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Abstract

Since the introduction of quantum algebras in the 1980’s, many have introduced quantum

deformations of the Weyl algebras. Two such examples are the quantum Weyl algebras

and the Generalized Weyl algebras. In this thesis, we use a different approach to find

deformations of (a quadratic extension of) the second Weyl algebra A2(C), and compare

some properties of these deformations to those of A2(C).

Let n be a nilpotent Lie algebra, U(n) the enveloping algebra of n and Q a primitive

ideal of U(n). Dixmier [12] proved that the factor algebra U(n)/Q is isomorphic to an

nth Weyl algebra An(C), where n ∈ N≥1. This isomorphism gives a route to construct

potential deformations for any Weyl algebra. Let g = g− ⊕ h ⊕ g+ represent a simple

Lie algebra. Now, Dixmier’s result holds for n = g+. Since U+
q (g) is a q-deformation of

U(g+), it is natural to consider U+
q (g)/P, where P is a primitive ideal of U+

q (g), as a

potential deformation of the Weyl algebras.

This thesis focuses on the case where g = G2. We find a family of primitive ideals

(Pα,β)(α,β)∈C2\(0,0) of U+
q (G2) whose corresponding quotients Aα,β := U+

q (G2)/Pα,β are

simple noetherian domains of Gelfand-Kirillov dimension 4. In view of Dixmier’s result, we

consider Aα,β as a q-deformation of (a quadratic extension of) A2(C). The derivations

of the Weyl algebras are all known to be inner derivations [5]. Motivated by this, we

also study the derivations of Aα,β and compare them to those of the Weyl algebras. The

final part of the thesis studies a Poisson derivation of a semiclassical limit Aα,β of Aα,β.

Interestingly, the Poisson derivations of Aα,β and the derivations of Aα,β are congruent.
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Chapter 0

Introduction

One particular class of algebras in non-commutative algebras that has been widely studied

since its inception is the class of Weyl algebras. Dirac is well noted to be the one who

introduced the Weyl algebras in the field of quantum mechanics. Since then, the notion

and concept of the Weyl algebras has diffused into other areas of non-commutative

algebras from different perspectives. For example, one can understand the Weyl algebras

from the perspective of differential operators, quotient of free algebras, and of course

quantum mechanics. In line with this, we will provide the definition of Weyl algebras

from three different perspectives. Before we do that, it is imperative to also add that

the Weyl algebras come in series. That is, for every n ∈ N>0, one can associate a Weyl

algebra denoted by An(C). Now, An(C) is naturally called the nth Weyl algebra. The

smallest of this series of algebras is called the first Weyl algebra A1(C), and it is the

building block for any nth Weyl algebra An(C). That is, given n copies of A1(C), one

can define An(C) as follows:

An(C) = A1(C)⊗ A1(C)⊗ · · · ⊗ A1(C) (n copies).

As a result of this, it is sufficient to define the first Weyl algebra A1(C). We are now

ready to understand A1(C) from the following three points of view.

In theoretical physics (particularly, quantum mechanics), one can describe A1(C) as

1
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follows. Take the momentum operator p̂ and position operator q̂, it is well known that

[p̂, q̂] := p̂q̂ − q̂p̂ = i~, where ~ is called Plank’s constant. One can therefore define

A1(C) as an algebra of quantum mechanics generated by the operators ĝ and q̂ subject

to the relation ĝq̂ − q̂ĝ = 1, where ĝ = − i
~ p̂.

Secondly, in the ring of differential operators, A1(C) can be described in the following

context. Let C[x] be a polynomial ring and, x̂ and ŷ :=
d

dx
be operators of C[x] with x̂

defined as x̂(f) = xf, ∀f ∈ C[x]. Observe that ŷx̂(f) =
d

dx
(xf) = x

df

dx
+f = x̂ŷ(f)+f.

This implies that ŷx̂− x̂ŷ = 1. As a result, A1(C) can be defined as a C−subalgebra of

EndC(C[x]) generated by the operators x̂ and ŷ (subject to the relation ŷx̂− x̂ŷ = 1).

Algebraically, one can also define A1(C) as follows. Let R := C〈X, Y 〉 be a free

algebra generated by X and Y . Now, I := 〈XY − Y X − 1〉 is a two-sided ideal of R.

The factor algebra R/I satisfies the relation xy − yx − 1 = 0, where x := X + I and

y := Y + I. Therefore, A1(C) can be defined as a C−algebra generated by x and y

subject to the relation xy − yx = 1.

Above are three different contexts in which A1(C) can be understood. Generally,

every nth Weyl algebra An(C) can precisely be described as a C−algebra generated by

x1, · · · , xn, y1, · · · , yn subject to the following defining relations: [xi, xj] = [yi, yj] = 0

and [xi, yj] = δij, where δij is the Kronecker symbol. The Weyl algebras An(C) are simple,

noetherian domains, and have a Gelfand-Kirillov dimension of 2n [30, Chapter 8]. Dixmier

has also studied the automorphism group of A1(C), and concluded in [11, Theorem 8.10]

that the automorphism group is generated by two families of automorphisms φs,µ and

φ′s,µ of A1(C) defined as follows: φs,µ(x) = x, φs,µ(y) = y + µxs and φ′s,µ(x) =

x + µys, φ′s,µ(y) = y, where µ ∈ C and s ∈ N. For n > 1, to the best knowledge

of the author, the automorphism groups of An(C) are not known. The center of the

Weyl algebras is reduced to scalars. Another property of the Weyl algebras that is worth

mentioning is that all its derivations are inner [5, Lemma 1], and the first Hochschild

cohomology group is of dimension zero. What has even made the Weyl algebras very

famous and instigated a lot of research in non-commutative algebras are the Jacobian
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Conjecture [28], and the Dixmier Conjecture [11]. These two Conjectures are stated

below.

Conjecture 1 (Jacobian, 1939). Let F : Cn → Cn be a polynomial map. If

the Jacobian determinant of F is a non-zero constant, then F must have an inverse

polynomial map function.

The case where n = 1 is considered trivial since one can easily show that the associ-

ated polynomial map is a linear map, hence, has an inverse map which is also linear. To

achieve this, let f : C → C be a polynomial map defined by x 7→ f(x). Suppose that

df/dx is a non-zero constant, then clearly f(x) is of the form f(x) = a0 + a1x, where

a1 ∈ C∗ and a0 ∈ C. Since a1 6= 0, one can easily confirm that the inverse polynomial

map of f is also of the form f−1(x) = −a0a
−1
1 + a−1

1 x as desired. For n > 1, to the

author’s best knowledge, the Jacobian Conjecture remains open.

Conjecture 2 (Dixmier, 1968). Every algebra endomorphism of Weyl algebras

An(C) is an automorphism.

Dixmier’s Conjecture remains open even for the case where n = 1. Tsuchimoto

[43], and Belov-Kanel and Kontsevich [6] independently proved that Conjecture 1 and

Conjecture 2 are stably equivalent. That is, the Jacobian Conjecture implies the Dixmier

Conjecture and vice versa.

With the appearance of quantum groups in the 1980’s, people have introduced var-

ious quantum deformations (or analogues) of An(C). The notable deformations are the

quantum Weyl algebras. For example, the first quantum Weyl algebra is defined as

A
(q)
1 (C) := C〈x, y | xy − qyx = 1〉. Clearly, A

(1)
1 (C) = A1(C). As a result of this, we

say that A
(q)
1 (C) is a quantum deformation (or q-deformation for short) of A1(C). By

extension, the quantum Weyl algebras A
(q)
n (C) are q-deformations of the Weyl algebras

An(C) for each n ∈ N>0. Note, the properties of the quantum Weyl algebras do not

always reflect the properties of the Weyl algebras. For example, the first quantum Weyl

algebra is not simple when q is not a root of unity, however, the first Weyl algebra is

simple. Are there any other deformations of An(C)? Yes, Bavula [3] has introduced a
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generalization of the Weyl algebras called the generalized Weyl algebras (GWAs), but

they are also not simple in general. As a result, their properties too do not always reflect

the properties of the Weyl algebras. Let D be a C−algebra with a central element a, and

σ denote an automorphism of D. The first generalized Weyl algebra D(σ, a) is simply

defined as an algebra generated over D by the indeterminates x and y subject to the

following relations:

yx = a, xy = σ(a), xd = σ(d)x, yd = σ−1(d)y, for all d ∈ D.

Let q ∈ C∗ and λ′ ∈ C. From [41, Proposition 2.1.1], we have that the GWA C[H ′](σ′, a′),

where σ(H ′) = qH ′ − λ′, is isomorphic to one of the following:

i. C[H](id, a),

ii. C[H](σ, a) with σ(H) = H − 1,

iii. C[H](σ, a) with σ(H) = qH and q ∈ C \ {0, 1}.

The third family (iii) is usually called the quantum GWA provided q is not a root of unity,

and the second family (ii) is well known to be isomorphic to the first Weyl algebra A1(C)

(for example, see [2, §4]). Other specific examples of GWAs are the quantum plane and

quantum Weyl algebra A
(q)
1 (C) (see [2, §4] for further details).

In this thesis, we used a different approach to find a deformation of (a quadratic

extension of) A2(C). Let n be a finite dimensional nilpotent Lie algebra over C, U(n) be

the enveloping algebra of n, and Q a primitive ideal of U(n). Dixmier has shown that the

factor algebra U(n)/Q is isomorphic to an nth Weyl algebra An(C) [12, Theorem 4.7.9].

Let g be a simple Lie algebra. Then, the enveloping algebra U(g) has a quan-

tum deformation, introduced independently by Drinfeld [13] and Jimbo [27], called the

quantized enveloping algebra Uq(g) of g. There is a triangular decomposition for g as

g−⊕h⊕g+; where h is a Cartan subalgebra of g, and g− and g+ are the negative and pos-

itive nilpotent subalgebras of g respectively. As a result of this triangular decomposition,

there are corresponding decompositions for U(g) and Uq(g) as U(g+) ⊗ U(h) ⊗ U(g−)
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and U+
q (g) ⊗ U0(h) ⊗ U−q (g) respectively. It is well known that U+

q (g) is isomorphic to

U−q (g) (for example, see [45, §2]). Now, Dixmier’s theorem applies to n = g+. That is,

U(g+)/Q ∼= An(C). Since U+
q (g) is a q-deformation of U(g+), it is natural to ask whether

there exists a primitive ideal P of U+
q (g) such that U+

q (g)/P is also a q-deformation of

U(g+)/Q ∼= An(C)? If yes, then this gives another deformation of An(C). In [33],

Launois described a family of simple quotients of U+
q (B2), and under certain conditions,

retrieved the first Weyl algebra from these simple quotients when q = 1. In line with

Dixmier’s result (i.e. U(g+)/Q ∼= An(C)) and motivated by Launois’ example, we also

aimed to find a family of simple quotients of a quantized enveloping algebra whose de-

formation gives (a quadratic extension of) A2(C) and then compare some properties of

these simple quotients to those of A2(C). This is the main aim of the thesis which is

organized as follows.

Chapter 1 focuses on studying preliminary materials, and Chapter 2 studies some

properties of the positive part of the quantized enveloping algebra of type G2, U
+
q (G2).

The algebra U+
q (G2) is a C−algebra generated by the indeterminates E1 and E2 subject

to the quantum Serre relations (omitted for now). It is a noetherian domain and can be

written as an iterated Ore extension over C. The center of U+
q (G2) is the polynomial ring

C[Ω1,Ω2], where Ω1 and Ω2 are central elements of U+
q (G2). The torus H = (C∗)2 acts

by automorphism on U+
q (G2) via (α1, α2) ·Ei = αiEi; i = 1, 2; for all (α1, α2) ∈ H. As a

result, one can use the H−stratification of Goodearl and Letzter [21] to study the prime

spectrum of this algebra, and identify primitive ideals. The H−stratification partitions

the prime spectrum of U+
q (G2) into disjoint strata and these partitions are indexed by

the H−invariant prime ideals. Now, the ideals 〈0〉, 〈Ω1〉 and 〈Ω2〉 are all H−invariant

prime ideals of U+
q (G2) of at most height one, with the following strata:

• 〈0〉−stratum of U+
q (G2) = {〈0〉} ∪ {P (Ω1,Ω2) | P (Ω1,Ω2) ∈ P , P (Ω1,Ω2) 6=

Ω1,Ω2}∪{〈Ω1−α,Ω2−β〉 | α, β ∈ C∗}. Note, P is the set of all unitary irreducible

polynomials of C[Ω1,Ω2].

• 〈Ω1〉−stratum of U+
q (G2) = {〈Ω1〉} ∪ {〈Ω1,Ω2 − β〉 | β ∈ C∗}.
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• 〈Ω2〉−stratum of U+
q (G2) = {〈Ω2〉} ∪ {〈Ω1 − α,Ω2〉 | α ∈ C∗}.

For each (α, β) ∈ C2 \ {(0, 0)}, the prime ideal 〈Ω1 − α,Ω2 − β〉 is maximal in its

respective stratum, as a result, it is a primitive ideal of U+
q (G2) [7, Theorem II.8.4].

Moreover, 〈Ω1 − α,Ω2 − β〉 is a height 2 maximal ideal of U+
q (G2). Given this family of

height 2 maximal ideals of U+
q (G2), Chapter 3 focuses on studying the simple quotients

of U+
q (G2), which are the main algebras of interest in this thesis. The simple quotient

Aα,β := U+
q (G2)/〈Ω1 − α,Ω2 − β〉 is a noetherian domain of GKdim 4, with a trivial

center (i.e. central elements are all scalars). One could observe that Aα,β shares some

common properties with A2(C). That is, they are both simple, noetherian domains, have

GKdim of 4, and have trivial central elements. Could it be that Aα,β can be deformed

to obtain A2(C)? Generally, this is not guaranteed. However, in this particular case,

at appropriate choices of α and β, when q = 1, we have that Aα,β is isomorphic to (a

quadratic extension of) A2(C).

In Chapter 4, we explore the derivations of Aα,β. Note, to the best of the author’s

knowledge, there is no known general results for the derivations of the simple quotients

of U+
q (g), with the exception of the case where g = sl3 (also known as the quantum

Heisenberg algebra (see for instance [1, §2.2])). In this case, the simple quotients are

known to be isomorphic to the GWAs [2, §4] whose derivations have been studied by

Kitchin [29, Chapter 7], and are known to be the sum of inner and scalar derivations (note,

scalar derivations act on the set of generators of an algebra by multiplication by scalars).

More precisely, the first Hochschild cohomology group of the GWAs is of dimension

one. We therefore take interest in knowing the derivations of Aα,β, and comparing

them to those of A2(C). Recall that the derivations of A2(C) are known to be inner.

Since Aα,β and A2(C) share some common properties, could it be that the derivations

of A2(C) reflect those of Aα,β? In fact, when α and β are non-zero, then similar to

A2(C), the derivations of Aα,β are all inner. However, if either α or β is zero, then

the derivations of Aα,β are the sum of inner and scalar derivations. Precisely, the first

Hochschild cohomology group of Aα,β has dimension zero when α and β are both non-
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zero, and dimension one when either α or β is zero. To achieve these results, we use

Cauchon’s theory of deleting derivations algorithm [8] to successively embed Aα,β into a

suitable quantum torus. Now, every derivation of the quantum torus, through the work

of Osborn and Passman [40], is known to be the sum of an inner and a scalar/central

derivation. Since Aα,β can be embedded into a quantum torus, we extend every derivation

of Aα,β to a derivation of the quantum torus via localization, and then “pull back” the

derivations of the quantum torus to Aα,β, a process Launois and Lopes [36] called restoring

derivations algorithm. We conclude that every derivation of Aα,β is inner when α and β

are non-zero, and the sum of an inner and a scalar derivation when either α or β is zero.

The final part of the thesis (Chapters 5 and 6 ) study the Poisson derivations of a

semiclassical limit Aα,β of Aα,β by following procedures similar to that of Aα,β. In fact,

the Poisson derivations of Aα,β are similar to their non-commutative counterparts. That

is, every Poisson derivation of Aα,β is inner (or hamiltonian) when α and β are non-zero,

and the sum of an inner and a scalar Poisson derivation when either α or β is zero.

Notations and conventions

• K is a field with characteristic zero and K∗ := K \ {0}.

• q ∈ K∗ is not a root of unity.

• Let a, b ∈ N := {0, 1, 2, · · · }. Then, a ≤ i ≤ b means the set of natural numbers

from a to b. We will used “ < ” instead of “ ≤ ” to indicate the exclusiveness of

either a or b.

• N>a denotes the set of all natural numbers greater than a.

• q• means an arbitrary integer power of q. This symbol will often be used whenever

the power of q is of no interest.

• | 4 | denotes the cardinality of the set 4.
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• 〈Θ〉R means an ideal generated by the element Θ in the algebra R. Where no doubt

arises, we will simply write 〈Θ〉.

• Z(R) denotes the center of the algebra R. If R is a Poisson algebra, then we will

denote its Poisson center by ZP (R).

• Spec(R) represents the set of all prime ideals of the algebra R. If R is a Poisson

algebra, then we will denote its set of Poisson prime ideals by P.Spec(R).

• Fract(R) denotes the right ring of fractions of the ring R.

• DDA and PDDA represent deleting derivations algorithm and Poisson deleting

derivations algorithm respectively.



Chapter 1

Preliminaries

In this chapter, we present the background materials needed for the subsequent chapters.

The subtopics to be considered include root systems, quantized enveloping algebras, Ore

and iterated Ore extensions, localization and ring of fractions, quantum affine space and

quantum torus, and Cauchon’s theory of deleting derivations algorithm.

1.1 Root systems

Most of the materials presented in this section can be found in [25] and [15].

Let a be a non-zero element in the euclidean vector space E, and sa be a reflection

associated to a in E. Recall that sa : E −→ E is defined by:

sa(b) := b− 2
(a, b)

(a, a)
a,

for all b ∈ E. Note, (a, b) = ||a||||b|| cos(θ) and sasa = s2
a = id.

1.1.1 Definition. A subset Φ 63 0 of E is a root system in E if the following axioms

are satisfied:

(A1) Φ is finite and spans E.

(A2) If α ∈ Φ, then the only scalar multiples of α in Φ are α and −α.

9
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(A3) If α ∈ Φ, then the reflection sα permutes the elements of Φ.

(A4) If α, β ∈ Φ; then
2(α, β)

(α, α)
∈ Z.

Note, the elements of Φ are called roots. A subset Π of Φ is called a base for Φ if

Π is a basis of E, and for all θ ∈ Φ, θ belongs to the span of Π over all non-positive or

non-negative integers. When θ belongs to the span of Π over non-negative integers (resp.

non-positive integers), we say that θ is a positive root (resp. a negative root). Let us

denote the collection of all positive roots (resp. negative roots) by Φ+ (resp. Φ−). Then,

Φ+ = −Φ−. The roots in Π are called simple roots. Again, Φ is irreducible if it cannot

be written as a disjoint union of two proper subsets Φ1 and Φ2 such that (α1, α2) = 0 for

all α1 ∈ Φ1 and α2 ∈ Φ2. Let Π be a base of Φ, it is well known that Φ is irreducible if

and only if Π is irreducible (for example, see [25, Section 10.4]). Every root system Φ can

be written as a disjoint union of some irreducible root systems. As a result, we will only

focus on the irreducible root systems since they are the building blocks for root systems.

If Φ is irreducible, then every root of Φ is either of the same length (usually referred

to as simply laced) or of two lengths: short and long (usually referred to as non-simply

laced). The short root is normally normalized to have a length of
√

2. The dimension of

the euclidean vector space E (denoted by dim(E)) is called the rank of Φ (denoted by

rk(Φ)). Since Π is a basis of E, the cardinality of Π (denoted by |Π|) coincides with the

dimension of E. As a result, we have the following equality: dim(E) = |Π| = rk(Φ) = n.

One important property of irreducible root systems is that, to every irreducible root

system, one can associate one of the following complex simple Lie algebras: An (n ≥

1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), En (n = 6, 7, 8), F4 and G2 [25, Section

11.4]. Moreover, given any of these simple Lie algebras, one can also construct an

irreducible root system associated to the simple Lie algebra [25, Section 12.1]. Note,

each of An, Bn, Cn, Dn and En is the notation for a collection of a series of simple Lie

algebras, and n is the rank of the associated Lie algebra or the root system. Of course,

F4 and G2 are of rank 4 and 2 respectively. The roots of An, Dn, E6, E7 and E8 are all

simply laced, and the rest are non-simply laced. For the purpose of this thesis, we will only
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discuss the root system for G2. We do this in line with the presentation in [25, Section

12.1]. Let E be a 2-dimensional subspace of R3, and ε̂1, ε̂2, ε̂3 denote the standard unit

vectors of R3. Set α1 := ε̂2 − ε̂1 and α2 = 2ε̂1 − ε̂2 − ε̂3. One can verify that the set

Φ = ±{α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} is a root system for G2 in E.

Moreover, one can also observe that the set {α1, α2} is a base for Φ. Hence, α1 and α2 are

the simple roots of G2. The root system of G2 is non-simply laced since the simple roots

α1 and α2 are of different lengths: short root (α1) and long root (α2), which are of lengths
√

2 and
√

6 respectively. That is, (α1, α1) = ||α1||2 = 2 and (α2, α2) = ||α2||2 = 6. In

total, G2 has 12 roots of which 6 are short and the other 6 are long. Furthermore, it has

6 positive roots and 6 negative roots. The obtuse angle between the two simple roots

α1 and α2 is 5π/6. The root diagram of G2 with only the positive roots is shown in the

figure below.

α1

α2 + 3α1

α2 + 2α1

2α2 + 3α1
α2 + α1

α2

5π/6

Figure 1.1: G2 root diagram.

In the rest of this section and beyond, g will denote a complex simple Lie algebra,

and Φ will represent the root system of g. Fix g with rank n. We are going to discuss

another concept called the Weyl group of g. Let Φ denote a root system of g, and Π

denotes the set of simple roots of Φ. For every root αi ∈ Φ, one can associate a reflection

sαi . The collection of all these reflections sαi forms a group called the Weyl group of

g. We denote this group by W . Moreover, if αi ∈ Π, then the associated reflection sαi

is called a simple reflection. The set of all the simple reflections generate W . That is,
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W := 〈sαi | αi ∈ Π〉.

Let αi, αj ∈ Π (note, i and j are non-zero natural numbers); and set

ηij :=
2(αi, αj)

(αi, αi)
. (1.1.1)

It is well known that ηijηji ∈ {0, 1, 2, 3} (see [15, Lemma 11.4] for further details). Let

sαi , sαj ∈ W ; where αi, αj ∈ Π, i 6= j. There exists mij ∈ Z such that (sαisαj)
mij =

s2
αi

= 1, where mij is the order of sαisαj in W , and 1 is the identity element of W .

Again, for ηijηji = 0, 1, 2, 3, we have that mij = 2, 3, 4, 6 respectively [7, Page 41].

Set si := sαi . If Π = {α1, · · · , αn} is the set of simple roots of Φ, then

W = 〈s1, · · · , sn | s2
i = (sisj)

mij = 1, i 6= j〉.

The relations (sisj)
mij = 1 and s2

i = 1 imply that

sisjsi · · · = sjsisj · · · .

Each side of the equality has exactly mij factors. The Weyl group W acts on Φ as

follows:

si(αj) = αj −
2(αi, αj)

(αi, αi)
αi = αj − ηijαi,

where si ∈ W and αj ∈ Φ. This action just permutes the elements of Φ as stated in

axiom A3.

Denote the cardinality of the set of positive roots Φ+ of Φ by N, and let ω ∈ W .

Since ω is generated by si, one can write ω as a product of simple reflections. Let

r ∈ N be minimum such that ω can be written as ω = si1si2 · · · sir . We call r the length

of ω, and the notation r = l(ω) will often be used. It is well known that l(ω) ≤ N.

Furthermore, there exists a unique element ω0 ∈ W such that l(w0) = N. The element

ω0 is called the longest element of W . One can recover the positive roots of Φ from any

reduced decomposition of ω0. That is, if ω0 = si1si2 · · · siN , then the positive roots of Φ
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are exactly β1, · · · , βN defined by

βr := si1si2 · · · sir−1(αir) (1 ≤ r ≤ N).

For example, given the set of simple roots {α1, α2} of G2 above, the associated set of

simple reflections is {s1, s2}. One can easily confirm that η12η21 = 3, hence the order of

s1s2 in the Weyl group W of G2 is 6. Therefore, W = 〈s1, s2 | s2
1 = s2

2 = (s1s2)6 = 1〉.

Moreover, |W | = |Φ| = 12. Given that (s1s2)6 = 1 and s2
1 = s2

2 = 1, it follows

that s1s2s1s2s1s2s1s2s1s2s1s2 = 1. This implies that s1s2s1s2s1s2 = s2s1s2s1s2s1. This

expression gives the longest and unique element ω0 of W . Thus, ω0 = s1s2s1s2s1s2 =

s2s1s2s1s2s1. Note, l(ω0) = N = 6 as expected. Choose ω0 = s1s2s1s2s1s2. Then, given

the relation si(αj) = αj −
2(αi, αj)

(αi, αi)
αi, one can equally confirm that the positive roots

of G2 (see Figure 1.1) are as follows:

β1 = α1 β4 = s1s2s1(α2) = 2α2 + 3α1

β2 = s1(α2) = α2 + 3α1 β5 = s1s2s1s2(α1) = α2 + α1

β3 = s1s2(α1) = α2 + 2α1 β6 = s1s2s1s2s1(α2) = α2.

1.2 Quantized enveloping algebras

In this section, we present the defining relations and a class of automorphisms (called

the braid group introduced by Lusztig [38]) of the quantized enveloping algebra Uq(g)

of a finite dimensional complex simple Lie algebra g. Unless otherwise stated, we follow

the presentations and conventions in [7, Chapter I.6]. For further details of the material

presented here, [7, Chapter I.6] and [26, Chapter 8] will be helpful. Throughout this

section, we assume that q is not a root of unity.

1.2.1 Definition. Let v be an indeterminate and m, t ∈ N; we have the following

definitions:
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(i). [t]v :=
vt − v−t

v − v−1
= vt−1 + vt−3 + · · ·+ v1−t.

(ii). [m]v! := [m]v[m− 1]v · · · [1]v. By convention, [0]v! := 1.

(iii). for all integers 0 ≤ i ≤ m, we have that:

[
m

i

]
v

:=
[m]v!

[i]v![m− i]v!
=

(vm − v−m)(vm−1 − v1−m) · · · (v − v−1)

(vi − v−i) · · · (v − v−1)(vm−i − vi−m) · · · (v − v−1)
.

Now; [t]v, [m]v! and
[
m

i

]
v

are all elements of the ring Z[v, v−1]. Particularly,
[
m

i

]
v

are called the v-binomial coefficients, and they are the v-analogue of the usual binomial

coefficients. They can be evaluated at any given values of v. If v = q, with q ∈ K∗, then

we have the usual q-binomial coefficients.

Let g denote a finite dimensional complex simple Lie algebra of rank n. Recall from

(1.1.1) that ηij = 2(αi, αj)/(αi, αi). The square matrix C defined by C := (ηij)1≤i,j≤n ∈

Mn(Z) is called the Cartan matrix of g. For example, one can verify that the Cartan

matrix of G2 has the following entries: η11 = η22 = 2, η12 = −3, and η21 = −1. In

fact, the diagonal entries of every Cartan matrix are 2 and the off-diagonal entries are

non-positive integers.

Let Π = {α1, · · · , αn} represent the set of simple roots of g. For all i ∈ {1, · · · , n},

set

qi := q
(αi,αi)

2 .

The quantized enveloping algebra Uq(g) of g is a K−algebra generated by E1, · · · , En,

F1, · · · , Fn and K±1
1 , · · · , K±1

n subject to the following relations:

KiEj = q
ηij
i EjKi KiFj = q

−ηij
i FjKi

EiFj = FjEi + δij
Ki −K−1

i

qi − q−1
i

KiKj = KjKi
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(QSR1)

1−ηij∑
l=0

(−1)l
[

1−ηij
l

]
qi
F

1−ηij−l
i FjF

l
i = 0 i 6= j

(QSR2)

1−ηij∑
l=0

(−1)l
[

1−ηij
l

]
qi
E

1−ηij−l
i EjE

l
i = 0 i 6= j.

The relations QSR1 and QSR2 are called the quantum Serre relations.

Recall that given the Lie algebra g, there is a triangular decomposition for g as

g+ ⊕ h ⊕ g−. The associated decomposition for the enveloping algebra U(g) is of the

form U(g+) ⊗ U(h) ⊗ U(g−), where U(g+), U(g−) and U(h) are called the positive

nilpotent, negative nilpotent and Cartan subalgebras of U(g) respectively. Similarly,

Uq(g) admits a triangular decomposition of the form U+
q (g)⊗ U0(h)⊗ U−q (g). One can

understand U+
q (g) and U−q (g) as the q-deformations of the subalgebras U(g+) and U(g−)

respectively. The sets {E1, · · · , En}, {F1, · · · , Fn} and {K±1
1 , · · · , K±1

n } generate the

subalgebras U+
q (g), U−q (g) and U0(h) respectively. Furthermore, U−q (g) and U+

q (g) satisfy

the relations QSR1 and QSR2 respectively. The subalgebra U0(h) is commutative. There

is a unique automorphism of Uq(g) that maps Ei to Fi, Fi to Ei and Ki to K−1
i (see [26,

Lemma 4.6] or [7, Lemma I.6.4]). Finally, U+
q (g) and U−q (g) are isomorphic (for example,

see [45, §2]).

We now present a subgroup of the automorphism group of Uq(g) called the braid

group. The braid group was introduced by Lusztig [38].

