803 0.648 0.810
EN HBP 0.590 0.597 0.595 0.587 0.583 0.592
EN Heartattack 0.634 0.661 0.635 0.617 0.573 0.631
EN Osteoporosis 0.585 0.488 0.590 0.596 0.567 0.588
EN Parkinsons 0.560 0.701 0.566 0.529 0.473 0.586
EN Stroke 0.611 0.577 0.622 0.623 0.566 0.620
EC Angina 0.684 0.737 0.680 0.682 0.554 0.682
EC Arthritis 0.709 0.687 0.703 0.702 0.686 0.697
EC Cataract 0.591 0.556 0.587 0.578 0.579 0.577
EC Dementia 0.737 0.768 0.722 0.723 0.682 0.727
EC Diabetes 0.677 0.552 0.678 0.673 0.585 0.674
EC HBP 0.621 0.567 0.620 0.616 0.573 0.617
EC Heartattack 0.655 0.667 0.651 0.638 0.545 0.639
EC Osteoporosis 0.641 0.659 0.630 0.625 0.620 0.619
EC Parkinsons 0.622 0.690 0.625 0.699 0.500 0.694
EC Stroke 0.662 0.605 0.663 0.640 0.615 0.640
TI Angina 0.727 0.629 0.705 0.748 0.642 0.701
TI Arthritis 0.597 0.621 0.589 0.597 0.605 0.589
TI Cancer 0.532 0.538 0.517 0.520 0.523 0.529
TI Cataract 0.671 0.598 0.674 0.664 0.572 0.668
TI Diabetes 0.752 0.645 0.738 0.763 0.620 0.746
TI HBP 0.631 0.604 0.614 0.630 0.610 0.612
TI Heartattack 0.749 0.656 0.707 0.755 0.691 0.726
TI Ministroke 0.673 0.606 0.659 0.660 0.572 0.623
TI Osteoporosis 0.660 0.585 0.651 0.655 0.604 0.664
TI Stroke 0.626 0.593 0.616 0.651 0.565 0.616
AvgRank E-Nurse 2.2 2.2 1.7 1.9 2.6 1.5
AvgRank E-Core 1.8 2.0 2.2 1.6 2.7 1.7
AvgRank TILDA 1.3 2.6 2.1 1.5 2.7 1.8
AvgRank Overall 1.8 2.3 2.0 1.7 2.7 1.7
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Table C.7: Ratio Sensitivity and Specificity results for the Scenario 2 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.618 0.563 0.608 0.593 0.628 0.574
EN Arthritis 0.566 0.645 0.571 0.552 0.545 0.562
EN Cataract 0.615 0.609 0.610 0.587 0.714 0.587
EN Dementia 0.675 0.670 0.674 0.655 0.689 0.676
EN Diabetes 0.810 0.658 0.809 0.797 0.611 0.798
EN HBP 0.604 0.584 0.607 0.577 0.596 0.582
EN Heartattack 0.652 0.607 0.645 0.611 0.584 0.628
EN Osteoporosis 0.605 0.555 0.602 0.610 0.749 0.612
EN Parkinsons 0.622 0.608 0.617 0.439 0.621 0.530
EN Stroke 0.610 0.589 0.633 0.613 0.634 0.580
EC Angina 0.667 0.608 0.687 0.712 0.596 0.677
EC Arthritis 0.729 0.716 0.725 0.660 0.623 0.652
EC Cataract 0.638 0.647 0.638 0.699 0.711 0.682
EC Dementia 0.732 0.733 0.724 0.826 0.839 0.820
EC Diabetes 0.682 0.577 0.678 0.665 0.519 0.661
EC HBP 0.629 0.597 0.625 0.614 0.539 0.613
EC Heartattack 0.655 0.587 0.657 0.635 0.676 0.608
EC Osteoporosis 0.665 0.630 0.670 0.682 0.689 0.677
EC Parkinsons 0.678 0.569 0.676 0.747 0.693 0.720
EC Stroke 0.658 0.591 0.661 0.618 0.688 0.596
TI Angina 0.731 0.663 0.713 0.768 0.616 0.752
TI Arthritis 0.589 0.611 0.587 0.592 0.573 0.593
TI Cancer 0.534 0.521 0.520 0.533 0.507 0.490
TI Cataract 0.612 0.650 0.600 0.603 0.651 0.590
TI Diabetes 0.699 0.733 0.705 0.701 0.761 0.694
TI HBP 0.642 0.588 0.625 0.623 0.582 0.624
TI Heartattack 0.719 0.668 0.726 0.737 0.683 0.741
TI Ministroke 0.667 0.612 0.652 0.676 0.500 0.618
TI Osteoporosis 0.628 0.660 0.622 0.635 0.639 0.648
TI Stroke 0.631 0.597 0.621 0.662 0.569 0.554
AvgRank E-Nurse 1.4 2.8 1.8 2.5 1.6 2.0
AvgRank E-Core 1.7 2.6 1.8 1.5 2.0 2.5
AvgRank TILDA 1.6 2.1 2.3 1.7 2.3 2.0
AvgRank Overall 1.6 2.5 2.0 1.9 2.0 2.2
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Table C.8: Ratio Accuracy and GMean results for the Scenario 2 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.617 0.565 0.607 0.605 0.594 0.591
EN Arthritis 0.560 0.602 0.567 0.559 0.593 0.567
EN Cataract 0.606 0.644 0.603 0.601 0.660 0.599
EN Dementia 0.674 0.670 0.674 0.665 0.680 0.675
EN Diabetes 0.808 0.651 0.808 0.803 0.634 0.804
EN HBP 0.593 0.589 0.597 0.590 0.590 0.594
EN Heartattack 0.650 0.605 0.644 0.631 0.595 0.636
EN Osteoporosis 0.605 0.573 0.603 0.607 0.645 0.607
EN Parkinsons 0.621 0.608 0.616 0.523 0.614 0.572
EN Stroke 0.611 0.591 0.629 0.612 0.611 0.605
EC Angina 0.668 0.607 0.686 0.689 0.602 0.682
EC Arthritis 0.702 0.679 0.696 0.694 0.668 0.688
EC Cataract 0.656 0.666 0.651 0.668 0.678 0.660
EC Dementia 0.734 0.735 0.726 0.778 0.784 0.770
EC Diabetes 0.680 0.569 0.676 0.673 0.547 0.670
EC HBP 0.623 0.575 0.621 0.622 0.568 0.619
EC Heartattack 0.654 0.592 0.654 0.645 0.630 0.632
EC Osteoporosis 0.667 0.635 0.671 0.673 0.659 0.674
EC Parkinsons 0.679 0.570 0.676 0.712 0.628 0.697
EC Stroke 0.656 0.596 0.658 0.638 0.638 0.628
TI Angina 0.732 0.661 0.714 0.749 0.639 0.732
TI Arthritis 0.590 0.599 0.589 0.591 0.592 0.590
TI Cancer 0.534 0.521 0.519 0.534 0.514 0.505
TI Cataract 0.611 0.650 0.599 0.607 0.650 0.595
TI Diabetes 0.699 0.735 0.704 0.700 0.747 0.699
TI HBP 0.635 0.586 0.625 0.633 0.585 0.625
TI Heartattack 0.720 0.669 0.727 0.728 0.676 0.734
TI Ministroke 0.667 0.610 0.652 0.672 0.553 0.635
TI Osteoporosis 0.629 0.658 0.624 0.632 0.649 0.635
TI Stroke 0.631 0.597 0.620 0.646 0.583 0.586
AvgRank E-Nurse 1.6 2.6 1.8 2.2 1.8 2.1
AvgRank E-Core 1.6 2.6 1.9 1.4 2.5 2.2
AvgRank TILDA 1.6 2.1 2.3 1.6 2.1 2.3
AvgRank Overall 1.6 2.4 2.0 1.7 2.1 2.2
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Table C.9: Monotonicity Sensitivity and Specificity results for the Scenario 1
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.611 0.571 0.618 0.570 0.508 0.628
EN Arthritis 0.558 0.561 0.557 0.555 0.538 0.566
EN Cataract 0.594 0.586 0.604 0.573 0.647 0.593
EN Dementia 0.643 0.663 0.684 0.655 0.649 0.662
EN Diabetes 0.812 0.641 0.808 0.792 0.628 0.795
EN HBP 0.624 0.561 0.623 0.615 0.543 0.603
EN Heartattack 0.643 0.601 0.643 0.631 0.554 0.641
EN Osteoporosis 0.598 0.547 0.609 0.622 0.555 0.616
EN Parkinsons 0.587 0.585 0.580 0.515 0.545 0.636
EN Stroke 0.630 0.627 0.618 0.594 0.601 0.608
EC Angina 0.688 0.668 0.689 0.660 0.544 0.681
EC Arthritis 0.724 0.692 0.721 0.679 0.569 0.674
EC Cataract 0.599 0.612 0.598 0.571 0.523 0.572
EC Dementia 0.684 0.715 0.723 0.714 0.503 0.658
EC Diabetes 0.672 0.636 0.675 0.684 0.551 0.681
EC HBP 0.621 0.637 0.613 0.590 0.516 0.584
EC Heartattack 0.636 0.645 0.625 0.576 0.501 0.610
EC Osteoporosis 0.651 0.646 0.630 0.569 0.521 0.592
EC Parkinsons 0.642 0.677 0.653 0.573 0.560 0.600
EC Stroke 0.665 0.648 0.658 0.600 0.535 0.611
TI Angina 0.745 0.621 0.744 0.732 0.500 0.772
TI Arthritis 0.603 0.598 0.626 0.614 0.533 0.613
TI Cancer 0.533 0.530 0.528 0.543 0.477 0.543
TI Cataract 0.691 0.584 0.681 0.628 0.533 0.651
TI Diabetes 0.768 0.539 0.768 0.758 0.558 0.761
TI HBP 0.652 0.553 0.649 0.640 0.515 0.634
TI Heartattack 0.760 0.547 0.751 0.751 0.459 0.751
TI Ministroke 0.684 0.607 0.691 0.676 0.471 0.725
TI Osteoporosis 0.671 0.567 0.666 0.650 0.516 0.648
TI Stroke 0.687 0.612 0.630 0.646 0.523 0.662
AvgRank E-Nurse 1.7 2.5 1.9 2.1 2.6 1.3
AvgRank E-Core 1.9 2.0 2.1 1.6 3.0 1.4
AvgRank TILDA 1.3 2.9 1.9 1.6 3.0 1.4
AvgRank Overall 1.6 2.5 1.9 1.8 2.9 1.4
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Table C.10: Monotonicity Accuracy and GMean results for the Scenario 1 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.609 0.569 0.618 0.590 0.538 0.623
EN Arthritis 0.557 0.551 0.561 0.557 0.550 0.562
EN Cataract 0.587 0.606 0.600 0.583 0.615 0.598
EN Dementia 0.644 0.663 0.684 0.649 0.656 0.673
EN Diabetes 0.809 0.639 0.806 0.802 0.635 0.801
EN HBP 0.620 0.554 0.615 0.619 0.552 0.613
EN Heartattack 0.643 0.598 0.643 0.637 0.577 0.642
EN Osteoporosis 0.601 0.548 0.610 0.610 0.551 0.613
EN Parkinsons 0.586 0.585 0.580 0.550 0.565 0.607
EN Stroke 0.628 0.625 0.618 0.612 0.614 0.613
EC Angina 0.687 0.664 0.689 0.674 0.603 0.685
EC Arthritis 0.706 0.643 0.702 0.701 0.627 0.697
EC Cataract 0.591 0.585 0.590 0.585 0.565 0.585
EC Dementia 0.684 0.711 0.722 0.699 0.600 0.690
EC Diabetes 0.673 0.625 0.676 0.678 0.592 0.678
EC HBP 0.609 0.590 0.602 0.605 0.573 0.598
EC Heartattack 0.633 0.637 0.624 0.605 0.568 0.617
EC Osteoporosis 0.644 0.636 0.627 0.608 0.580 0.610
EC Parkinsons 0.641 0.676 0.653 0.606 0.616 0.626
EC Stroke 0.662 0.642 0.656 0.632 0.589 0.634
TI Angina 0.744 0.616 0.745 0.738 0.557 0.758
TI Arthritis 0.606 0.578 0.622 0.608 0.565 0.619
TI Cancer 0.533 0.527 0.529 0.538 0.503 0.535
TI Cataract 0.686 0.579 0.678 0.659 0.558 0.666
TI Diabetes 0.768 0.540 0.767 0.763 0.549 0.764
TI HBP 0.648 0.539 0.643 0.646 0.534 0.641
TI Heartattack 0.760 0.544 0.751 0.756 0.501 0.751
TI Ministroke 0.684 0.604 0.691 0.680 0.534 0.708
TI Osteoporosis 0.669 0.563 0.664 0.661 0.541 0.657
TI Stroke 0.687 0.611 0.630 0.666 0.566 0.646
AvgRank E-Nurse 1.8 2.5 1.8 2.2 2.4 1.4
AvgRank E-Core 1.7 2.4 1.9 1.7 2.9 1.4
AvgRank TILDA 1.3 3.0 1.7 1.5 3.0 1.5
AvgRank Overall 1.6 2.6 1.8 1.8 2.8 1.4
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Table C.11: Monotonicity Sensitivity and Specificity results for the Scenario 2
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.616 0.567 0.619 0.593 0.539 0.636
EN Arthritis 0.570 0.575 0.565 0.555 0.566 0.558
EN Cataract 0.591 0.635 0.610 0.584 0.659 0.604
EN Dementia 0.675 0.671 0.672 0.628 0.703 0.642
EN Diabetes 0.809 0.644 0.805 0.797 0.636 0.791
EN HBP 0.624 0.576 0.620 0.618 0.540 0.604
EN Heartattack 0.643 0.619 0.632 0.633 0.611 0.651
EN Osteoporosis 0.614 0.629 0.620 0.593 0.641 0.590
EN Parkinsons 0.631 0.618 0.628 0.500 0.561 0.500
EN Stroke 0.615 0.641 0.628 0.591 0.608 0.601
EC Angina 0.669 0.627 0.668 0.681 0.663 0.667
EC Arthritis 0.727 0.655 0.709 0.677 0.617 0.683
EC Cataract 0.647 0.631 0.642 0.653 0.721 0.626
EC Dementia 0.742 0.765 0.733 0.758 0.733 0.714
EC Diabetes 0.678 0.605 0.664 0.676 0.558 0.671
EC HBP 0.621 0.599 0.622 0.582 0.587 0.587
EC Heartattack 0.637 0.622 0.636 0.626 0.610 0.635
EC Osteoporosis 0.687 0.615 0.680 0.606 0.745 0.617
EC Parkinsons 0.664 0.599 0.616 0.547 0.667 0.613
EC Stroke 0.638 0.607 0.651 0.616 0.657 0.585
TI Angina 0.751 0.660 0.732 0.724 0.592 0.800
TI Arthritis 0.614 0.610 0.626 0.598 0.557 0.617
TI Cancer 0.547 0.569 0.537 0.572 0.507 0.543
TI Cataract 0.617 0.680 0.596 0.619 0.657 0.594
TI Diabetes 0.719 0.744 0.708 0.730 0.706 0.709
TI HBP 0.653 0.566 0.644 0.646 0.538 0.644
TI Heartattack 0.742 0.637 0.726 0.688 0.688 0.737
TI Ministroke 0.693 0.583 0.692 0.706 0.637 0.706
TI Osteoporosis 0.667 0.656 0.641 0.624 0.689 0.621
TI Stroke 0.682 0.656 0.639 0.631 0.492 0.585
AvgRank E-Nurse 1.8 2.2 2.0 2.3 1.8 2.0
AvgRank E-Core 1.3 2.8 1.9 2.0 2.0 2.1
AvgRank TILDA 1.4 2.2 2.4 1.6 2.6 1.9
AvgRank Overall 1.5 2.4 2.1 2.0 2.1 2.0
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Table C.12: Monotonicity Accuracy and GMean results for the Scenario 2 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.615 0.566 0.620 0.604 0.553 0.627
EN Arthritis 0.563 0.571 0.562 0.562 0.570 0.561
EN Cataract 0.589 0.643 0.608 0.587 0.647 0.607
EN Dementia 0.674 0.672 0.672 0.651 0.687 0.657
EN Diabetes 0.808 0.643 0.803 0.803 0.640 0.798
EN HBP 0.622 0.562 0.613 0.621 0.558 0.612
EN Heartattack 0.642 0.619 0.633 0.638 0.615 0.641
EN Osteoporosis 0.612 0.630 0.617 0.604 0.635 0.605
EN Parkinsons 0.630 0.618 0.626 0.562 0.589 0.560
EN Stroke 0.614 0.639 0.627 0.603 0.624 0.615
EC Angina 0.670 0.628 0.668 0.675 0.645 0.668
EC Arthritis 0.707 0.640 0.699 0.701 0.636 0.696
EC Cataract 0.649 0.658 0.637 0.650 0.674 0.634
EC Dementia 0.742 0.764 0.732 0.750 0.749 0.723
EC Diabetes 0.677 0.599 0.665 0.677 0.581 0.668
EC HBP 0.606 0.594 0.608 0.601 0.593 0.604
EC Heartattack 0.637 0.622 0.636 0.632 0.616 0.636
EC Osteoporosis 0.680 0.626 0.675 0.645 0.677 0.648
EC Parkinsons 0.663 0.599 0.616 0.603 0.632 0.614
EC Stroke 0.637 0.610 0.647 0.627 0.632 0.617
TI Angina 0.750 0.657 0.735 0.737 0.625 0.765
TI Arthritis 0.609 0.594 0.623 0.606 0.583 0.621
TI Cancer 0.548 0.565 0.538 0.559 0.537 0.540
TI Cataract 0.617 0.678 0.596 0.618 0.669 0.595
TI Diabetes 0.719 0.741 0.708 0.724 0.725 0.709
TI HBP 0.651 0.556 0.644 0.650 0.552 0.644
TI Heartattack 0.740 0.639 0.727 0.714 0.662 0.731
TI Ministroke 0.694 0.584 0.692 0.700 0.609 0.699
TI Osteoporosis 0.663 0.659 0.639 0.645 0.672 0.631
TI Stroke 0.682 0.655 0.638 0.656 0.568 0.611
AvgRank E-Nurse 1.8 2.2 2.1 2.2 1.8 2.0
AvgRank E-Core 1.4 2.6 2.0 1.8 2.1 2.1
AvgRank TILDA 1.4 2.2 2.4 1.6 2.4 2.0
AvgRank Overall 1.5 2.3 2.2 1.9 2.1 2.0
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Table C.13: DiffAgeMean Sensitivity and Specificity results for the Scenario 1
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.612 0.590 0.593 0.550 0.547 0.601
EN Arthritis 0.627 0.660 0.580 0.530 0.482 0.539
EN Cataract 0.607 0.600 0.583 0.565 0.530 0.584
EN Dementia 0.678 0.596 0.666 0.696 0.554 0.649
EN Diabetes 0.801 0.799 0.807 0.813 0.768 0.790
EN HBP 0.589 0.612 0.576 0.571 0.581 0.589
EN Heartattack 0.625 0.659 0.632 0.581 0.626 0.623
EN Osteoporosis 0.607 0.568 0.590 0.583 0.604 0.580
EN Parkinsons 0.561 0.552 0.590 0.515 0.455 0.470
EN Stroke 0.640 0.626 0.625 0.629 0.587 0.646
EC Angina 0.683 0.669 0.694 0.730 0.670 0.649
EC Arthritis 0.745 0.703 0.727 0.662 0.635 0.648
EC Cataract 0.594 0.640 0.635 0.578 0.633 0.690
EC Dementia 0.742 0.727 0.745 0.745 0.776 0.752
EC Diabetes 0.662 0.647 0.655 0.694 0.635 0.706
EC HBP 0.637 0.606 0.620 0.625 0.585 0.592
EC Heartattack 0.669 0.618 0.619 0.628 0.639 0.617
EC Osteoporosis 0.657 0.628 0.626 0.641 0.559 0.597
EC Parkinsons 0.621 0.699 0.660 0.813 0.587 0.773
EC Stroke 0.644 0.653 0.671 0.679 0.644 0.620
TI Angina 0.700 0.592 0.698 0.716 0.564 0.696
TI Arthritis 0.594 0.626 0.603 0.600 0.507 0.614
TI Cancer 0.521 0.604 0.522 0.507 0.474 0.493
TI Cataract 0.671 0.656 0.654 0.644 0.552 0.646
TI Diabetes 0.770 0.597 0.738 0.740 0.514 0.740
TI HBP 0.611 0.544 0.614 0.606 0.526 0.602
TI Heartattack 0.726 0.581 0.702 0.746 0.517 0.741
TI Ministroke 0.655 0.583 0.616 0.657 0.588 0.686
TI Osteoporosis 0.661 0.563 0.669 0.656 0.525 0.626
TI Stroke 0.622 0.544 0.597 0.662 0.523 0.600
AvgRank E-Nurse 1.6 2.2 2.2 1.9 2.5 1.6
AvgRank E-Core 1.8 2.4 1.8 1.6 2.3 2.1
AvgRank TILDA 1.6 2.5 1.9 1.4 3.0 1.7
AvgRank Overall 1.7 2.4 2.0 1.6 2.6 1.8
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Table C.14: DiffAgeMean Accuracy and GMean results for the Scenario 1 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.609 0.589 0.594 0.580 0.568 0.597
EN Arthritis 0.586 0.584 0.563 0.577 0.564 0.559
EN Cataract 0.593 0.577 0.584 0.586 0.564 0.584
EN Dementia 0.678 0.595 0.666 0.687 0.575 0.657
EN Diabetes 0.803 0.795 0.804 0.807 0.783 0.798
EN HBP 0.582 0.599 0.582 0.580 0.596 0.583
EN Heartattack 0.622 0.658 0.632 0.603 0.642 0.628
EN Osteoporosis 0.605 0.571 0.589 0.595 0.586 0.585
EN Parkinsons 0.560 0.551 0.588 0.537 0.501 0.526
EN Stroke 0.639 0.624 0.626 0.635 0.606 0.635
EC Angina 0.684 0.669 0.693 0.706 0.669 0.671
EC Arthritis 0.712 0.676 0.696 0.702 0.668 0.686
EC Cataract 0.589 0.638 0.652 0.586 0.637 0.662
EC Dementia 0.742 0.728 0.745 0.744 0.751 0.748
EC Diabetes 0.666 0.645 0.662 0.678 0.640 0.680
EC HBP 0.632 0.598 0.609 0.631 0.595 0.606
EC Heartattack 0.667 0.619 0.619 0.648 0.629 0.618
EC Osteoporosis 0.656 0.622 0.624 0.649 0.592 0.611
EC Parkinsons 0.622 0.698 0.661 0.711 0.640 0.715
EC Stroke 0.646 0.653 0.669 0.661 0.649 0.645
TI Angina 0.701 0.591 0.698 0.708 0.578 0.697
TI Arthritis 0.596 0.590 0.606 0.597 0.564 0.608
TI Cancer 0.521 0.597 0.521 0.514 0.535 0.508
TI Cataract 0.669 0.648 0.653 0.657 0.602 0.650
TI Diabetes 0.768 0.591 0.738 0.755 0.554 0.739
TI HBP 0.609 0.537 0.609 0.609 0.535 0.608
TI Heartattack 0.727 0.579 0.703 0.736 0.548 0.721
TI Ministroke 0.655 0.583 0.617 0.656 0.585 0.650
TI Osteoporosis 0.661 0.559 0.665 0.658 0.544 0.647
TI Stroke 0.622 0.544 0.597 0.641 0.534 0.598
AvgRank E-Nurse 1.6 2.5 2.0 1.6 2.4 2.1
AvgRank E-Core 1.8 2.6 1.7 1.6 2.5 1.9
AvgRank TILDA 1.4 2.8 1.8 1.2 2.8 2.0
AvgRank Overall 1.6 2.6 1.8 1.5 2.6 2.0
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Table C.15: DiffAgeMean Sensitivity and Specificity results for the Scenario 2
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.617 0.608 0.599 0.574 0.570 0.554
EN Arthritis 0.565 0.623 0.571 0.571 0.507 0.551
EN Cataract 0.603 0.604 0.589 0.588 0.609 0.587
EN Dementia 0.679 0.696 0.681 0.642 0.655 0.642
EN Diabetes 0.810 0.789 0.804 0.804 0.778 0.799
EN HBP 0.586 0.586 0.580 0.589 0.588 0.578
EN Heartattack 0.655 0.629 0.638 0.594 0.631 0.608
EN Osteoporosis 0.618 0.614 0.607 0.615 0.602 0.604
EN Parkinsons 0.633 0.648 0.628 0.485 0.545 0.485
EN Stroke 0.634 0.633 0.635 0.591 0.594 0.594
EC Angina 0.652 0.637 0.672 0.740 0.702 0.688
EC Arthritis 0.738 0.704 0.722 0.679 0.667 0.656
EC Cataract 0.646 0.664 0.657 0.721 0.652 0.672
EC Dementia 0.750 0.758 0.744 0.783 0.776 0.764
EC Diabetes 0.662 0.652 0.650 0.687 0.674 0.700
EC HBP 0.639 0.601 0.618 0.617 0.596 0.601
EC Heartattack 0.641 0.644 0.629 0.673 0.662 0.651
EC Osteoporosis 0.674 0.658 0.665 0.685 0.634 0.645
EC Parkinsons 0.676 0.651 0.655 0.760 0.707 0.760
EC Stroke 0.650 0.631 0.650 0.672 0.672 0.670
TI Angina 0.677 0.615 0.694 0.744 0.640 0.712
TI Arthritis 0.668 0.605 0.600 0.554 0.536 0.600
TI Cancer 0.511 0.563 0.517 0.493 0.503 0.553
TI Cataract 0.609 0.649 0.610 0.596 0.636 0.609
TI Diabetes 0.697 0.709 0.674 0.681 0.717 0.681
TI HBP 0.613 0.551 0.609 0.593 0.519 0.592
TI Heartattack 0.728 0.617 0.682 0.659 0.620 0.688
TI Ministroke 0.657 0.588 0.614 0.686 0.667 0.657
TI Osteoporosis 0.621 0.663 0.612 0.663 0.652 0.604
TI Stroke 0.599 0.522 0.612 0.569 0.523 0.569
AvgRank E-Nurse 1.8 1.9 2.4 1.8 1.9 2.4
AvgRank E-Core 1.6 2.3 2.2 1.2 2.5 2.4
AvgRank TILDA 1.8 2.1 2.1 1.8 2.3 1.9
AvgRank Overall 1.7 2.1 2.2 1.6 2.2 2.2
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Table C.16: DiffAgeMean Accuracy and GMean results for the Scenario 2 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.616 0.606 0.597 0.595 0.588 0.576
EN Arthritis 0.568 0.573 0.563 0.568 0.562 0.561
EN Cataract 0.598 0.605 0.588 0.595 0.606 0.588
EN Dementia 0.678 0.695 0.680 0.660 0.676 0.661
EN Diabetes 0.810 0.788 0.803 0.807 0.784 0.802
EN HBP 0.587 0.587 0.580 0.588 0.587 0.579
EN Heartattack 0.652 0.629 0.636 0.624 0.630 0.623
EN Osteoporosis 0.618 0.613 0.607 0.616 0.608 0.606
EN Parkinsons 0.632 0.647 0.627 0.554 0.594 0.552
EN Stroke 0.631 0.631 0.632 0.612 0.613 0.614
EC Angina 0.655 0.639 0.673 0.695 0.668 0.680
EC Arthritis 0.714 0.689 0.696 0.708 0.685 0.688
EC Cataract 0.668 0.660 0.661 0.683 0.658 0.664
EC Dementia 0.750 0.758 0.745 0.766 0.767 0.754
EC Diabetes 0.665 0.654 0.657 0.675 0.663 0.675
EC HBP 0.631 0.599 0.612 0.628 0.598 0.610
EC Heartattack 0.642 0.645 0.630 0.657 0.653 0.640
EC Osteoporosis 0.675 0.656 0.663 0.679 0.646 0.655
EC Parkinsons 0.677 0.652 0.656 0.717 0.678 0.706
EC Stroke 0.651 0.633 0.651 0.661 0.651 0.660
TI Angina 0.680 0.616 0.695 0.710 0.627 0.703
TI Arthritis 0.633 0.583 0.600 0.609 0.569 0.600
TI Cancer 0.510 0.560 0.519 0.502 0.532 0.535
TI Cataract 0.608 0.648 0.609 0.603 0.642 0.609
TI Diabetes 0.696 0.710 0.675 0.689 0.713 0.677
TI HBP 0.605 0.539 0.603 0.603 0.535 0.601
TI Heartattack 0.725 0.617 0.683 0.692 0.618 0.685
TI Ministroke 0.657 0.590 0.615 0.671 0.626 0.635
TI Osteoporosis 0.625 0.662 0.611 0.642 0.657 0.608
TI Stroke 0.599 0.522 0.612 0.584 0.522 0.590
AvgRank E-Nurse 1.7 1.8 2.5 1.7 1.7 2.6
AvgRank E-Core 1.4 2.6 2.1 1.2 2.7 2.2
AvgRank TILDA 1.8 2.2 2.0 1.7 2.3 2.0
AvgRank Overall 1.6 2.2 2.2 1.5 2.2 2.3
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Table C.17: AvgDiffAgeMean Sensitivity and Specificity results for the Scenario
1 experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.611 0.575 0.621 0.570 0.543 0.589
EN Arthritis 0.558 0.589 0.564 0.555 0.561 0.565
EN Cataract 0.594 0.627 0.595 0.573 0.580 0.570
EN Dementia 0.643 0.627 0.638 0.655 0.588 0.642
EN Diabetes 0.812 0.783 0.803 0.792 0.774 0.789
EN HBP 0.624 0.601 0.626 0.615 0.608 0.600
EN Heartattack 0.643 0.611 0.636 0.631 0.658 0.603
EN Osteoporosis 0.598 0.613 0.617 0.622 0.572 0.570
EN Parkinsons 0.587 0.550 0.569 0.515 0.515 0.591
EN Stroke 0.630 0.621 0.620 0.594 0.558 0.584
EC Angina 0.688 0.664 0.690 0.660 0.639 0.632
EC Arthritis 0.724 0.704 0.712 0.679 0.676 0.681
EC Cataract 0.599 0.600 0.619 0.571 0.625 0.640
EC Dementia 0.684 0.726 0.720 0.714 0.689 0.671
EC Diabetes 0.672 0.640 0.673 0.684 0.666 0.664
EC HBP 0.621 0.626 0.612 0.590 0.581 0.572
EC Heartattack 0.636 0.628 0.601 0.576 0.580 0.642
EC Osteoporosis 0.651 0.613 0.632 0.569 0.593 0.587
EC Parkinsons 0.642 0.613 0.651 0.573 0.640 0.680
EC Stroke 0.665 0.650 0.661 0.600 0.614 0.618
TI Angina 0.745 1.000 0.754 0.732 0.000 0.760
TI Arthritis 0.603 1.000 0.619 0.614 0.000 0.618
TI Cancer 0.533 1.000 0.528 0.543 0.000 0.589
TI Cataract 0.691 1.000 0.666 0.628 0.000 0.628
TI Diabetes 0.768 1.000 0.773 0.758 0.000 0.771
TI HBP 0.652 1.000 0.649 0.640 0.000 0.621
TI Heartattack 0.760 1.000 0.741 0.751 0.000 0.751
TI Ministroke 0.684 1.000 0.686 0.676 0.000 0.686
TI Osteoporosis 0.671 1.000 0.677 0.650 0.000 0.670
TI Stroke 0.687 1.000 0.660 0.646 0.000 0.631
AvgRank E-Nurse 1.8 2.4 1.8 1.7 2.3 2.1
AvgRank E-Core 1.8 2.4 1.8 2.1 2.0 1.9
AvgRank TILDA 2.5 1.0 2.5 1.7 3.0 1.3
AvgRank Overall 2.0 1.9 2.0 1.8 2.4 1.8
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Table C.18: AvgDiffAgeMean Accuracy and GMean results for the Scenario 1
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.609 0.574 0.620 0.590 0.558 0.605
EN Arthritis 0.557 0.577 0.564 0.557 0.575 0.565
EN Cataract 0.587 0.612 0.587 0.583 0.603 0.582
EN Dementia 0.644 0.627 0.638 0.649 0.607 0.640
EN Diabetes 0.809 0.782 0.801 0.802 0.778 0.796
EN HBP 0.620 0.604 0.616 0.619 0.605 0.613
EN Heartattack 0.643 0.614 0.634 0.637 0.634 0.620
EN Osteoporosis 0.601 0.609 0.613 0.610 0.592 0.593
EN Parkinsons 0.586 0.549 0.570 0.550 0.532 0.580
EN Stroke 0.628 0.617 0.618 0.612 0.589 0.602
EC Angina 0.687 0.663 0.688 0.674 0.651 0.660
EC Arthritis 0.706 0.693 0.700 0.701 0.690 0.696
EC Cataract 0.591 0.608 0.625 0.585 0.613 0.629
EC Dementia 0.684 0.725 0.719 0.699 0.707 0.695
EC Diabetes 0.673 0.643 0.672 0.678 0.653 0.668
EC HBP 0.609 0.608 0.597 0.605 0.603 0.592
EC Heartattack 0.633 0.625 0.603 0.605 0.604 0.621
EC Osteoporosis 0.644 0.611 0.628 0.608 0.603 0.609
EC Parkinsons 0.641 0.614 0.651 0.606 0.627 0.665
EC Stroke 0.662 0.648 0.659 0.632 0.631 0.639
TI Angina 0.744 0.956 0.755 0.738 0.000 0.757
TI Arthritis 0.606 0.690 0.619 0.608 0.000 0.618
TI Cancer 0.533 0.947 0.532 0.538 0.000 0.558
TI Cataract 0.686 0.916 0.662 0.659 0.000 0.646
TI Diabetes 0.768 0.933 0.773 0.763 0.000 0.772
TI HBP 0.648 0.620 0.638 0.646 0.000 0.635
TI Heartattack 0.760 0.964 0.742 0.756 0.000 0.746
TI Ministroke 0.684 0.982 0.686 0.680 0.000 0.686
TI Osteoporosis 0.669 0.905 0.676 0.661 0.000 0.673
TI Stroke 0.687 0.989 0.660 0.666 0.000 0.645
AvgRank E-Nurse 1.7 2.5 1.9 1.5 2.5 2.0
AvgRank E-Core 1.6 2.5 1.9 1.8 2.5 1.7
AvgRank TILDA 2.4 1.2 2.4 1.6 3.0 1.4
AvgRank Overall 1.9 2.1 2.1 1.6 2.7 1.7
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Table C.19: AvgDiffAgeMean Sensitivity and Specificity results for the Scenario
2 experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.616 0.598 0.620 0.593 0.589 0.578
EN Arthritis 0.570 0.597 0.554 0.555 0.549 0.558
EN Cataract 0.591 0.588 0.588 0.584 0.637 0.592
EN Dementia 0.675 0.671 0.673 0.628 0.601 0.622
EN Diabetes 0.809 0.781 0.803 0.797 0.771 0.789
EN HBP 0.624 0.604 0.626 0.618 0.596 0.606
EN Heartattack 0.643 0.642 0.644 0.633 0.621 0.626
EN Osteoporosis 0.614 0.593 0.612 0.593 0.656 0.609
EN Parkinsons 0.631 0.602 0.621 0.500 0.545 0.561
EN Stroke 0.615 0.604 0.615 0.591 0.603 0.568
EC Angina 0.669 0.665 0.693 0.681 0.674 0.628
EC Arthritis 0.727 0.710 0.716 0.677 0.685 0.674
EC Cataract 0.647 0.647 0.640 0.653 0.658 0.639
EC Dementia 0.742 0.727 0.729 0.758 0.795 0.789
EC Diabetes 0.678 0.652 0.670 0.676 0.663 0.686
EC HBP 0.621 0.623 0.624 0.582 0.583 0.584
EC Heartattack 0.637 0.657 0.633 0.626 0.610 0.673
EC Osteoporosis 0.687 0.654 0.674 0.606 0.641 0.631
EC Parkinsons 0.664 0.631 0.650 0.547 0.640 0.653
EC Stroke 0.638 0.653 0.649 0.616 0.631 0.638
TI Angina 0.751 0.655 0.752 0.724 0.680 0.776
TI Arthritis 0.614 0.648 0.623 0.598 0.534 0.620
TI Cancer 0.547 0.447 0.536 0.572 0.678 0.569
TI Cataract 0.617 0.716 0.600 0.619 0.701 0.590
TI Diabetes 0.719 0.703 0.725 0.730 0.823 0.706
TI HBP 0.653 0.600 0.655 0.646 0.564 0.645
TI Heartattack 0.742 0.638 0.715 0.688 0.688 0.751
TI Ministroke 0.693 0.671 0.682 0.706 0.520 0.598
TI Osteoporosis 0.667 0.599 0.660 0.624 0.801 0.639
TI Stroke 0.682 0.571 0.650 0.631 0.569 0.600
AvgRank E-Nurse 1.5 2.8 1.8 1.8 2.2 2.0
AvgRank E-Core 1.7 2.4 2.0 2.4 1.8 1.8
AvgRank TILDA 1.6 2.6 1.8 1.9 2.2 2.0
AvgRank Overall 1.6 2.6 1.9 2.0 2.1 1.9
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Table C.20: AvgDiffAgeMean Accuracy and GMean results for the Scenario 2
experiments with J48 Decision Tree classifiers. The best result for each row is
boldfaced, and the average ranks per dataset and overall are presented in the last
4 rows of the Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.615 0.598 0.619 0.604 0.594 0.599
EN Arthritis 0.563 0.577 0.556 0.562 0.573 0.556
EN Cataract 0.589 0.604 0.589 0.587 0.612 0.590
EN Dementia 0.674 0.670 0.672 0.651 0.635 0.647
EN Diabetes 0.808 0.780 0.801 0.803 0.776 0.796
EN HBP 0.622 0.601 0.618 0.621 0.600 0.616
EN Heartattack 0.642 0.641 0.643 0.638 0.631 0.635
EN Osteoporosis 0.612 0.599 0.612 0.604 0.624 0.610
EN Parkinsons 0.630 0.602 0.621 0.562 0.573 0.590
EN Stroke 0.614 0.604 0.612 0.603 0.604 0.591
EC Angina 0.670 0.666 0.691 0.675 0.669 0.660
EC Arthritis 0.707 0.700 0.699 0.701 0.698 0.695
EC Cataract 0.649 0.651 0.640 0.650 0.653 0.639
EC Dementia 0.742 0.729 0.730 0.750 0.760 0.758
EC Diabetes 0.677 0.654 0.672 0.677 0.658 0.678
EC HBP 0.606 0.608 0.609 0.601 0.603 0.604
EC Heartattack 0.637 0.654 0.635 0.632 0.633 0.653
EC Osteoporosis 0.680 0.652 0.671 0.645 0.647 0.652
EC Parkinsons 0.663 0.631 0.650 0.603 0.635 0.652
EC Stroke 0.637 0.652 0.649 0.627 0.642 0.643
TI Angina 0.750 0.656 0.753 0.737 0.667 0.764
TI Arthritis 0.609 0.613 0.622 0.606 0.588 0.621
TI Cancer 0.548 0.460 0.538 0.559 0.551 0.553
TI Cataract 0.617 0.715 0.599 0.618 0.709 0.595
TI Diabetes 0.719 0.711 0.724 0.724 0.761 0.716
TI HBP 0.651 0.587 0.651 0.650 0.582 0.650
TI Heartattack 0.740 0.640 0.716 0.714 0.662 0.733
TI Ministroke 0.694 0.668 0.680 0.700 0.590 0.639
TI Osteoporosis 0.663 0.619 0.658 0.645 0.693 0.649
TI Stroke 0.682 0.571 0.649 0.656 0.570 0.624
AvgRank E-Nurse 1.5 2.6 1.9 1.8 2.1 2.1
AvgRank E-Core 1.7 2.2 2.1 2.4 1.9 1.7
AvgRank TILDA 1.6 2.7 1.8 1.8 2.4 1.9
AvgRank Overall 1.6 2.5 1.9 2.0 2.1 1.9
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Table C.21: Percentile Sensitivity and Specificity results for the Scenario 1 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

