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Abstract

Since the introduction of quantum algebras in the 1980’s, many have introduced quantum
deformations of the Weyl algebras. Two such examples are the quantum Weyl algebras
and the Generalized Weyl algebras. In this thesis, we use a different approach to find
deformations of (a quadratic extension of) the second Weyl algebra A5(C), and compare
some properties of these deformations to those of A5(C).

Let n be a nilpotent Lie algebra, U(n) the enveloping algebra of n and ) a primitive
ideal of U(n). Dixmier [12] proved that the factor algebra U(n)/Q is isomorphic to an
n'" Weyl algebra A,,(C), where n € N;. This isomorphism gives a route to construct
potential deformations for any Weyl algebra. Let g = g~ ® b @ g™ represent a simple
Lie algebra. Now, Dixmier's result holds for n = g*. Since U, (g) is a g-deformation of
U(g"), it is natural to consider U, (g)/P, where P is a primitive ideal of U (g), as a
potential deformation of the Weyl algebras.

This thesis focuses on the case where g = G5. We find a family of primitive ideals
(Pa,g)(a,8)ec2\(0,0) of U (G2) whose corresponding quotients A, g := U (G2)/Pap are
simple noetherian domains of Gelfand-Kirillov dimension 4. In view of Dixmier's result, we
consider A, 3 as a g-deformation of (a quadratic extension of) A5(C). The derivations
of the Weyl algebras are all known to be inner derivations [5]. Motivated by this, we
also study the derivations of A, 3 and compare them to those of the Weyl algebras. The
final part of the thesis studies a Poisson derivation of a semiclassical limit A, g of A, 3.

Interestingly, the Poisson derivations of 4, 3 and the derivations of A, g are congruent.
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Chapter 0

Introduction

One particular class of algebras in non-commutative algebras that has been widely studied
since its inception is the class of Weyl algebras. Dirac is well noted to be the one who
introduced the Weyl algebras in the field of quantum mechanics. Since then, the notion
and concept of the Weyl algebras has diffused into other areas of non-commutative
algebras from different perspectives. For example, one can understand the Weyl algebras
from the perspective of differential operators, quotient of free algebras, and of course
quantum mechanics. In line with this, we will provide the definition of Weyl algebras
from three different perspectives. Before we do that, it is imperative to also add that
the Weyl algebras come in series. That is, for every n € Ny, one can associate a Weyl
algebra denoted by A,,(C). Now, A,(C) is naturally called the n'* Weyl algebra. The
smallest of this series of algebras is called the first Weyl algebra A;(C), and it is the
building block for any n'* Weyl algebra A, (C). That is, given n copies of A;(C), one

can define A,,(C) as follows:
A, (C)=A(C)@ A(C)®---® A1(C) (n copies).

As a result of this, it is sufficient to define the first Weyl algebra A;(C). We are now
ready to understand A;(C) from the following three points of view.

In theoretical physics (particularly, quantum mechanics), one can describe A;(C) as



follows. Take the momentum operator p and position operator ¢, it is well known that
[D,4q] := pGg — qp = ih, where h is called Plank’s constant. One can therefore define
A1(C) as an algebra of quantum mechanics generated by the operators § and ¢ subject
to the relation g¢ — ¢g = 1, where g = —%]5.

Secondly, in the ring of differential operators, A;(C) can be described in the following
context. Let Clz| be a polynomial ring and, & and ¢ := % be operators of C[z] with &
defined as Z(f) = = f, Vf € C[z]. Observe that yz(f) = %(xf) = x%—i—f = zy(f)+f.
This implies that gz — 29 = 1. As a result, A;(C) can be defined as a C—subalgebra of
Endc(C[z]) generated by the operators & and § (subject to the relation gz — 2y = 1).

Algebraically, one can also define A;(C) as follows. Let R := C(X,Y) be a free
algebra generated by X and Y. Now, [ := (XY — Y X — 1) is a two-sided ideal of R.
The factor algebra R/I satisfies the relation xy — yz — 1 = 0, where x := X + I and
y =Y + I. Therefore, A;(C) can be defined as a C—algebra generated by = and y
subject to the relation zy — yxr = 1.

Above are three different contexts in which A;(C) can be understood. Generally,
every n'" Weyl algebra A,,(C) can precisely be described as a C—algebra generated by
T, Tny Y1, -, Yn Subject to the following defining relations: [z;, ;] = [y;,y;] = 0
and [z;, y;] = d;;, where §;; is the Kronecker symbol. The Weyl algebras A,,(C) are simple,
noetherian domains, and have a Gelfand-Kirillov dimension of 2n [30, Chapter 8]. Dixmier
has also studied the automorphism group of A;(C), and concluded in [11, Theorem 8.10]
that the automorphism group is generated by two families of automorphisms ¢, , and

., of Ai(C) defined as follows: ¢, ,(z) = =, ¢.,u(y) = y + pa® and ¢ ,(v) =
r + py®, ¢,,(y) =y, where p € C and s € N. For n > 1, to the best knowledge
of the author, the automorphism groups of A, (C) are not known. The center of the
Weyl algebras is reduced to scalars. Another property of the Weyl algebras that is worth
mentioning is that all its derivations are inner [5, Lemma 1], and the first Hochschild

cohomology group is of dimension zero. What has even made the Weyl algebras very

famous and instigated a lot of research in non-commutative algebras are the Jacobian



Conjecture [28], and the Dixmier Conjecture [11]. These two Conjectures are stated
below.

Conjecture 1 (Jacobian, 1939). Let F' : C* — C" be a polynomial map. If
the Jacobian determinant of F' is a non-zero constant, then F' must have an inverse
polynomial map function.

The case where n = 1 is considered trivial since one can easily show that the associ-
ated polynomial map is a linear map, hence, has an inverse map which is also linear. To
achieve this, let f : C — C be a polynomial map defined by x +— f(z). Suppose that
df /dx is a non-zero constant, then clearly f(x) is of the form f(x) = ag + a1z, where
a; € C* and ay € C. Since a; # 0, one can easily confirm that the inverse polynomial
map of f is also of the form f~(z) = —aga;* + a;'z as desired. For n > 1, to the
author’s best knowledge, the Jacobian Conjecture remains open.

Conjecture 2 (Dixmier, 1968). Every algebra endomorphism of Weyl algebras
A, (C) is an automorphism.

Dixmier's Conjecture remains open even for the case where n = 1. Tsuchimoto
[43], and Belov-Kanel and Kontsevich [6] independently proved that Conjecture 1 and
Conjecture 2 are stably equivalent. That is, the Jacobian Conjecture implies the Dixmier
Conjecture and vice versa.

With the appearance of quantum groups in the 1980's, people have introduced var-
ious quantum deformations (or analogues) of A, (C). The notable deformations are the
quantum Weyl algebras. For example, the first quantum Weyl algebra is defined as
AD(C) = Clx,y | zy — qyz = 1). Clearly, A{Y(C) = A1(C). As a result of this, we
say that qu)((C) is a quantum deformation (or g-deformation for short) of A;(C). By
extension, the quantum Weyl algebras AW (C) are g-deformations of the Weyl algebras
A,(C) for each n € N5,. Note, the properties of the quantum Weyl algebras do not
always reflect the properties of the Weyl algebras. For example, the first quantum Weyl
algebra is not simple when ¢ is not a root of unity, however, the first Weyl algebra is

simple. Are there any other deformations of A, (C)? Yes, Bavula [3] has introduced a



generalization of the Weyl algebras called the generalized Weyl algebras (GWAs), but
they are also not simple in general. As a result, their properties too do not always reflect
the properties of the Weyl algebras. Let D be a C—algebra with a central element a, and
o denote an automorphism of D. The first generalized Weyl algebra D(c,a) is simply
defined as an algebra generated over D by the indeterminates x and y subject to the

following relations:
yr =a, vy=o(a), zd=oc(d)xr, yd=oc'(d)y, forall de D.

Let ¢ € C*and X' € C. From [41, Proposition 2.1.1], we have that the GWA C[H'|(¢", d’),

where o(H') = gH' — X, is isomorphic to one of the following:
i. C[H](id,a),
ii. C[H](o,a) with o(H)=H —1,
iii. C[H](0,a) with o(H) = ¢H and g € C\ {0,1}.

The third family (iii) is usually called the quantum GWA provided ¢ is not a root of unity,
and the second family (ii) is well known to be isomorphic to the first Weyl algebra A;(C)
(for example, see [2, §4]). Other specific examples of GWAs are the quantum plane and
quantum Weyl algebra Ag‘J)(C) (see [2, §4] for further details).

In this thesis, we used a different approach to find a deformation of (a quadratic
extension of) A5(C). Let n be a finite dimensional nilpotent Lie algebra over C, U(n) be
the enveloping algebra of n, and @) a primitive ideal of U(n). Dixmier has shown that the
factor algebra U(n)/Q is isomorphic to an n'* Weyl algebra A,,(C) [12, Theorem 4.7.9].

Let g be a simple Lie algebra. Then, the enveloping algebra U(g) has a quan-
tum deformation, introduced independently by Drinfeld [13] and Jimbo [27], called the
quantized enveloping algebra U,(g) of g. There is a triangular decomposition for g as
g ®hdgt; where b is a Cartan subalgebra of g, and g~ and g™ are the negative and pos-
itive nilpotent subalgebras of g respectively. As a result of this triangular decomposition,

there are corresponding decompositions for U(g) and U,(g) as U(g") @ U(h) @ U(g™)



and U/ (g) ® U°(h) ® U, (g) respectively. It is well known that U/ (g) is isomorphic to
U, (g) (for example, see [45, §2]). Now, Dixmier's theorem applies to n = g*. That is,
U(g")/Q = A,(C). Since U, (g) is a g-deformation of U(g™), it is natural to ask whether
there exists a primitive ideal P of U/ (g) such that U (g)/P is also a g-deformation of
U(g")/Q = A,(C)? If yes, then this gives another deformation of A,(C). In [33],
Launois described a family of simple quotients of U(;F(Bg), and under certain conditions,
retrieved the first Weyl algebra from these simple quotients when ¢ = 1. In line with
Dixmier's result (i.e. U(g")/Q = A,(C)) and motivated by Launois’ example, we also
aimed to find a family of simple quotients of a quantized enveloping algebra whose de-
formation gives (a quadratic extension of) As(C) and then compare some properties of
these simple quotients to those of A5(C). This is the main aim of the thesis which is
organized as follows.

Chapter 1 focuses on studying preliminary materials, and Chapter 2 studies some
properties of the positive part of the quantized enveloping algebra of type Gb, U;(Gg).
The algebra U (G>) is a C—algebra generated by the indeterminates £, and E subject
to the quantum Serre relations (omitted for now). It is a noetherian domain and can be
written as an iterated Ore extension over C. The center of U;"(G) is the polynomial ring
C[Q1, ], where Q; and Q; are central elements of U (G5). The torus # = (C*)* acts
by automorphism on U7 (G2) via (a1, ap) - By = o Ej; i = 1,2; for all (a, a2) € H. As a
result, one can use the H—stratification of Goodearl and Letzter [21] to study the prime
spectrum of this algebra, and identify primitive ideals. The H—stratification partitions
the prime spectrum of U;(Gg) into disjoint strata and these partitions are indexed by
the H—invariant prime ideals. Now, the ideals (0), (€21) and (£2;) are all H—invariant

prime ideals of U;(Gg) of at most height one, with the following strata:

e (0)—stratum of U/ (G2) = {(0)} U {P(,) | P(Q1,Q2) € P, P(,Q) #
Qp, D FU{(Q1—a,Qs—p) | o, B € C*}. Note, P is the set of all unitary irreducible

polynomials of C[{2;, Q).

o (Q)—stratum of Ut (G5) = {(Q1)} U {(Q, 2 — B) | B € C*}.



o (Q)—stratum of U (G2) = {(Q22)} U{(Q1 — a, Q) | @ € C*}.

For each (a,3) € C*\ {(0,0)}, the prime ideal (Q; — o, Qs — 3) is maximal in its
respective stratum, as a result, it is a primitive ideal of US(G>) [7, Theorem I1.8.4].
Moreover, (€2 — a, €y — 3) is a height 2 maximal ideal of U (G?). Given this family of
height 2 maximal ideals of U;(Gg), Chapter 3 focuses on studying the simple quotients
of U (G?>), which are the main algebras of interest in this thesis. The simple quotient
Aap = US(Ga) /(€1 — @, — B) is a noetherian domain of GKdim 4, with a trivial
center (i.e. central elements are all scalars). One could observe that A, g shares some
common properties with A5(C). That is, they are both simple, noetherian domains, have
GKdim of 4, and have trivial central elements. Could it be that A, s can be deformed
to obtain A3(C)? Generally, this is not guaranteed. However, in this particular case,
at appropriate choices of « and /3, when ¢ = 1, we have that A, s is isomorphic to (a
quadratic extension of) Ay(C).

In Chapter 4, we explore the derivations of A, 5. Note, to the best of the author's
knowledge, there is no known general results for the derivations of the simple quotients
of U (g), with the exception of the case where g = sl3 (also known as the quantum
Heisenberg algebra (see for instance [1, §2.2])). In this case, the simple quotients are
known to be isomorphic to the GWAs [2, §4] whose derivations have been studied by
Kitchin [29, Chapter 7], and are known to be the sum of inner and scalar derivations (note,
scalar derivations act on the set of generators of an algebra by multiplication by scalars).
More precisely, the first Hochschild cohomology group of the GWAs is of dimension
one. We therefore take interest in knowing the derivations of A, 3, and comparing
them to those of A5(C). Recall that the derivations of A5(C) are known to be inner.
Since A, and A5(C) share some common properties, could it be that the derivations
of Ay(C) reflect those of A, 3?7 In fact, when o and 3 are non-zero, then similar to
Ay(C), the derivations of A, 3 are all inner. However, if either « or 3 is zero, then
the derivations of A, 3 are the sum of inner and scalar derivations. Precisely, the first

Hochschild cohomology group of A, g has dimension zero when o and § are both non-



zero, and dimension one when either v or (5 is zero. To achieve these results, we use
Cauchon's theory of deleting derivations algorithm [8] to successively embed A, 5 into a
suitable quantum torus. Now, every derivation of the quantum torus, through the work
of Osborn and Passman [40], is known to be the sum of an inner and a scalar/central
derivation. Since A, g can be embedded into a quantum torus, we extend every derivation
of A, to a derivation of the quantum torus via localization, and then “pull back” the
derivations of the quantum torus to A, g, a process Launois and Lopes [36] called restoring
derivations algorithm. We conclude that every derivation of A, g is inner when o and 3
are non-zero, and the sum of an inner and a scalar derivation when either o or 3 is zero.

The final part of the thesis (Chapters 5 and 6 ) study the Poisson derivations of a
semiclassical limit A, 3 of A, s by following procedures similar to that of A, g. In fact,
the Poisson derivations of A, 3 are similar to their non-commutative counterparts. That
is, every Poisson derivation of A, g is inner (or hamiltonian) when « and /3 are non-zero,

and the sum of an inner and a scalar Poisson derivation when either o or 3 is zero.

Notations and conventions

K is a field with characteristic zero and K* := K\ {0}.

q € K* is not a root of unity.

Let a,b € N:={0,1,2,---}. Then, a < i < b means the set of natural numbers

2

from a to b. We will used “ < 7 instead of “ <” to indicate the exclusiveness of

either a or b.

N., denotes the set of all natural numbers greater than a.

e ¢° means an arbitrary integer power of ¢q. This symbol will often be used whenever

the power of ¢ is of no interest.

| A'| denotes the cardinality of the set A.



(O) g means an ideal generated by the element © in the algebra R. Where no doubt

arises, we will simply write (O).

Z(R) denotes the center of the algebra R. If R is a Poisson algebra, then we will

denote its Poisson center by Zp(R).

Spec(R) represents the set of all prime ideals of the algebra R. If R is a Poisson

algebra, then we will denote its set of Poisson prime ideals by P.Spec(R).
Fract(R) denotes the right ring of fractions of the ring R.

DDA and PDDA represent deleting derivations algorithm and Poisson deleting

derivations algorithm respectively.



Chapter 1

Preliminaries

In this chapter, we present the background materials needed for the subsequent chapters.
The subtopics to be considered include root systems, quantized enveloping algebras, Ore
and iterated Ore extensions, localization and ring of fractions, quantum affine space and

quantum torus, and Cauchon'’s theory of deleting derivations algorithm.

1.1 Root systems

Most of the materials presented in this section can be found in [25] and [15].
Let a be a non-zero element in the euclidean vector space E, and s, be a reflection

associated to a in E. Recall that s, : E — E is defined by:

for all b € E. Note, (a,b) = ||a||||b]| cos(d) and s,s, = s> = id.

1.1.1 Definition. A subset ® Z 0 of E is a root system in E if the following axioms

are satisfied:
(A1) @ is finite and spans E.

(A2) If a € ®, then the only scalar multiples of « in ® are a and —a.
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(A3) If a € ®, then the reflection s, permutes the elements of ®.

2(a, B)

(@, q)

(Ad) If a, 5 € ®; then € Z.

Note, the elements of ® are called roots. A subset II of ® is called a base for ® if
IT is a basis of E, and for all § € &, # belongs to the span of II over all non-positive or
non-negative integers. When 6 belongs to the span of II over non-negative integers (resp.
non-positive integers), we say that 6 is a positive root (resp. a negative root). Let us
denote the collection of all positive roots (resp. negative roots) by ®* (resp. ®~). Then,
Ot = —®~. The roots in II are called simple roots. Again, ® is irreducible if it cannot
be written as a disjoint union of two proper subsets ®; and ®, such that (ay, as) = 0 for
all ;7 € @1 and ay € ®,. Let II be a base of @, it is well known that ® is irreducible if
and only if I is irreducible (for example, see [25, Section 10.4]). Every root system & can
be written as a disjoint union of some irreducible root systems. As a result, we will only
focus on the irreducible root systems since they are the building blocks for root systems.
If @ is irreducible, then every root of ® is either of the same length (usually referred
to as simply laced) or of two lengths: short and long (usually referred to as non-simply
laced). The short root is normally normalized to have a length of /2. The dimension of
the euclidean vector space E (denoted by dim(E)) is called the rank of ® (denoted by
rk(®)). Since IT is a basis of E, the cardinality of IT (denoted by |II|) coincides with the
dimension of E. As a result, we have the following equality: dim(E) = |II| = rk(®) = n.

One important property of irreducible root systems is that, to every irreducible root
system, one can associate one of the following complex simple Lie algebras: A, (n >
1), B, (n>2), C, (n>3), D, (n>4), E, (n=6,7,8), Fy and G5 [25, Section
11.4]. Moreover, given any of these simple Lie algebras, one can also construct an
irreducible root system associated to the simple Lie algebra [25, Section 12.1]. Note,
each of A, B,,C,, D, and E, is the notation for a collection of a series of simple Lie
algebras, and n is the rank of the associated Lie algebra or the root system. Of course,
Fy and G5 are of rank 4 and 2 respectively. The roots of A,,, D,,, Eg, E; and Ey are all

simply laced, and the rest are non-simply laced. For the purpose of this thesis, we will only
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discuss the root system for G5. We do this in line with the presentation in [25, Section
12.1]. Let E be a 2-dimensional subspace of R?, and &}, és, €3 denote the standard unit
vectors of R?. Set a; := &5 — &, and ay = 28, — &5 — £3. One can verify that the set
O = +{ayg, as, a1 + ag, 201 + a9, 301 + an, 37 + 2a3} is a root system for GGy in E.
Moreover, one can also observe that the set {«;, s} is a base for ®. Hence, oy and a, are
the simple roots of G5. The root system of (G5 is non-simply laced since the simple roots
oy and «y are of different lengths: short root (a;) and long root (), which are of lengths
V2 and /6 respectively. That is, (a1, 1) = ||ou]]? = 2 and (a2, az) = ||az||> = 6. In
total, G5 has 12 roots of which 6 are short and the other 6 are long. Furthermore, it has
6 positive roots and 6 negative roots. The obtuse angle between the two simple roots
aq and ay is 57 /6. The root diagram of G5 with only the positive roots is shown in the

figure below.

a9 + o

s + 3o

\J

Figure 1.1: G5 root diagram.

In the rest of this section and beyond, g will denote a complex simple Lie algebra,
and ® will represent the root system of g. Fix g with rank n. We are going to discuss
another concept called the Weyl group of g. Let ® denote a root system of g, and II
denotes the set of simple roots of ®. For every root o; € ®, one can associate a reflection
Sq;- The collection of all these reflections s,, forms a group called the Weyl group of
g. We denote this group by #. Moreover, if o; € II, then the associated reflection s,,

is called a simple reflection. The set of all the simple reflections generate #'. That is,
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W o= (4, | a; € TI).

Let a;, a; € II (note, ¢ and j are non-zero natural numbers); and set

2(0&,‘, Oéj)

(i, i)

Nij = (1.1.1)
It is well known that 7;;n;; € {0,1,2,3} (see [15, Lemma 11.4] for further details). Let
Sa;>Sa; € W' where a;, o € 11, i # j. There exists m;; € Z such that (sq,54,)™" =
5(211- = 1, where my; is the order of s,,5,, in #, and 1 is the identity element of 7.

Again, for n;;n;; = 0,1, 2,3, we have that m;; = 2,3, 4,6 respectively [7, Page 41].

Set s; := Sq,. If I = {ay, -+, } is the set of simple roots of ®, then

W:<317"' 7Sn|s?:(3isj)mij: ) Z7éj>

The relations (s;s;)™4 =1 and s? = 1 imply that

SiSjSi"' e Sjs’isj"'

Each side of the equality has exactly m,;; factors. The Weyl group % acts on ® as
follows:
2(@1‘,04]‘)

SZ'(OZJ') = Oéj — WOQ = Oéj — UijOéi,
iy g

where s; € # and «; € ®. This action just permutes the elements of ® as stated in
axiom A3.

Denote the cardinality of the set of positive roots ®* of ® by N, and let w € #.
Since w is generated by s;, one can write w as a product of simple reflections. Let
r € N be minimum such that w can be written as w = s;,8;, - - - 5;,.. We call r the length
of w, and the notation r = [(w) will often be used. It is well known that [(w) < N.
Furthermore, there exists a unique element wy € # such that I(wy) = N. The element
wp is called the longest element of # . One can recover the positive roots of ® from any

reduced decomposition of wy. That is, if wy = s;,5;, - - - 5i,, then the positive roots of ¢
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are exactly g, ---, By defined by
Br = 84 Siy - Si,_, () (1 <r < N).

For example, given the set of simple roots {1, as} of G5 above, the associated set of
simple reflections is {si, s2}. One can easily confirm that 712121 = 3, hence the order of
189 in the Weyl group # of G5 is 6. Therefore, # = (s1, 59 | 2 = 52 = (5152)% = 1).
Moreover, |#| = |®| = 12. Given that (s152)° = 1 and s? = s2 = 1, it follows
that $159515951595152515251S9 = 1. This implies that s159515251S9 = $95159515251. | his
expression gives the longest and unique element wy of #. Thus, wy = $15251525182 =

$25182815251. Note, [(wy) = N = 6 as expected. Choose wy = $15251525152. Then, given
2(cy, o))
(ai, i)

of G5 (see Figure 1.1) are as follows:

the relation s;(o;) = o — a;, one can equally confirm that the positive roots

B =0 Bs = s15251(a2) = 200 + 3
Ba = 31(042) = a9 + 3 Bs = 81828182(041) =+
B3 = s152(a1) = g + 204 B = $152515251 () = .

1.2 Quantized enveloping algebras

In this section, we present the defining relations and a class of automorphisms (called
the braid group introduced by Lusztig [38]) of the quantized enveloping algebra U,(g)
of a finite dimensional complex simple Lie algebra g. Unless otherwise stated, we follow
the presentations and conventions in [7, Chapter 1.6]. For further details of the material
presented here, [7, Chapter 1.6] and [26, Chapter 8] will be helpful. Throughout this

section, we assume that ¢ is not a root of unity.

1.2.1 Definition. Let v be an indeterminate and m, t € N; we have the following

definitions:
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vt —out

(i)- [t]v = m =t ot ol

(ii). [m],! :== [m],[m — 1], - - - [1],. By convention, [0],! := 1.

(iii). for all integers 0 < i < m, we have that:

[m] [m],! (V" — o ™) (" — o) (v — oY)
v [i],/[m —1i],!  (vi—v) (v —v ) (v —vi=m) . (v — v 1)

Now; [t],, [m],! and [T] are all elements of the ring Z[v,v!]. Particularly, [T]

v v

are called the v-binomial coefficients, and they are the v-analogue of the usual binomial
coefficients. They can be evaluated at any given values of v. If v = ¢, with ¢ € K*, then

we have the usual ¢g-binomial coefficients.

Let g denote a finite dimensional complex simple Lie algebra of rank n. Recall from
(1.1.1) that n;; = 2(v, o)/ (v, @;). The square matrix C defined by C := (1;j)1<ij<n €
M, (Z) is called the Cartan matrix of g. For example, one can verify that the Cartan
matrix of G5 has the following entries: 1777 = 192 = 2, 12 = —3, and 751 = —1. In
fact, the diagonal entries of every Cartan matrix are 2 and the off-diagonal entries are
non-positive integers.

Let IT = {av,- -+, v, } represent the set of simple roots of g. For alli € {1,--- ,n},

set

The quantized enveloping algebra U,(g) of g is a K—algebra generated by Ey,--- , E,,

Fy,---,F, and Klil, . ,Kffl subject to the following relations:

KE; = ;" E;K; KiF; = q; " F;K;
K- K

qi — gq;
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(@SR1) > (- || ETMTRE =0 04

1=nij

@R2) > (- [T] BB =0 i#
1=0 '
The relations QSR1 and QSR?2 are called the quantum Serre relations.

Recall that given the Lie algebra g, there is a triangular decomposition for g as
g" ®bh @ g . The associated decomposition for the enveloping algebra U(g) is of the
form U(g") ® U(h) @ U(g~), where U(g™),U(g") and U(h) are called the positive
nilpotent, negative nilpotent and Cartan subalgebras of U(g) respectively. Similarly,
U,(g) admits a triangular decomposition of the form U (g) ® U°(h) ® U, (g). One can
understand U,/ (g) and U (g) as the g-deformations of the subalgebras U(g™) and U(g™)
respectively. The sets {E1,---,E,}, {Fi,---,F,} and {K{',---  K*'} generate the
subalgebras U (g), U, (g) and U°(h) respectively. Furthermore, U, (g) and U, (g) satisfy
the relations QSR1 and QSR2 respectively. The subalgebra UY(h) is commutative. There
is a unique automorphism of U,(g) that maps E; to F;, F; to E; and K; to K ' (see [26,
Lemma 4.6] or [7, Lemma 1.6.4]). Finally, U (g) and U (g) are isomorphic (for example,
see [45, §2]).

We now present a subgroup of the automorphism group of U,(g) called the braid
group. The braid group was introduced by Lusztig [38].

Braid group. Recall that IT = {ay, -, a,} is the set of simple roots of g. Set

T, :=1T,,, where 1 < ¢ < n. Given the Weyl group
W= (s1, 8, | 57 = (8:8,)™ =1 = 5;8;8; = 8,88+, 177,
the associated braid group is given by
By =Ty, T | TTT; - =TT, i#5).

Note, each side of the equality T;7;7; - - - = T;T;T; - - - has exactly m;; factors. The map

0 : By — W defined by p(T;) = s; is an epimorphism. Note, s? = 1 in %, however,
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T? is not necessarily 1 in By . In line with [26, Chapter 8], Lusztig defines an action of

)

By by automorphism on U,(g) as follows:

E(EZ) = _EK’L E(E]) — Z( 1)7‘ —TE( MNij T)EJEZ(T’) i % j
r=0
—Mij

T(F) = —K;'E; Ti(Fy) =Y (-1)'q F FF T Iy
r=0

N E . .

where EZ( )= TZP Fi( )= r" and @ (the root lattice) denotes the Z — span of II.
Tlgi: Tlg;:

Hence, a = z1oq + -+ - + zpa, € Q, With 29,--+ | 2, € Z, and K, := K7 --- K?*. Note,

one can also refer to [26, Chapter 8] for the actions of the inverse automorphisms T, *
on Uy,(g).

From any reduced decomposition of wy (discussed in Section 1.1), one can construct

distinguished elements Ej,, - - - , Eg, of U,(g) as follows:
Es =T, T, ,(E;), 1<r<AN. (1.2.1)

The elements Ej, depend on the reduced decomposition for wy [32, §1.2]. Levendorskii

and Soibelman [37] proved the result below (also, see [32, Theorem 1.1]).

1.2.2 Theorem. (1) The element Eg, belongs to U (g) for allr € {1,--- ,N}.
(2) If B, = , then Eg. = E;.
(3) The family of monomials (E7: - -+ EZN),, .. rven is a linear basis of U (g).

(4) Forall1 <i < j <N, we have:

Z rl Tj—
EsEs —q —(BiB5) B Ej, = Zan+1 ﬁi . "Eﬂi_i’

with ap,,, ..., € K.
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Technically, the basis in point (3) is called a PBW-basis of U/ (g), where PBW
stands for Poincaré-Birkhoff-Witt. Also, as a corollary to this theorem, we have that the

family of monomials (F3! - -+ FpN Ko By - ERY)s, rieNacq form a PBW-basis of U,(g)

[7, §1.6.8].

1.2.3 Remark. Recall the definitions of w and wy in Section 1.1. It follows from [7,
§1.6.8] that U (w) := K(Ej,, -+, Es,) is a subalgebra of U (g) for each 1 <r < N,
and U (wo) = U, (g).

q

1.3 Ore extension

Let A be a K—algebra, o be an automorphism of A and § be a K—linear map from A

to A. Then,
e J is a derivation if 0(zy) = z0(y) + §(x)y, Vr,y € A.
e § is a o—derivation if 6(xy) = o(z)d(y) + d(z)y, Yo,y € A.

Observe that when o = id, the o—derivation and derivation coincide. One can easily
verify that §(1) = 0. From [22, Chapter 2], we have the presentations in the following

definition.

1.3.1 Definition. Let ¢ and § denote an automorphism and a o—derivation of a ring A

respectively. Denote R := A[x; 0, 6] to mean the following:
e R is a ring containing the element z,
e A is a subring of R,
e Ris a free left A—module with basis (z");cn,
e za =o(a)r+d(a) for all a € A.

The ring R is called an Ore extension of A or a skew polynomial ring over A. When

o = id, then A[z;id, ] is simply written as A[z;d] and when 6 = 0, then A[x;0,0] is



Section 1.3. Ore extension 18

simply written as A[x;o]. The Ore extension described above can easily be iterated to

obtain an iterated Ore extension of A, written as:

R = Alzy;01,61)[2; 02, 02] - - - [ 0, 6],

where o; and §; are the automorphisms and o;—derivations of
A[.’L’l; a1, 51][.’132; g9, 62] s [331‘,1; O;—1, (51;1] respectively for all i € {1, s ,TL}.

Note, A[xg;00,d0] := A.

1.3.2 Example. (1) The quantum plane K,[z,y], with xy = qyz, can be presented
as an iterated Ore extension of the form K[y|[z, o], where ¢ is an automorphism

of the polynomial ring K[y| defined by o(y) = qy.

(2) The quantized enveloping algebra U,(sly) is generated by E,F and K*!; and

satisfies the following relations:

KFE = ¢*EK, FK = ¢*KF,

KK '=K'K=1, FE=EF+ (K= K)/(¢"'—q).

An iterated Ore extension of U,(sly) can be written as:

U,(sly) = K[E][K*Y; 01][F; 02.64],

where 01(E) = ¢*FE, 03(K) = ¢*K, 03(F) = E, 6(K) = 0 and 6,(F) =
(K~'—K)/(qg7'—q). Note, o, and o5 are automorphisms of the subalgebras K[E]
and K[E|[K*!; 01] respectively, and d, is a oy—derivation of K[E][K*!; oy].

One can refer to [22, Chapter 2| for more details on Ore and iterated Ore extensions,

but we recall Hibert Basis Theorem below.

1.3.3 Theorem. [7, Lemma [.1.12 & Theorem 1.1.13]. Let R := A[z;0,0]| be a skew
polynomial ring, where o and § are automorphism and o—derivation of the ring A re-

spectively.
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1. If A is left (right) noetherian then R is also left (right) noetherian [Hibert Basis
Theorem].

2. If A is a domain then R is also a domain.

1.3.4 Remark. U (g) can be presented as an iterated Ore extension of the form:

U;_(g) = K[Eﬁl][Eﬁ2; 02, 52] T [EBN; ON, 5N]

(see for instance [7, Section 1.6.10]), where o; is an automorphism of

K[Es,|[Es,; 02,02) - - [Eg,_y;0i-1,0;_1] defined as 0;(Eg,) = ¢~ Eg and §; is a
o;—derivation defined as 0;(Es,) = Eg,Es, — q %P Eg Eg forall 1 <j <i< N. As
a result, U;7(g) is a noetherian domain since K is a noetherian domain. From [32, §1.2],

the group of invertible elements of U, (g) is reduced to K*.

1.4 Localization and rings of fractions

The materials presented in this section are well known, nonetheless, we follow the pre-
sentations in [22, Chapters 6 and 10]. As a result, further details can be read from this
reference.

Let S be a subset of a K—algebra A such that 1 € S, then S is said to be a
multiplicative set if it is closed under multiplication. The collection of all non-zero divisors
(also known as regular elements) in A forms a multiplicative set. Given a multiplicative
set S of A, if for each s € S and a € A, there exists t € S and b € A such that sb = at
(or sANaS # (), then S is said to satisfy the right Ore condition. A multiplicative set
S which satisfies the right Ore condition is called right Ore set. Symmetrically, one can
also define the left Ore condition and left Ore set. A multiplicative set which satisfies
both the right and left Ore condition is called an Ore set. In a commutative ring, every
multiplicative set is an Ore set. A multiplicative set S is said to be right reversible if

for a € A and s € S with sa = 0 then there exists s’ € S such that as’ = 0. A right
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reversible right Ore set is called a right denominator set. A left denominator set is defined
symmetrically. A denominator set is any right and left denominator set. Suppose that .S
is a right Ore set. Then, the set AS™! := {as™! | s € S and a € A} is called the right
ring of fractions or right Ore localization. Observe that every element of S is a unit in
AS~! and A is a subset of AS™!. The left ring of fractions or left Ore localization is

defined symmetrically.

1.4.1 Example. 1. If A is a noetherian domain, then S := A\ {0} satisfies the Ore

condition, hence, AS~! = Fract(A) is a right ring of fractions of A.

2. If Ais a domain and z € A is normal (i.e. A = Azx), then S = {\z' | X €
K*, i € N} is an Ore set. As a result, one can define A[z*!, o] as Alx, o] localized

at S. That is, A[z*!, 0] := Alx,0]S™L.

1.5 Quantum affine space and quantum torus

Let NV € N. Given a multiplicatively skew-symmetric matrix A = (a;;) € My (K*), one

can define a K—algebra O, (K") associated to A as follows:
OA(KY) = KoYy, , Ynl,

where Y;Y; = a;;Y;Y; for all 1 < i,j < N. The algebra Op(K") is called a quantum
affine space of rank N associated to A. The iterated Ore extension of O (K”Y) can be

written as:

OA(KY) = K[Y1][Y2; 09 - - [Yiv; o],

where o is an automorphism of K[Y;][Y2; 09| - - [Yj_1;0j_1] defined by 0;(Y;) = a;;Y;
forall1 <1<y < N.
Since Y7, - -+, Yy are all normal elements of O (KY), the set S := {\Y* ... YV |

A € K* and ky,--- ,ky € N} is an Ore set of O5(KY). One can therefore localize
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Ox(KY) at S as follows:
OA(K)Y := Op(KM)S™ = Kp[ViEL -+ Y.

Now, the localization OA(K*)N is called a quantum torus of rank N. Furthermore,

OA((K*)N) can be written as an iterated Ore extension of the form:
Oa((K)Y) = KYH][¥3 09 - [Yig s ow],

where o is an automorphism of K[Y;*!][V;; o] - - - [Yjﬂ, 0;_1] defined by 0;(Y;) = a;;Y;
forall1 <i<j <N.
A basis of O ((K*)Y) is given by the family (Y --- YiN )i, . xnez. If we restrict

the powers ki, - - - , ky to only N, then (Y} ... YE¥) becomes a basis of O (KV).
1.5.1 Remark. Given the finite dimensional complex simple Lie algebra g, recall from
Section 1.1 that one can construct a set {3, -- , By} of positive roots of g. Set

.

(Bi, Bj) ifi<y

fij == {0 ifi =j (1.5.1)

The matrix A = (¢"7) € My(K*) is a multiplicatively skew-symmetric matrix (i.e.
qrighii = gt =1 for all 1 < 4,5 < N). As a result, one can define a quantum affine

space or a quantum torus associated to A.

1.6 Prime spectrum

Let P be a proper ideal of a ring A and I, I be ideals of A with [11; C P, the ideal P is
called a prime ideal provided P O I or P O I5. A proper ideal P is said to be completely

prime if xy € P implies that z € P ory € P for all z,y € A. All completely prime ideals
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are prime ideals (see comments after [31, Theorem 12.5]), however, the converse is not
always true. An ideal can be prime but not completely prime. For example, the zero ideal
(0) of My(Z) is prime but not completely prime.

Take

2 2 2 2
xr = and y =
2 2 -2 =2

Clearly, zy € (0) but = ¢ (0) and y & (0). The collection of all the prime ideals of A is
called the prime spectrum of A, denoted by Spec(A).

Let M be a right simple A—module. The set anns(M) := {a | ma =0, Vm € M}
is called the right annihilator of M. Now, ann4 (M) forms an ideal of A called the right
primitive ideal. The left primitive ideal is defined symmetrically. Finally, an ideal of a
ring A is maximal if it is not contained in any proper ideal of A. The set Prim(A) is the
collection of all the (left/right) primitive ideals of A called the primitive spectrum of A,
and the set MaxSpec(A) is the collection of all the maximal ideals of A called the maximal
spectrum of A. We have the following set inclusions: MaxSpec(A) C Prim(A) C Spec(A)
for any arbitrary ring A [22, Proposition 3.15].

Again, let A be aring and Py, Py,---, P, € Spec(A) suchthat P, C P, C --- C P,
is a chain of prime ideals of A. The number of strict inclusions n that we have in the
chain is called the length of the chain. That is, n is the number of P;’s in the chain minus
1. A chain is saturated if no prime ideal can be included in the chain. Furthermore, let
P € Spec(A). The height of P denoted by ht(P) is the supremum of the lengths of
all the chains of prime ideals contained in P. Finally, let P and () be two distinct prime
ideals of A such that P C @. Then, A is said to be catenary if all saturated chains of
prime ideals from P to () have the same length for any fixed choice of P and Q). For

example, U (g) is catenary [19, Theorem 4.8].

1.6.1 Remark. [42, Corollary of Theorem 3] If ¢ is not a root of unity, then all prime

ideals of U;"(g) are completely prime.
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1.6.2 Rational torus action. In this section we define rational torus actions in line with
the presentations in [7, Chapter 11.2]. Let the group H act on the K—algebra A via
K—algebra automorphisms. Let x be a non-zero element of A. Then, z is said to be a
‘H—eigenvector if and only if h-x € Kx for all h € H. If a torus H acts on an algebra
A such that the generators of A are simultaneous eigenvectors for all h € H, then the

action of H on A is said to be semisimple.

1.6.3 Example. (1) The torus H = (K*)? acts on the quantum plane K,[z,y] by
automorphisms as: (a, 8) - 'y’ = o'BIz'y’ for all (o, 8) € H and i,5 > 0. This

action is semisimple since each monomial 'y is an H—eigenvector for all 7, > 0.

(2) In general, the torus H = (K*)" acts on the quantum affine space K, [Y1, -, Yy]

by automorphisms as follows:

for all i € N and («, -+ ,an) € H. This action extends uniquely to an action of

the quantum torus, and it is semisimple.

Given an eigenvector, another terminology that obviously comes to mind is an eigen-
value. Therefore, given a H—eigenvector x, the H—eigenvalue of z is a group homo-
morphism X : H — K* such that h -z = A(h)z for all h € H. For instance, the group
homomorphism (a, 3) — a'(37 is H—eigenvalue of the H—eigenvector x'y’ in Example
1.6.3. Given an H—eigenvalue A\, the set Ay ;== {z € A | h-ax = Ah)x,Vh € H} is
called the H—eigenspace of A provided it is non-zero.

The H—eigenvalues X are called characters of H. If H is an algebraic group over K
then a character A of H which is also a morphism of algebraic varieties is called a rational
character. Suppose that K is infinite, then it follows from [7, Theorem 11.2.7] that an
action of H on A is rational if and only if it is a semisimple action and the corresponding
‘H—eigenvalues are all rational. One can easily verify that all the torus actions in Example

1.6.3 are rational actions. For the purpose of our studies, this discussion on rational torus
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action is enough. However, one can read [7, Chapter I1.2] for further details. Specifically,
see [7, Definition 11.2.6] for the general definition of rational torus action. We deduce the

remark below from [4, §3.3].

1.6.4 Remark. The torus H = (KK*)" acts rationally on U (g) by automorphisms via:

forall 1 <i<mnand (o, - ,,) € H. Recall; Ey,--- , E, are the standard generators

of U (g), where n is the rank of g.

We now present the notion of H—stratification by Goodearl and Letzter [21] which
provides a partition of the prime spectrum of a given ring into a disjoint union of strata.
More importantly, the H —stratification also helps to study the primitive ideals of a ring.
1.6.5 H—Stratification. Let A be a K—algebra and I be any ideal of A. If h- 1 =1
for all h € H, then [ is said to be H—invariant ideal of A. A prime H—invariant ideal is
called H—invariant prime ideal (or H—prime ideal for short). Also, (1 : H) := (,cyy h-1
is the largest H—invariant ideal contained in I. Let H—Spec(A) represent the collection
of all the H—invariant prime ideals of A. For J € H—Spec(A), the set Spec;(A) :=
{P € Spec(A) | (P : H) = J} is called the H—stratum of Spec(A) associated to .J.
One can simply call it the J—stratum of Spec(A). The collection of all these J—strata

forms a partition of Spec(A). That is,

Spec(A) = |_| Spec;(A).
JEH—Spec(A)
This partition is known as the H—stratification of Spec(A). Note, given a non-zero
algebra A, if the zero ideal and A are the only H—invariant ideals of A, then A is said
to be H—simple.
For all J in H—Spec(A), we define Prim;(A) := Spec;(A) N Prim(A). This gives

a corresponding H —stratification of Prim(A). That is,
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Prim(A) = |_| Prim;(A),
JEH—Prim(A)

where H — Prim(A) is the collection of all #—invariant primitive ideals of A.

This stratification theory applies to U/ (g), and we have the following lemma.

1.6.6 Lemma. [7, Theorem 11.8.4] Let A = U/ (g), the primitive ideals in Spec;(A) are

just the maximal ideals in Spec;(A).

1.6.7 Remark. [24, §6,7] (also see [44, Theorem 3.8]) The poset of H—Spec(U; (g))
(ordered by inclusion) is isomorphic to the poset of the Weyl group (ordered by the
Bruhat order) associated to g. That is, for any element of the Weyl group, one can

always associate a unique element of H—Spec(U, (g)).

1.6.8 Example. Let R = C,[x,y], with zy = qyz, and H = (C*)%. The ideals
(0), (x), (y) and (z,y) are all H—invariant prime ideals [7, Example 11.2.3]. In fact,
they are the only H—invariant prime ideals we have in R. One can easily verify that
R/{(x,y — B) = C, where 5 € C*. Since C is a domain, (x,y — (3) is a prime ideal.
Similarly, (x — «,y) with a € C*, is also a prime ideal. However, none of these two

prime ideals is H—invariant. From [7, Example 11.2.3], we have the following strata in

Spec(R) :
* Spec)(R) = {{0)},
o Speciy)(R) = {{z)} U {{z,y — ) | B e C},
e Specyy(R) = {{y)} U{(z —a,y) [ a € C}, and
® Speciry)(R) = {(z,9)}-

Consequently, Spec(RR) = Specgy(R) U Speciy) (R) U Specy) (R) U Spec, 4 (R).
For each «, 8 € C*, the poset of Spec(R) is shown in Figure 1.2. We also have that
ht({0)) =0, ht({z)) = ht((y)) = 1, and ht((z,y — B)) = ht({(z —a, 1)) = ht((z,y)) = 2.

Again; since (0), (z,y — ), (x —a,y) and (z,y) are maximal in their respective strata
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for each «, 5 € C*; they are all primitive ideals. Although, (0) is maximal in its strata,
it is obvious that it cannot be a maximal ideal in R, since it is strictly contained in other
proper ideals of R. However; (z,y — ), (z — «,y) and (x,y) are all maximal ideals in

R.

T —a,y)

N
N

Figure 1.2: Poset of Spec(R

Following the notations in [4, §2.2], let W be the set of subsets of I := {1,--- , N'}.
For each w € W, set K,, := (Y; | i € w), where K, is the two-sided ideal of the
quantum affine space Oy (KV) = K,[Y7, -+, Yy]. From [20, Proposition 2.11] (also, see

[4, Proposition 2.1]), we have the following proposition.

1.6.9 Proposition. (1) The H— invariant prime ideals of OA(K") is the set {K,, |

w € W}. As a result, there are exactly 2 H— invariant prime ideals of O (K").

(2) Specr, (Or(KY)) = {P € Spec(Oz(KY)) | PN {Y; i € I} = {¥; | i € w}} for
all w e W.

1.7 Deleting derivations algorithm (DDA)

In this section, we describe the notion of the deleting derivations algorithm (DDA) intro-

duced by Cauchon [8]. We begin with the definition of quantum nilpotent algebras, which
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are also called Cauchon-Goodearl-Letzter (CGL) extensions. In line with [4, Definition 2],

we provide a definition for CGL extension below.