Braid group. Recall that Π = {α1, · · · , αn} is the set of simple roots of g. Set

Ti := Tαi , where 1 ≤ i ≤ n. Given the Weyl group

W = 〈s1, · · · , sn | s2
i = (sisj)

mij = 1⇒ sisjsi · · · = sjsisj · · · , i 6= j〉,

the associated braid group is given by

BW = 〈T1, · · · , Tn | TiTjTi · · · = TjTiTj · · · , i 6= j〉.

Note, each side of the equality TiTjTi · · · = TjTiTj · · · has exactly mij factors. The map

ϕ : BW −→ W defined by ϕ(Ti) = si is an epimorphism. Note, s2
i = 1 in W , however,
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T 2
i is not necessarily 1 in BW . In line with [26, Chapter 8], Lusztig defines an action of

BW by automorphism on Uq(g) as follows:

Ti(Ei) = −FiKi Ti(Ej) =

−ηij∑
r=0

(−1)rq−ri E
(−ηij−r)
i EjE

(r)
i i 6= j

Ti(Fi) = −K−1
i Ei Ti(Fj) =

−ηij∑
r=0

(−1)rqriF
(r)
i FjF

(−ηij−r)
i i 6= j

Ti(Kα) = Ksi(α), α ∈ Q,

where E
(r)
i :=

Er
i

[r]qi !
, F

(r)
i :=

F r
i

[r]qi !
and Q (the root lattice) denotes the Z− span of Π.

Hence, α = z1α1 + · · ·+ znαn ∈ Q, with z1, · · · , zn ∈ Z, and Kα := Kz1
1 · · ·Kzn

n . Note,

one can also refer to [26, Chapter 8] for the actions of the inverse automorphisms T−1
i

on Uq(g).

From any reduced decomposition of ω0 (discussed in Section 1.1), one can construct

distinguished elements Eβ1 , · · · , EβN of Uq(g) as follows:

Eβr = Ti1 · · ·Tir−1(Eir), 1 ≤ r ≤ N. (1.2.1)

The elements Eβr depend on the reduced decomposition for ω0 [32, §1.2]. Levendorskii

and Soibelman [37] proved the result below (also, see [32, Theorem 1.1]).

1.2.2 Theorem. (1) The element Eβr belongs to U+
q (g) for all r ∈ {1, · · · , N}.

(2) If βr = αi, then Eβr = Ei.

(3) The family of monomials (Er1
β1
· · ·ErN

βN
)r1,··· ,rN∈N is a linear basis of U+

q (g).

(4) For all 1 ≤ i < j ≤ N, we have:

EβjEβi − q−(βi,βj)EβiEβj =
∑

ari+1,··· ,rj−1
E
ri+1

βi+1
· · ·Erj−1

βj−1
,

with ari+1,··· ,rj−1
∈ K.
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Technically, the basis in point (3) is called a PBW-basis of U+
q (g), where PBW

stands for Poincaré-Birkhoff-Witt. Also, as a corollary to this theorem, we have that the

family of monomials (F s1
β1
· · ·F sN

βN
KαE

r1
β1
· · ·ErN

βN
)si,ri∈N,α∈Q form a PBW-basis of Uq(g)

[7, §I.6.8].

1.2.3 Remark. Recall the definitions of ω and ω0 in Section 1.1. It follows from [7,

§I.6.8] that U+
q (ω) := K〈Eβ1 , · · · , Eβr〉 is a subalgebra of U+

q (g) for each 1 ≤ r ≤ N,

and U+
q (ω0) = U+

q (g).

1.3 Ore extension

Let A be a K−algebra, σ be an automorphism of A and δ be a K−linear map from A

to A. Then,

• δ is a derivation if δ(xy) = xδ(y) + δ(x)y, ∀x, y ∈ A.

• δ is a σ−derivation if δ(xy) = σ(x)δ(y) + δ(x)y, ∀x, y ∈ A.

Observe that when σ = id, the σ−derivation and derivation coincide. One can easily

verify that δ(1) = 0. From [22, Chapter 2], we have the presentations in the following

definition.

1.3.1 Definition. Let σ and δ denote an automorphism and a σ−derivation of a ring A

respectively. Denote R := A[x;σ, δ] to mean the following:

• R is a ring containing the element x,

• A is a subring of R,

• R is a free left A−module with basis (xi)i∈N,

• xa = σ(a)x+ δ(a) for all a ∈ A.

The ring R is called an Ore extension of A or a skew polynomial ring over A. When

σ = id, then A[x; id, δ] is simply written as A[x; δ] and when δ = 0, then A[x;σ, 0] is
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simply written as A[x;σ]. The Ore extension described above can easily be iterated to

obtain an iterated Ore extension of A, written as:

R = A[x1;σ1, δ1][x2;σ2, δ2] · · · [xn;σn, δn],

where σi and δi are the automorphisms and σi−derivations of

A[x1;σ1, δ1][x2;σ2, δ2] · · · [xi−1;σi−1, δi−1] respectively for all i ∈ {1, · · · , n}.

Note, A[x0;σ0, δ0] := A.

1.3.2 Example. (1) The quantum plane Kq[x, y], with xy = qyx, can be presented

as an iterated Ore extension of the form K[y][x, σ], where σ is an automorphism

of the polynomial ring K[y] defined by σ(y) = qy.

(2) The quantized enveloping algebra Uq(sl2) is generated by E,F and K±1; and

satisfies the following relations:

KE = q2EK, FK = q2KF,

KK−1 = K−1K = 1, FE = EF + (K−1 −K)/(q−1 − q).

An iterated Ore extension of Uq(sl2) can be written as:

Uq(sl2) = K[E][K±1;σ1][F ;σ2.δ2],

where σ1(E) = q2E, σ2(K) = q2K, σ2(E) = E, δ2(K) = 0 and δ2(E) =

(K−1−K)/(q−1−q). Note, σ1 and σ2 are automorphisms of the subalgebras K[E]

and K[E][K±1;σ1] respectively, and δ2 is a σ2−derivation of K[E][K±1;σ1].

One can refer to [22, Chapter 2] for more details on Ore and iterated Ore extensions,

but we recall Hibert Basis Theorem below.

1.3.3 Theorem. [7, Lemma I.1.12 & Theorem I.1.13]. Let R := A[x;σ, δ] be a skew

polynomial ring, where σ and δ are automorphism and σ−derivation of the ring A re-

spectively.
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1. If A is left (right) noetherian then R is also left (right) noetherian [Hibert Basis

Theorem].

2. If A is a domain then R is also a domain.

1.3.4 Remark. U+
q (g) can be presented as an iterated Ore extension of the form:

U+
q (g) = K[Eβ1 ][Eβ2 ;σ2, δ2] · · · [EβN ;σN , δN ]

(see for instance [7, Section I.6.10]), where σi is an automorphism of

K[Eβ1 ][Eβ2 ;σ2, δ2] · · · [Eβi−1
;σi−1, δi−1] defined as σi(Eβj) = q−(βj ,βi)Eβj and δi is a

σi−derivation defined as δi(Eβj) = EβiEβj − q−(βj ,βi)EβjEβi for all 1 ≤ j < i ≤ N . As

a result, U+
q (g) is a noetherian domain since K is a noetherian domain. From [32, §1.2],

the group of invertible elements of U+
q (g) is reduced to K∗.

1.4 Localization and rings of fractions

The materials presented in this section are well known, nonetheless, we follow the pre-

sentations in [22, Chapters 6 and 10]. As a result, further details can be read from this

reference.

Let S be a subset of a K−algebra A such that 1 ∈ S, then S is said to be a

multiplicative set if it is closed under multiplication. The collection of all non-zero divisors

(also known as regular elements) in A forms a multiplicative set. Given a multiplicative

set S of A, if for each s ∈ S and a ∈ A, there exists t ∈ S and b ∈ A such that sb = at

(or sA ∩ aS 6= ∅), then S is said to satisfy the right Ore condition. A multiplicative set

S which satisfies the right Ore condition is called right Ore set. Symmetrically, one can

also define the left Ore condition and left Ore set. A multiplicative set which satisfies

both the right and left Ore condition is called an Ore set. In a commutative ring, every

multiplicative set is an Ore set. A multiplicative set S is said to be right reversible if

for a ∈ A and s ∈ S with sa = 0 then there exists s′ ∈ S such that as′ = 0. A right
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reversible right Ore set is called a right denominator set. A left denominator set is defined

symmetrically. A denominator set is any right and left denominator set. Suppose that S

is a right Ore set. Then, the set AS−1 := {as−1 | s ∈ S and a ∈ A} is called the right

ring of fractions or right Ore localization. Observe that every element of S is a unit in

AS−1 and A is a subset of AS−1. The left ring of fractions or left Ore localization is

defined symmetrically.

1.4.1 Example. 1. If A is a noetherian domain, then S := A \ {0} satisfies the Ore

condition, hence, AS−1 = Fract(A) is a right ring of fractions of A.

2. If A is a domain and x ∈ A is normal (i.e. xA = Ax), then S = {λxi | λ ∈

K∗, i ∈ N} is an Ore set. As a result, one can define A[x±1, σ] as A[x, σ] localized

at S. That is, A[x±1, σ] := A[x, σ]S−1.

1.5 Quantum affine space and quantum torus

Let N ∈ N. Given a multiplicatively skew-symmetric matrix Λ = (aij) ∈ MN(K∗), one

can define a K−algebra OΛ(KN) associated to Λ as follows:

OΛ(KN) = KΛ[Y1, · · · , YN ],

where YjYi = ajiYiYj for all 1 ≤ i, j ≤ N. The algebra OΛ(KN) is called a quantum

affine space of rank N associated to Λ. The iterated Ore extension of OΛ(KN) can be

written as:

OΛ(KN) = K[Y1][Y2;σ2] · · · [YN ;σN ],

where σj is an automorphism of K[Y1][Y2;σ2] · · · [Yj−1;σj−1] defined by σj(Yi) = ajiYi

for all 1 ≤ i < j ≤ N.

Since Y1, · · · , YN are all normal elements of OΛ(KN), the set S := {λY k1
1 · · ·Y

kN
N |

λ ∈ K∗ and k1, · · · , kN ∈ N} is an Ore set of OΛ(KN). One can therefore localize
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OΛ(KN) at S as follows:

OΛ(K∗)N := OΛ(KN)S−1 = KΛ[Y ±1
1 , · · · , Y ±1

N ].

Now, the localization OΛ(K∗)N is called a quantum torus of rank N. Furthermore,

OΛ((K∗)N) can be written as an iterated Ore extension of the form:

OΛ((K∗)N) = K[Y ±1
1 ][Y ±1

2 ;σ2] · · · [Y ±1
N ;σN ],

where σj is an automorphism ofK[Y ±1
1 ][Y ±1

2 ;σ2] · · · [Y ±1
j−1;σj−1] defined by σj(Yi) = ajiYi

for all 1 ≤ i < j ≤ N.

A basis of OΛ((K∗)N) is given by the family (Y k1
1 · · ·Y

kN
N )k1,··· ,kN∈Z. If we restrict

the powers k1, · · · , kN to only N, then (Y k1
1 · · ·Y

kN
N ) becomes a basis of OΛ(KN).

1.5.1 Remark. Given the finite dimensional complex simple Lie algebra g, recall from

Section 1.1 that one can construct a set {β1, · · · , βN} of positive roots of g. Set

µij :=


(βi, βj) if i < j

0 if i = j

−(βj, βi) if i > j.

(1.5.1)

The matrix Λ = (qµij) ∈ MN(K∗) is a multiplicatively skew-symmetric matrix (i.e.

qµijqµji = qµii = 1 for all 1 ≤ i, j ≤ N). As a result, one can define a quantum affine

space or a quantum torus associated to Λ.

1.6 Prime spectrum

Let P be a proper ideal of a ring A and I1, I2 be ideals of A with I1I2 ⊆ P, the ideal P is

called a prime ideal provided P ⊇ I1 or P ⊇ I2. A proper ideal P is said to be completely

prime if xy ∈ P implies that x ∈ P or y ∈ P for all x, y ∈ A. All completely prime ideals
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are prime ideals (see comments after [31, Theorem 12.5]), however, the converse is not

always true. An ideal can be prime but not completely prime. For example, the zero ideal

〈0〉 of M2(Z) is prime but not completely prime.

Take

x =

2 2

2 2

 and y =

 2 2

−2 −2

 .
Clearly, xy ∈ 〈0〉 but x 6∈ 〈0〉 and y 6∈ 〈0〉. The collection of all the prime ideals of A is

called the prime spectrum of A, denoted by Spec(A).

Let M be a right simple A−module. The set annA(M) := {a | ma = 0, ∀m ∈M}

is called the right annihilator of M. Now, annA(M) forms an ideal of A called the right

primitive ideal. The left primitive ideal is defined symmetrically. Finally, an ideal of a

ring A is maximal if it is not contained in any proper ideal of A. The set Prim(A) is the

collection of all the (left/right) primitive ideals of A called the primitive spectrum of A,

and the set MaxSpec(A) is the collection of all the maximal ideals of A called the maximal

spectrum of A. We have the following set inclusions: MaxSpec(A) ⊆ Prim(A) ⊆ Spec(A)

for any arbitrary ring A [22, Proposition 3.15].

Again, let A be a ring and P0, P1, · · · , Pn ∈ Spec(A) such that P0 ⊂ P1 ⊂ · · · ⊂ Pn

is a chain of prime ideals of A. The number of strict inclusions n that we have in the

chain is called the length of the chain. That is, n is the number of Pi’s in the chain minus

1. A chain is saturated if no prime ideal can be included in the chain. Furthermore, let

P ∈ Spec(A). The height of P denoted by ht(P ) is the supremum of the lengths of

all the chains of prime ideals contained in P. Finally, let P and Q be two distinct prime

ideals of A such that P ⊂ Q. Then, A is said to be catenary if all saturated chains of

prime ideals from P to Q have the same length for any fixed choice of P and Q. For

example, U+
q (g) is catenary [19, Theorem 4.8].

1.6.1 Remark. [42, Corollary of Theorem 3] If q is not a root of unity, then all prime

ideals of U+
q (g) are completely prime.
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1.6.2 Rational torus action. In this section we define rational torus actions in line with

the presentations in [7, Chapter II.2]. Let the group H act on the K−algebra A via

K−algebra automorphisms. Let x be a non-zero element of A. Then, x is said to be a

H−eigenvector if and only if h · x ∈ Kx for all h ∈ H. If a torus H acts on an algebra

A such that the generators of A are simultaneous eigenvectors for all h ∈ H, then the

action of H on A is said to be semisimple.

1.6.3 Example. (1) The torus H = (K∗)2 acts on the quantum plane Kq[x, y] by

automorphisms as: (α, β) · xiyj = αiβjxiyj for all (α, β) ∈ H and i, j ≥ 0. This

action is semisimple since each monomial xiyj is an H−eigenvector for all i, j ≥ 0.

(2) In general, the torus H = (K∗)N acts on the quantum affine space KΛ[Y1, · · · , YN ]

by automorphisms as follows:

(α1, · · · , αN) · Yi = αiYi,

for all i ∈ N and (α1, · · · , αN) ∈ H. This action extends uniquely to an action of

the quantum torus, and it is semisimple.

Given an eigenvector, another terminology that obviously comes to mind is an eigen-

value. Therefore, given a H−eigenvector x, the H−eigenvalue of x is a group homo-

morphism λ : H −→ K∗ such that h · x = λ(h)x for all h ∈ H. For instance, the group

homomorphism (α, β) 7−→ αiβj is H−eigenvalue of the H−eigenvector xiyj in Example

1.6.3. Given an H−eigenvalue λ, the set Aλ := {x ∈ A | h · x = λ(h)x,∀h ∈ H} is

called the H−eigenspace of A provided it is non-zero.

The H−eigenvalues λ are called characters of H. If H is an algebraic group over K

then a character λ of H which is also a morphism of algebraic varieties is called a rational

character. Suppose that K is infinite, then it follows from [7, Theorem II.2.7] that an

action of H on A is rational if and only if it is a semisimple action and the corresponding

H−eigenvalues are all rational. One can easily verify that all the torus actions in Example

1.6.3 are rational actions. For the purpose of our studies, this discussion on rational torus
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action is enough. However, one can read [7, Chapter II.2] for further details. Specifically,

see [7, Definition II.2.6] for the general definition of rational torus action. We deduce the

remark below from [4, §3.3].

1.6.4 Remark. The torus H = (K∗)n acts rationally on U+
q (g) by automorphisms via:

(α1, · · · , αn) · Ei = αiEi,

for all 1 ≤ i ≤ n and (α1, · · · , αn) ∈ H. Recall; E1, · · · , En are the standard generators

of U+
q (g), where n is the rank of g.

We now present the notion of H−stratification by Goodearl and Letzter [21] which

provides a partition of the prime spectrum of a given ring into a disjoint union of strata.

More importantly, the H−stratification also helps to study the primitive ideals of a ring.

1.6.5 H−Stratification. Let A be a K−algebra and I be any ideal of A. If h · I = I

for all h ∈ H, then I is said to be H−invariant ideal of A. A prime H−invariant ideal is

called H−invariant prime ideal (or H−prime ideal for short). Also, (I : H) :=
⋂
h∈H h ·I

is the largest H−invariant ideal contained in I. Let H−Spec(A) represent the collection

of all the H−invariant prime ideals of A. For J ∈ H−Spec(A), the set SpecJ(A) :=

{P ∈ Spec(A) | (P : H) = J} is called the H−stratum of Spec(A) associated to J.

One can simply call it the J−stratum of Spec(A). The collection of all these J−strata

forms a partition of Spec(A). That is,

Spec(A) =
⊔

J∈H−Spec(A)

SpecJ(A).

This partition is known as the H−stratification of Spec(A). Note, given a non-zero

algebra A, if the zero ideal and A are the only H−invariant ideals of A, then A is said

to be H−simple.

For all J in H−Spec(A), we define PrimJ(A) := SpecJ(A) ∩ Prim(A). This gives

a corresponding H−stratification of Prim(A). That is,
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Prim(A) =
⊔

J∈H−Prim(A)

PrimJ(A),

where H− Prim(A) is the collection of all H−invariant primitive ideals of A.

This stratification theory applies to U+
q (g), and we have the following lemma.

1.6.6 Lemma. [7, Theorem II.8.4] Let A = U+
q (g), the primitive ideals in SpecJ(A) are

just the maximal ideals in SpecJ(A).

1.6.7 Remark. [24, §6,7] (also see [44, Theorem 3.8]) The poset of H−Spec(U+
q (g))

(ordered by inclusion) is isomorphic to the poset of the Weyl group (ordered by the

Bruhat order) associated to g. That is, for any element of the Weyl group, one can

always associate a unique element of H−Spec(U+
q (g)).

1.6.8 Example. Let R = Cq[x, y], with xy = qyx, and H = (C∗)2. The ideals

〈0〉, 〈x〉, 〈y〉 and 〈x, y〉 are all H−invariant prime ideals [7, Example II.2.3]. In fact,

they are the only H−invariant prime ideals we have in R. One can easily verify that

R/〈x, y − β〉 ∼= C, where β ∈ C∗. Since C is a domain, 〈x, y − β〉 is a prime ideal.

Similarly, 〈x − α, y〉 with α ∈ C∗, is also a prime ideal. However, none of these two

prime ideals is H−invariant. From [7, Example II.2.3], we have the following strata in

Spec(R) :

• Spec〈0〉(R) = {〈0〉},

• Spec〈x〉(R) = {〈x〉} ∪ {〈x, y − β〉 | β ∈ C∗},

• Spec〈y〉(R) = {〈y〉} ∪ {〈x− α, y〉 | α ∈ C∗}, and

• Spec〈x,y〉(R) = {〈x, y〉}.

Consequently, Spec(R) = Spec〈0〉(R) ∪ Spec〈x〉(R) ∪ Spec〈y〉(R) ∪ Spec〈x,y〉(R).

For each α, β ∈ C∗, the poset of Spec(R) is shown in Figure 1.2. We also have that

ht(〈0〉) = 0, ht(〈x〉) = ht(〈y〉) = 1, and ht(〈x, y−β〉) = ht(〈x−α, y〉) = ht(〈x, y〉) = 2.

Again; since 〈0〉, 〈x, y− β〉, 〈x− α, y〉 and 〈x, y〉 are maximal in their respective strata
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for each α, β ∈ C∗; they are all primitive ideals. Although, 〈0〉 is maximal in its strata,

it is obvious that it cannot be a maximal ideal in R, since it is strictly contained in other

proper ideals of R. However; 〈x, y − β〉, 〈x − α, y〉 and 〈x, y〉 are all maximal ideals in

R.

〈0〉

〈y〉〈x〉

〈x, y〉〈x, y − β〉 〈x− α, y〉

Figure 1.2: Poset of Spec(R)

Following the notations in [4, §2.2], let W be the set of subsets of I := {1, · · · , N}.

For each w ∈ W, set Kw := 〈Yi | i ∈ w〉, where Kw is the two-sided ideal of the

quantum affine space OΛ(KN) = KΛ[Y1, · · · , YN ]. From [20, Proposition 2.11] (also, see

[4, Proposition 2.1]), we have the following proposition.

1.6.9 Proposition. (1) The H− invariant prime ideals of OΛ(KN) is the set {Kw |

w ∈ W}. As a result, there are exactly 2N H− invariant prime ideals of OΛ(KN).

(2) SpecKw(OΛ(KN)) = {P ∈ Spec(OΛ(KN)) | P ∩ {Yi | i ∈ I} = {Yi | i ∈ w}} for

all w ∈ W.

1.7 Deleting derivations algorithm (DDA)

In this section, we describe the notion of the deleting derivations algorithm (DDA) intro-

duced by Cauchon [8]. We begin with the definition of quantum nilpotent algebras, which
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are also called Cauchon-Goodearl-Letzter (CGL) extensions. In line with [4, Definition 2],

we provide a definition for CGL extension below.

1.7.1 Definition. Suppose that a ring A can be written as an iterated Ore extension as

follows:

A = K[X1][X2;σ2, δ2] · · · [XN ;σN , δN ],

with N ∈ N. Then, A is said to be a quantum nilpotent algebra or a CGL extension if

there exists a torus H = (K∗)m that acts rationally by K-automorphism on A, and the

following are satisfied:

(a) X1, · · · , XN are H−eigenvectors;

(b) for all 2 ≤ i ≤ N, there exists hi ∈ H and qi ∈ K∗ (qi is not a root of unity)

such that hi · Xi = qiXi and for all 1 ≤ j < i, there exists λij ∈ K∗ such that

hi ·Xj = λijXj;

(c) the set {λ ∈ K∗ | ∃h ∈ H, h ·X1 = λX1} is infinite;

(d) for all 2 ≤ i ≤ N, we have that δi is locally nilpotent, and

(e) for all 1 ≤ j < i ≤ N, there exists λij ∈ K∗ such that σi(Xj) = λijXj (note,

σi = (hi·) |Ai−1
, where Ai−1 := K[X1][X2;σ2, δ2] · · · [Xi−1;σi−1, δi−1]).

Note, from the original definition, we have a condition that states that there exists

qi ∈ K∗ (qi is not a root of unity) such that σi ◦ δi = qiδi ◦ σi. However, we did not

include this condition in the above definition as it follows from the other conditions (see

[23, Equation 3.1] for the necessary details). Suppose that A is a quantum nilpotent

algebra, one can conclude from [21, Proposition 4.2] that all H−invariant prime ideals

of A are completely prime, and there are at most 2N of these H−invariant prime ideals.

Deleting derivations algorithm (DDA): let A be a quantum nilpotent algebra.

One can use the theory of DDA constructed by Cauchon [8] (see also [4, §2.3]) to describe

Spec(A). The algorithm relates Spec(A) to the prime spectrum of the quantum affine
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space obtained after sequentially ‘deleting’ all the skew-derivations δN , · · · , δ2 from A.

We now describe the DDA process below.

Let j ∈ {N + 1, · · · , 2}, the algorithm constructs a family (X1,j, · · · , XN,j) of

elements of Fract(A) (the right ring of fractions of A) as follows. First, when j = N +1,

we set (X1,N+1, · · · , XN,N+1) := (X1, · · · , XN). Second, for j < N + 1, suppose that

the family (X1,j+1, · · · , XN,j+1) has already been constructed. Then, one can construct

X1,j, · · · , XN,j from X1,j+1, · · · , XN,j+1 using the relation below:

Xi,j :=


Xi,j+1 if i ≥ j
+∞∑
k=0

(1− qj)−k

[k]qj !
δkj ◦ σ−kj (Xi,j+1)X−kj,j+1 if i < j,

(1.7.1)

for all i ∈ {1, · · · , N}. Also, [k]qj ! = [0]qj × · · · × [k]qj with [0]qj = 1, and [i]qj =

1 + qj + · · ·+ qi−1
j with i ≥ 1. Note, from [8, Theorem 3.2.1], Xj,j+1 6= 0. Moreover, the

summation is finite since δj are all locally nilpotent and δj ◦ σj = qjσj ◦ δj.

For each j ∈ {2, · · · , N + 1}, A(j) is a subalgebra of Fract(A) generated by

X1,j, · · · , XN,j. That is, A(j) := K〈X1,j, · · · , XN,j〉. Since (X1,N+1, · · · , XN,N+1) =

(X1, · · · , XN), we have that A(N+1) = A. It follows from [8, Theorem 3.2.1] that

A(j) ∼= K[X1][X2;σ2, δ2] · · · [Xj−1;σj−1, δj−1][Xj; τj] · · · [XN ; τN ],

by an isomorphism that maps Xi,j to Xi, and τj, · · · , τN are automorphisms defined by

τl(Xi) = λl,iXi for all 1 ≤ i < l ≤ N. With a slight abuse of notation, one can identify

τj, · · · , τN with σj, · · · , σN respectively. With this isomorphism and the slight abuse of

notation, we present A(j) as:

A(j) = K[X1,j][X2,j;σ2, δ2] · · · [Xj−1,j;σj−1, δj−1][Xj,j;σj] · · · [XN,j;σN ].

One can observe that for each j ∈ {2, · · · , N}, the derivations δj, · · · , δN are all ‘deleted’

from A(j). For example, if j = 2, then δ2, · · · , δN will all be ‘deleted’ from A(2). As a
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result, A(2) = K[T1][T2;σ2] · · · [TN ;σN ], where Ti := Xi,2 for all i ∈ {1, · · · , N}. Clearly,

Ā := A(2) is a quantum affine space. By Theorem 1.3.3, the algebra A(j) is a noetherian

domain. Let j ∈ {2, · · · , N}. The set Sj := {Xn
j,j+1 | n ∈ N} = {Xn

j,j | n ∈ N}

is a multiplicative system of regular elements of A(j) and A(j+1) that satisfies the Ore

condition in A(j) and A(j+1) , and A(j)S−1
j = A(j+1)S−1

j [8, Theorem 3.2.1].

Cauchon used DDA to relate Spec(A) to Spec(Ā) by constructing an embedding

ψj : Spec(A(j+1)) ↪→ Spec(A(j)) for each j ∈ {2, · · · , N}. Suppose that P ∈ Spec(A(j+1))

and Xj,j+1 6∈ P, then ψj is defined by

ψj(P ) = PS−1
j ∩ A(j) = Q,

with Q ∈ Spec(A(j)). The inverse map ψ−1
j is also given by

ψ−1
j (Q) = QS−1

j ∩ A(j+1) = P,

provided Xj,j 6∈ Q.

The case where Xj,j+1 ∈ P is beyond the scope of this study, however, one can refer

to [4, §2.3] and [8, §4.3] for the necessary details.

The map ψj is injective but not necessarily bijective. However, ψj induces a bijection

from {P ∈ Spec(A(j+1)) | P ∩ Sj = ∅} onto {Q ∈ Spec(A(j)) | Q ∩ Sj = ∅}. The

so-called canonical embedding ψ : Spec(A) ↪→ Spec(Ā) is obtained by composing all

the ψj. That is, ψ := ψ2 ◦ · · · ◦ ψN . This canonical embedding ψ helps to construct a

partition of Spec(A) into a disjoint union of strata (known as the canonical partition) via

the Cauchon diagrams (see [4, §2.3] for further details on this).

1.7.2 Remark. The algebra U+
q (g) is a quantum nilpotent algebra [4, §3.1]. One can

therefore apply the DDA to study the prime spectrum of U+
q (g).
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Quest for height two maximal ideals

of U+
q (G2)

The algebra A = U+
q (G2) is a quantum nilpotent algebra, so one can apply the theory

of deleting derivations algorithm (DDA) and H−stratification theory to study its prime

ideals. Note, from Remark 1.6.1, all prime ideals of A are completely prime. Since A

is a quantum nilpotent algebra, it follows from [18, Theorem 7.1] that Tauvel’s height

formula holds for A. That is, for any prime ideal P of A, we have that

GKdim(A) = ht(P ) + GKdim(A/P ),

where GKdim(∗) represents the Gelfand-Kirillov dimension of the algebra ∗, and ht(P )

is the height of the prime ideal P. For more details on the Gelfand-Kirillov dimension

of a ring, we recommend [30]. Since G2 has 6 positive roots (Section 1.1), it follows

from [45, §2.1] that GKdim(A) = 6. We are now interested in finding a family of prime

ideals such that the quotients of A with those prime ideals are of GKdim 4 and simple.

This implies that these prime ideals must be maximal, and using Tauvel’s height formula,

they must be of height 2. To achieve this result, we use H−stratification theory to

study some H−strata of A. Note, the maximal ideals of height 2 can only belong to

the H−strata corresponding to an H−invariant prime ideals of height at most 2, so we

30
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identify these H−prime ideals first. Of course, the only height 0 prime ideal is the zero

ideal 〈0〉. In Section 2.3, we proved that the ideals 〈Ω1〉 and 〈Ω2〉 are (completely) prime

using Cauchon’s theory of DDA, and in Lemma 2.4.2, we proved that they are of height

1. Moreover, studying the poset of H−Spec(A) (as seen in Figure 2.1), no height 2

H−prime ideal is maximal. As a result, the height 2 maximal ideals of A can only come

from the H−strata corresponding to 〈0〉, 〈Ω1〉 or 〈Ω2〉. In Subsection 2.4.3, we compute

explicitly these H−strata. This allows us to study the height 2 maximal ideals of A. We

now begin by studying some properties of the algebra U+
q (G2).