Sensitivity Specificity
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.612 0.591 0.603 0.550 0.589 0.605
EN Arthritis 0.627 0.579 0.571 0.530 0.542 0.550
EN Cataract 0.607 0.580 0.597 0.565 0.563 0.572
EN Dementia 0.678 0.641 0.654 0.696 0.669 0.662
EN Diabetes 0.801 0.796 0.804 0.813 0.790 0.799
EN HBP 0.589 0.579 0.589 0.571 0.581 0.589
EN Heartattack 0.625 0.623 0.624 0.581 0.643 0.603
EN Osteoporosis 0.607 0.584 0.605 0.583 0.601 0.564
EN Parkinsons 0.561 0.560 0.551 0.515 0.621 0.576
EN Stroke 0.640 0.623 0.637 0.629 0.625 0.589
EC Angina 0.683 0.662 0.673 0.730 0.688 0.684
EC Arthritis 0.745 0.704 0.743 0.662 0.642 0.657
EC Cataract 0.594 0.594 0.592 0.578 0.584 0.625
EC Dementia 0.742 0.731 0.760 0.745 0.745 0.720
EC Diabetes 0.662 0.666 0.654 0.694 0.642 0.691
EC HBP 0.637 0.630 0.623 0.625 0.563 0.622
EC Heartattack 0.669 0.617 0.635 0.628 0.615 0.662
EC Osteoporosis 0.657 0.635 0.644 0.641 0.558 0.618
EC Parkinsons 0.621 0.689 0.669 0.813 0.733 0.773
EC Stroke 0.644 0.664 0.665 0.679 0.618 0.627
TI Angina 0.700 0.660 0.701 0.716 0.728 0.724
TI Arthritis 0.594 0.610 0.576 0.600 0.542 0.597
TI Cancer 0.521 0.543 0.524 0.507 0.464 0.539
TI Cataract 0.671 0.628 0.640 0.644 0.605 0.630
TI Diabetes 0.770 0.665 0.741 0.740 0.660 0.756
TI HBP 0.611 0.591 0.615 0.606 0.581 0.593
TI Heartattack 0.726 0.677 0.719 0.746 0.702 0.654
TI Ministroke 0.655 0.613 0.631 0.657 0.578 0.647
TI Osteoporosis 0.661 0.560 0.656 0.656 0.541 0.645
TI Stroke 0.622 0.598 0.585 0.662 0.754 0.708
AvgRank E-Nurse 1.2 2.8 2.1 2.2 1.9 1.9
AvgRank E-Core 1.7 2.3 2.1 1.4 2.7 2.0
AvgRank TILDA 1.5 2.5 2.0 1.6 2.5 1.9
AvgRank Overall 1.4 2.5 2.1 1.7 2.4 1.9
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Table C.22: Percentile Accuracy and GMean results for the Scenario 1 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