1.7.1 Definition. Suppose that a ring A can be written as an iterated Ore extension as
follows:

A =K[X1][X2;09,09] - - - [Xn; 0N, ON],

with N € N. Then, A is said to be a quantum nilpotent algebra or a CGL extension if
there exists a torus # = (K*)™ that acts rationally by K-automorphism on A, and the

following are satisfied:
(a) Xy, -+, Xy are H—eigenvectors;

(b) for all 2 < i < N, there exists h; € H and ¢; € K* (¢; is not a root of unity)
such that h; - X; = ¢;X; and for all 1 < j < i, there exists )\;; € K* such that

hz‘ . Xj = )\ZJX],
(c) theset {A € K* | 3h € H, h- Xy = AX } is infinite;
(d) for all 2 <i < N, we have that ¢; is locally nilpotent, and

(e) for all 1 < j < i < N, there exists \;; € K* such that 0;(X;) = \;; X, (note,

o; = (hz) |Ai_1» where A;_; := K[X1HX2;02,52] s [Xi—1;0i—175¢—1])-

Note, from the original definition, we have a condition that states that there exists
¢; € K* (g; is not a root of unity) such that o; o ; = ¢;0; o 0;. However, we did not
include this condition in the above definition as it follows from the other conditions (see
[23, Equation 3.1] for the necessary details). Suppose that A is a quantum nilpotent
algebra, one can conclude from [21, Proposition 4.2] that all H—invariant prime ideals
of A are completely prime, and there are at most 2V of these 7 —invariant prime ideals.

Deleting derivations algorithm (DDA): let A be a quantum nilpotent algebra.
One can use the theory of DDA constructed by Cauchon [8] (see also [4, §2.3]) to describe

Spec(A). The algorithm relates Spec(A) to the prime spectrum of the quantum affine
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space obtained after sequentially ‘deleting’ all the skew-derivations dy,- -« ,d9 from A.
We now describe the DDA process below.

Let j € {N + 1,---,2}, the algorithm constructs a family (X ,---, Xy ) of
elements of Fract(A) (the right ring of fractions of A) as follows. First, when j = N +1,

we set (X1 n41, -, Xnni1) := (X1,--+, Xn). Second, for j < N + 1, suppose that

the family (X 41, , Xn +1) has already been constructed. Then, one can construct
X1, ,Xnj from Xy 41, , Xy 41 using the relation below:
Xijt1 ifi>j
Xi,j = +o0o (1 N qj)_kdk i e " . (171)
> T, 0% (Xigr) X4 ifi<y,
k=0 4

for all i € {1,---,N}. Also, [k],,! = [0]g, x -+ x [k]g, with [0];, = 1, and [i],, =
14+qj+--- +q§_1 with @ > 1. Note, from [8, Theorem 3.2.1], X ;11 # 0. Moreover, the
summation is finite since ¢; are all locally nilpotent and §; o 0; = ¢;0; o J;.

For each j € {2,---,N + 1}, AY is a subalgebra of Fract(A) generated by
X1, ,Xn, . Thatis, AV = K(X; ,- -, Xn,). Since (Xini1,  , Xnni1) =

(X1, -+, Xn), we have that AN = A_ It follows from [8, Theorem 3.2.1] that
AV = K[X1][Xa; 09, 62) - - [Xjo13 051, 05-1)[ X5 7] -+ [Xovs v

by an isomorphism that maps X; ; to X;, and 7, --- , 7x are automorphisms defined by
7(X;) = A X; forall 1 <7 <1 < N. With a slight abuse of notation, one can identify
Tj,- -+, 7N With ;,--- oy respectively. With this isomorphism and the slight abuse of

notation, we present AU as:
AV = KXy j][Xpj5 02, 00] -+ [Xjo1 i 01, 65] (X i 03] -+ [Xvgs o).

One can observe that for each j € {2,--- , N}, the derivations 9, - - - , d are all ‘deleted’

from AU). For example, if j = 2, then d,--- ,dy will all be ‘deleted’ from A®). As a
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result, A®) = K[T1|[Ty; 09 - - - [Ti; on], where T} := X;, forall i € {1,--- , N}. Clearly,
A= A® is a quantum affine space. By Theorem 1.3.3, the algebra AY) is a noetherian
domain. Let j € {2,--- ,N}. The set S; := {X},,, | n € N} = {X}, | n € N}
is a multiplicative system of regular elements of AU) and AUTY that satisfies the Ore
condition in AW and AUTD  and A(j)Sj’1 = A(jJrl)Sj’1 [8, Theorem 3.2.1].

Cauchon used DDA to relate Spec(A) to Spec(A) by constructing an embedding
¥; : Spec(AUHD) — Spec(AW) for each j € {2,--- , N'}. Suppose that P € Spec(AU+Y)

and X ;11 € P, then 9, is defined by
U(P) = P A =,
with Q € Spec(AY)). The inverse map ¢; ' is also given by

v Q) = QS n AT =P,
provided X ; & Q.

The case where X ;11 € P is beyond the scope of this study, however, one can refer
to [4, §2.3] and [8, §4.3] for the necessary details.

The map 1), is injective but not necessarily bijective. However, 1; induces a bijection
from {P € Spec(AUtV) | PN S; = 0} onto {Q € Spec(AW) | QN S; = B}. The
so-called canonical embedding 1 : Spec(A) — Spec(A) is obtained by composing all
the ¢;. That is, ¥ := 1y 0 --- 0 9. This canonical embedding 1) helps to construct a
partition of Spec(A) into a disjoint union of strata (known as the canonical partition) via

the Cauchon diagrams (see [4, §2.3] for further details on this).

1.7.2 Remark. The algebra U (g) is a quantum nilpotent algebra [4, §3.1]. One can

therefore apply the DDA to study the prime spectrum of U (g).



Chapter 2

Quest for height two maximal ideals

of U;(G2>

The algebra A = U (G?>) is a quantum nilpotent algebra, so one can apply the theory
of deleting derivations algorithm (DDA) and H —stratification theory to study its prime
ideals. Note, from Remark 1.6.1, all prime ideals of A are completely prime. Since A
is a quantum nilpotent algebra, it follows from [18, Theorem 7.1] that Tauvel's height

formula holds for A. That is, for any prime ideal P of A, we have that
GKdim(A) = ht(P) + GKdim(A/P),

where GKdim(x) represents the Gelfand-Kirillov dimension of the algebra *, and ht(P)
is the height of the prime ideal P. For more details on the Gelfand-Kirillov dimension
of a ring, we recommend [30]. Since G5 has 6 positive roots (Section 1.1), it follows
from [45, §2.1] that GKdim(A) = 6. We are now interested in finding a family of prime
ideals such that the quotients of A with those prime ideals are of GKdim 4 and simple.
This implies that these prime ideals must be maximal, and using Tauvel's height formula,
they must be of height 2. To achieve this result, we use H —stratification theory to
study some H—strata of A. Note, the maximal ideals of height 2 can only belong to

the H —strata corresponding to an H—invariant prime ideals of height at most 2, so we

30
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identify these H —prime ideals first. Of course, the only height 0 prime ideal is the zero
ideal (0). In Section 2.3, we proved that the ideals (€2;) and (€) are (completely) prime
using Cauchon'’s theory of DDA, and in Lemma 2.4.2, we proved that they are of height
1. Moreover, studying the poset of {—Spec(A) (as seen in Figure 2.1), no height 2
‘H—prime ideal is maximal. As a result, the height 2 maximal ideals of A can only come
from the 7 —strata corresponding to (0), (€2;) or (€23). In Subsection 2.4.3, we compute
explicitly these H—strata. This allows us to study the height 2 maximal ideals of A. We

now begin by studying some properties of the algebra U (G>).

2.1 The algebra U (G>)

The background of the materials presented here can be found in Section 1.2. Moreover,
the positive part U (Gs) of U, (G>) is going to be of a major interest in this section and
beyond. We will begin by finding the defining relations of U,(G>), and then proceed to
compute the defining relations of the subalgebra U (G5).

The algebra U,(G>) is a C—algebra generated by Fy, Fy, Ki', K5, Ey, Ey subject

to the following relations:

K\E, = ¢*E K, K\F, =q¢ K, K Ky = KoK,
Ky — K;*
K\Ey = ¢ B> K, K\F, = ¢* K, EyFy = By + q?” — q_23
-3 3 Ky — Kfl
Koy = q Bk Ky Py = ¢°Fi Ky BiF = RB + = —
KyE, = qﬁEsz Ky Fy = q_6F2K2 E\Fs = FyE,
Ey by = FiEy,

and the quantum Serre relations:

(S1) EiE, — [ﬂqu’EzEl + [;*LEfEQEf - [ﬂquEgEf 4 EE =0,

(S2) E2E, — m By By + B3 =0,

q
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(S3) FiR, — [ﬂqFEFQFl + [;LFngFf - [ﬂqFlﬂFf’ 4 RF =0,

(S4) F2F, — [f] BRF, + RF; =0,

q
Now, U (G>) is a subalgebra of U,(G>) generated by F; and Ej subject to the quantum
Serre relations (S1) and (52). The actions of the automorphisms 77 and 75 of U,(G2)

on U (Gy) are as follows:

Ty(E)) = ExEy — q BB, T\(Ey) = —F1 K,
BB, BB | LBBE | By
— q —_—

METEE, T TE ! e,

T5(Es) = —Fy K.

For the purpose of the computation of the relations of U;"(G2) in Appendix A.1, we

include the following inverse automorphism actions: 77 (E,) = —K; 'Fy and T, }(E,) =
~K;'F.
Now, recall the positive roots f31,-- -, s of Gy in Section 1.1. From (1.2.1) and

Theorem 1.2.2, the elements Ej_(also called root vectors) of U (G>) are as follows:

Ep = E; Eg, =T\ (E>) B, = T1Ty(E)

Eg, = T'TZ T (E,) Eg, = TV TV Ty (E) Egy = L.

With a slight abuse of notations, set E; := Ej, for all 1 <7 < 6. Note, E5 is no longer
Ejs, as expected. With these notations, the defining relations of U (G>) (see Appendix

A.1.1) are as follows:

EyE, = q *E B, EsEy =q 'E\Es — (q+q '+ ¢ °)E,
E3Ey = ¢ 3 FyEs E\E, = E1E, + (1 — QQ)E§
4 2
— ¢ —2¢"+1 3 -3
E,Fy=q BB, — — 1 — — E,FE; = ¢ 2EsE
4l =q Lol TSNP a3 =q L3y
EsE, = qE\Es — (1 + ¢*)Es EsEy = EyEs + (1 — ¢*)E:

EsEs=q 'EsEs — (q+q '+ ¢ *)Ey  EsE;=q *EyEs
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E¢E, = ¢*E\Es — ¢*F5 EsEy = ¢°FoFg + (¢* + ¢ — 1) Ey+
E¢Es = E3Es + (1 — ¢*)E2 (¢* — ¢")E3E5
¢ —244+1

E¢E, = q *EyEs — J Es E¢Es = ¢ °E5Eg.

These relations have been confirmed with a mathematical software called GAP [10]. The

GAP code can be found in Appendix A.1.2.

2.1.1 Remark. De Graaf [9, Appendix A] has also computed the relations of U, (G2).
If we set Iy := E,, Fy = E3o45, B3 := Foqyp, By = E3a498, Es = E.yp and
Es := E3, then our relations are the same as his relations. Of course, the only difference
is that he used the notations o and [ for the simple roots contrary to our notations a;

and as.

From Theorem 1.2.2, the set {EM EXESEMENER | ky,--- ks € N} forms a
PBW-basis of U (G5). The iterated Ore extension of U (Gs) is of the form:

U, (G2) = ClE\][Ey; 09][Es; 03, 03][Ey; 04, 6] [Es; 05, 05 [ Fe; 06, 9]
where, o9 denotes the automorphism of C[E}] defined by:
02(E1) = ¢ By,
o3 denotes the automorphism of C[E,|[Es; 0] defined by:
o3(Ey) =q "By 03(Ey) = q By,
3 denotes the o3-derivation of C[E}][E2; 02] defined by:

63(E1) =—(q+q ' +q ) By 85(Ez) =0,
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o4 denotes the automorphism of C[E,] - - - [Es; 03, d3] defined by:
0i(E) =E,  04(BEy) =q By 04(E3) =q *FEs,
4 denotes the o4-derivation of C[E}]- - - [Es; 03, 03] defined by:

—¢*+2¢4 -1 4

_ _ 2 2 — =
0s(Er) = (1 —q")E5y  04(Er) TP By 04(E3) =0,

o5 denotes the automorphism of C[E] - - - [Ey; 04, 64) defined by:

o5(E1) = qBE,  05(Ey) = By 05(Es3) =q 'Ey  o05(Ey) = ¢ *Eu,
J5 denotes the os-derivation of C[E)] - - - [Ey4; 04, 04] defined by:
05(En) = —(1+¢*) By 05(E2) = (1-¢°) B3 05(E3) = —(q+q™ ' +q ) By 5(Ey) =0,
o denotes the automorphism of C[E]| - - - [Es; 05, d5) defined by:
06(Er) = ¢°Er  06(Ey) = ¢°Ey 06(Es) = Es  06(Ey) = ¢ °Ey  06(E5) = ¢ °Es,
and &g denotes the og-derivation of C[F1]- - - [Ej5; 05, d5] defined by:

56(E1) = —Q3E5 56(52) = (QZ - q4)E3E5 + (q4 + q2 - 1)E4 56(E3) = (1 - qz)Eg

—q*+2¢* -1

() = *+P+1

E2  5(Es) = 0.

2.2 DDA and the center of U (G>)

Henceforth, we set A := U;"(G2). We are now ready to describe the DDA of A.
2.2.1 DDA of U/ (Gs). The algebra A is a quantum nilpotent algebra (Remark 1.7.2),

and therefore the theory of DDA studied in Section 1.7 applies to A. We construct the
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following elements of Fract(A) (computations have been omitted here, but can be found

in Appendix A.2):

Eig=E\+rEsEg!

Eys = Ey + tE3EsEy ' +uE Eg ' + nE Ey”

E3s = E3+ sEZEg!

Eis = E, +bESES"

Eis=FE+ hEza,(>’E5_,61 + 9E476E5_,§

Ess = Ese+ [E;6Ess + pEssEiEyg + eEigEsg

E3s5 = FE36+ GE4,6E§é

Eiy=E5+ SE§,5E4_,;

Eoy = L5+ bE§,5E4_,51

Ei3=FE4+ GE2,4E3,_,41
T, = E1,2 = E1,3
15 = E2,2 = E2,3 = E2,4
T3:=FE30=E33=L34=Ej3;
Ty:=FEyp=FEy3=Fi4=E;5 = Fyg
T5:=FEs2=FEs3=E54=E55 =FE56 = Ej

Te := E6,2 = E6,3 = E6,4 = E6,5 = E6,6 = Fg.

The parameters a, b, e, f, g, h,n,p,r,s,t,u are all defined in Appendix C.

Again, from the theory of the DDA in Section 1.7, we have that for each j €
{2,---,7}, the algebra AY) := C(E;; | i = 1,---,6) is the subalgebra of Fract(A).
Since (E17,-++, Eg7) = (Ey, -+ , Eg), it follows that A(D = A.

2.2.2 Remark. Recall that T = E;; = E;;;; € AY N AU+Y_ It follows from [8,
Theorem 3.2.1] that the set 33; := {T7" | n € N} is an Ore set in both AY) and AU+Y

for each 1 < j < 6, and that A(j)Zj_l = A(jH)Zj_l.
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2.2.3 The center of U (Gs). Using (1.5.1), we have the skew-symmetric matrix M

below:

[0 BB - (BuB) |
~(Buf) 0 (Baf) (B, o)
M = : .. - .. :
0 (Bs, Bs)
~(BufBe) - o —(BfBe) O
—O 3 1 —1 —3-

3 3 0 =3 -3 0

Observe that A := A® = C [Ty, -+, Ty] is a quantum affine space. Set 0y := T T3T5
and Qy := ToTyTg. One can verify that Q; and €, are central elements of A. That is,
OT; =T;Q; forallt =1,2,and 1 < j <6.

We now want to successively pull £, and Q5 from the quantum affine space A into
the algebra A using the data of the DDA of A discussed above. We only summarize the

computations here, and provide a sketch of the computations in Appendix A.3.

O = T\ T3 T
= Fy B3 4Fs5 4+ als 4 Fs 4
= By 3Es5Bs5 + aBasEs s
=FE16E36F56 +al gEyg + alyglsg + GIE§,6

= E\F3Es + aF\Ey + aFyEs + d' E:,
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and

QQ = T2T4T6
= FosFyskes + bE§,5E675
= FosFyelies + bE§,6E676

= FyE B + bELES + bESEs + VESEZ + ¢ EsE Es + d Ef.

The parameters a,b,a’,b',c/,d" are all defined in Appendix C. Note, €; and Q, are
central elements of AU) for each 2 < j < 7, since Fract(AU)) = Fract(A). From the
commutation relations of A, one can observe that £} and Ejg are enough to generate A.
Hence, it is sufficient to confirm that 2; and {2, are central elements of A by showing
that they commute with only F; and Eg. As a result, we have used GAP to confirm
that 1 F; = E;$)y and QF; = E;€), for each i = 1,6. The GAP code can be found in
Appendix A.3.1.

We now want to show that the center of A is a polynomial ring generated by €2, and
Q9 over C. The following discussions will lead us to the proof.

Set S; = {Aﬂjﬁiﬁl-~-Té6 | ij,---,i6 € N and A\ € C*} for each 2 < j < 6.
One can observe that S is a multiplicative system of non-zero divisors of AV = C(E; |

for alli =1,---,6). Furthermore, the elements T}, - -- , T are all normal in AU Hence,

S; is an Ore set in AW We can therefore localize AY) at S; as follows:
Rj = AVS

Recall from Remark 2.2.2 that 3; := {77 | n € N} is an Ore set in both A% and AU

for each 2 < j < 6, and that

A(j)Z;1 — A(jJrl)E;l_
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For all 2 < 57 < 6, we have that:

R; = A(J‘)Sj—l — (A(j)Ej_l)S_l - (A(j+1)2j—1)51—+1j — (A(j“)S._l

-1 _ p  y-1
1+4j )2 = Ry

(2.2.1)

Note, R; := A.

Again, one can also observe that 77 is normal in Rs. As a result, the localization

also holds in Rs. In fact, R; is the quantum torus associated to the quantum affine space
A. As aresult, Ry = C,u [TEY, ... TFY, where TyT; = ¢*4TT; for all 1 < 4,5 < 6 and

wi; € M. Similar to [36, §31], we construct the following tower of algebras:

A= R7 C RG = R7E6_1 C R5 = Rﬁzgl C Ry = R5211

CRy= R, C Ry=R3%," CRy. (2.2.2)

Note, the family (Eflj e Eé“f’j), where k; € N if i < j and k; € Z otherwise is a PBW-
basis of R; for all 1 <i,j < 7. Therefore, the family (T{* Ty> T53 T TE>Too Vs, .. koez i

a basis of R;.
2.2.4 Lemma. Z(R,) = C[Q5, QF!].
Proof. Obviously, C[QF!, Q5] C Z(R,). For the reverse inclusion, let y € Z(R;). Then,

y can be written in terms of the basis of R; as:

y= Y e TTSTITITY.

(17 7n)€ZG

One can verify that yT} = ¢~ =™y Since y € Z(R,), it follows that

—3j—k+m+3n=0.
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Similarly, yTy = ¢* =333 T,y Since y € Z(R,), we have:
3i — 3k — 314+ 3n=0.
Following the same pattern for T3, Ty, T5 and Ty, one can confirm that

i+3j — 3l —m =0,
3j + 3k — 3m — 3n =0,
—i+ k431 — 3n =0,

—3i — 3j + 3L + 3m =0.

Solving this system of six equations will reveal that i = k = m and j = [ = n. One can

therefore write
y= Y aipyTLHTT = > ¢aepTIHLTTIT = > ¢*aq) Q9.
(i,§)€z? (i.§)€z? (i.§)€z?
This implies that y € C[QF!, Q5] as expected. [ ]
2.2.5 Corollary. 1. Z(R3) = C[{2y, Q).
2. Z(A) = C[Q, Q).

Proof. 1. Clearly, C[21,€s] C Z(R3). For the reverse inclusion, let y € Z(R3). Then, y

can be written in terms of the basis of R5 (recall, T; = E; 3) as:

R
y= > i TTETTITY.
(i, ) EN2X Z4
Now; 17, - - - , T are all normal elements in Rj3. In fact, they satisfy the same commutation
relations in R;. Hence, following procedures similar to the lemma above, one will arrive
at the conclusion that i = &k = m and j = [ = n. Since 7,5 > 0; we have that

v = e CoepTTTTITIT] = 3 5 cve 006,50 Q. This implies that
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y € C[Q,Qy] as expected.
2. Similar to (1). [ |

2.2.6 Lemma. Z(A) = C[2y, Q.

Proof. Since R; is a localization of R, it follows that Z(R;11) C Z(R;). From (2.2.2),
we have that Z(A) C Z(R3). Observe that C[Q,$s] C Z(A) C Z(R3) = C[2y, Q).
Hence, Z(A) = C[Ql, QQ] [ ]

2.2.7 Remark. Since Z(A) = Z(R3) = C[Q,Qs] and Z(R;11) C Z(R;), it follows
from (2.2.2) that Z(A) = Z(Rs) = Z(R5) = Z(R4) = Z(R3) = C[4,s]. One can

also deduce from Lemma 2.2.4 that Z(Ry) = C[Q1, Q3]

2.3 Proof of the completely primeness of (¢2;) and ({2,)

Since all prime ideals of A = U (G>) are completely prime (Remark 1.6.1), it is sufficient
to show that (2;) and (€2;) are completely prime by showing that they are prime ideals.
Note, the data of the DDA of A and the expressions for 2; and {2, in the previous section
will be helpful in the proofs of Lemmas 2.3.1 and 2.3.2. Recall, the notation (©)x means
an ideal generated by the element © in any arbitrary ring R. Where no doubt arises, we
will simply write (©).

From Section 1.7 we know that there is a bijection between {P € Spec(AU*Y) |
PNS; =0} and {Q € Spec(AY)) | QNS; = 0} via P = QS; ' N AU, Note, (T1) and
(T,) are prime ideals of the quantum affine space A, since each of the factor algebras
A/{Ty) and A/(T3) is isomorphic to a quantum affine space of rank 5 which is well known
to be a domain. From Section 1.7 we have that v; : Spec(A*7)) < Spec(AW) for
2 < j < 6. Hence, @ := g 0 --- 01y : Spec(A) — Spec(A). Recall, AT = A and
A? = A

The following result shows that (77) € Im(¢)) (i.e. image of ¢) and that (€2,) is the
completely prime ideal of A such that ¢¥/((€21)) = (17).

2.3.1 Lemma. (£;) € Spec(A).
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Proof. We will prove this result in several steps by showing that:
1. (T\) 4» € Spec(A®).
2. By 4T3+ aTy) = (Ty) 49 [T5 '] N AD | hence Q := (Ey 4T3 + aTy) € Spec(AW).
3. (B15T3 + aFys) = Qi[T, '] N A®) hence Q, := (B 515 +aby5) € Spec(A®).
4. () 40 = Qa[T5 ] N A©) | hence (1) 40) € Spec(A®).
5. (Q)a = ()40 [T; '] N A, hence ()4 € Spec(A).

We are now ready to prove the above claims.
1. One can easily verify that A®) /(T}) is isomorphic to a quantum affine space of
rank 5, which is a domain, hence (7}) is a prime ideal in AB)
2. Note, T} = Ej 4+aTyTy . We want to show that (E) 4T3+aTy) = (T1) 4 [T ']N
(1), Observe that (EyaT5 + aTh) C (Th) a0 [T 1M A, We established the reverse
inclusion. Let y € (T) 4 [T5 '] N A®. Then, y € (T1) s [Ty *]. Therefore, there exists
i € N such that yT% € (T}) 4. This implies that y7% = Tyv, for some v € A®). Since
ABTY] = AW[T;Y, there exists j € N such that vTJ = o/, for some v € AW
It follows that yT3 7 = TywT] = Ty’ = (B4 + aToT5 ' = (ByyTs + aTy)Ty o'
The multiplicative system generated by 73 satisfies the Ore condition in A®, hence,
there exists k¥ € N and v” € A® such that Ty 'v' = v"T;*. One can therefore write
yTat = (ByyTs + aT)v"Ty *. This implies that yT3 = Qv”, where Q) := B, 4Ts + aT
and 6 = i+ j+k Set S :={s e N| I e AD : yTs = Qv"}. Note, S #
(), since 6 € S. Let s = sy be the minimum element of S such that y75° = Qjv".
We want to show that s, = 0. Remember, Q|75 = € in AW Since €, is central
in AW, and Ty is normal in A, we must have ©} to be a normal element in A
otherwise, there will be a contradiction. Therefore, there exists w € A® such that y1s° =
Q" = wQ. Now, A™ can be viewed as a free left C(E1 4, T, Ty, T, Ts) —module with

basis (T§>
£eN
ag, fe € C(E14, Ty, Ty, T5,Ts). This implies that S0 (o T5™ = S0 BT5Q) =

. One can therefore write y = > /" aeT5 and w = D 0 BeTS, where



Section 2.3. Proof of the completely primeness of (€2;) and (£2) 42

22:0 q'BSQ’IT?f (note, T30, = ¢~ T3). Given that Q) = Ej 4T3 + aT, we have that
D =0 a TS5 = 0 ¢*Be By Ty + > 0 ¢*aBeTyT5. Suppose that sg > 0. Then,
identifying the constant coefficients, we have ¢*afyT> = 0. As a result, 5y = 0, since
q*aly # 0. Hence, w can be written as w = 22:1 6§T§. Returning to y73° = wS)}, we
have that yT5° = S0, BT5Q = Y0, ¢*BeUTs = Q) 3¢, ¢°B¢T5. This implies that
YT~ = Q', where w' = D e q'ﬁéT§_1 e AW, with Bi € C{Er4, To, Ty, T5, Ts).
Consequently, so — 1 € S, a contradiction! Therefore, sp = 0 and y = Qv" € () =
(Ey 4T3 + aTy). Hence, (1) 4 [T5 '] N AW C (F) 4T3 + aTy) as desired.

3. We want to show that (B 575 + aEhs) = (Q)) 4 [T7 1 N A®). Note, ) =
By 4Ty +aTy = By 5Ty + aEy 5. Observe that (E) 5Ts + aEys) C () 4 [T ] 0 AG).
We establish the reverse inclusion. Let y € () 4 [T, ]NA®). Then, y € (Q)) 40 [T
Therefore, there exists i € N such that y7}; € (2)) 4. This implies that yT}; = Qjv, for
some v € AW, Since AW[T; 1] = A®[T; 1], there exists j € N such that vT7 = +/, for
some v/ € A®)_ It follows that yT} 7 = Q' vT! = Q,v'. This implies that yT? = v/,
where § = i +j. Set S := {s € N | J' € A®) : 4Ty = Qv'}. Since 6 € S, we
have that S # (. Let s = sy be the minimum element of S such that y7,;° = Q{v'.
We want to show that s, = 0. Note, Q75 = Qi in A®). Since Q; is central in
A®)and Ty is normal in A® we must have ) as a normal element in A®). There-
fore, there exists some v € A®) such that yT;° = Q' = v"Q,. Now, A®) can
be viewed as a free left C(E) 5, Ea5, T3, T35, Ts) —module with basis (Tf)geN’ One can
write y = Y . agTs and v" = > o BeTS, where ae, Be € C(E, 5, Eys,Ts, Ts, Tp).
This implies that » ., aTE™ = D 0 BT = D 0 ¢*BSUTs (note, Ty, =
q 3 Ty). Suppose that sy > 0. Then, identifying the constant coefficients, we have
that ¢*5p€2; = 0. Hence, 5y = 0, since ¢*2} # 0. One can therefore write v” as
" =300 BeTs. Returning to yT;° = v"(Y;, we have that yTj° = Dei BeTsSY, =
22:1 QBT = Zgzl q* BTy, where By € C(Ey 5, Eys, T3, Ts, Tg). This implies
that yT5° ' = Qlw, where w = > e q'BéTf_l e A®). Consequently, s — 1 € S, a

contradiction! Therefore, sp = 0 and y = Q0" € () = (Ey 515 + aFs5). As a result,
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() 4w [T N A®) C (B 5T + aFy5) as desired.

4. Observe that ) = By 5T3 +aFy5 = O T ' in AO[T;1]. We want to show that
() a0 [T N A®) = (Q)) 4. Obviously, (1) 4@ C () 40 [T 1] N A©). We establish
the reverse inclusion. Let y € () 45 [T5 '] N A©). This implies that y € () 45 [T5 1]
There exists i € N such that yT¢ € () 5. Hence, yTi = Qv, for some v € A®),
Furthermore, since A®)[T; Y] = A®[T Y], there exists j € N such that vT¢ = o', for
some v € A©. It follows from yTi = Qv that yTi " = QuT! = Q' = T
(note, Q\T5 = Q in A©®). The multiplicative system generated by Tj satisfies the Ore
condition in A, hence, there exists k € N and v” € A such that 75 'v' = v"T5 *. One
can therefore write yT3t/ = Q0" T¥. Hence, yT9 = Quv", where § =i+ j +k. Set S :=
{s e N| " € A® . yT® = Qv"}. Since § € S, we have that S # (). Let s = s be the
minimum element of S such that y7;° = Q;v"”. We want to show that sy = 0. Now, A®)
can be viewed as a free C(E g, E26, E3 6, T4, Ts)—module with basis <T§)€€N. One can
write y = >/ ong; and v" =3 . 6§T§, where ag, fe € C(E1 ¢, Eag, Es6, T1, Tt)-
With this, y75° = Quv” implies that >/, aTET = > 0 BeTE. Write ) =
1Ts + 2, where 1 = E16E36 + aFag and 7o = a’E§76 + aF16E4. It follows that
22‘:0 a§T§+SO = Z?:o BwngH - 22:0 5572T§. Suppose that sy > 0. Then, identify-
ing the constant coefficients, we have that 5y, = 0. Hence, 5y, = 0, since 75 # 0. One
can therefore write v = 22:1 /B§T§. Returning to y7;° = Qv”, we have that y7;° =
DD, BeTs. This implies that y75°™" = Q w, where w = > e BT € A As
a result, sp — 1 € S, a contradiction! Therefore, so = 0 and y = Q0" € (1) 400).
Consequently, () 4 [T5 ] N A© C (Q)) 4 as desired.

5. We want to show that () 4 [T ']N A = (Q)4.

Obviously, (Q1)4 € ()40 [T5 '] N A. We establish the reverse inclusion. Let y €
(1) 40 [Ty '] N A. This implies that y € () 4@ [T; ']. There exists i € N such that
yTi € () 4. Hence, yTi = Qqu, for some v € A©). Furthermore, since AO[T; '] =
A[T; Y], there exists 5 € N such that vT] = v/, for some v € A. It follows from

yTi = Qo that yTi 7 = QuuT! = Quv'. Hence, yT? = Quv', where § = i + j. Set
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S:={seN|F e A:yTi =N©v'}. Note, § € S, hence S is non-empty. Let s = s
be the minimum element of S such that y75° = Q0. We want to show that sy = 0.
Now, A can be viewed as a free C(E}, Ey, F3, E4, T5)—module with basis (Tg)éeN. One
can write y = >, ang and v' =3 0, Bng, where ag, fe € C(E4, By, Es, Ey, T5).
With this, yT;° = Qv' implies that Y7 acT5™ = S0 B Tg. Suppose that
sg > 0. Then, identifying constant coefficients, we have that 5,2y = 0. As a result,
Bo = 0, since €21 # 0. One can therefore write v/ = Zgzl 6§T6£. Returning to y73° =
Q1v', we have that y7g° = Q; >, BeT¢. This implies that y73°™! = Q0”, where
"= 22:1 Bng_l € A. Hence, so — 1 € S, a contradiction! Therefore, s, = 0 and

y = Qv € (1) 4. Consequently, (1) 4 [T; '] N A C (Q1)4 as desired. [ |

The following result also shows that (73) € Im(%)) and that (€2,) is the completely

prime ideal of A such that ¥((Qs)) = (T3).
2.3.2 Lemma. (€),) € Spec(A).

Proof. Similar to the previous lemma, we also prove this result in several steps by showing

that:
1. (Ty) 4» € Spec(A®).
2. (Ty) g0y € Spec(AW).
3. (BosTy + bT3) = (To) 4 [Ty '] N AB) hence Qy := (Ey 5Ty + bT5) € Spec(A®).
4. (EyeTy + bE§,6> TN , hence Qy := (Fy 6Ty + bE3 s) € Spec(A®)).
5. () = Qu[T; '] N A, hence () € Spec(A).

We are now ready to prove the above claims.

1. The quotient algebra A®) /(T) is isomorphic to a quantum affine space of rank
5, which is a domain, hence (T3) is a prime ideal in A®).

2. Similar to (1).

3. Recall from the DDA of A that, Ty = Ey5 + bT3T, '. We want to show that
(EosTy+bT5) = (Ty) g [Ty 'JNA®). Observe that {Ey s Ty+bT5) C (Ty) g [T, ']NAG)
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We establish the reverse inclusion. Let y € (1) [Ty '] N A®). This implies that
y € (Ty) sw[T;']. Therefore, there exists i € N such that yTi € (Ty) 4. This im-
plies that yTi = Tyv for some v € A®W. Since AW[T, ] = AT, ], there exists
j € N such that vT] = o' for some v € A®. It follows that yT;™ = TouT] =
Tyt = (Bys + bT3T, )0 = (EasTy + 0T5)T, "o, Note, the multiplicative set gener-
ated by T satisfies the Ore condition in A® hence, there exist £ € N and v” € A®)
such that T, o' = v"T;*. One can therefore write YT} = (Ey5Ty + bT3)v" T, *
This implies that yT7 = Q4" where Q) = EysTy + bT3 and § = i + j + k. Set

= {s € N| I € AO) . yT; = Qv"}. Since 6 € S, we have that S # (.
Let s = so be the minimum element of S such that y7,° = QLv". Note, Q5T = Q5
in A®). Given that Q, is central in A®) and Ty is normal in A®) we must have (2,
to be a normal element in A®). Therefore, there exists w € A®) such that yT,° =
Q" = w. Now, A®) can be viewed as a free left C(E, 5, Fy5, T3, Ts, Ts)—module
with basis (Tf)EEN. One can write y = > ., aTE and w = > o BeTs, where
ag, e € C(En5, Bas, T3, T5, T). It follows from yT7° = w that 3 ., aTs™™ =
Sb o BeTiQ% = S0 o a* BeUTs (note, TuSY = ¢ 3Q%Ty). Since Q) = By 5Ty + bT3,
we have that 377 a T = > o ¢*BeFBas T, + > 0 ¢*bBcT3Ts. Suppose that
so > 0. Then, identifying the constant coefficients, we have: q'bﬁng3 = (. Hence,
By = 0, since ¢*°bT3 # 0. One can therefore write w = 22:1 BgTS. Returning to
yT;i® = wQ, we have that yT;° = 0| BT5 = S0 ¢* BTy = Q4 >0, ¢*BLTs
for some f; € C(Ey 5, Eas,Ts,Ts,Ts). This implies that YTt = Qhw', where w' =
22:1 q'ﬁéTf_l € A®). Consequently, sy — 1 € S, a contradiction! Therefore, s, = 0
and y = Q4" € () = (Ey5Ty + bT3). Hence, (Ty) q [T, 1] N A®) C (Ey 5Ty + bT3)
as desired.

4. We want to show that (Ey Ty + bE3¢) = () 4 [T5 '] N A©). Observe that
(FBosTy + bESs) C ()45 [T5 '] N A, We establish the reverse inclusion. Let y €
Q) 4 [T5 '] N A©). This implies that y € () 45 [T5 ']. Therefore, there exists i € N

such that yT¢ € (Q) 4. This implies that yTf = Q4v, for some v € A®). Since
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AO[T = AO[T: Y, there exists j € N such that vTY = o', for some v € A©). It
follows that 77 = QLuT? = Q4u'. This implies that 7 = Q4v', where § = i + j. Set
S:={seN| I €AY :yTs = Qv'}. Since § € S, we have that S # (). Let s = s
be the minimum element of S such that y7:° = Q4v’. Note, 2T = Q2 in A©). Given
that €2, is central in A and Ty is normal in A(), we must have (2, as a normal element
in A(®). Therefore, there exists v" € A® such that yT2° = Qh' = v”Q. Now, A©) can
be viewed as a free left C(E) 6, F26, Es6, T4, Ts)—module with basis <T§) con” One can
write y = Z?:o a5T§ and v" = Zgzo &Tg, where g, B¢ € C(E1 6, Fag, Es6, Eug, Ts)-
It follows from yT5° = 0¥ that ¢ aeTs ™ = S0 BeTsQ) = S0 o q* BTy
(note, T5SY, = q3Q4Ts). Suppose that so > 0. Then, identifying the constant coeffi-
cients, we have that ¢*5,€2, = 0. Hence, 5y = 0, since ¢*€), # 0. One can therefore
write v” =3 0 BeTE . Returning to yT5° = v, we have that yT3° = > e BeTEQY =
> ¢ ¢*BiTs. This implies that yT73°~! = Qhw, where w = 3¢ ¢* BT~ € A©
Consequently, so — 1 € S, a contradiction! Therefore, so = 0 and y = Q" € () =
(E26Ty + bES ). Hence, () 45 [T '] N A©® C (Ey 6Ty + bE3 ) as desired.

5. Note, Q) = EyeTy + bESs = Ty in A[T;']. We want to show that
() a0 [Tg ] N A = (Q) 4. Obviously, ()4 C () 40 [Ty '] N A. We establish the
reverse inclusion. Let y € () 4 [T5 '] N A. This implies that y € () 4 [T ']. There
exists i € N such that yTy € (Q) 4. Hence, yTi = Qv, for some v € A©). Fur-
thermore, since A [T; 1] = A[T; '], there exist j € N such that vT] = v/, for some
v’ € A. It follows from yTi = Qv that yTp 7 = QuTi = Q' = QT ', The mul-
tiplicative system generated by T satisfies the Ore condition, hence, there exists k£ € N
and v” € A such that T; "' = v"T¥k. It follows that yTp 7 = QT5 v = Quu"T5*.
Hence, yT¢ = Quv”, where § =i+ j + k. Set S := {s € N| J" € A : yTg = Q"}.
Since § € S, we have that S # (). Let s = sy be the minimum element of S such
that y75° = Qv”. Now, A can be viewed as a free C(E1, Es, Es3, E4, T5)—module
with basis <T6§) . One can write y = > . aeTS and v/ = D 0 BeT¢, where

£eN

ag, Be € C(Ey, By, B3, Ey, T5). With this, yTg° = Qov” implies that 37, agTéJrSO =
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22:0 BgQng. From Subsection 2.2.3, one can write {25 as 2y = T + 2, where
v = EyE; + bE3 and v, = bE,TS + VEIE2 + dE3E Ts + d'E?. It follows that
D o a T = >0 BenTet + D o Bev2Ts. Suppose that s, > 0. Then, iden-
tifying the constant coefficients, we have that Sy, = 0. Hence, Sy = 0, since 7, # 0.
One can therefore write v" = > . BTy Returning to yT5° = Qu0", we have that
YT = Do, BeT¢. This implies that yT5° ™" = Qyw, where w = D et BT e A.
Consequently, so — 1 € S, a contradiction! Therefore, s = 0 and y = Q0" € (Q) a.

Hence, () 40 [T5 '] N A C ()4 as desired. [ |

2.4 Height two maximal ideals of U (G>)

This section focuses on studying the height two maximal ideals of A = U (G>). First
and foremost, we will begin by describing the H—invariant prime ideals of A, and then
proceed to study the H—strata corresponding to (0), (€21) and (€23). We will conclude

by describing the height two maximal ideals of A.

2.4.1 H—Spec(A). Recall from Section 2.1 that A = C[E\][E; 09][E3; 03, 03] - - - [Eg; 06, 06
The torus H := (C*)? acts rationally on A via (ay, o) - E; = o; E;; with ¢ = 1, 6; for all

(a1, ag) € H. Using the defining relations of A, one can easily verify that

(Cl/l, 056) . E2 = a?OKGEQ (Oél, CYG) . Eg = (Y%OZ(;E:;

(an,06) - By = a?a%E;l (o, 06) - Es = aagEs.

We now proceed to describe the set H—Spec(A). In Section 1.1, we studied the
Weyl group # of Gy. It follows from Remark 1.6.7 that the poset of H—Spec(A) is
isomorphic to the poset of #'. For each ¢ € #', one can associate a unique element of
H—Spec(A), which we denote by K(c). As a result, H—Spec(A) :={K(¢e) | Ve € #'}.

We have that |H{—Spec(A)| = |#'| = 12. One can therefore partition Spec(A) into a
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disjoint union of strata as follows:

Spec(A) = |_| Speck () (A).

eeW

Moreover; for ¢,&’ € # with ¢ < €', we have that K(¢) C K(¢'), where < is the
Bruhat order [44, Theorem 3.8]. From Section 1.1, we have that wy := $15281525189 =

S98189818281 in # . The posets of # and H—Spec(A) are seen in Figure 2.1.

\ - KWO)\

5152515251 5951895159 K(5152515251) K(s251525152)
K(

><52313231 K(s1505152)

51525189 $9,515251)

>< 595189 K(slsgslé K(sz

K(s182) K(s251)

51898 5152)

S18¢

=

/En\
=
E

K(s2)

Figure 2.1: Posets of # and H—Spec(A).

Recall from Subsection 2.2.3 that A is a quantum affine space. The map ) =

g o---01)g : Spec(A) < Spec(A) is a canonical embedding. This canonical embedding
restricts to the H—invariant prime spectrum. That is, ¢ : H—Spec(A) < H—Spec(A).
Let W be the set of all the subsets of {1,---,6}. For each w € W, K, := (T |
i € w) is a H—invariant prime ideal of A (Proposition 1.6.9). We therefore have that
H—Spec(A) := {K,, | w € W}. Observe that the set {(T;) | 1 < i < 6} is the set of all
the height one H —invariant prime ideals of A. Since 1) : Spec(A) — Spec(A), one can
easily deduce from Figure 2.1 that there are only two height one H —invariant prime ideals

of A. From Lemmas 2.3.1 and 2.3.2, we have that (7}) = ¥({£21)) and (T3) = 1 ({s)).

Since 1 preserves the height of a prime ideal, we have the following lemma.
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2.4.2 Lemma. 1. (Q) and (€3) are the only height one H—invariant prime ideals
of A.

2. Every non-zero H—invariant prime ideal of A contains either (€2;) or (£2,) as a

result of Figure 2.1.

2.4.3 H—strata corresponding to (0), (€2;) and (€2). In this subsection, we aim to
find the H{ —strata corresponding to (0), (€21) and (€22). We state and prove the results
in Propositions 2.4.4, 2.4.5 and 2.4.6 using strategies similar to [33, Propositions 2.3 and
2.4]. Note, in this subsection, all ideals in A = U (G5) will simply be written as (©),
where © € A. However, if we want to refer to an ideal in any other algebra, say R, then

that ideal will be written as (©)g, where in this case, © € R.

2.4.4 Proposition. Let P be the set of those unitary irreducible polynomials P(€2;, Q) €
C[Ql,Qg] with P(Ql,Qz) 7é Ql and P(Ql,Qg) 7é QQ. Then, SpeC<0>(A) = {<0>} U
{(P(Q1,)) | P(Q1,22) € PU{(Q —a,Q — ) | a, 8 € C*}.

Proof. We claim that Speci(A4) = {Q € Spec(A) | 2;,Q & Q}. To establish this
claim, let us assume that this is not the case. That is, suppose there exists () € Specy(A)
such that 24, 2y € @; then the product €2;{2; which is an H—eigenvector belongs to Q).
Consequently, 2,5 € (,cy 1 - @ = (0), a contradiction. Hence, we have shown that
Specigy(A) C {Q € Spec(A) | 21,0, & Q}. Conversely, suppose that Q) € Spec(A) such
that 1,y € Q, then (N, ;, h - Q is an H—invariant prime ideal of A, which contains
neither £ nor §2,. Obviously, the only possibility for (), ., - @ is (0) since every non-zero
H—invariant prime ideal contains at least €2; or ;. Thus, (),c, h - Q = (0). Hence,
Q € Spec(y(A). Therefore, {Q € Spec(A) | 1,9y & Q} C Speciy(A). This confirms
our claim.

Since Qy,Q, € Z(A), we have that the set {Q:Q) | i, € N} is a right denominator
set in the noetherian domain A. One can now localize A as R := A[Q; ', Q'] Let Q €
Specp)(A), the map ¢ : Q@ — Q[Q;', Q5] is an increasing bijection from Spec g (A)
onto Spec(R).
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Since €2, and (2, are H—eigenvectors, and H acts on A, we have that H also acts
on R. Let us verify that R is H—simple before we describe Spec(R). Now, ¢ still induces
a bijection between the set of those H —invariant prime ideals of Specy(A) and the set
of H—invariant prime ideals of Spec(R). It is already known that the set of H—invariant
prime ideals of A that neither contains €2; nor 2, consists only of the zero ideal {(0)}
(Lemma 2.4.2(2)). This implies that (0)r is the only H—invariant prime ideal of R.
Every H—invariant proper ideal of R is contained in an H—invariant prime ideal of R
[17, §3.1(v)]. Therefore, (0)g is the only unique H—invariant proper ideal of R. This
confirms that R is H—simple.