2.1 The algebra U+
q (G2)

The background of the materials presented here can be found in Section 1.2. Moreover,

the positive part U+
q (G2) of Uq(G2) is going to be of a major interest in this section and

beyond. We will begin by finding the defining relations of Uq(G2), and then proceed to

compute the defining relations of the subalgebra U+
q (G2).

The algebra Uq(G2) is a C−algebra generated by F1, F2, K
±1
1 , K±1

2 , E1, E2 subject

to the following relations:

K1E1 = q2E1K1 K1F1 = q−2F1K1 K1K2 = K2K1

K1E2 = q−3E2K1 K1F2 = q3F2K1 E2F2 = F2E2 +
K2 −K−1

2

q3 − q−3

K2E1 = q−3E1K2 K2F1 = q3F1K2 E1F1 = F1E1 +
K1 −K−1

1

q − q−1

K2E2 = q6E2K2 K2F2 = q−6F2K2 E1F2 = F2E1

E2F1 = F1E2,

and the quantum Serre relations:

(S1) E4
1E2 −

[
4

1

]
q
E3

1E2E1 +
[

4

2

]
q
E2

1E2E
2
1 −

[
4

1

]
q
E1E2E

3
1 + E2E

4
1 = 0,

(S2) E2
2E1 −

[
2

1

]
q3
E2E1E2 + E1E

2
2 = 0,
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(S3) F 4
1F2 −

[
4

1

]
q
F 3

1F2F1 +
[

4

2

]
q
F 2

1F2F
2
1 −

[
4

1

]
q
F1F2F

3
1 + F2F

4
1 = 0,

(S4) F 2
2F1 −

[
2

1

]
q3
F2F1F2 + F1F

2
2 = 0.

Now, U+
q (G2) is a subalgebra of Uq(G2) generated by E1 and E2 subject to the quantum

Serre relations (S1) and (S2). The actions of the automorphisms T1 and T2 of Uq(G2)

on U+
q (G2) are as follows:

T2(E1) = E2E1 − q−3E1E2 T1(E1) = −F1K1

T1(E2) =
E3

1E2

[3]q[2]q
− q−1E

2
1E2E1

[2]q
+ q−2E1E2E

2
1

[2]q
− q−3 E2E

3
1

[3]q[2]q
T2(E2) = −F2K2.

For the purpose of the computation of the relations of U+
q (G2) in Appendix A.1, we

include the following inverse automorphism actions: T−1
1 (E1) = −K−1

1 F1 and T−1
2 (E2) =

−K−1
2 F2.

Now, recall the positive roots β1, · · · , β6 of G2 in Section 1.1. From (1.2.1) and

Theorem 1.2.2, the elements Eβr (also called root vectors) of U+
q (G2) are as follows:

Eβ1 = E1 Eβ2 = T1(E2) Eβ3 = T1T2(E1)

Eβ4 = T1T2T1(E2) Eβ5 = T1T2T1T2(E1) Eβ6 = E2.

With a slight abuse of notations, set Ei := Eβi for all 1 ≤ i ≤ 6. Note, E2 is no longer

Eβ6 as expected. With these notations, the defining relations of U+
q (G2) (see Appendix

A.1.1) are as follows:

E2E1 = q−3E1E2 E3E1 = q−1E1E3 − (q + q−1 + q−3)E2

E3E2 = q−3E2E3 E4E1 = E1E4 + (1− q2)E2
3

E4E2 = q−3E2E4 −
q4 − 2q2 + 1

q4 + q2 + 1
E3

3 E4E3 = q−3E3E4

E5E1 = qE1E5 − (1 + q2)E3 E5E2 = E2E5 + (1− q2)E2
3

E5E3 = q−1E3E5 − (q + q−1 + q−3)E4 E5E4 = q−3E4E5
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E6E1 = q3E1E6 − q3E5 E6E2 = q3E2E6 + (q4 + q2 − 1)E4+

E6E3 = E3E6 + (1− q2)E2
5 (q2 − q4)E3E5

E6E4 = q−3E4E6 −
q4 − 2q2 + 1

q4 + q2 + 1
E3

5 E6E5 = q−3E5E6.

These relations have been confirmed with a mathematical software called GAP [10]. The

GAP code can be found in Appendix A.1.2.

2.1.1 Remark. De Graaf [9, Appendix A] has also computed the relations of U+
q (G2).

If we set E1 := Eα, E2 := E3α+β, E3 := E2α+β, E4 := E3α+2β, E5 := Eα+β and

E6 := Eβ, then our relations are the same as his relations. Of course, the only difference

is that he used the notations α and β for the simple roots contrary to our notations α1

and α2.

From Theorem 1.2.2, the set {Ek1
1 E

k2
2 E

k3
3 E

k4
4 E

k5
5 E

k6
6 | k1, · · · , k6 ∈ N} forms a

PBW-basis of U+
q (G2). The iterated Ore extension of U+

q (G2) is of the form:

U+
q (G2) = C[E1][E2;σ2][E3;σ3, δ3][E4;σ4, δ4][E5;σ5, δ5][E6;σ6, δ6];

where, σ2 denotes the automorphism of C[E1] defined by:

σ2(E1) = q−3E1,

σ3 denotes the automorphism of C[E1][E2;σ2] defined by:

σ3(E1) = q−1E1 σ3(E2) = q−3E2,

δ3 denotes the σ3-derivation of C[E1][E2;σ2] defined by:

δ3(E1) = −(q + q−1 + q−3)E2 δ3(E2) = 0,
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σ4 denotes the automorphism of C[E1] · · · [E3;σ3, δ3] defined by:

σ4(E1) = E1 σ4(E2) = q−3E2 σ4(E3) = q−3E3,

δ4 denotes the σ4-derivation of C[E1] · · · [E3;σ3, δ3] defined by:

δ4(E1) = (1− q2)E2
3 δ4(E2) =

−q4 + 2q2 − 1

q4 + q2 + 1
E3

3 δ4(E3) = 0,

σ5 denotes the automorphism of C[E1] · · · [E4;σ4, δ4] defined by:

σ5(E1) = qE1 σ5(E2) = E2 σ5(E3) = q−1E3 σ5(E4) = q−3E4,

δ5 denotes the σ5-derivation of C[E1] · · · [E4;σ4, δ4] defined by:

δ5(E1) = −(1+q2)E3 δ5(E2) = (1−q2)E2
3 δ5(E3) = −(q+q−1+q−3)E4 δ5(E4) = 0,

σ6 denotes the automorphism of C[E1] · · · [E5;σ5, δ5] defined by:

σ6(E1) = q3E1 σ6(E2) = q3E2 σ6(E3) = E3 σ6(E4) = q−3E4 σ6(E5) = q−3E5,

and δ6 denotes the σ6-derivation of C[E1] · · · [E5;σ5, δ5] defined by:

δ6(E1) = −q3E5 δ6(E2) = (q2 − q4)E3E5 + (q4 + q2 − 1)E4 δ6(E3) = (1− q2)E2
5

δ6(E4) =
−q4 + 2q2 − 1

q4 + q2 + 1
E3

5 δ6(E5) = 0.

2.2 DDA and the center of U+
q (G2)

Henceforth, we set A := U+
q (G2). We are now ready to describe the DDA of A.

2.2.1 DDA of U+
q (G2). The algebra A is a quantum nilpotent algebra (Remark 1.7.2),

and therefore the theory of DDA studied in Section 1.7 applies to A. We construct the
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following elements of Fract(A) (computations have been omitted here, but can be found

in Appendix A.2):

E1,6 = E1 + rE5E
−1
6

E2,6 = E2 + tE3E5E
−1
6 + uE4E

−1
6 + nE3

5E
−2
6

E3,6 = E3 + sE2
5E
−1
6

E4,6 = E4 + bE3
5E
−1
6

E1,5 = E1,6 + hE3,6E
−1
5,6 + gE4,6E

−2
5,6

E2,5 = E2,6 + fE2
3,6E

−1
5,6 + pE3,6E4,6E

−2
5,6 + eE2

4,6E
−3
5,6

E3,5 = E3,6 + aE4,6E
−1
5,6

E1,4 = E1,5 + sE2
3,5E

−1
4,5

E2,4 = E2,5 + bE3
3,5E

−1
4,5

E1,3 = E1,4 + aE2,4E
−1
3,4

T1 := E1,2 = E1,3

T2 := E2,2 = E2,3 = E2,4

T3 := E3,2 = E3,3 = E3,4 = E3,5

T4 := E4,2 = E4,3 = E4,4 = E4,5 = E4,6

T5 := E5,2 = E5,3 = E5,4 = E5,5 = E5,6 = E5

T6 := E6,2 = E6,3 = E6,4 = E6,5 = E6,6 = E6.

The parameters a, b, e, f, g, h, n, p, r, s, t, u are all defined in Appendix C.

Again, from the theory of the DDA in Section 1.7, we have that for each j ∈

{2, · · · , 7}, the algebra A(j) := C〈Ei,j | i = 1, · · · , 6〉 is the subalgebra of Fract(A).

Since (E1,7, · · · , E6,7) := (E1, · · · , E6), it follows that A(7) = A.

2.2.2 Remark. Recall that Tj = Ej,j = Ej,j+1 ∈ A(j) ∩ A(j+1). It follows from [8,

Theorem 3.2.1] that the set Σj := {T nj | n ∈ N} is an Ore set in both A(j) and A(j+1)

for each 1 ≤ j ≤ 6, and that A(j)Σ−1
j = A(j+1)Σ−1

j .
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2.2.3 The center of U+
q (G2). Using (1.5.1), we have the skew-symmetric matrix M

below:

M :=



0 (β1, β2) · · · · · · (β1, β6)

−(β1, β2) 0 (β2, β3) (β2, β6)

...
. . . . . . . . .

...

...
. . . 0 (β5, β6)

−(β1, β6) · · · · · · −(β5, β6) 0



=



0 3 1 0 −1 −3

−3 0 3 3 0 −3

−1 −3 0 3 1 0

0 −3 −3 0 3 3

1 0 −1 −3 0 3

3 3 0 −3 −3 0


.

Observe that Ā := A(2) = CqM [T1, · · · , T6] is a quantum affine space. Set Ω1 := T1T3T5

and Ω2 := T2T4T6. One can verify that Ω1 and Ω2 are central elements of Ā. That is,

ΩiTj = TjΩi for all i = 1, 2, and 1 ≤ j ≤ 6.

We now want to successively pull Ω1 and Ω2 from the quantum affine space Ā into

the algebra A using the data of the DDA of A discussed above. We only summarize the

computations here, and provide a sketch of the computations in Appendix A.3.

Ω1 := T1T3T5

= E1,4E3,4E5,4 + aE2,4E5,4

= E1,5E3,5E5,5 + aE2,5E5,5

= E1,6E3,6E5,6 + aE1,6E4,6 + aE2,6E5,6 + a′E2
3,6

= E1E3E5 + aE1E4 + aE2E5 + a′E2
3 ,
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and

Ω2 := T2T4T6

= E2,5E4,5E6,5 + bE3
3,5E6,5

= E2,6E4,6E6,6 + bE3
3,6E6,6

= E2E4E6 + bE2E
3
5 + bE3

3E6 + b′E2
3E

2
5 + c′E3E4E5 + d′E2

4 .

The parameters a, b, a′, b′, c′, d′ are all defined in Appendix C. Note, Ω1 and Ω2 are

central elements of A(j) for each 2 ≤ j ≤ 7, since Fract(A(j)) = Fract(Ā). From the

commutation relations of A, one can observe that E1 and E6 are enough to generate A.

Hence, it is sufficient to confirm that Ω1 and Ω2 are central elements of A by showing

that they commute with only E1 and E6. As a result, we have used GAP to confirm

that Ω1Ei = EiΩ1 and Ω2Ei = EiΩ2 for each i = 1, 6. The GAP code can be found in

Appendix A.3.1.

We now want to show that the center of A is a polynomial ring generated by Ω1 and

Ω2 over C. The following discussions will lead us to the proof.

Set Sj := {λT ijj T
ij+1

j+1 · · ·T
i6
6 | ij, · · · , i6 ∈ N and λ ∈ C∗} for each 2 ≤ j ≤ 6.

One can observe that Sj is a multiplicative system of non-zero divisors of A(j) = C〈Ei,j |

for all i = 1, · · · , 6〉. Furthermore, the elements Tj, · · · , T6 are all normal in A(j). Hence,

Sj is an Ore set in A(j). We can therefore localize A(j) at Sj as follows:

Rj := A(j)S−1
j .

Recall from Remark 2.2.2 that Σj := {T nj | n ∈ N} is an Ore set in both A(j) and A(j+1)

for each 2 ≤ j ≤ 6, and that

A(j)Σ−1
j = A(j+1)Σ−1

j .
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For all 2 ≤ j ≤ 6, we have that:

Rj = A(j)S−1
j = (A(j)Σ−1

j )S−1
1+j = (A(j+1)Σ−1

j )S−1
1+j = (A(j+1)S−1

j+1)Σ−1
j = Rj+1Σ−1

j .

(2.2.1)

Note, R7 := A.

Again, one can also observe that T1 is normal in R2. As a result, the localization

R1 := R2[T−1
1 ]

also holds in R2. In fact, R1 is the quantum torus associated to the quantum affine space

Ā. As a result, R1 = CqM [T±1
1 , · · · , T±1

6 ], where TiTj = qµijTjTi for all 1 ≤ i, j ≤ 6 and

µij ∈M. Similar to [36, §31], we construct the following tower of algebras:

A = R7 ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4

⊂ R3 = R4Σ−1
3 ⊂ R2 = R3Σ−1

2 ⊂ R1. (2.2.2)

Note, the family (Ek1
1,j · · ·E

k6
6,j), where ki ∈ N if i < j and ki ∈ Z otherwise is a PBW-

basis of Rj for all 1 ≤ i, j ≤ 7. Therefore, the family (T k11 T k22 T k33 T k44 T k55 T k66 )k1,··· ,k6∈Z is

a basis of R1.

2.2.4 Lemma. Z(R1) = C[Ω±1
1 ,Ω±1

2 ].

Proof. Obviously, C[Ω±1
1 ,Ω±1

2 ] ⊆ Z(R1). For the reverse inclusion, let y ∈ Z(R1). Then,

y can be written in terms of the basis of R1 as:

y =
∑

(i,··· ,n)∈Z6

a(i,··· ,n)T
i
1T

j
2T

k
3 T

l
4T

m
5 T

n
6 .

One can verify that yT1 = q−3j−k+m+3nT1y. Since y ∈ Z(R1), it follows that

−3j − k +m+ 3n = 0.
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Similarly, yT2 = q3i−3k−3l+3nT2y. Since y ∈ Z(R1), we have:

3i− 3k − 3l + 3n = 0.

Following the same pattern for T3, T4, T5 and T6, one can confirm that

i+ 3j − 3l −m =0,

3j + 3k − 3m− 3n =0,

−i+ k + 3l − 3n =0,

−3i− 3j + 3l + 3m =0.

Solving this system of six equations will reveal that i = k = m and j = l = n. One can

therefore write

y =
∑

(i,j)∈Z2

a(i,j)T
i
1T

j
2T

i
3T

j
4T

i
5T

j
6 =

∑
(i,j)∈Z2

q•a(i,j)T
i
1T

i
3T

i
5T

j
2T

j
4T

j
6 =

∑
(i,j)∈Z2

q•a(i,j)Ω
i
1Ωj

2.

This implies that y ∈ C[Ω±1
1 ,Ω±1

2 ] as expected. �

2.2.5 Corollary. 1. Z(R3) = C[Ω1,Ω2].

2. Z(Ā) = C[Ω1,Ω2].

Proof. 1. Clearly, C[Ω1,Ω2] ⊆ Z(R3). For the reverse inclusion, let y ∈ Z(R3). Then, y

can be written in terms of the basis of R3 (recall, Ti = Ei,3) as:

y =
∑

(i,··· ,n)∈N2×Z4

a(i,··· ,n)T
i
1T

j
2T

k
3 T

l
4T

m
5 T

n
6 .

Now; T1, · · · , T6 are all normal elements in R3. In fact, they satisfy the same commutation

relations in R1. Hence, following procedures similar to the lemma above, one will arrive

at the conclusion that i = k = m and j = l = n. Since i, j ≥ 0; we have that

y =
∑

(i,j)∈N2 q•a(i,j)T
i
1T

i
3T

i
5T

j
2T

j
4T

j
6 =

∑
(i,j)∈N2 q•a(i,j)Ω

i
1Ωj

2. This implies that
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y ∈ C[Ω1,Ω2] as expected.

2. Similar to (1). �

2.2.6 Lemma. Z(A) = C[Ω1,Ω2].

Proof. Since Ri is a localization of Ri+1, it follows that Z(Ri+1) ⊆ Z(Ri). From (2.2.2),

we have that Z(A) ⊆ Z(R3). Observe that C[Ω1,Ω2] ⊆ Z(A) ⊆ Z(R3) = C[Ω1,Ω2].

Hence, Z(A) = C[Ω1,Ω2]. �

2.2.7 Remark. Since Z(A) = Z(R3) = C[Ω1,Ω2] and Z(Ri+1) ⊆ Z(Ri), it follows

from (2.2.2) that Z(A) = Z(R6) = Z(R5) = Z(R4) = Z(R3) = C[Ω1,Ω2]. One can

also deduce from Lemma 2.2.4 that Z(R2) = C[Ω1,Ω
±1
2 ].

2.3 Proof of the completely primeness of 〈Ω1〉 and 〈Ω2〉

Since all prime ideals of A = U+
q (G2) are completely prime (Remark 1.6.1), it is sufficient

to show that 〈Ω1〉 and 〈Ω2〉 are completely prime by showing that they are prime ideals.

Note, the data of the DDA of A and the expressions for Ω1 and Ω2 in the previous section

will be helpful in the proofs of Lemmas 2.3.1 and 2.3.2. Recall, the notation 〈Θ〉R means

an ideal generated by the element Θ in any arbitrary ring R. Where no doubt arises, we

will simply write 〈Θ〉.

From Section 1.7 we know that there is a bijection between {P ∈ Spec(A(j+1)) |

P ∩Sj = ∅} and {Q ∈ Spec(A(j)) | Q∩Sj = ∅} via P = QS−1
j ∩A(j+1). Note, 〈T1〉 and

〈T2〉 are prime ideals of the quantum affine space Ā, since each of the factor algebras

Ā/〈T1〉 and Ā/〈T2〉 is isomorphic to a quantum affine space of rank 5 which is well known

to be a domain. From Section 1.7 we have that ψj : Spec(A(1+j)) ↪→ Spec(A(j)) for

2 ≤ j ≤ 6. Hence, ψ := ψ6 ◦ · · · ◦ ψ2 : Spec(A) ↪→ Spec(Ā). Recall, A(7) = A and

A(2) = Ā.

The following result shows that 〈T1〉 ∈ Im(ψ) (i.e. image of ψ) and that 〈Ω1〉 is the

completely prime ideal of A such that ψ(〈Ω1〉) = 〈T1〉.

2.3.1 Lemma. 〈Ω1〉 ∈ Spec(A).
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Proof. We will prove this result in several steps by showing that:

1. 〈T1〉A(3) ∈ Spec(A(3)).

2. 〈E1,4T3 + aT2〉 = 〈T1〉A(3) [T−1
3 ] ∩A(4), hence Q1 := 〈E1,4T3 + aT2〉 ∈ Spec(A(4)).

3. 〈E1,5T3 + aE2,5〉 = Q1[T−1
4 ] ∩ A(5), hence Q2 := 〈E1,5T3 + aE2,5〉 ∈ Spec(A(5)).

4. 〈Ω1〉A(6) = Q2[T−1
5 ] ∩ A(6), hence 〈Ω1〉A(6) ∈ Spec(A(6)).

5. 〈Ω1〉A = 〈Ω1〉A(6) [T−1
6 ] ∩ A, hence 〈Ω1〉A ∈ Spec(A).

We are now ready to prove the above claims.

1. One can easily verify that A(3)/〈T1〉 is isomorphic to a quantum affine space of

rank 5, which is a domain, hence 〈T1〉 is a prime ideal in A(3).

2. Note, T1 = E1,4+aT2T
−1
3 . We want to show that 〈E1,4T3+aT2〉 = 〈T1〉A(3) [T−1

3 ]∩

A(4). Observe that 〈E1,4T3 + aT2〉 ⊆ 〈T1〉A(3) [T−1
3 ] ∩ A(4). We established the reverse

inclusion. Let y ∈ 〈T1〉A(3) [T−1
3 ] ∩ A(4). Then, y ∈ 〈T1〉A(3) [T−1

3 ]. Therefore, there exists

i ∈ N such that yT i3 ∈ 〈T1〉A(3) . This implies that yT i3 = T1v, for some v ∈ A(3). Since

A(3)[T−1
3 ] = A(4)[T−1

3 ], there exists j ∈ N such that vT j3 = v′, for some v′ ∈ A(4).

It follows that yT i+j3 = T1vT
j
3 = T1v

′ = (E1,4 + aT2T
−1
3 )v′ = (E1,4T3 + aT2)T−1

3 v′.

The multiplicative system generated by T3 satisfies the Ore condition in A(4), hence,

there exists k ∈ N and v′′ ∈ A(4) such that T−1
3 v′ = v′′T−k3 . One can therefore write

yT i+j3 = (E1,4T3 +aT2)v′′T−k3 . This implies that yT δ3 = Ω′1v
′′, where Ω′1 := E1,4T3 +aT2

and δ = i + j + k. Set S := {s ∈ N | ∃v′′ ∈ A(4) : yT s3 = Ω′1v
′′}. Note, S 6=

∅, since δ ∈ S. Let s = s0 be the minimum element of S such that yT s03 = Ω′1v
′′.

We want to show that s0 = 0. Remember, Ω′1T5 = Ω1 in A(4). Since Ω1 is central

in A(4), and T5 is normal in A(4), we must have Ω′1 to be a normal element in A(4),

otherwise, there will be a contradiction. Therefore, there exists w ∈ A(4) such that yT s03 =

Ω′1v
′′ = wΩ′1. Now, A(4) can be viewed as a free left C〈E1,4, T2, T4, T5, T6〉−module with

basis
(
T ξ3

)
ξ∈N

. One can therefore write y =
∑n

ξ=0 αξT
ξ
3 and w =

∑n
ξ=0 βξT

ξ
3 , where

αξ, βξ ∈ C〈E1,4, T2, T4, T5, T6〉. This implies that
∑n

ξ=0 αξT
ξ+s0
3 =

∑n
ξ=0 βξT

ξ
3 Ω′1 =
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∑n
ξ=0 q

•βξΩ
′
1T

ξ
3 (note, T3Ω′1 = q−1Ω′1T3). Given that Ω′1 = E1,4T3 + aT2, we have that∑n

ξ=0 αξT
ξ+s0
3 =

∑n
ξ=0 q

•βξE1,4T
1+ξ
3 +

∑n
ξ=0 q

•aβξT2T
ξ
3 . Suppose that s0 > 0. Then,

identifying the constant coefficients, we have q•aβ0T2 = 0. As a result, β0 = 0, since

q•aT2 6= 0. Hence, w can be written as w =
∑n

ξ=1 βξT
ξ
3 . Returning to yT s03 = wΩ′1, we

have that yT s03 =
∑n

ξ=1 βξT
ξ
3 Ω′1 =

∑n
ξ=1 q

•βξΩ
′
1T

ξ
3 = Ω′1

∑n
ξ=1 q

•β′ξT
ξ
3 . This implies that

yT s0−1
3 = Ω′1w

′, where w′ =
∑n

ξ=1 q
•β′ξT

ξ−1
3 ∈ A(4), with β′ξ ∈ C〈E1,4, T2, T4, T5, T6〉.

Consequently, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0 and y = Ω′1v
′′ ∈ 〈Ω′1〉 =

〈E1,4T3 + aT2〉. Hence, 〈T1〉A(3) [T−1
3 ] ∩ A(4) ⊆ 〈E1,4T3 + aT2〉 as desired.

3. We want to show that 〈E1,5T3 + aE2,5〉 = 〈Ω′1〉A(4) [T−1
4 ] ∩ A(5). Note, Ω′1 =

E1,4T3 + aT2 = E1,5T3 + aE2,5. Observe that 〈E1,5T3 + aE2,5〉 ⊆ 〈Ω′1〉A(4) [T−1
4 ] ∩ A(5).

We establish the reverse inclusion. Let y ∈ 〈Ω′1〉A(4) [T−1
4 ]∩A(5). Then, y ∈ 〈Ω′1〉A(4) [T−1

4 ].

Therefore, there exists i ∈ N such that yT i4 ∈ 〈Ω′1〉A(4) . This implies that yT i4 = Ω′1v, for

some v ∈ A(4). Since A(4)[T−1
4 ] = A(5)[T−1

4 ], there exists j ∈ N such that vT j4 = v′, for

some v′ ∈ A(5). It follows that yT i+j4 = Ω′1vT
j
4 = Ω′1v

′. This implies that yT δ4 = Ω′1v
′,

where δ = i + j. Set S := {s ∈ N | ∃v′ ∈ A(5) : yT s4 = Ω′1v
′}. Since δ ∈ S, we

have that S 6= ∅. Let s = s0 be the minimum element of S such that yT s04 = Ω′1v
′.

We want to show that s0 = 0. Note, Ω′1T5 = Ω1 in A(5). Since Ω1 is central in

A(5), and T5 is normal in A(5), we must have Ω′1 as a normal element in A(5). There-

fore, there exists some v′′ ∈ A(5) such that yT s04 = Ω′1v
′ = v′′Ω′1. Now, A(5) can

be viewed as a free left C〈E1,5, E2,5, T3, T5, T6〉−module with basis
(
T ξ4

)
ξ∈N

. One can

write y =
∑n

ξ=0 αξT
ξ
4 and v′′ =

∑n
ξ=0 βξT

ξ
4 , where αξ, βξ ∈ C〈E1,5, E2,5, T3, T5, T6〉.

This implies that
∑n

ξ=0 αξT
ξ+s0
4 =

∑n
ξ=0 βξT

ξ
4 Ω′1 =

∑n
ξ=0 q

•βξΩ
′
1T

ξ
4 (note, T4Ω′1 =

q−3Ω′1T4). Suppose that s0 > 0. Then, identifying the constant coefficients, we have

that q•β0Ω′1 = 0. Hence, β0 = 0, since q•Ω′1 6= 0. One can therefore write v′′ as

v′′ =
∑n

ξ=1 βξT
ξ
4 . Returning to yT s04 = v′′Ω′1, we have that yT s04 =

∑n
ξ=1 βξT

ξ
4 Ω′1 =∑n

ξ=1 q
•βξΩ

′
1T

ξ
4 = Ω′1

∑n
ξ=1 q

•β′ξT
ξ
4 , where β′ξ ∈ C〈E1,5, E2,5, T3, T5, T6〉. This implies

that yT s0−1
4 = Ω′1w, where w =

∑n
ξ=1 q

•β′ξT
ξ−1
4 ∈ A(5). Consequently, s0 − 1 ∈ S, a

contradiction! Therefore, s0 = 0 and y = Ω′1v
′ ∈ 〈Ω′1〉 = 〈E1,5T3 + aE2,5〉. As a result,
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〈Ω′1〉A(4) [T−1
4 ] ∩ A(5) ⊆ 〈E1,5T3 + aE2,5〉 as desired.

4. Observe that Ω′1 = E1,5T3 + aE2,5 = Ω1T
−1
5 in A(6)[T−1

5 ]. We want to show that

〈Ω′1〉A(5) [T−1
5 ]∩A(6) = 〈Ω1〉A(6) . Obviously, 〈Ω1〉A(6) ⊆ 〈Ω′1〉A(5) [T−1

5 ]∩A(6). We establish

the reverse inclusion. Let y ∈ 〈Ω′1〉A(5) [T−1
5 ] ∩ A(6). This implies that y ∈ 〈Ω′1〉A(5) [T−1

5 ].

There exists i ∈ N such that yT i5 ∈ 〈Ω1〉A(5) . Hence, yT i5 = Ω′1v, for some v ∈ A(5).

Furthermore, since A(5)[T−1
5 ] = A(6)[T−1

5 ], there exists j ∈ N such that vT j5 = v′, for

some v′ ∈ A(6). It follows from yT i5 = Ω′1v that yT i+j5 = Ω′1vT
j
5 = Ω′1v

′ = Ω1T
−1
5 v′

(note, Ω′1T5 = Ω1 in A(6)). The multiplicative system generated by T5 satisfies the Ore

condition in A(6), hence, there exists k ∈ N and v′′ ∈ A(6) such that T−1
5 v′ = v′′T−k5 . One

can therefore write yT i+j5 = Ω1v
′′T k5 . Hence, yT δ5 = Ω1v

′′, where δ = i+ j+k. Set S :=

{s ∈ N | ∃v′′ ∈ A(6) : yT s5 = Ω1v
′′}. Since δ ∈ S, we have that S 6= ∅. Let s = s0 be the

minimum element of S such that yT s05 = Ω1v
′′. We want to show that s0 = 0. Now, A(6)

can be viewed as a free C〈E1,6, E2,6, E3,6, T4, T6〉−module with basis
(
T ξ5

)
ξ∈N

. One can

write y =
∑n

ξ=0 αξT
ξ
5 and v′′ =

∑n
ξ=0 βξT

ξ
5 , where αξ, βξ ∈ C〈E1,6, E2,6, E3,6, T4, T6〉.