Accuracy GMean
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.609 0.591 0.603 0.580 0.590 0.604
EN Arthritis 0.586 0.563 0.562 0.577 0.560 0.560
EN Cataract 0.593 0.575 0.589 0.586 0.572 0.584
EN Dementia 0.678 0.641 0.655 0.687 0.655 0.658
EN Diabetes 0.803 0.796 0.803 0.807 0.793 0.801
EN HBP 0.582 0.580 0.589 0.580 0.580 0.589
EN Heartattack 0.622 0.624 0.623 0.603 0.633 0.614
EN Osteoporosis 0.605 0.586 0.602 0.595 0.592 0.584
EN Parkinsons 0.560 0.560 0.552 0.537 0.590 0.563
EN Stroke 0.639 0.623 0.634 0.635 0.624 0.612
EC Angina 0.684 0.663 0.673 0.706 0.675 0.678
EC Arthritis 0.712 0.679 0.709 0.702 0.672 0.698
EC Cataract 0.589 0.591 0.602 0.586 0.589 0.608
EC Dementia 0.742 0.731 0.759 0.744 0.738 0.740
EC Diabetes 0.666 0.663 0.659 0.678 0.654 0.672
EC HBP 0.632 0.604 0.623 0.631 0.596 0.623
EC Heartattack 0.667 0.617 0.637 0.648 0.616 0.649
EC Osteoporosis 0.656 0.628 0.642 0.649 0.595 0.631
EC Parkinsons 0.622 0.689 0.670 0.711 0.711 0.719
EC Stroke 0.646 0.661 0.663 0.661 0.640 0.646
TI Angina 0.701 0.663 0.702 0.708 0.693 0.712
TI Arthritis 0.596 0.589 0.582 0.597 0.575 0.586
TI Cancer 0.521 0.539 0.524 0.514 0.502 0.531
TI Cataract 0.669 0.626 0.639 0.657 0.616 0.635
TI Diabetes 0.768 0.664 0.742 0.755 0.662 0.749
TI HBP 0.609 0.587 0.607 0.609 0.586 0.604
TI Heartattack 0.727 0.678 0.716 0.736 0.689 0.685
TI Ministroke 0.655 0.612 0.631 0.656 0.595 0.639
TI Osteoporosis 0.661 0.558 0.655 0.658 0.551 0.650
TI Stroke 0.622 0.600 0.587 0.641 0.671 0.644
AvgRank E-Nurse 1.4 2.6 2.1 1.8 2.2 2.1
AvgRank E-Core 1.7 2.5 1.8 1.5 2.9 1.7
AvgRank TILDA 1.3 2.6 2.1 1.4 2.7 1.9
AvgRank Overall 1.5 2.6 2.0 1.5 2.6 1.9

243



Table C.23: Percentile Sensitivity and Specificity results for the Scenario 2 experi-
ments with J48 Decision Tree classifiers. The best result for each row is boldfaced,
and the average ranks per dataset and overall are presented in the last 4 rows of
the Table.

SENSITIVITY SPECIFICITY
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.617 0.591 0.608 0.574 0.578 0.566
EN Arthritis 0.565 0.553 0.544 0.571 0.551 0.558
EN Cataract 0.603 0.598 0.602 0.588 0.600 0.587
EN Dementia 0.679 0.662 0.669 0.642 0.628 0.649
EN Diabetes 0.810 0.788 0.808 0.804 0.792 0.797
EN HBP 0.586 0.594 0.597 0.589 0.573 0.584
EN Heartattack 0.655 0.610 0.652 0.594 0.633 0.599
EN Osteoporosis 0.618 0.609 0.608 0.615 0.613 0.609
EN Parkinsons 0.633 0.613 0.607 0.485 0.636 0.500
EN Stroke 0.634 0.612 0.627 0.591 0.637 0.603
EC Angina 0.652 0.685 0.686 0.740 0.695 0.674
EC Arthritis 0.738 0.700 0.707 0.679 0.664 0.676
EC Cataract 0.646 0.663 0.659 0.721 0.654 0.690
EC Dementia 0.750 0.747 0.738 0.783 0.783 0.807
EC Diabetes 0.662 0.657 0.666 0.687 0.660 0.679
EC HBP 0.639 0.620 0.639 0.617 0.580 0.597
EC Heartattack 0.641 0.648 0.626 0.673 0.671 0.692
EC Osteoporosis 0.674 0.669 0.665 0.685 0.654 0.659
EC Parkinsons 0.676 0.670 0.676 0.760 0.707 0.747
EC Stroke 0.650 0.638 0.637 0.672 0.666 0.633
TI Angina 0.677 0.673 0.701 0.744 0.688 0.708
TI Arthritis 0.668 0.570 0.592 0.554 0.589 0.579
TI Cancer 0.511 0.514 0.499 0.493 0.490 0.513
TI Cataract 0.609 0.655 0.605 0.596 0.661 0.617
TI Diabetes 0.697 0.745 0.684 0.681 0.717 0.681
TI HBP 0.613 0.596 0.601 0.593 0.601 0.615
TI Heartattack 0.728 0.666 0.710 0.659 0.663 0.732
TI Ministroke 0.657 0.579 0.639 0.686 0.618 0.588
TI Osteoporosis 0.621 0.660 0.619 0.663 0.641 0.613
TI Stroke 0.599 0.606 0.619 0.569 0.677 0.662
AvgRank E-Nurse 1.2 2.6 2.2 1.9 1.9 2.2
AvgRank E-Core 1.7 2.2 2.1 1.3 2.8 2.0
AvgRank TILDA 1.7 2.1 2.2 2.3 1.8 2.0
AvgRank Overall 1.5 2.3 2.2 1.8 2.2 2.1
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Table C.24: Percentile Accuracy and GMean results for the Scenario 2 experiments
with J48 Decision Tree classifiers. The best result for each row is boldfaced, and
the average ranks per dataset and overall are presented in the last 4 rows of the
Table.

ACCURACY GMEAN
Baseline CTFs-only BL+CTFs Baseline CTFs-only BL+CTFs

EN Angina 0.616 0.590 0.607 0.595 0.584 0.587
EN Arthritis 0.568 0.552 0.550 0.568 0.552 0.551
EN Cataract 0.598 0.599 0.597 0.595 0.599 0.595
EN Dementia 0.678 0.662 0.669 0.660 0.645 0.659
EN Diabetes 0.810 0.789 0.806 0.807 0.790 0.802
EN HBP 0.587 0.586 0.592 0.588 0.584 0.591
EN Heartattack 0.652 0.612 0.649 0.624 0.622 0.625
EN Osteoporosis 0.618 0.610 0.608 0.616 0.611 0.608
EN Parkinsons 0.632 0.613 0.606 0.554 0.625 0.551
EN Stroke 0.631 0.613 0.626 0.612 0.624 0.615
EC Angina 0.655 0.686 0.686 0.695 0.690 0.680
EC Arthritis 0.714 0.686 0.695 0.708 0.682 0.691
EC Cataract 0.668 0.660 0.668 0.683 0.658 0.674
EC Dementia 0.750 0.748 0.740 0.766 0.765 0.772
EC Diabetes 0.665 0.657 0.667 0.675 0.658 0.672
EC HBP 0.631 0.604 0.623 0.628 0.599 0.617
EC Heartattack 0.642 0.649 0.630 0.657 0.660 0.658
EC Osteoporosis 0.675 0.668 0.665 0.679 0.661 0.662
EC Parkinsons 0.677 0.671 0.676 0.717 0.688 0.710
EC Stroke 0.651 0.639 0.637 0.661 0.652 0.635
TI Angina 0.680 0.673 0.701 0.710 0.680 0.705
TI Arthritis 0.633 0.576 0.588 0.609 0.579 0.585
TI Cancer 0.510 0.512 0.500 0.502 0.502 0.506
TI Cataract 0.608 0.656 0.606 0.603 0.658 0.611
TI Diabetes 0.696 0.743 0.684 0.689 0.731 0.682
TI HBP 0.605 0.598 0.606 0.603 0.599 0.608
TI Heartattack 0.725 0.666 0.711 0.692 0.665 0.721
TI Ministroke 0.657 0.580 0.638 0.671 0.598 0.613
TI Osteoporosis 0.625 0.658 0.618 0.642 0.650 0.616
TI Stroke 0.599 0.607 0.619 0.584 0.640 0.640
AvgRank E-Nurse 1.2 2.5 2.3 1.7 2.2 2.2
AvgRank E-Core 1.5 2.4 2.2 1.3 2.6 2.1
AvgRank TILDA 1.8 2.1 2.1 2.0 2.2 1.9
AvgRank Overall 1.5 2.3 2.2 1.6 2.3 2.0
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Appendix D

Lexicographic Approach

Experiments - Additional Tables

In this Appendix we first report the Sensitivity and Specificity tables for the

automated threshold selection experiments with RF classifiers, in Section D.1.

Then, in Sections D.2 and D.3, we report on the same set of experiments

ran in Chapter 6, but using the C4.5 decision tree classifier instead of Random

Forests. For each of the two scenarios, we first compare the automated data-driven

threshold selection to fixed threshold values, regarding how to set the tie threshold

parameter in the proposed lexicographic split approach. Then we compare the No

Lexic and Lexic configurations, using the standard split function vs the proposed

bi-objective split.