We proceed to describe Spec(R) and Spec o) (A). We deduce from [7, Exercise I1.3.A]
that the action of H on R is rational. This rational action coupled with R being H—simple
implies that the extension and contraction maps provide a mutually inverse bijection
between Spec(R) and Spec(Z(R)) [7, Corollary 11.3.9]. From Lemma 2.2.6, Z(A) =
C[, ), and so Z(R) = C[Qf*, Q3']. Since C is algebraically closed, we have that
Spec(Z(R)) = {(0) z(r) } U{(P (21, 22)) z(r) | P(21,22) € PEU{(Q1 —, 2= B) z() |
a, € C*}. Since there is an inverse bijection between Spec(R) and Spec(Z(R)), and
also R is H—simple, one can recover Spec(R) from Spec(Z(R)) as follows: Spec(R) =
{(0)r}U{(P(Q21,Q22))r | P(21,92) € P}U{(21 —a, Q2 — B)r | a, f € C*}. It follows
that Spec(o)(A) = {(0)r N A} U{(P(Q21,2))rNA| P(Q,Q) € PFU{{ —a,Qp —
BlrNA|a,peC}.

Undoubtedly, (0)g N A = (0). We now have to show that (P(€;,Q))r N A =
(P(21,Q)), YP(21,9Q9) € P,and (1 —a, Qo —B)rNA = (O —,Qy— ), Vo, f € C*
to complete the proof.

Fix P(£21,8%) € P. Observe that (P(€y,s)) C (P(4,Q))r N A. To show the
reverse inclusion, let y € (P(y,Q2))r N A. This implies that y = dP(€, (), where
d € R, since y € (P(21,82))g. Also, d € R implies that there exist i,j € N such
that d = a7, where a € A. Therefore, y = aQ;'Q,7 P(Q1, Qy), which implies that

Y = aP(Qy, Q). Choose (i,7) € N? minimal (in the lexicographic order on N?) such
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that the equality holds. Without loss of generality, suppose that i > 0, then aP(€2,€)s) €
(Q4). Given that (£21) is a completely prime ideal, it implies that a € (1) or P(€2,s) €
(7). Since P(Q4,) € P, it implies that P(Qy,) & (1), hence a € (). This
further implies that @ = ¢, where t € A. Returning to yQiQ) = aP(Q,9,), we have
that yQi Q) = tQ, P(Qy, Qy). Therefore, yQi71Q) = tP(y, Q). This clearly contradicts
the minimality of (7,j), hence (i,j) = (0,0), and y = aP(,Q) € (P(Q1,s)).
Consequently, (P(Q,89))r N A = (P(Q4,82)) for all P(21,9s) € P as desired.

Similarly, we show that (0 —«, Qs — 5)rNA = (1 — a, Qs — ); Va, 5 € C*. Fix
a, 3 € C*. Observe that (1 —a, Qy— ) C (1 —a, Qs— ) RN A. We establish the reverse
inclusion. Lety € (2 —a, Qs —B)rNA. Sincey € (0 —a, Qy— ) g, there exist i, j € N
such that yQi Q) = m(Q; —a)+n(Q— ), where m,n € A. Choose (i, 7) € N? minimal
(in the lexicographic order on N?) such that the equality holds. Without loss of generality,
suppose that ¢ > 0 and let f : A — A/(€Q; — ) be a canonical surjection. We have
that F(5) F()'F(D) = F(m)f( — a). It follows that f(m)f(2 — a) € (f(2)).
Observe that f(2; — a) & (f(€)), hence f(m) € (f(€1)). Therefore, IX € A such
that f(m) = F(\)f(C). Consequently, f(y)f()f(2)l = FONF(Q)F( — a).
Since f(21) # 0, it implies that f(y) /(1) f(Q2)! = fF(N)f(Q — a). Therefore,
y QI = M\(Q — @) + X(Qy — ) for some X € A. This contradicts the minimality of
(i,7). Hence, (4,7) = (0,0) and so y = m(2y — o) + n(Qy — ) € (21 — , Qs — ). In
conclusion, (0 —a, Qo — B)rNA = (0 —a,Qy — B), Yo, B € C*.

2.4.5 Proposition. Specig,)(A4) = {(Q)} U {(,Q = B) | B € C}.

Proof. We claim that Speciq,,(A) = {Q € Spec(A) | ; € Q and 2, € Q}. To establish
this claim, let us assume that this is not the case. That is, suppose there exists () €
Spec(q,)(A) such that 2, € Q. Since €2, is an H—eigenvector, Qs € (5, h-Q = (1),
a contradiction. Hence, we have shown that Specig,)(A) C {Q € Spec(A) | ; €
Q@ and Qs & Q}. Conversely, suppose that () € Spec(A) and 1 € @ but Qs & Q. Then

Mhey I - @ is an H—invariant prime ideal of A, which contains €); but does not contain
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Q3. The only possibility for (,.,, h - @ is the ideal (Q;). Hence, @ € Speciq,)(A).
Therefore, {Q) € Spec(A4) | € € @ and Qy & Q} C Spec(q,)(A). This confirms our
claim.

Let A: A — A/(Q) be a canonical surjection. Since A is a noetherian domain
and (€2;) is a completely prime ideal, one can also deduce that A/(€);) is a noetherian
domain. Given that Qs € Z(A), we have that A(2y) # 0 € Z(A/(€)). Therefore, the
set {A(Q2)" | i € N} is a right denominator set in A/(€;). One can therefore localize

A
A/{(€;) at this denominator set as R := W[A(Qz)‘l]. Given that @ € Specig,)(4),
1
Q

the map ¢ : Q@ — m[A(Qg)_l] is an increasing bijection from Specig,)(A) onto
Spec(R).

Since (€2y) is an H—invariant prime ideal, A(£2y) is an H —eigenvector, and H acts
on A, we have that H also acts on R. Let us verify that R is H—simple before we
describe Spec(R). Now, ¢ still induces a bijection between the set of those H —invariant
prime ideals of Spec(q,)(A) and the set of H—invariant prime ideals of Spec(R). The set
of H—invariant prime ideals of A that contains €; but does not contain Q5 is {(€2)},
implying that (0)g is the only H—invariant prime ideal of R (note, 2, = 0 in R).
Every H—invariant proper ideal of R is contained in an H—invariant prime ideal of R
[17, §3.1(v)]. Therefore, (0)g is the only unique H—invariant proper ideal of R. This
confirms that R is H—simple.

We proceed to describe the Spec(R) and Speciq,,(A). We deduce from [7, Exercise
[1.3.A] that the action of H on R is rational. This rational action coupled with R being
H—simple implies that the extension and contraction maps provide a mutually inverse
bijection between Spec(R) and Spec(Z(R)) [7, Corollary 11.3.9]. One can deduce that
Z(A/{1)) = C[A(Q)], and so Z(R) = C[A(Q)*!]. Since C is algebraically closed,
we have that Spec(Z(R)) = {(0)zr)} U {{A(Q2) — B)zr) | 5 € C*}. We now recover
Spec(R) from Spec(Z(R)) as follows: Spec(R) = {(0)r} U {{A(Q22) — B)r | B € C*},
since there is a mutually inverse bijection between Spec(R) and Spec(Z(R)), and also

R is H—simple. Moreover, since ¢ is an increasing bijection from Spec(q,)(A) onto
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Spec(R), we have that Specia,)(4) = {6~ ((0)r)} U {67 ({(A(Q) — B)r) | B € T}
Naturally, ¢7'((0)r) = (1). We now show that ¢~ ((A(Q2) = B)r) = (1, 22— ).
Fix 8 € C*. Observe that (2,0 — 8) C ¢ ((A(Q2) — B)r). To show the reverse
inclusion, let z € ¢~ 1((A(Q2) — B)r). Then A(z) € (A(Qs) — B)x. This implies that
A(z) = d(A(9s) — B), where d € R. Also, d € R implies that there exists ¢ > 0 and a €
A/(Q) such that d = aA(Q) 7. As a result, A(z) = d(A(Q)— B) = aA () (A(Qy) —
B). Hence, A(x)A(:)" = a(A(€s) — ). Choose ¢t minimum such that the equality
holds. If ¢ > 0, then A(z)A(€:)" = aA(Q) — aB. One can therefore write a =

A () (@ — A@)A(Q2)'7"). Set b := 5(a — A()A(Q)""), then a = bA(Qy). This

E

implies that A(z)A(22)" = a(A(Q22) — ) = bA(Q2)(A(Q2) — ) which further implies

that A(x)A(Qs)" "1 = b(A(Q2) — ). This contradicts the minimality of ¢, and so ¢ = 0.

Therefore, A(x) = a(A(Q2) — B) € (A(Q2) — ) g. Consequently, z € (0,9 — 5) and
C (Y

o (A (Q2) — B)r) C (1,92 — ). [ |

2.4.6 Proposition. Speciq,)(A4) = {{2)} U {(1 — a, ) | € C*}.

Proof. We claim that Speciq,)(A) = {Q € Spec(A) | 2 € Q and €2, € Q}. To establish
this claim, let us assume that this is not the case. That is, suppose there exists () €
Spec(q,)(A) such that ; € Q. Since €2, is an H—eigenvector, Oy € (), h-Q = (Q2),
a contradiction. Hence, we have shown that Spec(,)(A) € {Q € Spec(4) | O &
@ and Qy € Q}. Conversely, suppose that @) € Spec(A) and 5 € @ but Q; & @, then
hey I - Q is an H—invariant prime ideal of A, which contains €2, but does not contain
Q. The only possibility for (,.,, h - @ is the ideal (Q). Hence, @ € Speciq,)(A).
Therefore, {Q) € Spec(A4) | & & @ and Q, € Q} C Spec(q,)(A). This confirms our
claim.

Let A: A — A/(Qy) be a canonical surjection. Since A is a noetherian domain
and (€2;) is a completely prime ideal, one can also deduce that A/();) is a noetherian
domain. Given that ; € Z(A), we have A(21) € Z(A/(Qs)). It follows that the set
{A(©)" | i € N} is a right denominator set in A/{€2). One can therefore localize

A

A/{Q) as R = W[A(Ql)‘l]. Given @@ € Specig,)(A), we have a map ¢ : Q —
2
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0 >[A(Ql)*1] which is an increasing bijection from Specq,)(A) onto Spec(R).
2

Similar to the proof of Proposition 2.4.5, one can show that R is H—simple and that
the extension and contraction maps provide a mutually inverse bijection between Spec(R)

and Spec(Z(R)) [7, Corollary 11.3.9]. We also have that Z(A/(€s)) = C[A()], and
so Z(R) = C[A(£4)*!]. Since C is algebraically closed, we have that Spec(Z(R))

{(0) zm } U{(A(€1) — @) z(r) | « € C*}. One can recover Spec(R) from Spec(Z(R)) as
follows: Spec(R) = {(0)r} U {(A(Q1) — a)r | @ € C*}, since there is a mutual inverse
bijection between Spec(R) and Spec(Z(R)), and also R is H—simple. Moreover, since ¢
is an increasing bijection between Spec,)(A) and Spec(R), we have that Spec(q,)(A) =
{671 ((0)r)} U {o7 ((A() — a)r) | € C*}.

Naturally, 971 ({0)g) = (€23). We now show that ¢~ ((A(Q) —a)r) = () —a, Q).
Fix @ € C*. Observe that (2 — a, ) C ¢ ((A(2;) — a)g). To show the reverse
inclusion, let x € ¢~1({A(Q) — a)r). Then, A(z) € (A(Q;) — a)g. Let d € R, then
there exists t > 0 and a € A/(Qs) such that d = aA(Q)~". Given that A(z) €
(A(€1) — a)g, it follows that A(z) = d(A(Q1) — «) = aA(21) " (A(Q1) — @) which
further implies that A(x)A(Q1)" = a(A(2;) — «). Choose ¢ minimum such that the
equality holds. Suppose that ¢ > 0, then A(z)A(Q4)" = aA(21) — ac. We have that a =
LA()(a— A(x)A(Q)D). Set b= L(a— A(z)A()"1). It follows that a = bA(€),
with b € A/(Qy). This implies that A(z)A()" = a(A(21) — ) = bA(21)(A(Q4) — «),
hence A(x)A(2;)1 = b(A(Q1) — «). This contradicts the minimality of ¢, and so t = 0.
Therefore, A(z) = a(A(21) — «) belongs to the ideal of A/(2;) generated by A(€2;) —a.
Consequently, z € (Q; — a, Q) and ¢~ ({(A(Q1) — a)r) C (21 — a, Q). [ ]

2.4.7 Corollary. Let (a, 3) € C*\ {(0,0)}. The prime ideal () — ,Qy — 3) of A is
primitive.
Proof. Since Prim;(A) are just the maximal prime ideals in Spec;(A) (Lemma 1.6.6), it

follows that (€2, —«, Qs — 3) is a primitive ideal of A for each (a, 8) € C*\ {(0,0)}. W

2.4.8 Proposition. Let (o, 3) € C?\ {(0,0)}. The prime ideal (Q; — a, Qs — 3) of A

is maximal.
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Proof. Let (o, ) € C?\ {(0,0)}. Suppose that there exists a maximal ideal I of A
such that (0 — «,Qy — B) & I & A. Let J be the H—invariant prime ideal in A
such that I € Spec;(A). By Propositions 2.4.4, 2.4.5 and 2.4.6, J cannot be (0), (€2)
or (€y), since either of these will lead to a contradiction. Every non-zero H—invariant
prime ideal contains €2 only or Qy only or both. Since J # (€4), (€25), it implies that J
contains both €2; and 5. Moreover, since J C I, it implies that 21,y € I. Given that
(Q) —a,Qy — B) C I, we have that Q1 — «, Qy — 5 € I. It follows that «, 5 € I, hence

I = A, a contradiction! This confirms that (€2; —«, Q3 — ) is a maximal ideal in A. W

2.4.9 Remark. Since the algebra A is catenary [19, Theorem 4.8], one can prove that
the height of (0 — a,Qy — ) is 2 for all (o, 8) € C*\ {(0,0)} by constructing chains
of prime ideals of (2; — «, Q5 — 3). Nonetheless, we use a different approach to prove
the result in Section 3.1. We do this because the discussion in that section (i.e. Section

3.1) will be useful in the subsequent chapters.



Chapter 3

Simple quotients of U, (G5) and their

relation to the second Weyl algebra

Now that we have found some family of maximal ideals of A = U (G5), we are going to
study the main algebra of interest in this thesis, namely, the corresponding simple quo-
tients. In view of Dixmier's theorem, we consider these simple quotients as deformations
of (a quadratic extension of) the second Weyl algebra A3(C), and so we compare their
properties with some known properties of the Weyl algebras. Recall from Proposition
2.4.8 that Q; —« and Q2 — 3, where (a, 8) € C*\ {(0,0)}, generate a maximal ideal of

A. As a result, the corresponding quotient

A
<Ql —a, () —6)

Aa,ﬂ =

is a simple noetherian domain. Denote the canonical images of E; in A, 3 by e; :=

E;+{(Q —a,Qy— ) forall 1 <i <6. The algebra A, s satisfies the following relations:

56
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exe1 = q ejey ese1 = q tejes — (g + ¢+ q_3)€2
ezea = q Sesey ese; = ereq + (1 — QQ)G:QJ,
eseg = q Pegey — %ei ese3 = q ezey
¢+ ¢ +1
ese; = geres — (14 (]2)63 esey = eges + (1 — q2)e§

€5€3 = q_1€365 - (q + q_1 + q_3)64 e5ey = q_364e5

ese1 = qereg — ¢ €5 ecer = q°eses + (¢ + ¢* — ea + (¢° — qV)eses
4 2
_ 24 2 _ -3 ¢ —2¢+1 4
eges = eseq + (1 — q°)es e6es = ¢ 6466——q4+q2+1 e:

-3
€665 — ¢ €5C,

and

eieses + aerey + aeges +d'es = a, (3.0.1)

eseqes + begel 4 beseg + Veaer + ceseqes + d'ed = B. (3.0.2)

The following additional relations of A, g in the lemma below will be very helpful in this
chapter, particularly, in Section 3.2. Note, we put constant coefficients of monomials in
a square bracket | | in order to distinguish them from monomials easily. These constants

are defined in Appendix C.

3.0.1 Lemma.

(1) e% =cia + [co]eaes + [co]eres + [c3)ereses.

(2) 6421 =b1 5 + [bo]eseses + [b3]€2€g + [bsc]eses + [bs|eseseses + [blereseses
+ [bralereses + [bsleresezes + [boleeseses + [bioleleseres + [biiale:

+ [blg]elegeg + [b13]6364€5 + [1914]61646?).
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(3) e3eq =[crales + [ ca)eaeqes + [eabsa]ereses + [bis|ereseses + [Bbica)er
+ [cobslereses + [cabs]ereseseses + [cabgeieseses + [cabraleleses
+ [eobr1alered + [eabia]eteses + [cobs]edeseies + [cabo)eteseses

+ [Cgb10]6?63€§66 + [62b14}€%64€§ + [Cgb2]61€2€466.

(4) eze? =[Bby]es + [k1]eseseses + [kalesesel + [ksa?]es + [kaaleseses + [ksaleieses
+ [kgalereseses + [kr|eseies + [ksBleres + [koleieseseses + [kio]eteseses
+ [knaleses + [kipaleleses + [kislefeseseses + [kuBletes + [brialeses
+ [kis]eleseqseg + [kigleteseies + [kiraleleses + [kislefeseseses + [kigleleseses
+ [kao)eteseses + [karale?eles + [kos]etesees + [kosledesedes + [kas]edeqeieg
+ [kosleres + [kogleleaes + [kor]efeses + [kosleaeser + [kaglereseses

+ [ksolereses + [ksi]eresesedes.

The rest of the chapter is organized as follows. In Section 3.1, we prove that the
GKdim of A, 3 is 4 and consequently prove that the height of the maximal ideal (€2, —
a,€y — ) is 2 as expected. Section 3.2 focuses on describing a linear basis of A, s.
Ultimately, we show in Section 3.3 that at appropriate choices of o and 3, the algebra
A, s is a quadratic extension of the second Weyl algebra A5(C) at ¢ = 1. In the next

chapter, we study the derivations of A, 3.

3.1 Gelfand-Kirillov dimension of A, 3

Let o, B # 0. Recall from Section 2.2 that R; = C,u [T, - - T is the quantum torus
associated to the quantum affine space A = A®. Also, Oy = T\ 7575 and Qy = ToT, Tk
in A. It follows from [8, Theorem 5.4.1] that there exists an Ore set S, 5 in A, 3 such

that AQ7BS;15 = R1/<T1T3T5 — Q, T2T4T6 - 6)
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Now, set
Ry
(T3T5 — o, Ty T — B)

:Qfang =

Let t; .= T; + (TAT3T5 — a, T, Ty T — [3) denote the canonical images of the generators
T; of Ry in @, 3. The algebra <7, s is a quantum torus generated by ', - -, #5' subject

to the following relations:

tit; = ¢"itjt; t = at; 3! ty = Btg 't

forall 1 <i,5 <6 and p;; € M (the skew-symmetric matrix in Section 2.2). Observe
that o7, 5 = Cyn[t3', 17!, 15, t5"], where the skew-symmetric matrix N can easily be

deduced from M as follows:

0 3 1 0

-3 0 3 3
N =

-1 -3 0 3

0 -3 -3 0

Secondly, suppose that a = 0 and 5 # 0.
Then, AgSos = hp = Ri/(Ty, ToTyTs — ). The algebra 4 is generated by

t;tl, e ,téﬂ subject to the relations
tit; = q"it;t; t1 =0 ty = Btg 't

forall 1 <4,j < 6and u;; € M. We also have that o 5 = C~[t5, 157, 5", t5']. Finally,
when a # 0 and 8 = 0, then one can also verify that @, = Con[t5, t5!, 5, t5].
As a result, we have that A, 35, = oop = Cun[ty' ¢ 15", t5']. With a slight
abuse of notation, we write A, S, 5 = o = Cyn [t i 12t for all (o, B) €
C?\{(0,0)}. It follows from [18, Theorem 6.3] that GKdim(A, 3) = GKdim(AaﬁS;lﬁ) =
GKdim(«, 3) = 4. Since Tauvel's height formula holds in A = Uf(Gy) (Chapter 2),
we have that GKdim(A) = ht({Q; — «,Q — () + GKdim(A, ). We already know
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from Chapter 2 that the GKdim(A) = 6. Therefore, ht((2; — o, Qs — 3)) = 2 for all
(, 8) € €2\ {(0,0)}.

3.2 Linear basis for A, g

Set Ag := A/(Qy — (), where 3 € C. Now, denote the canonical images of E; by
@ = E; 4 (Q — B) in Ag. Clearly, Ay = Ag/{Q — ). As a result, one can identify
A, p with Ag/(@l — a). Moreover, the algebra A satisfies the relations of A = U (Gs)

and
~ o~ o~ ~~3 ~3 ~ ~2 ~2 ~ o~ o~ ~2
Ex€16g + beses” + bes eg + b ez es” + desenes +d'es” = . (3.2.1)

From Propositions 2.4.4 and 2.4.6, one can conclude that (Q; — /) is a completely prime
ideal (since it is a prime ideal) of A for all 3 € C. Hence, similar to A, s, the algebra Ag
is a noetherian domain.

We are now going to find a linear basis for A, s, where (o, 3) € C*\ {(0,0)}. Since
Aqp is identified with A/(€ — o), we will first and foremost find a basis for Ag, and
then proceed to find a basis for A, 3. Note, the relations in Lemma A.1.4 are also valid

in Ag and A, g, and are going to be very useful in this section.

AAAAAAA

a C—basis of Ags.

Proof. Since the family (I1%_, Es); <y is a PBW-basis of A over C, it follows that the
family (IT%_, &, );.c is a spanning set of Ap over C. We want to show that & spans Ag.
We do this by showing that TIS_, &, can be written as a finite linear combination of the
elements of & for all 71,--- ,76 € N by an induction on 4. The result is obvious when

i4 = 0 or 1. For iy > 1, assume that

6 ~is ~i~j~k~E~l~m
IT,_,es° = E (¢ )€1 €2°€3 €4°€5 €6,

(Ew)el
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where v := (4,7, k,l,m) € N° and a(¢p) are all complex numbers. Note, I is a finite
subset of {0, 1} x N°. It follows from the commutation relations of Az (see Lemma A.1.4)

that

11 Nl i3 S+l ~is ~ig e 6 ~Nis o~ ° . 11 N1 2~13 N1y 15+3
ertexe3es e e’ = ¢ 65 es — ¢ dafigler" €2 ez ey
From the inductive hypothesis, &;"6;"2¢3 %, &5 e ! Span(S). Hence, we pro-
ceed to show that TI6_,&," ¢, is also in the span of &. From the inductive hypothesis, we

have

PPN ~k~E D~

6 . ~i~j I ~m ~
IT;_es°eq = E A(ew)€1 €27€3 €475 € €4.
(Ew)el

Using the commutation relations in Lemma A.1.4, we have that

Hs 1€s ey = Z q° a(sv)€1 62]6A3 eA4£ és eAﬁm
(Ew)el

Sk Ealt3am-1
+ Z q*dy[m gu€162 e3 64£€5jL e
(Ew)el
All the terms in the above expression belong to the span of & except é1'6y’ 63"y 6s é™

From (3.2.1), we have that
2 h o~~~ ~ ~3 A3~ gp ~2~2 g o~~~
es” = Poeseaes + bPoeses” + bBues e + b Boesz es” + ¢ Boeseats — B, (3.2.2)

where By = —1/d'. Substituting (3.2.2) into &'&/é3"6%6 6™, one can easily verify
that &6y 6766l e e Span(&). Therefore, 61" €363 6,63 €5" can be written
as a finite linear combination of the elements of G over C for all 7y, --- ,ig € N. By the
principle of mathematical induction, & is a spanning set of Az over C.

We further show that & is a linearly independent set. Suppose that

~Ni~j~k~E~l~m
E agw)€1 €2 €3 €4°¢e5 6 = 0.
(Ev)el
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Since Ag = A/(Qs — [3), it implies that

S e BiEJESESELEY = (O — B,
(Ew)el

with v € A. Write v = Z b(iv...,n)EiEgEgEiEg”Eg, where J is a finite subset of
(i, n)ed
N° and b;.... ) are all complex numbers. It follows that

> aewBiESESESELED = Y b E{EJES(Qy — B)ELENEY. (3.2.3)
(&w)erl (3, yn)eJ

Before we continue the proof, the following needs to be noted.

& Let (7,7 K I',m' ), (i,5,k,l,m,n) € N°. We say that (i,7,k,l,m,n) <4
(@, 7 K Um0y if [l <U]or[l=10andi<i]or[l=10, i=1and j < j]or
l=U,i=7,j=7andk<K|or[l=1,i=1, j=7, k=Fk and m <m/|
or[l=10U,i=4, =7, k=kK, m=m'and n <n']. Note, the purpose of the

square bracket [ ] is to differentiate the options.

From Section 2.2, we have that Qs = EyE Es+bEyE2 +DESEg+V E2E2 + EsEyEs +
d'E} in A= US(Gs). Now,

> o BB ESEIEES = ) | b w EVELES (0 — B)EL B By

(Ew)erl (i, m)€d
= d'bi... my B E3EXEY?ENER + LT,
(3, ,m)eJ

where LT, contains lower order terms with respect to <4 (as in &). Moreover, LT,
vanishes when b; ... ,y = 0 for all (i,---,n) € J (one can easily confirm this by fully
expanding the right hand side of (3.2.3)).

Now, suppose that there exists (7,7, k,[,m,n) € J such that b ;i 1mn) 7 0.
Let (¢, 4',k',I',m',n’) be the greatest element of J with respect to <, (defined in &
above) such that by gy # 0. Note, the family (EiEJESELENED) .. mens

is a basis of A. Since LT., contains lower order terms, identifying the coefficients
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of B Ej E¥ EY*?E7"EZ in the above equality, we have that d'bu ..y = 0. Since
bk irmrmry 7 0, it follows that @ = ¢*2/(¢® — 1) = 0, a contradiction (see Appendix
C for the expression of d'). As a result, b j 1mn) = 0 for all (4,7, k,1,m,n) € J. There-
fore, 3 ¢ wyes Gew BB ES ESELED = 0. Since (EjEJESEYETEL) ;... myeno is a basis
of A, it follows that a ) = 0 for all (£, v) € I. In conclusion, & is a linearly independent

set and hence forms a basis of Az as desired. |

3.2.2 Proposition. Let (o, 3) € C2\ {(0,0)}. The set B = {eeles eebel | i,5,k,1 €
N and €1,¢e; € {0,1}} is a C—basis of A, g.

Proof. Since the set & = {ailé\giz’ggi‘"’é}f@%%éﬁﬁ | i1,19,13,15,16 € Nand £ = 0,1} is a
C—basis of Ag (Proposition 3.2.1), and A, g is identified with A/(€ — @), it follows

1

that (el'e2elieleleio);, .. isen, with € € {0,1}, is a spanning set of A, s over C. We
want to show that B8 spans A, s by showing that €% ei2efe5eel® can be written as a finite
linear combination of the elements of B over C for all iy, 15, 13,15,76 € N and £ = 0, 1.

By Proposition 3.2.1, it is sufficient to do this by an induction on z3. The result is obvious

when i3 = 0 or 1. For i3 > 1, suppose that

i1 02 43 € Jis ie __ i J €1 € kI
€1 €3 €3 €465 C5 = § A(e1,e2,0)€162€3 €4 €5C4,
(6176272)61

where v = (i, j,k,1) € N*, Iis a finite subset of {0,1}* x N*, and (a(e, es.0)) (c1,co0)el 1S

a family of complex numbers. Using the commutation relations in A, g (Lemma A.1.4),

we have that:

i1 i2 i3+l & is ig __ e i1 iz i3 & i5 i ° s 1 t1—1 14+is iz & is i
ellefes ejeled = ¢*eseleredeier e — q°dafir)e] ey edeies e

From the inductive hypothesis, e “'el*Zelielelse’ € Span(B) for all iy > 0 (note:

dy[0] = 0). As a result, we proceed to show that egelleZei?eSe el is also in the span of

B. It follows from the inductive hypothesis that
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i1 i i3 & i5 ig __ E: €1 €2 1 1
(e1,e2,0)€T
_ e1+1 _ex kI
= E : le,e2,0 )616263 €4 €5€¢
(e1,e2,0)€T
Z 1 147 e1 e k1
+ E - dali]age et ey e e es e,
(e1,e2,v)€l

Clearly, the monomial el te;™e5 e2ekel belongs to the span of B for all (er, ey, v) € 1

(with i > 0). Again, the monomial eieleS T eelel belongs to the span of B for all

(€1,€2,v) € I; with (e1,e2) = (0,0),(0,1). For (e1,€2) = (1,0), (1,1); we must show
that e eleZefel and eleledeselel belong to the span of B. From Lemma 3.0.1, one can

write el eleielel and eleleleselel as finite linear combinations of the elements of B over

C. Hence, eiclelelel and eieledeselel belong to the span of B for all (¢, €,v) € I;
with (e1,€3) = (1,0),(1,1). We have therefore established that eselle2eleSelel
Span(B). Consequently, each e''e2eii+!eSeisel® belongs to the span of B. By the principle
of mathematical induction, B is a spanning set of A, 3 over C as expected.

Finally, we show that B is a linearly independent set. Suppose that

E : €1 €2 kI
a(61’627 )616263 64 6566 — 0

(e1,e2,0)€l

In Ag, we have that

~k ~
E e )@ B GGG = () — o)y,

(e1,e2,0)€l

with v € Ag. One can write v in terms of the basis & of As (Proposition 3.2.1) as

vV = E bwel 62]63 €465 €g + g Cyw€1 62]63 €5 €g

weJq weJ2
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where b,, and ¢,, are all complex numbers and w := (i, j, k,[,m). Hence,

E Q(e1,e0,0)€1 €2 e3'es” 65 66 5 b €1 62 63 (91 —Oé)€4€5 €6
(e1,e2,0)€T we.Jp
~i~j~k ﬁ ~l~m
+ cwli'ér’e3" () — a)és ég

we S

Note, O = 61636 + aéiéy + aboés + d'63%. Using (3.2.2) and the relation cfe; =

q *eiel 4 dylk]esel™ (see Lemma A.1.4), one can verify that the above equality can be

written in terms of the basis of Az (Propositions 3.2.1) as

~jo~ep A~ ~k+2 ~ ~l~m
E a(el,% )61 62 €3 64 65 66 E b CL 61 62 63 €4€5 €g

(e1,e2,v)€l weJq

§ : i+1 ~ k+3 ~l ~m+1
+ q b abﬂoel 62j63 €5 €g
weJy

~id ko~~~
+ g q.Cga(ﬁZ ey’ 63 €165 €5
weJ2

i i kD ]~
+ E coad&'&y e P a' e + 1, (3.2.4)

weJz

where T is defined on the next page.
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T = g ¢Ch& e G e s e + g *bydsk)& & e e e

weJy weJ1
. ~itl ~j~k~l~m . ~itl ~14j ~ kA~ L ~mtl

- E q*byafBfoer " ex’é3 es €q + E ¢*buaboei e E e 6

weJy weJy

il Gl k3~ PUTE P YT PYIT SN

+ g q'bwabﬁoefr €2j+ €3 €5 + €6m + E q'byab'ﬁoelﬁ 62363 + €x + €6m

weJy weJ1

i+1 ~j7 ~k+1 AAl—i—l ~i~1+j~k—1~l~m

+ E q"bwac foér" e ey e E q*buwaBfodz[kler" er e 'es'es

weJq weJy

° ~i~j+2 ~k—1~ ~l~m+1 . A'A]+2 ~k—1~14+3 ~m
+ E q*byafodslk]er’ ey’ 3" ey ép + q*bywabfoda[k|é1" e’ T e ey e

weJq weJy
k+2AlAm+1 . ]+1Ak+1/\l+2/\m
+ E q°byabBods[k]ér’ €3 + g q*bywab' Bodsy k)& e3’ €5 €g
weJq weJy
/ sigitlgkg sl o fl~k~~lfl~m
+ E q*bpac Boda[kléy ey’ e3" exes ™y E q*b,aéy ey gk e e
weJy weJy
~i~jok~~l~m o ~itl~j~ktl~ltl~m
- E :bﬂﬂel € €3 €465 €6 + E q cw€1 €€z €5 €g
weJy weJ2
. i ~14j~k I+l ~m R i ~jtl ~k—1~ ~l~m
+ E ¢*cpdalkér’es ez es e + ¢*cpadso[klér e’ e3" eges ég
weJ2 weJ2
i~~~ A~ NP PPN PN
+ E q’cgaelzef eyie tleg™ Cpéy” ‘eletetle
weJo weJo

Before we continue the proof, the following point needs to be noted.

& Let (U,0,93,95,9), (S1,52,53,%5,%) € N°. We say that (<1,¢2,93,5,5) <3
(1, V9,03, 05,96) if [U5 > ¢3] or [U3 = g3 and ¥1 > ] or [¥3 =3, ¥ = ¢ and
192 > §2] or [193 = G3, 7.91 = q1, 192 = Q2 and 195 > §5} or [793 = q3, 191 = q1, 192 =

G, U5 = g5 and Y > ).

Observe that T contains lower order terms with respect to <3 (defined in & above) in
each monomial type (note, there are two different types of monomials in the basis of Ag:
one with é; and the other without €;). Now, suppose that there exists (i, j, k,[,m) € J;
and (7,7,k,l,m) € J such that by jkim) 7 0 and ¢ jkim) 7# 0. Let (v1,v2,v3, 05, v6)

and (wq, we, w3, ws, we) be the greatest elements of J; and .J, respectively with re-
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spect to <3 such that b(y, vs,05,05,06) ANd Cluy ws,ws,ws,ws) are non-zero. Since & is a
linear basis for Ag, and T contains lower order terms with respect to <3, we have the
following: if w3 — v3 < 2, then identifying the coefficients of & " & 26" 26,65 65"
n (3.2.4), we have that a'be, vvsws05) = 0. BUt Dio; v vsws0s) 7 0, hence @’ =
¢®/(¢> — 1) = 0, a contradiction (see Appendix C for the expression of a’). Finally,

~ W A~ 2 ~wWr ~
w1 62102 63w3+ 651115 €6w6

if w3 — vz > 2, then identifying the coefficient of ¢ , we have
that a'ciuw, wswswsws) = 0. BUt Cluy wo,wsws,w) 7 0, hence @’ = 0, a contradiction!
This implies that either all b ;i m) or all cgjkim) are zero. Without loss of gen-
erality, suppose that there exists (i,7,k,l,m) € Jo such that c( jm) is not zero.
Then, b(;jkim) are all zero. Let (wi,ws, ws, ws, ws) be the greatest element of J,
such that ¢, ws,wswswe) 7 0- ldentifying the coefficients of ey ey 2 Ey T E W g W iy
the above equality, we have that a'c(uw, wswswsws) = 0- SINCE Clwy wawsws,ws) 7 0

follows that @’ = 0, a contradiction! We can therefore conclude that b jxm) and

Cijk1,m) are all zero. Consequently, Z(SMM)E[ A(er e2,0)€1 ieyeae ekl = 0. Since

(e &% e B6,0e5 e )(€,i1, ig)e{0,1} x5 IS @ basis of Ag, it implies that a(, ¢, ,) = 0 for

all (e1,€9,v) € I. Therefore, B is a linearly independent set. [ |

3.2.3 Corollary. Let v = (i, 7, k,l) € N? x Z?, I represent a finite subset of {0,1} x

N? x Z? and (a(e; ep0)) (e1,e2,0)c1 b€ @ family of complex numbers. If

€1 I _
E ey ea, v)€16263 64 t5t

(e1,e2,0)€T
then a(e, e, ) = 0 for all (€1, €2,v) € 1.

Proof. From Proposition 3.2.2, the result is obvious when k,I > 0. When k (resp. [)
is negative, then one can multiply the above equality enough times (on the right) by 5
(resp. tg) to kill all the negative powers and then apply Proposition 3.2.2 to complete

the proof. [

3.2.4 Remark. Given the basis of A, g, we have computed the group of units of A, g,

however, we do not include the details in this thesis due to the voluminous computations
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involved. We only summarize our findings below. Set

hy = eses +aeq and hy = (7% —q7")ezes — (¢" — 2¢° +1)/(¢" + ¢* + 1)es.

3.2.5 Theorem. Let (o, 3) € C*\ {(0,0)} and U(A, ) denote the group of units of
Ap . We have that:

(

{M | NeCr ieZ} ifa=0
U(Aap) = S{I\R, | AN eCr ieZ) iff=0

C* otherwise.

\

3.3 A,s as a ¢g-deformation of a quadratic extension
of AQ(C)

We are now ready to establish that A, g is a g-deformation of a quadratic extension of

Ay(C). Recall that A5(C) is generated by x1, 2,3 and y, subject to the relations:

Y1Y2 = Yol Toly1 = Y102 T1To = Tl Ty — iy =1
n1Y2 = Y291 T1Y2 = Y21 TaY1 = Y122 Toys — Yoo = 1.

Given the relations of A, g at the onset of this chapter, we have that A; 1 satisfies
"9(a®-1)

the following relations:

ese1 = q Sejen eser =q teres — (q+ g+ q ey
e3en = q Seges eqe; = ereq + (1 — q2)€§
ese9 = q Segey — we% ese3 = q Sezey
¢t +¢* 41
eser = qeres — (1 + q2)63 esey = eges + (1 — q2)e§

eses =q 'eses — (q+q '+ q %)es eses = q eqes
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ece1 = qeres — qes ees = ¢ ezeq + (C]4 +¢° — Les + (C]Q — q4)€365
4 2
_ ¢ —2¢"+1 4
ez = eseq + (1 — g?)e? ey = q Seqeq — —————
6€3 s€6 1 ( q-)e; 6€4 = ¢ €4Cg q4+q2+15

-3
€6€5 = €56,

and

(% —esezes + (¢ + 14+ g Heres + (¢ + 1+ q ?)eses — g'es = ¢ % — 1,

27 —q 7 —q 207" —q 7 —q
(¢° — 1)egeqes + Ar il eses + Aril eseg
(@ -V oo P@=1 L ne L
(" +@+12 P70 el Y

Note, we have made substitutions for a, a’, b, t/, ¢ and d’ (see Appendix C).

Set C' := C[z*!]. One can define a C[(2* + 2% + 1)!|—algebra A, generated by

e1,- -+, € subject to the following relations:
eger = 2 ere eser =2 leres — (2427 4+ 27%)ey
esey = 2 Cezes eser = ereq + (1 — 2%)e;
5 222241, 3
€460 = Z €264 — —F———— € €463 = 2 €36y
42418

_ 2 _ 2\ 2

ese; = zejes — (14 2%)e3 esey = eges + (1 — 27)es

eses = 2 teses — (2 + 271+ 27y eseq = 2 Peqes

egel = Zoejeg — 2es egey = 2ege + (21 4+ 2% — Deg + (22 — 2%)eses
4 2
eges = ezeg + (1 — 22)es eges = 2 Seqeq — ﬂeg
° A+22417°

eges = 2 Seseq,

(272 — 1Dereses + (22 + 14+ 27 2)eres + (22 + 14+ 27 %)eges — 22 =272 — 1, and
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(25— 1) +2z_1—z_3—z 3+22_1—z_3—23
VAN €9€4€¢ (1@ €q€q
2442241 > A2l 3
(26 - 1)(213 - ZH) 2 2 29(26 —1) 120 1
4 2 5 €365 — 1 3, ;63646 +2TE = .
(24 +22+1) 244+ 22+1 9
Observe that A; (i.e. when z = 1) satisfies the following relations:
€2€1 — €1€9 €361 — €e1€3 — 362 €3€9 — €9€3
€4€1 = €1€4 €4€9 = €2€4 €4€3 = €3€4
ese; = ejes — 2€3 €569 = €9€5 e5€3 = €365 — 3€4
€564 = €465 €ege1 = €16 — €5 €gta = €266 T+ €4
€6€3 = €366 €6€4 = €466 €6€5 = €566
2 1 . 2 _
e;—1/9=0 es—3ejeq — 3eges = 0.

3.3.1 Lemma. ¢4 € Z(A,) and it is also invertible.

Proof. Since eqe; = e;eq for all 1 < ¢ < 6, we have that e, € Z(A;). Again, from
e2 —1/9 = 0, we have that e4(9e4) = (9e4)eq = 1. Hence e, is invertible with e =

964. |

Given thate; ' = 9¢e, and e; € Z(A,), it follows from the relation e2—3¢ e, —3ese5 =
0 thate; = 36%64 —9esgeqes. Therefore, Ay can be generated by only es, - - - | eg. All these

generators commute except

ey = €96 + €4 and ese; = ez€5 — 3€y4.

Since ey is invertible, one can also verify that 9esey, 3esey, €4, €5 and eg generate Aj.
Let R be an algebra generated by fs, f3, f4, [5, f6 subject to the following defining

relations:
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fsf2 = fafs fafa = fafa fafs = fsfa
fsf2 = fafs fsfa= fafs fofs = fsfe
fofa = fafs fofs = fsfs fi=1/9
fef2 = fafs +1 fsfs=fafs = 1.

3.3.2 Proposition. R = A;.

Proof. One can define a homomorphism ¢ : R — A; such that

d(f2) = 9ezeq B(f3) = 3esey (f1) = eq (fs) = es d(fs) = €6

Recall, €2 = 1/9. One can confirm that ¢ is indeed a homomorphism by verifying that
it is compatible with the relations of R. We check this on the relation fsfo — fofs = 1
and f3fs — fs5f3s = 1, and leave the remaining ones for the reader to verify. We do
that as follows: ¢(fs)d(f2) — &(f2)d(fs) = 9eseaecs — Yeseses = Yeq(eges — exeg) =
9ef = 9(1/9) = 1 as expected. Also, ¢(f3)¢(fs) — ¢(fs)B(f3) = 3eseaes — eseses =
3es(ezes — esez) = 3eq(3eq) = 9e = 9(1/9) = 1.

Conversely, one can also define a homomorphism ¢ : A; — R such that

pler) =313 f1— fofs w(e2) = fafa p(es) = 3f3fa
pled) = fu ples) = fs v(es) = fe-

We check this on the relation e% — 3ejeq — 3eses = 0, and leave the remaining ones
for the reader to verify. We do that as follows: ¢(e3)? — 3p(e1)p(es) — 3p(ez)p(es) =
(Bfafa)? = 3(3f5 fa — fafs) fa = 3fafafs = Of3f7 = Of5f2 + 3fafufs — 3fafafs = 0 as
expected.

Now, ¢ o ¢ = id4, (one can check this on the generators of A;) and p o ¢ = idg

(one can also check this on the generators of R) (note, id, means an identity map of the
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algebra ). This confirms that R & A;. |
The corollary below can easily be deduced from the above proposition.

3.3.3 Corollary. Set F := C[f4]/(f? — 1/9), we have that R = Ay(F), where Ay(F) is

the second Weyl algebra over the ring F.

3.3.4 Remark. Observe that the subalgebra B of R generated by f, f3, f5, f¢ is iso-
morphic to A3(C) and R = B|f4] = A3(C)[f4]. Therefore, R is a quadratic extension of
A3(C). Note, A; 1 is a g-deformation of A} = R = Ay(F) = Ay(C)[fu].

9(¢6-1)

A2 A 1 /NN N A = Ay(C)[f4]

79(¢8-1) Deformation

3.3.5 Remark. Given the algebra A, s, the construction in this section was done for
1

9(¢° - 1)
¢ € R*, will also work.

a=1and = . However, any a € R and (8 of the form § = , where

s
(¢°—1)



Chapter 4

Derivations of the simple quotients of

U/ (G2)

In this chapter, we compute the derivations of the algebra A, g. In finding the derivations
of A, 3, we use the theory of deleting derivations algorithm by Cauchon [8] and localization
theory to embed A, 3 into a suitable quantum torus. This is because every derivation of
the quantum torus, through the work of Osborn and Passman [40], is known to be the
sum of an inner derivation and a central/scalar derivation. Since A, s can be embedded
into a quantum torus, we extend every derivation of A, 3 to a derivation of the quantum
torus, and then restrict the derivations of the quantum torus back to a derivation of A, 3.
We conclude that every derivation of A, s is inner when o and /3 are non-zero. However,
when either a or 3 is zero, we conclude that every derivation of A, 3 is the sum of an
inner and a scalar derivation. In fact, the first Hochschild cohomology group of A, 3 is

of dimension 0 when « and (3 are non-zero and 1 when either « or 3 is zero.

4.1 Preliminaries
Let 2<j <Tand (a,3) € C*\ {(0,0)}. Set

A0 AW
P (1 —a,Qy— )’

73
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where AU) is defined in Section 2.2 and, ©; and €, are the generators of the center of
Al (Subsection 2.2.3). Recall that A = A = U (G,) (Section 2.2). It follows that

Amﬁ = A, p. For each 2 < j < 7, denote the canonical images of the generators E; ;

Q,

of AU) in Ag)ﬂ by e;; for all 1 <1 < 6. Since the data of the DDA of A, s is going to
be crucial in this section, we present them below (note, we deduce them from that of

US(Gy) in Section 2.2):

—1
€1,6 = €1 T reseg
_ —1 1 3 -2
€26 = €3 T tezeseq + uegeq + negeg
2 1
€36 = €3 + S€z€q
3 -1
es6 = €4 1+ beseg
_ h —1 —2
€15 = €1,6 T €365 1 J€4,665 ¢
2 -1 ) 2 -3
€25 = €26+ f€34€56 + PE36€a6€55 + €€16C56
_ -1
€35 = €36 T U€46C5 5
2 -1
€14 = €15 T 5€35€, 5
_ 3 -1
€24 = €25+ beg sey s
_ 1
€1,3 = €1,4 T a€24€3
li:=e12=¢€13
log i= €992 = €23 = €24
I3 :=e€32 =€33 =€34= €35
lyi=€42 =€43 =€44 = €45 = €44
ls := €59 = €53 = €54 = €55 = €56 = €5

lg := €62 = €63 = €64 = €65 = €66 — €.