With this, yT s05 = Ω1v
′′ implies that

∑n
ξ=0 αξT

ξ+s0
5 =

∑n
ξ=0 βξΩ1T

ξ
5 . Write Ω1 =

γ1T5 + γ2, where γ1 = E1,6E3,6 + aE2,6 and γ2 = a′E2
3,6 + aE1,6E4,6. It follows that∑n

ξ=0 αξT
ξ+s0
5 =

∑n
ξ=0 βξγ1T

ξ+1
5 +

∑n
ξ=0 βξγ2T

ξ
5 . Suppose that s0 > 0. Then, identify-

ing the constant coefficients, we have that β0γ2 = 0. Hence, β0 = 0, since γ2 6= 0. One

can therefore write v′′ =
∑n

ξ=1 βξT
ξ
5 . Returning to yT s05 = Ω1v

′′, we have that yT s05 =

Ω1

∑n
ξ=1 βξT

ξ
5 . This implies that yT s0−1

5 = Ω1w, where w =
∑n

ξ=1 βξT
ξ−1
5 ∈ A(6). As

a result, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0 and y = Ω1v
′′ ∈ 〈Ω1〉A(6) .

Consequently, 〈Ω′1〉A(5) [T−1
5 ] ∩ A(6) ⊆ 〈Ω1〉A(6) as desired.

5. We want to show that 〈Ω1〉A(6) [T−1
6 ] ∩ A = 〈Ω1〉A.

Obviously, 〈Ω1〉A ⊆ 〈Ω1〉A(6) [T−1
6 ] ∩ A. We establish the reverse inclusion. Let y ∈

〈Ω1〉A(6) [T−1
6 ] ∩ A. This implies that y ∈ 〈Ω1〉A(6) [T−1

6 ]. There exists i ∈ N such that

yT i6 ∈ 〈Ω1〉A(6) . Hence, yT i6 = Ω1v, for some v ∈ A(6). Furthermore, since A(6)[T−1
6 ] =

A[T−1
6 ], there exists j ∈ N such that vT j6 = v′, for some v′ ∈ A. It follows from

yT i6 = Ω1v that yT i+j6 = Ω1vT
j
6 = Ω1v

′. Hence, yT δ6 = Ω1v
′, where δ = i + j. Set



Section 2.3. Proof of the completely primeness of 〈Ω1〉 and 〈Ω2〉 44

S := {s ∈ N | ∃v′ ∈ A : yT s6 = Ω1v
′}. Note, δ ∈ S, hence S is non-empty. Let s = s0

be the minimum element of S such that yT s06 = Ω1v
′. We want to show that s0 = 0.

Now, A can be viewed as a free C〈E1, E2, E3, E4, T5〉−module with basis
(
T ξ6

)
ξ∈N

. One

can write y =
∑n

ξ=0 αξT
ξ
6 and v′ =

∑n
ξ=0 βξT

ξ
6 , where αξ, βξ ∈ C〈E1, E2, E3, E4, T5〉.

With this, yT s06 = Ω1v
′ implies that

∑n
ξ=0 αξT

ξ+s0
6 =

∑n
ξ=0 βξΩ1T

ξ
6 . Suppose that

s0 > 0. Then, identifying constant coefficients, we have that β0Ω1 = 0. As a result,

β0 = 0, since Ω1 6= 0. One can therefore write v′ =
∑n

ξ=1 βξT
ξ
6 . Returning to yT s06 =

Ω1v
′, we have that yT s06 = Ω1

∑n
ξ=1 βξT

ξ
6 . This implies that yT s0−1

6 = Ω1v
′′, where

v′′ =
∑n

ξ=1 βξT
ξ−1
6 ∈ A. Hence, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0 and

y = Ω1v
′ ∈ 〈Ω1〉A. Consequently, 〈Ω1〉A(6) [T−1

6 ] ∩ A ⊆ 〈Ω1〉A as desired. �

The following result also shows that 〈T2〉 ∈ Im(ψ) and that 〈Ω2〉 is the completely

prime ideal of A such that ψ(〈Ω2〉) = 〈T2〉.

2.3.2 Lemma. 〈Ω2〉 ∈ Spec(A).

Proof. Similar to the previous lemma, we also prove this result in several steps by showing

that:

1. 〈T2〉A(3) ∈ Spec(A(3)).

2. 〈T2〉A(4) ∈ Spec(A(4)).

3. 〈E2,5T4 + bT 3
3 〉 = 〈T2〉A(4) [T−1

4 ]∩A(5), hence Q1 := 〈E2,5T4 + bT 3
3 〉 ∈ Spec(A(5)).

4. 〈E2,6T4 + bE3
3,6〉 = Q1[T−1

5 ] ∩ A(6), hence Q2 := 〈E2,6T4 + bE3
3,6〉 ∈ Spec(A(6)).

5. 〈Ω2〉 = Q2[T−1
6 ] ∩ A, hence 〈Ω2〉 ∈ Spec(A).

We are now ready to prove the above claims.

1. The quotient algebra A(3)/〈T2〉 is isomorphic to a quantum affine space of rank

5, which is a domain, hence 〈T2〉 is a prime ideal in A(3).

2. Similar to (1).

3. Recall from the DDA of A that, T2 = E2,5 + bT 3
3 T
−1
4 . We want to show that

〈E2,5T4+bT 3
3 〉 = 〈T2〉A(4) [T−1

4 ]∩A(5). Observe that 〈E2,5T4+bT 3
3 〉 ⊆ 〈T2〉A(4) [T−1

4 ]∩A(5).
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We establish the reverse inclusion. Let y ∈ 〈T2〉A(4) [T−1
4 ] ∩ A(5). This implies that

y ∈ 〈T2〉A(4) [T−1
4 ]. Therefore, there exists i ∈ N such that yT i4 ∈ 〈T2〉A(4) . This im-

plies that yT i4 = T2v for some v ∈ A(4). Since A(4)[T−1
4 ] = A(5)[T−1

4 ], there exists

j ∈ N such that vT j4 = v′ for some v′ ∈ A(5). It follows that yT i+j4 = T2vT
j
4 =

T2v
′ = (E2,5 + bT 3

3 T
−1
4 )v′ = (E2,5T4 + bT 3

3 )T−1
4 v′. Note, the multiplicative set gener-

ated by T4 satisfies the Ore condition in A(5), hence, there exist k ∈ N and v′′ ∈ A(5)

such that T−1
4 v′ = v′′T−k4 . One can therefore write yT i+j4 = (E2,5T4 + bT 3

3 )v′′T−k4 .

This implies that yT δ4 = Ω′2v
′′, where Ω′2 := E2,5T4 + bT 3

3 and δ = i + j + k. Set

S := {s ∈ N | ∃v′′ ∈ A(5) : yT s4 = Ω′2v
′′}. Since δ ∈ S, we have that S 6= ∅.

Let s = s0 be the minimum element of S such that yT s04 = Ω′2v
′′. Note, Ω′2T6 = Ω2

in A(5). Given that Ω2 is central in A(5), and T6 is normal in A(5), we must have Ω′2

to be a normal element in A(5). Therefore, there exists w ∈ A(5) such that yT s04 =

Ω′2v
′′ = wΩ′2. Now, A(5) can be viewed as a free left C〈E1,5, E2,5, T3, T5, T6〉−module

with basis
(
T ξ4

)
ξ∈N

. One can write y =
∑n

ξ=0 αξT
ξ
4 and w =

∑n
ξ=0 βξT

ξ
4 , where

αξ, βξ ∈ C〈E1,5, E2,5, T3, T5, T6〉. It follows from yT s04 = wΩ′2 that
∑n

ξ=0 αξT
ξ+s0
4 =∑n

ξ=0 βξT
ξ
4 Ω′2 =

∑n
ξ=0 q

•βξΩ
′
2T

ξ
4 (note, T4Ω′2 = q−3Ω′2T4). Since Ω′2 = E2,5T4 + bT 3

3 ,

we have that
∑n

ξ=0 αξT
ξ+s0
4 =

∑n
ξ=0 q

•βξE2,5T
1+ξ
4 +

∑n
ξ=0 q

•bβξT
3
3 T

ξ
4 . Suppose that

s0 > 0. Then, identifying the constant coefficients, we have: q•bβ0T
3
3 = 0. Hence,

β0 = 0, since q•bT 3
3 6= 0. One can therefore write w =

∑n
ξ=1 βξT

ξ
4 . Returning to

yT s04 = wΩ′2, we have that yT s04 =
∑n

ξ=1 βξT
ξ
4 Ω′2 =

∑n
ξ=1 q

•βξΩ
′
2T

ξ
4 = Ω′2

∑n
ξ=1 q

•β′ξT
ξ
4

for some β′ξ ∈ C〈E1,5, E2,5, T3, T5, T6〉. This implies that yT s0−1
4 = Ω′2w

′, where w′ =∑n
ξ=1 q

•β′ξT
ξ−1
4 ∈ A(5). Consequently, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0

and y = Ω′2v
′′ ∈ 〈Ω′2〉 = 〈E2,5T4 + bT 3

3 〉. Hence, 〈T2〉A(4) [T−1
4 ] ∩ A(5) ⊆ 〈E2,5T4 + bT 3

3 〉

as desired.

4. We want to show that 〈E2,6T4 + bE3
3,6〉 = 〈Ω′2〉A(5) [T−1

5 ] ∩ A(6). Observe that

〈E2,6T4 + bE3
3,6〉 ⊆ 〈Ω′2〉A(5) [T−1

5 ] ∩ A(6). We establish the reverse inclusion. Let y ∈

〈Ω′2〉A(5) [T−1
5 ] ∩ A(6). This implies that y ∈ 〈Ω′2〉A(5) [T−1

5 ]. Therefore, there exists i ∈ N

such that yT i5 ∈ 〈Ω′2〉A(5) . This implies that yT i5 = Ω′2v, for some v ∈ A(5). Since
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A(5)[T−1
5 ] = A(6)[T−1

5 ], there exists j ∈ N such that vT j5 = v′, for some v′ ∈ A(6). It

follows that yT i+j5 = Ω′2vT
j
5 = Ω′2v

′. This implies that yT δ4 = Ω′2v
′, where δ = i+ j. Set

S := {s ∈ N | ∃v′ ∈ A(6) : yT s5 = Ω′2v
′}. Since δ ∈ S, we have that S 6= ∅. Let s = s0

be the minimum element of S such that yT s05 = Ω′2v
′. Note, Ω′2T6 = Ω2 in A(6). Given

that Ω2 is central in A(6), and T6 is normal in A(6), we must have Ω′2 as a normal element

in A(6). Therefore, there exists v′′ ∈ A(6) such that yT s05 = Ω′2v
′ = v′′Ω′2. Now, A(6) can

be viewed as a free left C〈E1,6, E2,6, E3,6, T4, T6〉−module with basis
(
T ξ5

)
ξ∈N

. One can

write y =
∑n

ξ=0 αξT
ξ
5 and v′′ =

∑n
ξ=0 βξT

ξ
5 , where αξ, βξ ∈ C〈E1,6, E2,6, E3,6, E4,6, T6〉.

It follows from yT s05 = v′′Ω′2 that
∑n

ξ=0 αξT
ξ+s0
5 =

∑n
ξ=0 βξT

ξ
5 Ω′2 =

∑n
ξ=0 q

•βξΩ
′
2T

ξ
5

(note, T5Ω′2 = q−3Ω′2T5). Suppose that s0 > 0. Then, identifying the constant coeffi-

cients, we have that q•β0Ω′2 = 0. Hence, β0 = 0, since q•Ω′2 6= 0. One can therefore

write v′′ =
∑n

ξ=1 βξT
ξ
5 . Returning to yT s05 = v′′Ω′2, we have that yT s05 =

∑n
ξ=1 βξT

ξ
5 Ω′2 =

Ω′2
∑n

ξ=1 q
•β′ξT

ξ
5 . This implies that yT s0−1

5 = Ω′2w, where w =
∑n

ξ=1 q
•β′ξT

ξ−1
5 ∈ A(6).

Consequently, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0 and y = Ω′2v
′ ∈ 〈Ω′2〉 =

〈E2,6T4 + bE3
3,6〉. Hence, 〈Ω′2〉A(5) [T−1

5 ] ∩ A(6) ⊆ 〈E2,6T4 + bE3
3,6〉 as desired.

5. Note, Ω′2 = E2,6T4 + bE3
3,6 = Ω2T

−1
6 in A[T−1

6 ]. We want to show that

〈Ω′2〉A(6) [T−1
6 ] ∩ A = 〈Ω2〉A. Obviously, 〈Ω2〉A ⊆ 〈Ω′2〉A(6) [T−1

6 ] ∩ A. We establish the

reverse inclusion. Let y ∈ 〈Ω′2〉A(6) [T−1
6 ] ∩A. This implies that y ∈ 〈Ω′2〉A(6) [T−1

6 ]. There

exists i ∈ N such that yT i6 ∈ 〈Ω′2〉A(6) . Hence, yT i6 = Ω′2v, for some v ∈ A(6). Fur-

thermore, since A(6)[T−1
6 ] = A[T−1

6 ], there exist j ∈ N such that vT j6 = v′, for some

v′ ∈ A. It follows from yT i6 = Ω′2v that yT i+j6 = Ω′2vT
j
6 = Ω′2v

′ = Ω2T
−1
6 v′. The mul-

tiplicative system generated by T6 satisfies the Ore condition, hence, there exists k ∈ N

and v′′ ∈ A such that T−1
6 v′ = v′′T k6 . It follows that yT i+j6 = Ω2T

−1
6 v′ = Ω2v

′′T−k6 .

Hence, yT δ6 = Ω2v
′′, where δ = i + j + k. Set S := {s ∈ N | ∃v′′ ∈ A : yT s6 = Ω2v

′′}.

Since δ ∈ S, we have that S 6= ∅. Let s = s0 be the minimum element of S such

that yT s06 = Ω2v
′′. Now, A can be viewed as a free C〈E1, E2, E3, E4, T5〉−module

with basis
(
T ξ6

)
ξ∈N

. One can write y =
∑n

ξ=0 αξT
ξ
6 and v′′ =

∑n
ξ=0 βξT

ξ
6 , where

αξ, βξ ∈ C〈E1, E2, E3, E4, T5〉. With this, yT s06 = Ω2v
′′ implies that

∑n
ξ=0 αξT

ξ+s0
6 =
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∑n
ξ=0 βξΩ2T

ξ
6 . From Subsection 2.2.3, one can write Ω2 as Ω2 = γ1T6 + γ2, where

γ1 = E2E4 + bE3
3 and γ2 = bE2T

3
5 + b′E2

3E
2
5 + c′E3E4T5 + d′E2

4 . It follows that∑n
ξ=0 αξT

ξ+s0
6 =

∑n
ξ=0 βξγ1T

ξ+1
6 +

∑n
ξ=0 βξγ2T

ξ
6 . Suppose that s0 > 0. Then, iden-

tifying the constant coefficients, we have that β0γ2 = 0. Hence, β0 = 0, since γ2 6= 0.

One can therefore write v′′ =
∑n

ξ=1 βξT
ξ
6 . Returning to yT s06 = Ω2v

′′, we have that

yT s06 = Ω2

∑n
ξ=1 βξT

ξ
6 . This implies that yT s0−1

6 = Ω2w, where w =
∑n

ξ=1 βξT
ξ−1
6 ∈ A.

Consequently, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0 and y = Ω2v
′′ ∈ 〈Ω2〉A.

Hence, 〈Ω′2〉A(6) [T−1
6 ] ∩ A ⊆ 〈Ω2〉A as desired. �

2.4 Height two maximal ideals of U+
q (G2)

This section focuses on studying the height two maximal ideals of A = U+
q (G2). First

and foremost, we will begin by describing the H−invariant prime ideals of A, and then

proceed to study the H−strata corresponding to 〈0〉, 〈Ω1〉 and 〈Ω2〉. We will conclude

by describing the height two maximal ideals of A.

2.4.1H−Spec(A). Recall from Section 2.1 that A = C[E1][E2;σ2][E3;σ3, δ3] · · · [E6;σ6, δ6].

The torus H := (C∗)2 acts rationally on A via (α1, α6) ·Ei = αiEi; with i = 1, 6; for all

(α1, α6) ∈ H. Using the defining relations of A, one can easily verify that

(α1, α6) · E2 = α3
1α6E2 (α1, α6) · E3 = α2

1α6E3

(α1, α6) · E4 = α3
1α

2
6E4 (α1, α6) · E5 = α1α6E5.

We now proceed to describe the set H−Spec(A). In Section 1.1, we studied the

Weyl group W of G2. It follows from Remark 1.6.7 that the poset of H−Spec(A) is

isomorphic to the poset of W . For each ε ∈ W , one can associate a unique element of

H−Spec(A), which we denote by K(ε). As a result, H−Spec(A) := {K(ε) | ∀ε ∈ W }.

We have that |H−Spec(A)| = |W | = 12. One can therefore partition Spec(A) into a
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disjoint union of strata as follows:

Spec(A) =
⊔
ε∈W

SpecK(ε)(A).

Moreover; for ε, ε′ ∈ W with ε � ε′, we have that K(ε) ⊂ K(ε′), where � is the

Bruhat order [44, Theorem 3.8]. From Section 1.1, we have that ω0 := s1s2s1s2s1s2 =

s2s1s2s1s2s1 in W . The posets of W and H−Spec(A) are seen in Figure 2.1.

s2s1

s1s2

s1s2s1

s1s2s1s2

s1s2s1s2s1

ω0

s2s1

s2s1s2

s2s1s2s1

s2s1s2s1s2

id K(id)

K(s1)

K(s1s2)

K(s1s2s1)

K(s1s2s1s2s1)

K(s1s2s1s2)

K(ω0)

K(s2s1s2s1s2)

K(s2s1s2s1)

K(s2s1s2)

K(s2s1)

K(s2)

Figure 2.1: Posets of W and H−Spec(A).

Recall from Subsection 2.2.3 that Ā is a quantum affine space. The map ψ :=

ψ2 ◦ · · · ◦ψ6 : Spec(A) ↪→ Spec(Ā) is a canonical embedding. This canonical embedding

restricts to the H−invariant prime spectrum. That is, ψ : H−Spec(A) ↪→ H−Spec(Ā).

Let W be the set of all the subsets of {1, · · · , 6}. For each w ∈ W, Kw := 〈Ti |

i ∈ w〉 is a H−invariant prime ideal of Ā (Proposition 1.6.9). We therefore have that

H−Spec(Ā) := {Kw | w ∈ W}. Observe that the set {〈Ti〉 | 1 ≤ i ≤ 6} is the set of all

the height one H−invariant prime ideals of Ā. Since ψ : Spec(A) ↪→ Spec(Ā), one can

easily deduce from Figure 2.1 that there are only two height one H−invariant prime ideals

of A. From Lemmas 2.3.1 and 2.3.2, we have that 〈T1〉 = ψ(〈Ω1〉) and 〈T2〉 = ψ(〈Ω2〉).

Since ψ preserves the height of a prime ideal, we have the following lemma.
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2.4.2 Lemma. 1. 〈Ω1〉 and 〈Ω2〉 are the only height one H−invariant prime ideals

of A.

2. Every non-zero H−invariant prime ideal of A contains either 〈Ω1〉 or 〈Ω2〉 as a

result of Figure 2.1.

2.4.3 H−strata corresponding to 〈0〉, 〈Ω1〉 and 〈Ω2〉. In this subsection, we aim to

find the H−strata corresponding to 〈0〉, 〈Ω1〉 and 〈Ω2〉. We state and prove the results

in Propositions 2.4.4, 2.4.5 and 2.4.6 using strategies similar to [33, Propositions 2.3 and

2.4]. Note, in this subsection, all ideals in A = U+
q (G2) will simply be written as 〈Θ〉,

where Θ ∈ A. However, if we want to refer to an ideal in any other algebra, say R, then

that ideal will be written as 〈Θ〉R, where in this case, Θ ∈ R.

2.4.4 Proposition. Let P be the set of those unitary irreducible polynomials P (Ω1,Ω2) ∈

C[Ω1,Ω2] with P (Ω1,Ω2) 6= Ω1 and P (Ω1,Ω2) 6= Ω2. Then, Spec〈0〉(A) = {〈0〉} ∪

{〈P (Ω1,Ω2)〉 | P (Ω1,Ω2) ∈ P} ∪ {〈Ω1 − α,Ω2 − β〉 | α, β ∈ C∗}.

Proof. We claim that Spec〈0〉(A) = {Q ∈ Spec(A) | Ω1,Ω2 6∈ Q}. To establish this

claim, let us assume that this is not the case. That is, suppose there exists Q ∈ Spec〈0〉(A)

such that Ω1,Ω2 ∈ Q; then the product Ω1Ω2 which is an H−eigenvector belongs to Q.

Consequently, Ω1Ω2 ∈
⋂
h∈H h · Q = 〈0〉, a contradiction. Hence, we have shown that

Spec〈0〉(A) ⊆ {Q ∈ Spec(A) | Ω1,Ω2 6∈ Q}. Conversely, suppose that Q ∈ Spec(A) such

that Ω1,Ω2 6∈ Q, then
⋂
h∈H h · Q is an H−invariant prime ideal of A, which contains

neither Ω1 nor Ω2. Obviously, the only possibility for
⋂
h∈H h·Q is 〈0〉 since every non-zero

H−invariant prime ideal contains at least Ω1 or Ω2. Thus,
⋂
h∈H h · Q = 〈0〉. Hence,

Q ∈ Spec〈0〉(A). Therefore, {Q ∈ Spec(A) | Ω1,Ω2 6∈ Q} ⊆ Spec〈0〉(A). This confirms

our claim.

Since Ω1,Ω2 ∈ Z(A), we have that the set {Ωi
1Ωj

2 | i, j ∈ N} is a right denominator

set in the noetherian domain A. One can now localize A as R := A[Ω−1
1 ,Ω−1

2 ]. Let Q ∈

Spec〈0〉(A), the map φ : Q −→ Q[Ω−1
1 ,Ω−1

2 ] is an increasing bijection from Spec〈0〉(A)

onto Spec(R).
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Since Ω1 and Ω2 are H−eigenvectors, and H acts on A, we have that H also acts

on R. Let us verify that R is H−simple before we describe Spec(R). Now, φ still induces

a bijection between the set of those H−invariant prime ideals of Spec〈0〉(A) and the set

of H−invariant prime ideals of Spec(R). It is already known that the set of H−invariant

prime ideals of A that neither contains Ω1 nor Ω2 consists only of the zero ideal {〈0〉}

(Lemma 2.4.2(2)). This implies that 〈0〉R is the only H−invariant prime ideal of R.

Every H−invariant proper ideal of R is contained in an H−invariant prime ideal of R

[17, §3.1(v)]. Therefore, 〈0〉R is the only unique H−invariant proper ideal of R. This

confirms that R is H−simple.

We proceed to describe Spec(R) and Spec〈0〉(A). We deduce from [7, Exercise II.3.A]

that the action ofH on R is rational. This rational action coupled with R beingH−simple

implies that the extension and contraction maps provide a mutually inverse bijection

between Spec(R) and Spec(Z(R)) [7, Corollary II.3.9]. From Lemma 2.2.6, Z(A) =

C[Ω1,Ω2], and so Z(R) = C[Ω±1
1 ,Ω±1

2 ]. Since C is algebraically closed, we have that

Spec(Z(R)) = {〈0〉Z(R)}∪{〈P (Ω1,Ω2)〉Z(R) | P (Ω1,Ω2) ∈ P}∪{〈Ω1−α,Ω2−β〉Z(R) |

α, β ∈ C∗}. Since there is an inverse bijection between Spec(R) and Spec(Z(R)), and

also R is H−simple, one can recover Spec(R) from Spec(Z(R)) as follows: Spec(R) =

{〈0〉R}∪ {〈P (Ω1,Ω2)〉R | P (Ω1,Ω2) ∈ P}∪{〈Ω1−α,Ω2− β〉R | α, β ∈ C∗}. It follows

that Spec〈0〉(A) = {〈0〉R ∩A} ∪ {〈P (Ω1,Ω2)〉R ∩A | P (Ω1,Ω2) ∈ P}∪ {〈Ω1−α,Ω2−

β〉R ∩ A | α, β ∈ C∗}.

Undoubtedly, 〈0〉R ∩ A = 〈0〉. We now have to show that 〈P (Ω1,Ω2)〉R ∩ A =

〈P (Ω1,Ω2)〉, ∀P (Ω1,Ω2) ∈ P , and 〈Ω1−α,Ω2−β〉R∩A = 〈Ω1−α,Ω2−β〉, ∀α, β ∈ C∗

to complete the proof.

Fix P (Ω1,Ω2) ∈ P . Observe that 〈P (Ω1,Ω2)〉 ⊆ 〈P (Ω1,Ω2)〉R ∩ A. To show the

reverse inclusion, let y ∈ 〈P (Ω1,Ω2)〉R ∩ A. This implies that y = dP (Ω1,Ω2), where

d ∈ R, since y ∈ 〈P (Ω1,Ω2)〉R. Also, d ∈ R implies that there exist i, j ∈ N such

that d = aΩ−i1 Ω−j2 , where a ∈ A. Therefore, y = aΩ−i1 Ω−j2 P (Ω1,Ω2), which implies that

yΩi
1Ωj

2 = aP (Ω1,Ω2). Choose (i, j) ∈ N2 minimal (in the lexicographic order on N2) such
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that the equality holds. Without loss of generality, suppose that i > 0, then aP (Ω1,Ω2) ∈

〈Ω1〉. Given that 〈Ω1〉 is a completely prime ideal, it implies that a ∈ 〈Ω1〉 or P (Ω1,Ω2) ∈

〈Ω1〉. Since P (Ω1,Ω2) ∈ P , it implies that P (Ω1,Ω2) 6∈ 〈Ω1〉, hence a ∈ 〈Ω1〉. This

further implies that a = tΩ1, where t ∈ A. Returning to yΩi
1Ωj

2 = aP (Ω1,Ω2), we have

that yΩi
1Ωj

2 = tΩ1P (Ω1,Ω2). Therefore, yΩi−1
1 Ωj

2 = tP (Ω1,Ω2). This clearly contradicts

the minimality of (i, j), hence (i, j) = (0, 0), and y = aP (Ω1,Ω2) ∈ 〈P (Ω1,Ω2)〉.

Consequently, 〈P (Ω1,Ω2)〉R ∩ A = 〈P (Ω1,Ω2)〉 for all P (Ω1,Ω2) ∈ P as desired.

Similarly, we show that 〈Ω1−α,Ω2− β〉R ∩A = 〈Ω1−α,Ω2− β〉; ∀α, β ∈ C∗. Fix

α, β ∈ C∗. Observe that 〈Ω1−α,Ω2−β〉 ⊆ 〈Ω1−α,Ω2−β〉R∩A. We establish the reverse

inclusion. Let y ∈ 〈Ω1−α,Ω2−β〉R∩A. Since y ∈ 〈Ω1−α,Ω2−β〉R, there exist i, j ∈ N

such that yΩi
1Ωj

2 = m(Ω1−α)+n(Ω2−β), where m,n ∈ A. Choose (i, j) ∈ N2 minimal

(in the lexicographic order on N2) such that the equality holds. Without loss of generality,

suppose that i > 0 and let f : A −→ A/〈Ω2 − β〉 be a canonical surjection. We have

that f(y)f(Ω1)if(Ω2)j = f(m)f(Ω1 − α). It follows that f(m)f(Ω1 − α) ∈ 〈f(Ω1)〉.

Observe that f(Ω1 − α) 6∈ 〈f(Ω1)〉, hence f(m) ∈ 〈f(Ω1)〉. Therefore, ∃λ ∈ A such

that f(m) = f(λ)f(Ω1). Consequently, f(y)f(Ω1)if(Ω2)j = f(λ)f(Ω1)f(Ω1 − α).

Since f(Ω1) 6= 0, it implies that f(y)f(Ω1)i−1f(Ω2)j = f(λ)f(Ω1 − α). Therefore,

yΩi−1
1 Ωj

2 = λ(Ω1 − α) + λ′(Ω2 − β) for some λ′ ∈ A. This contradicts the minimality of

(i, j). Hence, (i, j) = (0, 0) and so y = m(Ω1 − α) + n(Ω2 − β) ∈ 〈Ω1 − α,Ω2 − β〉. In

conclusion, 〈Ω1 − α,Ω2 − β〉R ∩ A = 〈Ω1 − α,Ω2 − β〉, ∀α, β ∈ C∗.

�

2.4.5 Proposition. Spec〈Ω1〉(A) = {〈Ω1〉} ∪ {〈Ω1,Ω2 − β〉 | β ∈ C∗}.

Proof. We claim that Spec〈Ω1〉(A) = {Q ∈ Spec(A) | Ω1 ∈ Q and Ω2 6∈ Q}. To establish

this claim, let us assume that this is not the case. That is, suppose there exists Q ∈

Spec〈Ω1〉(A) such that Ω2 ∈ Q. Since Ω2 is an H−eigenvector, Ω2 ∈
⋂
h∈H h ·Q = 〈Ω1〉,

a contradiction. Hence, we have shown that Spec〈Ω1〉(A) ⊆ {Q ∈ Spec(A) | Ω1 ∈

Q and Ω2 6∈ Q}. Conversely, suppose that Q ∈ Spec(A) and Ω1 ∈ Q but Ω2 6∈ Q. Then⋂
h∈H h ·Q is an H−invariant prime ideal of A, which contains Ω1 but does not contain
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Ω2. The only possibility for
⋂
h∈H h · Q is the ideal 〈Ω1〉. Hence, Q ∈ Spec〈Ω1〉(A).

Therefore, {Q ∈ Spec(A) | Ω1 ∈ Q and Ω2 6∈ Q} ⊆ Spec〈Ω1〉(A). This confirms our

claim.