D.1 RF Threshold Selection Experiments - Sen-

sitivity and Specificity Tables

D.2 Decision Tree Experiments - Baseline Datasets

For the first scenario, where the datasets have only the original features in the

ELSA-nurse, ELSA-core and TILDA datasets, the results were as follows. In

the fixed vs automated threshold comparisons, the proposed data-driven thresh-

old approach did not achieve the smallest average rank in any case. However,

the smallest ranks were divided among different fixed values, indicating no clear
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Table D.1: Sensitivity results for threshold selection experiments in the Baseline
datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.677 0.682 0.681 0.681 0.685 0.685 0.684 0.683 0.687 0.683 0.684 0.693
EN Arthritis 0.666 0.663 0.669 0.668 0.672 0.667 0.663 0.666 0.664 0.661 0.659 0.669
EN Cataract 0.623 0.624 0.627 0.625 0.624 0.629 0.631 0.623 0.627 0.631 0.629 0.63
EN Dementia 0.731 0.734 0.733 0.733 0.737 0.737 0.731 0.733 0.734 0.733 0.732 0.74
EN Diabetes 0.844 0.845 0.844 0.844 0.845 0.844 0.845 0.843 0.845 0.844 0.843 0.843
EN HBP 0.647 0.651 0.649 0.647 0.645 0.638 0.646 0.646 0.64 0.643 0.637 0.647
EN HeartAttack 0.703 0.705 0.699 0.697 0.699 0.698 0.703 0.7 0.7 0.7 0.698 0.703
EN Osteoporosis 0.652 0.653 0.657 0.652 0.653 0.647 0.648 0.648 0.647 0.652 0.654 0.654
EN Parkinsons 0.633 0.633 0.632 0.632 0.634 0.636 0.634 0.646 0.641 0.645 0.643 0.634
EN Stroke 0.67 0.671 0.67 0.671 0.67 0.679 0.677 0.676 0.675 0.677 0.681 0.677
EC Angina 0.71 0.71 0.711 0.712 0.711 0.704 0.706 0.711 0.712 0.712 0.71 0.709
EC Arthritis 0.746 0.75 0.749 0.75 0.75 0.752 0.751 0.76 0.757 0.752 0.752 0.752
EC Cataract 0.616 0.613 0.614 0.62 0.617 0.626 0.626 0.629 0.628 0.628 0.626 0.625
EC Dementia 0.765 0.764 0.766 0.767 0.767 0.769 0.767 0.768 0.77 0.772 0.772 0.768
EC Diabetes 0.676 0.672 0.673 0.674 0.671 0.668 0.67 0.668 0.661 0.666 0.663 0.672
EC HBP 0.626 0.636 0.639 0.637 0.637 0.64 0.631 0.631 0.635 0.637 0.633 0.633
EC HeartAttack 0.679 0.678 0.681 0.68 0.686 0.684 0.684 0.682 0.682 0.683 0.68 0.683
EC Osteoporosis 0.697 0.697 0.699 0.696 0.698 0.704 0.702 0.699 0.699 0.697 0.699 0.701
EC Parkinsons 0.695 0.698 0.704 0.699 0.698 0.7 0.702 0.701 0.701 0.701 0.704 0.701
EC Stroke 0.692 0.692 0.698 0.694 0.693 0.693 0.695 0.698 0.697 0.698 0.698 0.697
TI Angina 0.747 0.749 0.748 0.748 0.749 0.747 0.745 0.743 0.741 0.74 0.738 0.749
TI Arthritis 0.74 0.724 0.731 0.73 0.721 0.721 0.717 0.704 0.713 0.71 0.711 0.729
TI Cancer 0.555 0.553 0.541 0.544 0.54 0.537 0.537 0.541 0.546 0.538 0.539 0.542
TI Cataract 0.703 0.699 0.699 0.706 0.7 0.697 0.697 0.698 0.696 0.697 0.694 0.699
TI Diabetes 0.776 0.778 0.776 0.78 0.777 0.775 0.775 0.774 0.768 0.767 0.766 0.771
TI HBP 0.679 0.679 0.671 0.672 0.671 0.673 0.669 0.676 0.664 0.669 0.666 0.679
TI HeartAttack 0.753 0.75 0.752 0.75 0.749 0.75 0.748 0.748 0.751 0.744 0.744 0.749
TI Ministroke 0.709 0.707 0.711 0.705 0.705 0.704 0.707 0.71 0.705 0.7 0.7 0.706
TI Osteoporosis 0.681 0.68 0.678 0.677 0.676 0.669 0.67 0.664 0.66 0.663 0.663 0.671
TI Stroke 0.725 0.728 0.728 0.726 0.722 0.724 0.721 0.721 0.72 0.714 0.711 0.718
AvgRank Elsanurse 8.30 5.95 6.80 8.00 5.80 6.25 6.05 7.30 6.20 6.25 7.20 3.90
AvgRank Elsacore 9.85 9.55 5.95 7.15 7.00 5.60 6.30 5.15 5.15 4.70 5.75 5.85
AvgRank TILDA 2.60 3.10 3.75 3.95 5.65 7.30 8.10 7.45 8.70 10.60 11.15 5.65
AvgRank Overall 6.92 6.20 5.50 6.37 6.15 6.38 6.82 6.63 6.68 7.18 8.03 5.13
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Table D.2: Specificity results for threshold selection experiments in the Baseline
datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.698 0.709 0.674 0.713 0.705 0.694 0.685 0.682 0.694 0.729 0.686 0.69
EN Arthritis 0.589 0.595 0.591 0.588 0.581 0.586 0.63 0.592 0.592 0.592 0.581 0.589
EN Cataract 0.72 0.717 0.72 0.727 0.724 0.72 0.657 0.711 0.714 0.722 0.712 0.72
EN Dementia 0.736 0.716 0.73 0.73 0.736 0.723 0.731 0.723 0.723 0.716 0.723 0.723
EN Diabetes 0.862 0.86 0.86 0.871 0.867 0.867 0.848 0.859 0.86 0.855 0.86 0.863
EN HBP 0.747 0.745 0.748 0.744 0.733 0.749 0.687 0.743 0.75 0.733 0.734 0.749
EN HeartAttack 0.713 0.716 0.738 0.728 0.728 0.721 0.703 0.723 0.721 0.723 0.723 0.741
EN Osteoporosis 0.702 0.708 0.696 0.705 0.693 0.703 0.653 0.711 0.703 0.705 0.699 0.716
EN Parkinsons 0.712 0.712 0.697 0.667 0.652 0.652 0.634 0.652 0.682 0.697 0.697 0.636
EN Stroke 0.732 0.705 0.724 0.694 0.703 0.72 0.678 0.705 0.71 0.701 0.715 0.713
EC Angina 0.726 0.74 0.758 0.747 0.772 0.744 0.754 0.782 0.775 0.772 0.768 0.737
EC Arthritis 0.719 0.716 0.714 0.71 0.716 0.718 0.714 0.709 0.704 0.707 0.709 0.719
EC Cataract 0.711 0.71 0.713 0.703 0.711 0.706 0.708 0.709 0.717 0.706 0.713 0.715
EC Dementia 0.758 0.77 0.758 0.752 0.764 0.77 0.764 0.783 0.77 0.752 0.77 0.776
EC Diabetes 0.758 0.75 0.75 0.761 0.755 0.755 0.75 0.755 0.75 0.75 0.758 0.764
EC HBP 0.663 0.671 0.667 0.662 0.659 0.657 0.659 0.659 0.671 0.659 0.668 0.665
EC HeartAttack 0.705 0.701 0.698 0.707 0.707 0.703 0.696 0.723 0.698 0.698 0.696 0.689
EC Osteoporosis 0.679 0.668 0.669 0.658 0.659 0.672 0.665 0.668 0.679 0.677 0.673 0.677
EC Parkinsons 0.68 0.707 0.693 0.693 0.72 0.707 0.733 0.733 0.72 0.733 0.707 0.733
EC Stroke 0.707 0.716 0.716 0.718 0.714 0.716 0.731 0.721 0.712 0.723 0.723 0.729
TI Angina 0.908 0.916 0.904 0.904 0.896 0.904 0.896 0.888 0.888 0.908 0.9 0.88
TI Arthritis 0.647 0.653 0.65 0.662 0.649 0.653 0.656 0.646 0.654 0.66 0.657 0.654
TI Cancer 0.599 0.612 0.589 0.566 0.556 0.586 0.599 0.602 0.618 0.582 0.569 0.546
TI Cataract 0.728 0.728 0.743 0.726 0.743 0.747 0.736 0.726 0.713 0.741 0.72 0.715
TI Diabetes 0.823 0.839 0.839 0.834 0.831 0.839 0.839 0.834 0.834 0.844 0.855 0.834
TI HBP 0.76 0.758 0.764 0.765 0.763 0.757 0.762 0.764 0.763 0.753 0.759 0.764
TI HeartAttack 0.863 0.873 0.878 0.868 0.878 0.898 0.893 0.898 0.878 0.883 0.888 0.873
TI Ministroke 0.735 0.725 0.745 0.716 0.735 0.735 0.735 0.735 0.735 0.725 0.716 0.755
TI Osteoporosis 0.808 0.799 0.81 0.81 0.803 0.81 0.816 0.814 0.818 0.808 0.816 0.799
TI Stroke 0.738 0.723 0.723 0.708 0.708 0.723 0.738 0.738 0.738 0.723 0.708 0.708
AvgRank Elsanurse 5.10 6.00 5.75 5.05 6.45 6.20 9.80 7.65 6.30 6.55 7.80 5.35
AvgRank Elsacore 6.75 6.80 7.30 7.95 6.55 7.20 7.35 5.20 5.70 7.35 5.60 4.25
AvgRank TILDA 7.30 6.85 5.15 7.30 8.15 5.55 4.70 5.90 5.90 6.00 6.75 8.45
AvgRank Overall 6.38 6.55 6.07 6.77 7.05 6.32 7.28 6.25 5.97 6.63 6.72 6.02
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Table D.3: Sensitivity results for threshold selection experiments in the Base-
line+CTF datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.682 0.684 0.688 0.688 0.686 0.684 0.686 0.682 0.677 0.677 0.679 0.683
EN Arthritis 0.669 0.673 0.671 0.668 0.665 0.677 0.668 0.667 0.666 0.661 0.664 0.669
EN Cataract 0.605 0.603 0.609 0.613 0.61 0.611 0.604 0.61 0.611 0.605 0.605 0.614
EN Dementia 0.743 0.744 0.744 0.742 0.741 0.741 0.744 0.743 0.741 0.743 0.744 0.745
EN Diabetes 0.843 0.842 0.844 0.843 0.843 0.842 0.845 0.845 0.845 0.845 0.844 0.846
EN HBP 0.647 0.648 0.647 0.652 0.646 0.644 0.645 0.648 0.645 0.654 0.649 0.648
EN HeartAttack 0.699 0.701 0.703 0.703 0.704 0.703 0.699 0.7 0.701 0.703 0.704 0.702
EN Osteoporosis 0.645 0.647 0.646 0.645 0.645 0.642 0.64 0.641 0.642 0.642 0.641 0.643
EN Parkinsons 0.63 0.631 0.634 0.633 0.638 0.639 0.642 0.643 0.643 0.645 0.648 0.644
EN Stroke 0.675 0.679 0.678 0.678 0.677 0.679 0.675 0.679 0.676 0.68 0.675 0.681
EC Angina 0.708 0.705 0.705 0.708 0.707 0.704 0.704 0.707 0.706 0.705 0.703 0.705
EC Arthritis 0.752 0.749 0.747 0.748 0.751 0.747 0.75 0.748 0.756 0.752 0.75 0.751
EC Cataract 0.616 0.616 0.615 0.616 0.619 0.616 0.615 0.62 0.616 0.615 0.622 0.627
EC Dementia 0.766 0.768 0.768 0.766 0.768 0.771 0.766 0.767 0.768 0.77 0.77 0.772
EC Diabetes 0.68 0.677 0.68 0.682 0.679 0.679 0.676 0.672 0.675 0.678 0.678 0.677
EC HBP 0.639 0.628 0.637 0.632 0.643 0.648 0.638 0.638 0.643 0.638 0.643 0.632
EC HeartAttack 0.679 0.674 0.677 0.679 0.674 0.672 0.672 0.676 0.674 0.675 0.676 0.677
EC Osteoporosis 0.697 0.701 0.697 0.695 0.694 0.694 0.692 0.696 0.698 0.696 0.695 0.697
EC Parkinsons 0.697 0.694 0.694 0.697 0.697 0.697 0.7 0.701 0.7 0.701 0.703 0.709
EC Stroke 0.695 0.696 0.696 0.699 0.696 0.696 0.697 0.699 0.694 0.697 0.699 0.695
TI Angina 0.742 0.742 0.744 0.745 0.742 0.742 0.742 0.746 0.744 0.74 0.742 0.739
TI Arthritis 0.713 0.716 0.715 0.71 0.713 0.709 0.705 0.711 0.71 0.708 0.711 0.721
TI Cancer 0.552 0.547 0.548 0.548 0.553 0.554 0.557 0.551 0.554 0.554 0.553 0.555
TI Cataract 0.701 0.696 0.693 0.698 0.7 0.7 0.699 0.702 0.704 0.703 0.699 0.699
TI Diabetes 0.757 0.756 0.755 0.751 0.752 0.754 0.756 0.752 0.75 0.75 0.75 0.755
TI HBP 0.668 0.667 0.673 0.673 0.668 0.665 0.666 0.662 0.662 0.659 0.659 0.669
TI HeartAttack 0.741 0.742 0.741 0.742 0.742 0.744 0.742 0.741 0.748 0.742 0.743 0.743
TI Ministroke 0.709 0.706 0.702 0.702 0.703 0.702 0.702 0.699 0.701 0.698 0.699 0.706
TI Osteoporosis 0.668 0.668 0.668 0.673 0.67 0.669 0.67 0.673 0.671 0.668 0.669 0.67
TI Stroke 0.705 0.704 0.704 0.705 0.706 0.708 0.708 0.706 0.708 0.705 0.705 0.708
AvgRank Elsanurse 8.40 6.40 5.10 5.50 6.95 6.80 7.90 6.65 7.90 6.05 6.70 3.65
AvgRank Elsacore 5.40 7.85 7.45 6.10 6.15 7.45 8.95 6.15 6.20 5.95 5.15 5.20
AvgRank TILDA 6.05 7.25 7.45 6.50 5.75 5.95 5.90 6.50 5.30 8.85 8.10 4.40
AvgRank Overall 6.62 7.17 6.67 6.03 6.28 6.73 7.58 6.43 6.47 6.95 6.65 4.42

249



Table D.4: Specificity results for threshold selection experiments in the Base-
line+CTF datasets, varying threshold values from 0.0 to 0.05, in 0.005 increments.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Data-Driven
EN Angina 0.678 0.682 0.709 0.663 0.686 0.674 0.686 0.69 0.69 0.698 0.69 0.702
EN Arthritis 0.592 0.604 0.594 0.604 0.602 0.603 0.594 0.596 0.592 0.606 0.605 0.594
EN Cataract 0.74 0.732 0.733 0.746 0.726 0.733 0.731 0.729 0.727 0.725 0.734 0.734
EN Dementia 0.723 0.723 0.703 0.709 0.716 0.709 0.696 0.689 0.696 0.716 0.709 0.736
EN Diabetes 0.865 0.86 0.855 0.866 0.864 0.866 0.862 0.856 0.865 0.855 0.853 0.864
EN HBP 0.748 0.748 0.739 0.746 0.73 0.74 0.738 0.729 0.741 0.741 0.741 0.742
EN HeartAttack 0.711 0.711 0.718 0.721 0.723 0.726 0.728 0.731 0.736 0.718 0.736 0.726
EN Osteoporosis 0.719 0.719 0.711 0.708 0.714 0.706 0.708 0.697 0.702 0.7 0.7 0.713
EN Parkinsons 0.712 0.742 0.742 0.697 0.712 0.712 0.712 0.712 0.682 0.697 0.697 0.636
EN Stroke 0.703 0.701 0.703 0.717 0.703 0.701 0.713 0.72 0.703 0.708 0.696 0.708
EC Angina 0.751 0.733 0.747 0.747 0.737 0.737 0.747 0.747 0.775 0.779 0.772 0.772
EC Arthritis 0.723 0.722 0.723 0.723 0.723 0.72 0.718 0.722 0.718 0.718 0.713 0.719
EC Cataract 0.765 0.758 0.762 0.762 0.758 0.765 0.763 0.768 0.76 0.763 0.766 0.75
EC Dementia 0.814 0.814 0.82 0.801 0.783 0.776 0.814 0.814 0.839 0.82 0.826 0.832
EC Diabetes 0.766 0.76 0.746 0.757 0.756 0.776 0.771 0.765 0.757 0.763 0.761 0.734
EC HBP 0.671 0.679 0.677 0.671 0.668 0.679 0.677 0.669 0.673 0.671 0.677 0.678
EC HeartAttack 0.698 0.692 0.692 0.696 0.721 0.714 0.728 0.721 0.723 0.705 0.714 0.692
EC Osteoporosis 0.665 0.665 0.666 0.687 0.669 0.663 0.67 0.665 0.658 0.676 0.662 0.659
EC Parkinsons 0.72 0.72 0.733 0.72 0.747 0.733 0.72 0.707 0.707 0.72 0.707 0.72
EC Stroke 0.747 0.742 0.742 0.749 0.731 0.736 0.749 0.736 0.742 0.731 0.729 0.751
TI Angina 0.88 0.876 0.88 0.864 0.864 0.872 0.868 0.88 0.876 0.872 0.868 0.896
TI Arthritis 0.648 0.657 0.648 0.663 0.655 0.656 0.655 0.662 0.657 0.651 0.655 0.642
TI Cancer 0.579 0.576 0.563 0.553 0.546 0.569 0.566 0.539 0.563 0.563 0.543 0.599
TI Cataract 0.741 0.743 0.734 0.745 0.73 0.749 0.728 0.73 0.738 0.73 0.726 0.741
TI Diabetes 0.813 0.821 0.81 0.818 0.805 0.818 0.816 0.821 0.821 0.816 0.81 0.818
TI HBP 0.746 0.75 0.751 0.753 0.752 0.753 0.756 0.756 0.75 0.753 0.747 0.754
TI HeartAttack 0.859 0.844 0.839 0.849 0.839 0.844 0.854 0.844 0.854 0.859 0.854 0.849
TI Ministroke 0.716 0.716 0.716 0.735 0.745 0.725 0.725 0.725 0.725 0.725 0.706 0.716
TI Osteoporosis 0.757 0.772 0.77 0.777 0.783 0.775 0.775 0.775 0.777 0.761 0.757 0.759
TI Stroke 0.692 0.708 0.708 0.723 0.723 0.723 0.723 0.738 0.738 0.738 0.738 0.754
AvgRank Elsanurse 5.65 5.65 6.75 5.35 6.80 6.70 7.05 7.50 7.55 7.05 6.85 5.10
AvgRank Elsacore 5.60 7.45 6.25 6.40 7.55 6.10 5.05 6.65 6.85 6.10 7.00 7.00
AvgRank TILDA 7.55 6.25 8.55 5.20 7.75 5.40 6.30 5.20 4.85 6.40 9.20 5.35
AvgRank Overall 6.27 6.45 7.18 5.65 7.37 6.07 6.13 6.45 6.42 6.52 7.68 5.82
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answer as to what the best choice would be in each case.

Notably, smaller threshold values such as 0.0 and 0.005 have performed well,

and we believe this is due to the fact that the decision tree calculates the informa-

tion gain for every feature in each node. This makes ties more likely to happen, so

we need to have a more restrictive tie threshold to avoid ill-advised changes to the

chosen split feature. Nevertheless, the average ranks of the proposed data-driven

automated threshold selection are still more reliable than a fixed value.