Note, ¢; is also the canonical image of 7T; in Af)ﬁ foreach 1 <7 < 6. Foreach 3 < j <6,

define S; := {/\t?t;ﬁf ot i, ,ig € Nand \ € (C*} . One can observe that S; is

a multiplicative system of non-zero divisors (or regular elements) of AS)B Furthermore;
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tj,--- ,t¢ are all normal elements of Ag?g It follows from Section 1.7 that .S; is an Ore

set in Ag)ﬁ As a result, one can localize Ag)ﬁ at S; as follows:
R: = A(j) g1
7T TtaBg

Let 3 < j <6, and set X; := {t} | k € N}. By [8, Theorem 3.2.1], ¥; is an Ore set in

both Afj)ﬁ and Ag‘gl). Consequently,
() =1 _ AU+ g1
Similar to (2.2.1), we have that
Rj =R 1%, (4.1.1)

for all 2 < j < 6. By convention, R; := A, g. We also construct the following tower of

algebras in a manner similar to (2.2.2):
Ry =Aap C Re=R;X5" C Ry = ReX;' C Ry = RsY; ' C Rs. (4.1.2)

Note, Rs = AS%S;I = R,%;' is the quantum torus o7, 5 = Cyv[t3', 17, 21, 15

studied in Section 3.1.

Linear bases for R3, R, and Rs.

Let (o, 8) € C*\ {(0,0)}. We aim to find a basis of R; for each j = 3,4,5. Since

Rs = 5, the set {tit)thtl | i, 7, k,1 € Z} is a C—basis of Rs.
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For simplicity, we set

f15:6174 F11=E1,4
21 .=¢€1p5 27/1 L= E1,5
Z9 I = €35 Zy: = Ey5.

Basis for R,. Observe that

@ _ A
W = a,Qy = B)

where 0 = F\T3Ts + aTy Ty and Qy = ToTy Ty in A® (Subsection 2.2.3). Recall from
Section 3.2 that finding a basis for the algebra Ag served as a good ground for finding a
basis for A, g. In a similar manner, to find a basis for R,, we will first and foremost find

a basis for the algebra

A(4)S4_1 _ AW ST _ AWS!
’ Q=) (LTWTs—B)

where § € C*. We will denote the canonical images of E; 4 (resp. 7;) in Agl) by €4
(resp. ;) for all 1 < i < 6. Observe that t, = BtA{lﬂfl in A%)S;l. Note, when 3 = 0,

then one can easily deduce that Agl)S;l = AW S /(Ty), hence, 15 = 0.

4.1.1 Proposition. The set &, — {ﬁt}ﬁtgtzﬁ | (iv, i3, ia, i, ig) € N? x 23} is

a C—basis of Agl)Sgl, where 3 € C.

Proof. We begin by showing that &, is a spanning set for Ag)S;l. It is sufficient to do
Ky ~g ~ ks ~

this by showing that f; 1t2k2t3k3t4k4t5k5t6k6 can be written as a finite linear combination

of the elements of &, for all (ky,--- ,ks) € N3 x Z3. We do this by an induction on k.

The result is clear when ks = 0. Assume that the statement is true for ky > 0. That is,

Akl/\kQ/\kg/\k4/\k5/\k6 ’\il/\ig/\i4/\i5/\i6
Jiota 'ty Tty s te :E aifi t3 ty ts te

el
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where i = (11,13, 14,15,16) € I C N* x Z* and a; € C. It follows that

~k1 ~kot+1~k3z ~ky ~ks ~kg ° ~k1 ~ko ~k3 ~kqg ~ks ~kg\ -~
Ji ta t3 Tty ts te =gq <f1 lo tg 'ty ts5 g )tz

. A1 NG ~Gy ~dg ~Tg o~
= E q*aifi t3 ty ts te to
icl

° Ail/\ig/\’i4fl/\i5’\i671
= E q*Baifr t37ts ts s,
el

<note, ty = B%_lﬂ_l) . By the principle of mathematical induction, & is a spanning set
for Ag)&jl for all i, € N. We now prove that &, is a linearly independent set. Suppose

that
S afi GRG0
el

This implies that

> aFTPTHTETE = (9, — By,

el

for some v € AWS 1 Write v = > " b F' T T T Ti T,°, where
jed
j = (i1,i2,13, 14,15, 76) € J C N* x Z?* and b; is a family of complex numbers. Given

that Qo = 15T, T, it follows from the above equality that

Z agFlingiSTZ4T5i5Té6 _ Z qobiFlilT§2+1T§3TZ4+1T§5T61'6+1 _ ZﬁblFflT§2T§3TZ4Tg5Tﬁi6-
icl jeJ jeJ

Suppose that there exists (i1, - ,i5) € J such that b, ... ;) # 0. Let (w1, ,wg) € J
be the greatest element of J with respect to <o ' such that by, .. w,) # 0. Note,
(FP TR T Ty T T )

(i1 io)cy 1 @ basis of AWS 1 Identifying the coefficients of

FTy AT T T T we have that by, - we) = 0. This is a contradiction to

our assumption, hence b, ... ;) = 0 for all (i1,--- i) € J. This implies that

> @ TRTI TS T = 0.

il

1(i1ai27i37i47i57i6) <2 (w17w2)w3aw4aw57w6) If [w2 > ZQ] or [w2 = i27 wy > Zl} or [w2 = i27 wy =
i1, wg > i3] or --- or [w; =14y, we >tg, | =2,1,3,4,5] for all (i1,--- ,ig) € J.
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Consequently, a; = 0 for all 2 € I. Therefore, G, is a linearly independent set. |

In Ry = A(4)B 4_1, we have the following two relations: fit3ts + atats = « and
totyte = [B. This implies that fit3 = atg — aty and ty = ﬁtgltf. Putting these two

relations together, we have that
fits = atst —afts 't (4.1.3)

Note, we will usually identify Ry with ASS71/(Qy — ).

4.1.2 Proposition. The set B, = {ffltfft?t t“t t“t“’ | i1,i3 € N and iy, 15,16 € Z}

is a C—basis of Ry.

~k3 ~ky ~ks ~kg

Proof. Since (fl t3 ty ty tg is a basis of A S (Proposition

> (kl,k‘g,“' ,k6)6N2 xZ3

4.1.1), the set (ff1t§3ti4t§5t’g6) cnzxzs SPans 124 We show that B, is a spanning

(k1,k3, ke)
set of R, by showing that f{'¢53tk1¢k5¢k6 can be written as a finite linear combination of
the elements of By for all (ki, ks, --- , k¢) € N? x Z3. By Proposition 4.1.1, it is sufficient

to do this by induction on k. The result is clear when k; = 0. Assume that the statement

is true for k; > 0. That is,

st = S aufir s + Y b
1€l ZEIQ
where i = (i1,%4,15,%) € [t C N x Z* and j = (i3, i4,%5,15) € I C N x Z?. Note, a;

and b; are all complex numbers. It follows that

Pt thotge = fi (FPER ) = a i TEEE 4 b ity
1€l JEl2
Clearly, the monomial f{**'#%t55¢! € Span(B,). We have to also show that f 5t} 5t €
Span(B,) for all i3 € N and 44,15, € Z. This can easily be achieved by an induction
on i3, and the use of the relation fit5 = at; ' — afts't;". Therefore, by the principle of

mathematical induction, B, is a spanning set of R, over C.
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We prove that B, is a linearly independent set. Suppose that

D ai ity + ) bttt = 0.

1€lq 16[2

It follows that there exists v € Agl)S;l such that

Za;ﬁ“ﬂ”ﬂif’ﬂs% +) bﬁigﬂmtz%%% = (Ql = oc) v.

1€l ZEIQ

Write v = Zcéﬁ“t?gﬂmﬂ,%%m, where L = (il,ig, i4, i5,i6) eJC N2 x 73 and GRS C.
leJ

~ ~—1~—1 ~ ~ o~ ~ ~—l~—1~

Note, ty = ﬁtﬁ ty . We have that Ql = f1t3t5 + at2t5 = f1t3t5 + aﬁtG 14 t5.

Therefore,

AU ~ig ~i5 ~ig ~i3 N4 15 ~Nig ° A1+l o~z 41 ~ig ~is+1~ig
E aifi ta ts te + E bjts "ta t5 e IE Cafi ty tats te
i€l 1612 leJ

° ~i1 ~jz ~ig—1 ~is+1 ~ig—1
+Y g Bacf 0BT
leJ

’\ilf\i3/\i4/\’i5’\i6
— E OéCLfl t3 t4 t5 t6 .
leJ

Let (wy,ws,wy,ws,wg) € J be the greatest element (in the lexicographic order on

. ~ky ~ks ~kqy ~ks ~kg
N2 x Z3) of J such that ¢ 0. Since < ts ty ts t )
) (wl,wg,w4,w5,w6) ?é fl 3 4 5 6 (k17k37~~~,]§6)eN2><Z3

~witl ~w3z+1 ~wy ~ws+1 ~w

is a basis of A®S; ! it implies that the coefficients of fi  t3 =ty 15  tg . inthe

above equality can be identified as: ¢®C(w, ws,wy,ws,we) = 0. Hence, Ciuw, wswsws,ws) = 0,

implies that

SR B b R =0

S iEIg
Consequently, a; and b; are all zero. In conclusion, By is a linearly independent set. W

AB) g1

Basis for R;. We will identify Rs with A% S:1/(Qy — 8), where AP 5571 = o
1 —
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Note, the canonical images of E; ; (resp. ;) in AL will be denoted by &y (resp. 1;). We

now find a basis for Ag’)Sgl. Recall from Subsection 2.2.3 that Q0 = Z, 1315 + aZ,T5

and Qy = Z,TyTs + bT3Ts in A®) (remember, Z; := E;5 and Z, := Ey5 ). Since

2otyte + i3t = B and 211255 + aé\gtg = « in R5 and A&S)Sgl respectively, we have
1 ~ ~

the relation z5 = — (O{t5 . 2/’\1t3> in AS’)Sgl and, in Rs, we have the following two
a

relations:

1

9 = (Oét5 - thg) . (414)
a
1 _ 15} Ca 1

3 = . (Bts' = zots) = Etﬁ — %Mtg) + %z1t3t4. (4.1.5)

/\Z4 /\15

4.1.3 Proposition. The set &5 = {21 IR | (i1, 0, -+ i) € NP x ZQ} is a

C—basis of AL S, where a € C.

Proof. The proof is similar to that of Proposition 4.1.1. Hence, we will provide the proof

without many details. Assume that the statement is true for ks > 0. That is,

~ ks ~ka ~ks ~ke 13 14 15 16
Z k1 k2t3 t4 t5 tG E CLZZl 1t3 t4 t5 t6 s
icl
where i = (iy, 13,14, 15,76) € I C N°xZ*and a; € C. Giventhat 2 = — (at; — Zit3),
- a

it follows from the inductive hypothesis that

~k1 ~kot17 k3 ~ka~ks~ ~ ( ~k1 ~kq ~ks ~kg
R N T t6 ‘=¢"% (4" % 2153 ty t5 tg

. i3 N1y ~i5 i
:E q azzl oty

el
~1i3 ~1g4 ~i5—1 ~ig
= A0ty ty s L
el
A21+1 z3+1/\l4’\15 1~ig
—Z ly 15 tg
el

where (ky,- -+, ke) € N* x Z2. Hence, &5 is a spanning set of A&E’)Sgl.
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Secondly, suppose that

~ip I3 a5 e
E CLZleltg t4 t5 t6 =0.
el

Then,

Y aZPTRTATETE = () — o)y,

iel
with v € A®ST Write v = Y. b,Z ZP TP T T TR, where j = (i, is, iy, i, i) €
J C N* x Z? and bl is a family of complex numbers. Given that Q; = Z,T3T5 + aZ5T5,

it follows that

Z G§Zi1T§3Ti4T§5TgG _ Z qoblZiHrlZ;zT§3+1Ti4T5is+1Té6

il jeJ
2 11 1712 i3 g s g
jeJ

+ Z q.abl‘Z?Z;2+1T§3T14T;5+1T6i6~
jed

Let (wy, we, ws, wy, ws, we) € J be the greatest element (in the lexicographic order on
N* x Z?%) of J such that b, ws,wswewsws) 7 0. Since the family of monomials

(Z{lZ§2T§3TZ4T§5Té6)(i1 - k) ENAxZ2 is a basis of A®)S: !, the coefficients of

gt gwapustlpwamst s iy the above equality can be identified as:

q°b(wy waws wa,ws,wg) = 0. This implies that b, wo,wswi,ws,ws) = 0, @ contradiction!
Hence, b, ...is) = 0 for all (iy,--- ,ig) € J. Consequently, a(, isisisi) = O for all
(11,13,14,15,16) € 1. Therefore, G is a linearly independent set. [ |

4.1.4 Proposition. The set B5 = {z?tétf{‘t?téﬁ (.41, 14,15,76) € {0,1,2} x N? x ZQ}
is a C—basis of Rs.

Proof. Since R is identified with ASS:'/(Q — ) and &5 is a basis for A S
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(Proposition 4.1.3), we show that the spanning set zi't3tk4¢k5¢k6 of R, can be writ-
ten as a finite linear combination of the elements of Bs for all (ky, ks, - - , k) € N3 x Z2.
By Proposition 4.1.3, it is sufficient to do this by an induction on k3. The result is obvious

when k3 = 0,1 or 2. For k3 > 2, suppose that

AU = Y aep ST,
(&i)el
where I is a finite subset of {0,1,2} x N? x Z? and ae ) are all complex numbers. It

follows that

kltk3+lti4t§5t6 =q° (Zf1t§3ti4t§5t§6) ty = Z ¢°a (51)Z11t£+1t tzstw
(&i)el
Now, 211t5+1t t2t% € Span(Bs) when ¢ = 0,1. For £ = 2, one can easily verify that
20 3t545¢% € Span(Bs) by using the relation (4.1.5). Therefore, by the principle of
mathematical induction, B5 spans Rs.

We now prove that Bjs is a linearly independent set. Suppose that

D aen A R = 0.
(&p)el

Since Rj is identified with A Sz /(€ — 3), we have that

Z (¢ q) 21 't t4Z4tAE>Z5t6 <§2 - B,
(§9)el

13 14 15~

where v € A&E))Sgl. Write v = Z er R A P t6 , with j = (i1, 13,14, 15, i6) €
J C N* x Z* and b; € C. Given that Qy = £,TyTg + bT5T; in A®) and the relation

(4.1.4), one can deduce that

3
-~ o~ AN A~~—1~ 1/\/\/\/\ ~3~
Qg = th4t6 + bt33t6 = q—t4t5 1t6 — —Z1t3t4t6 + bt33t6.
a a



Section 4.1. Preliminaries 83

Therefore,

/\ /\’L4 /\25/\ 6 q. /\’Lg ~iq4+1 /\25 1A16+1
Ayt st = —b iz t t t
Z aeq2 sty ts tg Z p 1'ts ta 5 6

(§i)el JjeJ
~iq 33~ iy ~is ~ig+1
+ E q'bbizl“tg t4 t5 t6
jeJ
C] P> 1~ 13+1’\Z4+1/\15A26+1
=D hATTETT T
]EJ
~i3 ~ig ~i5 ~ig
— E Bbzl t3 t4 t5 t6 .
jeJ

Let (wy,ws,wy, ws,wg) € J be the greatest element (in the lexicographic order on

k3 ~kq~ks~
N? x Z%) of J such that b, uwg wiws,we) 7 0. Since (zl A T )
(k‘l,kg, . k‘G)ENsng
w3+1~wyg+1~ws ~we+1 .
e P P N in

is a basis of AY )55 , one can identify the coefficients of z;
the above equality as: b, ws,ws,ws,w) = 0- HeNCe, b, s wy,ws.we) = 0, @ contradiction!

Therefore, b, iy is,is.i6) = 0 for all (i1,143,14,15,i6) € J. Consequently,

Z aein’ E) ELMEE)%E(\SZG = 0.
(&a)el

It follows that a( ;) = 0 for all ({,4) € I. As a result, Bs is a linearly independent set.

4.1.5 Corollary. Let I be a finite subset of {0,1,2} x N x Z? and (a(¢))icr be a family

of complex numbers. If

D aen SR =0,
(&p)erl

then a(c ;) = 0 for all (§,4) € I

Proof. When i, > 0, then the result is obvious from the result of Proposition 4.1.4. For
iy < 0, multiply both sides of the equality (on the right) enough times by ¢, to kill all

the negative powers of 4, and then apply Proposition 4.1.4 to complete the proof. W

4.1.6 Remark. We were not successful in finding a basis for Rg. However, this has no
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effect on our main result in this chapter. Since R; = A, 3, we already have a basis for

R; (Proposition 3.2.2).
4.1.7 Lemma. Let Z(R;) denote the center of R;, then Z(R;) = C for each 3 <i < 7.

Proof. One can easily verify that Z(R3) = C. Note, R; = A, 3. Since R; is a localization
of R;11 (see (4.1.1)), we have that C C Z(R;) C Z(Rg) C Z(Rs) C Z(Ry) C Z(R3) =
C. Therefore, Z(R;) = Z(Rg) = Z(R5) = Z(R4) = Z(R3) = C. [ |

4.1.8 Remark. Recall the notations:

fi - =€14 Fy 3=E1,4
Z1.=¢€15 Zl L= E175
29 1= €25 Zg L= E275.

Let (o, 8) € C*\ {(0,0)}. Given the above notations, we present the following selected
data of the DDA of A, s, listed at the beginning of this section, in a manner that would

be very useful in Subsections 4.2.1 and 4.2.5. They are as follows:

fi =t — ataty" e36 =tz — atyts’

21 = f1— st%tll €1 =e1p— 7"15515(;1

zy =ty — btoty! e3 = e — stilg '
e16 =21 — hesgty ' — gtats” ey = tq — btity .

4.2 Derivations of A, 3

We are now going to study the derivations of A, 3. We will begin with the case where
both o and 3 are non-zero, and then proceed to look at the case where either a or 3 is
zero.

4.2.1 Derivations of A, 3 («, 3 # 0). Throughout this subsection, we assume that «

and 3 are non-zero. Let Der(A, 3) denote the C—derivations of A, 3 and D € Der(A, 3).
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From the relation (4.1.1), D extends uniquely to a derivation of each of the series of
algebras in (4.1.2) via localization. Therefore, D extends to a derivation of the quantum
torus Ry = Cyv [t 15", 12", t&"]. It follows from [40, Corollary 2.3] that D can uniquely
be written as:

D = ad, + 9,

where © € R3, and § is a scalar derivation of Rz defined as §(t;) = A;t; for each
i =3,4,5,6. Note, \; € Z(R3) = C. Also, ad, is an inner derivation of Rj3 defined as
ad,(L) = zL — Lx for all L € Rs.

We aim to describe D as a derivation of A, g. We do this in several steps. We first

describe D as a derivation of R,.
4.2.2 Lemma. 1. x € R,.
2. )\5 = )\4 + )\67 (S(fl) = —()\3 + )\5>f1 and 5(t2) = —)\5t2.

3. Set Ay := —(A3+ A5) and Ay := —\5. Then, D(e,4) = ad,(ex4) + Axeya for all
ke{l,---,6}.

Proof. 1. Set Q, := Cu[ty", 15", 5], where y is some skew-symmetric matrix in Ms(Z).

Observe that Q, is a subalgebra of both R3 and R, with central element
2= tyts .

Furthermore, since 73 is a quantum torus, we can present it as a free left Q,—module

with basis (t5)scz. With this presentation, € R3 can be written as

r = Z ystga

SEL

where y, € Q,. Set

Ty o= Zystg and z_ = Zystg.

s>0 s<0

Clearly, x = x, + x_. Obviously, x, € Ry, hence we aim to also show that x_ belongs
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to R, by following a pattern similar to [29, Proposition 7.1.2]. As D is a derivation
of Ry, we have that D(27) € Ry for all j € Ns;. Now D(27) = ad,(z7) + 6(z7) =
ad,, (27) + ad,_(27) + &(z7). Observe that ad,, (2/) € Ry; since x,,2’ € Ry. Also,
§(2) = 6(tats'ts) = (Mg — X5 + No)tats 'te = (M4 — A5 + Ag)z, where Ay, X5, A\ € C.
It follows that 0(27) = j(As — X5 + X¢)2? € R4. We can therefore conclude that each

ad, (27) belongs to Ry since D(z7),ad,, (27),8(z7) € Ry. We have:

ad, () =22 —2Zr_ = Z Ytz — Z Y2t

s=—1 s=—1
One can verify that zt; = ¢~ 2t3z. Therefore,
ady (1) = S (1 ¢ 5*)tsed, hence, ad, ()= = 3 (1— ¢ %)yt
s=—1 s=—1

Set v; :=ad, (27)z77 € Ry. It follows that

—-n

vi= Y (1—q 7 )yds,

s=—1
for each j € {1,--- ,n}. One can therefore write the above equality as a matrix equation
as follows:
1-¢) (1-q¢) (1—=¢°) - Q=0 |yats 2
1-¢) (1-¢) (1-¢2) - (A-g¢")| |y-at3® vy
(1-¢%) (1-¢"%) 1-¢"%) - 1=¢")| |y-ats’| = |13
(1-¢*) (1—¢") (1—=¢") - A=) |ynts"| |vn]

We already know that each v; belongs to 4. We want to show that y,t5 also belongs
to Ry for each s € {—1,---,—n}. To establish this, it is sufficient to show that the

coefficient matrix of the above matrix equation is invertible. Let U represent this matrix.
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Thus, ] ]
1-¢) (1-¢") (1—=¢°) - (1-¢™)
1-q¢) (1-¢) (1-¢?) - (1-¢")
U=1(1-¢) (1-¢2) (1-¢%) - (1-¢")
[(1=¢™) (L=¢") (1—=¢™) - (1—¢")]
Apply row operations: —r,_1 + 17, = 1y, ,—To+ 13 = 13, =11 + 19 = 15 to U to
obtain:
0 by A
¢*ly q'ly ¢Pls o ¢y
U' = q¢*h ¢*ly qly - ¢l ’
_q2(n—1)l1 qﬂx(n—l)l2 qﬁ(n—l)l3 . q2n(n—1)ln_
where [; := 1 — ¢*; i € {1,2,--- ,n}. Clearly, U’ is similar to a Vandermonde matrix

(since the terms in each column form a geometric sequence) which is well known to be
invertible. This further implies that U is invertible. So each y;t3 is a linear combination
of the v; € Ry. As a result, yst5 € Ry for all s € {—1,---,—n}. Consequently, z_ =
Yol ysts € Ry as desired.

2. Recall that 6(t,) = Aiti for all Kk € {3,4,5,6} and A\, € C. From Remark
4.1.8, we have that f; = t; — atyt;'. Recall from Section 3.1 that t; = at;'t;' and

tyt = Btg'tyin Ry = o, 5. As a result, fi = at; 'ty — aBty 't 't; " Hence,
5(f1) = — (s + X3)ats 5t + (N6 + M + A3)aBts 1t 15t (4.2.1)
From Proposition 4.1.2, the set B, = {fliltfft?t?, ottt | iy, i3 € N and iy, i5, i € Z}

is a C—basis of R,. Since t4,t5 and tg g-commute with f; and t3, one can also write

d(f1) € Ry in terms of B, as follows:
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0(f) = afi+ Y bits, (4.2.2)

r>0 s2>0

where a, and b, belong to Q, = C,.[t;!, 12, tF].
r r ' '
fi=(atz't5" — aptg 'ty ') =D ( Z) (ats 51 (—aBtg g 5 t) ™
i=0 q°
i

— (T) ai(_aﬁ)r—iq%i(i—l)—k%(r—i)(r—i—1)+3i(i—r)t5—i(tgltzl)r—itg—r
0 q°

— crtgr7 (423)
where

— (T Lili—1)+3 (r—i)(r—i—1)+3i(i—r) i r—ig—i(p—1y—1\r—i
v () qHOIR TN o () (1 ) € Q,\ {0).
i=0 q°*

(4.2.4)

Substitute (4.2.3) into (4.2.2) to obtain;

0(f1) =) ancyty” + > bits. (4.2.5)

r>0 s>0

One can rewrite (4.2.1) as

o(f1) = dt3", (4.2.6)

where d = — (A5 + A3)ats ' + (Ag + Ay + A3)aBt; 'ty € Q,. Comparing (4.2.5) to (4.2.6)
shows that b, = 0 for all s > 0, and a,c, = 0 for all  # 1. Therefore §(f1) = aycits .

Moreover, from (4.2.4), ¢; = —aﬂtgltf + atgl. Hence,
5(f1) = ararts! = ar(—afty 'ty + ats gt = apats 1yt — araBtyg . (4.2.7)

Comparing (4.2.7) to (4.2.1) reveals that a; = —(As + A3) = —(A¢ + Ay + A3). Conse-
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quently, /\5 = /\6 -+ )\4. Hence, (5(f1) = —(/\5 + )\3)0ét5_1t3_1 + (/\5 + Ag)aﬁtgltftgl =

—(Xs + A3)f1. Finally, since to = Bt;'t;! in Ry, it follows that §(ty) = —(A\g +
M)Bts st = — (N6 + M)ty = —Asto.
3. Set Ay := —(A\3+ As5) and Ay := — ;. it follows from points (1) and (2) that

D(ey4) = ady(exa) + (exa) = ady(exa) + Asepa for all k € {1,---,6}. In conclusion,

D = ad, + 9, with z € Ry. [ |
We proceed to describe D as a derivation of Rj;.
4.2.3 Lemma. 1. x € Rs.
2. A =3X3+ X5, g = —3Xs3, 0(21) = —(A3+ A5)z1 and 0(22) = —A520.

3. Set )\1 = —()\3 + )\5), )\2 = —)\5 and )\6 = —3)\3 Then, D(e,{,5) = adx(e,{,5) +
vy forall k € {1,--- 6}

Proof. In this proof, we denote v := (4,7, k,1) € N x Z3.
1. We already know that z € R, = R;[t;']. Given the basis Bs of R5 (Proposition

4.1.4), x can be written as = = Z a(w)zitgtit’gté, where [ is a finite subset of

(Ew)erl
{0,1,2} x N x Z* and a( ) are complex numbers. Write x = z_ 4z, where

re= Y aewAtitithty and m_= Y eyttt

(§v)el (Ev)el
720 j<0

Suppose that there exists a minimum jo < 0 such that a(¢; j, x1) 7 0 for some (£, 4, jo, k,1) €

I'and a;jry =0 for all (€4, 50, k,1) € I with j < jo. Given this assumption, write

i 1€ 47 1yl
T = Z a(e.) 7 15T G,

(&u)el
Jjo<j<-1

Now, D(ts) = ad,, (t) + ad,_(ts) + 0(ts) € Rs. This implies that ad,_(ts) € Rs, since

ad,, (ts)+9(ts) = ad,, (t6) + Asts € Rs. We aim to show that z_ = 0. Since ¢ is normal
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in R, one can easily verify that

ade (tg) = D (@77 = 1) aen ittt

(Ew)erl
Jo<j<-1

Set w := (4, J, k,1) € N> x Z*. One can equally write ad,_(t) € Rs in terms of the basis

Bs of R5 (Proposition 4.1.4) as:

i€ kel
ad, (tg) = Z b(&w)zltgtiti)t&
(Cw)ed

where J is a finite subset of {0,1,2} x N? x Z? and b(¢,w) are all complex numbers. It

follows that
ST (P 1) aep Attt = Y bew 2 titithts.
(Ew)el (w)ed
Jo<j<—1

As B is a basis for R5, we deduce from Corollary 4.1.5 that <z§t§tit’§té)

(1€N;4,k,1€Z;£€{0,1,2})
is a basis for Rs[t;']. Now, at j = jo, denote v = (4,7, k,1) by v, := (4, jo, k,1). Since
vy € N x Z3 (with jo < 0) and w = (i, , k,1) € N? x Z? (with j > 0), it follows from

the above equality that, at v, we must have
(@7 — 1) agey,) = 0.

From our initial assumption, the coefficients a( ) are all not zero, therefore

¢*=70=k) _ 1 = 0. This implies that
k=i—jo, (4.2.8)

for some (£, v,) € 1.

In a similar manner, D(t3) = ad,, (t3) + ad,_(t3) + 6(t3) € Rs. This implies that
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ad, (t3) € Rs, since ad, (t3) + d(t3) = ad,, (t3) + Asts € Rs. We have that

ad. (t3) = D aewAlstithtits— Y aeutszitstitht.
(Ev)erl (Ew)el
Jo<j<-1 jo<j<—1

One can deduce from Lemma A.1.4(3a) that

tazi = q ' Zits + dali)z] ' 2,

—27

. 1-—
where ds[i] = ¢''dy[1] (1_—3]2) do[1] = —(q+q ' +¢3) and d[0] = 0. Therefore,

the above expression for ad,_(t3) can be expressed as:

d._ Z F1i, 4, Klag.w 2itstitits + Z fli, J, Klaqw 2itith itk +
(0,v)erl 1p)el
Jo<js—1 Jo<j<—1
+ ) fli g Kapw AR — D agwdaliz satit
(el (Eu)erl
Jo<j<—1 Jo<j<—1

where f[i, j, k] := ¢~ **3) — g7, Recall from (4.1.4) and (4.1.5) that

3

qgo, 4 1

— 4l + — 21514,
4ty op Lt

Z9 = — (Ozt5_1 — thg) and tg = /6 b
a

L
a b O

where a and b are non-zero scalars (Appendix C). Using these two expressions, one can

write ad,_(t3) in terms of the basis of Rj as:
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ad:vf (t?)) :IC + Z g[iaj(h k]a(ﬂ,yo)zitfﬂtiotlgté + Z g[iija k]a(l,yo)zitgtiot’gté

(0wp)€! (1,u9)€l
q N .
£ Y Pl o M 3 o
(2.00) (Ewg)el

—Zl/b (¢°Bgli, jo, Kla@,ijorisr) + (q°abdsli + 1]/a)ag s jokr1n) 2t LS
+ Z (i, jo, Klao,ijon) + (q°adali + 1]/a)aq is1 jors1)) 2itsty tht;

+ Z [i, jo, Klaqjorn + (q°adeli + 1]/a)ag v jore1y)) 2505 + K,
(4.2.9)

where g[i, jo, k] := ¢~ #*370) — ¢~ 1 dy[i]/a and
K € Span (55 \ {50 | (€,4, 50k, 1) € {0,1,2} x N x 23}) .
One can also write ad,_(t3) € Rs in terms of the basis B; of R5 (Proposition 4.1.4) as

ad, (t3) = > b ZiL5L4tEL, (4.2.10)
(Cw)ed

where J is a finite subset of {0,1,2} x N* x Z?, and b(¢ ) € C. Recall: w = (i, j,k,1) €
N% x Z2. Now, (4.2.9) and (4.2.10) imply that

> bew ittty

(w)et
= Z 1/b (q'ﬁg[i, 70, Kla@,ijokas1) + (¢*abdafi + 1] /a)ag s jo k1)) Attt
+ Z (i, Jos Klaijo s + (¢ adsali + 1]/a)aq vt josrin) Zitat i thty
+ Z (i, Jos k] joes) + (q°adsli + 1]/a)a@,iv1jopr1)) 215ttt + K.
We have already established that (zftétité‘té) e e (o) is a basis for Rs[t;'].

Given that v, = (3, jo, k,1) € N x Z3 (with jo < 0) and w = (4, j, k,1) € N? x Z* (with
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j > 0), it follows that

q*B9li, jo, kla@,ijokir1) + (¢*abdsli + 1]/a)a it jo k1) = 0. (4.2.11)
g[i,jo, k]a(o,i,jo,k,l) + (q'ozdg [Z + 1]/&)&(17i+17j07k+171) = 0 (4212)
g[’i,jo, k’]a(lyi,jmk’l) + (q'adz [Z + 1]/a)a(2,i+1,j0,k+1,l) =0. (4213)

Suppose that there exists (&, 1, jo, k,1) € I such that g[i, jo, k] = 0. Then,

qli, jo, k] = g~ F390) — g7 4 dyi] /a = 0.

/1= —2i
Note, dg[l] = dg[l]ql_l (1 _(;2) , where dg[l] = —(q + q_l + q_3) and dQ[O] = 0.
1
Again, recall from Appendix C that a = (¢*+1+¢?)/(¢*—1) = fL[Jz Given these
—4q

expressions for ds[i] and a, we have that

gli, jo, k] = ¢~ — g7 4 dyfi] fa = g0 — g7¥ = 0.

Since ¢ is not a root of unity, we get

k=3(i — jo). (4.2.14)

Comparing (4.2.14) to (4.2.8) shows that i — jo = 0 which implies that i = jo < 0, a
contradiction (note, i > 0). Therefore, gli, jo, k] # 0 for all (&,4,j,k,1) € 1.

Now, observe that if there exists £ € {0,1,2} such that ag;j, k) = 0 for all
(i, jo, k,1) € N x Z3, then one can easily deduce from equations (4.2.11), (4.2.12) and
(4.2.13) that ag; ok = 0 for all (4,50, k,1) € I. This will contradict our initial
assumption. Therefore, there exists some (i, jo, k,1) € N x Z3 such that (e ijo,kyl) 7 0
for each £ € {0, 1,2}. Without loss of generality, let (u, jo, v, w) be the greatest element
in the lexicographic order on N x Z3 such that a(0,u,jo,0,w) 7 0 and ao; j,x0) = 0 for all

1> U.
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From (4.2.12), at (4, jo, k,1) = (u, jo, v, w), we have:

glu, Jo, V]a(0ujoww) + (¢*adeu +1]/a)aq us1 jo,ot1,0) = 0.

From (4.2.13), at (¢, jo, k, 1) = (u + 1, jo,v + 1,w), we have:

glu =+ 1, jo,v 4+ 1a@ ut1jo,01,w) + (¢Cadafu + 2]/a)a2,ut2,jo,04+2,0) = 0.

Finally, from (4.2.11), at (4, jo, k,1) = (u + 2, jo,v + 2,w — 1), we have:

q°*Bglu + 2, jo,v + 2]a(2,u+2,jo,v+2,w) + (¢*abds[u + 3]/a)a(0,u+3,j0,v+3,w71) = 0.

Note: a,b, o, B, ¢* # 0; gli, jo, k] # 0 for all (£, 1, jo, k,1) € I; and dy[i] # 0 for i > 0.
Since u + 3 > u, it follows from the above list of equations (starting from the last one)

that

A0,u+3jo,0+3w—1) = 0= A@ut2jo0+20) = 0= A(1ut1,j0,041,w) = 0 = Q(0,u,50,00) = 0,

a contradiction! Hence, a(g; ok = 0 forall (,jo, k,1) € NxZ?. From (4.2.11), (4.2.12)
and (4.2.13), one can easily conclude that a; j,x) = 0 for all (§,4,jo,k,1) € I. This
contradicts our initial assumption, hence x_ = 0. Consequently, z = x, € Rj as desired.

2. From Remark 4.1.8, we have z, = t, — bt3t;'. Since §(t.) = Autx, K €

{2,---,6}, with Ay := —\5 (see Lemma 4.2.2), it follows that

5(2’2) = — >\5t2 — b(g)\g — )\4)1531521 = —>\522 - b(3)\3 - )\4 + )\5)15;1521

Furthermore,

D(Zz) = adx(Zg) + (5(2’2) = adx(zz) — )\522 — b(3)\3 — /\4 + )\5)7@{;21 € R5.

Hence b(3\3 — Ay + As)tat, ' € Rs, since ad,(22) — Aszo € Rs. This implies that
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b(3X3 — Ay + A5)ts € Rsty (note, from Appendix C, b # 0). Set w := 3\3 — Ay + Xs.

Suppose that w # 0. From (4.1.5), we have:

8.4 et 4 1
1= —tgt — gt + = 2tsty
3T P T g A T gttt
It follows that
Pwa

wbty = wpty' —

w
tats "t + —21tsty € Rsty.
a a

Since t3, t4tg1 and ztsty are all elements of Rsty, it implies that tgl € Rsty. Hence,
1 € Rstatg. Using the basis Bs of Rs (Proposition 4.1.4), this leads to contradiction.
Therefore, w = 0. Thatis, 3A3 — A4+ A5 = 0, and so Ay = 3A3+ A5. This further implies
that §(z2) = —A522 as desired.

Again, from Lemma 4.2.2, we have that §(f1) = —(A3 + A5) f1. Recall from Remark

4.1.8 that 2z, = f1 — st%tf. It follows that

(5(2’1) = — ()\3 + )\5)f1 - S<2)\3 - )\4)75%@;1 = —()\3 + )\5)21 — S(3>\3 — )\4 + )\5)153@?1

= — ()\3 + )\5)21 - S(3>\3 - (3)\3 + /\5) + /\5)t§t21 = —()\3 + /\5)21.

Finally, we know that &(ts) = Agts. This implies that 6(tg') = —Agts ' From (4.1.5), we

have that
B, 4 e —1 1
13 =Tt — Tttt + = ztsty,
5 p S ab ° ab”

where a and b are non-zero scalars (Appendix C). This implies that

e

ap

L1
t4t5 — —th3t4.

b
tsl ==t + e

B

Given that 5(21) = —()\3 + )\5)21, 5(t3) = )\3153, 5(t4) = (3)\3 + )\5)t4 and 5(255) = )\5t5,
applying 0 to the above relation gives
b Pa

1
_>\6t6_1 = 3)\3 (Etg + wtzltgl - @21t3t4) .
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It follows that \; = —3)\3 as desired.

3. Set A} := —(A3+ As5) and Ay := — ;. It follows from points (1) and (2) that
D(eys) = ady(exs) + d(exs) = ady(ens) + Ases for all K € {1,---,6}. In conclusion,
D = ad, + ¢ with x € Rs. [ |

We are now ready to describe D as a derivation of A, g.
4.2.4 Lemma. 1. zc A,
2. 6(e;) =0forall k € {1,---,6}.
3. D=ad,.

Proof. In this proof, we denote v := (i, j, k,1) € N? x Z2. Also, recall from the DDA of
A, at the beginning of this section that t5 = e; and tg = eg.
1. Given the basis B of A, 5 (Proposition 3.2.2), one can write x € Rs = A, s[t5 ', t5 "]

as:

_ i J €1 €24kyl
T = § : Q(e1,e2,0)€162€3 €4 t5tss

(e1,€2,v)€1
where I is a finite subset of {0,1}* x N? x Z?, and (¢, , ) are complex numbers. Write

r =2x_+ x4, where

_ i 7 €1 €apkyl
Ty = E : Q(ey,e0,0)€1€2€3 €4 L5lg,

(e1,e2,0)€l

k, >0
and

_ i J €1 €apkyl
L = E : A(ey,e0,0)€1€2€3 €4 U5lg-

(e1,e2,0)€T

k<0 or I<0

Suppose that there exists a minimum negative integer kg or [y such that ac, e, i j ko) 7
0 OF ey e, kdo) 7 O for some (e1, €2, 1, 7, ko, 1), (€1, €2,1, j, k, lo) € I, and a(e, ¢y 560 = 0

whenever k < kg or | < ly. Write

_ i J €1 €24kyl
LT = E A(ey,e0,0)€1€2€3 €4 L5lg.
(e1,e2,0)€l
ko<k<—1 or [p<I<-1
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Now, D(es) = ad,, (e3) + ad,_(es) + d(e3) € Ay p. From Remark 4.1.8, we have that

€3 = €36 — stgtgl and e3¢ = t3 — at4tg1. Putting these two together gives
e3 = t3 — atyt; ' — statg '

Again, from Remark 4.1.8, we also have that t, = e, + btt;'. Note, §(t.) = \ety, K €
(3,4,5,6}. Now,

§(e3) = Asts — a(Mg — As)tats ' — s(205 — Ng)taty "
= As(esg + atats ') + a(Xs — A)tats 't + s(Ng — 205)tetg !
= Aze36 + a(A3 — Ay + As)tats !t + s(Ag — 2X5)ttg !
= As(es + statg ) + a(Az — Mg+ Xs)(eq + btatg Dt + s(\g — 205)tet !

= )\363 + 061€4th + Oéztgtgl, (4215)

where a; = a(A3 — A + X5) and ay = s(A3 — 2X5 + Xg) + ¢ 2ab(A3 — Mg + Ns).
Therefore, D(e3) = ad,, (e3) + ad,_(e3) + Azes + areqtst + aotity! € A, p. It follows
that D(Gg)t5t6 = ad$+ (63)t5t6+ad$7 (63)t5t6+)\363t5t6+04164t6+q3042tg S Aaﬂ. Hence,

ad,_ (63)t5t6 € Aa’g, since adx+ (63)t5t6 + Asestste + areqts + qgagtg € Aaﬁ-

Now,
ad,_(e3) = Z a(el,ez,y)eiege?QZQtlgtIGG?) - Z a(61,62,9)63€§€%€§1eftlgté'
(61,62,Q)€I (61,62,Q)€I
(4.2.16)
Using Lemma A.1.4, we have the following:
thtles = g Festith + dy[k]estt k4 ds[l]tET2L1, (4.2.17)
eselel = q Vel edes + dyilet e (4.2.18)

(note: dsli], do[k] and ds]l] are defined in Lemma A.1.4). Substitute (4.2.17) and (4.2.18)
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into (4.2.16), simplify and multiply (on the right) by t5ts to obtain

adL (63)t5t6 =

.. i 7 e1+1 _eoyk+1,40+1 -3l i J €1 €ex+1,kyl+1
E : Q(e1,€2,0) (9[%]’€27l]61€263 efts g+ q " dok]ejesest e sty
(e1,e2,0)€T
31 i J e ea k43,1 31 10—1 G+1 €1 en k414041
+ ¢V dg[llelegest e tE T — g P dslile ey e ety )

(4.2.19)

—k—3e—31 _ , —i—3j—3l

where g[i, j, €,1] :== ¢ q

Assume that there exists [ < 0 such that a, . 7 0. It follows from our initial
assumption that a(c, e,,ijk0) 7 0. Now, at [ = [y, denote v = (1,7,k,1) by vy :==

(1,7, k,lo). From (4.2.19), we have that

ad,_(e)tsts = D a7 Vo dsflolelede Rt +

(61752»20)61

where J; € Span (B \ {e{eles e thty | e1,e0 € {0,1}, k € Z and i,j € N}).
Set w := (i,4,k,1) € N*. One can also write ad, (e3)tsts € A, p in terms of the

basis B of A, 3 (Proposition 3.2.2) as:

ad,_(e3)tsts = Z D(er o) €55 €L, (4.2.20)

(e1,e2,w)eT

where J is a finite subset of {0,1}? x N*, and b, , ., € C. It follows that

i G e eagkgl ~3(lp—1 i 7 €1 €2 k434l
E : b(e1,627w)€162631642t5t6 = E q (o )a(q,ez,yo)d:%[l0]6162€31€42t5 tg + 1.
(e1,e2,w)€T (e1,€2,v9) €l

Since B is a basis for A, 3, we deduce from Corollary 3.2.3 that

C i e € . . 1 ,-1 . ..
(elle%egleft’gté)((61762&)6{071}2X1\12Xz2) is also a basis for A, gt ", ts']. Since vy = (4, 7, k, lp) €

N? x Z? (with Iy < 0) and w = (4,7, k,1) € N* (with [ > 0) in the above equality, we

must have

—3(lp—1)

q a(fl,ez,go)d?) [lo] =0.
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Given that ¢—3(00=d,[lo] # 0, it follows that Uler,enwy) = Qe easiiklo) are all zero. This
is a contradiction. Therefore, [ > 0 (i.e. there is no negative exponent for tg).

Since [ > 0, it follows from our initial assumption that there exists k£ = ky < 0 such
that a(e, cijk00) 7 0. The rest of the proof will show that this assumption cannot also

hold. Set v, := (i, 7, ko, 1) € N* x Z x N. From (4.2.19), we have that

ad,_(ea)tsto = D 4 (e ey dalkolet el e R G+ V,

(61,62,20)61
where V € Jp := Span (B\ {eledef' ettty | e1,e2 € {0,1} and i, 7,1 € N}) . It follows

that:

adm_ (63)t5t6 =

Y a Yaponydalkoleiehest ! + Y a ouydalkolei ettt

(0,0,09)€l (1,0,09)€l
+ Z q_?’la(o,l%)dg [ko]e’iegeit'goté“ Z (1,1,,) 02 [ko]eiegegeitlgotéﬂ + V.
(0,1,v9)€l (1,1,vg)el
(4.2.21)
Write the relations in Lemma 3.0.1(2),(4) as:
Gi :blﬁ + b2€2€466 + b40é€3€6 + b6€1€364€6 + Ll, (4222)
ese; =Bbies + kiesezeses + kza’es + ksaereses + kiafeies
+ k156%62€4€§ + k?170z€%€36§ + k196?€364€§ + LQ, (4223)

where L; and L, are some elements of the left ideal A, gt5 C J». Substitute (4.2.22)

and (4.2.23) into (4.2.21), and simplify to obtain:
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ad,_(e3)tste = Z[)\Llﬁa(o,Li,j,ko,Z—l) + /\1,2612@(1,1,i,j,k0,1—2)
+ )\1,3561(1,1,1'72,]',%,172)]€i€gt§°té
+ Z[)\z,laa(o,l,z',j,ko,za) + A228a(1,1,i,5,ko1-1)
+ )\2,3@0(1,1,1'72,]',1@0,1—3)]€§€%€3tlgoté
+ Z[/\3,161(0,1,1‘,3'71,190,172) + A3 2004(1,1,i—1,5,ko,1—2)
+ A3,30(1,1,i—2,j—1,ko,1—3) T >\3,4a(o,o,i,j,k0,z71)]e§e§e4t'§°té
+ Z[)\4,1a(0,1,i—1,j,k0,l—2) + A120(1,1,i5-1,ko,1-2)

i J ko 41 /
+ A13Q(11,i-3,5ko1—3) T A440(1,04j.ko i-1) )€ €3€3€4t5 L6 + V7,

(4.2.24)

where V' € J5. Also, As; := A (], ko, [) are some families of complex numbers which are
non-zero for all s,t € {1,2,3,4} and j,1 € N, except Ay 4 and Ay 4 which are assumed to
be zero since they do not exist in the above expression. Note, although each A, depends
on j, ko, [, we have not made this dependency explicit in the above expression since the
minimum requirement we need to complete the proof is for all the \,; existing in the

above expression to be non-zero, which we already have.
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Observe that (4.2.24) and (4.2.20) are equal, hence,

i 7 €1 €a4kyl 2
E D(cr,cow) €1€2€5 €L 5t g = E [AM1Ba©0,15 ko d-1) T M 207A(1, 11, .ko 1—2)

(e1,e2,w)ET
+ A3Baq 1, €t elthor!
173 (1717172’]’k07l72) 1%2%5 6
+ E [A2,10a(0,1,i,5,k0,1-2) + A2,280(1,1,.5,k0,1-1)
+ Ao sa(i -2, Jel elesthot!
273 (17171_2’J7k07l_3) 1%2 3 5 6
+ E [A3,10(0,1,6,j—1,k0,—2) + A3,200C0(1.1,i—1,5,ko,1—2)
i J ko4l
+ A3,3Q(1,1,i-2,j1,ko,1-3) T A3.40(0,0,0,5ko.1—1)| €1 €2€at5 g
+ E [A1,10(0,1i-1,k0.1-2) + Ad20(1 15— 1,k0,1-2)

7 ] ko l !
FA130(1,1,i-3,5kol—3) T A1,40(1,0.1.5.ko 1-1)] €1 €2€3€4t5 T + V.