Let Λ : A −→ A/〈Ω1〉 be a canonical surjection. Since A is a noetherian domain

and 〈Ω1〉 is a completely prime ideal, one can also deduce that A/〈Ω1〉 is a noetherian

domain. Given that Ω2 ∈ Z(A), we have that Λ(Ω2) 6= 0 ∈ Z(A/〈Ω1〉). Therefore, the

set {Λ(Ω2)i | i ∈ N} is a right denominator set in A/〈Ω1〉. One can therefore localize

A/〈Ω1〉 at this denominator set as R :=
A

〈Ω1〉
[Λ(Ω2)−1]. Given that Q ∈ Spec〈Ω1〉(A),

the map φ : Q −→ Q

〈Ω1〉
[Λ(Ω2)−1] is an increasing bijection from Spec〈Ω1〉(A) onto

Spec(R).

Since 〈Ω1〉 is an H−invariant prime ideal, Λ(Ω2) is an H−eigenvector, and H acts

on A, we have that H also acts on R. Let us verify that R is H−simple before we

describe Spec(R). Now, φ still induces a bijection between the set of those H−invariant

prime ideals of Spec〈Ω1〉(A) and the set of H−invariant prime ideals of Spec(R). The set

of H−invariant prime ideals of A that contains Ω1 but does not contain Ω2 is {〈Ω1〉},

implying that 〈0〉R is the only H−invariant prime ideal of R (note, Ω1 = 0 in R).

Every H−invariant proper ideal of R is contained in an H−invariant prime ideal of R

[17, §3.1(v)]. Therefore, 〈0〉R is the only unique H−invariant proper ideal of R. This

confirms that R is H−simple.

We proceed to describe the Spec(R) and Spec〈Ω1〉(A). We deduce from [7, Exercise

II.3.A] that the action of H on R is rational. This rational action coupled with R being

H−simple implies that the extension and contraction maps provide a mutually inverse

bijection between Spec(R) and Spec(Z(R)) [7, Corollary II.3.9]. One can deduce that

Z(A/〈Ω1〉) = C[Λ(Ω2)], and so Z(R) = C[Λ(Ω2)±1]. Since C is algebraically closed,

we have that Spec(Z(R)) = {〈0〉Z(R)} ∪ {〈Λ(Ω2) − β〉Z(R) | β ∈ C∗}. We now recover

Spec(R) from Spec(Z(R)) as follows: Spec(R) = {〈0〉R} ∪ {〈Λ(Ω2) − β〉R | β ∈ C∗},

since there is a mutually inverse bijection between Spec(R) and Spec(Z(R)), and also

R is H−simple. Moreover, since φ is an increasing bijection from Spec〈Ω1〉(A) onto
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Spec(R), we have that Spec〈Ω1〉(A) = {φ−1(〈0〉R)} ∪ {φ−1(〈Λ(Ω2)− β〉R) | β ∈ C∗}.

Naturally, φ−1(〈0〉R) = 〈Ω1〉. We now show that φ−1(〈Λ(Ω2)−β〉R) = 〈Ω1,Ω2−β〉.

Fix β ∈ C∗. Observe that 〈Ω1,Ω2 − β〉 ⊆ φ−1(〈Λ(Ω2) − β〉R). To show the reverse

inclusion, let x ∈ φ−1(〈Λ(Ω2) − β〉R). Then Λ(x) ∈ 〈Λ(Ω2) − β〉R. This implies that

Λ(x) = d(Λ(Ω2)− β), where d ∈ R. Also, d ∈ R implies that there exists t ≥ 0 and a ∈

A/〈Ω1〉 such that d = aΛ(Ω2)−t. As a result, Λ(x) = d(Λ(Ω2)−β) = aΛ(Ω2)−t(Λ(Ω2)−

β). Hence, Λ(x)Λ(Ω2)t = a(Λ(Ω2) − β). Choose t minimum such that the equality

holds. If t > 0, then Λ(x)Λ(Ω2)t = aΛ(Ω2) − aβ. One can therefore write a =

1
β
Λ(Ω2)(a − Λ(x)Λ(Ω2)t−1). Set b := 1

β
(a − Λ(x)Λ(Ω2)t−1), then a = bΛ(Ω2). This

implies that Λ(x)Λ(Ω2)t = a(Λ(Ω2) − β) = bΛ(Ω2)(Λ(Ω2) − β) which further implies

that Λ(x)Λ(Ω2)t−1 = b(Λ(Ω2)− β). This contradicts the minimality of t, and so t = 0.

Therefore, Λ(x) = a(Λ(Ω2)− β) ∈ 〈Λ(Ω2)− β〉R. Consequently, x ∈ 〈Ω1,Ω2 − β〉 and

φ−1(〈Λ(Ω2)− β〉R) ⊆ 〈Ω1,Ω2 − β〉. �

2.4.6 Proposition. Spec〈Ω2〉(A) = {〈Ω2〉} ∪ {〈Ω1 − α,Ω2〉 | α ∈ C∗}.

Proof. We claim that Spec〈Ω2〉(A) = {Q ∈ Spec(A) | Ω1 6∈ Q and Ω2 ∈ Q}. To establish

this claim, let us assume that this is not the case. That is, suppose there exists Q ∈

Spec〈Ω2〉(A) such that Ω1 ∈ Q. Since Ω1 is an H−eigenvector, Ω1 ∈
⋂
h∈H h ·Q = 〈Ω2〉,

a contradiction. Hence, we have shown that Spec〈Ω2〉(A) ⊆ {Q ∈ Spec(A) | Ω1 6∈

Q and Ω2 ∈ Q}. Conversely, suppose that Q ∈ Spec(A) and Ω2 ∈ Q but Ω1 6∈ Q, then⋂
h∈H h ·Q is an H−invariant prime ideal of A, which contains Ω2 but does not contain

Ω1. The only possibility for
⋂
h∈H h · Q is the ideal 〈Ω2〉. Hence, Q ∈ Spec〈Ω2〉(A).

Therefore, {Q ∈ Spec(A) | Ω1 6∈ Q and Ω2 ∈ Q} ⊆ Spec〈Ω2〉(A). This confirms our

claim.

Let Λ : A −→ A/〈Ω2〉 be a canonical surjection. Since A is a noetherian domain

and 〈Ω2〉 is a completely prime ideal, one can also deduce that A/〈Ω2〉 is a noetherian

domain. Given that Ω1 ∈ Z(A), we have Λ(Ω1) ∈ Z(A/〈Ω2〉). It follows that the set

{Λ(Ω1)i | i ∈ N} is a right denominator set in A/〈Ω2〉. One can therefore localize

A/〈Ω2〉 as R :=
A

〈Ω2〉
[Λ(Ω1)−1]. Given Q ∈ Spec〈Ω2〉(A), we have a map φ : Q −→
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Q

〈Ω2〉
[Λ(Ω1)−1] which is an increasing bijection from Spec〈Ω2〉(A) onto Spec(R).

Similar to the proof of Proposition 2.4.5, one can show that R is H−simple and that

the extension and contraction maps provide a mutually inverse bijection between Spec(R)

and Spec(Z(R)) [7, Corollary II.3.9]. We also have that Z(A/〈Ω2〉) = C[Λ(Ω1)], and

so Z(R) = C[Λ(Ω1)±1]. Since C is algebraically closed, we have that Spec(Z(R)) =

{〈0〉Z(R)}∪ {〈Λ(Ω1)−α〉Z(R) | α ∈ C∗}. One can recover Spec(R) from Spec(Z(R)) as

follows: Spec(R) = {〈0〉R} ∪ {〈Λ(Ω1)− α〉R | α ∈ C∗}, since there is a mutual inverse

bijection between Spec(R) and Spec(Z(R)), and also R is H−simple. Moreover, since φ

is an increasing bijection between Spec〈Ω2〉(A) and Spec(R), we have that Spec〈Ω2〉(A) =

{φ−1(〈0〉R)} ∪ {φ−1(〈Λ(Ω1)− α〉R) | α ∈ C∗}.

Naturally, φ−1(〈0〉R) = 〈Ω2〉. We now show that φ−1(〈Λ(Ω1)−α〉R) = 〈Ω1−α,Ω2〉.

Fix α ∈ C∗. Observe that 〈Ω1 − α,Ω2〉 ⊆ φ−1(〈Λ(Ω1) − α〉R). To show the reverse

inclusion, let x ∈ φ−1(〈Λ(Ω1) − α〉R). Then, Λ(x) ∈ 〈Λ(Ω1) − α〉R. Let d ∈ R, then

there exists t ≥ 0 and a ∈ A/〈Ω2〉 such that d = aΛ(Ω1)−t. Given that Λ(x) ∈

〈Λ(Ω1) − α〉R, it follows that Λ(x) = d(Λ(Ω1) − α) = aΛ(Ω1)−t(Λ(Ω1) − α) which

further implies that Λ(x)Λ(Ω1)t = a(Λ(Ω1) − α). Choose t minimum such that the

equality holds. Suppose that t > 0, then Λ(x)Λ(Ω1)t = aΛ(Ω1)−aα. We have that a =

1
α

Λ(Ω1)(a−Λ(x)Λ(Ω1)t−1). Set b := 1
α

(a−Λ(x)Λ(Ω1)t−1). It follows that a = bΛ(Ω1),

with b ∈ A/〈Ω2〉. This implies that Λ(x)Λ(Ω1)t = a(Λ(Ω1)− α) = bΛ(Ω1)(Λ(Ω1)− α),

hence Λ(x)Λ(Ω1)t−1 = b(Λ(Ω1)−α). This contradicts the minimality of t, and so t = 0.

Therefore, Λ(x) = a(Λ(Ω1)−α) belongs to the ideal of A/〈Ω2〉 generated by Λ(Ω1)−α.

Consequently, x ∈ 〈Ω1 − α,Ω2〉 and φ−1(〈Λ(Ω1)− α〉R) ⊆ 〈Ω1 − α,Ω2〉. �

2.4.7 Corollary. Let (α, β) ∈ C2 \ {(0, 0)}. The prime ideal 〈Ω1 − α,Ω2 − β〉 of A is

primitive.

Proof. Since PrimJ(A) are just the maximal prime ideals in SpecJ(A) (Lemma 1.6.6), it

follows that 〈Ω1−α,Ω2−β〉 is a primitive ideal of A for each (α, β) ∈ C2 \{(0, 0)}. �

2.4.8 Proposition. Let (α, β) ∈ C2 \ {(0, 0)}. The prime ideal 〈Ω1 − α,Ω2 − β〉 of A

is maximal.
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Proof. Let (α, β) ∈ C2 \ {(0, 0)}. Suppose that there exists a maximal ideal I of A

such that 〈Ω1 − α,Ω2 − β〉  I  A. Let J be the H−invariant prime ideal in A

such that I ∈ SpecJ(A). By Propositions 2.4.4, 2.4.5 and 2.4.6, J cannot be 〈0〉, 〈Ω1〉

or 〈Ω2〉, since either of these will lead to a contradiction. Every non-zero H−invariant

prime ideal contains Ω1 only or Ω2 only or both. Since J 6= 〈Ω1〉, 〈Ω2〉, it implies that J

contains both Ω1 and Ω2. Moreover, since J ⊆ I, it implies that Ω1,Ω2 ∈ I. Given that

〈Ω1 − α,Ω2 − β〉 ⊂ I, we have that Ω1 − α,Ω2 − β ∈ I. It follows that α, β ∈ I, hence

I = A, a contradiction! This confirms that 〈Ω1−α,Ω2−β〉 is a maximal ideal in A. �

2.4.9 Remark. Since the algebra A is catenary [19, Theorem 4.8], one can prove that

the height of 〈Ω1 − α,Ω2 − β〉 is 2 for all (α, β) ∈ C2 \ {(0, 0)} by constructing chains

of prime ideals of 〈Ω1 − α,Ω2 − β〉. Nonetheless, we use a different approach to prove

the result in Section 3.1. We do this because the discussion in that section (i.e. Section

3.1) will be useful in the subsequent chapters.



Chapter 3

Simple quotients of U+
q (G2) and their

relation to the second Weyl algebra

Now that we have found some family of maximal ideals of A = U+
q (G2), we are going to

study the main algebra of interest in this thesis, namely, the corresponding simple quo-

tients. In view of Dixmier’s theorem, we consider these simple quotients as deformations

of (a quadratic extension of) the second Weyl algebra A2(C), and so we compare their

properties with some known properties of the Weyl algebras. Recall from Proposition

2.4.8 that Ω1−α and Ω2− β, where (α, β) ∈ C2 \ {(0, 0)}, generate a maximal ideal of

A. As a result, the corresponding quotient

Aα,β :=
A

〈Ω1 − α,Ω2 − β〉

is a simple noetherian domain. Denote the canonical images of Ei in Aα,β by ei :=

Ei+ 〈Ω1−α,Ω2−β〉 for all 1 ≤ i ≤ 6. The algebra Aα,β satisfies the following relations:

56
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e2e1 = q−3e1e2 e3e1 = q−1e1e3 − (q + q−1 + q−3)e2

e3e2 = q−3e2e3 e4e1 = e1e4 + (1− q2)e2
3

e4e2 = q−3e2e4 −
q4 − 2q2 + 1

q4 + q2 + 1
e3

3 e4e3 = q−3e3e4

e5e1 = qe1e5 − (1 + q2)e3 e5e2 = e2e5 + (1− q2)e2
3

e5e3 = q−1e3e5 − (q + q−1 + q−3)e4 e5e4 = q−3e4e5

e6e1 = q3e1e6 − q3e5 e6e2 = q3e2e6 + (q4 + q2 − 1)e4 + (q2 − q4)e3e5

e6e3 = e3e6 + (1− q2)e2
5 e6e4 = q−3e4e6 −

q4 − 2q2 + 1

q4 + q2 + 1
e3

5

e6e5 = q−3e5e6,

and

e1e3e5 + ae1e4 + ae2e5 + a′e2
3 = α, (3.0.1)

e2e4e6 + be2e
3
5 + be3

3e6 + b′e2
3e

2
5 + c′e3e4e5 + d′e2

4 = β. (3.0.2)

The following additional relations of Aα,β in the lemma below will be very helpful in this

chapter, particularly, in Section 3.2. Note, we put constant coefficients of monomials in

a square bracket [ ] in order to distinguish them from monomials easily. These constants

are defined in Appendix C.

3.0.1 Lemma.

(1) e2
3 =c1α + [c2]e2e5 + [c2]e1e4 + [c3]e1e3e5.

(2) e2
4 =b1β + [b2]e2e4e6 + [b3]e2e

3
5 + [b4α]e3e6 + [b5]e2e3e5e6 + [b6]e1e3e4e6

+ [b7α]e1e5e6 + [b8]e1e2e
2
5e6 + [b9]e2

1e4e5e6 + [b10]e2
1e3e

2
5e6 + [b11α]e2

5

+ [b12]e1e3e
3
5 + [b13]e3e4e5 + [b14]e1e4e

2
5.
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(3) e2
3e4 =[c1α]e4 + [q−3c2]e2e4e5 + [c2b4α]e1e3e6 + [b15]e1e3e4e5 + [βb1c2]e1

+ [c2b3]e1e2e
3
5 + [c2b5]e1e2e3e5e6 + [c2b6]e2

1e3e4e6 + [c2b7α]e2
1e5e6

+ [c2b11α]e1e
2
5 + [c2b12]e2

1e3e
3
5 + [c2b8]e2

1e2e
2
5e6 + [c2b9]e3

1e4e5e6

+ [c2b10]e3
1e3e

2
5e6 + [c2b14]e2

1e4e
2
5 + [c2b2]e1e2e4e6.

(4) e3e
2
4 =[βb1]e3 + [k1]e2e3e4e6 + [k2]e2e3e

3
5 + [k3α

2]e6 + [k4α]e2e5e6 + [k5α]e1e4e6

+ [k6α]e1e3e5e6 + [k7]e2
2e

2
5e6 + [k8β]e1e5 + [k9]e1e2e4e5e6 + [k10]e3

1e2e
2
5e

2
6

+ [k11α]e4e5 + [k12α]e3
1e5e

2
6 + [k13]e2

1e3e4e5e6 + [k14β]e2
1e6 + [b11α]e3e

2
5

+ [k15]e2
1e2e4e

2
6 + [k16]e2

1e2e
3
5e6 + [k17α]e2

1e3e
2
6 + [k18]e2

1e2e3e5e
2
6 + [k19]e3

1e3e4e
2
6

+ [k20]e4
1e4e5e

2
6 + [k21α]e2

1e
2
5e6 + [k22]e4

1e3e
2
5e

2
6 + [k23]e3

1e3e
3
5e6 + [k24]e3

1e4e
2
5e6

+ [k25]e1e
3
5 + [k26]e2

1e4e
3
5 + [k27]e2

1e3e
4
5 + [k28]e2e4e

2
5 + [k29]e1e3e4e

2
5

+ [k30]e1e2e
4
5 + [k31]e1e2e3e

2
5e6.

The rest of the chapter is organized as follows. In Section 3.1, we prove that the

GKdim of Aα,β is 4 and consequently prove that the height of the maximal ideal 〈Ω1 −

α,Ω2 − β〉 is 2 as expected. Section 3.2 focuses on describing a linear basis of Aα,β.

Ultimately, we show in Section 3.3 that at appropriate choices of α and β, the algebra

Aα,β is a quadratic extension of the second Weyl algebra A2(C) at q = 1. In the next

chapter, we study the derivations of Aα,β.

3.1 Gelfand-Kirillov dimension of Aα,β

Let α, β 6= 0. Recall from Section 2.2 that R1 = CqM [T±1
1 , · · · , T±1

6 ] is the quantum torus

associated to the quantum affine space Ā = A(2). Also, Ω1 = T1T3T5 and Ω2 = T2T4T6

in Ā. It follows from [8, Theorem 5.4.1] that there exists an Ore set Sα,β in Aα,β such

that Aα,βS
−1
α,β
∼= R1/〈T1T3T5 − α, T2T4T6 − β〉.
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Now, set

Aα,β :=
R1

〈T1T3T5 − α, T2T4T6 − β〉
.

Let ti := Ti + 〈T1T3T5 − α, T2T4T6 − β〉 denote the canonical images of the generators

Ti of R1 in Aα,β. The algebra Aα,β is a quantum torus generated by t±1
1 , · · · , t±1

6 subject

to the following relations:

titj = qµij tjti t1 = αt−1
5 t−1

3 t2 = βt−1
6 t−1

4 ,

for all 1 ≤ i, j ≤ 6 and µij ∈ M (the skew-symmetric matrix in Section 2.2). Observe

that Aα,β
∼= CqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ], where the skew-symmetric matrix N can easily be

deduced from M as follows:

N :=



0 3 1 0

−3 0 3 3

−1 −3 0 3

0 −3 −3 0


.

Secondly, suppose that α = 0 and β 6= 0.

Then, A0,βS
−1
0,β
∼= A0,β = R1/〈T1, T2T4T6 − β〉. The algebra A0,β is generated by

t±1
2 , · · · , t±1

6 subject to the relations

titj = qµij tjti t1 = 0 t2 = βt−1
6 t−1

4 ,

for all 1 ≤ i, j ≤ 6 and µij ∈M. We also have that A0,β
∼= CqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ]. Finally,

when α 6= 0 and β = 0, then one can also verify that Aα,0
∼= CqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ].

As a result, we have that Aα,βS
−1
α,β
∼= Aα,β

∼= CqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. With a slight

abuse of notation, we write Aα,βS
−1
α,β = Aα,β = CqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ] for all (α, β) ∈

C2\{(0, 0)}. It follows from [18, Theorem 6.3] that GKdim(Aα,β) = GKdim(Aα,βS
−1
α,β) =

GKdim(Aα,β) = 4. Since Tauvel’s height formula holds in A = U+
q (G2) (Chapter 2),

we have that GKdim(A) = ht(〈Ω1 − α,Ω2 − β〉) + GKdim(Aα,β). We already know
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from Chapter 2 that the GKdim(A) = 6. Therefore, ht(〈Ω1 − α,Ω2 − β〉) = 2 for all

(α, β) ∈ C2 \ {(0, 0)}.

3.2 Linear basis for Aα,β

Set Aβ := A/〈Ω2 − β〉, where β ∈ C. Now, denote the canonical images of Ei by

êi := Ei + 〈Ω2 − β〉 in Aβ. Clearly, Aα,β ∼= Aβ/〈Ω̂1 − α〉. As a result, one can identify

Aα,β with Aβ/〈Ω̂1 − α〉. Moreover, the algebra Aβ satisfies the relations of A = U+
q (G2)

and

ê2ê4ê6 + bê2ê5
3 + bê3

3ê6 + b′ê3
2ê5

2 + c′ê3ê4ê5 + d′ê4
2 = β. (3.2.1)

From Propositions 2.4.4 and 2.4.6, one can conclude that 〈Ω2−β〉 is a completely prime

ideal (since it is a prime ideal) of A for all β ∈ C. Hence, similar to Aα,β, the algebra Aβ

is a noetherian domain.

We are now going to find a linear basis for Aα,β, where (α, β) ∈ C2 \ {(0, 0)}. Since

Aα,β is identified with Aβ/〈Ω̂1 − α〉, we will first and foremost find a basis for Aβ, and

then proceed to find a basis for Aα,β. Note, the relations in Lemma A.1.4 are also valid

in Aβ and Aα,β, and are going to be very useful in this section.

3.2.1 Proposition. The set S = {ê1
iê2

j ê3
kê4

ξê5
lê6

m | i, j, k, l,m ∈ N and ξ = 0, 1} is

a C−basis of Aβ.

Proof. Since the family (Π6
s=1E

is
s )is∈N is a PBW-basis of A over C, it follows that the

family (Π6
s=1ês

is)is∈N is a spanning set of Aβ over C. We want to show that S spans Aβ.

We do this by showing that Π6
s=1ês

is can be written as a finite linear combination of the

elements of S for all i1, · · · , i6 ∈ N by an induction on i4. The result is obvious when

i4 = 0 or 1. For i4 ≥ 1, assume that

Π6
s=1ês

is =
∑

(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξê5
lê6

m,
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where v := (i, j, k, l,m) ∈ N5 and a(ξ,v) are all complex numbers. Note, I is a finite

subset of {0, 1}×N5. It follows from the commutation relations of Aβ (see Lemma A.1.4)

that

ê1
i1 ê2

i2 ê3
i3 ê4

i4+1ê5
i5 ê6

i6 = q•Π6
s=1ês

is ê4 − q•d1[i6]ê1
i1 ê2

i2 ê3
i3 ê4

i4 ê5
i5+3ê6

i6−1.

From the inductive hypothesis, ê1
i1 ê2

i2 ê3
i3 ê4

i4 ê5
i5+3ê6

i6−1 ∈ Span(S). Hence, we pro-

ceed to show that Π6
s=1ês

is ê4 is also in the span of S. From the inductive hypothesis, we

have

Π6
s=1ês

is ê4 =
∑

(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξê5
lê6

mê4.

Using the commutation relations in Lemma A.1.4, we have that

Π6
s=1ês

is ê4 =
∑

(ξ,v)∈I

q•a(ξ,v)ê1
iê2

j ê3
kê4

ξ+1ê5
lê6

m

+
∑

(ξ,v)∈I

q•d1[m]a(ξ,v)ê1
iê2

j ê3
kê4

ξê5
l+3ê6

m−1.

All the terms in the above expression belong to the span of S except ê1
iê2

j ê3
kê4

2ê5
lê6

m.

From (3.2.1), we have that

ê4
2 = β0ê2ê4ê6 + bβ0ê2ê5

3 + bβ0ê3
3ê6 + b′β0ê3

2ê5
2 + c′β0ê3ê4ê5 − ββ0, (3.2.2)

where β0 = −1/d′. Substituting (3.2.2) into ê1
iê2

j ê3
kê4

2ê5
lê6

m, one can easily verify

that ê1
iê2

j ê3
kê4

2ê5
lê6

m ∈ Span(S). Therefore, ê1
i1 ê2

i2 ê3
i3 ê4

i4+1ê5
i5 ê6

i6 can be written

as a finite linear combination of the elements of S over C for all i1, · · · , i6 ∈ N. By the

principle of mathematical induction, S is a spanning set of Aβ over C.

We further show that S is a linearly independent set. Suppose that

∑
(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξê5
lê6

m = 0.
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Since Aβ = A/〈Ω2 − β〉, it implies that

∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 = (Ω2 − β)ν,

with ν ∈ A. Write ν =
∑

(i,··· ,n)∈J

b(i,··· ,n)E
i
1E

j
2E

k
3E

l
4E

m
5 E

n
6 , where J is a finite subset of

N6 and b(i,··· ,n) are all complex numbers. It follows that

∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 =

∑
(i,··· ,n)∈J

b(i,··· ,n)E
i
1E

j
2E

k
3 (Ω2 − β)El

4E
m
5 E

n
6 . (3.2.3)

Before we continue the proof, the following needs to be noted.

♣ Let (i′, j′, k′, l′,m′, n′), (i, j, k, l,m, n) ∈ N6. We say that (i, j, k, l,m, n) <4

(i′, j′, k′, l′,m′, n′) if [l < l′] or [l = l′ and i < i′] or [l = l′, i = i′ and j < j′] or

[l = l′, i = i′, j = j′ and k < k′] or [l = l′, i = i′, j = j′, k = k′ and m < m′]

or [l = l′, i = i′, j = j′, k = k′, m = m′ and n ≤ n′]. Note, the purpose of the

square bracket [ ] is to differentiate the options.

From Section 2.2, we have that Ω2 = E2E4E6 +bE2E
3
5 +bE3

3E6 +b′E2
3E

2
5 +c′E3E4E5 +

d′E2
4 in A = U+

q (G2). Now,

∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 =

∑
(i,··· ,n)∈J

b(i,··· ,n)E
i
1E

j
2E

k
3 (Ω2 − β)El

4E
m
5 E

n
6

=
∑

(i,··· ,n)∈J

d′b(i,··· ,m)E
i
1E

j
2E

k
3E

l+2
4 Em

5 E
n
6 + LT<4 ,

where LT<4 contains lower order terms with respect to <4 (as in ♣). Moreover, LT<4

vanishes when b(i,··· ,n) = 0 for all (i, · · · , n) ∈ J (one can easily confirm this by fully

expanding the right hand side of (3.2.3)).

Now, suppose that there exists (i, j, k, l,m, n) ∈ J such that b(i,j,k,l,m,n) 6= 0.

Let (i′, j′, k′, l′,m′, n′) be the greatest element of J with respect to <4 (defined in ♣

above) such that b(i′,j′,k′,l′,m′,n′) 6= 0. Note, the family (Ei
1E

j
2E

k
3E

l
4E

m
5 E

n
6 )(i,··· ,n)∈N6

is a basis of A. Since LT<4 contains lower order terms, identifying the coefficients
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of Ei′
1 E

j′

2 E
k′
3 E

l′+2
4 Em′

5 En′
6 in the above equality, we have that d′b(i′,··· ,n′) = 0. Since

b(i′,j′,k′,l′,m′,n′) 6= 0, it follows that d′ = q12/(q6 − 1) = 0, a contradiction (see Appendix

C for the expression of d′). As a result, b(i,j,k,l,m,n) = 0 for all (i, j, k, l,m, n) ∈ J. There-

fore,
∑

(ξ,v)∈I a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 = 0. Since (Ei

1E
j
2E

k
3E

l
4E

m
5 E

n
6 )(i,··· ,n)∈N6 is a basis

of A, it follows that a(ξ,v) = 0 for all (ξ, v) ∈ I. In conclusion, S is a linearly independent

set and hence forms a basis of Aβ as desired. �

3.2.2 Proposition. Let (α, β) ∈ C2 \ {(0, 0)}. The set B = {ei1e
j
2e
ε1
3 e

ε2
4 e

k
5e
l
6 | i, j, k, l ∈

N and ε1, ε2 ∈ {0, 1}} is a C−basis of Aα,β.

Proof. Since the set S = {ê1
i1 ê2

i2 ê3
i3 ê4

ξê5
i5 ê6

i6 | i1, i2, i3, i5, i6 ∈ N and ξ = 0, 1} is a

C−basis of Aβ (Proposition 3.2.1), and Aα,β is identified with Aβ/〈Ω̂1 − α〉, it follows

that (ei11 e
i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 )i1,··· ,i6∈N, with ξ ∈ {0, 1}, is a spanning set of Aα,β over C. We

want to show that B spans Aα,β by showing that ei11 e
i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 can be written as a finite

linear combination of the elements of B over C for all i1, i2, i3, i5, i6 ∈ N and ξ = 0, 1.

By Proposition 3.2.1, it is sufficient to do this by an induction on i3. The result is obvious

when i3 = 0 or 1. For i3 ≥ 1, suppose that

ei11 e
i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 =

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 e

k
5e
l
6,

where υ = (i, j, k, l) ∈ N4, I is a finite subset of {0, 1}2×N4, and (a(ε1,ε2,υ))(ε1,ε2,υ)∈I is

a family of complex numbers. Using the commutation relations in Aα,β (Lemma A.1.4),

we have that:

ei11 e
i2
2 e

i3+1
3 eξ4e

i5
5 e

i6
6 = q•e3e

i1
1 e

i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 − q•d2[i1]ei1−1

1 e1+i2
2 ei33 e

ξ
4e
i5
5 e

i6
6 .

From the inductive hypothesis, ei1−1
1 e1+i2

2 ei33 e
ξ
4e
i5
5 e

i6
6 ∈ Span(B) for all i1 > 0 (note:

d2[0] = 0). As a result, we proceed to show that e3e
i1
1 e

i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 is also in the span of

B. It follows from the inductive hypothesis that
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e3e
i1
1 e

i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 =

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e3e
i
1e
j
2e
ε1
3 e

ε2
4 e

i
5e
l
6

=
∑

(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e
i
1e
j
2e
ε1+1
3 eε24 e

k
5e
l
6

+
∑

(ε1,ε2,υ)∈I

d2[i]a(ε1,ε2,υ)e
i−1
1 e1+j

2 eε13 e
ε2
4 e

k
5e
l
6.