In the Lexic vs NoLexic comparison, the latter unexpectedly got its best results

for the ELSA-core datasets. Overall, however, the Lexic approach was slightly su-

perior, with smaller average ranks for Accuracy and GMean in all other cases.

Even though a single decision tree seems to benefit less from the proposed lexico-

graphic split approach than an ensemble method, these results encourage further

experiments in this direction.

D.3 Decision Tree Experiments - Baseline+CTF

Datasets

In the second scenario, we added constructed temporal features to the datasets,

which are ignored by the lexicographic split approach. For these experiments, the

automated vs fixed threshold results were unchanged, meaning the data-driven

approach did not achieve the smallest average rank in any of the cases, but still

had the most reliable results, with the smallest values varying between different

fixed values. The smallest fixed values, 0.0 and 0.05, still performed better in

general.

In the Lexic vs NoLexic comparison, we see much closer results between the

two approaches. The GMean global metric of performance, arguably the most im-

portant of our metrics, had both methods tied overall and for ELSA-core datasets,

with Lexic winning for ELSA-nurse and NoLexic winning for TILDA. For the other

metrics, NoLexic models had better Sensitivity and (by consequence) Accuracy,

and Lexic models had better Specificity, in general. Thus, in this case we cannot

say the proposed lexicographic split increased predictive performance overall, al-

though it did not reduce it either. As discussed in Chapter 6, the CTFs compose
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Table D.5: C4.5 decision tree Sensitivity results for threshold selection experi-
ments in the Baseline datasets, varying threshold values from 0.0 to 0.05, in 0.005
increments. The last column, DD, refers to the data-driven approach, which uses
internal cross-validation to select the threshold value for each decision tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.603 0.609 0.593 0.608 0.608 0.615 0.61 0.612 0.608 0.61 0.61 0.617
EN Arthritis 0.571 0.563 0.56 0.563 0.549 0.557 0.561 0.551 0.55 0.564 0.559 0.561
EN Cataract 0.596 0.595 0.611 0.591 0.597 0.607 0.607 0.583 0.598 0.601 0.611 0.596
EN Dementia 0.683 0.681 0.669 0.667 0.679 0.689 0.686 0.683 0.671 0.681 0.675 0.683
EN Diabetes 0.813 0.815 0.81 0.819 0.821 0.819 0.815 0.819 0.813 0.807 0.812 0.808
EN HBP 0.616 0.621 0.606 0.609 0.619 0.619 0.61 0.601 0.602 0.598 0.605 0.618
EN HeartAttack 0.641 0.657 0.642 0.632 0.638 0.654 0.647 0.649 0.647 0.641 0.639 0.641
EN Osteoporosis 0.612 0.606 0.607 0.626 0.626 0.616 0.596 0.613 0.609 0.604 0.611 0.614
EN Parkinsons 0.609 0.62 0.643 0.638 0.64 0.634 0.649 0.639 0.645 0.643 0.651 0.646
EN Stroke 0.631 0.621 0.629 0.637 0.634 0.633 0.616 0.616 0.628 0.622 0.64 0.629
EC Angina 0.661 0.662 0.661 0.658 0.662 0.653 0.667 0.669 0.65 0.668 0.662 0.675
EC Arthritis 0.72 0.71 0.712 0.741 0.733 0.716 0.717 0.715 0.705 0.733 0.722 0.724
EC Cataract 0.66 0.658 0.656 0.651 0.627 0.636 0.659 0.663 0.655 0.668 0.655 0.646
EC Dementia 0.715 0.716 0.714 0.713 0.717 0.707 0.704 0.697 0.701 0.703 0.712 0.715
EC Diabetes 0.666 0.671 0.666 0.66 0.66 0.67 0.673 0.666 0.661 0.662 0.659 0.652
EC HBP 0.621 0.616 0.631 0.605 0.63 0.599 0.612 0.605 0.613 0.629 0.623 0.621
EC HeartAttack 0.629 0.627 0.63 0.623 0.615 0.649 0.647 0.662 0.644 0.633 0.635 0.636
EC Osteoporosis 0.678 0.687 0.683 0.675 0.684 0.668 0.68 0.681 0.691 0.693 0.7 0.68
EC Parkinsons 0.606 0.612 0.626 0.615 0.623 0.636 0.639 0.643 0.654 0.665 0.659 0.612
EC Stroke 0.655 0.656 0.659 0.656 0.661 0.654 0.648 0.664 0.671 0.659 0.64 0.644
TI Angina 0.732 0.735 0.741 0.729 0.718 0.719 0.723 0.719 0.726 0.727 0.725 0.726
TI Arthritis 0.615 0.628 0.609 0.627 0.62 0.628 0.624 0.644 0.625 0.616 0.608 0.624
TI Cancer 0.525 0.536 0.545 0.53 0.568 0.538 0.536 0.534 0.541 0.523 0.526 0.519
TI Cataract 0.665 0.678 0.662 0.669 0.668 0.667 0.671 0.673 0.675 0.66 0.663 0.671
TI Diabetes 0.766 0.767 0.772 0.781 0.773 0.777 0.772 0.762 0.753 0.754 0.759 0.767
TI HBP 0.648 0.653 0.653 0.66 0.645 0.65 0.642 0.658 0.646 0.65 0.66 0.651
TI HeartAttack 0.736 0.739 0.731 0.732 0.737 0.728 0.739 0.736 0.727 0.728 0.725 0.744
TI Ministroke 0.666 0.668 0.693 0.668 0.677 0.674 0.678 0.658 0.688 0.689 0.673 0.666
TI Osteoporosis 0.664 0.668 0.671 0.671 0.666 0.671 0.674 0.672 0.671 0.681 0.686 0.668
TI Stroke 0.683 0.682 0.668 0.649 0.654 0.671 0.653 0.659 0.653 0.639 0.619 0.652
AvgRank Elsanurse 6.80 6.55 7.65 7.00 6.20 4.00 5.75 7.05 7.80 7.60 6.05 5.55
AvgRank Elsacore 7.05 6.40 6.10 8.35 6.10 8.20 6.05 5.45 6.95 4.10 6.15 7.10
AvgRank TILDA 7.80 4.45 5.35 5.65 6.80 5.95 5.90 6.00 6.65 8.00 8.25 7.20
AvgRank Overall 7.22 5.80 6.37 7.00 6.37 6.05 5.90 6.17 7.13 6.57 6.82 6.62

a large portion of the features in the dataset, so ignoring them reduces the effec-

tiveness of the lexicographic split. We believe that extending the split to somehow

include CTFs might improve these results.

252



Table D.6: C4.5 decision tree Specificity results for threshold selection experi-
ments in the Baseline datasets, varying threshold values from 0.0 to 0.05, in 0.005
increments. The last column, DD, refers to the data-driven approach, which uses
internal cross-validation to select the threshold value for each decision tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.589 0.632 0.624 0.601 0.597 0.585 0.61 0.574 0.578 0.593 0.554 0.574
EN Arthritis 0.577 0.565 0.569 0.572 0.568 0.57 0.557 0.558 0.565 0.56 0.562 0.571
EN Cataract 0.582 0.578 0.567 0.573 0.587 0.581 0.596 0.587 0.579 0.583 0.596 0.585
EN Dementia 0.662 0.703 0.703 0.676 0.628 0.649 0.686 0.642 0.689 0.655 0.628 0.649
EN Diabetes 0.795 0.803 0.781 0.797 0.804 0.814 0.815 0.799 0.801 0.803 0.803 0.797
EN HBP 0.601 0.607 0.598 0.608 0.602 0.607 0.603 0.598 0.596 0.603 0.601 0.616
EN HeartAttack 0.636 0.638 0.638 0.616 0.636 0.618 0.646 0.618 0.608 0.594 0.591 0.621
EN Osteoporosis 0.599 0.619 0.644 0.596 0.61 0.619 0.599 0.616 0.59 0.583 0.586 0.612
EN Parkinsons 0.652 0.561 0.576 0.576 0.591 0.561 0.648 0.606 0.621 0.652 0.561 0.636
EN Stroke 0.658 0.653 0.61 0.61 0.622 0.599 0.614 0.591 0.57 0.606 0.594 0.57
EC Angina 0.639 0.656 0.656 0.642 0.677 0.663 0.635 0.639 0.681 0.632 0.639 0.632
EC Arthritis 0.667 0.669 0.668 0.654 0.655 0.659 0.648 0.678 0.675 0.647 0.66 0.665
EC Cataract 0.636 0.651 0.639 0.652 0.666 0.681 0.669 0.638 0.644 0.657 0.642 0.652
EC Dementia 0.814 0.776 0.795 0.776 0.758 0.783 0.783 0.795 0.807 0.795 0.795 0.789
EC Diabetes 0.673 0.663 0.674 0.693 0.67 0.657 0.679 0.664 0.694 0.691 0.675 0.686
EC HBP 0.577 0.593 0.559 0.59 0.59 0.614 0.593 0.623 0.606 0.594 0.557 0.598
EC HeartAttack 0.594 0.621 0.61 0.587 0.635 0.676 0.657 0.66 0.678 0.633 0.685 0.659
EC Osteoporosis 0.651 0.634 0.654 0.63 0.639 0.65 0.662 0.627 0.643 0.629 0.639 0.661
EC Parkinsons 0.667 0.68 0.693 0.667 0.667 0.627 0.653 0.733 0.707 0.707 0.667 0.64
EC Stroke 0.635 0.611 0.614 0.634 0.618 0.631 0.655 0.618 0.62 0.627 0.67 0.6
TI Angina 0.764 0.748 0.748 0.76 0.776 0.776 0.74 0.74 0.756 0.74 0.744 0.772
TI Arthritis 0.635 0.623 0.61 0.616 0.609 0.599 0.613 0.61 0.603 0.605 0.615 0.616
TI Cancer 0.582 0.605 0.53 0.572 0.553 0.563 0.559 0.543 0.576 0.559 0.546 0.595
TI Cataract 0.682 0.651 0.682 0.701 0.697 0.695 0.669 0.682 0.695 0.669 0.69 0.682
TI Diabetes 0.774 0.756 0.761 0.73 0.73 0.717 0.714 0.735 0.743 0.73 0.743 0.699
TI HBP 0.643 0.624 0.648 0.628 0.611 0.63 0.616 0.609 0.611 0.616 0.596 0.65
TI HeartAttack 0.766 0.8 0.766 0.771 0.737 0.751 0.766 0.761 0.766 0.751 0.756 0.732
TI Ministroke 0.716 0.716 0.637 0.745 0.735 0.725 0.755 0.765 0.696 0.706 0.696 0.696
TI Osteoporosis 0.667 0.667 0.681 0.685 0.694 0.681 0.654 0.652 0.678 0.657 0.652 0.667
TI Stroke 0.6 0.615 0.662 0.708 0.677 0.662 0.677 0.662 0.631 0.631 0.631 0.677
AvgRank Elsanurse 5.50 4.65 6.05 6.55 5.65 6.30 4.25 8.10 8.40 7.10 9.05 6.40
AvgRank Elsacore 6.95 7.65 6.80 7.60 7.40 5.95 6.20 6.10 3.45 6.75 6.35 6.80
AvgRank TILDA 4.95 5.70 6.45 3.55 5.80 6.10 7.30 7.95 6.70 9.00 8.40 6.10
AvgRank Overall 5.80 6.00 6.43 5.90 6.28 6.12 5.92 7.38 6.18 7.62 7.93 6.43
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Table D.7: C4.5 decision tree Accuracy results for threshold selection experiments
in the Baseline datasets, varying threshold values from 0.0 to 0.05, in 0.005 in-
crements. The last column, DD, refers to the data-driven approach, which uses
internal cross-validation to select the threshold value for each decision tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.603 0.609 0.594 0.608 0.607 0.614 0.607 0.61 0.607 0.61 0.608 0.615
EN Arthritis 0.574 0.564 0.564 0.567 0.557 0.563 0.556 0.554 0.556 0.562 0.56 0.565
EN Cataract 0.592 0.59 0.597 0.585 0.593 0.599 0.59 0.584 0.592 0.595 0.606 0.592
EN Dementia 0.682 0.681 0.67 0.667 0.678 0.689 0.677 0.682 0.672 0.68 0.675 0.683
EN Diabetes 0.81 0.813 0.806 0.816 0.819 0.818 0.814 0.816 0.811 0.806 0.811 0.806
EN HBP 0.61 0.615 0.603 0.608 0.612 0.614 0.602 0.6 0.6 0.6 0.604 0.617
EN HeartAttack 0.641 0.656 0.641 0.631 0.637 0.652 0.638 0.647 0.645 0.638 0.637 0.64
EN Osteoporosis 0.61 0.607 0.61 0.623 0.624 0.616 0.613 0.613 0.607 0.602 0.609 0.613
EN Parkinsons 0.609 0.62 0.642 0.637 0.64 0.634 0.611 0.639 0.645 0.643 0.65 0.646
EN Stroke 0.633 0.623 0.628 0.635 0.634 0.631 0.604 0.614 0.625 0.621 0.637 0.626
EC Angina 0.66 0.662 0.661 0.657 0.663 0.653 0.666 0.668 0.651 0.666 0.661 0.673
EC Arthritis 0.699 0.694 0.695 0.706 0.702 0.693 0.689 0.7 0.693 0.699 0.697 0.7
EC Cataract 0.653 0.656 0.651 0.651 0.639 0.649 0.662 0.656 0.652 0.665 0.651 0.647
EC Dementia 0.717 0.717 0.716 0.714 0.718 0.708 0.705 0.699 0.703 0.705 0.714 0.717
EC Diabetes 0.667 0.67 0.667 0.664 0.662 0.668 0.674 0.666 0.666 0.666 0.661 0.656
EC HBP 0.605 0.607 0.603 0.6 0.614 0.605 0.605 0.612 0.61 0.615 0.597 0.612
EC HeartAttack 0.627 0.627 0.629 0.621 0.616 0.651 0.647 0.662 0.646 0.633 0.638 0.637
EC Osteoporosis 0.676 0.682 0.681 0.672 0.68 0.667 0.678 0.676 0.687 0.688 0.695 0.678
EC Parkinsons 0.607 0.612 0.626 0.615 0.624 0.636 0.639 0.644 0.655 0.665 0.659 0.612
EC Stroke 0.654 0.653 0.657 0.655 0.659 0.653 0.649 0.662 0.668 0.657 0.642 0.642
TI Angina 0.733 0.736 0.741 0.731 0.721 0.722 0.723 0.72 0.727 0.728 0.726 0.728
TI Arthritis 0.621 0.627 0.609 0.624 0.617 0.619 0.621 0.633 0.618 0.613 0.61 0.622
TI Cancer 0.528 0.54 0.544 0.532 0.567 0.539 0.537 0.534 0.542 0.525 0.527 0.523
TI Cataract 0.667 0.676 0.664 0.671 0.67 0.67 0.671 0.673 0.677 0.661 0.665 0.672
TI Diabetes 0.767 0.767 0.771 0.777 0.77 0.773 0.768 0.761 0.752 0.752 0.758 0.763
TI HBP 0.646 0.642 0.651 0.648 0.632 0.642 0.632 0.64 0.633 0.637 0.636 0.65
TI HeartAttack 0.737 0.741 0.732 0.733 0.737 0.729 0.74 0.737 0.728 0.728 0.726 0.743
TI Ministroke 0.667 0.669 0.692 0.669 0.678 0.675 0.68 0.659 0.688 0.689 0.673 0.666
TI Osteoporosis 0.665 0.668 0.672 0.673 0.668 0.672 0.672 0.671 0.671 0.679 0.683 0.668
TI Stroke 0.682 0.681 0.668 0.65 0.654 0.671 0.653 0.659 0.653 0.639 0.619 0.652
AvgRank Elsanurse 6.55 6.25 7.35 6.50 5.55 3.50 8.75 7.15 8.05 7.70 6.05 4.60
AvgRank Elsacore 7.30 6.20 6.75 8.25 6.10 7.90 6.15 4.80 6.25 4.20 7.15 6.95
AvgRank TILDA 6.50 4.45 4.80 5.30 7.00 6.00 6.20 6.85 6.90 8.35 9.00 6.65
AvgRank Overall 6.78 5.63 6.30 6.68 6.22 5.80 7.03 6.27 7.07 6.75 7.40 6.07
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Table D.8: C4.5 decision tree GMean results for threshold selection experiments
in the Baseline datasets, varying threshold values from 0.0 to 0.05, in 0.005 in-
crements. The last column, DD, refers to the data-driven approach, which uses
internal cross-validation to select the threshold value for each decision tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.596 0.62 0.609 0.604 0.602 0.6 0.607 0.592 0.593 0.602 0.582 0.595
EN Arthritis 0.574 0.564 0.564 0.567 0.559 0.564 0.556 0.555 0.557 0.562 0.561 0.566
EN Cataract 0.589 0.586 0.589 0.582 0.592 0.594 0.59 0.585 0.589 0.592 0.604 0.59
EN Dementia 0.672 0.692 0.686 0.671 0.653 0.669 0.677 0.662 0.68 0.668 0.652 0.666
EN Diabetes 0.804 0.809 0.795 0.808 0.813 0.816 0.814 0.809 0.807 0.805 0.808 0.802
EN HBP 0.608 0.614 0.602 0.608 0.61 0.613 0.602 0.6 0.599 0.601 0.603 0.617
EN HeartAttack 0.639 0.648 0.64 0.624 0.637 0.636 0.638 0.634 0.628 0.617 0.615 0.631
EN Osteoporosis 0.605 0.613 0.625 0.611 0.618 0.618 0.613 0.615 0.599 0.593 0.598 0.613
EN Parkinsons 0.63 0.59 0.608 0.606 0.615 0.596 0.611 0.622 0.633 0.647 0.604 0.641
EN Stroke 0.644 0.637 0.62 0.623 0.628 0.615 0.604 0.604 0.599 0.614 0.616 0.599
EC Angina 0.65 0.659 0.658 0.65 0.67 0.658 0.651 0.654 0.665 0.649 0.65 0.653
EC Arthritis 0.693 0.69 0.69 0.696 0.693 0.687 0.682 0.696 0.69 0.689 0.69 0.694
EC Cataract 0.648 0.654 0.647 0.652 0.646 0.658 0.664 0.651 0.65 0.663 0.649 0.649
EC Dementia 0.763 0.746 0.753 0.744 0.737 0.744 0.742 0.744 0.752 0.748 0.753 0.751
EC Diabetes 0.67 0.667 0.67 0.676 0.665 0.663 0.676 0.665 0.677 0.676 0.667 0.669
EC HBP 0.599 0.605 0.594 0.598 0.609 0.606 0.603 0.614 0.61 0.611 0.589 0.609
EC HeartAttack 0.611 0.624 0.62 0.605 0.625 0.663 0.652 0.661 0.661 0.633 0.659 0.647
EC Osteoporosis 0.664 0.66 0.669 0.652 0.661 0.659 0.671 0.653 0.666 0.66 0.669 0.67
EC Parkinsons 0.636 0.645 0.659 0.64 0.645 0.631 0.646 0.687 0.68 0.685 0.663 0.626
EC Stroke 0.645 0.633 0.636 0.645 0.639 0.643 0.652 0.641 0.645 0.643 0.655 0.622
TI Angina 0.748 0.742 0.744 0.745 0.747 0.747 0.731 0.73 0.741 0.733 0.735 0.749
TI Arthritis 0.625 0.626 0.61 0.621 0.614 0.614 0.619 0.626 0.614 0.611 0.612 0.62
TI Cancer 0.553 0.57 0.537 0.551 0.56 0.55 0.547 0.538 0.558 0.541 0.536 0.556
TI Cataract 0.674 0.664 0.672 0.684 0.682 0.681 0.67 0.677 0.685 0.665 0.676 0.676
TI Diabetes 0.77 0.762 0.766 0.755 0.751 0.746 0.743 0.749 0.748 0.742 0.751 0.732
TI HBP 0.645 0.638 0.651 0.644 0.627 0.64 0.629 0.633 0.628 0.633 0.627 0.65
TI HeartAttack 0.751 0.769 0.748 0.751 0.737 0.739 0.753 0.748 0.746 0.739 0.74 0.738
TI Ministroke 0.691 0.691 0.664 0.705 0.705 0.699 0.716 0.709 0.692 0.697 0.684 0.681
TI Osteoporosis 0.666 0.667 0.676 0.678 0.68 0.676 0.664 0.662 0.674 0.669 0.669 0.667
TI Stroke 0.64 0.648 0.665 0.678 0.665 0.666 0.665 0.66 0.642 0.635 0.625 0.664
AvgRank Elsanurse 5.45 4.45 5.35 6.70 5.25 5.15 6.05 8.50 8.45 7.50 8.55 6.60
AvgRank Elsacore 7.10 7.30 7.05 7.55 7.60 7.40 5.70 5.65 3.90 5.90 6.15 6.70
AvgRank TILDA 5.40 5.65 6.60 3.50 5.40 5.65 7.20 6.95 6.60 9.25 9.10 6.70
AvgRank Overall 5.98 5.80 6.33 5.92 6.08 6.07 6.32 7.03 6.32 7.55 7.93 6.67
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Table D.9: C4.5 decision tree Comparison of Lexic and NoLexic approaches for
Baseline datasets.