We have previously established that (eﬁe%eglefft’gt%)((61762&)6{071}2“2%2) is a basis for

A pltst tg!] (note, in this part of the proof [ > 0). Since v, = (4, 7, ko,l) € N> x Z x N

(with ky < 0) and w = (4, j, k,1) € N* (with £ > 0) in the above equality, it follows that

AMaBa©1i g ko i-1) T M20°A(1 17 jkod—2) + AL3BAI1i—2k0i-2) = 0, (4.2.25)
A2 1O, 10,5, ko1—2) T A2,280(1,1,05, ko, 1—1) T A2,3004(1,1,i—2,j ko ,1—-3) = 0, (4.2.26)
A3 1(0,1,3,j—1,ko,1—2) T A3200Q(1,1,i—1,j,ko,1—2) T A3.3G(1,1,i—2,j—1,ko,1—3)

+ A3.40(0,0,i,j,ko,i-1) = 0, (4.2.27)
A41G(0,1,i—1,j,k0,1—2) T A420(1,1,05—1,ko,1—2) T A430(1,1,i—3,j,ko,1—3)

+ A4,40(1,0,i 5 ko, 1—1) = 0. (4.2.28)

From (4.2.25) and (4.2.26), one can easily deduce that

2
« )\1,2 >\1,3
(0, 1ijiko d) = T gy 0L Lo =1) T (1 Li-2;kod-1); (4.2.29)
BAL1 1,1
adg aXg3

A1k = TR OO0 ik T Gy AL L2 k0.-2) (4.2.30)
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Note, (e, esi,j,ko,) = 0 Whenever i <0 or j < 0orl <0 forall e,e; € {0,1}.

Claim. The coefficients a1, jko,1) and a(1,1,4,5,k,1) are all zero for all [ > 0. We now
justify the claim by an induction on [. From (4.2.29) and (4.2.30), the result is obviously
true when [ = 0. For [ > 0, assume that a(0,1,i,jk01) = 4(1,1,i,j,ko,) = 0. Then, it follows

from (4.2.29) and (4.2.30) that

. 042/\1,2 )\1,3
A(0,1,i,5,ko,l+1) = — By A(1,1,4,5,ko,l) — —)\1 1a<1,1,z'—2,j,ko,l)a
Oé/\271 Oé/\273
A(1,1,4,5,k0,l+1) = ——5 )\22a(0,1,i,j,k0,l) - —5 )\2261(1,1,1'—2,3',%,1—1)-

From the inductive hypothesis, a(1,1,ijko,1) = Q(1,1,i—2.j,k0l) = Q(0,1,i,5,k0,l) = O(1,1,i—2,5,ko,l—1)
= 0. Hence, a1,1,ijko,+1) = @(0,1,i,j,ko,+1) = 0. By the principle of mathematical induc-
tion, a(o,1,i,jk0) = Q(1,1,i4k00) = 0 for all I > 0 as desired. Given that the fami-
lies a(o,1,ij,k00) and aq 1,55k, are all zero, it follows from (4.2.27) and (4.2.28) that
(0,0,i.5k0,1) AN @(1,0,i k.1 are also zero for all (i, j, ko, 1) € N? X Z x N. Since a(e, e, i.j.ko.)

are all zero, it contradicts our assumption. Hence, z_ = 0. Consequently, v = 2 € A, 3

as desired.

2. From Remark 4.1.8, we have ¢4 = #4 —bt%tgl. Again, from Lemma 4.2.3, we have

that Ay = 33+ A5 and A\¢ = —3)\3. Therefore,

(5(64) == )\4754 - 6(3)\5 — )\6)t§t6_1
== (3)\3 + )\5)64,6 — 3()()\3 + )\5)t§tg1
= (33 + As)(eq + btitg!) — 3b(A3 + As)tity!

= (33 + \s)eq — 2bAstits "

Moreover, D<€4) = adx(e4) + 5(64) = adx(e4) + (3/\3 + /\5)64 - 2b/\5tgtgl € Aaﬁ-
It follows that bAstits' € A, g, since ad,(e4) + (3X3 + Xs)eq € Anp. Consequently,
bAst2 € A, pte. Since b # 0 (Appendix C), we must have A5 = 0, otherwise, there

will be a contradiction using the basis of A, s (Proposition 3.2.2). Therefore, d(es) =
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3Ase4 and 6(t5) = 0. We already know from Lemma 4.2.3 that §(t5) = —3Asts. From
(4.2.15), we have that §(e3) = Azez + a(d3 — Ag + As)eats ' + [s(A3 — 2X5 + Xg) +
g 3ab(Xs — Ay + Xs)]t2ts ', Given that Ay = 3\3, A5 = 0 and A\ = —3\3, we have that
§(e3) = Azes — 2aAzeqts (note, from Appendix C, one can confirm that g~2ab+ s = 0).
Now, D(e3) = ad.(e3) + d(e3) = ad,(e3) + Azes — 2adzeqts ' € A, . Observe that
ad,(e3) + Ases € A, . Hence, 2a)seqt; ! € A3, and so 2adzes € A, gts. Since a # 0,
it implies that A3 = 0, otherwise, there will be a contradiction using the basis of A, 3.
We now have that §(e3) = d(eq) = d(e5) = d(eg) = 0. We finish the proof by showing
that d(e;) = d(e2) = 0. Recall from (3.0.2) that

exeses + beger + beses + Veser + ceseqes + d'e = B.
Apply 4 to this relation to obtain d(ez)eses+bI(e2)es = 0. This implies that d(es)(ese6+
bed) = 0. Since eqeq + bed # 0, it follows that §(ez) = 0. Similarly, from (3.0.1), we have
that

eieses + aejeq + aeges +d'e; = a.

Apply 0 to this relation to obtain d(e;)(eszes + aeq) = 0. Since ezes + aey # 0, we have
that d(e;) = 0. In conclusion, é(e,) =0 for all k € {1,--- ,6}.

3. As a result of (1) and (2), we have that D(e,) = ad,(ey). Therefore, D = ad,
as desired. |

4.2.5 Derivations of A,, and Ay g. In this subsection, we explore the derivations
of A, s when either a or 3 is zero (but not both). We are going to follow the same
pattern used to compute the derivations of A, 5 (a, 8 # 0) in the previous subsection.
Of course, results that can easily be obtained from the previous subsection are not going
to be repeated here. In this case, the appropriate references shall be made. We will begin
with the derivations of A, .

Derivations of A, . Let Der(A,o) denote the C—derivations of A, and D €

Der(A, ). We already know from the previous subsection that D extends uniquely to
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a derivation of each of the series of algebras in (4.1.2) via localization. Therefore, D
extends to a derivation of the quantum torus Ry = C~[t3", 15", 15, t5']. It follows from

[40, Corollary 2.3] that D can uniquely be written as:

D = ad, + 9,

where © € R3, and § is a scalar derivation of Rj3 defined as §(¢;) = A\t; for each
i=3,4,5,6. Note, \; € Z(R3) = C (Lemma 4.1.7). Also, ad, is an inner derivation of
Rj defined as ad, (L) = L — Lx for all L € Rs.

We will describe D as a derivation of A, . We first describe D as a derivation of

Ry.
4.2.6 Lemma. 1. x € R,.
2. 5(f1) = —()\3 —+ )\5>f1 and 5(t2) = 0

3. Set Ay := —(A3 + X5) and Ay := 0. Then, D(e,4) = ad,(ex4) + Auews for all

ke{l,---,6}.

Proof. 1. Similar to that of Lemma 4.2.2(1).

2. From Section 3.1, we have that t; = at;'t;" and t, = Bty 't;" in Ry = 5.
Clearly, to = 0 since 8 = 0. From Remark 4.1.8, we have that f; = t; — atgtgl.
This simplifies to f; = t; = at;'t3'. It follows that §(f1) = —()\3 + A5)f1. Obviously,
d(ta) = 0.

3. Asaresult of (1) and (2), D(ex4) = ady(ex4) +Avenq forallk € {1,--- ,6}. N

We proceed to also describe D as a derivation of Rs.
4.2.7 Lemma. 1. x € R;.
2. )\5 = )\4 — 3)\3, 5(2’1) = —()\3 -+ )\5)21 and 5(2’2) = —>\522.

3. Set Ay := —(A3 + A5) and Ay := —X5. Then, D(e,5) = ad, (e 5) + Asey s for all

ke{l,---,6}.
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Proof. 1. Similar to that of Lemma 4.2.3(1).

2. Recall that 0(t;) = A\ity, i = 3,4,5,6, and §(f1) = — (A3 + A5) f1. From Remark
4.1.8, we have that z; = f, —st2t;'. One can confirm that §(z;) = —(A\3+As)z1 +s5(Ay—
3A3—As)t2t; 1 Now, D(21) = ad,+0(21) = ad,—(A3+Xs)z1+5(Ag—3A3— X5 )2, * € Rs.
Since ad, — (A3 + A5)z1 € Rs, we have that s(\y — 33 — \s)t2t; ' € Rs. Consequently,
s(As —3X3 — A\5)t2 € Rsty. Since s # 0 (Appendix C), it follows that Ay — 33 — A5 = 0,
and so A5 = Ay — 3\3. Otherwise, there will be a contradiction using the basis of Rj
(Proposition 4.1.4). We now have 6(z1) = —(A3 + A5)z1. From the previous lemma, we
have that t; = 0. As a result, the relation z9 = t5 — bt%t;l in Remark 4.1.8 becomes
2y = —btdt; . It follows that §(22) = (3A\3 — M\4)22 = —As20.

3. Set Ay := —(A3+ A5) and Ay := — ;. It follows from points (1) and (2) that
D(e.5) = ad,(es5) + Agex s forall k € {1,--- ,6}.

We now describe D as a derivation of A, .
4.2.8 Lemma. 1. v € Aap.
2. /\6 = 2)\5, 5(61) = —)\561, 5(62) = —)\562, 5(63) =0 and 5(64) = /\564.

3. Set )\1 = —>\57 /\2 = —>\57 /\3 =0 and )\4 = /\5. Then, D(GH) = adm(e,{) +)‘nen
forall k € {1,---,6}.

Proof. 1. Similar to the proof of Lemma 4.2.4(1).

2. From Lemma 4.2.7, we have A5 = \; — 3)3, which implies that Ay = 3\3 + \s5.
Furthermore, from Remark 4.1.8, we have e, = t4—btt;'. One can confirm that §(ey) =
(3A3+As)eq +0(3X3 — 205+ Ag)tits L. Now, D(ey) = ad,(e4) +0(eq) = ad,(e4) + (3A3+
As)eq + b(3A3 — 205 + Xo)tits ' € Anyp. Since ad,(eq) + (33 + Xs5)eq € Aay, it follows
that b(3\3 — 2\s + Xg)t3tg' € Aap. This implies that b(3)\3 — 2Xs + A\¢)t2 € A, ote.
Note, b # 0 (Appendix C). As a result, 3\3 — 2A5 + A¢ = 0, otherwise, we will have a
contradiction using the basis of A, (Proposition 3.2.2). Consequently, A\¢ = 2A5 — 3\3
and 6(eq) = (3A3 + As)eq.
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The relation §(e3) = Azez+a(Az— A+ As)eats  +[s(A3—2X5+Xg) +q2ab( A3 — Ay +
Xs)|t2ts " (see (4.2.15)) is also valid in A, o. Given that Ay = 3A3+ A5 and \g = 2\5—3 )3,
one can easily verify that d(e3) = Azes —2a)sests ' (note, from Appendix C, we have that
g 3ab+ s =0). Now, D(e3) = ad,(e3) + 6(e3) = ad,(e3) + Azez — 2adzeqts ' € Agp.
Since ad,(e3) +Aze3 € Aq o, we have that 2a\zeqts ' € A, o, which implies that 2a\ze, €
A ots. Hence, A3 = 0, otherwise, we will have a contradiction using the basis of A,
(note, from Appendix C, a # 0). Since A\3 = 0, we have: A\¢ = 2);5, d(es) = Ase4 and
d(e3) = 0. From Remark 4.1.8, we have: e; = e 4 —rt5tg1, e16 =21 — h63,6t5_1 —gt4t5_2

and e3¢ = t3 — atyt;'. Putting these three relations together gives
e1 = 21 — sty — htgty '+ (ah — g)tats > (4.2.31)

From the previous lemma, we have that d(21) = —(A3+X5)21. Given that A\ = 25, Ay =
A5, A3 = 0 and 0(t5) = Asts, one can verify that d(e;) = —Ase;. Finally, from the
commutation relations of A, in Chapter 3, we have that eze; = q teres — (q+qt+
q3)ea. Since d(e;) = —Ase; and d(e3) = 0, applying § to this relation gives d(eq) =
—A5€9.

3. Set A\; := =5, Ay :=—X5, A\3:=0and \; := A5, it follows from points (1) and
(2) that D(e.) = ad,(ex) + Aces for all kK € {1,---,6}. [ ]

Derivations of A, 3. Every derivation D of Aj s extends uniquely to a derivation
of each of the series of algebras in (4.1.2). Therefore, D extends to a derivation of the
quantum torus Ry = C,n[t3',t5', 12", 5], It follows from [40, Corollary 2.3] that D
can uniquely be written as

D =ad, + 4,

where © € R3, and § is a scalar derivation of Rz defined as d(¢;) = A\;t; for each
i=3,4,5,6. Note, \; € Z(R3) = C (Lemma 4.1.7). Also, ad, is an inner derivation of
Rj defined as ad, (L) = L — Lx for all L € Rs.

We want to describe D as a derivation of Aj 3. We begin by describing D as a
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derivation of R,.
4.2.9 Lemma. 1. x € R,.
2. 6(f1) = —(As+ A+ X¢) f1 and 6(t2) = —( X6 + \y)to.

3. Set A\; := —(A3+A+X6) and Ay := —(Ag+A4). Then, D(e,4) = ady(€44)+ s
forall k € {1,---,6}.

Proof. 1. Similar to that of Lemma 4.2.2(1).

2. Recall from Section 3.1 that t; = 0 and t, = Bt;'t;" in Ry = . Observe
that §(ty) = —(A\y + X¢)t2. From Remark 4.1.8, the relation f; = t; — atyt; ' becomes
fi = —atots' = —aBty't; 5t It follows that §(f1) = —(As + A+ X6 f1.

3. Set A\; := —(A3 + A\ + Xg) and Ay := — (g + \y), it follows from points (1) and
(2) that D(e,4) = ad;(€x4) + Aserq forall k € {1,--- ,6}. [ |

We proceed to describe D as a derivation of Rs.
4.2.10 Lemma. 1. x € Rs.
2. )\6 = —3>\3, 5(2’1) = (2)\3 — )\4)21 and 5(22) = (3)\3 — )\4)22.

3. Set )\1 = (2)\3 — )\4) and )\2 = 3/\3 — )\4. Then, D(€H75> = adz(e,ﬁg)) + )\nem for
all k € {1,--- ,6}.

Proof. 1. Similar to the proof of Lemma 4.2.3(1).

2. Recall that 6(t;) = A\it;, @ = 3,4,5,6, and (t2) = —(As + Ag)t2. From Remark
4.1.8, we have that z, = t, — bt3t; . This implies that §(z2) = —(\g + Ag)z2 — b( N +
3X3)t3t . Now, D(25) = ad,(25)+6(22) = ad,(22) — (Aa+X6)2za—b(As+3X3)t3t, * € Rs.
Since ad,(22) — (A4 + X¢)2z2 € Rs, we have that b(\s + 3A3)t3t; ' € Rs. This implies that

B

1
b()\ﬁ + 3)\3)1% € R5t4. Since a = O, from (415), we have that t% = ZtG_l + —bz1t3t4.
a

1 1
Therefore, b(/\@ + 3A3)t§ = (/\6 + 3/\3) (Btgl + —th3t4> = 6()\6 + 3/\3)ng1 + —(/\6 +

a a
3)\3)21t3t4 € Rsty. Observe that zits3t, € Rsty. This implies that ﬁ()\6+3>\3)tgl € Rsts.

Hence, 5(A\¢ + 3\3) € Rststg. Since 5 # 0, we must have: \g + 3A3 = 0, and so A\ =
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—3\3. Otherwise, there will be a contradiction using the basis of R5 (Proposition 4.1.4).
As a result, 0(z2) = —(A1+ A6)z2 = (3A3 — A\g)2a.

Again, from Remark 4.1.8, we have that z; = f; — st2t,'. From the previous lemma,
we also have §(f1) = —(A3 + Ay + Xg) f1. Given that A\¢ = —3)\3, one can easily verify
that §(z1) = (2A3 — \y) 1.

3. Set A := (2A\3 — A4) and Ay := 3A\3 — )y, it follows from points (1) and (2) that
D(e.s) = adz(exs) + Awews for all k € {1, ,6}.

We now describe D as a derivation of Ay .
4.2.11 Lemma. 1. z€ Ayp.
2. >\6 = 3)\5, 5(61) = —2/\561, 5(62) = —3>\5€2, (5(63) = —)\563 and 5(64) =0.

3. Set /\1 = —2)\57 )\2 = —3)\5, )\3 = —/\5 and )\4 = 0. Then, D(€,{) = adx(en) +
Awey forall ke {1,---,6}.

Proof. 1. Similar to the proof of Lemma 4.2.4(1).

2. From Remark 4.1.8, we have e, = t, — bt3t;'. One can confirm that 6(es) =
Mgey + b(Ay — 3X5 — 3X\3)tdtst. Now, D(ey) = ad.(es) + 8(es) = ady(es) + Mgey +
b(As—3Xs — 3X\3)tits ' € Ap . Since ad,(es) + Aseq € Ag g, it follows that b( Ay — 3A5 —
3\3)tits ' € Ag . This implies that b(A\y — 3\5 — 3A3)t2 € Ag sts. Note, from Appendix
C, b # 0. Therefore, Ay —3X5 — 33 = 0, otherwise, there will be a contradiction using the
basis of Ay s (Proposition 3.2.2). Hence, Ay = 3(A3+X5), and d(eq) = 3(A3+A5)eq. The
relation §(e3) = Azez+a(Az—Ag+As)eats  +[s( A3 =25+ Ng) +q3ab( A3 — Ay + X5 )| t2t5
(see (4.2.15)) is also valid in Ay g. From Lemma 4.2.10, we have that A\¢ = —3\3. Given
that Ay = 3(A3 + A\5) and A\¢ = —3\3, one can confirm that d(e3) = Azez — 2a(A3 +
As)ests ' (note, from Appendix C, ¢ 3ab + s = 0). Now, D(e3) = ad,(e3) + d(e3) =
ad,(e3) + Azes — 2a(A3 + Xs)eqts T € Agg. Since ad,(e3) + Azes € Ag g, it follows that
2a(A\3 + As)eqts' € Agp. This implies that 2a()\s + As)es € Agsts. We must have

A3+ A5 =0, and so A3 = —\5 (note, a # 0). Otherwise, there will be a contradiction
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using the basis of Ay g (Proposition 3.2.2). As a result, d(e3) = —Ases, d(eq) = 0 and
A6 = 3)s5.

From (4.2.31), we have e; = z; — rtstg" — htsts ' + (ah — g)tst; 2. Recall from
Lemma 4.2.10 that §(z1) = (2A3 — Ay)21. Given that A\g = 35, Ay =0, A3 = —)\5 and
d(ts) = Asts, one can verify that d(e;) = —2Ase;. From the commutation relations of
Ay in Chapter 3, we have that ese; = ¢ 'eres—(q+q ' +q %)ea. Since §(e1) = —2X56

and d0(e3) = —Ases, applying 0 to this relation gives d(e2) = —3Ases. [ |

In the next lemma, we prove that the first Hochschild cohomology groups of A 3

and A, are non-trivial.
4.2.12 Lemma. Let (a,3) € C2\ {(0,0)} and, # and @ be linear maps of A, o and Ag g
respectively defined by

9(61) = —€q, 8(62) = —€9, 9(63) = O, 0(64) = €4, 9(85) = €5, 9(66) = 266,

and

5(61) = —2e¢q, é(eg) = —3e,, é(eg) = —e3, 5(64) =0, §(65) =e5, 0O(es) = 3es.

Then, 6 and # are C—derivations of A, andAg s respectively.

Proof. Given the algebra relations of A, 3 in Chapter 3, we verify that 6 satisfies the
relations of A, g when av # 0 and 8 = 0, and 0 satisfies the relations of Ay when o =0
and (8 # 0. We will verify this for only one of the relations, and leave the remaining ones

for the reader to check. From (3.0.1), we have that
eieses + aejey + aeges +d'es =

in Aoz,O'
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Now,

0(e1)eses + e16(es)es + eresf(es) + ab(er)eq + aer6(eq) + ab(es)es + aexb(es) + 2a’0(e3)es

=0
as expected. In Ay g, we have that

eieses + aeiey + aeses + a'es = 0.
Observe that

5(61)6365 + €1é(63)€5 + 61635(65) + aé(el)e4 + aelé(e4) + aé(€2)€5 + a€2é<€5) + 2a/9~(63)63

/.2
= —2(ejezes + aejey + aeges + a'ez) =0,

as expected.

4.2.13 Remark. From Lemma 4.1.7, Z(A,3) = C. Let (o,8) € C*\ {(0,0)} and
Der(A, ) represent the C—derivations of A, g. Then, the first Hochschild cohomology

group of A, 5 (denoted by HH'(A, )) defined by

Der(A, )
HH' (A =
(Aas) InnDer(A, 5)

is a free module over Z(A, 3) = C, where InnDer(A, 3) := {ad, | x € A, 3} is the set

of inner derivations of A, g.
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We summarize our main results in this chapter in the theorem below.

4.2.14 Theorem. Given that Ay, = U (G2) /(4 — a, Qs — ), with (o, 3) € C*\

{(0,0)}, we have the following results:

1. if a, 3 # 0; then every derivation D of A, s can uniquely be written as D = ad,,

where v € A, p.

2. ifa # 0 and B = 0, then every derivation D of A, can uniquely be written as

D = ad, + N9, where A € C and = € A, .

3. ifo =0 and B # 0, then every derivation D of Ay can uniquely be written as

D = ad, + \0, where \ € C and x € Ap .

4. HHY (A, ) = C[0] and HH'(Ay 3) = C[0], where [6] and [f] respectively denote

the classes of 0 and § modulo the space of inner derivations.

5. ifa, 3 # 0; then HH' (A, 3) = {[0]}, where [0] denotes the class of 0 modulo the

space of inner derivations.

Proof. Points (1), (2) and (3) are as a result of Lemmas 4.2.4, 42.8 and 4.2.11 re-
spectively. Point (4) is a consequence of Lemma 4.2.12, and (5) is a consequence of

(1). n



Chapter 5

Semiclassical limit of the simple

quotients of U, (Go)

In this chapter, we study a semiclassical limit of U, (G?), and its simple quotients. Unless
stated explicitly, we do not transfer notations used in the previous chapters to this and
the subsequent chapter. Given a non-commutative algebra A, one can obtain a Poisson
algebra A from A through a process called semiclassical limit. Conversely, given a Poisson
algebra A, one can obtain a non-commutative algebra A from A through a process called
quantization. We briefly explain these concepts in line with the presentations in [14] in
the next section. Since U (() is a non-commutative algebra, we study its semiclassical
limit in Section 5.2. Following strategies similar to that of U/ (G,) in Chapter 2, we
study the Poisson maximal ideals (of height 2) of the semiclassical limit of U (G'2) using
‘H —stratification by Goodearl [16], and Poisson deleting derivations algorithm by Launois
and Lecoutre [34]. We finally conclude in Section 5.3 that the simple quotients of the
semiclassical limit of U;"(G2) are the semiclassical limits of the non-commutative algebra
Ay p. Most of the results in this and the subsequent chapters are analogues to their
non-commutative counterparts.

We begin with some preliminaries on Poisson algebras.

112
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5.1 Preliminaries

This section studies some preliminary materials such as semiclassical limit, Poisson prime
spectrum and Poisson deleting derivations algorithm. We begin with the following defi-
nitions and examples.

5.1.1 Definitions and examples. A Poisson algebra A is a commutative algebra over
a field K endowed with a skew-symmetric K—bilinear map {—, —} : A x A — A which

satisfies the following properties:
o {z,yz} ={z,y}z+y{x, 2z} forall z,y,z € A (Leibniz rule).
o {x,{y,2}}+{y,{z,2}} + {2, {x,y}} =0 for all z,y, > € A (Jacobi identity).

Note, the skew-symmetric K—bilinear map {—, —} is called the Poisson bracket. Every
Poisson algebra is also a Lie algebra since they both satisfy the Jacobi identity. Since
the Poisson bracket also satisfies the Leibniz rule, it is well known that for each x € A
the K—linear map ham, := {z,—} : A — A is a derivation known as the Hamiltonian
derivation associated to x. A Poisson ideal I of A is any ideal such that {z,u} € I for
all z € Aand u € I. The set Zp(A) :={a € A| {a,z} =0, Vz € A} is a Poisson

subalgebra of A called the Poisson center of A.

5.1.2 Remark. If A is a Poisson algebra and {z1,--- ,x,} is a generating set for A (as
an algebra), then it is enough to define a Poisson bracket {—, —} on A by defining it on

only the generating set.
5.1.3 Example. The following are some examples of Poisson algebras.

1. The polynomial ring Clz,y] is a Poisson algebra via {z,y} = a, where a € C.
When a = 0, then we have a trivial Poisson structure on C[z,y]. In fact, any
commutative algebra can be endowed with the trivial Poisson structure to form a

Poisson algebra.

2. Let R = K[y1,- -+ ,yn] be a polynomial algebra over the field K, with {y;,y,} =

Wi YiYj, %, € N1, where M = (;;) is an N X N skew-symmetric matrix over
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the field K. Then, R is a Poisson algebra known as the Poisson affine space. Note,

for all f,g € R, we have that:

- of g
{f.g} = HijYilYj o — -
”Z_l P77 Oy Oy
The set S := { Ayl -~y | i1, iy € Nand A € C*} is a multiplicative set of
R. Hence, one can localize R at S as RS~ = K[y, --- ,y%']. Note, the Poisson

bracket of R extends uniquely to a Poisson bracket of RS~!. Therefore, RS !isa

Poisson algebra known as the Poisson torus associated to the Poisson affine space

R.

In general, let S 5 1 be a multiplicative set of a Poisson algebra A. Then, the

localization .AS~! admits a Poisson bracket extended uniquely from A as follows:

{ws™ oyt ™'y = {o,y}s 7 — {a,t}ys 72 — {s,y}ws 2t + {5, thays Ht

for all z,y € A and all s,t € S.

In a special case where A is a domain, then the Poisson structure of A extends

uniquely to its field of fractions.

3. Set R := O(M(C)) =C[24]. Then, R is a Poisson algebra called 2 x 2 Poisson

matrix algebra with Poisson bracket defined as follows:

{a,b} = ab, {a,c} =ac, {b,c} =0, {b,d} =bd, {c,d} =cd, {a,d} = 2bc.

4. Take any arbitrary Poisson algebra A and a Poission ideal I of A. Then, it is well
known that the quotient algebra A/ is a Poisson algebra with an induced Poisson

bracket defined as {Z, 4} = {x,y}, where z .= x+T and j := y+ 1, with z,y € A.

5.1.4 Semiclassical limit. As already stated, given a non-commutative algebra A, one

can obtain a Poisson algebra A from A through a process called semiclassical limit.
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Conversely, given a Poisson algebra A, one can obtain a non-commutative algebra A
from A through a process called quantization. That is, one can either view A as a
quantization of A or A as the semiclassical limit of A under certain conditions, which we
present in the next paragraph. Unless stated otherwise, we present ideas similar to [14,
§1.1.3].

Let R be a commutative principal ideal domain containing the field K and AR be a
maximal ideal of R for a fix h € R. According to [7, Chapter II1.5], in practice, R will
always be either a polynomial or Laurent polynomial ring over K in one variable, and h
will be a linear polynomial. Take an algebra A (which is not necessarily commutative
torsion-free R—algebra) such that the factor algebra A := A/hA is commutative. Let
u,v € A. Then, 4 :=u+ hA and ¥ := v+ hA are the canonical images of u and v in A
respectively. Since 4t = v, we have that [u,v] := uv — vu € hA. There exists a unique

element 7(u,v) of A such that [u,v] = hy(u,v). It follows that

{u,v} :==~v(u,v) + hA = % + hA
defines a Poisson bracket on A. One can prove that the above definition defines a Poisson
bracket on A by showing that it is well-defined, the Jacobi identity and the Leibniz rule
hold. The details of the proof can be found in [14, §1.1.3]. Given the above presentation,
A is said to be a quantization of A, and A is termed as the semiclassical limit of A.
Let A € K, then the algebra A, := A/(h — A\)A is a deformation of the Poisson algebra

A = A, provided the central element A — X is not invertible in A.

5.1.5 Example. 1. From Remark 1.5.1, we can define a quantum affine space of the
form Op(KY) = Ky [V, -+, Yy], with Y};Y; = ¢#1Y;Y;, where A = (¢*9) is a
skew-symmetric matrix defined in Remark 1.5.1. Set R := K[z*!](Y}, - | Vi |
Y;Y, = 2Y;Y; for all 1 <4, j < N). The element z—1 is central and not invertible
in R. Hence, R := R/(z — 1)R =Kly1,--- ,yn], with y; =Y, + (z — 1R, 1 <

t < N. Now, y;y; = y;u; for all 1 <14,j < N, hence, R is a commutative algebra.
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A Poisson structure is defined on R as follows:

Y5, Yi]

z —

(4 — DY,
z—1

{vj v} = +(z—1)R= + (2 = )R = 15y,

—_

forall 1 <4, 5 < n. Therefore, R is a Poisson affine space and it is the semiclassical
limit of the algebra R. Moreover, R/(z — q)R = O5(K") is a deformation of the
Poisson affine space R. Since a Poisson bracket on a Poisson affine space extends
uniquely to a Poission bracket of the associated Poisson torus, one can also conclude
that the Poisson torus K[y, -+ ,y3'] is the semiclassical limit of the quantum

torus Ky [ViE - -+ VY.

2. Recall that the 2 x 2 quantum matrices O,(M>(C)) = C[¢ 4] satisfies the relation:

ab = qba, ac=qca, bc=cb, bd=qdb, cd=qdc, ad—da= (q—q *)bc

(see [7, Example 1.1.7]). Now, the 2 x 2 Poisson matrix algebra in Example 5.1.3(3)

is the semiclassical limit of the non-commutative algebra O,(M(C)).

5.1.6 Poisson prime spectrum. In Section 1.6 we discussed the prime spectrum
Spec(A) of an algebra A. In this section, we discuss the Poisson analogue called the
Poisson prime spectrum. Let P be a proper Poisson ideal of a Poisson algebra A and I,
15 be Poisson ideals of A such that P O I,1,, the ideal P is called a Poisson prime ideal
provided P D I; or P O I5. It is well known that a Poisson ideal which is also a prime
ideal is a Poisson prime ideal, however, the converse is not always true, except the case
where A is noetherian (see [16, Lemma 1.1]). The collection of all Poisson prime ideals of
A is called the Poisson prime spectrum of A, denoted by P.Spec(.A). The largest Poisson
prime ideal contained in a given maximal ideal of A is called a Poisson primitive ideal of
A. The collection of all these primitive ideals is also called Poisson primitive spectrum of
A, denoted by P.Prim(A).

Let A be a K—algebra. Recall from Section 1.6 that the prime spectrum Spec(A)

of A endowed with a suitable torus action can be partitioned into a disjoint union of
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strata, a partition known as the H—Stratification of Spec(A). In a similar manner,
P.Spec(.A) can also be partitioned into a disjoint union of strata in the presence of a
suitable torus. We discuss this partition in the next paragraph. In [16, §3], Goodearl
described this process for a commutative noetherian differential K—algebras and, in [35,
§2.2], Launois and Lecoutre described the process for noetherian Poisson algebras via
the Cauchon diagrams. Since we have already described this process for any arbitrary
K—algebra in Section 1.6, we will only provide a summary for the Poisson version.

Let A be a noetherian Poisson algebra and H be an algebraic torus acting rationally
on A by Poisson automorphism (an automorphism that preserves the Poisson bracket).

A Poisson prime ideal P is H—invariant if h- P = P for all h € H. The set
P.Spec;(A) := {P € PSpec(A) | (P:H)=J}

is called the J—stratum of P.Spec(A). Note, J := [,cyy I - P is the largest Pois-
son H—invariant prime ideal contained in P. The H—strata P.Spec,(.A) partitioned

P.Spec(.A) into a disjoint union of strata. Hence,

P.Spec(A) = |_| P.Spec,(A),

JeH—P.Spec(A)

where H — P.Spec(A) is the collection of all the Poisson H—invariant prime ideals
of A. This process is called H—stratification of P.Spec(.A). In a similar manner, a

‘H —stratification of P.Prim(.A) is obtained as follows:

P.Prim(A) = || P.Prim,(A),

JeH—P.Prim(.A)

where P.Prim;(A) = P.Spec,(A) N P.Prim(A) and H — P.Prim(A) is the collection of

all the Poisson H —invariant primitive ideals of A.

5.1.7 Proposition. [16, Theorem 4.3] Let P € P.Spec;(A), P is Poisson primitive if

and only if P is maximal in P.Spec;(.A).
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5.1.8 Poisson deleting derivation algorithm (PDDA). We have already studied
Cauchon'’s theory of deleting derivation algorithm for non-commutative algebras in Section
1.7. In [35], Launois and Lecoutre studied the Poisson version of the deleting derivation
algorithm called the Poisson deleting derivation algorithm (PDDA) for some class of
Poisson algebras with a base field of characteristic zero and prime characteristic. In this
section, we will only discuss the algorithm for the characteristic zero case. We begin with

the following theorem.

5.1.9 Theorem. [39, Theorem 1.1] Let A be a Poisson K—algebra and 0,6 : A — A
be K—linear maps. Then, the polynomial algebra R = A[X] endowed with a Poisson
bracket (i.e. {X,a} = o(a)X + d(a) for all a € A) extending from the Poisson bracket

of A is a Poisson algebra if and only if:

1. o is a Poisson derivation of A. That is, o is a K—derivation of A with

o({a,b}) = {o(a),b} + {a,o(b)} for all a,b € A.

2. 0 is a Poisson o—derivation of A. That is, § is a K—derivation of A with

d({a,b}) ={d(a),b} +{a,0(b)} + a(a)d(b) — o(a)a(b) for all a,b € A.

Given a Poisson algebra R = A[X] satisfying the above conditions, one can simply
write R as R = A[X, 0, ] p. This is called the Poisson-Ore extension of A. If § = 0, then
A[X, 0,0]p is simply written as A[X, o]p. Furthermore, R is called an iterated Poisson-
Ore extension over A if there exists a set {o; | i = 1,---, N} of Poisson derivations and

aset {0;|i=1,---, N} of Poisson o;— derivations such that

R = A[X1; 01, 51]1) tet [Xn; On, 5n]P-

5.1.10 Example. In Example 5.1.3(3), we have that the matrix Poisson algebra
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R = C[2}] satisfies the relations:

{a,b} = ab, {a,c} =ac, {b,c} =0, {b,d} =bd, {c,d} =cd, {a,d} = 2bc.

Now, set X; := a, Xy := b, X3 := c and X, := d. Then, R can be written as an

iterated Poisson-Ore extension as:

R = (C[Xl][X2; Uz]P[X3; U3]P[X4; 04, 54]13,

Where O'2(X1> = Xl, O'3<X1) = Xl, O'g(XQ) = 07 0'4(X1) = 0, O'4<X2) = XQ, 0'4(X3> =
X3, and 04(X7) = 2X9X3, 64(X3) = 64(X3) = 0. Note, ¢ is a Poisson derivation and ¢,
is a Poisson o;—derivation of C[X][Xs;09]p -+ [Xj-1;0j-1,0;_1]p for each 2 < j < 4

(note, (52 = (53 = 54 = O)

We are now going to discuss the PDDA process.
Let K be a field with characteristic zero, and A = K[X}][X2; 09,02, - - [Xn; 0N, ON]P
be an iterated Poisson polynomial algebra over K. Suppose that A satisfies the conditions

in the hypothesis below.

5.1.11 Hypothesis. (H1) For all 1 < j < ¢ < N, there exists p;; € K, with p;; :=

— 15, such that o;(X;) = p;; X;.

(H2) The derivation ¢; is locally nilpotent and ;& — ad; = 1;6; for some non-zero scalar

n; forall 2 <7 < N.

Then, the PDDA can be used to study the Poisson prime spectrum of A. Let j €
{N+1,---,2}. The algorithm (PDDA) constructs a family (X; ;,--- , Xy ;) of elements
of Fract(A) as follows. For j = N + 1, set (X1 ni1, -, Xynvt1) = (Xq, -+, Xn).
Now, suppose that the family (X ji1,---, X j11) has already been constructed. Then,

for j < N + 1, construct Xy ;, -+, Xy from Xy j11,---, Xn 41 using the relation
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Xijr ifi>j
Xi,j = +o0 1
Z k—k‘(sj (Xi,j-&—l)Xj,jJ,-l if 1 < 7,
n;r:
k=0 '1J
foralli e {1,---,N}. Since ¢; is locally nilpotent, the summation is finite.

For each j € {2,---, N +1}, the algebra A" represents the subalgebra of Fract(.A)
generated by all the X; ;. That is, AY) = K[X,;, -, Xxn;]. Note, AN*D = A It

follows from [35, Proposition 1.11] that
AP = K[X1][X2;00,00)p -+ [Xj1305-1,6;1]p[ Xy T3]p - - - [Xvi 7wy

by an isomorphism that maps X; ; to X;, and 7;,--- , 7 denote the Poisson derivations
defined by 7;(X;) = u; X; for all 1 < i <1 < N. With a slight abuse of notation, one
can identify 7;,--- ,7n with 0}, -+, on respectively.

Moreover, the set S; := {X7,,, | n € N} = {X}, | n € N} is a multiplicative
system of regular elements of A% and AU and AW S = AUTD ST [35, Proposition
1.11]. Launois and Lecoutre [35] used the PDDA to relate P.Spec(.A) to P.Spec(.A), where
A= A® by constructing an embedding v; : P.Spec(AU*Y)) — P.Spec(.AY)) for each
j €1{2,---,N}. Suppose that P € P.Spec(AU™V) and X; ;1 &€ P, then 1), is defined
by

Y;(P) = PS; N AW = Q,

with Q € P.Spec(AY). In the case where X,; € Q, then the inverse map wj’l is also
given by
7N (Q) = QS N AU = P,

J

The map 1), is injective but not necessarily bijective, however, 1/; induces a bijection from
{P € P.Spec(AU+Y) | PN S; = 0} onto {Q € P.Spec(AYV) | QN S; = 0} [35, Section

2.1]. The so-called canonical embedding 1) : P.Spec(A) — P.Spec(.A) is obtained by

composing all the ¢;. That is, 1) := 1y 0 --- o 9pn. This canonical embedding 1 helps to
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construct a partition of P.Spec(.A) into a disjoint union of strata known as the canonical
partition via the Cauchon diagrams. See [35] for further details on this, and how the map

1; is defined when X ;1 € P (we omit this case).

5.2 Semiclassical limit of U/ (G>)

We are now ready to study the semiclassical limit of the algebra A := U (G>) studied

in Chapter 2. Recall that A satisfies the following relations:

EyE, = ¢ *E\E, E3Ey =q 'E\Es — (q+q ' +q°)Es

E3Fy = q 2 Ey By E,E, = E\E, + (1 — ¢*)E}

4 2 2 +1
qq4 + qq2 e A

EsE, = qE\Es — (1 + ¢*)Es EsEy = EyEs + (1 — ¢*)E:

EyEy = q P EyEy —

EsEs = Q_IE3E5 — (g + q_1 + q_3)E4 EsE, = q_3E4E5

EsE, = ¢°E\Es — ¢°F E¢Ey = ¢°EsEg + (¢* + ¢* — 1) Ey+
E¢Es = E3Fq + (1 — ¢°)E2 (4> — ") EsE;
¢ =2 +1 4

E¢E, = q °E Fg — EgEs = ¢ °E5F.

¢+l

Set U; :== (¢ — 1)E; for i = 1,3,4,5, and U; := f(q)(q — 1)E; for i = 2,6; where

f(q) =q*+¢*+ 1. Then, A is now generated by U;, - - - , Us subject to the relations:

UsUy = ¢ UL U, UsUs = ¢ 3U,Us

UsUy = ¢ UUs — g (g — 1)Uy UU, = U Uy + (1 — ¢A)U3
UyUs = ¢ 30Uy — (¢ + 1) (¢ — 1)U3 U,Us = ¢ U0,

UsUy = qUrUs — (1 + ¢*)(q — 1)Us UsUy = UsUs + f(q)(1 — ¢*)U3

UsUs = ¢ 'UsUs — f(q)(q> — ¢ *)Us UsUs = q *U,Us
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UsUs = ¢*UrUs — f(q)(¢" — ¢*)Us UsUs = ¢°UsUs + f(q)*(¢* — ¢")UsUs+
UsUs = UsUs + f(q)(1 — ¢*)U2 f@* (¢ + ¢ = D(qg— 1)U,
UsUs = ¢ *UUs — (¢ +1)*(¢ — 1)U UsUs = ¢ 2UsUs.

We are now going to find a “new” presentation for A that allows us to introduce a

quantisation of A. We discuss this as follows. Let Abea C[z*!]—algebra generated by

l71, e ,(76 subject to the relations:

U,U, = 20,0, UsUs = 27%0,Us

[73[71 = z’lﬁlﬁg — 273 (2 — 1)(72 (74(71 = [71(74 + (1 - 22)(/]\5

(74(72 = z’gﬁQﬁ4 —(z+1)*(z— 1)[75’ [74l73 = z’3ﬁ3ﬁ4

UsUy = 20,05 — (14 22)(z — 1)Us UsUy = UsUs + f(2)(1 — 22)U2

UsUs = 2 UsUs — f(2)(z7% — z73)[74 UsUy = 2 3U,Us

UsUy = 22U, Us — f(2)(2* = 2%)Us UsUs = 22UsUs + f(2)2(2% — 24 UsUs+
176[73 = [73(76 + ()1 - 22)(752 FRPE 22 =1)(2 - 1)(74
UsUy = 220,05 — (2 + 1)*(z = ) U2 UsUs = 2~3UsUs,

where f(2) = 2* 4+ 22+ 1. For A € C*, observe that the element 2 — X is central and not
invertible in A. Hence, we can set A, := //l\/(z — )\)ﬁ Now, A, is the non-commutative
algebra A, and A; = C[X1,--- , Xg] with X; := U, + (z — 1)A is a Poisson algebra with

the Poisson bracket defined as follows (see Appendix B.1 for the necessary details):

{X5, X1} = -3X1 X, (X3, X1} = —X1 X5 — X,
{X3, X} = —3X,X3 (X, X1} = —2X3

{Xy4, Xo} = —3Xp X, — 4X3 {Xy, X3} = —3X3X,
{X5, X1} = X1 X5 — 2X5 {X5, Xo} = —6X3

(X5, X3} = —X3X5 — 3X, (X5, X4} = —3X, X;
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{ X6, X1} =3X1 X6 — 3X;5 { X6, Xo} = 3Xo X6 + 9X4 — 18X3X5
{Xe, X3} = —6X2 { X6, X4} = —3X, X — 4X?3

{ X6, X5} = —3X5X5.

Therefore, A; is the semiclassical limit of the non-commutative algebra ﬁ, and A, is a

deformation of the Poisson algebra A;.

A1<_/V\/\/W>Aq

Deformation

Henceforth, for simplicity, we set

A=A =C[X1, -, Xql.