Clearly, the monomial ei−1
1 e1+j

2 eε13 e
ε2
4 e

k
5e
l
6 belongs to the span of B for all (ε1, ε2, υ) ∈ I

(with i > 0). Again, the monomial ei1e
j
2e
ε1+1
3 eε24 e

k
5e
l
6 belongs to the span of B for all

(ε1, ε2, υ) ∈ I; with (ε1, ε2) = (0, 0), (0, 1). For (ε1, ε2) = (1, 0), (1, 1); we must show

that ei1e
j
2e

2
3e
k
5e
l
6 and ei1e

j
2e

2
3e4e

k
5e
l
6 belong to the span of B. From Lemma 3.0.1, one can

write ei1e
j
2e

2
3e
k
5e
l
6 and ei1e

j
2e

2
3e4e

k
5e
l
6 as finite linear combinations of the elements of B over

C. Hence, ei1e
j
2e

2
3e
k
5e
l
6 and ei1e

j
2e

2
3e4e

k
5e
l
6 belong to the span of B for all (ε1, ε2, υ) ∈ I;

with (ε1, ε2) = (1, 0), (1, 1). We have therefore established that e3e
i1
1 e

i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 ∈

Span(B). Consequently, each ei11 e
i2
2 e

i3+1
3 eξ4e

i5
5 e

i6
6 belongs to the span of B. By the principle

of mathematical induction, B is a spanning set of Aα,β over C as expected.

Finally, we show that B is a linearly independent set. Suppose that

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 e

k
5e
l
6 = 0.

In Aβ, we have that

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)ê1
iê2

j ê3
ε1 ê4

ε2 ê5
kê6

l = (Ω̂1 − α)ν,

with ν ∈ Aβ. One can write ν in terms of the basis S of Aβ (Proposition 3.2.1) as:

ν =
∑
w∈J1

bwê1
iê2

j ê3
kê4ê5

mê6
n +

∑
w∈J2

cwê1
iê2

j ê3
kê5

lê6
m,
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where bw and cw are all complex numbers and w := (i, j, k, l,m). Hence,

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)ê1
iê2

j ê3
ε1 ê4

ε2 ê5
kê6

l =
∑
w∈J1

bwê1
iê2

j ê3
k(Ω̂1 − α)ê4ê5

lê6
m

+
∑
w∈J2

cwê1
iê2

j ê3
k(Ω̂1 − α)ê5

lê6
m.

Note, Ω̂1 = ê1ê3ê5 + aê1ê4 + aê2ê5 + a′ê3
2. Using (3.2.2) and the relation ek3e1 =

q−ke1e
k
3 + d2[k]e2e

k−1
3 (see Lemma A.1.4), one can verify that the above equality can be

written in terms of the basis of Aβ (Propositions 3.2.1) as:

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)ê1
iê2

j ê3
ε1 ê4

ε2 ê5
kê6

l =
∑
w∈J1

bwa
′ê1

iê2
j ê3

k+2ê4ê5
lê6

m

+
∑
w∈J1

q•bwabβ0ê1
i+1ê2

j ê3
k+3ê5

lê6
m+1

+
∑
w∈J2

q•cwaê1
i+1ê2

j ê3
kê4ê5

lê6
m

+
∑
w∈J2

cwa
′ê1

iê2
j ê3

k+2ê5
lê6

m + Υ, (3.2.4)

where Υ is defined on the next page.
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Υ =
∑
w∈J1

q•bwê1
i+1ê2

j ê3
k+1ê4ê5

l+1ê6
m +

∑
w∈J1

q•bwd2[k]ê1
iê2

1+j ê3
kê4ê5

l+1ê6
m

−
∑
w∈J1

q•bwaββ0ê1
i+1ê2

j ê3
kê5

lê6
m +

∑
w∈J1

q•bwaβ0ê1
i+1ê2

1+j ê3
kê4ê5

lê6
m+1

+
∑
w∈J1

q•bwabβ0ê1
i+1ê2

j+1ê3
kê5

l+3ê6
m +

∑
w∈J1

q•bwab
′β0ê1

i+1ê2
j ê3

k+2ê5
l+2ê6

m

+
∑
w∈J1

q•bwac
′β0ê1

i+1ê2
j ê3

k+1ê4ê5
l+1ê6

m −
∑
w∈J1

q•bwaββ0d2[k]ê1
iê2

1+j ê3
k−1ê5

lê6
m

+
∑
w∈J1

q•bwaβ0d2[k]ê1
iê2

j+2ê3
k−1ê4ê5

lê6
m+1 +

∑
w∈J1

q•bwabβ0d2[k]ê1
iê2

j+2ê3
k−1ê5

l+3ê6
m

+
∑
w∈J1

q•bwabβ0d2[k]ê1
i+1ê2

j ê3
k+2ê5

lê6
m+1 +

∑
w∈J1

q•bwab
′β0d2[k]ê1

iê2
j+1ê3

k+1ê5
l+2ê6

m

+
∑
w∈J1

q•bwac
′β0d2[k]ê1

iê2
j+1ê3

kê4ê5
l+1ê6

m +
∑
w∈J1

q•bwaê1
iê2

j+1ê3
kê4ê5

l+1ê6
m

−
∑
w∈J1

bwβê1
iê2

j ê3
kê4ê5

lê6
m +

∑
w∈J2

q•cwê1
i+1ê2

j ê3
k+1ê5

l+1ê6
m

+
∑
w∈J2

q•cwd2[k]ê1
iê2

1+j ê3
kê5

l+1ê6
m +

∑
w∈J2

q•cwad2[k]ê1
iê2

j+1ê3
k−1ê4ê5

lê6
m

+
∑
w∈J2

q•cwaê1
iê2

j+1ê3
kê5

l+1ê6
m −

∑
w∈J2

cwαê1
iê2

j ê3
kê5

lê6
m.

Before we continue the proof, the following point needs to be noted.

♠ Let (ϑ1, ϑ2, ϑ3, ϑ5, ϑ6), (ς1, ς2, ς3, ς5, ς6) ∈ N5. We say that (ς1, ς2, ς3, ς5, ς6) <3

(ϑ1, ϑ2, ϑ3, ϑ5, ϑ6) if [ϑ3 > ς3] or [ϑ3 = ς3 and ϑ1 > ς1] or [ϑ3 = ς3, ϑ1 = ς1 and

ϑ2 > ς2] or [ϑ3 = ς3, ϑ1 = ς1, ϑ2 = ς2 and ϑ5 > ς5] or [ϑ3 = ς3, ϑ1 = ς1, ϑ2 =

ς2, ϑ5 = ς5 and ϑ6 ≥ ς6].

Observe that Υ contains lower order terms with respect to <3 (defined in ♠ above) in

each monomial type (note, there are two different types of monomials in the basis of Aβ:

one with ê4 and the other without ê4). Now, suppose that there exists (i, j, k, l,m) ∈ J1

and (i, j, k, l,m) ∈ J2 such that b(i,j,k,l,m) 6= 0 and c(i,j,k,l,m) 6= 0. Let (v1, v2, v3, v5, v6)

and (w1, w2, w3, w5, w6) be the greatest elements of J1 and J2 respectively with re-
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spect to <3 such that b(v1,v2,v3,v5,v6) and c(w1,w2,w3,w5,w6) are non-zero. Since S is a

linear basis for Aβ, and Υ contains lower order terms with respect to <3, we have the

following: if w3 − v3 < 2, then identifying the coefficients of ê1
v1 ê2

v2 ê3
v3+2ê4ê5

v5 ê6
v6

in (3.2.4), we have that a′b(v1,v2,v3,v5,v6) = 0. But b(v1,v2,v3,v5,v6) 6= 0, hence a′ =

q6/(q2 − 1) = 0, a contradiction (see Appendix C for the expression of a′). Finally,

if w3 − v3 ≥ 2, then identifying the coefficient of ê1
w1 ê2

w2 ê3
w3+2ê5

w5 ê6
w6 , we have

that a′c(w1,w2,w3,w5,w6) = 0. But c(w1,w2,w3,w5,w6) 6= 0, hence a′ = 0, a contradiction!

This implies that either all b(i,j,k,l,m) or all c(i,j,k,l,m) are zero. Without loss of gen-

erality, suppose that there exists (i, j, k, l,m) ∈ J2 such that c(i,j,k,l,m) is not zero.

Then, b(i,j,k,l,m) are all zero. Let (w1, w2, w3, w5, w6) be the greatest element of J2

such that c(w1,w2,w3,w5,w6) 6= 0. Identifying the coefficients of ê1
w1 ê2

w2 ê3
w3+2ê5

w5 ê6
w6 in

the above equality, we have that a′c(w1,w2,w3,w5,w6) = 0. Since c(w1,w2,w3,w5,w6) 6= 0, it

follows that a′ = 0, a contradiction! We can therefore conclude that b(i,j,k,l,m) and

c(i,j,k,l,m) are all zero. Consequently,
∑

(ε1,ε2,υ)∈I a(ε1,ε2,υ)ê1
iê2

j ê3
ε1 ê4

ε2 ê5
kê6

l = 0. Since

(ê1
i1 ê2

i2 ê3
i3 ê4

ξê5
i5 ê6

i6)(ξ,i1,··· ,i6)∈{0,1}×N5 is a basis of Aβ, it implies that a(ε1,ε2,v) = 0 for

all (ε1, ε2, v) ∈ I. Therefore, B is a linearly independent set. �

3.2.3 Corollary. Let v = (i, j, k, l) ∈ N2 × Z2, I represent a finite subset of {0, 1} ×

N2 × Z2 and (a(ε1,ε2,v))(ε1,ε2,v)∈I be a family of complex numbers. If

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6 = 0,

then a(ε1,ε2,v) = 0 for all (ε1, ε2, v) ∈ I.

Proof. From Proposition 3.2.2, the result is obvious when k, l ≥ 0. When k (resp. l)

is negative, then one can multiply the above equality enough times (on the right) by t5

(resp. t6) to kill all the negative powers and then apply Proposition 3.2.2 to complete

the proof. �

3.2.4 Remark. Given the basis of Aα,β, we have computed the group of units of Aα,β,

however, we do not include the details in this thesis due to the voluminous computations
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involved. We only summarize our findings below. Set

h1 := e3e5 + ae4 and h2 := (q−3 − q−9)e2e4 − (q4 − 2q2 + 1)/(q4 + q2 + 1)e3
3.

3.2.5 Theorem. Let (α, β) ∈ C2 \ {(0, 0)} and U(Aα,β) denote the group of units of

Aα,β. We have that:

U(Aα,β) =


{λhi1 | λ ∈ C∗, i ∈ Z} if α = 0

{λhi2 | λ ∈ C∗, i ∈ Z} if β = 0

C∗ otherwise.

3.3 Aα,β as a q-deformation of a quadratic extension

of A2(C)

We are now ready to establish that Aα,β is a q-deformation of a quadratic extension of

A2(C). Recall that A2(C) is generated by x1, x2, y1 and y2 subject to the relations:

y1y2 = y2y1 x2y1 = y1x2 x1x2 = x2x1 x1y1 − y1x1 = 1

y1y2 = y2y1 x1y2 = y2x1 x2y1 = y1x2 x2y2 − y2x2 = 1.

Given the relations of Aα,β at the onset of this chapter, we have that A1, 1
9(q6−1)

satisfies

the following relations:

e2e1 = q−3e1e2 e3e1 = q−1e1e3 − (q + q−1 + q−3)e2

e3e2 = q−3e2e3 e4e1 = e1e4 + (1− q2)e2
3

e4e2 = q−3e2e4 −
q4 − 2q2 + 1

q4 + q2 + 1
e3

3 e4e3 = q−3e3e4

e5e1 = qe1e5 − (1 + q2)e3 e5e2 = e2e5 + (1− q2)e2
3

e5e3 = q−1e3e5 − (q + q−1 + q−3)e4 e5e4 = q−3e4e5
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e6e1 = q3e1e6 − q3e5 e6e2 = q3e2e6 + (q4 + q2 − 1)e4 + (q2 − q4)e3e5

e6e3 = e3e6 + (1− q2)e2
5 e6e4 = q−3e4e6 −

q4 − 2q2 + 1

q4 + q2 + 1
e3

5

e6e5 = q−3e5e6,

and

(q−2 − 1)e1e3e5 + (q2 + 1 + q−2)e1e4 + (q2 + 1 + q−2)e2e5 − q4e2
3 = q−2 − 1,

(q6 − 1)e2e4e6 +
2q−1 − q−3 − q
q4 + q2 + 1

e2e
3
5 +

2q−1 − q−3 − q
q4 + q2 + 1

e3
3e6

+
(q6 − 1)(q13 − q11)

(q4 + q2 + 1)2
e2

3e
2
5 −

q9(q6 − 1)

q4 + q2 + 1
e3e4e5 + q12e2

4 =
1

9
.

Note, we have made substitutions for a, a′, b, b′, c′ and d′ (see Appendix C).

Set C := C[z±1]. One can define a C[(z4 + z2 + 1)−1]−algebra Az generated by

e1, · · · , e6 subject to the following relations:

e2e1 = z−3e1e2 e3e1 = z−1e1e3 − (z + z−1 + z−3)e2

e3e2 = z−3e2e3 e4e1 = e1e4 + (1− z2)e2
3

e4e2 = z−3e2e4 −
z4 − 2z2 + 1

z4 + z2 + 1
e3

3 e4e3 = z−3e3e4

e5e1 = ze1e5 − (1 + z2)e3 e5e2 = e2e5 + (1− z2)e2
3

e5e3 = z−1e3e5 − (z + z−1 + z−3)e4 e5e4 = z−3e4e5

e6e1 = z3e1e6 − z3e5 e6e2 = z3e2e6 + (z4 + z2 − 1)e4 + (z2 − z4)e3e5

e6e3 = e3e6 + (1− z2)e2
5 e6e4 = z−3e4e6 −

z4 − 2z2 + 1

z4 + z2 + 1
e3

5

e6e5 = z−3e5e6,

(z−2 − 1)e1e3e5 + (z2 + 1 + z−2)e1e4 + (z2 + 1 + z−2)e2e5 − z4e2
3 = z−2 − 1, and
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(z6 − 1)e2e4e6 +
2z−1 − z−3 − z
z4 + z2 + 1

e2e
3
5 +

2z−1 − z−3 − z
z4 + z2 + 1

e3
3e6

+
(z6 − 1)(z13 − z11)

(z4 + z2 + 1)2
e2

3e
2
5 −

z9(z6 − 1)

z4 + z2 + 1
e3e4e5 + z12e2

4 =
1

9
.

Observe that A1 (i.e. when z = 1) satisfies the following relations:

e2e1 = e1e2 e3e1 = e1e3 − 3e2 e3e2 = e2e3

e4e1 = e1e4 e4e2 = e2e4 e4e3 = e3e4

e5e1 = e1e5 − 2e3 e5e2 = e2e5 e5e3 = e3e5 − 3e4

e5e4 = e4e5 e6e1 = e1e6 − e5 e6e2 = e2e6 + e4

e6e3 = e3e6 e6e4 = e4e6 e6e5 = e5e6

e2
4−1/9 = 0 e2

3−3e1e4 − 3e2e5 = 0.

3.3.1 Lemma. e4 ∈ Z(A1) and it is also invertible.

Proof. Since e4ei = eie4 for all 1 ≤ i ≤ 6, we have that e4 ∈ Z(A1). Again, from

e2
4 − 1/9 = 0, we have that e4(9e4) = (9e4)e4 = 1. Hence e4 is invertible with e−1

4 =

9e4. �

Given that e−1
4 = 9e4 and e4 ∈ Z(A1), it follows from the relation e2

3−3e1e4−3e2e5 =

0 that e1 = 3e2
3e4−9e2e4e5. Therefore, A1 can be generated by only e2, · · · , e6. All these

generators commute except

e6e2 = e2e6 + e4 and e5e3 = e3e5 − 3e4.

Since e4 is invertible, one can also verify that 9e2e4, 3e3e4, e4, e5 and e6 generate A1.

Let R be an algebra generated by f2, f3, f4, f5, f6 subject to the following defining

relations:
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f3f2 = f2f3 f4f2 = f2f4 f4f3 = f3f4

f5f2 = f2f5 f5f4 = f4f5 f6f3 = f3f6

f6f4 = f4f6 f6f5 = f5f6 f 2
4 = 1/9

f6f2 = f2f6 + 1 f5f3 = f3f5 − 1.

3.3.2 Proposition. R ∼= A1.

Proof. One can define a homomorphism φ : R −→ A1 such that

φ(f2) = 9e2e4 φ(f3) = 3e3e4 φ(f4) = e4 φ(f5) = e5 φ(f6) = e6.

Recall, e2
4 = 1/9. One can confirm that φ is indeed a homomorphism by verifying that

it is compatible with the relations of R. We check this on the relation f6f2 − f2f6 = 1

and f3f5 − f5f3 = 1, and leave the remaining ones for the reader to verify. We do

that as follows: φ(f6)φ(f2) − φ(f2)φ(f6) = 9e6e2e4 − 9e2e4e6 = 9e4(e6e2 − e2e6) =

9e2
4 = 9(1/9) = 1 as expected. Also, φ(f3)φ(f5) − φ(f5)φ(f3) = 3e3e4e5 − 3e5e3e4 =

3e4(e3e5 − e5e3) = 3e4(3e4) = 9e2
4 = 9(1/9) = 1.

Conversely, one can also define a homomorphism ϕ : A1 −→ R such that

ϕ(e1) = 3f 2
3 f4 − f2f5 ϕ(e2) = f2f4 ϕ(e3) = 3f3f4

ϕ(e4) = f4 ϕ(e5) = f5 ϕ(e6) = f6.

We check this on the relation e2
3 − 3e1e4 − 3e2e5 = 0, and leave the remaining ones

for the reader to verify. We do that as follows: ϕ(e3)2 − 3ϕ(e1)ϕ(e4) − 3ϕ(e2)ϕ(e5) =

(3f3f4)2 − 3(3f 2
3 f4 − f2f5)f4 − 3f2f4f5 = 9f 2

3 f
2
4 − 9f 2

3 f
2
4 + 3f2f4f5 − 3f2f4f5 = 0 as

expected.

Now, φ ◦ ϕ = idA1 (one can check this on the generators of A1) and ϕ ◦ φ = idR

(one can also check this on the generators of R) (note, id∗ means an identity map of the
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algebra ∗). This confirms that R ∼= A1. �

The corollary below can easily be deduced from the above proposition.

3.3.3 Corollary. Set F := C[f4]/〈f 2
4 − 1/9〉, we have that R ∼= A2(F), where A2(F) is

the second Weyl algebra over the ring F.

3.3.4 Remark. Observe that the subalgebra B of R generated by f2, f3, f5, f6 is iso-

morphic to A2(C) and R ∼= B[f4] ∼= A2(C)[f4]. Therefore, R is a quadratic extension of

A2(C). Note, A1, 1
9(q6−1)

is a q-deformation of A1
∼= R ∼= A2(F) ∼= A2(C)[f4].

Az

Aq
∼= A1, 1

9(q6−1)
A1

∼= A2(C)[f4]

z = q z = 1

Deformation

3.3.5 Remark. Given the algebra Aα,β, the construction in this section was done for

α = 1 and β =
1

9(q6 − 1)
. However, any α ∈ R and β of the form β =

ς

(q6 − 1)
, where

ς ∈ R∗, will also work.



Chapter 4

Derivations of the simple quotients of

U+
q (G2)

In this chapter, we compute the derivations of the algebra Aα,β. In finding the derivations

of Aα,β, we use the theory of deleting derivations algorithm by Cauchon [8] and localization

theory to embed Aα,β into a suitable quantum torus. This is because every derivation of

the quantum torus, through the work of Osborn and Passman [40], is known to be the

sum of an inner derivation and a central/scalar derivation. Since Aα,β can be embedded

into a quantum torus, we extend every derivation of Aα,β to a derivation of the quantum

torus, and then restrict the derivations of the quantum torus back to a derivation of Aα,β.

We conclude that every derivation of Aα,β is inner when α and β are non-zero. However,

when either α or β is zero, we conclude that every derivation of Aα,β is the sum of an

inner and a scalar derivation. In fact, the first Hochschild cohomology group of Aα,β is

of dimension 0 when α and β are non-zero and 1 when either α or β is zero.

4.1 Preliminaries

Let 2 ≤ j ≤ 7 and (α, β) ∈ C2 \ {(0, 0)}. Set

A
(j)
α,β :=

A(j)

〈Ω1 − α,Ω2 − β〉
,

73
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where A(j) is defined in Section 2.2 and, Ω1 and Ω2 are the generators of the center of

A(j) (Subsection 2.2.3). Recall that A(7) = A = U+
q (G2) (Section 2.2). It follows that

A
(7)
α,β = Aα,β. For each 2 ≤ j ≤ 7, denote the canonical images of the generators Ei,j

of A(j) in A
(j)
α,β by ei,j for all 1 ≤ i ≤ 6. Since the data of the DDA of Aα,β is going to

be crucial in this section, we present them below (note, we deduce them from that of

U+
q (G2) in Section 2.2):

e1,6 = e1 + re5e
−1
6

e2,6 = e2 + te3e5e
−1
6 + ue4e

−1
6 + ne3

5e
−2
6

e3,6 = e3 + se2
5e
−1
6

e4,6 = e4 + be3
5e
−1
6

e1,5 = e1,6 + he3,6e
−1
5,6 + ge4,6e

−2
5,6

e2,5 = e2,6 + fe2
3,6e
−1
5,6 + pe3,6e4,6e

−2
5,6 + ee2

4,6e
−3
5,6

e3,5 = e3,6 + ae4,6e
−1
5,6

e1,4 = e1,5 + se2
3,5e
−1
4,5

e2,4 = e2,5 + be3
3,5e
−1
4,5

e1,3 = e1,4 + ae2,4e
−1
3,4

t1 := e1,2 = e1,3

t2 := e2,2 = e2,3 = e2,4

t3 := e3,2 = e3,3 = e3,4 = e3,5

t4 := e4,2 = e4,3 = e4,4 = e4,5 = e4,6

t5 := e5,2 = e5,3 = e5,4 = e5,5 = e5,6 = e5

t6 := e6,2 = e6,3 = e6,4 = e6,5 = e6,6 = e6.

Note, ti is also the canonical image of Ti in A
(2)
α,β for each 1 ≤ i ≤ 6. For each 3 ≤ j ≤ 6,

define Sj :=
{
λt
ij
j t

ij+1

j+1 · · · t
i6
6 | ij, · · · , i6 ∈ N and λ ∈ C∗

}
. One can observe that Sj is

a multiplicative system of non-zero divisors (or regular elements) of A
(j)
α,β. Furthermore;
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tj, · · · , t6 are all normal elements of A
(j)
α,β. It follows from Section 1.7 that Sj is an Ore

set in A
(j)
α,β. As a result, one can localize A

(j)
α,β at Sj as follows:

Rj := A
(j)
α,βS

−1
j .

Let 3 ≤ j ≤ 6, and set Σj := {tkj | k ∈ N}. By [8, Theorem 3.2.1], Σj is an Ore set in

both A
(j)
α,β and A

(j+1)
α,β . Consequently,

A
(j)
α,βΣ−1

j = A
(j+1)
α,β Σ−1

j .

Similar to (2.2.1), we have that

Rj = Rj+1Σ−1
j , (4.1.1)

for all 2 ≤ j ≤ 6. By convention, R7 := Aα,β. We also construct the following tower of

algebras in a manner similar to (2.2.2):

R7 = Aα,β ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4 ⊂ R3. (4.1.2)

Note, R3 = A
(3)
α,βS

−1
3 = R4Σ−1

3 is the quantum torus Aα,β = CqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]

studied in Section 3.1.

Linear bases for R3, R4 and R5.

Let (α, β) ∈ C2 \ {(0, 0)}. We aim to find a basis of Rj for each j = 3, 4, 5. Since

R3 = Aα,β, the set {ti3t
j
4t
k
5t
l
6 | i, j, k, l ∈ Z} is a C−basis of R3.
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For simplicity, we set

f1 : = e1,4 F1 : = E1,4

z1 : = e1,5 –Z1 : = E1,5

z2 : = e2,5 –Z2 : = E2,5.

Basis for R4. Observe that

A
(4)
α,β =

A(4)

〈Ω1 − α,Ω2 − β〉
,

where Ω1 = F1T3T5 + aT2T5 and Ω2 = T2T4T6 in A(4) (Subsection 2.2.3). Recall from

Section 3.2 that finding a basis for the algebra Aβ served as a good ground for finding a

basis for Aα,β. In a similar manner, to find a basis for R4, we will first and foremost find

a basis for the algebra

A
(4)
β S−1

4 =
A(4)S−1

4

〈Ω2 − β〉
=

A(4)S−1
4

〈T2T4T6 − β〉
,

where β ∈ C∗. We will denote the canonical images of Ei,4 (resp. Ti) in A
(4)
β by êi,4

(resp. t̂i) for all 1 ≤ i ≤ 6. Observe that t̂2 = βt̂6
−1
t̂4
−1

in A
(4)
β S−1

4 . Note, when β = 0,

then one can easily deduce that A
(4)
β S−1

4 = A(4)S−1
4 /〈T2〉, hence, t̂2 = 0.

4.1.1 Proposition. The set S4 =
{
f̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6 | (i1, i3, i4, i5, i6) ∈ N2 × Z3

}
is

a C−basis of A
(4)
β S−1

4 , where β ∈ C.

Proof. We begin by showing that S4 is a spanning set for A
(4)
β S−1

4 . It is sufficient to do

this by showing that f̂1

k1
t̂2
k2
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6

can be written as a finite linear combination

of the elements of S4 for all (k1, · · · , k6) ∈ N3 × Z3. We do this by an induction on k2.

The result is clear when k2 = 0. Assume that the statement is true for k2 ≥ 0. That is,

f̂1

k1
t̂2
k2
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6

=
∑
i∈I

aif̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
,
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where i = (i1, i3, i4, i5, i6) ∈ I ⊂ N2 × Z3 and ai ∈ C. It follows that

f̂1

k1
t̂2
k2+1

t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6

= q•
(
f̂1

k1
t̂2
k2
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)
t̂2

=
∑
i∈I

q•aif̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
t̂2

=
∑
i∈I

q•βaif̂1

i1
t̂3
i3
t̂4
i4−1

t̂5
i5
t̂6
i6−1

,

(
note, t̂2 = βt̂6

−1
t̂4
−1
)
. By the principle of mathematical induction, S4 is a spanning set

for A
(4)
β S−1

4 for all i2 ∈ N. We now prove that S4 is a linearly independent set. Suppose

that ∑
i∈I

aif̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

This implies that ∑
i∈I

aiF
i1
1 T

i3
3 T

i4
4 T

i5
5 T

i6
6 = (Ω2 − β)ν,

for some ν ∈ A(4)S−1
4 . Write ν =

∑
j∈J

bjF
i1
1 T

i2
2 T

i3
3 T

i4
4 T

i5
5 T

i6
6 , where

j = (i1, i2, i3, i4, i5, i6) ∈ J ⊂ N3 × Z3 and bj is a family of complex numbers. Given

that Ω2 = T2T4T6, it follows from the above equality that

∑
i∈I

aiF
i1
1 T

i3
3 T

i4
4 T

i5
5 T

i6
6 =

∑
j∈J

q•bjF
i1
1 T

i2+1
2 T i33 T

i4+1
4 T i55 T

i6+1
6 −

∑
j∈J

βbjF
i1
1 T

i2
2 T

i3
3 T

i4
4 T

i5
5 T

i6
6 .

Suppose that there exists (i1, · · · , i6) ∈ J such that b(i1,··· ,i6) 6= 0. Let (w1, · · · , w6) ∈ J

be the greatest element of J with respect to <2
1 such that b(w1,··· ,w6) 6= 0. Note,(

F i1
1 T

i2
2 T

i3
3 T

i4
4 T

i5
5 T

i6
6

)
(i1,··· ,i6)∈J is a basis of A(4)S−1

4 . Identifying the coefficients of

Fw1
1 Tw2+1

2 Tw3
3 Tw4+1

4 Tw5
5 Tw6+1

6 , we have that b(w1,··· ,w6) = 0. This is a contradiction to

our assumption, hence b(i1,··· ,i6) = 0 for all (i1, · · · , i6) ∈ J. This implies that

∑
i∈I

aiF
i1
1 T

i3
3 T

i4
4 T

i5
5 T

i6
6 = 0.

1(i1, i2, i3, i4, i5, i6) <2 (w1, w2, w3, w4, w5, w6) if [w2 > i2] or [w2 = i2, w1 > i1] or [w2 = i2, w1 =
i1, w3 > i3] or · · · or [wl = il, w6 ≥ t6, l = 2, 1, 3, 4, 5] for all (i1, · · · , i6) ∈ J.
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Consequently, ai = 0 for all i ∈ I. Therefore, S4 is a linearly independent set. �

In R4 = A
(4)
α,βS

−1
4 , we have the following two relations: f1t3t5 + at2t5 = α and

t2t4t6 = β. This implies that f1t3 = αt−1
5 − at2 and t2 = βt−1

6 t−1
4 . Putting these two

relations together, we have that

f1t3 = αt−1
5 − aβt−1

6 t−1
4 . (4.1.3)

Note, we will usually identify R4 with A
(4)
β S−1

4 /〈Ω̂1 − α〉.

4.1.2 Proposition. The set B4 =
{
f i11 t

i4
4 t

i5
5 t

i6
6 , t

i3
3 t

i4
4 t

i5
5 t

i6
6 | i1, i3 ∈ N and i4, i5, i6 ∈ Z

}
is a C−basis of R4.