Baseline
Datasets

SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

EN Angina 0.617 0.608 0.574 0.589 0.615 0.608 0.595 0.599
EN Arthritis 0.561 0.57 0.571 0.56 0.565 0.566 0.566 0.565
EN Cataract 0.596 0.598 0.585 0.578 0.592 0.592 0.59 0.588
EN Dementia 0.683 0.679 0.649 0.622 0.683 0.678 0.666 0.65
EN Diabetes 0.808 0.804 0.797 0.805 0.806 0.804 0.802 0.805
EN HBP 0.618 0.587 0.616 0.603 0.617 0.594 0.617 0.595
EN HeartAttack 0.641 0.646 0.621 0.638 0.64 0.646 0.631 0.642
EN Osteoporosis 0.614 0.594 0.612 0.63 0.613 0.598 0.613 0.612
EN Parkinsons 0.646 0.633 0.636 0.5 0.646 0.632 0.641 0.563
EN Stroke 0.629 0.629 0.57 0.575 0.626 0.625 0.599 0.601
EC Angina 0.675 0.674 0.632 0.635 0.673 0.672 0.653 0.654
EC Arthritis 0.724 0.706 0.665 0.661 0.7 0.688 0.694 0.683
EC Cataract 0.646 0.661 0.652 0.642 0.647 0.655 0.649 0.651
EC Dementia 0.715 0.747 0.789 0.795 0.717 0.748 0.751 0.771
EC Diabetes 0.652 0.673 0.686 0.689 0.656 0.675 0.669 0.681
EC HBP 0.621 0.614 0.598 0.592 0.612 0.606 0.609 0.603
EC HeartAttack 0.636 0.631 0.659 0.634 0.637 0.631 0.647 0.632
EC Osteoporosis 0.68 0.684 0.661 0.638 0.678 0.68 0.67 0.661
EC Parkinsons 0.612 0.657 0.64 0.676 0.612 0.658 0.626 0.667
EC Stroke 0.644 0.649 0.6 0.666 0.642 0.65 0.622 0.658
TI Angina 0.726 0.733 0.772 0.764 0.728 0.734 0.749 0.748
TI Arthritis 0.624 0.626 0.616 0.596 0.622 0.616 0.62 0.611
TI Cancer 0.519 0.522 0.595 0.53 0.523 0.522 0.556 0.526
TI Cataract 0.671 0.677 0.682 0.642 0.672 0.674 0.676 0.659
TI Diabetes 0.767 0.764 0.699 0.748 0.763 0.763 0.732 0.756
TI HBP 0.651 0.638 0.65 0.608 0.65 0.627 0.65 0.623
TI HeartAttack 0.744 0.74 0.732 0.756 0.743 0.741 0.738 0.748
TI Ministroke 0.666 0.68 0.696 0.686 0.666 0.68 0.681 0.683
TI Osteoporosis 0.668 0.677 0.667 0.657 0.668 0.675 0.667 0.667
TI Stroke 0.652 0.639 0.677 0.615 0.652 0.639 0.664 0.627
AvgRank Elsanurse 1.35 1.65 1.50 1.50 1.25 1.75 1.40 1.60
AvgRank Elsacore 1.60 1.40 1.50 1.50 1.60 1.40 1.60 1.40
AvgRank TILDA 1.60 1.40 1.20 1.80 1.45 1.55 1.35 1.65
AvgRank Overall 1.52 1.48 1.40 1.60 1.43 1.57 1.45 1.55
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Table D.10: C4.5 decision tree Sensitivity results for threshold selection experi-
ments in the Baseline+CTF datasets, varying threshold values from 0.0 to 0.05,
in 0.005 increments. The last column, DD, refers to the data-driven approach,
which uses internal cross-validation to select the threshold value for each decision
tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.579 0.595 0.595 0.604 0.605 0.598 0.617 0.605 0.601 0.588 0.594 0.598
EN Arthritis 0.564 0.567 0.573 0.564 0.568 0.559 0.563 0.559 0.563 0.555 0.56 0.565
EN Cataract 0.584 0.587 0.605 0.595 0.61 0.584 0.596 0.591 0.599 0.596 0.594 0.588
EN Dementia 0.673 0.678 0.668 0.663 0.667 0.674 0.678 0.672 0.671 0.666 0.667 0.684
EN Diabetes 0.794 0.802 0.802 0.799 0.796 0.792 0.8 0.796 0.795 0.794 0.789 0.796
EN HBP 0.622 0.619 0.615 0.629 0.605 0.61 0.619 0.607 0.614 0.605 0.601 0.606
EN HeartAttack 0.632 0.627 0.639 0.645 0.637 0.651 0.637 0.636 0.639 0.648 0.643 0.639
EN Osteoporosis 0.603 0.6 0.6 0.606 0.612 0.597 0.592 0.602 0.608 0.606 0.601 0.602
EN Parkinsons 0.584 0.6 0.598 0.611 0.605 0.627 0.627 0.637 0.636 0.636 0.615 0.604
EN Stroke 0.626 0.617 0.628 0.627 0.632 0.614 0.633 0.627 0.627 0.635 0.638 0.624
EC Angina 0.756 0.758 0.756 0.745 0.74 0.743 0.743 0.737 0.737 0.733 0.727 0.745
EC Arthritis 0.611 0.613 0.62 0.62 0.606 0.606 0.611 0.615 0.607 0.612 0.61 0.616
EC Cataract 0.541 0.531 0.547 0.509 0.527 0.522 0.517 0.52 0.524 0.534 0.519 0.524
EC Dementia 0.686 0.684 0.653 0.669 0.671 0.666 0.659 0.66 0.657 0.65 0.652 0.656
EC Diabetes 0.753 0.744 0.747 0.745 0.738 0.745 0.741 0.742 0.747 0.754 0.748 0.748
EC HBP 0.647 0.657 0.651 0.647 0.631 0.638 0.641 0.631 0.637 0.642 0.634 0.645
EC HeartAttack 0.73 0.732 0.735 0.73 0.745 0.741 0.719 0.719 0.722 0.722 0.718 0.723
EC Osteoporosis 0.685 0.689 0.672 0.67 0.649 0.659 0.667 0.668 0.661 0.653 0.656 0.671
EC Parkinsons 0.66 0.653 0.662 0.662 0.654 0.672 0.667 0.667 0.673 0.666 0.667 0.664
EC Stroke 0.663 0.678 0.67 0.665 0.664 0.632 0.641 0.633 0.613 0.612 0.613 0.653
TI Angina 0.756 0.758 0.756 0.745 0.74 0.743 0.743 0.737 0.737 0.733 0.727 0.725
TI Arthritis 0.611 0.613 0.62 0.62 0.606 0.606 0.611 0.615 0.607 0.612 0.61 0.589
TI Cancer 0.541 0.531 0.547 0.509 0.527 0.522 0.517 0.52 0.524 0.534 0.519 0.52
TI Cataract 0.686 0.684 0.653 0.669 0.671 0.666 0.659 0.66 0.657 0.65 0.652 0.641
TI Diabetes 0.753 0.744 0.747 0.745 0.738 0.745 0.741 0.742 0.747 0.754 0.748 0.752
TI HBP 0.647 0.657 0.651 0.647 0.631 0.638 0.641 0.631 0.637 0.642 0.634 0.65
TI HeartAttack 0.73 0.732 0.735 0.73 0.745 0.741 0.719 0.719 0.722 0.722 0.718 0.7
TI Ministroke 0.685 0.689 0.672 0.67 0.649 0.659 0.667 0.668 0.661 0.653 0.656 0.665
TI Osteoporosis 0.66 0.653 0.662 0.662 0.654 0.672 0.667 0.667 0.673 0.666 0.667 0.661
TI Stroke 0.663 0.678 0.67 0.665 0.664 0.632 0.641 0.633 0.613 0.612 0.613 0.597
AvgRank Elsanurse 8.25 7.15 5.75 5.30 5.30 7.90 5.00 6.55 5.40 6.85 7.85 6.70
AvgRank Elsacore 4.10 4.00 3.90 5.50 7.90 6.85 7.85 7.85 7.65 7.65 9.20 5.55
AvgRank TILDA 4.10 3.90 3.70 5.35 7.70 6.45 7.35 7.30 7.20 7.15 8.75 9.05
AvgRank Overall 5.48 5.02 4.45 5.38 6.97 7.07 6.73 7.23 6.75 7.22 8.60 7.10
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Table D.11: C4.5 decision tree Specificity results for threshold selection experi-
ments in the Baseline+CTF datasets, varying threshold values from 0.0 to 0.05,
in 0.005 increments. The last column, DD, refers to the data-driven approach,
which uses internal cross-validation to select the threshold value for each decision
tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.597 0.593 0.605 0.581 0.612 0.605 0.597 0.601 0.581 0.554 0.593 0.581
EN Arthritis 0.564 0.567 0.553 0.564 0.559 0.553 0.555 0.569 0.565 0.562 0.56 0.555
EN Cataract 0.575 0.593 0.566 0.584 0.588 0.574 0.578 0.579 0.575 0.587 0.58 0.578
EN Dementia 0.635 0.655 0.682 0.655 0.703 0.676 0.669 0.662 0.676 0.669 0.676 0.635
EN Diabetes 0.81 0.807 0.796 0.8 0.789 0.789 0.79 0.795 0.797 0.794 0.799 0.796
EN HBP 0.607 0.592 0.608 0.612 0.593 0.59 0.594 0.6 0.591 0.587 0.589 0.599
EN HeartAttack 0.636 0.613 0.636 0.633 0.594 0.589 0.581 0.576 0.591 0.586 0.566 0.618
EN Osteoporosis 0.607 0.59 0.59 0.583 0.584 0.596 0.589 0.61 0.584 0.589 0.602 0.587
EN Parkinsons 0.591 0.545 0.561 0.53 0.515 0.515 0.545 0.5 0.515 0.515 0.561 0.606
EN Stroke 0.639 0.618 0.637 0.606 0.596 0.641 0.639 0.637 0.61 0.62 0.641 0.622
EC Angina 0.7 0.76 0.728 0.708 0.724 0.744 0.728 0.704 0.712 0.748 0.752 0.72
EC Arthritis 0.611 0.603 0.611 0.589 0.615 0.617 0.607 0.621 0.598 0.61 0.612 0.59
EC Cataract 0.51 0.503 0.477 0.556 0.533 0.566 0.52 0.53 0.523 0.52 0.497 0.549
EC Dementia 0.64 0.632 0.663 0.623 0.642 0.649 0.628 0.636 0.619 0.626 0.628 0.634
EC Diabetes 0.74 0.732 0.727 0.725 0.738 0.748 0.756 0.738 0.769 0.766 0.758 0.743
EC HBP 0.624 0.629 0.617 0.64 0.632 0.623 0.638 0.616 0.618 0.629 0.618 0.625
EC HeartAttack 0.698 0.717 0.693 0.702 0.683 0.717 0.766 0.79 0.766 0.766 0.751 0.741
EC Osteoporosis 0.647 0.647 0.647 0.657 0.647 0.627 0.618 0.637 0.676 0.637 0.627 0.686
EC Parkinsons 0.637 0.687 0.685 0.657 0.654 0.667 0.617 0.665 0.654 0.656 0.654 0.656
EC Stroke 0.662 0.569 0.554 0.554 0.585 0.569 0.554 0.538 0.538 0.554 0.554 0.6
TI Angina 0.7 0.76 0.728 0.708 0.724 0.744 0.728 0.704 0.712 0.748 0.752 0.764
TI Arthritis 0.611 0.603 0.611 0.589 0.615 0.617 0.607 0.621 0.598 0.61 0.612 0.611
TI Cancer 0.51 0.503 0.477 0.556 0.533 0.566 0.52 0.53 0.523 0.52 0.497 0.563
TI Cataract 0.64 0.632 0.663 0.623 0.642 0.649 0.628 0.636 0.619 0.626 0.628 0.665
TI Diabetes 0.74 0.732 0.727 0.725 0.738 0.748 0.756 0.738 0.769 0.766 0.758 0.714
TI HBP 0.624 0.629 0.617 0.64 0.632 0.623 0.638 0.616 0.618 0.629 0.618 0.601
TI HeartAttack 0.698 0.717 0.693 0.702 0.683 0.717 0.766 0.79 0.766 0.766 0.751 0.756
TI Ministroke 0.647 0.647 0.647 0.657 0.647 0.627 0.618 0.637 0.676 0.637 0.627 0.657
TI Osteoporosis 0.637 0.687 0.685 0.657 0.654 0.667 0.617 0.665 0.654 0.656 0.654 0.661
TI Stroke 0.662 0.569 0.554 0.554 0.585 0.569 0.554 0.538 0.538 0.554 0.554 0.692
AvgRank Elsanurse 4.40 5.50 5.25 6.50 6.85 7.35 7.15 6.05 7.75 8.25 5.85 7.10
AvgRank Elsacore 7.20 6.00 7.25 7.30 5.80 4.75 7.05 6.75 7.30 6.00 7.05 5.55
AvgRank TILDA 7.25 6.10 7.30 7.35 5.90 4.85 7.25 6.65 7.20 6.25 7.15 4.75
AvgRank Overall 6.28 5.87 6.60 7.05 6.18 5.65 7.15 6.48 7.42 6.83 6.68 5.80
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Table D.12: C4.5 decision tree Accuracy results for threshold selection experi-
ments in the Baseline+CTF datasets, varying threshold values from 0.0 to 0.05,
in 0.005 increments. The last column, DD, refers to the data-driven approach,
which uses internal cross-validation to select the threshold value for each decision
tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.58 0.595 0.595 0.603 0.605 0.598 0.617 0.605 0.6 0.587 0.594 0.598
EN Arthritis 0.564 0.567 0.564 0.564 0.564 0.557 0.56 0.563 0.564 0.558 0.56 0.561
EN Cataract 0.581 0.589 0.593 0.591 0.603 0.581 0.591 0.587 0.591 0.593 0.589 0.585
EN Dementia 0.672 0.677 0.668 0.663 0.667 0.674 0.678 0.672 0.671 0.666 0.667 0.683
EN Diabetes 0.796 0.803 0.801 0.799 0.795 0.792 0.799 0.796 0.795 0.794 0.79 0.796
EN HBP 0.616 0.608 0.612 0.622 0.6 0.602 0.609 0.604 0.605 0.598 0.596 0.603
EN HeartAttack 0.632 0.626 0.639 0.644 0.635 0.647 0.634 0.633 0.637 0.645 0.638 0.637
EN Osteoporosis 0.603 0.6 0.599 0.604 0.609 0.597 0.592 0.603 0.606 0.605 0.601 0.601
EN Parkinsons 0.584 0.6 0.598 0.61 0.604 0.626 0.626 0.636 0.635 0.634 0.614 0.604
EN Stroke 0.627 0.617 0.628 0.626 0.63 0.615 0.633 0.628 0.626 0.634 0.638 0.624
EC Angina 0.753 0.758 0.755 0.743 0.74 0.743 0.743 0.736 0.736 0.734 0.728 0.744
EC Arthritis 0.611 0.61 0.617 0.611 0.608 0.61 0.609 0.617 0.604 0.612 0.61 0.608
EC Cataract 0.54 0.53 0.543 0.511 0.527 0.524 0.518 0.521 0.524 0.533 0.518 0.525
EC Dementia 0.682 0.68 0.654 0.665 0.669 0.664 0.657 0.658 0.654 0.648 0.65 0.654
EC Diabetes 0.752 0.743 0.746 0.744 0.738 0.746 0.742 0.742 0.748 0.755 0.749 0.748
EC HBP 0.638 0.646 0.638 0.644 0.631 0.633 0.64 0.626 0.63 0.637 0.628 0.637
EC HeartAttack 0.729 0.732 0.733 0.729 0.743 0.741 0.721 0.722 0.723 0.723 0.719 0.724
EC Osteoporosis 0.684 0.688 0.672 0.669 0.649 0.658 0.666 0.667 0.661 0.652 0.655 0.671
EC Parkinsons 0.658 0.656 0.664 0.662 0.654 0.671 0.662 0.667 0.671 0.665 0.665 0.664
EC Stroke 0.663 0.677 0.668 0.664 0.663 0.631 0.64 0.631 0.612 0.612 0.612 0.652
TI Angina 0.753 0.758 0.755 0.743 0.74 0.743 0.743 0.736 0.736 0.734 0.728 0.727
TI Arthritis 0.611 0.61 0.617 0.611 0.608 0.61 0.609 0.617 0.604 0.612 0.61 0.595
TI Cancer 0.54 0.53 0.543 0.511 0.527 0.524 0.518 0.521 0.524 0.533 0.518 0.522
TI Cataract 0.682 0.68 0.654 0.665 0.669 0.664 0.657 0.658 0.654 0.648 0.65 0.643
TI Diabetes 0.752 0.743 0.746 0.744 0.738 0.746 0.742 0.742 0.748 0.755 0.749 0.749
TI HBP 0.638 0.646 0.638 0.644 0.631 0.633 0.64 0.626 0.63 0.637 0.628 0.632
TI HeartAttack 0.729 0.732 0.733 0.729 0.743 0.741 0.721 0.722 0.723 0.723 0.719 0.702
TI Ministroke 0.684 0.688 0.672 0.669 0.649 0.658 0.666 0.667 0.661 0.652 0.655 0.665
TI Osteoporosis 0.658 0.656 0.664 0.662 0.654 0.671 0.662 0.667 0.671 0.665 0.665 0.661
TI Stroke 0.663 0.677 0.668 0.664 0.663 0.631 0.64 0.631 0.612 0.612 0.612 0.598
AvgRank Elsanurse 7.65 6.80 5.85 5.20 5.70 8.25 5.35 5.90 5.45 6.65 8.00 7.20
AvgRank Elsacore 3.90 4.10 3.90 5.85 7.70 6.10 7.95 7.60 8.15 7.15 9.20 6.40
AvgRank TILDA 3.90 4.10 3.80 5.55 7.55 5.70 7.45 7.20 7.65 6.70 8.85 9.55
AvgRank Overall 5.15 5.00 4.52 5.53 6.98 6.68 6.92 6.90 7.08 6.83 8.68 7.72
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Table D.13: C4.5 decision tree GMean results for threshold selection experiments
in the Baseline+CTF datasets, varying threshold values from 0.0 to 0.05, in 0.005
increments. The last column, DD, refers to the data-driven approach, which uses
internal cross-validation to select the threshold value for each decision tree.