One can write the Poisson algebra A as an iterated Poisson-Ore extension as:

A = C[X1][X2; 02] p[ X35 03, 03] p[ X4; 04, 04 P[ X5 05, 05] p[ X6; 06, I6] P;

where,

O'Q(Xl) = —3X1 0'3(X1) = —X1 0'3(X2) = —3X2 O'4(X1) = O

0'4(X2) = —3X2 0'4(X3) = —3X3 0'5(X1) = X1 0'5(X2) = O
05(X3) = = X3 05(Xy) = —3Xy o6(X1) = 3X,y 06(X2) = 3X5
O'G(Xg) =0 O'G(X4) = —3X4 O'G(X5) = —3X5,

and
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53(X1) =—-Xo  63(X5) =0 64(X1) = —2X3 64(Xo) = —4X3
54(X3) — 0 55(X1) — —2X3 55(X2> — —6X§ 55(X3) — —3X4
(55(X4) - 0 56(X1> - —3X5 56(X2) - 9X4 - 18X3X5 56(X3) - —6X52

56(X4) = —4X2  66(X5) = 0.

Note, o, is a Poisson derivation and d; is a Poisson ¢;—derivation of
(C[Xl][XQ, O'Q]p cee [Xj—l;o-j—175j—1]P for each 2 S] S 6 (note, (52 = O)
5.2.1 PDDA of A. The algebra

A = C[X1][X2; 03] p[X3; 03, 03] p[X4; 04, 04] p[ X5 05, 05] p[ X6; 06, I6]

satisfies H1 and H2 in Hypothesis 5.1.11, and so the theory of PDDA applies to A. We

construct the following elements of Fract(.4) (computations have been omitted here, but

can be found in Appendix B.2):

1
Xi6=X1— §X5X6_1

3
X6 = Xo + §X4X51 —3X3 X5 X+ X3X 2
X36= X3 — X2 X!

2
Xyg= X4 — gXngl

3

Xis=Xi6— X3,6X5:61 + ZX4,6X5};2

Xos = Xog — 3X56X54 + 2X376X476X5_762 - ng,Gng
X35 = X36 — ; 4,6X5;é

Xi4= X5 % 35X0s

Xp4 = Xo5 — §X§’,5X4,§

1
Xis=X14— §X2,4X3ii
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T, = X1,2 = X1,3

Ty = X2,2 = X2,3 = X2,4

T3 := X3,2 = X3,3 = X3,4 = X3,5

Ty = X4,2 = X4,3 = X4,4 = X4,5 = X4,6

Ts = X5,2 = X5,3 = X5,4 = X5,5 = X5,6 = X5

Tg = X672 = X6,3 = X6,4 = X6,5 = X676 = Xs.

From the theory of the PDDA, we have that for each j € {2,--- 7}, the algebra
AV = C(X;; | i = 1,---,6) is a subalgebra of Fract(A). Since (X7, ,X¢7) ==
(X1, , Xg), it follows that AT = A.

We recall the skew-symmetric matrix in Subsection 2.2.3 below:

o 3 1 0 -1 -3
-3 0 3 3 0 =3
-1 -3 0 3 1 0

M —
0O -3 -3 0 3 3
1 0 -1 =3 0 3
3 3 0O -3 -3 0
Observe that A := A® = C[T},---,Tg] satisfies the relation T,T; = p T;T; for all

1 <4,5 <6, with y1;; € M, hence A is a Poisson affine space. Set € := 117575 and
Qs := T5TyTs. One can verify that €2, and €, are Poisson central elements of A. That
is, {Q;,T;} =0foralli=1,2,and 1 < j < 6. We now want to successively pull 2; and
), from the Poisson affine space A into the algebra A using the PDDA of A discussed

above. Through a direct computation, one can confirm that:
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Ql = T1T3T5
= X13X33X53
1
= X14X34X54 — §X2,4X5,4
1
= X15X35X55 — §X2,5X5,5
3 1 1.,
= X16X36X56 — §X1,6X4,6 -3 2,6X5,6 + §X3,6
3 1 1.,
= X1X3X5 - —X1X4 - —X2X5 + —Xg,
2 2 2
and
QQ = T2T4T6
= X94X44X64
2
= Xo5X45X65 — §X§,5X6,5
2
= X2,6X4,6X6,6 - §X§,6X676
2 2 3
= XX Xo — 5 3 X6 — gX2X§ +2XIX2 — 3X3X, X5 + §XZ.

As a result, 9, and 5 are also Poisson central elements of A for each 2 < ] <7
since Fract(AYW) = Fract(.A). We now want to show that the Poisson center of A is a
polynomial ring generated by €2; and €2 over C. The following discussions (similar to that
of the non-commutative algebra U (G) in Subsection 2.2.3) will lead us to the proof.
Set §; == {)\T;’T;ff o T8 | ij,- -+ ,ig € N} for each 2 < j < 6. One can observe
that S; is a multiplicative system of non-zero divisors of AY) = C(X;; | forall i =

1,---,6). One can therefore localize AY) at S; as follows:

Note, the set 3J; := {T7' | n € N} is a multiplicative set in both AU) and AUHY for each
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2 < j <6. It follows from the discussions in Subsection 5.1.8 that
AW — pG+D -1
J J
Similar to (2.2.1), one can verify that

R; =R, 12", forall 2<j<6.

Again, the localization

%1 = %2 [Tl_l]

also holds in R, since T} generates a multiplicative system in fRs. In fact, R, is the Pois-
son torus associated to the Poisson affine space A. As a result, &, = C[T, .- | T5 !,
where T;T; = 11,;T;T; for all 1 <i,j <6 and p;; € M. Similar to (2.2.2), we construct

the following embeddings:

A=RCRe =R TR =R C Ry =R:2, !

C Ry =RT;" C Ry = R0, ' C Ry (5.2.1)

Note, the family (Xflj : --Xé“f}), where k; € N if ¢ < j and k; € Z otherwise is a PBW-
basis of :; for all 1 <i,j < 7. Therefore, the family (T{* Ty> Ty T TE TR Vi, .. koez is

a basis of R;.
5.2.2 Lemma. Zp(R,) = C[QF", Q5]
Proof. Obviously, C[QF!, Q5'] C Zp(R,). For the reverse inclusion, let y € Zp(R;).

Then, y can be written in terms of the basis of R; as:

v= Y T

(7’7 J],)EZG
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One can verify that {y, 71} = (=37 —k+m+3n)yT;. Since y € Zp(R,), it follows that
—3j—k+m+3n=0.

Similarly, {y, 1>} = (3i — 3k — 31 4 3n)yT5. Since y € Zp(R;), we have:
3i—3k—3l+3n=0.

Following the same pattern for 13,7y, T5 and Ty, one can confirm that

1+ 35 — 3l —m =0,
37 + 3k — 3m — 3n =0,
—1+ k+ 3l — 3n =0,

—3i — 3j + 3L + 3m =0.

We already know the solution to this system of equations asi =k =mand j=1l=n

(see the proof of Lemma 2.2.4). One can therefore write
y= Y auyNTLLLT = Y CaupyTGETTT = ) ¢ w9
(i,§)€22 (i.§)€z? (i.§)€22
This implies that y € C[QF, Q5] as expected. [ ]
5.2.3 Corollary. 1. Zp(%g) = C[Ql, QQ]

2. ZP(A) - C[Ql,QQ].

Proof. 1. Clearly, C[21, Q2] C Zp(R3). For the reverse inclusion, let y € Zp(R3). Then,

y can be written in terms of the basis of f3 (recall, T; = X 3) as:

y= Y ap Ty,

(7/7 ,TL)GN2 xZ4

Note, the generators 17, - - - | T of k3 satisfy the Poisson bracket of R;. Hence, following
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procedures similar to the lemma above, one will arrive at the conclusion that i = k =m
and j = | = n. Since 4,j > 0; it follows that y = >, ;e a ) TITITITITIT] =
D (ij)enz a(i.;Qi Q. This implies that y € C[Q, Q] as expected.

2. Similar to (1). [ |

5.2.4 Lemma. Zp(A) = C[Qq, Q).

Proof. Since fR; is a localization of QR;,, it follows that Zp(R;11) C Zp(R;). From
(5.2.1), we have that Zp(A) C Zp(R3). Observe that C[2y,Q2s] C Zp(A) C Zp(R3) =
C[S21, Q). Hence, Zp(A) = C[€2y, Qs]. [ |

5.2.5 Poisson H—invariant prime ideals of A of at most height 2. We begin this
section by showing that (€2;) and (€),) are Poisson prime ideals. Note, the data of the
PDDA of A and expressions for £2; and 25 in the previous subsection will be very helpful
in the proofs of Lemmas 5.2.6 and 5.2.7. In fact, Lemmas 5.2.6 and 5.2.7 are similar to
Lemmas 2.3.1 and 2.3.2 respectively, as a result, the strategies of their proofs are also
similar. Recall that (O)r denotes an ideal generated by the element O in any arbitrary
ring R. Where no doubt arises, we will simply write (©).

Recall that v; : P.Spec(AUTD) — P.Spec(AY) for all j € {2,---,7}, and ¥ :=
Py o0 : P.Spec(A) — P.Spec(A). Let Q € P.Spec(AY). If T} = X,; ¢ Q,
then we already know that ¢;'(Q) = QS;' N AU = P € P.Spec(AUTY) for all
j€{2,---,7} (see Subsection 5.1.8). Observe that (7}) and (73) are both elements of
P.Spec(A). Note, A = A and A? = A.

The following result shows that (77) € Im(¢)) and that (€2;) is the Poisson prime

ideal of A such that ¢((2)) = (T1).

5.2.6 Lemma. () € P.Spec(.A).

Proof. We will prove this result in several steps by showing that:
1. (T1) € P.Spec(A®).

2. <X1,4T3 — %T2> € PSpec(A(4)) [note, <T1>[T3_1] N A(4) = <X174T3 — %TQ)]
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3. (X15T5 — 1Xo5) € P.Spec(A®) [note, (X1 4T3 — 2 To)[T '] N AG) =
<X1,5T3 - %X2,5>]-

4, <X1,5T3 — %X275>[T571] N A(G) = <QI>A<6)7 hence <Ql>_A(G) € PSpeC(A(6))

5. () 40 [T ] NA = (Q1) 4, hence (1) 4 € P.Spec(A).

We proceed to prove the above claims.

1. One can easily verify that A® /(T}) is isomorphic to a Poisson affine space of
rank 5. Hence, (7)) is a Poisson prime ideal in A®).

2. Set [ := (X415 — %Tg). One can verify that {X;4,I} C [ foralli=1,--- 6.
Therefore, I is a Poisson ideal in A®. In addition, A® /I is isomorphic to a polynomial
ring in five variables which is a domain, hence, I is a prime ideal. Since I is both Poisson
and prime ideal, it is a Poisson prime ideal in AW

3. Similar to (2).

4. Observe that Q) = X573 — 1Xo5 = T3 " in AQT]. Since () €
P.Spec(A®), we want to show that (/)75 ']NA® = (Q)) 4@ . Observe that () 4 C
(U [TsH N A®). We establish the reverse inclusion. Let y € ()[T5 ] N A®). Then,
y € (U)[T5']. There exists i € N such that yT: € (Q)). Hence, yT¢ = Qjv, for
some v € A®). Furthermore, since A® [T; '] = A©[T; '], there exists j € N such that
vT? = o' for some v' € A It follows from yT¢ = Qv that yTi7 = QT = Qo'
Hence, yT9 = QT50" = Qu0/, where § = i + j + 1 (note, 4 T5 = Q; in A©). Let
S={seN| I e A® . yTg = Qv'}. Since § € S, we have that S # (). Let s = s be
the minimum element of S such that y7:° = Qv for some v' € A©). We want to show
that so = 0. Suppose that sy > 0. Since T5 is irreducible, y7:° = Qv implies that 75 is
a factor of Q; or v'. Clearly, T is not a factor of €2, hence, it must be a factor of v". Now
A® can be viewed as a free C(X 5, X256, X3, T4, T5) —module with basis <T§> con” One
can therefore write v/ = 22:1 &Tf, where B € C(X16, Xo6, X346, T4, Ts). Returning
to yT5° = Qv', we have that yT5° = O, >/, BeTs . This implies that y7:° ™" = Q0"
where v = 22:1 ﬁngfl e A Consequently, sy — 1 € S, a contradiction! Therefore,

so="0and y = Qv € () 4. Hence, ()75 NA® C () 4 as expected.
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5. The proof is similar to (4). We want to show that (Q;) 4 = () 40 [T5 '] N A.
Note, ()4 C (1) 40 [T5 '[N A is trivial. Let y € (1) 46 [T; ']N.A. Then, there exists
i € N such that yT¢ = Qv for some v € A©. Furthermore, since A9 [T, '] = A[Ty ],
there exists j € N such that vT] = v’ for some v/ € A. It follows from 3T = Qv that
yT? = Quv', where § = i + j. Similar to (4), one can easily verify that § = 0. Hence,

y = W' € (1) 4. Consequently, () 40 [T3 ] NAC ()4 n

Similarly, the following result also shows that (75) € Im(v), and that (€2;) is the

Poisson prime ideal of A such that ¥((€2)) = (T%).

5.2.7 Lemma. () € P.Spec(A).

Proof. We will also prove this result in several steps by showing that:
1. (T3) g5 € P.Spec(A®).
2. (Ty) 4y € P.Spec(AW).
3. (To) 40 [T '] N AP = (X 5Ty — 2T3), hence (X5 5Ty — 2T5) € P.Spec(A®).
4. (Xo5Ty — 3T [T 1N AO® = (D) 40, hence (Xo6Ty — 2X3 ) € P.Spec(A©).
5. (XoeTy — 2X54)[T5 '] N A = (Qs), hence () € P.Spec(A).

We now proceed to prove the above claims.

1. Observe that A®) /(T5) is isomorphic to a Poisson affine space of rank 5 which is
a domain. Hence, (T3) is a Poisson prime ideal in A®)

2. Similar to (1).

3. Recall from the PDDA that 7, = X5 — §T§T4_1. We want to show that
(To) a0 [T '] N AP = (X5 5Ty — 2T3). Clearly, (Xo5Ty — 2T3) C (To) 40 [T '] N A®)
For the reverse inclusion, let y € (Tb) 4 [T ] N A®). Then, y € (1) 4 [T, *]. Hence,
there exists ¢ € N such that yTj = o1y, for some v € AW Furthermore, since
AD [T = AT, there exists j € N such that vT] = o' for some v/ € A®

It follows from yT; = vTy that yTy ™/ = vI{Ty = v' (Xy5 — 2T5T ") . Consequently,
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yTy = Qv', where Q) := Xo5Ty —2T5 and d =i+ j+1. Let S={s e N | €
AC) Ty = Q4u'}. Since § € S, we have that S # (). Let s = s, be the minimum
element of S such that yT7° = Q) for some v/ € A®). Suppose that sy > 0. We
want to show that s, = 0. Since 7} is irreducible, y7,° = Qv implies that 7} is a
factor of €2, or v'. Clearly, T} is not a factor of 2, hence, it must be a factor of v'.
Now A®) can be viewed as a free C(X15,Xa5, 15,15, Ts)—module with basis (Tf)gm.
One can therefore write v/ = ZZ=1 ﬁng, where e € C(Xy5, Xo5,T5,T5,T6). Given
YTy = Qu0', we have that yT° = Q7. BeTE. This implies that yT5°™" = Q40"
where v’ = 22:1 Bng_l c A®). Consequently, sy — 1 € S, a contradiction! Therefore,
so=0and y = Q' € (). Hence, (1) 4 [T, 1] N AP C (€0) as desired.

4. The proof is similar to point (3). Note, Q) = Xy57y — %Tg’ = XoeTy —
2X3 . We want to show that (5) 4 [T5 '] N A® = () 4@ . The inclusion (€25) 4 C
(Q5) 4 [T5 ] N A© is trivial. For the reverse inclusion, let y € (Q5) 4 [T5 ] N A©
This implies that there exists i € N such that y7¢ = v(, for some v € A®). Since
AO T = AO[Ts Y, there exists j € N such that vT? = o' for some v/ € A®
Therefore, yT? = v'SY,, where § = i + j. An argument similar to point (3) above will
reveal that § = 0. As a result, y = v'Q = (Q) 4. Consequently, () 4 [T *]NA®
(€24) 46) as expected.

5. Note, Q) = X, 5Ty —2T5 = QT ' in A[T; ']. We want to show that (€5) 4 [T5 ']N
A = (Q). Clearly, () C (%) 40[Ty '] N A. For the reverse inclusion, let y €
() 4o [T5 '] N A Then, y € (Q) 40 [T5']. Hence, there exists i € N such that
yTg = Qv, for some v € A©®. Furthermore, since A9 [T '] = A[T; '], there ex-
ists 7 € N such that vT] = o' for some v/ € A. Now, yT} = Qv implies that
yIg° = QLu'Ty = Q9v', where sg = ¢ + j + 1. Note, 2y = Q4T in A. Similar
to point (3), one can easily show that so = 0 and y = Qv € (Qy). As a result,

(Q5) 40 [T '] N A C (Qy) as desired. [ |

Observe that (T}, Ty) and (T, Ts) are Poisson prime ideals of A. In the next lemma,

we will show that (T, T3), (Ts, T3) € ¢ (P.Spec(A)).
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5.2.8 Lemma. (T}, Ty), (T, T3) € )(P.Spec(A)).

Proof. Let JU) & P.Spec(AVY) for all 2 < j < 6. We already know that JU+D =
JOT N AU € P.Spec( A7) provided T ¢ J9). Note, J@ = J and A7) = A.
We begin by showing that (T3, T5) € 1»(P.Spec(.A)).
Set J1(32) = <T1,T2> € P.Spec(A®). Observe that T3 ¢ J1(32) Therefore, Jl(i,)[T;l] N
AW = Suppose that 7, € J 42) Then, since Jl(gz)[T’l] = J1(42)[Tfl], we have that
T, € Jl(g)[ 1nAW = J1(42) [T N AG) = J12, a contradiction! Therefore, T ¢ J12
Hence, J; 2)[ NTNA® = J12 Suppose that T5 € J12 Then, T5 € J(4)[ T, 1N A®
J1(52) [T, 1N AW = J1(72), a contradiction! Therefore, Ty ¢ J1,2' Hence, J1,2 [T51NAG) =
Jl(g). Similarly, one can show that Ty ¢ Jl(g). Hence, Jl(?Q)[TG_l] NA = Jy 5. Therefore,
there exists .J; o € P.Spec(.A) such that ¢(.J,2) = (T4, T%).
We finally show that (T3, 73) € ¢(P.Spec(.A)).
Set Jz(fé) := (T, T3) € P.Spec(A®). Similar to (1), one can verify that T} ¢ Jéjg for all
j = 4,5,6. By an induction on j (note, j = 4,5,6), we have that J23[ 1N AU+ =
Jéf;rl). Therefore, there exists J2(73) = Jy3 € P.Spec(A) such that ¢(Ja3) = (15,75). A

In A, recall that Q; = T\ 13T and Qy, = T,TyTy. Observe that €y, are both
elements of (T7,75) and (T, T3). In the above lemma, we know that J; 5 and Jy 3 are
the elements of P.Spec(A) such that ¢(.J12) = (T1,1s) and ¢(J23) = (I3, T5). In the

next lemma, we show that J; 5 and J, 3 contain €2; and (2.
5.2.9 Lemma. (2, and (), are elements of .J; , and Jy 3.

Proof. Recall that ©; and €2, are central elements of A for all 2 < j < 7. Given the set-
up in the proof of Lemma 5.2.8, we know that €2, Qs € J1(32) = (T3, T3). By an induction
on j (where j = 3,4,5,6), one can confirm that ;,Q, € J12[ N AU = Jl(f;l).
Therefore; Qq, Q5 € Jy 5.

Similarly; ©,9Q, € J2(43) = (T3, T3). By an induction on j (where j = 4,5,6), one

can confirm that ©;,Q, € J23[ N A = Jg(f;rl). Therefore, 1, Q5 € Jo 3. [ ]
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We now want to find the height one Poisson H —invariant prime ideals of .4, and
show that the height 2 Poisson H—invariant prime ideals of A contain those of height
one. Of course, the zero ideal (0) is the only height zero Poisson H—invariant prime
ideal.

Let the torus H := (C*)? acts by Poisson automorphisms on A via:

h - Xl = 051X1 h- X2 = OZ?OZGXQ h - X3 = OJ%CYGXg

h‘X4 :(1:1)’06(,23)(4 hX5 :a1a6X5 th; = a6X67

for all h := (ay, ag) € H. This H—action is rational. Furthermore, ©2; and 2, are Poisson
‘H —eigenvectors. Hence, (£21) and (€23) are Poisson H—invariant prime ideals.

Set 01 := idpgpec(a). For all 2 < j < 6, define 0; := 0; 1 o ¢;. Then, 0; :
P.Spec(AUFY) < P.Spec(A). The map 6; is injective [35, Section 2.3]. Let (X, 1)p
denote the smallest Poisson ideal in A7) containing X ;1. It follows from [35, Lemma
2.2] that there is a surjective Poisson algebra homomorphism g; : AW — AU+D /(X 11)p
given by g;(X; ;) = Xij41 = Xij+1 + (Xjj41)p for all 1 <i < 6. Denote the kernel of

g; by ker(g;) and the image of ¢ by Im(¢)). We have the following lemma.
5.2.10 Lemma. [35, Proposition 2.8] Let P € P.Spec(.A). The following are equivalent:
e P e lm(v),

e for all 2 < j <6, we have P € Im(6;_1) and either X;; = X; ;.1 & 0;,(P) or
er(g;) € 674(P).

Note, the map ¢ induces a canonical embedding from H—P.Spec(.A) to H—P.Spec(A).
Observe that {(7;) | ¢ = 1,---,6} is the set of only height one Poisson H—invariant
prime ideals we have in A. Since 1/ preserves the height of a prime ideal, if '/"}({T})) €
P.Spec(.A), then it is a height one Poisson H—invariant prime ideal in A for all 1 < i < 6.
For example, we already know that =1 ((7})) = (Q) and 1 ((T3)) = (Qs). Therefore,

(©1) and (€2s) are height one Poisson H —invariant prime ideals in .A. We will show in
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the next lemma that (€2;) and (£2,) are the only height one Poisson H —invariant prime

ideals we have in A.
5.2.11 Lemma. For each j € {3,4,5,6}, (T};) & 1 (P.Spec(A)).

Proof. Suppose that there exists j € {3,4,5,6} such that (T}) € ¢(P.Spec(A)). Then,
there exists P € P.Spec(.A) such that ¢/(P) = (Tj) 4, where ¢ := 1); o - -1g. Set
PY .= (T}) s». Since T; € PY it follows from Theorem 5.2.10 that ker(g;) C PU).

The rest follows in cases.

e When j = 3, then ker(gz) € P® = (T3) 4. One can easily deduce from the
Poisson bracket of A that {X34, X714} = —X14X34 — Xa4. This implies that
Xoy = —{ X34, X14} — X14X54 € (X34)p = (T3)p. It follows that g3(Xy3) =
Xo4 + (T3)p = 0. Hence, Xo3 = Ty € ker(gs) C (T3) 4, a contradiction!

Consequently, (73) & 1)(P.Spec(.A)).

e When j = 4, then ker(gy) C PY = (T}) s . From the Poisson bracket of A, we
have that X§75 = —%{X4,5,X175} € (Xy5)p = (Ty)p. Since g4 is a homomorphism,
it follows that g4(X3,) = (94(X34))* = X35+ (Ty)p = 0. Therefore, X3, = T3 €
ker(gs) C (T4) 4, a contradiction! Hence, (Ty) & 1(P.Spec(A)).

e When j = 5, then ker(gs) € P® = (Ts) 4. One can deduce from the Poisson
bracket of A that X5 = —5X36X56 — 3{X56, X35} € (Xs6)p = (T)p. It
follows that g5(X45) = Xy + (T5)p = 0. Hence, X, 5 =T} € ker(gs) C (T5) 49,
a contradiction! Therefore, (T5) & 1) (P.Spec(A)).

e Finally, when j = 6, then ker(gs) € P©) = (T§) 4. Similarly, one can verify that
Xs = XiXo — 5{X6, X1} € (Xo)p = (To)p. Now, g5(Xs56) = X5 + (To)p =
0. Therefore, X565 = T5 € ker(gs) € (Ts) 40, @ contradiction! Hence, (Tg) &
1 (P.Spec(A)).
In conclusion, (T;) & 1 (P.Spec(.A)) for all j € {3,4,5,6} as expected.
The corollary below is deduced from the above proof (i.e. the proof of Lemma

5.2.11). |
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5.2.12 Corollary. Let P € {(P.Spec(A)). If T; € P, then T}_4,--- ,T, € P for all

3<j<6.

Recall from Lemma 5.2.8 that there exist Jy» and J3 of P.Spec(A) such that
Y(J12) = (T, Ts) and (Ja3) = (I2,T5). As a result of Corollary 5.2.12, the Poisson
ideals (77,753) and (13, T3) are the only height two Poisson H—invariant prime ideals
of 1(P.Spec(.A)). Since 1) preserves Poisson H—invariant prime ideals and the height
of a Poisson prime ideal, it implies that J; 2 and Jy 3 are the only height two Poisson
‘H—invariant prime ideals of A. It follows from Lemma 5.2.9 that the height two Poisson

‘H—invariant prime ideals of A contain ; and .

5.2.13 Remark. Since the height two Poisson H —invariant prime ideals of .4 contain
Q; and 5, every non-zero Poisson H—invariant prime ideal of A will contain either
or €2,. Note, those Poisson H—invariant primes of at least height 2 will contain both ),

and (.

5.2.14 H —strata corresponding (0), (©2;) and (£22). In this subsection, we aim to find
the H —strata corresponding to (0), (1) and (€2;). We state the results in Propositions
5.2.15, 5.2.16 and 5.2.17. The proofs of these three propositions are similar to those of
Propositions 2.4.4, 2.4.5 and 2.4.6 respectively. As a result, we will only prove Proposition
5.2.15, and leave the remaining ones for the reader to verify. Note, all Poisson ideals in
A shall be written as (©), where © € A. However, if we want to refer to a Poisson ideal
in any other Poisson algebra, say R, then that Poisson ideal shall be written as (O)g,

where in this case, © € R.

5.2.15 Proposition. Let P be the set of those unitary irreducible polynomials P(€2, Q) €
C[Ql,QQ] with P(Ql,QQ) 7é Ql and P(Ql,QQ> 7é QQ. Then PSpeC<0>(A) = {<0>} U
{(P(€,)) | P(Q21,) € PYU {1 —a, 2 — B) | o, f € C}.

Proof. We claim that P.Speci)(A) = {Q € P.Spec(A) | 2,0 & Q}. To estab-
lish this claim, let us assume that this is not the case. That is, suppose there exists

Q) € P.Speciy(A) such that Q;,Qy € @Q, then the product €€, which is Poisson
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H —eigenvector belongs to (). Consequently, 2,y € (), h - Q@ = (0), a contradiction!
Hence, we have shown that P.Speci(A) € {@ € P.Spec(A) | 2,9 ¢ Q}. Con-
versely, suppose that () € P.Spec(A) such that €21, & @, then (1, ;, h-Q is a Poisson
‘H—invariant prime ideal of A, which contains neither 2, nor €25. The only possibility for
Mhen It - @ is the zero ideal since every non-zero Poisson H—invariant prime ideal of A
contains €y or Qy (Remark 5.2.13). Thus, (.4 h- @ = (0). Hence, Q € P.Specy(A).
Therefore, {Q € P.Spec(A) | €21, & Q} € P.Spec(o)(\A). This confirms our claim.

Since Q1,9 € Zp(A), we have that the set {Qi€, | 7,7 € N} is a multiplicative set
in A. We can now localize A as R := A[Q7",Q5"]. Given @ € P.Spec(y(A), the map
¢:Q — Q[Q', Q5" is an increasing bijection from P.Spec g (A) onto P.Spec(R).

Let us verify that R is Poisson H—simple before we describe P.Spec(R). Now, ¢
still induces a bijection between the set of those Poisson 7 —invariant prime ideals of
P.Spec(o) (A) and the set of Poisson H—invariant prime ideals of P.Spec(R). It is already
known that the set of Poisson 7 —invariant prime ideals of A that contains neither €);
nor (2, consists only of the zero ideal {(0)} (Remark 5.2.13). This implies that (0)g
is the only Poisson H—invariant prime ideal of R. Every Poisson H—invariant proper
ideal of R is contained in a Poisson H—invariant prime ideal of R. Therefore, (0)p is
the only unique Poisson H —invariant proper ideal of R. This confirms that R is Poisson
H—simple. It follows from [16, Theorem 4.2] that the extension and contraction maps
provide a mutually inverse bijection between P.Spec(R) and Spec(Zp(R)). From Lemma
5.2.4, Zp(A) = C[Qy, ], and so Zp(R) = C[Q", Q57]. Since C is algebraically closed,
we have that Spec(Zp(R)) = {(0) zp(r) FU{(P (1, Q2)) 2, () | P(1,€22) € PU{{ —
a,Q — B)z.r) | @, 8 € C*}. One can now recover P.Spec(R) from Spec(Zp(R)) as
follows: P.Spec(R)= {(0)} U {(P(1, %))n | P(Q, ) € PYU{(Q) — 4,2 — B |
o, 8 € C*}. It follows that P.Spec gy (A) = {(0) pNAFU{(P(21,22))rNA | P(21,8) €
PrHU{( —a,Q —BrNA|a,peC}.

Undoubtedly, (0)r N A = (0). We now have to show that (P(Q,L))r N A =
(P(21,89)), VP(21,82) € P,and (01—, Qo—FYrNA = (21—, Qo — ), Vo, B € C*,
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in order to complete the proof.

Fix P(Qy,8s) € P. Clearly, (P(Q1,22)) C (P(Q,Q5))r N.A. To show the reverse
inclusion, let y € (P(21,9))r N A. Since y € (P(4,85))r, it implies that y =
dP(4,8) for some d € R. Also, d € R implies that there exists i, 7 € N such that
d = aQ7'Q,7, where a € A. Therefore, y = aQ2;'Q,7 P(,Qy), which implies that
Yy, = aP(Q, Q). Choose (i,j) € N? minimal (in the lexicographic order on N?)
such that the equality holds. Without loss of generality, let us suppose that ¢ > 0, then
aP(24,8s) € (7). Since (€2;) is a prime ideal, it implies that a € (€,) or P(€y,s) €
(Qq). Since P(£21,Qy) € P, it implies that P(Q1,Qs) & (). Hence, a € (©4), which
implies that a = t€2; for some ¢ € A. Returning to yQi€, = aP(Q,,), we have that
Yy, = 10, P(Qy, Q). Finally, yQ Q) = tP(Qy, Q). This clearly contradicts the
minimality of (7, 7), hence (i,5) = (0,0). As a result, y = aP(21,Qs) = (P(Q4,8)).
Consequently, (P(€21,€:))r NA = (P(£21,5)) for all P(£21,€s) € P as desired.

Similarly, we show that (0 — a, Qs — B)p N A = (1 — a,Qy — B); Vo, 5 € C*.
Fix a, 5 € C*. Obviously, (21 — a,Qy — ) C (O — a, Qs — B)r N .A. We establish
the reverse inclusion. Let y € () — a,Qs — B)g N A. Since y € (1 — o,y — ()R,
we have that y = mo(Q1 — @) + ng(Qy — 5), where mg,ng € R. Also, mg,ng €
R implies that there exists 4,5 € N such that my = mQ;'Q,7 and ny = nQ;'Q,’
for some m,n € A. Therefore, y = mQ7°Q,7(Q1 — @) + nQ7°Q,7 (Qy — (), which
implies that yQiQ) = m(Q — a) + n(Qy — B). Choose (i,j) € N? minimal (in the
lexicographic order on N?) such that the equality holds. Without loss of generality,
suppose that @ > 0 and let f : A — A/(Qs — 3) be a canonical surjection. We have
that f(y)f(21) f () = f(m)f(2 — ). It follows that f(m)f( — a) € (f(2)).
Note, (2 — ) & (f(€1)). It implies that f(m) € (f(21)). Therefore, I\ € A such
that f(m) = f(A)f(€). Consequently, f(y)f(u)'f(2) = f(A)f()f(h — ).
Since f(2;) # 0, it implies that f(y) () f() = fF(N)f(Q — a). Therefore,
y Q) = MQy — a) + N(Qy — ), for some X € A. This contradicts the minimality

of (4,7). Hence, (i,7) = (0,0) and so y = m(2; — a) + n(Qy — ) € (1 — a, Qs — ).
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In conclusion, () —a, Qs — B)rNA= (1 —a,Qs — ), Vo, € C*. [ |
5.2.16 Proposition. P.Speciy(A) = {(Q21)} U{{,Q - 3) | B € C}.
Proof. The proof is similar to that of Proposition 2.4.5. |
5.2.17 Proposition. P.Speciq,)(A) = {(Q2)} U {{1 — a, ) | o € C*}.
Proof. The proof is similar to that of Proposition 2.4.6. |

5.2.18 Corollary. The Poisson ideal (21 — «r, Q2 — [3) is primitive in A for each (o, 8) €
C2\ {(0,0)}.

Proof. Since the Poisson ideal (€2 — a, {2y — [3) is maximal in its respective strata for

each (a, 8) € C*\ {(0,0)}, it is also primitive (see Proposition 5.1.7). [ |

5.2.19 Proposition. Let (o, 3) € C*\{(0,0)}. The Poisson prime ideal (Q; —a, Qy— 3)

is maximal in A.

Proof. The proof is similar to that of Proposition 2.4.8. Suppose that there exists a
maximal Poisson ideal I of A such that (2, —a, Q2 —3) & I & A. Let J be the Poisson
‘H—invariant prime ideal in A such that I € P.Spec;(.A). By Propositions 5.2.15, 5.2.16
and 5.2.17, J cannot be (0), (€21) or (€22), since either of these will lead to a contradiction.
Every non-zero Poisson H—invariant prime ideal contains €2; only or €5 only or both
(Remark 5.2.13). Since J # (1), (Q), it implies that J contains both ; and .
Moreover, since J C I, it implies that Q;,Qy € I. Given () — «, Qs — ) C I, we have
that 2 — a, Qs — B € I. It follows that o, 5 € I, hence I = A, a contradiction! This

confirms that (€, — «, Q25 — ) is a maximal Poisson ideal in A. [ |

5.3 Semiclassical limit of A, g

In Chapter 3, we studied the simple quotients A, g. Similarly, in this section, we will

also study the simple quotients of A = C[Xj,-- -, X;], which we denote by A, 5 (note,
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a,f € C*\ {(0,0)}). We will conclude that A, s is the semiclassical of the non-
commutative algebra A, 3, and close this section by finding a C—basis for A, 3.

Let o, 8 € C*\ {(0,0)}, and set

A
<Ql—04,92—5>‘

A =

We denote the canonical image of X; by z; := X; + () — «, Qs — ) for each i €

{1,---,6}. The algebra A, g is commutative, and satisfies the following two relations:
3 1 1
L1305 — ST1T4 — ST + §x§ = q, (5.3.1)
" 25 2 3 90222 — 3 o
2T4Tg — 3T3Te — 3T2T; + 2x5x; — 3x3x405 + 5%4 = B. (5.3.2)

We also have the following extra relations in A, 4.

5.3.1 Lemma.

(1) Ig =20+ 31‘11‘4 + Toky — 2$1I3$5.

2 8 4 4 16 8

(2) 23 =23 4+ —ax3T6 + —T1T3T4T6 + ~ToT3T5Tg — — QT T5Tg — —T1T4T5Tg
3 9 3 9 9 3
16 5, 5 3 2 5 8 3
+ —X{T3TETe — —Toly — - QT — 4010425 + —T1X3T5 + 203T4%5 — = T2T4T
9 9 3 3 3
2
— §IL‘1$2$5ZL’6.

8 4
(3) 2314 = 20wy + Towams + 271 + §ax1:c3x6 + 4ai 37476 + §x1w2x3x5x6

8 8
3 2. .2 3. .2 3 2 2. .2
— 8T T4T5T6 — §m1x2x5x6 + 3 T\ X3TET6 — 51’1{[‘21’5 — 8ax 1wy — 12772475

16
+ Sxfxgxg + 4w 1237405 — 201X9T 46 — ?&xf%x@
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, 2 16 , 16 16 16 )
(4) z3x; = gﬂxg + —aTg + —ox TaTE + g (%2T5Ts + 5 (1356 + 972576

9 3
160 ,, 80, , 64

8 2 64 3 2 2 3
+—9c1x2:1:3w5x6 — QT T5Tg — —— QX Tl — L1 LyL5Te — ——T1X2X5T¢

9 9 9 3 9

8 8 160 ,

3 2 2 3 2, .3 4
—gTatsls — ZOTsT; + 4z w375 + g P15l — 16z r4my — 310275

4 8 o 32 ., 5 16 4 9 6 , 9
—§x1x2x4x5x6 + §ﬂx1x6 + —Qar 3T + —T]X3T4Tg + §x1x2x3x5x6

9 3
32 8 64
4 2 2 2 2 4 2 2
—?xlm%xﬁ - §x1x2x4x6 + daxyxs + 2z9142; + 4P 205 + §x1x3x5x6
2 32 3 32 2 4 2 3 2.2
——X9T3T4Tg — goaxlxg, + Exlxgxg) + §x1x3x4x5w6 — gxlxgwg,xﬁ.

Now, the commutative algebra A, 3 is a Poisson C—algebra with the Poisson bracket

defined as follows:

{ze, 21} = =329 {xs, 11} = —11203 — 9 {x3, 29} = —3wo13

{24, 1} = —203 {24, 25} = —3wozy — 4oy {14, 73} = —3x374

{w5, 01} = 105 — 205 {5, 10} = —623 {5, 23} = —w3205 — 314

{5, 24} = —3x425 {z¢, 21} = 3w126 — 325 {w6, 2} = 3x226 + 924 — 182375
{26, 23} = 627 {26, 24} = —3w4m6 — 422 {26, 75} = —37576.

Since (2 —a, 2y — ) is a maximal Poisson prime ideal of A (Proposition 5.2.19), A, s is
a simple domain. Moreover, A, 3 is noetherian since it is a factor algebra of a noetherian

ring A.

5.3.2 Remark. The Poisson algebra A, s is the semiclassical limit of the non-commutative

algebra A, 3.

Let a, 3 # 0. Recall that Q; = T1T3T5 and Qy = ToTyTs in A. There exists a

multiplicative set S, g such that

Ry
<T1T3T5 — o, TyTyTs — B>’

AOCWBS;’E = 3204,5 =

where |, = C[T{,--- | T;'] is a Poisson torus associated to the Poisson affine space
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A. Let t; := Ty + (N T3Ts — o, TyTyTs — B) denote the canonical image of T} in £, 3 for
each 1 <14 < 6. The algebra &, 5 is a Poisson torus generated by -+ tF' subject
to the relations:

ty = at;'t;! and to = Bttt

>~

One can verify that 2, 5 = C[t3', #5712, t¥']. One can also verify that this isomorphism
holds when either & = 0 or 5 = 0 (see Section 3.1 for a similar construction). Henceforth,
we will identify 2, 5 with C[t3", t5",t5", ¢3! for all (a, 8) € C\ {(0,0)}.

Set Az := A/(Qy — B), B € C. Denote the canonical image of X; in Ag by
7= X; + (Qy — f3) for each 1 < i < 6. It can be verified that A, 5 = Az/(Q — a).
Note, Az satisfies the relation:

2 4 4 4
B = S0 - SREG + BT+ BB — SR+ 2RAT, (533)
5.3.3 Proposition. The set § = {71 0/ 03" 0,555 0™ | (€,4, 7, k,1,m) € {0,1} x N°}

is a C—basis of Ajg.

Proof. Since (TI_, X'); cy is a basis of A over C, we have that (II°_,7,"); cy is a

spanning set of Az over C. We want to show that § is a spanning set of Ajg. It is
sufficient to do that by showing that £} 43243 £y £ £5" can be written as a finite
linear combination of the elements of § over C for all i1,--- ,ig € N. We do this by an
induction on i4. The result is clear when i, = 0. For i, > 0, suppose that

P AR AR L U T TN ~k~E~1

BB GG R = ) aen B T T
(Ev)el

where v := (i, j, k,l,m) € N°, I is a finite subset of {0,1} x N° and a,) are complex

numbers. It follows that

11 o~ 13 ~ta+]l ~is ~de ~i~j sk ~E+l ~l~m
T1 To "T3 "Xy T "Tg = E A(ep)T1 T2" XT3 T4 T5 Tg
w)ET

(€
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We have to show that 75/ 73 7, T L5 7™ € Span(§) forall (§,v) € I. The result is ob-

AAAAAAAAA

vious when ¢ = 0. For € = 1, then using (5.3.3), one can verify that 7175’ 73" 7,75 7™ €

Span(§). Consequently, 77 A A R L DAL Span(§). Therefore, § spans Ag.
We proceed to show that § is a linearly independent set. Note, the ordering <4

in the proof of Proposition 3.2.1 (see item &) will be helpful in this part of the proof.

Suppose that

AAAAAAAA

(Ew)el

It follows that

" e XIXIXEXSXIXD = v(0, - B),
(Ew)el

where v € A Write v = 37, ., b(i,...7n)X{X§X§XiX§"‘Xg, where J is a finite
subset of N® and b; ...,y are complex numbers. From Subsection 5.2.1, we have that

QQ = X2X4X6 — %XE?XG — %XQX? + 2X§X§ — 3X3X4X5 + %Xf It follows that:

Y e XIXSXEXIXIXP = ) b Xi XS XEXIXDXE(Q) — B)

(Ew)el (4, ,m)eJ
3 o
- Z Eb(lvvn)XngXgXi+2Xngg + LT<47
(4, ,m)eJ

where LT, contains lower order terms with respect to <, (see item & in the proof of
Proposition 3.2.1). Moreover, LT, vanishes when b(;... ,y = 0 for all (i,---,n) € J.
One can easily confirm this when the previous line of equality (right hand side) is fully
expanded.
Suppose that there exists (4, j, k,{,m,n) € J such that by j k. 1.m.n) 7 0.

Let (¢/,j',K',I',m’,n’) be the greatest element of J with respect to <4 such that

biir jo o 1ty 7 0. Note, the family (X7 X3 X5 X X X7, .. nen is a basis for Aand LT_,
contains lower order terms. Hence, identifying the coefficients of X¥ X3 X X! +2xm' X1’
we have %b(i’,j’,k/,l’,m/,n’) = 0. Therefore, by j/ 1 17,m ny = 0, a contradiction! As a result,
D jkdmmy = O for all (i, 5.k, 1,m,n) € J, and 3¢ e; aen XiXIXEXTXLXD = 0.

Consequently, a; ;) = 0 for all (£,4,5,k,1) € 1. [ |
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We are now ready to find a basis for A, g.

5.3.4 Proposition. The set 5 = {zizla§ e2alal | (e1, €2,1,7,k, 1) € {0,1}% x N*} is

a C—basis of A, p.

Proof. Since the set § = {&\" T2 3 T, 75 76" | (i1, 12,15, &, 75, 16) € {0,1} x N*} is
a C—basis of Az over C (Proposition 5.3.3) and A, g is identified with A5/<§1 —a), it

11,92 .93 € .15 .06 ; ;
follows that (21 25 T3 1305 T ) (5, 9.5 ¢.i5,i6) {01} x> IS @ spanning set of A, 3 over C. We

want to show that 3 spans A, s by showing that ei'eZeiieleisel® can be written as a finite
linear combination of the elements of B over C for all (i1, 4o, 13, &, 15,76) € {0,1} x N°.

By Proposition 5.3.3, it is sufficient to do this by an induction on 73. The result is obvious

when i3 = 0 or 1. For i3 > 1, suppose that

11,92 .93 ).€ .05 .06 i,.0 €162 .k, .1
Ty Xy T3 LyTs Tg = E A(ey,e0,0) L1 XT3 Ly L5Lgs
(e1,e2,0)€l
where v := (i,7,k,1) € N*, a(c, ) are complex numbers, and I is a finite subset of

{0,1}% x N*. It follows from the inductive hypothesis that

i1 12 i3+l € is i i g e1+1 e k1
Ty Ty Ty TilsTg = E Oler,e2,0) L1 XT3 Ty T
(e1,e2,0)€l

We need to show that zizjay M aPakal € Span(P) for all (e, ex,v) € I. The result is

obvious when (€1, €2) = (0,0), (0,1). Using Lemma 5.3.1(1),(3), one can also show that
s ag T a@akal € Span(P) for all (e1,€;) = (1,0), (1,1); and i, j, k, 1 € N. Therefore,
ozl € Span(P). As a result, B spans A, 5.

We proceed to show that § is a linearly independent set. Note, the ordering <j
in the proof of Proposition 3.2.2 (see item &) will be helpful in this part of the proof.

Suppose that

i J €1, € k |
E : ey e0,0) T1 T2 %5 Ty’ T5Tg = 0.
(e1,e2,0)€l
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Then, we have that

~1
E Q(e1,e2,0)T1

(e1,e2,0)€T

in Ag, where v € Ag. Set w :=

~j~el g~k

o) T3 e e = (S — a)v

~

of N°. One can write v in terms of the basis § of A as

. b ~j~j~k~~l~m ~i~j~k~l~m
V= w1 2" T3 Tals Te  + CyT1 T X3 X5 T

weJy

weJ2

(i,7,k,1,m) € N°, and let J; and J, be finite subsets

= ~ o~ o~ ~ o~ ~ o~ ~2
where b,, and ¢,, are complex numbers. Note, 2y = 7,375 — %xlm — %1’21’5 + %1’3 )

Given this expression, and the relation (5.3.3), one can express the above equality as

follows:

(Bl Fat3
E QA(ey,e2,0 )$1 Ty T3 1, ey 66

(6175272)61

where T is defined on the next page.