Proof. Since
(
f̂1

k1
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N2×Z3
is a basis of A

(4)
β S−1

4 (Proposition

4.1.1), the set
(
fk11 tk33 t

k4
4 t

k5
5 t

k6
6

)
(k1,k3,··· ,k6)∈N2×Z3 spans R4. We show that B4 is a spanning

set of R4 by showing that fk11 tk33 t
k4
4 t

k5
5 t

k6
6 can be written as a finite linear combination of

the elements of B4 for all (k1, k3, · · · , k6) ∈ N2×Z3. By Proposition 4.1.1, it is sufficient

to do this by induction on k1. The result is clear when k1 = 0. Assume that the statement

is true for k1 ≥ 0. That is,

fk11 tk33 t
k4
4 t

k5
5 t

k6
6 =

∑
i∈I1

aif
i1
1 t

i4
4 t

i5
5 t

i6
6 +

∑
j∈I2

bjt
i3
3 t

i4
4 t

i5
5 t

i6
6 ,

where i = (i1, i4, i5, i6) ∈ I1 ⊂ N × Z3 and j = (i3, i4, i5, i6) ∈ I2 ⊂ N × Z3. Note, ai

and bj are all complex numbers. It follows that

fk1+1
1 tk33 t

k4
4 t

k5
5 t

k6
6 = f1

(
fk11 tk33 t

k4
4 t

k5
5 t

k6
6

)
=
∑
i∈I1

aif
i1+1
1 ti44 t

i5
5 t

i6
6 +

∑
j∈I2

bjf1t
i3
3 t

i4
4 t

i5
5 t

i6
6 .

Clearly, the monomial f i1+1
1 ti44 t

i5
5 t

i6
6 ∈ Span(B4). We have to also show that f1t

i3
3 t

i4
4 t

i5
5 t

i6
6 ∈

Span(B4) for all i3 ∈ N and i4, i5, i6 ∈ Z. This can easily be achieved by an induction

on i3, and the use of the relation f1t3 = αt−1
5 − aβt−1

6 t−1
4 . Therefore, by the principle of

mathematical induction, B4 is a spanning set of R4 over C.
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We prove that B4 is a linearly independent set. Suppose that

∑
i∈I1

aif
i1
1 t

i4
4 t

i5
5 t

i6
6 +

∑
j∈I2

bjt
i3
3 t

i4
4 t

i5
5 t

i6
6 = 0.

It follows that there exists ν ∈ A(4)
β S−1

4 such that

∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

=
(

Ω̂1 − α
)
ν.

Write ν =
∑
l∈J

clf̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
, where l = (i1, i3, i4, i5, i6) ∈ J ⊂ N2×Z3 and cl ∈ C.

Note, t̂2 = βt̂6
−1
t̂4
−1
. We have that Ω̂1 = f̂1t̂3t̂5 + at̂2t̂5 = f̂1t̂3t̂5 + aβt̂6

−1
t̂4
−1
t̂5.

Therefore,

∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

=
∑
l∈J

q•clf̂1

i1+1
t̂3
i3+1

t̂4
i4
t̂5
i5+1

t̂6
i6

+
∑
l∈J

q•βaclf̂1

i1
t̂3
i3
t̂4
i4−1

t̂5
i5+1

t̂6
i6−1

−
∑
l∈J

αclf̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
.

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that c(i1,i3,i4,i5,i6) 6= 0.

Let (w1, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on

N2×Z3) of J such that c(w1,w3,w4,w5,w6) 6= 0. Since
(
f̂1

k1
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N2×Z3

is a basis of A(4)S−1
4 , it implies that the coefficients of f̂1

w1+1
t̂3
w3+1

t̂4
w4
t̂5
w5+1

t̂6
w6

in the

above equality can be identified as: q•c(w1,w3,w4,w5,w6) = 0. Hence, c(w1,w3,w4,w5,w6) = 0,

a contradiction! Therefore, c(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J. This further

implies that ∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

Consequently, ai and bj are all zero. In conclusion, B4 is a linearly independent set. �

Basis for R5. We will identify R5 with A
(5)
α S−1

5 /〈Ω̂2 − β〉, where A
(5)
α S−1

5 =
A(5)S−1

5

〈Ω1 − α〉
.
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Note, the canonical images of Ei,j (resp. Ti) in A
(5)
α will be denoted by êi,j (resp. t̂i). We

now find a basis for A
(5)
α S−1

5 . Recall from Subsection 2.2.3 that Ω1 = –Z1T3T5 + a–Z2T5

and Ω2 = –Z2T4T6 + bT 3
3 T6 in A(5) (remember, –Z1 := E1,5 and –Z2 := E2,5 ). Since

z2t4t6 + bt33t6 = β and ẑ1t̂3t̂5 + aẑ2t̂5 = α in R5 and A
(5)
α S−1

5 respectively, we have

the relation ẑ2 =
1

a

(
αt̂5
−1 − ẑ1t̂3

)
in A

(5)
α S−1

5 and, in R5, we have the following two

relations:

z2 =
1

a

(
αt−1

5 − z1t3
)
. (4.1.4)

t33 =
1

b

(
βt−1

6 − z2t4
)

=
β

b
t−1
6 −

q3α

ab
t4t
−1
5 +

1

ab
z1t3t4. (4.1.5)

4.1.3 Proposition. The set S5 =
{
ẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6 | (i1, i3, · · · , i6) ∈ N3 × Z2

}
is a

C−basis of A
(5)
α S−1

5 , where α ∈ C.

Proof. The proof is similar to that of Proposition 4.1.1. Hence, we will provide the proof

without many details. Assume that the statement is true for k2 ≥ 0. That is,

ẑ1
k1 ẑ2

k2 t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6

=
∑
i∈I

aiẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6
,

where i = (i1, i3, i4, i5, i6) ∈ I ⊂ N3×Z2 and ai ∈ C. Given that ẑ2 =
1

a

(
αt̂5
−1 − ẑ1t̂3

)
,

it follows from the inductive hypothesis that

ẑ1
k1 ẑ2

k2+1t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6

=q•ẑ2

(
ẑ1
k1 ẑ2

k2 t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)

=
∑
i∈I

q•aiẑ1
i1 ẑ2t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6

=
∑
i∈I

q•α

a
aiẑ1

i1 t̂3
i3
t̂4
i4
t̂5
i5−1

t̂6
i6

−
∑
i∈I

q•

a
aiẑ1

i1+1t̂3
i3+1

t̂4
i4
t̂5
i5−1

t̂6
i6
,

where (k1, · · · , k6) ∈ N4 × Z2. Hence, S5 is a spanning set of A
(5)
α S−1

5 .
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Secondly, suppose that

∑
i∈I

aiẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

Then,

∑
i∈I

ai–Z
i1
1 T

i3
3 T

i4
4 T

i5
5 T

i6
6 = (Ω1 − α)ν,

with ν ∈ A(5)S−1
5 . Write ν =

∑
j∈J bj–Z

i1
1

–Zi2
2 T

i3
3 T

i4
4 T

i5
5 T

i6
6 , where j = (i1, i3, i4, i5, i6) ∈

J ⊂ N4 × Z2 and bj is a family of complex numbers. Given that Ω1 = –Z1T3T5 + a–Z2T5,

it follows that

∑
i∈I

ai–Z
i1
1 T

i3
3 T

i4
4 T

i5
5 T

i6
6 =

∑
j∈J

q•bj–Z
i1+1
1

–Zi2
2 T

i3+1
3 T i44 T

i5+1
5 T i66

−
∑
j∈J

αbj–Z
i1
1

–Zi2
2 T

i3
3 T

i4
4 T

i5
5 T

i6
6

+
∑
j∈J

q•abj–Z
i1
1

–Zi2+1
2 T i33 T

i4
4 T

i5+1
5 T i66 .

Suppose that there exists (i1, i2, i3, i4, i5, i6) ∈ J such that b(i1,i2,i3,i4,i5,i6) 6= 0.

Let (w1, w2, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on

N4 × Z2) of J such that b(w1,w2,w3,w4,w5,w6) 6= 0. Since the family of monomials(
–Zi1

1
–Zi2

2 T
i3
3 T

i4
4 T

i5
5 T

i6
6

)
(i1,··· ,k6)∈N4×Z2 is a basis of A(5)S−1

5 , the coefficients of

–Zw1+1
1

–Zw2
2 Tw3+1

3 Tw4
4 Tw5+1

5 Tw6
6 in the above equality can be identified as:

q•b(w1,w2,w3,w4,w5,w6) = 0. This implies that b(w1,w2,w3,w4,w5,w6) = 0, a contradiction!

Hence, b(i1,··· ,i6) = 0 for all (i1, · · · , i6) ∈ J. Consequently, a(i1,i3,i4,i5,i6) = 0 for all

(i1, i3, i4, i5, i6) ∈ I. Therefore, S5 is a linearly independent set. �

4.1.4 Proposition. The set B5 =
{
zi11 t

ξ
3t
i4
4 t

i5
5 t

i6
6 | (ξ, i1, i4, i5, i6) ∈ {0, 1, 2} × N2 × Z2

}
is a C−basis of R5.

Proof. Since R5 is identified with A
(5)
α S−1

5 /〈Ω̂2 − β〉 and S5 is a basis for A
(5)
α S−1

5
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(Proposition 4.1.3), we show that the spanning set zk11 t
k3
3 t

k4
4 t

k5
5 t

k6
6 of R5 can be writ-

ten as a finite linear combination of the elements of B5 for all (k1, k3, · · · , k6) ∈ N3×Z2.

By Proposition 4.1.3, it is sufficient to do this by an induction on k3. The result is obvious

when k3 = 0, 1 or 2. For k3 ≥ 2, suppose that

zk11 t
k3
3 t

k4
4 t

k5
5 t

k6
6 =

∑
(ξ,i)∈I

a(ξ,i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 ,

where I is a finite subset of {0, 1, 2} × N2 × Z2 and a(ξ,i) are all complex numbers. It

follows that

zk11 t
k3+1
3 tk44 t

k5
5 t

k6
6 = q•

(
zk11 t

k3
3 t

k4
4 t

k5
5 t

k6
6

)
t3 =

∑
(ξ,i)∈I

q•a(ξ,i)z
i1
1 t

ξ+1
3 ti44 t

i5
5 t

i6
6 .

Now, zi11 t
ξ+1
3 ti44 t

i5
5 t

i6
6 ∈ Span(B5) when ξ = 0, 1. For ξ = 2, one can easily verify that

zi11 t
3
3t
i4
4 t

i5
5 t

i6
6 ∈ Span(B5) by using the relation (4.1.5). Therefore, by the principle of

mathematical induction, B5 spans R5.

We now prove that B5 is a linearly independent set. Suppose that

∑
(ξ,i)∈I

a(ξ,i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 = 0.

Since R5 is identified with A
(5)
α S−1

5 /〈Ω̂2 − β〉, we have that

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

= 〈Ω̂2 − β〉ν,

where ν ∈ A
(5)
α S−1

5 . Write ν =
∑

j∈J bj ẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6
, with j = (i1, i3, i4, i5, i6) ∈

J ⊂ N3 × Z2 and bj ∈ C. Given that Ω2 = –Z2T4T6 + bT 3
3 T6 in A(5) and the relation

(4.1.4), one can deduce that

Ω̂2 = ẑ2t̂4t̂6 + bt̂3
3
t̂6 =

q3α

a
t̂4t̂5

−1
t̂6 −

1

a
ẑ1t̂3t̂4t̂6 + bt̂3

3
t̂6.
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Therefore,

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

=
∑
j∈J

q•α

a
bj ẑ1

i1 t̂3
i3
t̂4
i4+1

t̂5
i5−1

t̂6
i6+1

+
∑
j∈J

q•bbj ẑ1
i1 t̂3

i3+3
t̂4
i4
t̂5
i5
t̂6
i6+1

−
∑
j∈J

q•

a
bj ẑ1

i1+1t̂3
i3+1

t̂4
i4+1

t̂5
i5
t̂6
i6+1

−
∑
j∈J

βbj ẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6
.

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that b(i1,i3,i4,i5,i6) 6= 0.

Let (w1, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on

N3×Z2) of J such that b(w1,w3,w4,w5,w6) 6= 0. Since
(
ẑ1
k1 t̂3

k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N3×Z2

is a basis of A
(5)
α S−1

5 , one can identify the coefficients of ẑ1
w1+1t̂3

w3+1
t̂4
w4+1

t̂5
w5
t̂6
w6+1

in

the above equality as: q•

a
b(w1,w3,w4,w5,w6) = 0. Hence, b(w1,w3,w4,w5,w6) = 0, a contradiction!

Therefore, b(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J. Consequently,

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

It follows that a(ξ,i) = 0 for all (ξ, i) ∈ I. As a result, B5 is a linearly independent set.

�

4.1.5 Corollary. Let I be a finite subset of {0, 1, 2}×N×Z3 and (a(ξ,i))i∈I be a family

of complex numbers. If ∑
(ξ,i)∈I

a(ξ.i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 = 0,

then a(ξ,i) = 0 for all (ξ, i) ∈ I.

Proof. When i4 ≥ 0, then the result is obvious from the result of Proposition 4.1.4. For

i4 < 0, multiply both sides of the equality (on the right) enough times by t4 to kill all

the negative powers of t4, and then apply Proposition 4.1.4 to complete the proof. �

4.1.6 Remark. We were not successful in finding a basis for R6. However, this has no
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effect on our main result in this chapter. Since R7 = Aα,β, we already have a basis for

R7 (Proposition 3.2.2).

4.1.7 Lemma. Let Z(Ri) denote the center of Ri, then Z(Ri) = C for each 3 ≤ i ≤ 7.

Proof. One can easily verify that Z(R3) = C. Note, R7 = Aα,β. Since Ri is a localization

of Ri+1 (see (4.1.1)), we have that C ⊆ Z(R7) ⊆ Z(R6) ⊆ Z(R5) ⊆ Z(R4) ⊆ Z(R3) =

C. Therefore, Z(R7) = Z(R6) = Z(R5) = Z(R4) = Z(R3) = C. �

4.1.8 Remark. Recall the notations:

f1 : = e1,4 F1 : = E1,4

z1 : = e1,5 –Z1 : = E1,5

z2 : = e2,5 –Z2 : = E2,5.

Let (α, β) ∈ C2 \ {(0, 0)}. Given the above notations, we present the following selected

data of the DDA of Aα,β, listed at the beginning of this section, in a manner that would

be very useful in Subsections 4.2.1 and 4.2.5. They are as follows:

f1 = t1 − at2t−1
3 e3,6 = t3 − at4t−1

5

z1 = f1 − st23t−1
4 e1 = e1,6 − rt5t−1

6

z2 = t2 − bt33t−1
4 e3 = e3,6 − st25t−1

6

e1,6 = z1 − he3,6t
−1
5 − gt4t−2

5 e4 = t4 − bt35t−1
6 .

4.2 Derivations of Aα,β

We are now going to study the derivations of Aα,β. We will begin with the case where

both α and β are non-zero, and then proceed to look at the case where either α or β is

zero.

4.2.1 Derivations of Aα,β (α, β 6= 0). Throughout this subsection, we assume that α

and β are non-zero. Let Der(Aα,β) denote the C−derivations of Aα,β and D ∈ Der(Aα,β).
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From the relation (4.1.1), D extends uniquely to a derivation of each of the series of

algebras in (4.1.2) via localization. Therefore, D extends to a derivation of the quantum

torus R3 = CqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. It follows from [40, Corollary 2.3] that D can uniquely

be written as:

D = adx + δ,

where x ∈ R3, and δ is a scalar derivation of R3 defined as δ(ti) = λiti for each

i = 3, 4, 5, 6. Note, λi ∈ Z(R3) = C. Also, adx is an inner derivation of R3 defined as

adx(L) = xL− Lx for all L ∈ R3.

We aim to describe D as a derivation of Aα,β. We do this in several steps. We first

describe D as a derivation of R4.

4.2.2 Lemma. 1. x ∈ R4.

2. λ5 = λ4 + λ6, δ(f1) = −(λ3 + λ5)f1 and δ(t2) = −λ5t2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. Then, D(eκ,4) = adx(eκ,4) + λκeκ,4 for all

κ ∈ {1, · · · , 6}.

Proof. 1. SetQq := Cqµ [t±1
4 , t±1

5 , t±1
6 ], where µ is some skew-symmetric matrix in M3(Z).

Observe that Qq is a subalgebra of both R3 and R4 with central element

z := t4t
−1
5 t6.

Furthermore, since R3 is a quantum torus, we can present it as a free left Qq−module

with basis (ts3)s∈Z. With this presentation, x ∈ R3 can be written as

x =
∑
s∈Z

yst
s
3,

where ys ∈ Qq. Set

x+ :=
∑
s≥0

yst
s
3 and x− :=

∑
s<0

yst
s
3.

Clearly, x = x+ + x−. Obviously, x+ ∈ R4, hence we aim to also show that x− belongs
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to R4 by following a pattern similar to [29, Proposition 7.1.2]. As D is a derivation

of R4, we have that D(zj) ∈ R4 for all j ∈ N≥1. Now D(zj) = adx(z
j) + δ(zj) =

adx+(zj) + adx−(zj) + δ(zj). Observe that adx+(zj) ∈ R4; since x+, z
j ∈ R4. Also,

δ(z) = δ(t4t
−1
5 t6) = (λ4 − λ5 + λ6)t4t

−1
5 t6 = (λ4 − λ5 + λ6)z, where λ4, λ5, λ6 ∈ C.

It follows that δ(zj) = j(λ4 − λ5 + λ6)zj ∈ R4. We can therefore conclude that each

adx−(zj) belongs to R4 since D(zj), adx+(zj), δ(zj) ∈ R4. We have:

adx−(zj) = x−z
j − zjx− =

−n∑
s=−1

yst
s
3z
j −

−n∑
s=−1

ysz
jts3.

One can verify that zt3 = q−2t3z. Therefore,

adx−(zj) =
−n∑
s=−1

(1− q−2js)yst
s
3z
j, hence, adx−(zj)z−j =

−n∑
s=−1

(1− q−2js)yst
s
3.

Set νj := adx−(zj)z−j ∈ R4. It follows that

νj =
−n∑
s=−1

(1− q−2js)yst
s
3,

for each j ∈ {1, · · · , n}. One can therefore write the above equality as a matrix equation

as follows:



(1− q2) (1− q4) (1− q6) · · · (1− q2n)

(1− q4) (1− q8) (1− q12) · · · (1− q4n)

(1− q6) (1− q12) (1− q18) · · · (1− q6n)

...
...

...
. . .

...

(1− q2n) (1− q4n) (1− q6n) · · · (1− q2n2
)





y−1t
−1
3

y−2t
−2
3

y−3t
−3
3

...

y−nt
−n
3


=



ν1

ν2

ν3

...

νn


.

We already know that each νj belongs to R4. We want to show that yst
s
3 also belongs

to R4 for each s ∈ {−1, · · · ,−n}. To establish this, it is sufficient to show that the

coefficient matrix of the above matrix equation is invertible. Let U represent this matrix.
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Thus,

U =



(1− q2) (1− q4) (1− q6) · · · (1− q2n)

(1− q4) (1− q8) (1− q12) · · · (1− q4n)

(1− q6) (1− q12) (1− q18) · · · (1− q6n)

...
...

...
. . .

...

(1− q2n) (1− q4n) (1− q6n) · · · (1− q2n2
)


.

Apply row operations: −rn−1 + rn → rn, · · · ,−r2 + r3 → r3,−r1 + r2 → r2 to U to

obtain:

U ′ =



l1 l2 l3 · · · ln

q2l1 q4l2 q6l3 · · · q2nln

q4l1 q8l2 q12l3 · · · q4nln
...

...
...

. . .
...

q2(n−1)l1 q4(n−1)l2 q6(n−1)l3 · · · q2n(n−1)ln


,

where li := 1 − q2i; i ∈ {1, 2, · · · , n}. Clearly, U ′ is similar to a Vandermonde matrix

(since the terms in each column form a geometric sequence) which is well known to be

invertible. This further implies that U is invertible. So each yst
s
3 is a linear combination

of the νj ∈ R4. As a result, yst
s
3 ∈ R4 for all s ∈ {−1, · · · ,−n}. Consequently, x− =∑−n

s=−1 yst
s
3 ∈ R4 as desired.

2. Recall that δ(tκ) = λκtκ for all κ ∈ {3, 4, 5, 6} and λκ ∈ C. From Remark

4.1.8, we have that f1 = t1 − at2t
−1
3 . Recall from Section 3.1 that t1 = αt−1

5 t−1
3 and

t−1
2 = βt−1

6 t−1
4 in R3 = Aα,β. As a result, f1 = αt−1

5 t−1
3 − aβt−1

6 t−1
4 t−1

3 . Hence,

δ(f1) =− (λ5 + λ3)αt−1
5 t−1

3 + (λ6 + λ4 + λ3)aβt−1
6 t−1

4 t−1
3 . (4.2.1)

From Proposition 4.1.2, the set B4 =
{
f i11 t

i4
4 t

i5
5 t

i6
6 , t

i3
3 t

i4
4 t

i5
5 t

i6
6 | i1, i3 ∈ N and i4, i5, i6 ∈ Z

}
is a C−basis of R4. Since t4, t5 and t6 q-commute with f1 and t3, one can also write

δ(f1) ∈ R4 in terms of B4 as follows:
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δ(f1) =
∑
r>0

arf
r
1 +

∑
s≥0

bst
s
3, (4.2.2)

where ar and bs belong to Qq = Cqµ [t±1
4 , t±1

5 , t±1
6 ].

f r1 = (αt−1
5 t−1

3 − aβt−1
6 t−1

4 t−1
3 )r =

r∑
i=0

(
r

i

)
q•

(αt−1
5 t−1

3 )i(−aβt−1
6 t−1

4 t−1
3 )r−i

=
r∑
i=0

(
r

i

)
q•
αi(−aβ)r−iq

1
2
i(i−1)+ 3

2
(r−i)(r−i−1)+3i(i−r)t−i5 (t−1

6 t−1
4 )r−it−r3

= crt
−r
3 , (4.2.3)

where

cr =
r∑
i=0

(
r

i

)
q•
q

1
2
i(i−1)+ 3

2
(r−i)(r−i−1)+3i(i−r)αi(−aβ)r−it−i5 (t−1

6 t−1
4 )r−i ∈ Qq \ {0}.

(4.2.4)

Substitute (4.2.3) into (4.2.2) to obtain;

δ(f1) =
∑
r>0

arcrt
−r
3 +

∑
s≥0

bst
s
3. (4.2.5)

One can rewrite (4.2.1) as

δ(f1) = dt−1
3 , (4.2.6)

where d = −(λ5 +λ3)αt−1
5 +(λ6 +λ4 +λ3)aβt−1

6 t−1
4 ∈ Qq. Comparing (4.2.5) to (4.2.6)

shows that bs = 0 for all s ≥ 0, and arcr = 0 for all r 6= 1. Therefore δ(f1) = a1c1t
−1
3 .

Moreover, from (4.2.4), c1 = −aβt−1
6 t−1

4 + αt−1
5 . Hence,

δ(f1) = a1c1t
−1
3 = a1(−aβt−1

6 t−1
4 + αt−1

5 )t−1
3 = a1αt

−1
5 t−1

3 − a1aβt
−1
6 t−1

4 t−1
3 . (4.2.7)

Comparing (4.2.7) to (4.2.1) reveals that a1 = −(λ5 + λ3) = −(λ6 + λ4 + λ3). Conse-
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quently, λ5 = λ6 + λ4. Hence, δ(f1) = −(λ5 + λ3)αt−1
5 t−1

3 + (λ5 + λ3)aβt−1
6 t−1

4 t−1
3 =

−(λ5 + λ3)f1. Finally, since t2 = βt−1
6 t−1

4 in R4, it follows that δ(t2) = −(λ6 +

λ4)βt−1
6 t−1

4 = −(λ6 + λ4)t2 = −λ5t2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. it follows from points (1) and (2) that

D(eκ,4) = adx(eκ,4) + δ(eκ,4) = adx(eκ,4) + λκeκ,4 for all κ ∈ {1, · · · , 6}. In conclusion,

D = adx + δ, with x ∈ R4. �

We proceed to describe D as a derivation of R5.

4.2.3 Lemma. 1. x ∈ R5.

2. λ4 = 3λ3 + λ5, λ6 = −3λ3, δ(z1) = −(λ3 + λ5)z1 and δ(z2) = −λ5z2.

3. Set λ1 := −(λ3 + λ5), λ2 := −λ5 and λ6 := −3λ3. Then, D(eκ,5) = adx(eκ,5) +

λκeκ,5 for all κ ∈ {1, · · · , 6}.

Proof. In this proof, we denote υ := (i, j, k, l) ∈ N× Z3.

1. We already know that x ∈ R4 = R5[t−1
4 ]. Given the basis B5 of R5 (Proposition

4.1.4), x can be written as x =
∑

(ξ,υ)∈I

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6, where I is a finite subset of

{0, 1, 2} × N× Z3 and a(ξ,υ) are complex numbers. Write x = x− + x+, where

x+ =
∑

(ξ,υ)∈I
j≥0

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6 and x− =

∑
(ξ,υ)∈I
j<0

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

Suppose that there exists a minimum j0 < 0 such that a(ξ,i,j0,k,l) 6= 0 for some (ξ, i, j0, k, l) ∈

I and a(ξ,i,j,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I with j < j0. Given this assumption, write

x− =
∑

(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

Now, D(t6) = adx+(t6) + adx−(t6) + δ(t6) ∈ R5. This implies that adx−(t6) ∈ R5, since

adx+(t6)+δ(t6) = adx+(t6)+λ6t6 ∈ R5. We aim to show that x− = 0. Since t6 is normal
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in R5, one can easily verify that

adx−(t6) =
∑

(ξ,υ)∈I
j0≤j≤−1

(
q3(i−j−k) − 1

)
a(ξ,υ)z

i
1t
ξ
3t
j
4t
k
5t
l+1
6 .

Set w := (i, j, k, l) ∈ N2×Z2. One can equally write adx−(t6) ∈ R5 in terms of the basis

B5 of R5 (Proposition 4.1.4) as:

adx−(t6) =
∑

(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6,

where J is a finite subset of {0, 1, 2} × N2 × Z2 and b(ξ,w) are all complex numbers. It

follows that

∑
(ξ,υ)∈I
j0≤j≤−1

(
q3(i−j−k) − 1

)
a(ξ,υ)z

i
1t
ξ
3t
j
4t
k
5t
l+1
6 =

∑
(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

As B5 is a basis for R5, we deduce from Corollary 4.1.5 that
(
zi1t

ξ
3t
j
4t
k
5t
l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ]. Now, at j = j0, denote υ = (i, j, k, l) by υ0 := (i, j0, k, l). Since

v0 ∈ N × Z3 (with j0 < 0) and w = (i, j, k, l) ∈ N2 × Z2 (with j ≥ 0), it follows from

the above equality that, at υ0, we must have

(
q3(i−j0−k) − 1

)
a(ξ,υ0) = 0.

From our initial assumption, the coefficients a(ξ,υ0) are all not zero, therefore

q3(i−j0−k) − 1 = 0. This implies that

k = i− j0, (4.2.8)

for some (ξ, υ0) ∈ I.

In a similar manner, D(t3) = adx+(t3) + adx−(t3) + δ(t3) ∈ R5. This implies that
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adx−(t3) ∈ R5, since adx+(t3) + δ(t3) = adx+(t3) + λ3t3 ∈ R5. We have that

adx−(t3) =
∑

(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6t3 −

∑
(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)t3z
i
1t
ξ
3t
j
4t
k
5t
l
6.

One can deduce from Lemma A.1.4(3a) that

t3z
i
1 = q−izi1t3 + d2[i]zi−1

1 z2,

where d2[i] = q1−id2[1]

(
1− q−2i

1− q−2

)
, d2[1] = −(q+ q−1 + q−3) and d2[0] = 0. Therefore,

the above expression for adx−(t3) can be expressed as:

adx−(t3) =
∑

(0,υ)∈I
j0≤j≤−1

f [i, j, k]a(0,υ)z
i
1t3t

j
4t
k
5t
l
6 +

∑
(1,υ)∈I
j0≤j≤−1

f [i, j, k]a(1,υ)z
i
1t

2
3t
j
4t
k
5t
l
6+

+
∑

(2,υ)∈I
j0≤j≤−1

f [i, j, k]a(2,υ)z
i
1t

3
3t
j
4t
k
5t
l
6 −

∑
(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)d2[i]zi−1
1 z2t

ξ
3t
j
4t
k
5t
l
6,

where f [i, j, k] := q−(k+3j) − q−i. Recall from (4.1.4) and (4.1.5) that

z2 =
1

a

(
αt−1

5 − z1t3
)

and t33 =
β

b
t−1
6 −

q3α

ab
t4t
−1
5 +

1

ab
z1t3t4,

where a and b are non-zero scalars (Appendix C). Using these two expressions, one can

write adx−(t3) in terms of the basis of R5 as:
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adx−(t3) =K +
∑

(0,υ0)∈I

g[i, j0, k]a(0,υ0)z
i
1t3t

j0
4 t

k
5t
l
6 +

∑
(1,υ0)∈I

g[i, j0, k]a(1,υ0)z
i
1t

2
3t
j0
4 t

k
5t
l
6

+
∑

(2,υ0)∈I

q•β

b
a(2,υ0)g[i, j0, k]zi1t

j0
4 t

k
5t
l−1
6 −

∑
(ξ,υ0)∈I

q•α

a
d2[i]a(ξ,υ0)z

i−1
1 tξ3t

j0
4 t

k−1
5 tl6

=
∑

1/b
(
q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i+ 1]/a)a(0,i+1,j0,k+1,l)

)
zi1t

j0
4 t

k
5t
l
6

+
∑(

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i+ 1]/a)a(1,i+1,j0,k+1,l)

)
zi1t3t

j0
4 t

k
5t
l
6

+
∑(

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i+ 1]/a)a(2,i+1,j0,k+1,l)

)
zi1t

2
3t
j0
4 t

k
5t
l
6 +K,

(4.2.9)

where g[i, j0, k] := q−(k+3j0) − q−i + d2[i]/a and

K ∈ Span
(
B5 \ {zi1t

ξ
3t
j0
4 t

k
5t
l
6 | (ξ, i, j0, k, l) ∈ {0, 1, 2} × N× Z3}

)
.