Threshold 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 DD
EN Angina 0.588 0.594 0.6 0.593 0.609 0.601 0.607 0.603 0.591 0.571 0.593 0.59
EN Arthritis 0.564 0.567 0.563 0.564 0.564 0.556 0.559 0.564 0.564 0.558 0.56 0.56
EN Cataract 0.579 0.59 0.585 0.59 0.599 0.579 0.587 0.585 0.587 0.592 0.587 0.583
EN Dementia 0.654 0.667 0.675 0.659 0.684 0.675 0.673 0.667 0.673 0.667 0.671 0.659
EN Diabetes 0.802 0.804 0.799 0.8 0.793 0.79 0.795 0.795 0.796 0.794 0.794 0.796
EN HBP 0.615 0.605 0.612 0.62 0.599 0.6 0.606 0.603 0.602 0.596 0.595 0.603
EN HeartAttack 0.634 0.62 0.638 0.639 0.615 0.619 0.608 0.605 0.615 0.616 0.603 0.628
EN Osteoporosis 0.605 0.595 0.595 0.594 0.598 0.597 0.591 0.606 0.596 0.597 0.602 0.595
EN Parkinsons 0.588 0.572 0.579 0.569 0.558 0.568 0.585 0.564 0.572 0.572 0.587 0.605
EN Stroke 0.633 0.617 0.632 0.616 0.614 0.627 0.636 0.632 0.619 0.627 0.64 0.623
EC Angina 0.727 0.759 0.742 0.726 0.732 0.743 0.736 0.72 0.725 0.74 0.74 0.732
EC Arthritis 0.611 0.608 0.615 0.605 0.61 0.612 0.609 0.618 0.603 0.611 0.611 0.603
EC Cataract 0.525 0.517 0.511 0.532 0.53 0.543 0.519 0.525 0.524 0.527 0.508 0.536
EC Dementia 0.663 0.657 0.658 0.646 0.657 0.657 0.643 0.648 0.638 0.637 0.64 0.645
EC Diabetes 0.746 0.738 0.737 0.735 0.738 0.747 0.748 0.74 0.758 0.76 0.753 0.745
EC HBP 0.635 0.643 0.634 0.643 0.632 0.631 0.639 0.624 0.628 0.635 0.626 0.635
EC HeartAttack 0.713 0.725 0.713 0.716 0.713 0.729 0.742 0.754 0.743 0.743 0.734 0.732
EC Osteoporosis 0.666 0.668 0.66 0.663 0.648 0.643 0.642 0.652 0.669 0.645 0.641 0.678
EC Parkinsons 0.648 0.67 0.673 0.66 0.654 0.669 0.642 0.666 0.663 0.661 0.66 0.66
EC Stroke 0.662 0.621 0.609 0.607 0.623 0.6 0.596 0.584 0.574 0.582 0.582 0.626
TI Angina 0.727 0.759 0.742 0.726 0.732 0.743 0.736 0.72 0.725 0.74 0.74 0.744
TI Arthritis 0.611 0.608 0.615 0.605 0.61 0.612 0.609 0.618 0.603 0.611 0.611 0.6
TI Cancer 0.525 0.517 0.511 0.532 0.53 0.543 0.519 0.525 0.524 0.527 0.508 0.541
TI Cataract 0.663 0.657 0.658 0.646 0.657 0.657 0.643 0.648 0.638 0.637 0.64 0.653
TI Diabetes 0.746 0.738 0.737 0.735 0.738 0.747 0.748 0.74 0.758 0.76 0.753 0.733
TI HBP 0.635 0.643 0.634 0.643 0.632 0.631 0.639 0.624 0.628 0.635 0.626 0.625
TI HeartAttack 0.713 0.725 0.713 0.716 0.713 0.729 0.742 0.754 0.743 0.743 0.734 0.727
TI Ministroke 0.666 0.668 0.66 0.663 0.648 0.643 0.642 0.652 0.669 0.645 0.641 0.661
TI Osteoporosis 0.648 0.67 0.673 0.66 0.654 0.669 0.642 0.666 0.663 0.661 0.66 0.661
TI Stroke 0.662 0.621 0.609 0.607 0.623 0.6 0.596 0.584 0.574 0.582 0.582 0.643
AvgRank Elsanurse 5.25 5.55 5.05 6.15 6.45 7.90 6.20 6.50 6.85 7.95 6.85 7.30
AvgRank Elsacore 5.95 5.20 5.90 7.15 7.20 5.10 7.40 6.65 7.50 6.05 8.10 5.80
AvgRank TILDA 5.80 5.00 5.80 7.10 7.05 5.00 7.50 6.65 7.25 6.15 8.15 6.55
AvgRank Overall 5.67 5.25 5.58 6.80 6.90 6.00 7.03 6.60 7.20 6.72 7.70 6.55
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Table D.14: C4.5 decision tree Comparison of Lexic and NoLexic approaches for
Baseline+CTF datasets.

Baseline+CTFs
Datasets

SENSITIVITY SPECIFICITY ACCURACY GMEAN
Lexic NoLexic Lexic NoLexic Lexic NoLexic Lexic NoLexic

EN Angina 0.598 0.608 0.581 0.554 0.598 0.606 0.59 0.581
EN Arthritis 0.565 0.557 0.555 0.561 0.561 0.559 0.56 0.559
EN Cataract 0.588 0.604 0.578 0.579 0.585 0.596 0.583 0.591
EN Dementia 0.684 0.658 0.635 0.628 0.683 0.657 0.659 0.643
EN Diabetes 0.796 0.8 0.796 0.805 0.796 0.801 0.796 0.803
EN HBP 0.606 0.615 0.599 0.589 0.603 0.604 0.603 0.602
EN HeartAttack 0.639 0.633 0.618 0.608 0.637 0.632 0.628 0.621
EN Osteoporosis 0.602 0.603 0.587 0.638 0.601 0.606 0.595 0.62
EN Parkinsons 0.604 0.612 0.606 0.652 0.604 0.613 0.605 0.632
EN Stroke 0.624 0.632 0.622 0.613 0.624 0.631 0.623 0.622
EC Angina 0.745 0.725 0.72 0.764 0.744 0.727 0.732 0.744
EC Arthritis 0.616 0.589 0.59 0.611 0.608 0.595 0.603 0.6
EC Cataract 0.524 0.52 0.549 0.563 0.525 0.522 0.536 0.541
EC Dementia 0.656 0.641 0.634 0.665 0.654 0.643 0.645 0.653
EC Diabetes 0.748 0.752 0.743 0.714 0.748 0.749 0.745 0.733
EC HBP 0.645 0.65 0.625 0.601 0.637 0.632 0.635 0.625
EC HeartAttack 0.723 0.7 0.741 0.756 0.724 0.702 0.732 0.727
EC Osteoporosis 0.671 0.665 0.686 0.657 0.671 0.665 0.678 0.661
EC Parkinsons 0.664 0.661 0.656 0.661 0.664 0.661 0.66 0.661
EC Stroke 0.653 0.597 0.6 0.692 0.652 0.598 0.626 0.643
TI Angina 0.725 0.756 0.764 0.7 0.727 0.753 0.744 0.727
TI Arthritis 0.589 0.611 0.611 0.611 0.595 0.611 0.6 0.611
TI Cancer 0.52 0.541 0.563 0.51 0.522 0.54 0.541 0.525
TI Cataract 0.641 0.686 0.665 0.64 0.643 0.682 0.653 0.663
TI Diabetes 0.752 0.753 0.714 0.74 0.749 0.752 0.733 0.746
TI HBP 0.65 0.647 0.601 0.624 0.632 0.638 0.625 0.635
TI HeartAttack 0.7 0.73 0.756 0.698 0.702 0.729 0.727 0.713
TI Ministroke 0.665 0.685 0.657 0.647 0.665 0.684 0.661 0.666
TI Osteoporosis 0.661 0.66 0.661 0.637 0.661 0.658 0.661 0.648
TI Stroke 0.597 0.663 0.692 0.662 0.598 0.663 0.643 0.662
AvgRank Elsanurse 1.70 1.30 1.50 1.50 1.70 1.30 1.40 1.60
AvgRank Elsacore 1.20 1.80 1.70 1.30 1.10 1.90 1.50 1.50
AvgRank TILDA 1.80 1.20 1.25 1.75 1.90 1.10 1.60 1.40
AvgRank Overall 1.57 1.43 1.48 1.52 1.57 1.43 1.50 1.50
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Appendix E

Feature Importance Analysis of

Random Forest Models Trained

with the Lexicographic Split

Approach

In this Appendix we present the 10 best-ranked features, i.e., those with highest

average impurity decrease values, for all RF models which we did not discuss

in Section 6.5. All models used for this analysis were trained using the entire

datasets (no training and test data division), undersampled to a 1:1 ratio using

the Balanced Random Forest method, with missing values replaced using the data-

driven MVR approach (Chapter 4) and the lexicographic split function (Chapter

6). The number of trees in these Random Forests was increased from the default

100 to 1000, to get more precise feature importance results.

Tables E.1 to E.9 show the models created from ELSA-nurse datasets, from

the least imbalanced class to the most imbalanced. Tables E.10 to E.18 show the

models created from ELSA-core datasets, and the models created with TILDA

datasets are presented in Tables E.19 to E.27, all ordered from the least imbalanced

class to the most imbalanced. In all Tables we present the 10 top-ranked features,

their description and average impurity decrease (AID) value.
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Table E.1: The 10 top-ranked features for the ELSA-nurse RF model, class:
Arthritis (Imbalance Ratio: 1.35).

Feature Description AID

chestin w2
Lung function: Whether had any respiratory
infection in last 3 weeks

0.47

hastro w2
Whether been admitted to hospital with a heart
complaint in the past month

0.46

mmlsre w2 Leg raise (eyes shut): Outcome 0.44

eyesurg w4
Whether have a detached retina or had eye
or ear surgery in the past 3 months

0.43

mmcrre w2 Single chair rise outcome 0.43
apoe w2 Blood apolipoprotein E (apoE) level (mmol/l) 0.42
cfib w4 Blood Fibrinogen level (g/l) 0.42
fglu w4 Blood glucose level while fasting (mmol/L) 0.42
hdl w2 Blood high-density lipoprotein level (mmol/l) 0.41
hba1c w2 Blood glycated haemoglobin level (mmol/mol) 0.41

Table E.2: The 10 top-ranked features for the ELSA-nurse RF model, class: High
Blood Pressure (Imbalance Ratio: 1.49).

Feature Description AID
sex Sex of the participant (male/female) 0.54

chestin w6
Lung function: Whether had any respiratory
infection in last 3 weeks

0.46

eyesurg w4
Whether have a detached retina or had eye
or ear surgery in the past 3 months

0.44

indager w8 Age of the participant at a given wave 0.43
clotb w4 Blood sample: whether has clotting disorder 0.42
cfib w8 Blood Fibrinogen level (g/l) 0.42
clotb w6 Blood sample: whether has clotting disorder 0.42

hastro w2
Whether been admitted to hospital with a
heart complaint in the past month

0.42

diaval w8 Mean diastolic blood pressure 0.42

igf1 w8
Blood insulin-like growth factor (IGF-1)
level (nmol/l)

0.41
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Table E.3: The 10 top-ranked features for the ELSA-nurse RF model, class:
Cataract (Imbalance Ratio: 2.06).

Feature Description AID

eyesurg w4
Whether have a detached retina or had eye
or ear surgery in the past 3 months

0.56

clotb w4 Blood sample: whether has clotting disorder 0.42

bmiobe w6
Body mass index grouped according to
WHO definitions

0.41

bmiobe w4
Body mass index grouped according to
WHO definitions

0.4

cfib w6 Blood Fibrinogen level (g/l) 0.4

htpf w2
LUNG: Highest technically satisfactory
value for Peak Flow

0.4

chol w4 Blood total cholesterol level (mmol/l) 0.39
chol w6 Blood total cholesterol level (mmol/l) 0.39

htfev w6
LUNG: Highest technically satisfactory
value for Forced Expiratory Volume

0.39

trig w2 Blood triglyceride level (mmol/l) 0.39

Table E.4: The 10 top-ranked features for the ELSA-nurse RF model, class: Os-
teoporosis (Imbalance Ratio: 9.85).

Feature Description AID

hasurg w4
Whether had abdominal or chest surgery
in the past 3 months

1

clotb w4 Blood sample: whether has clotting disorder 0.92
mmssre w2 Outcome of semi-tandem stand 0.92
mmcrre w4 Single chair rise outcome 0.54

hastro w2
Whether been admitted to hospital with a
heart complaint in the past month

0.54

clotb w6 Blood sample: whether has clotting disorder 0.51

chestin w6
Lung function: Whether had any respiratory
infection in last 3 weeks

0.49

hastro w4
Whether been admitted to hospital with a
heart complaint in the past month

0.47

bmiobe w6
Body mass index grouped according to
WHO definitions

0.46

chol w8 Blood total cholesterol level (mmol/l) 0.44
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Table E.5: The 10 top-ranked features for the ELSA-nurse RF model, class: Stroke
(Imbalance Ratio: 15.86).

Feature Description AID

hastro w4
Whether been admitted to hospital with a
heart complaint in the past month

0.65

mmssre w4 Outcome of semi-tandem stand 0.57

eyesurg w2
Whether have a detached retina or had eye
or ear surgery in the past 3 months

0.56

sex Sex of the participant (male/female) 0.46
mmssre w2 Outcome of semi-tandem stand 0.45

hdl w6
Blood High-density lipoprotein (HDL)
level (mmol/l)

0.45

htval w6 Height (cm) 0.43

hastro w2
Whether been admitted to hospital with a
heart complaint in the past month

0.43

pulval w2 Pulse pressure 0.43
clotb w2 Blood sample: whether has clotting disorder 0.43

Table E.6: The 10 top-ranked features for the ELSA-nurse RF model, class: Heart
Attack (Imbalance Ratio: 16.7).

Feature Description AID
clotb w4 Blood sample: whether has clotting disorder 0.76

eyesurg w6
Whether have a detached retina or had eye
or ear surgery in the past 3 months

0.45

htval w2 Height (cm) 0.45
trig w2 Blood triglyceride level (mmol/l) 0.44
mmlsre w2 Leg raise (eyes shut): Outcome 0.43
diaval w2 Mean diastolic blood pressure 0.42
hipval w4 Mean hip (cm) 0.42
fglu w6 Blood glucose level while fasting (mmol/L) 0.42
clotb w6 Blood sample: whether has clotting disorder 0.42

bmiobe w4
Body mass index grouped according to
WHO definitions

0.42

265



Table E.7: The 10 top-ranked features for the ELSA-nurse RF model, class:
Angina (Imbalance Ratio: 26.51).