Z b 1'1 [EQ ZL‘3kI'4ZE5 Tg (Ql — O./)

weJy

~i~ G~k o~ ~m A
+ E CoT1 TP T3 T T (21 — @)

wEJz
~fo~ G~k ~ ~ ]~
=> bwmlleJ-%'B MR T T
wEJl
Z il o~ G o~ k43~ ~mtl
_ b ’L+ ]xg + l_5 x6m+
w€J1
_ §c pitlainks olom
w1 2" X3 TyTs Tg
weJo

1 o
+ E ngfL’l T T3 I5 Tg +T,
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~idl o~ o~k o~ o~ ~itl ~1 ko~ ~] ~
T = E legle_ {L'le'g Ty ZL‘Gm + E Tngxll—i_ T2 +jl‘3 T4 ZL‘6

weJy weJy
il ~ bl o~k ~ 143 ~m il ~f kA2 142 ~m
+ E rsbp@' T’ T a s ag™ + E rabyp@ T T T3 Ty g
weJ1 weJ1
it~ G~ k]~ ko~~~
+ E 7“5ng1’+ o 5" ™4 E Tgwal AR DL PR
weJy weJ1
Z ik~ ~la~m Z il ~f k]~ ~ ] ~m
+ 7’7bgﬁ371 l’QJIg T4Ts Tg + 7’81)&.’171 .CCQJLC?, 1’4.1’5 Te
weJy weJq
il ~f k1~ ~m it~k ~I4+1 ~m
+ E ToCuT1 XT3 T Tg o+ E T0CwT1 Ty’ T3 s T T
weJo weJo

+ Z T110Qaf1if2j@kf5lf6m
wE J2
Note: rq,--- ,ry; are some non-zero rational numbers.

Observe that T contains lower order terms with respect to <3 (defined in #, see the
proof of Proposition 3.2.2) in each monomial type (note, there are two different types of
monomials in the basis of Ag; one with Z; and the other without z; ). Now, suppose
that there exists (¢,7,k,l,m) € Ji and (4,7,k,l,m) € Jo such that b jxm) # 0 and
Clijikim) 7 0. Let (vi,v2,v3,vs,v06) and (wy,ws, w3, ws,ws) be the greatest elements
of J; and J, respectively with respect to <3 such that by, v, v5,05,06) AN Cluwy ws ws,ws,we)
are non-zero. Since § is a linear basis for Ag and T contains lower order terms with
respect to <3, we have the following: if w3 — v3 < 2, then identifying the coefficients

V1 V2 S U2 N s

6 1 . . . . .
of 71" 1313 T475"° 16", we have 3b(v1 va,0s,0506) = 0, @ contradiction!  Finally, if

WL W2 EWs T2 ws 6 e have

wg — vy > 2, then identifying the coefficients of 13
%C(whwz,wg,w&wﬁ) = 0, another contradiction! This implies that either all b; j i m.n) or all
C(i,j,km.n) are zero. Without loss of generality, suppose that there exists (i, j, k, m,n) € Js
such that c(; jxmmn) is not zero. Then, b(; jrmn) are all zero. Let (wy,ws, ws, ws, we)
be the greatest element of Jy such that c(uw, ws,wsws,we) 7 0. Identifying the coefficients

1,0 W S Ww3+2 S ws S We

of 7, 75" x5 Ts °Zg ° in the above equality, we have that %c(wl,m%,w&%) =0,

a contradiction! We can therefore conclude that b jrmn) and cgjxmn) are all zero.
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Consequently,
~i~j~e~eg ~k D
E ey enw)T1 T2 T3 Ty T5 Tg = 0.
(e1,e2,0)€T

Since § is a basis for Ag, it implies that a(c, ¢, ) = 0 for all (€1, €2,v) € I. Therefore, B

is a linearly independent set. ]

5.3.5 Corollary. Let v = (i, j,k,1) € N> x Z?, I represent a finite subset of {0,1}? x

N2 x Z2, and (a(e; e,0)) (e1,e2,0)e1 D€ a family of complex numbers. If
7 ] €1 EthJtl _ 0
Alere2,0)T112€3 Lglsle = U,
(€1,e2,0)€

then a(c, ¢,y = 0 for all (€1, €,v) € 1.

Proof. The result is obvious when k,[ > 0 due to Proposition 5.3.4. When k (resp. [) is
negative, then one can multiply the above equality enough times by ¢5 (resp. tg) to Kkill

all the negative powers and then apply Proposition 5.3.4 to complete the proof. |



Chapter 6

Poisson derivations of the

semiclassical limits of A, 3

In this chapter, we compute the Poisson derivations of A, g. We employ the same strategy
used in computing the derivations of the non-commutative algebra A, g in Chapter 4.
We begin by finding the Poisson derivations of a Poisson group algebra by following a
pattern similar to [40]. We conclude that every Poisson derivation of the Poisson group
algebra is the sum of an inner Poisson derivation and a scalar Poisson derivation. Since
the Poisson torus is a Poisson group algebra, we have that every Poisson derivation of a
Poisson torus is the sum of an inner and a central/scalar Poisson derivation. Knowing
the Poisson derivations of the Poisson torus, we embed each of the Poisson algebra A, 3
into a suitable Poisson torus, and then extend every Poisson derivation of A, 3 uniquely
to the Poisson torus. We then restrict the Poisson derivations of the Poisson torus back
to A, 3, and conclude that the Poisson derivations of A, g are all inner when o and 3 are
non-zero. However, when either a: or 3 is zero, we conclude that every Poisson derivation
of A, g is the sum of an inner and a scalar Poisson derivation. More precisely, the first
Hochschild cohomology group of A, s is of dimension 0 when « and 3 are non-zero
and 1 when either o or [ is zero. The results in this chapter are congruent to their

non-commutative counterparts.

148
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6.1 Poisson derivations of Poisson group algebras

Osborn and Passman have studied the derivations of the twisted group algebras [40,
§1&2]. In this section, we produce the Poisson version of their results. That is, we
will study the Poisson derivations of the Poisson group algebras. Where applicable,
we will maintain their notations. Let G be a finitely generated abelian group and K
be a field with characteristic zero. A Poisson group algebra K3[G] is a commutative
K —algebra which has a copy G := {g | g € G} of G as a basis and satisfies the Poisson
bracket via {Z,y} = Mx,y)zy = Ax,y)7Ty for all z,y € G;and A : G x G — K
(note, Zy = Ty). The map \ satisfies the following properties: A(y,z) = —A(z,y) and
Az, yz) = Az, y) + Mz, z). Obviously, A(z,y) = 0 if and only if {z,y} = 0.

For example, take the additive group G = Z2%, and let C|[G] be a group alge-
bra generated by z*! y*! over C with a basis G = {2’y | (i,j) € G}. One can
define a Poisson structure on C[G] via {2y, 2%y'} = A((4,7), (k, 1))z *yi ! where
A(4,7), (k1)) := il — jk. In general, K3[Z"] is a Poisson torus of rank n over the field
K for some A\ : Z" x Z" — K, where Z" is the usual additive group.

For any v € K3[G], one can write v as 7 = >.,C9 with g € G and ¢, € K.
Note, ¢, = 0 for almost all ¢, € K. The set supp(y) := {g € G | ¢ # 0 in v} is
called the support of ~. Furthermore, set C := {g € G | {g,z} = 0 for all x € G} and
A(z) :={g € G| {g,z} = 0}. One can observe that C' and A(Z) are both subgroups

of G. If g1, , g, are the generators of G, then C' =, A(g;).
6.1.1 Lemma. The Poisson center Zp(Kp[G]) of Kp[G] is Kp[C].

Proof. Clearly, Kp[C] C Zp(Kp|G]). For the reverse inclusion, take v = >3 ¢, €
Zp(Kp[G]). It follows that 0 = {,Z} = 3 ¢,{7,7} = 3, c,M(g, )g7 for any z € G.
Consequently, A(g,z) = 0 for all g € supp(y). This implies that supp(y) C C, hence,
v € K3[C]. [ |

6.1.2 Remark. Let e be the identity element of G. One can easily observe that

Zp(Kp|G]) = K if and only if C' = {e}.
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Central and inner Poisson derivations. Let 0 : (G,-) — (K3[C],+) be a group
homomorphism. That is, 8(xy) = 6(x) + (y) for all z,y € G. Define the K —linear
operator D := Dy by D(z) = 0(x)z for all z € G. We claim that D is a Poisson derivation
of K3[G]. To establish this claim, we need to show that D(zy) = D(z)y + zD(¥)
and D({z,y}) = {D(2),y} + {z,D(y)} for all z,y € G. Now, D(zy) = 0(zy)Ty =
O(xy)77 = 0(x)77 + 0(y)37 = D(#)j + D (5). Secondly, D({z, 7}) = Az, y)D(&7) =

O(zy) Az, y)ry = O(zy){z, 9} = [0(x) + 0(y){z, 9} = 0(x){7, 9} + 0(y){7, 4} =
{0(x)z, 5} + {2,0(y)y} = {D(2), 4} +{z,D(®)} (note: {0(x),y} = {7,6(y)} =0,
since f(x) and O(y) are Poisson central elements). This establishes our claim. Call any
derivation D in line with this construction a central Poisson derivation. If Zp(K[G]) =
K, then call D a scalar Poisson derivation. Observe that D(7) € Kp[Cx] for all z € G.

Lety=3,c0 € K|G], where ¢, € K, and ham,, := {7, —}. It is well known that
ham,, : K3[G] — K3|G] is a derivation called the hamiltonian derivation associated to
7. Moreover, ham,(z) = {7,%} = > Mg, 7)c,g7 € Kp[Ga] for all z € G. Observe
that the elements of C' N supp(y) do not have any effect on the map ham,. That is,
ham. = ham, ,; for all t € C' N supp(y) and i € K. As a result, one can always assume
that C' N supp(y) = 0. Therefore, ham,(z) € Kp[(G \ C)z] for all z € G. Let us call
the hamiltonian derivation ham, an inner Poisson derivation. We have the following

theorem.

6.1.3 Theorem. Every Poisson derivation of K|G| is uniquely the sum of an inner

Poisson derivation and a central Poisson derivation.

Proof. Let D be a Poisson derivation of K3[G]. Then, for x € G, we have that D(7) €
K}[G]. Hence, D(Z) = 3, o bu(x)h =Y, .o br(x)ha'Z. Now, the map G — G with

1

h — hx™" is bijective, and so

T) = Z ay(x)gz

where g := hz~! and a,(x) := by, (). Note; a, : G — K and a,(x) = 0 for almost all
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z €.
Since D is a Poisson derivation, we have that D(zy) = D(z)y + D(y) for all

x,y € G. As a result,

ag(ry) = ag(x) + ay(y).
Secondly, D({7,y}) = {D(%), 4} + {Z, D()}. Now,
D({z.5}) = Ma,y)D(@g) = Y _ Mz, y)ag(xy)gzy. (6.1.1)
On the other hand,

{D(z),5} +{z,D(y) Zag gwy}+zag )iz, gy}
= Zag {9z, v} +Zag 1z, 97}
= Z 0y ()N (g2, y) + ag () A, 91)] 7T
= Z ag(2)A(g: y) + A2, 9)] + ag (1) N, ) + Az, )]g27

=Y @ y)ag(ay) + ag(2)Mg,y) — ag(1)A(g, )|z

g

(6.1.2)

Since D({z,y} = {D(z),y} + {Z,D(y)}, comparing (6.1.1) to (6.1.2) reveals that

Mz, y)ag(ry) = M, y)ag(zy) + ag(x)A(g,y) — ag(y)A\(g, T).
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This implies that

ag(2)A(g:y) = ay(y)A(g, ). (6.1.3)

Suppose that g € C, it follows that A(g,y) = A(g,z) = 0 for all z,y € G. Since

ag(zy) = ay(x)+a,(y), themap 6 : (G,-) — (K3[C],+) given by §(x) = dec aq(z)g
is a group homomorphism. Hence, 6 defines a central Poisson derivation Dy of Kp[G],

where

Dy(z) = Y _ ag(x)gz. (6.1.4)

geC

Now, let g € C. There exists y € G such that A(g,y) # 0. Fix y and define

Take any arbitrary element x € G. It follows that

_ ay(y)A(g; )
coM g, x) = T

From (6.1.3), we have that

ag(YA(g,r)  as(x)\g,y)
wMo.m) = Mg.y)  Mg.w) = a5(),

forall z € G.

Define v € Kp[G] as v := 3 ¢ ¢,g. Then,

ham,(z) = {7,2} = Y ¢ Mg, 2)gT = Y _ a(x)gz. (6.1.5)

g¢C ggC

From (6.1.4) and (6.1.5), one can conclude that every Poisson derivation D of K3[G]
can be written as D = Dy + ham,. This decomposition of D into an inner Poisson

derivation (ham,) and a central Poisson derivation (Dy) is actually unique. This is
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because Kp|Gz] can be decomposed as Kp[Gx] = K3[Cx]® K3[(G\ C)z]. Now, every
central Poisson derivation maps 7 to an element of the subspace K[Cz], and every inner

Poisson derivation maps Z to an element of the subspace K3[(G \ C)z]. [ ]

6.1.4 Corollary. Suppose that C' = {e} (equivalently, Zp(K3[G]) = K). Then, ev-
ery Poisson derivation of K3[G] is uniquely the sum of an inner and a scalar Poisson

derivation.

6.2 Preliminaries on the Poisson derivations of A, s
Let 2<j <7and (a,8) € C*\ {(0,0)}. Set

A0)
<Ql —OZ,Q2—5>7

7o
A =

%)

where AU is defined in Subsection 5.2.1, and §; and €, are the generators of the center
of AY (Subsection 5.2.1). Recall that A7 = A = C[Xy, -+, X]. It follows that
Ag)ﬁ = A, . For each 2 < j <7, denote the canonical images of the generators X, ; of
AV in Afj)ﬁ by x; ; for all 1 < ¢ < 6. Since the data of the PDDA of A, g is going to be
useful in this section, we present them below (note, we deduce them from that of A in

Subsection 5.2.1):

1 -1
T1,6 = L1 — 5?[]51‘6

3
—1 —1 3 .—2
Top = Tg + —TaTg — 3T3T5Tg + TpTg

2

2,.—1
€36 = T3 — T

2
3,.—1
Ta6 = T4 — §$5$6

3
—1 —2
T15 = T16 — T3,6T56 + 7 T46T55

4

9 9
2 1 —2 2 3
Ta5 = T — 3T5 6056 + §$376$4,6‘755,6 - Zx4,6x5,6

_ —1
T35 = T3 — 51’4,6555,6
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_ - 1 2 -1
T14 =T15 3x3,5x4,5
_ . 2 3 -1
2,4 = T25 3373,5904,5
1 -1

T13 = T14 — §$2,45L“3,4

1 :=x12 =713

lg := X992 = To3 = Tay
I3 1= X32 = X33 = T34 = T35

by = X4 = Ty3 = Ta4 = Ty5 = Typ

l5 1= X52 = XT53 = T54 = Ts5 = Ts6 = T
t6 = T¢,2

Z6,3 = Toa = Los — L6 — L-

Note, the ¢; are the canonical images of T} in .A((f)ﬁ forall 1 <¢<6.Foreach2 < j <7,
define S; := {)\t;-jt;ﬁf ot i, ,ig € N, A € C*}. One can observe that S; is a
multiplicative system of non-zero divisors (or regular elements) of Ag)ﬁ As a result, one

can localize Ag)ﬁ at S;. Let us denote this localization by R;. That is,
R — A(j) g1
] T oa,B~g

Again, set X, := t* | k € N}, with 2 < j < 6. Then, X, is a multiplicative set in both
J 7 J

Aﬁf}g and Ag’;l). Therefore,

() 11 _ AU+ -1
A = AUV

o, 7 J

One can also verify that (similar to (2.2.1)):
Rj=Rjn%; ", (6.2.1)

for all 2 < j < 6, with the convention that R; := A, .
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Similar to (4.1.2), we have the following tower of algebras:
Ri=Aap CRs=R:Eg' CRs=Re¥5' CRy=Rs2,' CRs. (6.2.2)

Observe that R3 = AS)BS?)_l = R,X; " is the Poisson torus &, 5 = C[t3', t7' 15!, 5]

in Section 5.3.

Linear bases for R3, R, and R;.

We aim to find a basis for R, for each j = 3,4, 5. Since R3 is a Poisson torus generated
by t£1, ... tZ! over C, the set {tit}tktl | 4,4, k,1 € Z} is a basis of Rs.

For simplicity, we set

f1 =714 Fy i=X1,4
210 =115 Zy:= X5
22 1 =T25 Z2 L= X275.

Basis for R4. Observe that

A@
<Ql —Oé,QQ—6>’

4 _
Aos =
where Oy = FiT3T5 — 1575 and Qy = ToTu T in AW (Subsection 5.2.1). Set

A(4)S—1
AW = 2 P ,
S (VN

where 5 € C. We will denote the canonical images of X, 4 (resp. T;) in Agl) by ;4

(resp. ;) for all 1 < i < 6. Observe that #, = Bﬂg_lﬂ_l

in .A(;)S;l. As usual, one can
identify R4 with Agl)&fl (Q — a).
The proofs of the following two propositions are similar to that of Propositions 4.1.2

and 4.1.4, nonetheless, we will still prove the results.
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6.2.1 Proposition. The set Py = { [ DS ABEHELS | (i1, 13,14, 15, 16) € N2 x Z3}
is a C—basis of R4.

~k3 ~kqg ~

Proof. One can verify that (fl t3 "ty t5 °fs is a basis of A(;)Sgl

>(k1,k3,-~-,k6)€N2><ZS
(the proof is similar to that of Proposition 4.1.1). Since Agl)S;l = AWS 1 /(Qy — B),
the family (fflt’g%{j%’g%’gG)(,ﬂ,,%,,,.,,%)GNQXZs spans R4. We show that B, is a spanning
set of Ry by showing that fi btk ¢53¢% can be written as a finite linear combination
of the elements of P, for all (ki, ks, -, ks) € N? x Z3. It is sufficient to do this by an

induction on k;. The result is clear when k; = 0. Assume that the statement is true for

k1 > 0. That is,

FUR RS =) " ap iRty + > bRy,
1€l lEIQ
where i = (il,i4,i5,i6> el CNx Z? and l = (ig,i4,i5,i6) el, C Nx 73. Note, a;

and b; are all complex numbers.

PSR Ee = fi (P ) =) apfiTHEERHE 4> by At PP,
i€l je€lz
Clearly, the monomial f* ¢/}t € Span(R4). We have to also show that fit5 ¢} t2t €
Span(B4) for all i3 € N and iy, 15,76 € Z. This can easily be achieved by induction on
i3, and the use of the relation fit; = at5' + 18t 'ts". Therefore, by the principle of
mathematical induction, 3, is a spanning set of R, over C.

We prove that 34 is a linearly independent set. Suppose that

D aifiHE + Y bttt = 0.

€l 1612

It follows that there exists v € Aﬁ U such that

Z zﬁ“ﬂutglstﬁ + Z b; t3 375\1241?525756 (Ql - Oé) v.

1€l 1612



Section 6.2. Preliminaries on the Poisson derivations of A, g 157

Write v = Zqﬁ“t}”ﬁ“ﬂ“’%ﬁ, with [ = (iy,i3,44,15,9) € J C N2 x Z3, and
leJ
_ ~ ~ ~n A PO PPN
¢, € C. One can easily deduce that ; = fitst; — %t2t5 = fitsts — %6t6 ty ts (note,

ty = ﬁtAG_ltz_l). It follows that

01 ~ig ~ip g ~i3 b4 ~15 g ~i1+1l Nzl ~ig ~ig+1 ~ig
E aifi ta ts te + E bjts "ta t5 e :E afi 37t ts s
€l 1612 leJ

1 i1~y ~ig—1 ~ig+1 ~ig—1
—E 55@]”1 i3ty t5 s
led

AilAigAi4Ai5Ai6
- E OéCLfl t3 t4 t5 tﬁ .
leJ

Let (wy,ws,wy,ws,wg) € J be the greatest element (in the lexicographic order on

. ~ky ~ks ~kqy ~ks ~kg
N2 x Z?) of J such that ¢(u, us wi,ws,ws) 7 0. Since <f1 ts ty ts tg )
(kl,k3,~~-,k6)€N2XZ3
w1l ~wz+1 ~wy ~ws+1 ~we

is a basis of A(4)S4’1, it implies that the coefficients of f; ts ty ts ts  in the

above equality can be identified as: c(uw, ws,wa,wsws) = 0- Hence, ciuw, wswaws,ws) = 0,

implies that

Ail/\’i4’\i5/\i6 i3~y ~i5 ~ig
E aifl t4 t5 t6 + E blt?’ t4 t5 tG = 0.
S ZGIQ

Consequently, a; and b; are all zero. In conclusion, B, is a linearly independent set. W

Basis for R;. We will identify Rs with A S:1/(Qy — B), where AP S =
A®ISS1/(Q) — a). Note, the canonical images of X5 (resp. T;) in AL will be de-
noted by ;5 (resp. tAZ) forall 1 < ¢ < 6. We now find a basis for AE?)S;I. Recall
from Subsection 5.2.1 that Q = Z,T3T5 — 3,15 and Qy = £,TyTs — 2T5T; in AP
(remember, Z; := X, 5 and Z, := Xy 5 ). Since 22t4t6—§t§t6 = [ and 2%5},—%2}1&; =«
in R5 and A,(f’)Sgl respectively, we have the relation z; = 2 (ZAIE), — ong_l) in AS?)Sgl

and, in R5, we have the following two relations:
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Z9 = 2(21t3 - thgl). (623)

3 3
£ = §(Z2t4 — Bt5Y) = 3ztsty — §ﬁtg1 — 3atyt; . (6.2.4)

6.2.2 Proposition. The set PB5 = {z?tétfﬁt?t? (&,41,14,15,76) € {0,1,2} x N? x ZZ}
is a basis of Rs.

~ kg

. . oy ~k3 ~ky ~Fk :
Proof. One can easily show that the family <z1k1t3 “ta st is

) (kl,kg,k4,k5,k6)€N2 x 72
a basis of Af)Sgl/(Qg — B) (the proof is similar to that of Proposition 4.1.3). Since
Rs is identified with AS’)Sgl (€, — B), we show that ZFkshatlstlo can be written as
a finite linear combination of the elements of Vs for all (ky, ks, k4, ks, ks) € N> x Z2. It

is sufficient to do this by an induction on k3. The result is obvious when k3 = 0,1 or 2.

For k3 > 2, suppose that

AU = Y aen ST,
(&i)el
where [ is a finite subset of {0,1,2} x N? x Z? and aeq) are all complex numbers. It

follows that

kn ks +1 ks gk k ko gk pka ks 4k i1 1 yig yis 4
AT = (Z11t33t44t55t66) ts = Z a(&@)zlltg tits le -
(§i)el
Now, 21§ tiati5¢ € Span(Ps) when & = 0,1. For & = 2, one can easily verify that
2SS € Span(Bs) by using the relation in (6.2.4). Therefore, by the principle of
mathematical induction, 5 spans Rs.

We now prove that B35 is a linearly independent set. Suppose that

Y aep ittty = 0.
€l
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Since Ry is identified with AT S5 /(Qy — B), we have that

Z e 2’1 'y t4z4tA5%tA6% <§2 - By,
(¢q)el

where v € A&S)Sgl. Write v = Z b Zl t323a141€;5t6 y with l = (iljig,i4,i5,i6) €
J C N° x Z? and b; € C. Given that Qy = Z,T,Tj; — 27375 in A® and the relation

(6.2.3), one can deduce that

~3~

~ e~ 2 3~ e~~~ o~
QQ = 22t4t6 — §t33t6 = 221t3t4t6 — 2@t4t5 t6 — §t3 tﬁ
Therefore,

~i & ~ig ~i5~ig A’L1+1 13+1 ’L4+1/\’L5/\26+1
E a(@)zl tg t4 t5 tﬁ E 2b t5 t6
] JjeJ
~ 23+3A14A15’\16+1
- E b s s
JEJ
g N3 ~ta+1l ~is—1 ~i+1
- E 20ébj21“t3 t4 t5 t6
jeJ
i3 ~14 15 i
—Eﬂbzl tg t4 t5 tﬁ.

jeJ

Let (wy, w3, wy, ws, we) € J be the greatest element (in the lexicographic order on N? x
~ky~k
Z*) of J such that b(u, wsws,wswe) 7 0- Given that (Zlkltg th 'ts 5756 )
(k1,k3, ko) EN3 x 22

w1+1t3w3+1t w4+1/\w5 ~wg+1 .

is a basis of A )5'5 , one can identify the coefficients of z; ts tg in

the above equality as: 2b(w17w37w4,w57w6) = 0. Hence, b(w, ws,ws,ws,05) = 0, @ contradiction!

Y s R E G~ 0
(&i)el

It follows that a(¢ ;) = 0 for all (£,4) € I. As a result, B is a linearly independent set. W
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6.2.3 Corollary. Let I be a finite subset of {0,1,2} x N x Z? and (a(e))icr be a family

of complex numbers. If

D e S =0,
(€d)er

then a(; = 0 for all (§,7) € I.

Proof. When i, > 0, then the result is obvious as a result of Proposition 6.2.2. For
14 < 0, multiply both sides of the equality enough times by ¢, to kill all the negative

powers of t4, and then apply Proposition 6.2.2 to complete the proof. |

6.2.4 Remark. We were not successful in finding a basis for Rg. However, this has no
effect on our main result in this chapter. Since R; = A, 3, we already have a basis for

R~ (Proposition 5.3.4).
6.2.5 Lemma. Zp(R;) = C for each 3 <i < 7.
Proof. Similar to that of Lemma 4.1.7. [ |

6.2.6 Remark. Recall the notations:

f13:$1,4 F1¢:X1,4
211 =215 Zy = X1,5
22 1 =T25 Z222X25.

Let (o, 3) € C%\ {(0,0)}. Given the above notations, we present the following selected
data of the PDDA of A4, s, listed at the beginning of this section, in a manner that would

be very useful in Subsections 6.3.1. They are as follows:

1 3
fi=ti+ §t2t3 ! r36 = l3 + 5754755 !

1, 1
Z1 = f1 + §t§t4 ! T1 = T16 -+ §t5t6 1
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zg =ty + gtgtf T3 = T30+ totg"
3, 2.5
T16 = 21+ T36l5 — Zt4t5 Ty =14+ §t5t6 .

The remark below will also be helpful in Subsection 6.3.1.

6.2.7 Remark. Fix n € N. Let Ry = K(uy, -+ ,uf', ul;, -+ ,uF!) be a commutative
algebra generated by the elements uy, -+ ,ufl, uZl|, -+ ,u! over the field K, with
1 <s<n+1(note, R,y :=K(uy,---,u,)). Then, for all f,g € R, we have that

- af g
As a result,

(51 in I S B ) in ) .41 d9—1 i3 in )
{uf" - uy a“j} =UUp Uy - Uy {ul,uj} T Uy Uy U3 Uy, {u2,u]}

in—1

- il In—1
oy gk

for all (i1,--- ,i,) € Z". Note, {u;, u;} = 0 whenever i = j.

6.3 Poisson derivations of A, 3

We are now going to study the Poisson derivations of A, 5. We will begin with the case
where both « and /3 are non-zero, and then proceed to look at the case where either «
or 3 is zero.

6.3.1 Poisson derivations of A, 5 (o, 3 # 0). Throughout this subsection, we assume
that « and (3 are non-zero. Let Derp(A) be the collection of all the Poisson derivations
of As s and D € Derp(A). Then, it follows from (6.2.1) that D extends uniquely to a
Poisson derivation of each of the series of algebras in (6.2.2) via localization. Hence, D
is a Poisson derivation of the Poisson torus Rz = C[t57, 17", ¢!, t¢']. As a result, D can
be written as

D = ham, + p,
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where p is a scalar Poisson derivation of R defined as p(t;) = \it;, i = 3,4,5,6. Note,
Ai € Zp(R3) = C and ham, := {z,—} : R3 — R3 with z € R3 (see Corollary 6.1.4).
We aim to describe D as a Poisson derivation of A, 5. We do this in several steps.

We first describe D as a Poisson derivation of R,.
6.3.2 Lemma. 1. x € Ry.
2. A5 = A+ Xs, p(f1) = —(A3 + Xs) f1 and p(t2) = —Asta.

3. D(xx4) = hamy(z,4) + Aszia for all K € {1,--- .6}, where \; := — (A3 + X5)
and )\2 = —)\5.

Proof. 1. Observe that Q := C[t7', 5", tZ"] is a subalgebra of both R3 and R,. Fur-
thermore, R3 = Ry[t;']. One can easily verify that z := t,t; 't is a Poisson central
element of Q. Since R3 is a Poisson torus, it can be presented as a free Q—module
with basis (t});cz. One can therefore write z € R3 as: = = Y

ez bjtg, where b; € Q.

bt

. _ - J —
Decompose « as follows: & = z_ + 2, where z; = 3", bjty and z_ 1= > . b,

Clearly, z, € R4. We now want to show that z_ € R4. Write z_ = Z];m_1 bjtg for some
m € Nyg.

Now, D(z) = ham,(z) + p(z) = ham,_(z) +ham,, (2) + (A4 — X5 + X¢)z € R4. We
have that ham,_ (2)+(As—A5+X6)z € Ru, hence, ham,_(z) € Ry. Note: {t3, 2} = 22t,

and {~,z} = 0 for all v € Q since z is Poisson central in Q. One can therefore express

ham,_(z) as follows:

ham, (z) ={z_,z} = Z bi{t), 2} = Z 2jb; 2t} € Ry

j=-1 j=-1
Let n € Ny, and set
(™= {{- {x_ z},2}, -, 2} € Ra.
S~—— —

n—times n—times
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We claim that

—m

() = (25)"2 bt

j=—1

for all n € N.y. Observe that

(" = ham,_(2) = ) _ 2jb;zt},

j=—1
hence, the result is true for n = 1. Suppose that the result is true for n > 1. Then,

—m —m

e(nJrl) _ {e(n), Z} _ Z (2j)n2nbj{té7 Z} — Z (2j)n+1zn+1bjté

j=—1 j=—1

as expected. By the principle of mathematical induction, the claim is proved.
Given that (™ = Y™ | (2)"2"b;t}, it follows that

—m

oy, = Z (2))"b;t}, where g, == (M2"" € Ry,

j=-1

The above equality can be written as a matrix equation in the form:

-2 —4 —6 -+ —2m boits? i
(=2* (=47 (=6)" -+ (=2m)*| | b_ot3” Ji2
(=2 (=4 (=6)° -+ (=2m)®| | bost5® | = | p
[(=2)™ (=)™ (=6)™ - (=2m)" ] [bomts™ ] | ]

-2 -4 -6 —2m
(=2 (=4)* (-06)* (—2m)?*
(=2° (=47 (=6)° (—2m)?
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is similar to a Vandermonde matrix (since the terms in each column form a geometric
sequence) which is well known to be invertible. This therefore implies that each b;t} is
a linear combination of the p, € Ry. As a result, bt € Ry forall j € {=1,---, —m}.
Consequently, z_ = z]_:m_l bjté € R4 as desired.

2. Recall that p(t,) = Aty for all k € {3,4,5,6} and A\, € C. From Remark 6.2.6,
we have that f; = t; + %tgtgl. Again, recall from Section 5.3 that ¢t; = atgltgl and

ty = Pty'tg! in Ry = Pop. Asaresult, fi = aty'ty! + 1685t 5" Therefore,
1
p(f1) == (As+ As)atg 't — 5 (As + Ad Xe) Bty 'ty g (6.3.1)

Also, p(fi1) € R4 implies that p(f;) can be written in terms of the basis B, of Ry

(Proposition 6.2.1) as:

p(f1) =D arfi + b3, (6.3.2)

r>0 s>0

where a, and b, belong to Q = C[tF*, 1, tF!].

—1,— 1 —1;—1,— ' - r i r—1yp—rgi—ryg—igi—r
fi= (O‘tza 5+ 55753 it 1) = Z (2) (@)'(B/2) M5t t5

=0

e (633)
where
=3 (D)@ e @\ o) (634
i=0
Substitute (6.3.3) into (6.3.2) to obtain

p(f1) =D aeits” + b, (6.3.5)

>0 $>0
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One can rewrite (6.3.1) as

p(fr) = dts", (6.3.6)

where d = —(Xs+ As)aty ' — 1 (Ag + Ay + A3) Bty gt € Q. Comparing (6.3.5) to (6.3.6)
shows that b = 0 for all s > 0, and a,.c, = 0 for all  # 1. Therefore, p(f1) = alcltgl.

Moreover, from (6.3.4), ¢; = %Bt;ltgl + atgl. Hence,

1 1
p(f1) = aiaits! = a (§5t21t51 + atgl) t;' = ajoty gt + §a15tg1t;1tg1. (6.3.7)

Comparing (6.3.7) to (6.3.1) reveals that a; = —(As + A3) = — (A6 + A4 + A3). Conse-
quently, A5 = X + As. Hence, p(f1) = —(Xs + Ag)ats 't — 2(Xs + X3) Bt5 117 gt =

—(Xs + A3) f1. Finally, since t, = Bt; 't5" in Ry, it follows that
p(t2) = —(Xe + Aa) Bty 15 = —(Ne + Ma)ta = —Asta.

3. Set A1 := —(A3 + A5) and Ay := —)\5, it follows from points (1) and (2)
that D(z,4) = hamy(x,4) + p(244) = hamy(z,4) + Aexxq for all K € {1,--- ,6}. In

conclusion, D = ham, + p, with x € Ry,. [ |
We now proceed to describe D as a Poisson derivation of Rs.
6.3.3 Lemma. 1. z € Rs.
2. M =3X3+ A5, s = =33, p(z1) = —(A3 + A5)z1 and p(z2) = —A525.

3. Set Ay := —(A3 + Xs5) and Ay := — A5, then D(z,,5) = ham,(z,5) + \wz 5 for all
ke{l,---,6}.

Proof. In this proof, we denote v := (7,7, k,1) € N x Z3.
1. We already know that 2 € Ry = Rs[t;']. Given the basis 35 of R5 (Proposition

6.2.2), x can be written as z = Z a(gyg)zitgtit’gté, where [ is a finite subset of
(Eu)el
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0,1,2} x N x Z? and a( ., are complex numbers. Write x = x_ + ., where
(577) —+

re= Y aewAtitithty and m_= Y a2ttt

(Eu)el (Ew)el
Jj=0 7<0

Suppose that there exists a minimum jo < 0 such that a¢; j, x1) 7 0 for some (£, 4, jo, k,1) €

I'and a;jry = 0 for all (€4, 50, k,1) € I with j < jo. Given this assumption, write

i 4€47 1kl
L= Z Qe A L3R EE LG

(&u)el
Jjo<j<-1

Let s = 3,6. Then, D(t,) = ham,, (t;) + ham,_(t,) + p(ts) € R5 for each s = 3,6.
This implies that ham,_(t;) € Rs, since ham,, (t5) + p(ts) = ham,, (t5) + Asts € Rs.
Set w := (4,7, k,1) € N* x Z*. One can therefore write ham,_(t;) € Rs in terms of the

basis B5 of R as:

ham,_(t) = Y bewit5tithts, (6.3.8)
(Cw)eJ
where J is a finite subset of {0,1,2} x N? x Z* and b, are all complex numbers.

When s = 6, then using Remark 6.2.7, one can also express ham,_(ts) as:

ham,_(te) = > 3(k+Jj —i)aew Zit5tthte.

(Ew)el
Jo<j<-—1

Comparing this expression for ham, _(ts) to (6.3.8) (when s = 6), we have that

S B+ — e AL = Y b i,
Sw)ed

(Ew)el (Ew
Jo<j<-1

As B5 is a basis for R; (Proposition 6.2.2), we deduce from Corollary 6.2.3 that

i 1€ 47 4k 4l . . ~1 . . .
Z2itstytet ) is a basis for Rs|t, "|. Now, at 7 = jy, denote v =
( 1talylslg (N k1T €{0.1.2)) 5[ 4 ] J Jo v

(i,7,k,1) by vy := (4, jo, k,1). Since v, € N x Z* (with jo < 0) and w = (i, 4, k,1) €
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N% x Z? (with j > 0), it follows from the above equality that, at v,, we must have
k=i— jo, (6.3.9)

for some (&, v,) € 1.

Similarly, when s = 3, then using Remark 6.2.7, one can also express ham,_(t3) as:

3 ) . . Qg
hamxf (t3> = — Z |:§6(32 — ]C — 3]0)a2,i,j0,k,l+1 + 2(@ + 1)aa(0,i+1,j07/€+1,l):| zltiotgté

+ > [(3i =k = 3j0)ajorn — 200 + 1aaq i jori1n] #itsty 5

+ Z [(32 —k— 3j0)a(172-,j07k7l) — 2(2 + 1>aa(2,i+1,j0,k+1,l):| Zitgtiotlgté + ’C,

where IC € Span (‘,Bg, \ {250t | (€4, 0, k1) € {0,1,2} x N x Z3}) (note, one will
need the following two expressions z, = 2(z1t3 — at; ') and 3 = 3z1tsty — 3atuty ' —
3

7/6756_1 from (6.2.3) and (6.2.4) to express some of the monomials in terms of the basis

PBs of R5). Comparing this expression for ham, _(t3) to (6.3.8) (when s = 3) reveals

that:

> bew#tstithts
(Cw)ed

3 .. . , i
= - Z {55(32 — k= 3jo)a@ijokir1 + 200 + D)o iv1 oty | 2t tEL

+ Z [(3i = k = Bjo)ao.ijors) — 200 + 1) i1 jor1n)] AALsty i

+ ) [(3i = k= 3j0)aq,ijows) — 200 + 1)aagis jorsrn] 2G5t + K.

We have already established that <z§t§tit’gté> is a basis for Rs[t;"].
(1€N;5,k,1€Z;£€{0,1,2})

Since vy, = (4,0, k,1) € N x Z3 (with jo < 0) and w = (4,75, k,1) € N? x Z* (with
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J > 0), it follows from the above equality that, at v,, we must have

3 : . .

56(32 —k— 3]0)a(2,i,jo,k,l+1) + 2(2 + l)aa(O,i+l,jo,k+1,l) = 0, (6310)
(32 —k — 3j0)a(07i7j0’k,l) — 2(2 =+ 1>aa(1,i+1,j0,k+1,l) = 0, (6311)
(3i — k — 3jo)aqijokty — 2(i + 1)aag,it1jo k1) = 0. (6.3.12)

Suppose that there exists (£, 1, jo, k, 1) € I such that 3i — k — 359 = 0. Then,

k=3(i — jo). (6.3.13)

Comparing (6.3.13) to (6.3.9) clearly shows that i — jo = 0 which implies that i = j, < 0,
a contradiction (note: i > 0). Therefore, 3i — k — 3jo # 0 for all (§,4,7,k) € I.

Now, observe that if there exists { € {0,1,2} such that ag;j, ey = 0 for all
(4,0, k,1) € N x Z3, then one can easily deduce from equations (6.3.10), (6.3.11)
and (6.3.12) that a; ok = 0 for all (£,4,jo, k,1) € I. This contradicts our initial
assumption. Therefore, there exists some (i, jo, k,1) € N x Z3 such that (e ijo,kyl) 7 0
for each £ € {0, 1,2}. Without loss of generality, let (u, jo, v, w) be the greatest element
in the lexicographic order on N x Z3 such that a(0,u,jo,0,w) 7 0 and ao; o,k = 0 for all
1> U.

From (6.3.11), at (¢, jo, k, 1) = (u, jo, v, w), we have:

(Bu — v — 370)@0,u,jo,v,w) — 2(u + L)aa ut1,jo,o+1,0) = 0.

From (6.3.12), at (4, jo, k,1) = (u + 1, jo, v + 1,w), we have:

(Su — U= 3j0)a(1,u+1,jo,v+1,w) - 2(U + 1)aa(2,u+2,j0,v+2,w) = 0.
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Finally, from (6.3.10), at (4, jo, k,1) = (u+ 2, jo,v + 2,w — 1), we have:

3 )
§ﬁ(3u — U — 3]0)a(2,u+2,j0,v+2,w) + 2(“ + 1)aa(0,u+3,jo,v+3,w—l) = 0.

Since 31 — k — 379 # 0 for all (4, jo,k,l) € I and u + 3 > u, it follows from the above

list of equations (starting from the last one) that

a0,u+3jo0+3w—1) = 0= A@ut2,jo0+20) = 0= A(1ut1,jo,0+1,w) = 0 = Q(0,u,50,0w) = 0,

a contradiction! Hence, a(; j,.k1) = 0 for all (i, jo, k, 1) € NxZ3. From (6.3.10), (6.3.11)
and (6.3.12), one can easily conclude that a(; j,x) = 0 for all (§,4,jo, k,1) € I. This
contradicts our initial assumption, hence z_ = 0. Consequently, z = x, € R; as desired.

2. From Remark 6.2.6, we have that zo = t5 + %t%tf. Since p(t,) = Aily, K €

{2,3,4,5,6}, with Ay :== — X5 (see Lemma 6.3.2), it follows that
2 3,—1 2 3,1
p(ZQ) = — )\5t2 + §(3>\3 — )\4)t3t4 = —)\522 + §(3>\3 — )\4 + )\5)t3t4 .
Furthermore,
2
D(ZQ) = hamx(zg) + p(Zg) = hamx(22) — )\522 + 5(3)\3 — )\4 + )\5)t§t21 < Rg,.

We have that (3\3 — Ay + \s5)t3t,; ' € R, since ham,(z2) — X522 € Rs. This implies that
(3A3 — A\g + A5)t3 € Rsty. Set w := 3X\3 — Ay + A5. Suppose that w # 0. From (6.2.4),
we have:

, 3
t3 = 3zitgty — 5@15(;1 — 3atyty

It follows that

3
wt§ = 3wzytsty — 3wa’t4t5_1 - §w/8t6_1 € R5t4'

Since t3, t4t; ' and ztsty are all elements of Rsty, it implies that t;' € Rsty. Hence,

1 € Rstats. Using the basis Bs of Rs (Proposition 6.2.2), this leads to a contradiction.
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Therefore, w = 0. That is, w = 3\3 — Ay + A5 = 0, and so Ay, = 3\3 + \5. This further
implies that p(z2) = — A5z as desired.
Again, from Lemma 6.3.2, we have that p(f1) = —(A3 + A5) f1. Recall from Remark

6.2.6 that 2; = fi + %t%t;l. It follows that

1 1
p(21> = — ()\3 + /\5>f1 + 5(2)\3 — )\4)75%@11 = —(/\3 + )\5)21 + 5(3)\3 - )\4 + /\5>t§t21

1
= — (>\3 + )\5)2’1 + 5(3)\3 — (3>\3 + )\5) + )\5)?5:2),2511 = —(>\3 + )\5)21.

Finally, we know that p(ts) = Agts. From the relation (6.2.4), we have:

3
t3 = 3zitaty — ataty ' — Eﬁtﬁl.

This implies that

2
ts! = £(3zlt3t4 —3atytyt —t3).

Apply p to this relation to obtain

2
—Xstg! = 3\ (@ (3z1tsty — Bataty ' — t§)> .

Clearly, A¢ = —3\3 as desired.

3. Set A; := —(A3 4+ A5) and Ay = —)\;. It follows from points (1) and (2)
that D(x,5) = hamy(z.5) + p(2.5) = hamg(x.5) + Axxx5 for all K € {1,--- ,6}. In
conclusion, D = ham, + p with x € R;. [ |

We are now ready to describe D as a Poisson derivation of A, s.

6.3.4 Lemma. 1. z€ A,p.
2. p(xy) =0forall ke {1,---,6}.

3. D = ham,.

Proof. In this proof, we denote v := (i, 7, k,l) € N? x Z?. Also, recall from the PDDA

of A, g at the beginning of this section that {5 = x5 and ¢ = .
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1. Given the basis B of A, (Proposition 5.3.4), one can write x € R; =
Aaplts'ts'] as

_ i J €1, €21kl
T = E : Aey,e0,0)T1T2T3 Ty Uslg,

(e1,€2,0) €l
where I is a finite subset of {0,1}* x N? x Z? and a, , ;) are complex numbers. Write

xr =x_ + x4, where

_ i 7 €1 ..€21kyl
Ty = E : A(ey,e0,0) T1 T2 Ty Ty t5tg,
(e1,e2,0)€T
k, 1>0
and
_ i 9 €1,..€21kyl
T = E A(ey,e9,0) L1 T2T5 Ty U5l
(e1,e2,0)€]
k<0 or I<0

Suppose that there exists a minimum negative integer kg or [y such that ac, e, i,jko,1) 7
0or ey ,e2.i,5,k,l0) 7é 0 for some (61, €2, i, j, k‘o, l), (61, €9, i,j, k’, lo) - I; and ey ,e0,irgk,l) = 0

whenever k < kg or | < ly. Write

_ i .0 €1 €2 1kl
L = E , Q(ey,e0,0) T1 T2 T3 Ty 5t
(e1,e2,0)€]
ko<k<-1 or [p<i<-1

Now, D(z3) = ham,, (x3) + ham,_(z3) + p(z3) € A, g. From Remark 6.2.6, we

have that x3 = 36 + t%tgl and 36 = t3 + §t4tg1. Putting these two together gives
_ 3,1, 2,1
T3 — t3 + §t4t5 + t5t6 .

Again, from Remark 6.2.6, we also have that t; = x4 — %tgtgl. Note, p(tx) = Auty, K =

3,4,5,6.
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Now,

3
p(l‘3) = >\3t3 + = (/\4 — /\5)t4t5 (2)\5 — /\G)tgtgl
3 3
= )3 (a:376 - §t4t5_1) + §(>\4 — Xs)tats 4 (25 — Ne)tatg
3
= \336 — 5(,\3 — Ag+ Xs)tats 4 (205 — Ng)titg !

.3 2.5 9\ _
= \3(w3 — tit5 ") — 5(Ag — M+ As) (x4 — gt;”tﬁ 1) tsh+ (205 — No)titg !

= )\31‘3 + @1$4t51 + Oéthtgl, (6314)

where oy = 2(As— A3 —A5) and s = (3X5 — Ay — Xg). Therefore, D(x3) = ham,, (x3)+
ham, (23)+Asz3+aizats  +astity ' € A, p. It follows that D(x3)tsts = ham,, (v3)tste+
ham,_(x3)tste + A3zstste + aizate + aoti € A, 5. Hence, ham,_(z3)tsts € A, s, since
ham,, (23)tste + Aszstste + aaxats + oty € Aq p.

Using Remark 6.2.7, one can verify that

ham,_(z3)tsts = Z Aer,ea) ((1+ 35 — 362 — k)t g Tkt
(e1,e2,0)€T

€1, .€2+1 1k 141 . Jj+1 k+1 l+1

—6lat ada a3 | (6.3.15)

Assume that there exists [ < 0 such that a(, ¢,k 7# 0. It follows from our
initial assumption that a(, c,ijki) 7 0. Now, at [ = [y, denote v = (4,7,k,1) by

vy = (4,7, k,1p). From (6.3.15), we have that

ham,_(x3)tsts = — Z 6loaye,, Ewo)x P tE3 el 4 7

(61,52720)61

where J; € Span (8 \ {wialaf aPtht | 61,6, € {0,1}, k€ Z and i,j € N}).

Set w := (i, j, k,1) € N*. One can also write ham,_(x3)tsts € A, 5 in terms of the
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basis B of A, 3 (Proposition 5.3.4) as:

ham,_(x3)tsts = Z b(q,62@)xixéx§1xfftlgté, (6.3.16)

(e1,e2,w)eT

where J is a finite subset of {0,1}? x N* and b(, ¢, ) € C. It follows that

i €1 € kgl i 0 €1 €2 1k+3 1l
E : D(er ) L1 0205 T 5t = — § , 6l0a(€1,ez,yo)x1$2$3 Tty Uty + T
(e1,e2,w)€J (e1,€2,v9)EL
0

As 3 is a basis for A, g, we deduce from Corollary 5.3.5 that

(mixéxglx?t’gtlﬁ)((61762&)6{071}2m2xzz) is a basis for A, g[t; ', t5 '] Since vy = (i, 4, k, ly) €
N? x Z? (with Iy < 0) and w = (4,7, k,1) € N* (with [ > 0) in the above equality, we
must have

6l0a(617627%) = 0.

Note, Iy # 0, it follows that Uler e2,5) = Qer,ensinjikilo) are all zero. This is a contradiction.
Therefore, [ > 0 (i.e. there is no negative exponent for tg).

Given that [ > 0, it follows from our initial assumption that there exists k = kg < 0
such that a(c, i j ko) 7 0- The rest of the proof will show that this assumption cannot

also hold. Set v, := (4, j, ko, 1) € N* x Z x N. From (6.3.15), we have that

ham,_(z3)tsts = — Z 3741(1(61,52&0)1’3%1:? xiz+1t15fot16+1 LV

(El ,€2 aﬂo)el

where V € T, := Span (P \ {ziafas aPtt, | 1,62 € {0,1} and i,5,1 € N}) . It fol-

lows that:
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hamh ($3)t5t6 =

g pko I+l i Ko 4l+1
- E: 3koa(0,0,0)T1L22ats tg " — E, 3koa(1,0,0)L1 L9324t 5" tg

(61762,2)61 (61,62,2)6[
— Z Bkoa(()’l,y)x’ingitlgoté“ — Z 3k0a(1,1@mixéxgxitlgotéﬂ +V.
(61,62,Q)€I (61,62,Q)€1
(6.3.17)
Write the relations in Lemma 5.3.1(2),(4) as follows:
2 2 8 4
13 =28 — Z29x4T6 + ~ X376 + — 21232476 + L1, (6.3.18)
3 3 9 3
2 16 8
2 2 2
=fws — = +—alrg o+ + o
T3xy 361:3 3:(;2333:64:1:6 5 a’xg 3 T T4T6 3ﬁx1x6
2 2, 32 5 o 16 4 2
~ 5 P1L204Ts + g OT1LTs + 3 L1374 + Lo, (6.3.19)

where L; and L, are some elements of the ideal A, st5 C J2. Substitute (6.3.18) and

(6.3.19) into (6.3.17) and simplify to obtain:

2
ham,, (63>t5t6 = E [)\1,15a(0,1,i,j,k0,1—1) + /\1,2Oé Q(1,1,4,5,ko,l—2)
+ M.3Bai 1o |t kot
1,3P0(1,1,i—2,5,ko,1—2) | T1T2L5 " Lg
+ g (Ao 00,1,k 1—2) T A2,280(1,1,4,5 k0,1—1)
i, ko 4l
+ A230A(1,1,i-2,5,ko 1-3) | T1 T T3t 5 g
+ E [/\3,1a(0,1,i,j71,k0,172) + A32000(1,1,i—1,j,ko,1—2)
i, ko 4l
+ A3,30(1,1,i—2,j—1,ko,1—3) T A3,40(0,0,4,5,ko,1—1) | T T2 Tats g
+ > a0 1i-17k00-2) + A28 105-1k01-2)

i 7 ko 4l /
+ AL30(1,1,i-3,5ko1—3) T A140(1,0,i,.ko.1—1)]T1 T T3Tat st + V7,

(6.3.20)
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where V' € J5. Also, As; := A (], ko, [) are some families of complex numbers which are
non-zero for all s,t € {1,2,3,4} and j,1 € N, except A\ 4 and Ay 4 which are assumed to
be zero since they do not exist in the above expression. Note, although each A, depends
on j, ko, [, we have not made this dependency explicit in the above expression since the
minimum requirement we need to complete the proof is for all the \,; existing in the
above expression to be non-zero, which we already have.

Observe that (6.3.20) and (6.3.16) are equal, hence,

€1 €2kl 2
§ Dy en,0) TL TS TP TR E [A11Ba0,1,1,.k0,i-1) + A1207 (1 105 ko l—2)
(e1,e2,w)ET

i 7 1ko 4l
+ )‘1,3/3a(1,1,i—2,j,ko,l—2)]951%755 lg
+ 3 X100 1,0 k00—2) + A2280(1 1,1 jkod-1)
+ Ao zaa ] thotl
2,3000A(1,1,i—2,5,ko,l—3) €E1I2$3
+ E [A3,10(0,1,6,j—1,k0,1—2) + A3,200C(1,1,i-1,5,k0,1—2)
i 7 ko4l
+ A3,30(1,1,i-2,j—1,ko,1=3) T A3,40(0,0,1,jko.1—1)|T1 2T L5 L
+ > 100 1i-1jkot—2) + A28 1051 k01-2)

i J ko 41 /
FA130(1,1,i-3,4,ko1—3) T A14Q(1,0,i,5.ko,i—1))T1 TpT3Tal5 L + V.

We have previously established that (xla:ngletktg)((61762@6{071}%1\]2%2) is a basis for

Aaslts', 5] (note, in this part of the proof I > 0). Since v, = (i, J, ko, l) € N2 X Z x N

(with ky < 0) and w = (4, j, k,1) € N* (with £ > 0) in the above equality, it follows that

MaBa©1ig ko i-1) F M20°A(1 11 koi—2) + AM3BAI1i—2,jk01—2) = 0, (6.3.21)
)\2,1aa(o,1,¢,j,ko,l—2) + )\2,25@(1,1,i,j,k0,1—1) + /\2,306G(1,1,z‘—2,j,k0,1—3) =0, (6-3-22)
A314(0,1,5,j—1,ko,1—2) T AB2Q0Q(1,1,i—1,j,ko,1~2) T A3.30(1,1,i—2,j—1,ko,1—3)

+ A3.40(0,0,ij,ko,i-1) = 0, (6.3.23)
A4 10(0,1,i—1,j,k0,1—2) T Ad.20(1,1,6,5—1,ko,1—2) T A4,30(1,1,i3,j,ko,1—3)

—I— /\4’4(1,(17071'7]'7]607[,1) = O (6324)
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From (6.3.21) and (6.3.22), one can easily deduce that

. 042)\1,2 )\1,3 6.3.2
A0 1igk0) = TGS L ko) T YA 2 k0 1); (6.3.25)
g a3
A1 1,05.k00) = — v —0(0,1,i5,ko,l—1) — = Q(1,1,—2,5,ko,1—2) - (6.3.26)
( ,4,2,7, O’) /6)\22 ( ,1,2,7,K0, ) /8)\22 ( PERY2 ,J,K0, )

Note, (e, es,i,jko,) = 0 Whenever i <0 or j < 0orl <0 forall e1,e; € {0,1}.

Claim. The coefficients a(0,1, ko) and a1,1,4,5,k,1) are all zero for all [ > 0. We now
justify the claim by an induction on [. From (6.3.25) and (6.3.26), the result is obviously
true when [ = 0. For [ > 0, assume that a(0,1,i,jk0,l) = 4(1,1,i,j,ko,) = 0. Then, it follows

from (6.3.25) and (6.3.26) that

2
G )\1,2 )\1,3
A(0,1,i,5,ko,1+1) = — B, A(1,1,i,5,ko,l) — —)\1 1a(1,1,i—2,j,k0,l)a
@y Mg 3
(1,1,i,5,ko,l+1) = ——5 )\22a<0,1,i,j,k0,1) - —5 )\22a(1,1,i—2,j,ko,1—1)-

From the inductive hypothesis, a(1,1,i,j.k0,0) = @(1,1,i=2,j,k0,0) = @(0,1,i,5,k0,) = Q(1,1,i—2,5,k0,—1)
= 0. Hence, a(1,1,ijko+1) = @(0,1,i,j,ko,+1) = 0. By the principle of mathematical induc-
tion, a(o,1,ijk0) = O(1,1,i4k00) = 0 for all I > 0 as desired. Given that the fami-
lies @(0,1,i,j,k0,0) and @155k, are all zero, it follows from (6.3.23) and (6.3.24) that
(0,0,4,5,k0,) ANd @(1,0,5.5,k0,1) are also zero for all (i, j, ko, 1) € N? x Z x N. Since ey se9,i,5,k0,1)
are all zero, it contradicts our assumption. Hence, x_ = 0. Consequently, z = x4 € A, 3
as desired.

2. From Remark 6.2.6, we have that x4 = 246 + %tgtgl =14+ %tgtgl. Again, from

Lemma 6.3.4, we have that A\;, = 3\3 + A5 and \¢ = —3\3. Therefore,
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2
p($4) = )\4254 4+ 5(3)\5 — )\G)tgtgl

= (3)\3 + )\5)1'4’6 + 2()\3 + )\5)t§tg1

2
= (3X3+ \s) (:1:4 - §t§t51> +2(As + As)titg !

4
= (3X\s 4 As)zy + §A5t§t6—1.
Hence,
4
D(ZE4) = hamx(m) + p(fL’4) = hamm(x4) + (3/\3 + /\5).174 + 5/\5t§t6_1 - Aaﬁ-

It follows that A\stits' € Aq g, since ham,(xy4) + (3A3 + As5)xs € A, p. Consequently,
Asts € A, gte. Clearly, A5 = 0, otherwise, there will be a contradiction using the basis of
A, s (Proposition 5.3.4). Therefore, p(z4) = 3A3z4 and p(t5) = 0. We already know from
Lemma 6.3.4 that p(tg) = —3\stg. From (6.3.14), we have p(z3) = Azzs + 3(As — A3 —
As)xats 4 (3Ms — Ay — Ag)t2tg L. Given that Ay = 3)3, A5 = 0 and \g = —3 )3, we have
that p(x3) = Aswz + 3Asz4t; " Now, D(x3) = ham,(z3) + p(x3) = ham,(z3) + Asz3 +
3\3x4t;" € Ay p. Observe that ham,(z3), \373 € A, 5. Hence, A\3zqt;' € A, 5 which
implies that A\sz4 € A, gts. Therefore, A3 = 0, otherwise, there will be a contradiction
using the basis of A, 3. We now have that p(z3) = p(z4) = p(z5) = p(zs) = 0. We

finish the proof by showing that p(z1) = p(x2) = 0. Recall from (5.3.2) that

2
ToTyle — §I§x6 — g&?gl’g + 2x§x§ — 3x3x475 + ixi = 0.
Apply p to this relation to obtain p(z2)z4z6 — 2p(x2)2 = 0. This implies that

p(x2) (x43:6 — %x?’) = 0. Since z416 — %x% # 0, it follows that p(x2) = 0. Similarly, from

(5.3.1), we have that

3 1 1,
T1T3T5 — §x1x4 — §x2$5 + §x3 = Q.
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Apply p to this relation to obtain p(z) (m3x5 — %m) = 0. Since z3x5 — %m # 0, we
must have p(x1) = 0. In conclusion, p(z,) =0 for all Kk € {1,--- ,6}.
3. As a result of (1) and (2), we have that D(z,) = ham,(x,). Consequently,

D = ham, as desired. [ |

6.3.5 Poisson derivations of A,, and A;3. One can observe that the process we
went through to compute the Poisson derivations of A, s (when a, 3 # 0) is similar
to the process we went through to compute the derivations of the non-commutative
analogue A, 3 (see Subsection 4.2.1). Similarly, when « or (3 is zero, then one can follow
procedures similar to Subsection 4.2.5 to compute the Poisson derivations of A, and
Ay 3. The computations have been done, however, for the avoidance of redundancy, we
are not going to include them here. We only summarize the results. Before we do that,

we compute explicitly the scalar Poisson derivations of A, o and Ay 3.

6.3.6 Lemma. Let (a,3) € C2\ {(0,0)}. Suppose that 1 and ¥ are linear maps of A, g

and A 3 respectively, and, are defined by:

19(5(]1) = —a, 19(1'2) = — X9, 19(1'3) = 07 19(5(]4) = T4, 19(1'5) = Ts, ’19(1'6) = 2[E6,

and

1§(ZE1) = —2I1, 1§(l’2) = —31’2, ’l§(l’3) = —Ts3, 19(174) = 0, ’l§<1’5) = T, 75(1'6) = 3$6.

Then, 9 and ) are C—Poisson derivations of Aqo and Ap g respectively.

Proof. We need to show that o) satisfies the following two relations (see (5.3.1) and

(5.3.2)):
3 1 . L,
T1T3Tx 21’1[E4 21‘2[)&'5 2[E3 = Q,
25 2 3 2 2 _ 3 5
ToXaTg 3953336 31’2355 + 2x57; — 3T374%5 + 2904 =0,
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and the Poisson bracket of A, s (see Section 5.3) when a # 0 and 8 = 0, and do the
same for ¥ when o = 0 and B # 0. We will only do this for the relation zyx3z5 — %xlm -
%szl’g, + %x% = « and the Poisson bracket {zg, 22} = 3xoxs + 924 — 18375 in both

cases, and leave the remaining ones for the reader to verify. We have:

ﬁ@g%%+xm@g%+xﬂw@g—gw@gm+xm@m
—%[79(.172)1‘5 —+ 17219<JZ5)] —I— 19(1’3)1’3

=0,
and

V({we, x2}) = V(3226 + 94 — 182375)
= 3[V(z2)xs + x2V(x6)] + 9V (x4) — 18]V (23)x5 + 239 (25)]
= 3(—x2x6 + 22276) + 924 — 182375
= 3r976 + 914 — 182375
= {we, 22}
= 2{wg, w2} — {ws, v}
= {2x4, x2} + {26, — 72}

= {U(x¢), 2} + {6, V(22) }.

When o = 0 and 3 # 0, we show that U satisfies the same relations as follows:

(o )wsws + ﬁ@@%+mwﬁmg—;wwﬁu+xﬁ@m

N = 8

[0(22) 25 + 220(25)] + O(23) T3

_ 3 LN o
= T1T3Tx 21’1]}4 2I2I5 2.133

=0,
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and

D({xe, 72}) = V(3x916 + 974 — 182325)
= 3[0(z2)x6 + 20 (26)] + 90(x4) — 18[0(3) w5 + 250 (5)]
—0
— 3{wg, w2} — 3{wg, 22}
= {3we, 2} + {w6, =322}

= {(5), 22} + {ws, V(22)}.

6.3.7 Remark. Let (o, 8) € C?\ {(0,0)} and X € C.

1. Every Poisson derivation D of A, is of the form D = ham, + p), where ham,
is an inner Poisson derivation of A, o, and p is a scalar Poisson derivation of A, o

defined as follows:

pa(z1) = —Axy px(z3) =0 px(Ts5) = Axs

pa(x2) = —Axg pa(xy) = Ay pa(x6) = 2 .

2. Every Poisson derivation D of Ay is of the form D = ham, + p,, where ham,
is an inner Poisson derivation of Ay 3, and p is a scalar Poisson derivation of A 3

defined as follows:

pa(z1) = —2A1, pa(w3) = —Azs pa(s5) = Aws

pa(x2) = —3Ax9 pa(xy) = pa(xg) = 3.
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6.3.8 Theorem. Given that A, = C[Xy, -, Xs]/({h1 — a, Qs — ), with (o, 3) €

C%\ {(0,0)}, we have the following results:

1. if o, B # 0O; then every Poisson derivation D of A, 3 can uniquely be written as

D = ham,, where x € A, p.

2. ifa # 0 and B = 0, then every Poisson derivation D of A, can uniquely be

written as D = ham,, + A\, where A\ € C and x € A, .

3. ifaa =0 and B # 0, then every Poisson derivation D of Ay s can uniquely be

written as D = ham,, + A0, where A € C and = € A .

4. HH (Ayo) = C[0] and HH' (A g) = C[0)], where [J] and [J] respectively denote

the classes of ¥ and ¥ modulo the space of inner Poisson derivations.

5. ifa, 3 # 0; then HH' (A, ) = {[0]}, where [0] denotes the class of 0 modulo the

space of inner Poisson derivations.

Proof. Points (1) is as a result of Lemma 6.3.4. Points (2) and (3) are as a result of

Remark 6.3.7. Point (4) is a consequence of Lemma 6.3.6, and (5) is a consequence of

(1). ]



Conclusion

This thesis studied a g-deformation A, 5 ((«, 8) € C?\ {(0,0)}) of a quadratic extension
of A5(C) and compared some properties of A, 3 to those of A5(C). Similar to A;(C), the
algebra A, s is simple, noetherian domain, has GKdim of 4 and the central elements are
all scalars. In addition, if «, 3 # 0; then the group of units of A, s is the set of non-zero
complex numbers and the derivations of A, 5 are all inner. However, when either a or 3
is zero, then the group of units of A, g are non-trivial, and the derivations are the sum of
inner and scalar derivations. Therefore, when « and 3 are non-zero, then the properties
of A, p largely reflect those of A5(C). As a result, A, s gives a better deformation of a
quadratic extension of Ay(C) when a3 # 0. We also compared the derivations of A, 3
to the Poisson derivations of a semiclassical limit A, g of A, . In fact, the derivations
of A, s and the Poisson derivations of A, 3 are congruent.

All efforts to compute the automorphism group of A, s (i.e. Aut(A,p)) were not
successful. Nevertheless, we realized some automorphism subgroups of Aut(A, ). Let
p, A € C*; and define ¢, : Ao g — Aap by ¢ua(er) = per and ¢, x(es) = Aeg. We

have the following:

o {dur| N =1; Vu, A € C*} C Aut(Anp), where a # 0.
o {dun | A =1; Vu, A € C*} C Aut(Agg), where 3 # 0.

o {pux]|p,Ae{-1,1}} C Aut(A,p), where o, 3 # 0.

The following questions are worth considering, and are opened for further studies.
Questions. Let (a,3) € C*\ {(0,0)}. Are there any automorphisms of A, 5?7 Is every

endomorphism of A, g an automorphism?
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Appendix A

Computations in U, (G>)

In this appendix, we provide the computations of the algebra relations of UJS(Gy) in
Section A.1, computations of the data of the deleting derivations algorithm (DDA) of
US(Gz) in Section A.2, and finally, provide computations of the generators of the central

elements of U (Gs) in Section A.3.

A.1 Algebra relations of U/ (G5)

This section focuses on providing a summary of the computations of the defining relations
of U (G2) in Subsection A.1.1, and confirming these relations with GAP in Subsection
A.1.2. We finally provide some general relations of U (G?>) in Subsection A.1.3.

A.1.1 Summary of the computations of the defining relations of U (G>). Note,

the actions of T and 75 on U;(Gg) are defined in Section 2.1.

(1) Es, Es,—q'%1P9) Eg Es, = AEj,. Thisimplies that By Eo—q 2 Ey By = NV TV Th(Ey)
= /\T{l(TQTlTQTl,,ZE(El)) = )\T{l(El). Hence, T2(El)TQ(EQ)—q_3T2<E2>T2<E1) =
AE;. One can verify that T5(F))T5(Fs) — ¢ 3T5(FEy)T5(Ey) = FE;. As a result,

A = 1. Therefore, | Es, Egy — q *Ep,Es, = Ej, |.

(2) Es, Es, — P15 Eg E5 = AEj,. This implies that E\T\T5(F)) — qTW Ty (E))E, =
M1 (Es). Hence, T, Y (E)Ty(Ey) — qT5(E) T H(E)) = AE,. One can verify that

183
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T Y ENT(E)) — qTo (BTN E) = (P + 14+ ¢ 2)E,y. Asaresult, A = (¢ + 1+

q_2)7 and E51E53 - qEﬁsEﬁﬁ = (q2 +1+ q72)Ef32 .

(3) Es,Ep, — q7%P5) Eg Eg, = A\Eg,. This implies that Eg, Es. — qEs, Es, = \Ej,.

This relation is similar to the relation in point (2). Hence, A = (¢* +1+¢~?), and

EB3EB5 - qEﬁ5Eﬂs - (q2 +1+ q—2)Eﬂ4 :

(4) Eg,Es, — ¢"P)Eg, Eg, = AE3,. This implies that
T1<E2)T1T2T1(E2)—qulTQTl(EQ)Tl(EQ) = )\TlTQ(E?) Hence, T271<E2>T1<E2)—
T (Ey) Ty (Ey) = AE3. One can verify that Ty, ' (Eo) Ty (Ey)— Ty (E2) Ty H(Ey) =

7_25 3 7_25 ,
%Ei As a result, )\:%7 and
¢+t +1 T

3 420+
I S W

(5) Es,Eg, — q"%+P9) Eg Eg, = AE3_. This implies that Eg, Eg, — ¢*Eg, Ep, = AE3,_.

¢ —2¢°+q

This relation is similar to point (4). Hence, A = ———
¢ +q+1

, and

¢ —20°+¢ 4

3 —
BB = CEsoBpn = = 5 B |

(6) Es, Es, — q'#1%) B, Eg = AEjs,. This implies that Eg Es. — ¢ ' Ejs Es = \Ejg,.
NOW, Eﬁg = TlTQ(El) = T1 (ElEQ—q_SEzEl) = Tl (EQ)Tl(El)—q_?)Tl (El)Tl (EQ)
Further simplification shows that Ejs, = T\ (Ey)Ti(E)) — ¢; 'Ty(E))Ti(Ey) =

¢’ +q! ¢

2 2 .
EiEs + WElEgEl — mEgEl. Furthermore, from point (1),

q+qt
Ep, = Eg Egy — ¢ °Eg, Es, = F1Fy — ¢ *EyE). It follows that:
EﬁlEﬁs - qflE/o’sth = El(E1E2 - q73E2E1) - qfl(E1E2 - quEzEl)El
= E{Ey — (¢ + ¢ WE\BR By + ¢ "By B}
= BBy + (¢ + ¢ BBy By — ¢ By B}

=(q+q ")Es,.

Consequently, | Es Es. — q 'Es. Es, = (¢ +q ') Ejs, |.
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(7) Eg,Es, —q\%P9) Eg Eg, = AE3_. This implies that Eg, Ey — E>E, = AE?_. From

point (6), one can make substitutions for Ejs, and Ejs,, and simplify to obtain

A= ¢* — 1. Therefore, | Eg, Eg, — Eg Eg, = (¢* — 1)E3, |

(8) Ep Eg,— ¢\ By, Eg = NE3, . This implies that Eg, Eg, — Eg,E, = AE3, . This

relation is similar to (7). Hence, A = ¢*~1, and | B3, Es, — E3,Ep, = (¢° — 1)E3, |.

(9) Es,Ep, — ¢¥»P) Eg Eg, = NE%,. This implies that T\ (Ey)Eg, — Eg,T1(E,) =

AE3,. Similarly, from points (6), we can make substitutions for E, and Ej, . Further

simplification shows that A = ¢*—1. As aresult, | Eg, Eg, — Eg Ep, = (¢* — 1)E3, |

(10) Ep, Es,—q %0 By, Es, = \Eg,+uEs, Es,. This implies that Ty (Ey) Ey—q > BT, (Es)
= AEjg, + uEs,Es,. Using the expressions for Eg, and Ej, in point (6), and the
relation: Eg, = (¢*+1+q 2) ' (Es, Es, — qEs, Ep,), one can simplify Ty (Ey) Ey —

q 3 EyTy(Fy) = AEg, + uEg, Ej, toobtain A = —(q+¢ ' —¢®)and p = q—q~*.

Consequently, | Eg, Fg, — q_3E56E52 =—(g+q " - q_S)Eﬂ4 + (g — q_l)EﬂsEﬁs :

(11) |Es Es, = ¢°Ep, Eg, |, forall 1 < i, < 6 with j —i = 1.

A.1.2 Algebra relations of U (G>) : GAP Code. The code below confirms the defining

relations of U (G). Recall that E; = Ej, (see the comments before the relations of

n _ Ej n _ Eg
Uf(Gs) in Section 2.1). Moreover, B\ = Wg' and B\ = i ]5' for all r € No;.
7y g

brk> U:=QuantizedUEA(RootSystem("G",2));;
U:=QuantizedUEA (RootSystem("G",2));;

~

brk> T:=Generators0fAlgebra(U);

T:=Generators0fAlgebra(U);

[ F1, F2, F3, F4, F5, F6, K1, (-g+q"-1)*[ K1 ; 1 ]+K1, K2,
(-q73+q~-3)*[ K2 ; 1 ]+K2, E1, E2, E3, E4, E5, E6 ]

brk> g:=[T[11],T[12],T[13],T[14],T[15],T[16]1];

#The generators of U_q +(G_2) are;
g:=[T[11],T[12],T[13],T[14],T[15],T[16]1];

~

[ E1, E2, E3, E4, E5, E6 ]
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brk> #We now compute the algebra relations for U_q~+(G_2)
brk> gl[2]*g[1];

(q~-3) *E1*E2

brk> g[3]1*gl1];
(q"-1)*E1*E3+(-q-q~-1-q"-3) *E2

brk> g[3]*gl[2];

(q~-3) *E2*E3

brk> gl4]*gl[1];
E1%E4+(-q~3+q"-1) *E3" (2)

brk> gl4]lxgl2];
(q~-3)*E2*E4+(-q~3+g+q~-1-q~-3) *E3~(3)
brk> gl[4]*g[3];

(q~-3) *E3*E4

brk> g[6]*gl[1];

(q) *E1*E5+(-q~2-1) *E3

brk> g[6]*gl[2];
E2xE5+(-q~3+q~-1)*E3"(2)

brk> g[b5]*gl3];
(q"-1)*E3%E5+(-q-q"-1-q"-3) *E4

brk> g[5]*gl4];

(q~-3) *E4*E5Page 122

brk> gl[6]*g[1];

(q~3)*E1*E6+(-q"~3) *E5

brk> gl6]*gl[2];

(q~3) *E2+E6+(-q~4+q~2) *E3*E5+(q~4+q~2-1) *E4
brk> g[6]*g[3];
E3xE6+(-q~3+q"-1)*E5~(2)

brk> gl6]*gl[4];

(q~-3) *E4*E6+(-q~3+q+q~-1-q"-3) *E5~ (3)
brk> g[6]*g[5];

(q~-3) *E5*E6

A.1.3 Some general relations of U/ (G3). We have the following selected general

relations of U (G?).

A.1.4 Lemma. For any n € N, we have that:

1(a) E,E} = ¢ *"EPE;  (b) ETE; = ¢ P E,E forall 1 <i,j < 6, with j—i = 1.
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2(a) BsE} = ¢ "B} Eg + dy[n)|Ef 'EZ (b) ERE, = ¢ " E,ER + di[n]E2ES !
(c) BBy = ¢ *"E3E, +dy\[n)Ey ' E3  (d) E}Ey = ¢ 3" EyEY 4 di[n] E3EY !,
¢ —2¢*+1

1 — —6n
where dy[1] = (0= 1] (1_—‘26) i1 = L 2L T2 ohd qy[0] = 0.

3(a) B3E} = ¢ "EPE3 + do[n|E} By (b) EYEy = ¢ "EVE} + dy[n] B, EY Y
(C) E5E§L = q_nE§E5 —+ d2 [n]nglEZl (d) EgLEg = q_nEgEgL + d2 [n]E4Eg*1,

1— —2n
where dy[n] = ¢*"d,[1] (1_—qu> s da[l] = —(qg+q '+ ¢7?) and dy[0] := 0.

4(a) E}Es = E3E} + d3[n]E2E;"  (b) EsEY = EREs + ds[n] Ey ' E2,

where ds[n] = ds1] (ﬂ)  ds[1] = 1 — ¢* and ds[0] = 0.

1—q5
Proof. We prove the lemma by an induction on n. We will only prove for the first non-
trivial case (i.e. 2(a)), and leave the remaining ones for the reader to verify.

2(a). The result is clear when n = 0. For n > 0, suppose that EgE} = ¢ 3" E} Eg +
d[n|E} T E2 ) where di[n] = 20 di[1](1 — ¢7%) /(1 — ¢7%); di[1] = —(¢* — 2¢* +
1)/(¢* +¢*+ 1) and d;[0] := 0. Then, EsEy™ = (¢ *"E}Es + dy[n|E} ' E3Ey =
q 3BT Eg 4 (¢ dh[1] 4 ¢~ °di[n]) Ef ES. Note, EgEy = ¢ *E4Eg+dy[1]ES. Now,
¢ di[1] + ¢ 7%di[n] = g7 [1] + ¢* TV [1(1 - ¢7) /(1 - ¢7%) = ¢ i [1](1 -

q—ﬁ(n+1))/(1 _ q—ﬁ) = dy[n + 1] as expected. u

A.2 Deleting derivations algorithm of U (G>)

Given that o 0 §; = g;0; 0 0; (see the comments after Definition 1.7.1), we have that
e 03003(E)) = q %03 003(E1) hence g3 = ¢,
e 04004(Ey) = q %, 004(E) hence ¢4 = ¢°°,
e 05005(E)) = q %55 0 05(F)) hence q5 = ¢~ 2,

® 05O 56(E1) = q_656 o O'G(El) hence g = q_6.
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From (1.7.1), we have the relation:

Ei,j—l—l if 4 > ]
Bij =4 &

1—g,)*
Z %(Vﬁ o O-j_k(Ei,j—‘,—l)E‘_k

2 i, 1 fe<g.
=0

Given this relation, one can compute the elements of Fract(U; (G)) as follows:

E176 = E1 + (1 — q6)7156 o Ugl(El)Egl
= El + (1 — q76)71E5E671
= E1 + TE5E(;1.

1 — —2
E276 = E2 + (1 — QG)_I(SG e} 06_1(E2)E6_1 + %52 © 06_2<E2)E6_2
q6 *
=B+ (1-q¢°) (¢ —EsEs+ (q+q " — ¢ °)EsEg?
i (1-¢%7? =1 - )+ (@ +q' =2 —¢' 1)
1+q¢ (" +¢*+1)
-1 -1 -3
g —q 1 q9+q  —q
(' =)0 -+ @+ )+ (@2 +q =) (2 —¢" = 1)
(1=¢52(14+q¢5)(¢* +¢*+1)

= By +tE3Es B +uE, B + nERES .

= Fy + E4Egl

+

E376 - E3 + (1 — q6)_166 e} 0'6_1(E3)E6_1

l—q2

=F
3+1—q—6

EZE;?
= B3+ sE2E; "

E476 = E4 + (1 — QG)_156 o 0'6_1(E4)E6_1
(1= (¢*+¢*+1)
— E, +bE2E;".

= Ey+ EE!

EEg?

EEg”
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Eis=FEig+(1—gs5) 05005 (Eie)Esg + %53 005 (Ee)Esg
|
— B+ ;Hq 1E36E56 v %EMEMQ
= F15+ hEsgFs g + gFE16E5 4.
Eys = Ese+ (1 —qs) 05005 (Eag)Esg + %53 005 (Eae)Fsg
|
+ %52 005 (Eae)Esg
R o o s
LA =Rt ) s s
(1—g 2P+ )1 +q24q1) 200
= B+ [E;6Es g + pEssEicEyg + eEjgEsg.
Esp=FEs36+ (1— q5) 65 0 051(E3,6)E3_,é
= F36 q;_;—jfE&ﬁEaé
= Es6 + aEy6E5 .
Bia=FEis+(1- q4>‘164 ooy (Bis5)Eqs
—E15+11 E§5E45
= Ei5+ sE5;Eqs.
Eou=Eas+ (1 —q) "0s00, (Eas)Eys
—q7 + 205 — 3
=Bt g s g e
= Ey5 + bE3 B, ;.
Eis=FEi4+(1— q3) 1030 051(E1,4)E§,41
=FEi4+ %Ez,dfﬁ
=FE 4+ aEZAE;i.
Otherwise, E;; = F, 11, where 1 < 4,57 < 6. Note, all the constant coefficients

(a,b,e, f,g,h,n,p,r, st u) are defined in Appendix C.
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A.3 Generators of the center of U/ (G>)

Recall from Section 2.2 that ﬂ = E@Q for all 1 < 7 < 6, Ql = T1T3T5 and QQ = T2T4T6.

Now, using the data of the DDA of U;(Gg), we have the following:

O =TNT5Ts = E1pF39F5 9 = Ey 3F3 353
= (Ei4+ GE2,4E3_,41)E3,4E5,4
= (Ey4E54+ aFEs4)Es 4
= [(Bus + sES5Ep3) Bas + a(Bas + bE3 5 By 5)| Es
= (E15E55 + q35E§’75E;§ + abEg’ﬁE;é +aFy5)Es5
= (E15F35 + aBy5)Es 5 (Note, ¢°s + ab = 0)
= [(Br6+ hEsgEs g + gE16E5 ¢ ) (Ese + aBygEsg) + alag + af B3 gEy g
+ apBssEyEy s + ack} ¢F5 ¢ Es g

= B 6l36L56 + (hg + af)EiG +aF16F6 +abagEsg. (A.3.1)

From the data of the DDA of U;"((G2), one can make the necessary substitutions for £;

(with 1 <4 <6) in (A.3.1), and simplify to obtain
Ql = T1T3T5 :E1E3E5 + aE1E4 + GE2E5 + CL/Eg
as desired. In a similar manner, we have that:

Oy =TT,Ts = E2,2E4,2E6,2 = E2,3E4,3E6,3 = E2,4E4,4E6,4
= (E9p5 + bE§,5E;§)E4,5E6,5
= Ey5Ey5E5 + bE3 s Eg 5
= (Ba + [ESE5 s + pEsgE16Es g + eEj By §) EygEo
+ b(Esg + aF} By ) Eo

= By ebacles + bEgﬁE(s,e. (A.3.2)



Section A.3. Generators of the center of U (G?) 191

Again, from the data of the DDA, one can make the necessary substitutions for F; ¢ (with

1 <i<6)in (A.3.2), and simplify to obtain:

Qo = TyTyTs = EyEyEg + bEyES + bEs Eg + W ESEZ + ¢ B3 EyEs + d B}

as desired.

Note, the constants a,d’,b, V', ¢ and d’ are defined in Appendix C.
A.3.1 The generators of the center of U/(G;) : GAP Code. The code below

confirms that €; and €2, commute with F; and Ejg as expected.

brk> U:=QuantizedUEA(RootSystem("G",2));;
U:=QuantizedUEA (RootSystem("G",2));;

brk> T:=Generators0fAlgebra(U);
T:=Generators0fAlgebra(U);

[ F1, F2, F3, F4, F5, F6, K1, (-g+q"-1)*[ K1 ; 1 ]+K1, K2,
(-q73+q~-3)*[ K2 ; 1 ]+K2, E1, E2, E3, E4, E5, E6 ]
#The generators of U_q +(G_2) are;
g:=[T[11],T[12],T[13],T[14],T[15],T[16]];

[ E1, E2, E3, E4, E5, E6 ]

brk> a:=-(_q"2+1+_q"-2)/(1-_q"°-2);
a:=-(_q"2+1+_q"-2)/(1-_q"-2);

(-q"4-9q"2-1)/(q"2-1)

brk> al:=-_q"6/(1-_q"2);

al:=-_q"6/(1-_q"2);

(-q9°6)/(-q"2+1)Page 123

brk> b:=(_q 7-2%_q"5+_q"3)/((1-_q"-6)*(_q~4+_q"2+1));
b:=-(_q 7-2%_q"5+_q"3)/((1-_q"-6)*(_q~4+_q"2+1));
(q~11-979) / (q~8+2%q"6+3*q ~4+2%q~2+1)

brk> bl:=(_q"11-_q~13)/(_q"8+2%_q 6+3*_q 4+2x_q~2+1);
bl:=-(_q"11-_9q713)/(_q~8+2%_q 6+3*_q 4+2%_q~2+1) ;

~
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(-q~13+q~11) /(q~8+2xq~6+3%q~4+2%q~2+1)

brk> cl:=-_q79/(_q~4+_q"2+1);

cl:=-_q"9/(_q~4+_q"2+1);

(-q79)/(q~4+q~2+1)

brk> di:=-_q"12/(1-_q"6);

dl:=-_q"12/(1-_q76);

(-q712)/(-q~6+1)

brk> Omega_1:=g[1]*g[3]*g[5]+axg[1]*g[4]+axg[2]*g[5]+alxg[3]"2;
E1*E3*E5+((-q~4-q"2-1)/(q"2-1) ) *E1*E4+((-q~4-q~2-1) /(q~2-1) ) *E2+E5+
((-q"7-975)/(-q"2+1) ) *E3" (2)

brk> Omega_1*g[1]=g[1]*0Omega_1;

true

brk> Omega_1l*g[6]=g[6]*0mega_1;

true
brk>0Omega_2:=g[2]*xg[4]*g[6]+b*g[2] *g[5] "3+b*g[3] “3xg[6]+blxg[3] "2xg[5] "2
+clxg[3]*g[4] *g[5]+d1*xg[4]~2;

E2+E4*E6+((-q~10+q~6)/(q 4+q~2+1) ) *E2*E5"~ (3)+((-q~9) / (q~4+q"2+1) ) *E3*E4*E5
+((q~15+q"13-q"11-q~9) / (q~8+2%q~6+3%q 4+2%q~2+1) ) *E3" (2) *E5" (2)
+((-q710+q~6) / (q"4+q~2+1) ) *E3~ (3) *E6+((-q~15-q~9) / (-q~6+1) ) *E4~ (2)
brk> Omega_2*g[1]=g[1]*0mega_2;

true

brk> Omega_2*g[6]=g[6]*0mega_2;

true



Appendix B

Computations in A = C| Xy, -+, Xg]

Recall that the Poisson algebra A = C[X}, -, X¢] is the semiclassical limit of U (G5)
(Section 5.2). In this appendix, we define the Poisson bracket of A in Section B.1, and

the data of the Poisson deleting derivations algorithm (PDDA) of A in Section B.2.

B.1 Poisson bracket of A

Note, f(z) = 2%+ 2%+ 1 (see Section 5.2). In addition, set g(z) := 2% + z + 1. We have

the following:

U0, — U, U

{X3,X,} = — (z—DA=—2"'0,Us— 230U+ ( — 1)A
= X1 X5 — X,

(X4, X1} = M F(z—DA=—(z+ 102+ (z— 1)A = —2X2.

(X4, X5} = @ +(z—DA=—23g() U — (+ 1)U+ (z— DA
= —3X, X, — 4X3.

(X5, X1} = @ +(z—DA=0Us — (2 +1)Us+ (z— 1A
= X1 X5 — 2X.

(X5, X0} = M +(z—DA=—(z+1)f(z)02 + (z — 1) A = —6X2.

193
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A~ A~ A~ A~

{X;5, X3} = Wz%[f% +(z—DA=—2""UsUs — 23 f(2)Us + (. — 1A
= —X3X5 — 3X,.
{Xe. X1} = @ + (2= 1A = g(2)hTs — 22 f(2)Us + (2 — DA
= 3X, X5 — 3X;.
{Xe, X5} = M + (2 — DA = g(2)UsUs + (2* + 2* — 1) f(2)U,
— f(2)*(2* + 23)(73(75 + (z — 1)121\
=3XoXs +9X, — 18X3.X5.
{Xs, X5} = M +(z=DA=—f()1+2)U2 4 ( — 1)A = —6X2.
{Xe, X4} = w F(z—1DA=—23g(2) 00U — (2 + 1)U + (z — 1A
= —3X4Xg — 4X7.
(X, X;} = @ +(z—1DA=—23g)00; + (z — 1)A = —3X,X;,

forall 1<i<j<6withj—i=1.

B.2 PDDA of the semiclassical limit of U (G>)

Given that 6;0; — ;0 = 1;0; (Hypothesis 5.1.11), we have the following:
e (d303 — 0303)(X1) = —2X3 and 03(X;) = — X5, hence 13 = 2;
o (0,404 —0404)(X1) = —12X7 and 04(X;) = —2XZ, hence 14 = 6;
o (0505 — 0505)(X2) = —12X7 and 05(X3) = —6X3, hence 15 = 2;

L] (560-6 — 0656)(X1) = —18X5 and 66(X1) = —3X5, hence Ne = 6.
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We now compute the data of the PDDA of A using the relation

Xi,j-i—l if 4 > J

X@j = +o00 1 i . - ‘
Z k—k"(;j (Xi,j+1)Xj7j+1 if 1 < J
k=0 """

(which can be found in Subsection 5.1.8) as follows:
o Xi5=X1+ ,7%56(X1)X6_1 =Xy — %X5X6_1.

o Xog = Xo+ 77%556()(2))(6_1 + ﬁ(ﬂ%()&'z)Xﬁ_2 = X9+ %X4X6_1 — 3X3X5X6_1 +
X3X52.

o X36=X3+ %56(X3)X6_1 = X3 — X2X; 1.
o Xyo=Xs+ ,7%56(X4)X6_1 =X, — 2X3X "
o Xi5=Xi6+ ,7—1555(X1,G)X5Té + ﬁ(ﬁ(){l,@)Xﬁ = X16— X36X56 + 2 X46X5¢.

o Xos=Xog+5-05(Xo6)Xsg + 5203 (X26) X5 g + 5703 (X26) X5 6

n3

= Xog — 3X56X54 + 3X36X46X55 — IXZ6 X530
o X35 = X36+ ,%555()(3,6))(5:% = X36 — %X4,6X5_,é-
o Xia=Xis+0u(X15) X5 = Xi5 — 5X55 X505
e Xo4=Xo5+ n—1464(X275)X;51 = Xp5 — 2X5: X, 3.
o Xi3=Xi4+ %53(X1,4)X9:i = X4 — %X2,4X§i-

e Otherwise, X, ; = X, 1, where 1 <1,5 <6.



Appendix C

Definition of scalars used

In this appendix, we define some scalars used in the thesis. Note, for all n € N, we have
already defined the scalars da[n] in Lemma A.1.4, hence, we are not going to repeat them

here. Any other scalars not defined here must be defined in/before the context in which

it is found.
a:q2+1+q—2 b ¢ — 24 + ¢
g 2—1 (*+@+1)(1—q%)
g+ qt+q? 1-¢
(1 —q?)? f—l—q‘2
o ata’ _ -7
q? - 1—q°
t_q”—q _atqa'—q
1—¢qf 1—¢qf
¢+ +1 -1
q2_1 _1_q—6
—(¢"+ ¢+ %) 4 =2+ ¢
q4_2q2_|_1 q4+q2+1
12
_ q ;o 2 2
6
ky = q3by + beda|1] a’:af+hq:q2q_1
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ks = q by + biads[1]

ks = bycy

ks = byca + q bscy + brda[1]

ks = baca + q by

ke = csbs + ¢ b7 4+ g 3bubisco

k7 = q 3cobs + bgds[1]

ks = b1bizca

ko = q~*beca + bod[2] + ¢ bacabis + g bscy
k1o = q bsbscs

k11 = bizcy

k1o = q bgbres

ks = g 'becs + g 2bo + g bebiscs + ¢ bebisc
ki = q 'bibges

ks = g 'babgcs

ki = g 'bsbeca + ¢ biocs + ¢ *bsbisc
kir = q babges

kis = q bsbges

ki = q 'bgea

koo = q bgbocy

ko1 = q bgbiica + ¢ bioct + ¢ brbisc
kas = q bgbiaca + ¢ biocs + ¢ biobisc
kas = q 'biacy + biibiseo

kar = q 'biacs + biabisco

kag = bisbis + ¢ 'bug

k31 = q *bsbizca + q bscs + g g + broda[2]

- q'3 — g
(q* +¢* +1)?
o q'?
¢°—1
¢
¢t +q*+1
1
Cl—;
Co = —acq
3 = —C1
1
blzg

by = bibea(q+q 1+ q72) — by

b3 = —b/blCQ — bb1

by = —b1bcy

bs = bib(es(g+q~ +q7°) —q~
be = —q_ICleb

by = —q 'bibeics

bs = by = —q 'bibeacs

bio = —q 'c3bib
by = —b'biey
bio = —b'bics
bis = —bic

by = —b'bicy

bis = q 3 + cabiz

koo = ¢ "bgbroca

oy = q tbsbraca + ¢ 2bioca + q~

kos = q *b1acy + bizbiaco
kag = q *bizcy + bradal[1]

k3o = bsbizca + g 'biaco

302)
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