Feature Description AID

chestin w4
Lung function: Whether had any respiratory
infection in last 3 weeks

0.6

chestin w2
Lung function: Whether had any respiratory
infection in last 3 weeks

0.5

rtin w2 Blood ferritin level (ng/ml) 0.5
mapval w2 Mean arterial pressure 0.48

hasurg w4
Whether had abdominal or chest surgery
in the past 3 months

0.47

hba1c w2 Blood glycated haemoglobin level (mmol/mol) 0.47
hscrp w2 Blood C-reactive protein (CRP) level (mg/l) 0.46
hipval w2 Mean hip (cm) 0.46
mmgsdavg w2 Mean grip strenght with dominant hand 0.46

bmiobe w2
Body mass index grouped according to
WHO definitions

0.45

Table E.8: The 10 top-ranked features for the ELSA-nurse RF model, class: De-
mentia (Imbalance Ratio: 59.96).

Feature Description AID

hastro w6
Whether been admitted to hospital with
a heart complaint in the past month

1

chestin w2
Lung function: Whether had any respiratory
infection in last 3 weeks

0.92

mmstre w2 Outcome of semi-tandem stand 0.92

hastro w4
Whether been admitted to hospital with a
heart complaint in the past month

0.72

hastro w2
Whether been admitted to hospital with a
heart complaint in the past month

0.67

trig w4 Blood triglyceride level (mmol/l) 0.54

bmiobe w6
Body mass index grouped according to
WHO definitions

0.53

igf1 w8
Blood insulin-like growth factor (IGF-1)
level (nmol/l)

0.52

mapval w2 Mean arterial pressure 0.52
wtval w4 Weight (Kg) 0.52
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Table E.9: The 10 top-ranked features for the ELSA-nurse RF model, class:
Parkinsons (Imbalance Ratio: 160.3).

Feature Description AID
hdl w4 Blood high-density lipoprotein level (mmol/l) 0.63
wtval w2 Weight (Kg) 0.62
hgb w6 Blood haemoglobin level (g/dl) 0.61
cfib w4 Blood Fibrinogen level (g/l) 0.61
hba1c w2 Blood glycated haemoglobin level (mmol/mol) 0.59

bmiobe w2
Body mass index grouped according to
WHO definitions

0.52

pulval w4 Pulse pressure 0.51
pulval w2 Pulse pressure 0.51

chestin w2
Lung function: Whether had any respiratory
infection in last 3 weeks

0.5

mmcrre w4 Single chair rise outcome 0.5

Table E.10: The 10 top-ranked features for the ELSA-core RF model, class:
Arthritis (Imbalance Ratio: 2.52).

Feature Description AID
cesd w7 Depression questionnaire score 0.56
indager w8 Age of the participant at a given wave 0.56
dicdnm w7 Cause of death of mother of respondent 0.56
cesd w5 Depression questionnaire score 0.56
heiadlX-of-9 w6 Reported IADL difficulties (count) 0.54
cesd w6 Depression questionnaire score 0.54
cesd w2 Depression questionnaire score 0.54
cfmetper w4 Perception of memory compared to 2 years ago 0.54
cfmetm w7 Self-rated memory 0.54
cfmetper w7 Perception of memory compared to 2 years ago 0.54
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Table E.11: The 10 top-ranked features for the ELSA-core RF model, class: High
Blood Pressure (Imbalance Ratio: 2.58).

Feature Description AID
indager w8 Age of the participant at a given wave 0.57
cesd w4 Depression questionnaire score 0.56
hepain w2 Whether often troubled with pain 0.55
cesd w7 Depression questionnaire score 0.55
cesd w1 Depression questionnaire score 0.55
cfmetper w4 Perception of memory compared to 2 years ago 0.55
cesd w5 Depression questionnaire score 0.55
cesd w2 Depression questionnaire score 0.55
cesd w6 Depression questionnaire score 0.54
headlno w5 Reported difficulty with ADL or IADL 0.54

Table E.12: The 10 top-ranked features for the ELSA-core RF model, class:
Cataract (Imbalance Ratio: 3.38).

Feature Description AID
indager w8 Age of the participant at a given wave 0.58
cesd w7 Depression questionnaire score 0.57
dicdnm w7 Cause of death of mother of respondent 0.57
cfmetper w4 Perception of memory compared to 2 years ago 0.55
hemobno w6 Reported difficulties with mobility (binary) 0.55
hemobX-of-10 w7 Reported mobility issues (count) 0.54
hemobX-of-10 w6 Reported mobility issues (count) 0.54
cesd w6 Depression questionnaire score 0.54
cesd w5 Depression questionnaire score 0.54
heacta w6 Frequency does vigorous sports or activities 0.54
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Table E.13: The 10 top-ranked features for the ELSA-core RF model, class: Dia-
betes (Imbalance Ratio: 7.80).

Feature Description AID
hefrac w1 Whether has fractured hip 0.64
helng w4 Whether taking medication for lung condition 0.63
heji w3 Whether had joint replacement 0.63
heam w2 Whether taking medication for asthma 0.63
indager w7 Age of the participant at a given wave 0.6
cesd w7 Depression questionnaire score 0.59
cesd w6 Depression questionnaire score 0.58
hemobX-of-10 w7 Reported mobility issues (count) 0.58
cfmetper w7 Perception of memory compared to 2 years ago 0.58
headlno w6 Reported difficulty with ADL or IADL 0.58

Table E.14: The 10 top-ranked features for the ELSA-core RF model, class: Os-
teoporosis (Imbalance Ratio: 11.84).

Feature Description AID
hecanb w1 Cancer: whether received treatment in last 2 years 0.67
heji w1 Whether had joint replacement 0.63
cfmetper w4 Perception of memory compared to 2 years ago 0.62
hechm w6 Cholesterol: whether taking cholesterol medication 0.61
heyrc w5 Experienced psychiatric problems in last 2 years 0.61
cesd w7 Depression questionnaire score 0.6
indager w7 Age of the participant at a given wave 0.6
hepain w4 Whether often troubled with pain 0.6
heji w2 Whether had joint replacement 0.59
cfmetper w7 Perception of memory compared to 2 years ago 0.59
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Table E.15: The 10 top-ranked features for the ELSA-core RF model, class: Stroke
(Imbalance Ratio: 18.35).

Feature Description AID
hefrac w5 Whether has fractured hip 0.88
hefrac w1 Whether has fractured hip 0.74
hefrac w4 Whether has fractured hip 0.68
heyrc w1 Experienced psychiatric problems in last 2 years 0.66
heill w5 Whether has self-reported long-standing illness 0.61
hepawX-of-7 w6 Pain reported (count) 0.61
hepain w5 Whether often troubled with pain 0.61
hecanb w3 Cancer: whether received treatment in last 2 years 0.6
hefrac w6 Whether has fractured hip 0.6
hemobno w3 Reported difficulties with mobility 0.6

Table E.16: The 10 top-ranked features for the ELSA-core RF model, class: Heart
Attack (Imbalance Ratio: 19.06).

Feature Description AID
hefrac w1 Whether has fractured hip 0.92
helng w4 Whether taking medication for lung condition 0.88
hecanb w6 Cancer: whether received treatment in last 2 years 0.73
hepawX-of-7 w7 Pain reported (count) 0.66
hecanb w1 Cancer: whether received treatment in last 2 years 0.65
heiadlX-of-9 w7 Reported IADL difficulties (count) 0.65
hefrac w3 Whether has fractured hip 0.65
heam w6 Whether taking medication for asthma 0.54
cesd w7 Depression questionnaire score 0.63
cesd w6 Depression questionnaire score 0.62
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Table E.17: The 10 top-ranked features for the ELSA-core RF model, class:
Angina (Imbalance Ratio: 29.49).

Feature Description AID
heji w3 Whether had joint replacement 0.92
hefrac w3 Whether has fractured hip 0.92
hecanb w1 Cancer: whether received treatment in last 2 years 0.92
helng w3 Whether taking medication for lung condition 0.68
cfmetper w3 Perception of memory compared to 2 years ago 0.68
hefrac w5 Whether has fractured hip 0.65
cfmetper w7 Perception of memory compared to 2 years ago 0.64
heacta w1 Frequency does vigorous sports or activities 0.64
heill w1 Whether has self-reported long-standing illness 0.62
cfmetper w4 Perception of memory compared to 2 years ago 0.61

Table E.18: The 10 top-ranked features for the ELSA-core RF model, class:
Parkinsons (Imbalance Ratio: 112.07).

Feature Description AID
heji w5 Whether had joint replacement 1
heyrc w4 Experienced psychiatric problems in last 2 years 0.95
helng w4 Whether taking medication for lung condition 0.81
hepawX-of-7 w5 Pain reported (count) 0.76
hecanb w4 Cancer: whether received treatment in last 2 years 0.74
hepsyX-of-9 w5 Psychiatric problems reported (count) 0.74
heji w4 Whether had joint replacement 0.72
heiadlX-of-9 w5 Reported IADL difficulties (count) 0.71
cfmetper w7 Perception of memory compared to 2 years ago 0.7
hechm w3 Cholesterol: whether taking cholesterol medication 0.7
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Table E.19: The 10 top-ranked features for the TILDA RF model, class: High
Blood Pressure (Imbalance Ratio: 2.38).

Feature Description AID
sex Sex of the participant (male/female) 0.54
ph505 w4 Takes pain medication to control pain 0.53

ph601 w4
Did you lose any urine beyond your control
in the last year

0.49

indager w4 Age of the participant at a given wave 0.49
bh107 w4 Hours spent sitting in a typical day 0.48
ph415 w4 Had any joint replacements 0.46

ipaqmetminutes w4
Total met (metabolic equivalent) minutes
spent on physical activities in last 7 days

0.46

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.46

ph008 w4
Have you lost at least 4.5kg without
trying in the past year

0.46

ph505 w3 Takes pain medication to control pain 0.46

Table E.20: The 10 top-ranked features for the TILDA RF model, class: Arthritis
(Imbalance Ratio: 2.92).

Feature Description AID
sex Sex of the participant (male/female) 0.52
bh107 w4 Hours spent sitting in a typical day 0.5

mdmeds excl supps w4
Number of medications reported by respondent
(excluding supplements)

0.49

ph601 w4
Did you lose any urine beyond your control
in the last year

0.48

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.48

ipaqmetminutes w4
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.47

indager w4 Age of the participant at a given wave 0.46

ph008 w4
Have you lost at least 4.5kg without trying
in the past year

0.46

bphypertension w3 Objective measured hypertension 0.45

mdmeds excl supps w3
Number of medications reported by respondent
(excluding supplements)

0.43
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Table E.21: The 10 top-ranked features for the TILDA RF model, class: Osteo-
porosis (Imbalance Ratio: 9.53).

Feature Description AID

ph601 w4
Did you lose any urine beyond your control
in the last year

0.53

ph008 w4
Have you lost at least 4.5kg without trying
in the past year

0.5

bh107 w4 Hours spent sitting in a typical day 0.49
ph415 w4 Had any joint replacements 0.48

mdmeds excl supps w4
Number of medications reported by respondent
(excluding supplements)

0.47

ph505 w4 Takes pain medication to control pain 0.47

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.47

bphypertension w3 Objective measured hypertension 0.47
indager w4 Age of the participant at a given wave 0.46

ipaqmetminutes w4
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.46

Table E.22: The 10 top-ranked features for the TILDA RF model, class: Cataract
(Imbalance Ratio: 10.83).

Feature Description AID
sex Sex of the participant (male/female) 0.51
bphypertension w3 Objective measured hypertension 0.48

ph601 w4
Did you lose any urine beyond your control
in the last year

0.48

ph505 w3 Takes pain medication to control pain 0.48
ph505 w4 Takes pain medication to control pain 0.47
bh107 w4 Hours spent sitting in a typical day 0.46
bh107 w3 Hours spent sitting in a typical day 0.45
ph415 w4 Had any joint replacements 0.44

ipaqmetminutes w4
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.43

indager w4 Age of the participant at a given wave 0.43
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Table E.23: The 10 top-ranked features for the TILDA RF model, class: Cancer
(Imbalance Ratio: 17.02).

Feature Description AID
sex Sex of the participant (male/female) 0.56
ph505 w4 Takes pain medication to control pain 0.54
bphypertension w3 Objective measured hypertension 0.51
ph415 w4 Had any joint replacements 0.5

ph008 w4
Have you lost at least 4.5kg without trying
in the past year

0.5

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.49

ph601 w4
Did you lose any urine beyond your control
in the last year

0.49

indager w4 Age of the participant at a given wave 0.48
bh107 w4 Hours spent sitting in a typical day 0.45

ipaqmetminutes w4
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.44

Table E.24: The 10 top-ranked features for the TILDA RF model, class: Angina
(Imbalance Ratio: 20.70).

Feature Description AID
ph415 w4 Had any joint replacements 0.67
bphypertension w3 Objective measured hypertension 0.58
sex Sex of the participant (male/female) 0.53

ph601 w4
Did you lose any urine beyond your control
in the last year

0.51

ph505 w4 Takes pain medication to control pain 0.49

ph601 w3
Did you lose any urine beyond your control
in the last year

0.48

behcage w2
Count of CAGE questionnaire responses
(measures alcoholism)

0.48

mdmeds excl supps w4
Number of medications reported by respondent
(excluding supplements)

0.48

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.47

bh107 w4 Hours spent sitting in a typical day 0.47
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Table E.25: The 10 top-ranked features for the TILDA RF model, class: Heart
Attack (Imbalance Ratio: 25.24).

Feature Description AID
ph505 w3 Takes pain medication to control pain 0.53
bphypertension w3 Objective measured hypertension 0.51

behcage w4
Count of CAGE questionnaire responses
(measures alcoholism)

0.47

ph505 w4 Takes pain medication to control pain 0.47
hba1c w1 Blood glycated haemoglobin level (mmol/mol) 0.47

behalc freq week w1
Average amount of time respondent drinks
a week

0.46

ph601 w4
Did you lose any urine beyond your control
in the last year

0.46

bh107 w3 Hours spent sitting in a typical day 0.45
ph415 w1 Had any joint replacements 0.45
bh202 w1 How often do you have trouble sleeping 0.45

Table E.26: The 10 top-ranked features for the TILDA RF model, class: Mini-
stroke (Imbalance Ratio: 50.74).

Feature Description AID

behcage w1
Count of CAGE questionnaire responses
(measures alcoholism)

0.59

ph415 w1 Had any joint replacements 0.57
ph505 w2 Takes pain medication to control pain 0.51
bphypertension w1 Objective measured hypertension 0.51

behalc freq week w1
Average amount of time respondent drinks
a week

0.51

ph601 w1
Did you lose any urine beyond your control
in the last year

0.5

ph402 w3 How many times have you fallen in this last year 0.48

ipaqmetminutes w2
Total met (metabolic equivalent) minutes spent
on physical activities in last 7 days

0.48

ph505 w3 Takes pain medication to control pain 0.48
bh202 w2 How often do you have trouble sleeping 0.47
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Table E.27: The 10 top-ranked features for the TILDA RF model, class: Stroke
(Imbalance Ratio: 79.62).

Feature Description AID

disadl w2
Count of ADLs the respondent reported
difficulty with (top coded at 5)

0.64

sex Sex of the participant (male/female) 0.6

ph406 w1
How many times have you fainted in
this last year

0.6

ph415 w2 Had any joint replacements 0.59
bphypertension w3 Objective measured hypertension 0.57

ph601 w1
Did you lose any urine beyond your
control in the last year

0.55

ph008 w2
Have you lost at least 4.5kg without
trying in the past year

0.54

ipaqmetminutes w4
Total met (metabolic equivalent) minutes
spent on physical activities in last 7 days

0.54

disimpairments w3
Physical impairments count (activities
the respondent can’t do)

0.51

ph601 w3
Did you lose any urine beyond your
control in the last year

0.51
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Fabris, F., de Magalhães, J. P. and Freitas, A. A. (2017). A review of supervised

machine learning applied to ageing research. Biogerontology, 18(2), pp. 171–188.

Farbstein, D. and Levy, A. P. (2012). Hdl dysfunction in diabetes: causes and

possible treatments. Expert review of cardiovascular therapy, 10(3), pp. 353–

361.

Fawagreh, K., Gaber, M. M. and Elyan, E. (2014). Random forests: from early

developments to recent advancements. Systems Science & Control Engineering:

An Open Access Journal, 2(1), pp. 602–609.

Fernández-Delgado, M. et al. (2014). Do we need hundreds of classifiers to solve

real world classification problems. Journal of Machine Learning Research, 15(1),

pp. 3133–3181.

Flach, P. A. (2003). The geometry of roc space: understanding machine learning

metrics through roc isometrics. In Proceedings of the 20th international confer-

ence on machine learning (ICML-03), pp. 194–201.

Flach, P. A. (2016). Roc analysis. In Encyclopedia of Machine Learning and Data

Mining, Springer, pp. 1–8.

Foos, P. W. and Clark, M. C. (2016). Human aging. New York: Routledge.

Freitas, A. A. (2004). A critical review of multi-objective optimization in data

mining: a position paper. ACM SIGKDD Explorations Newsletter, 6(2), pp.

77–86.

Freitas, A. A. (2014). Comprehensible classification models: a position paper.

ACM SIGKDD explorations newsletter, 15(1), pp. 1–10.

Friedman, M. (1940). A comparison of alternative tests of significance for the

problem of m rankings. The Annals of Mathematical Statistics, 11(1), pp. 86–

92.

281



Gad, A. M. and Abdelkhalek, R. H. M. (2017). Imputation methods for longitudi-

nal data: A comparative study. International Journal of Statistical Distributions

and Applications, 3(4), p. 72.

Gale, E. A. and Gillespie, K. M. (2001). Diabetes and gender. Diabetologia, 44(1),

pp. 3–15.
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