One can also write adx−(t3) ∈ R5 in terms of the basis B5 of R5 (Proposition 4.1.4) as:

adx−(t3) =
∑

(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6, (4.2.10)

where J is a finite subset of {0, 1, 2}×N2×Z2, and b(ξ,w) ∈ C. Recall: w = (i, j, k, l) ∈

N2 × Z2. Now, (4.2.9) and (4.2.10) imply that

∑
(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6

=
∑

1/b
(
q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i+ 1]/a)a(0,i+1,j0,k+1,l)

)
zi1t

j0
4 t

k
5t
l
6

+
∑(

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i+ 1]/a)a(1,i+1,j0,k+1,l)

)
zi1t3t

j0
4 t

k
5t
l
6

+
∑(

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i+ 1]/a)a(2,i+1,j0,k+1,l)

)
zi1t

2
3t
j0
4 t

k
5t
l
6 +K.

We have already established that
(
zi1t

ξ
3t
j
4t
k
5t
l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ].

Given that v0 = (i, j0, k, l) ∈ N× Z3 (with j0 < 0) and w = (i, j, k, l) ∈ N2 × Z2 (with
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j ≥ 0), it follows that

q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i+ 1]/a)a(0,i+1,j0,k+1,l) = 0. (4.2.11)

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i+ 1]/a)a(1,i+1,j0,k+1,l) = 0. (4.2.12)

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i+ 1]/a)a(2,i+1,j0,k+1,l) = 0. (4.2.13)

Suppose that there exists (ξ, i, j0, k, l) ∈ I such that g[i, j0, k] = 0. Then,

g[i, j0, k] = q−(k+3j0) − q−i + d2[i]/a = 0.

Note, d2[i] = d2[1]q1−i
(

1− q−2i

1− q−2

)
, where d2[1] = −(q + q−1 + q−3) and d2[0] = 0.

Again, recall from Appendix C that a = (q2 +1+ q−2)/(q−2−1) =
qd2[1]

1− q−2
. Given these

expressions for d2[i] and a, we have that

g[i, j0, k] = q−(k+3j0) − q−i + d2[i]/a = q−3j0−k − q−3i = 0.

Since q is not a root of unity, we get

k = 3(i− j0). (4.2.14)

Comparing (4.2.14) to (4.2.8) shows that i − j0 = 0 which implies that i = j0 < 0, a

contradiction (note, i ≥ 0). Therefore, g[i, j0, k] 6= 0 for all (ξ, i, j, k, l) ∈ I.

Now, observe that if there exists ξ ∈ {0, 1, 2} such that a(ξ,i,j0,k,l) = 0 for all

(i, j0, k, l) ∈ N × Z3, then one can easily deduce from equations (4.2.11), (4.2.12) and

(4.2.13) that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This will contradict our initial

assumption. Therefore, there exists some (i, j0, k, l) ∈ N × Z3 such that a(ξ,i,j0,k,l) 6= 0

for each ξ ∈ {0, 1, 2}. Without loss of generality, let (u, j0, v, w) be the greatest element

in the lexicographic order on N× Z3 such that a(0,u,j0,v,w) 6= 0 and a(0,i,j0,k,l) = 0 for all

i > u.
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From (4.2.12), at (i, j0, k, l) = (u, j0, v, w), we have:

g[u, j0, v]a(0,u,j0,v,w) + (q•αd2[u+ 1]/a)a(1,u+1,j0,v+1,w) = 0.

From (4.2.13), at (i, j0, k, l) = (u+ 1, j0, v + 1, w), we have:

g[u+ 1, j0, v + 1]a(1,u+1,j0,v+1,w) + (q•αd2[u+ 2]/a)a(2,u+2,j0,v+2,w) = 0.

Finally, from (4.2.11), at (i, j0, k, l) = (u+ 2, j0, v + 2, w − 1), we have:

q•βg[u+ 2, j0, v + 2]a(2,u+2,j0,v+2,w) + (q•αbd2[u+ 3]/a)a(0,u+3,j0,v+3,w−1) = 0.

Note: a, b, α, β, q• 6= 0; g[i, j0, k] 6= 0 for all (ξ, i, j0, k, l) ∈ I; and d2[i] 6= 0 for i > 0.

Since u + 3 > u, it follows from the above list of equations (starting from the last one)

that

a(0,u+3,j0,v+3,w−1) = 0⇒ a(2,u+2,j0,v+2,w) = 0⇒ a(1,u+1,j0,v+1,w) = 0⇒ a(0,u,j0,v,w) = 0,

a contradiction! Hence, a(0,i,j0,k,l) = 0 for all (i, j0, k, l) ∈ N×Z3. From (4.2.11), (4.2.12)

and (4.2.13), one can easily conclude that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This

contradicts our initial assumption, hence x− = 0. Consequently, x = x+ ∈ R5 as desired.

2. From Remark 4.1.8, we have z2 = t2 − bt33t
−1
4 . Since δ(tκ) = λκtκ, κ ∈

{2, · · · , 6}, with λ2 := −λ5 (see Lemma 4.2.2), it follows that

δ(z2) =− λ5t2 − b(3λ3 − λ4)t33t
−1
4 = −λ5z2 − b(3λ3 − λ4 + λ5)t33t

−1
4 .

Furthermore,

D(z2) = adx(z2) + δ(z2) = adx(z2)− λ5z2 − b(3λ3 − λ4 + λ5)t33t
−1
4 ∈ R5.

Hence b(3λ3 − λ4 + λ5)t33t
−1
4 ∈ R5, since adx(z2)− λ5z2 ∈ R5. This implies that
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b(3λ3 − λ4 + λ5)t33 ∈ R5t4 (note, from Appendix C, b 6= 0). Set w := 3λ3 − λ4 + λ5.

Suppose that w 6= 0. From (4.1.5), we have:

t33 =
β

b
t−1
6 −

q3α

ab
t4t
−1
5 +

1

ab
z1t3t4.

It follows that

wbt33 = wβt−1
6 −

q3wα

a
t4t
−1
5 +

w

a
z1t3t4 ∈ R5t4.

Since t33, t4t
−1
5 and z1t3t4 are all elements of R5t4, it implies that t−1

6 ∈ R5t4. Hence,

1 ∈ R5t4t6. Using the basis B5 of R5 (Proposition 4.1.4), this leads to contradiction.

Therefore, w = 0. That is, 3λ3−λ4 +λ5 = 0, and so λ4 = 3λ3 +λ5. This further implies

that δ(z2) = −λ5z2 as desired.

Again, from Lemma 4.2.2, we have that δ(f1) = −(λ3 + λ5)f1. Recall from Remark

4.1.8 that z1 = f1 − st23t−1
4 . It follows that

δ(z1) =− (λ3 + λ5)f1 − s(2λ3 − λ4)t23t
−1
4 = −(λ3 + λ5)z1 − s(3λ3 − λ4 + λ5)t23t

−1
4

=− (λ3 + λ5)z1 − s(3λ3 − (3λ3 + λ5) + λ5)t23t
−1
4 = −(λ3 + λ5)z1.

Finally, we know that δ(t6) = λ6t6. This implies that δ(t−1
6 ) = −λ6t

−1
6 . From (4.1.5), we

have that

t33 =
β

b
t−1
6 −

q3α

ab
t4t
−1
5 +

1

ab
z1t3t4,

where a and b are non-zero scalars (Appendix C). This implies that

t−1
6 =

b

β
t33 +

q3α

aβ
t4t
−1
5 −

1

aβ
z1t3t4.

Given that δ(z1) = −(λ3 + λ5)z1, δ(t3) = λ3t3, δ(t4) = (3λ3 + λ5)t4 and δ(t5) = λ5t5,

applying δ to the above relation gives

−λ6t
−1
6 = 3λ3

(
b

β
t33 +

q3α

aβ
t4t
−1
5 −

1

aβ
z1t3t4

)
.
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It follows that λ6 = −3λ3 as desired.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. It follows from points (1) and (2) that

D(eκ,5) = adx(eκ,5) + δ(eκ,5) = adx(eκ,5) + λκeκ,5 for all κ ∈ {1, · · · , 6}. In conclusion,

D = adx + δ with x ∈ R5. �

We are now ready to describe D as a derivation of Aα,β.

4.2.4 Lemma. 1. x ∈ Aα,β.

2. δ(eκ) = 0 for all κ ∈ {1, · · · , 6}.

3. D = adx.

Proof. In this proof, we denote υ := (i, j, k, l) ∈ N2 × Z2. Also, recall from the DDA of

Aα,β at the beginning of this section that t5 = e5 and t6 = e6.

1. Given the basis B of Aα,β (Proposition 3.2.2), one can write x ∈ R5 = Aα,β[t−1
5 , t−1

6 ]

as:

x =
∑

(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6,

where I is a finite subset of {0, 1}2×N2×Z2, and a(ε1,ε2,υ) are complex numbers. Write

x = x− + x+, where

x+ =
∑

(ε1,ε2,υ)∈I
k, l≥0

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6,

and

x− =
∑

(ε1,ε2,υ)∈I
k<0 or l<0

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6.

Suppose that there exists a minimum negative integer k0 or l0 such that a(ε1,ε2,i,j,k0,l) 6=

0 or a(ε1,ε2,i,j,k,l0) 6= 0 for some (ε1, ε2, i, j, k0, l), (ε1, ε2, i, j, k, l0) ∈ I, and a(ε1,ε2,i,j,k,l) = 0

whenever k < k0 or l < l0. Write

x− =
∑

(ε1,ε2,υ)∈I
k0≤k≤−1 or l0≤l≤−1

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6.
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Now, D(e3) = adx+(e3) + adx−(e3) + δ(e3) ∈ Aα,β. From Remark 4.1.8, we have that

e3 = e3,6 − st25t−1
6 and e3,6 = t3 − at4t−1

5 . Putting these two together gives

e3 = t3 − at4t−1
5 − st25t−1

6 .

Again, from Remark 4.1.8, we also have that t4 = e4 + bt35t
−1
6 . Note, δ(tκ) = λκtκ, κ ∈

{3, 4, 5, 6}. Now,

δ(e3) = λ3t3 − a(λ4 − λ5)t4t
−1
5 − s(2λ5 − λ6)t25t

−1
6

= λ3(e3,6 + at4t
−1
5 ) + a(λ5 − λ4)t4t

−1
5 + s(λ6 − 2λ5)t25t

−1
6

= λ3e3,6 + a(λ3 − λ4 + λ5)t4t
−1
5 + s(λ6 − 2λ5)t25t

−1
6

= λ3(e3 + st25t
−1
6 ) + a(λ3 − λ4 + λ5)(e4 + bt35t

−1
6 )t−1

5 + s(λ6 − 2λ5)t25t
−1
6

= λ3e3 + α1e4t
−1
5 + α2t

2
5t
−1
6 , (4.2.15)

where α1 = a(λ3 − λ4 + λ5) and α2 = s(λ3 − 2λ5 + λ6) + q−3ab(λ3 − λ4 + λ5).

Therefore, D(e3) = adx+(e3) + adx−(e3) + λ3e3 + α1e4t
−1
5 + α2t

2
5t
−1
6 ∈ Aα,β. It follows

that D(e3)t5t6 = adx+(e3)t5t6 +adx−(e3)t5t6 +λ3e3t5t6 +α1e4t6 +q3α2t
3
5 ∈ Aα,β. Hence,

adx−(e3)t5t6 ∈ Aα,β, since adx+(e3)t5t6 + λ3e3t5t6 + α1e4t6 + q3α2t
3
5 ∈ Aα,β.

Now,

adx−(e3) =
∑

(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6e3 −

∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)e3e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6.

(4.2.16)

Using Lemma A.1.4, we have the following:

tk5t
l
6e3 = q−ke3t

k
5t
l
6 + d2[k]e4t

k−1
5 tl6 + d3[l]tk+2

5 tl−1
6 , (4.2.17)

e3e
i
1e
j
2 = q−i−3jei1e

j
2e3 + d2[i]ei−1

1 ej+1
2 , (4.2.18)

(note: d2[i], d2[k] and d3[l] are defined in Lemma A.1.4). Substitute (4.2.17) and (4.2.18)
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into (4.2.16), simplify and multiply (on the right) by t5t6 to obtain

adx−(e3)t5t6 =∑
(ε1,ε2,υ)∈I

a(ε1,ε2,υ)

(
g[i, j, ε2, l]e

i
1e
j
2e
ε1+1
3 eε24 t

k+1
5 tl+1

6 + q−3ld2[k]ei1e
j
2e
ε1
3 e

ε2+1
4 tk5t

l+1
6

+ q−3(l−1)d3[l]ei1e
j
2e
ε1
3 e

ε2
4 t

k+3
5 tl6 − q−3ld2[i]ei−1

1 ej+1
2 eε13 e

ε2
4 t

k+1
5 tl+1

6

)
,

(4.2.19)

where g[i, j, ε2, l] := q−k−3ε2−3l − q−i−3j−3l.

Assume that there exists l < 0 such that a(ε1,ε2,v) 6= 0. It follows from our initial

assumption that a(ε1,ε2,i,j,k,l0) 6= 0. Now, at l = l0, denote υ = (i, j, k, l) by υ0 :=

(i, j, k, l0). From (4.2.19), we have that

adx−(e3)t5t6 =
∑

(ε1,ε2,υ0)∈I

q−3(l0−1)a(ε1,ε2,υ0)d3[l0]ei1e
j
2e
ε1
3 e

ε2
4 t

k+3
5 tl06 + J1,

where J1 ∈ Span
(
B \ {ei1e

j
2e
ε1
3 e

ε2
4 t

k
5t
l0
6 | ε1, ε2 ∈ {0, 1}, k ∈ Z and i, j ∈ N}

)
.

Set w := (i, j, k, l) ∈ N4. One can also write adx−(e3)t5t6 ∈ Aα,β in terms of the

basis B of Aα,β (Proposition 3.2.2) as:

adx−(e3)t5t6 =
∑

(ε1,ε2,w)∈J

b(ε1,ε2,w)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6, (4.2.20)

where J is a finite subset of {0, 1}2 × N4, and b(ε1,ε2,w) ∈ C. It follows that

∑
(ε1,ε2,w)∈J

b(ε1,ε2,w)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6 =

∑
(ε1,ε2,υ0)∈I

q−3(l0−1)a(ε1,ε2,υ0)d3[l0]ei1e
j
2e
ε1
3 e

ε2
4 t

k+3
5 tl06 +J1.

Since B is a basis for Aα,β, we deduce from Corollary 3.2.3 that(
ei1e

j
2e
ε1
3 e

ε2
4 t

k
5t
l
6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is also a basis for Aα,β[t−1
5 , t−1

6 ]. Since v0 = (i, j, k, l0) ∈

N2 × Z2 (with l0 < 0) and w = (i, j, k, l) ∈ N4 (with l ≥ 0) in the above equality, we

must have

q−3(l0−1)a(ε1,ε2,υ0)d3[l0] = 0.
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Given that q−3(l0−1)d3[l0] 6= 0, it follows that a(ε1,ε2,υ0) = a(ε1,ε2,i,j,k,l0) are all zero. This

is a contradiction. Therefore, l ≥ 0 (i.e. there is no negative exponent for t6).

Since l ≥ 0, it follows from our initial assumption that there exists k = k0 < 0 such

that a(ε1,ε2,i,j,k0,l) 6= 0. The rest of the proof will show that this assumption cannot also

hold. Set υ0 := (i, j, k0, l) ∈ N2 × Z× N. From (4.2.19), we have that

adx−(e3)t5t6 =
∑

(ε1,ε2,υ0)∈I

q−3la(ε1,ε2,υ0)d2[k0]ei1e
j
2e
ε1
3 e

ε2+1
4 tk05 t

l+1
6 + V,

where V ∈ J2 := Span
(
B \ {ei1e

j
2e
ε1
3 e

ε2
4 t

k0
5 t

l
6 | ε1, ε2 ∈ {0, 1} and i, j, l ∈ N}

)
. It follows

that:

adx−(e3)t5t6 =∑
(0,0,υ0)∈I

q−3la(0,0,υ0)d2[k0]ei1e
j
2e4t

k0
5 t

l+1
6 +

∑
(1,0,υ0)∈I

a(1,0,υ0)d2[k0]ei1e
j
2e3e4t

k0
5 t

l+1
6

+
∑

(0,1,υ0)∈I

q−3la(0,1,υ0)d2[k0]ei1e
j
2e

2
4t
k0
5 t

l+1
6

∑
(1,1,υ0)∈I

a(1,1,v0)d2[k0]ei1e
j
2e3e

2
4t
k0
5 t

l+1
6 + V.

(4.2.21)

Write the relations in Lemma 3.0.1(2),(4) as:

e2
4 =b1β + b2e2e4e6 + b4αe3e6 + b6e1e3e4e6 + L1, (4.2.22)

e3e
2
4 =βb1e3 + k1e2e3e4e6 + k3α

2e6 + k5αe1e4e6 + k14βe
2
1e6

+ k15e
2
1e2e4e

2
6 + k17αe

2
1e3e

2
6 + k19e

3
1e3e4e

2
6 + L2, (4.2.23)

where L1 and L2 are some elements of the left ideal Aα,βt5 ⊆ J2. Substitute (4.2.22)

and (4.2.23) into (4.2.21), and simplify to obtain:
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adx−(e3)t5t6 =
∑

[λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α
2a(1,1,i,j,k0,l−2)

+ λ1,3βa(1,1,i−2,j,k0,l−2)]e
i
1e
j
2t
k0
5 t

l
6

+
∑

[λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1)

+ λ2,3αa(1,1,i−2,j,k0,l−3)]e
i
1e
j
2e3t

k0
5 t

l
6

+
∑

[λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2)

+ λ3,3a(1,1,i−2,j−1,k0,l−3) + λ3,4a(0,0,i,j,k0,l−1)]e
i
1e
j
2e4t

k0
5 t

l
6

+
∑

[λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2)

+ λ4,3a(1,1,i−3,j,k0,l−3) + λ4,4a(1,0,i,j,k0,l−1)]e
i
1e
j
2e3e4t

k0
5 t

l
6 + V ′,

(4.2.24)

where V ′ ∈ J2. Also, λs,t := λs,t(j, k0, l) are some families of complex numbers which are

non-zero for all s, t ∈ {1, 2, 3, 4} and j, l ∈ N, except λ1,4 and λ2,4 which are assumed to

be zero since they do not exist in the above expression. Note, although each λs,t depends

on j, k0, l, we have not made this dependency explicit in the above expression since the

minimum requirement we need to complete the proof is for all the λs,t existing in the

above expression to be non-zero, which we already have.
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Observe that (4.2.24) and (4.2.20) are equal, hence,

∑
(ε1,ε2,w)∈J

b(ε1,ε2,w)e
i
1e
j
2e
ε1
3 e

ε2
4 t

k
5t
l
6 =

∑
[λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α

2a(1,1,i,j,k0,l−2)

+ λ1,3βa(1,1,i−2,j,k0,l−2)]e
i
1e
j
2t
k0
5 t

l
6

+
∑

[λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1)

+ λ2,3αa(1,1,i−2,j,k0,l−3)]e
i
1e
j
2e3t

k0
5 t

l
6

+
∑

[λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2)

+ λ3,3a(1,1,i−2,j−1,k0,l−3) + λ3,4a(0,0,i,j,k0,l−1)]e
i
1e
j
2e4t

k0
5 t

l
6

+
∑

[λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2)

+λ4,3a(1,1,i−3,j,k0,l−3) + λ4,4a(1,0,i,j,k0,l−1)]e
i
1e
j
2e3e4t

k0
5 t

l
6 + V ′.

We have previously established that
(
ei1e

j
2e
ε1
3 e

ε2
4 t

k
5t
l
6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is a basis for

Aα,β[t−1
5 , t−1

6 ] (note, in this part of the proof l ≥ 0). Since v0 = (i, j, k0, l) ∈ N2×Z×N

(with k0 < 0) and w = (i, j, k, l) ∈ N4 (with k ≥ 0) in the above equality, it follows that

λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α
2a(1,1,i,j,k0,l−2) + λ1,3βa(1,1,i−2,j,k0,l−2) = 0, (4.2.25)

λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1) + λ2,3αa(1,1,i−2,j,k0,l−3) = 0, (4.2.26)

λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2) + λ3,3a(1,1,i−2,j−1,k0,l−3)

+ λ3,4a(0,0,i,j,k0,l−1) = 0, (4.2.27)

λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2) + λ4,3a(1,1,i−3,j,k0,l−3)

+ λ4,4a(1,0,i,j,k0,l−1) = 0. (4.2.28)

From (4.2.25) and (4.2.26), one can easily deduce that

a(0,1,i,j,k0,l) = −α
2λ1,2

βλ1,1

a(1,1,i,j,k0,l−1) −
λ1,3

λ1,1

a(1,1,i−2,j,k0,l−1), (4.2.29)

a(1,1,i,j,k0,l) = −αλ2,1

βλ2,2

a(0,1,i,j,k0,l−1) −
αλ2,3

βλ2,2

a(1,1,i−2,j,k0,l−2). (4.2.30)
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Note, a(ε1,ε2,i,j,k0,l) := 0 whenever i < 0 or j < 0 or l < 0 for all ε1, ε2 ∈ {0, 1}.

Claim. The coefficients a(0,1,i,j,k0,l) and a(1,1,i,j,k0,l) are all zero for all l ≥ 0. We now

justify the claim by an induction on l. From (4.2.29) and (4.2.30), the result is obviously

true when l = 0. For l ≥ 0, assume that a(0,1,i,j,k0,l) = a(1,1,i,j,k0,l) = 0. Then, it follows

from (4.2.29) and (4.2.30) that

a(0,1,i,j,k0,l+1) = −α
2λ1,2

βλ1,1

a(1,1,i,j,k0,l) −
λ1,3

λ1,1

a(1,1,i−2,j,k0,l),

a(1,1,i,j,k0,l+1) = −αλ2,1

βλ2,2

a(0,1,i,j,k0,l) −
αλ2,3

βλ2,2

a(1,1,i−2,j,k0,l−1).

From the inductive hypothesis, a(1,1,i,j,k0,l) = a(1,1,i−2,j,k0,l) = a(0,1,i,j,k0,l) = a(1,1,i−2,j,k0,l−1)

= 0. Hence, a(1,1,i,j,k0,l+1) = a(0,1,i,j,k0,l+1) = 0. By the principle of mathematical induc-

tion, a(0,1,i,j,k0,l) = a(1,1,i,j,k0,l) = 0 for all l ≥ 0 as desired. Given that the fami-

lies a(0,1,i,j,k0,l) and a(1,1,i,j,k0,l) are all zero, it follows from (4.2.27) and (4.2.28) that

a(0,0,i,j,k0,l) and a(1,0,i,j,k0,l) are also zero for all (i, j, k0, l) ∈ N2×Z×N. Since a(ε1,ε2,i,j,k0,l)

are all zero, it contradicts our assumption. Hence, x− = 0. Consequently, x = x+ ∈ Aα,β

as desired.

2. From Remark 4.1.8, we have e4 = t4− bt35t−1
6 . Again, from Lemma 4.2.3, we have

that λ4 = 3λ3 + λ5 and λ6 = −3λ3. Therefore,

δ(e4) = λ4t4 − b(3λ5 − λ6)t35t
−1
6

= (3λ3 + λ5)e4,6 − 3b(λ3 + λ5)t35t
−1
6

= (3λ3 + λ5)(e4 + bt35t
−1
6 )− 3b(λ3 + λ5)t35t

−1
6

= (3λ3 + λ5)e4 − 2bλ5t
3
5t
−1
6 .

Moreover, D(e4) = adx(e4) + δ(e4) = adx(e4) + (3λ3 + λ5)e4 − 2bλ5t
3
5t
−1
6 ∈ Aα,β.

It follows that bλ5t
3
5t
−1
6 ∈ Aα,β, since adx(e4) + (3λ3 + λ5)e4 ∈ Aα,β. Consequently,

bλ5t
3
5 ∈ Aα,βt6. Since b 6= 0 (Appendix C), we must have λ5 = 0, otherwise, there

will be a contradiction using the basis of Aα,β (Proposition 3.2.2). Therefore, δ(e4) =
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3λ3e4 and δ(t5) = 0. We already know from Lemma 4.2.3 that δ(t6) = −3λ3t6. From

(4.2.15), we have that δ(e3) = λ3e3 + a(λ3 − λ4 + λ5)e4t
−1
5 + [s(λ3 − 2λ5 + λ6) +

q−3ab(λ3 − λ4 + λ5)]t25t
−1
6 . Given that λ4 = 3λ3, λ5 = 0 and λ6 = −3λ3, we have that

δ(e3) = λ3e3− 2aλ3e4t
−1
5 (note, from Appendix C, one can confirm that q−3ab+ s = 0).

Now, D(e3) = adx(e3) + δ(e3) = adx(e3) + λ3e3 − 2aλ3e4t
−1
5 ∈ Aα,β. Observe that

adx(e3) + λ3e3 ∈ Aα,β. Hence, 2aλ3e4t
−1
5 ∈ Aα,β, and so 2aλ3e4 ∈ Aα,βt5. Since a 6= 0,

it implies that λ3 = 0, otherwise, there will be a contradiction using the basis of Aα,β.

We now have that δ(e3) = δ(e4) = δ(e5) = δ(e6) = 0. We finish the proof by showing

that δ(e1) = δ(e2) = 0. Recall from (3.0.2) that

e2e4e6 + be2e
3
5 + be3

3e6 + b′e2
3e

2
5 + c′e3e4e5 + d′e2

4 = β.

Apply δ to this relation to obtain δ(e2)e4e6 +bδ(e2)e3
5 = 0. This implies that δ(e2)(e4e6 +

be3
5) = 0. Since e4e6 + be3

5 6= 0, it follows that δ(e2) = 0. Similarly, from (3.0.1), we have

that

e1e3e5 + ae1e4 + ae2e5 + a′e2
3 = α.

Apply δ to this relation to obtain δ(e1)(e3e5 + ae4) = 0. Since e3e5 + ae4 6= 0, we have

that δ(e1) = 0. In conclusion, δ(eκ) = 0 for all κ ∈ {1, · · · , 6}.

3. As a result of (1) and (2), we have that D(eκ) = adx(eκ). Therefore, D = adx

as desired. �

4.2.5 Derivations of Aα,0 and A0,β. In this subsection, we explore the derivations

of Aα,β when either α or β is zero (but not both). We are going to follow the same

pattern used to compute the derivations of Aα,β (α, β 6= 0) in the previous subsection.

Of course, results that can easily be obtained from the previous subsection are not going

to be repeated here. In this case, the appropriate references shall be made. We will begin

with the derivations of Aα,0.

Derivations of Aα,0. Let Der(Aα,0) denote the C−derivations of Aα,0 and D ∈

Der(Aα,0). We already know from the previous subsection that D extends uniquely to
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a derivation of each of the series of algebras in (4.1.2) via localization. Therefore, D

extends to a derivation of the quantum torus R3 = CqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. It follows from

[40, Corollary 2.3] that D can uniquely be written as:

D = adx + δ,

where x ∈ R3, and δ is a scalar derivation of R3 defined as δ(ti) = λiti for each

i = 3, 4, 5, 6. Note, λi ∈ Z(R3) = C (Lemma 4.1.7). Also, adx is an inner derivation of

R3 defined as adx(L) = xL− Lx for all L ∈ R3.

We will describe D as a derivation of Aα,0. We first describe D as a derivation of

R4.

4.2.6 Lemma. 1. x ∈ R4.

2. δ(f1) = −(λ3 + λ5)f1 and δ(t2) = 0.

3. Set λ1 := −(λ3 + λ5) and λ2 := 0. Then, D(eκ,4) = adx(eκ,4) + λκeκ,4 for all

κ ∈ {1, · · · , 6}.

Proof. 1. Similar to that of Lemma 4.2.2(1).

2. From Section 3.1, we have that t1 = αt−1
5 t−1

3 and t2 = βt−1
6 t−1

4 in R3 = Aα,β.

Clearly, t2 = 0 since β = 0. From Remark 4.1.8, we have that f1 = t1 − at2t
−1
3 .

This simplifies to f1 = t1 = αt−1
5 t−1

3 . It follows that δ(f1) = −(λ3 + λ5)f1. Obviously,

δ(t2) = 0.

3. As a result of (1) and (2), D(eκ,4) = adx(eκ,4)+λκeκ,4 for all κ ∈ {1, · · · , 6}. �

We proceed to also describe D as a derivation of R5.

4.2.7 Lemma. 1. x ∈ R5.

2. λ5 = λ4 − 3λ3, δ(z1) = −(λ3 + λ5)z1 and δ(z2) = −λ5z2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. Then, D(eκ,5) = adx(eκ,5) + λκeκ,5 for all

κ ∈ {1, · · · , 6}.
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Proof. 1. Similar to that of Lemma 4.2.3(1).

2. Recall that δ(ti) = λiti, i = 3, 4, 5, 6, and δ(f1) = −(λ3 + λ5)f1. From Remark

4.1.8, we have that z1 = f1−st23t−1
4 . One can confirm that δ(z1) = −(λ3+λ5)z1+s(λ4−

3λ3−λ5)t23t
−1
4 . Now, D(z1) = adx+δ(z1) = adx−(λ3+λ5)z1+s(λ4−3λ3−λ5)t23t

−1
4 ∈ R5.

Since adx − (λ3 + λ5)z1 ∈ R5, we have that s(λ4 − 3λ3 − λ5)t23t
−1
4 ∈ R5. Consequently,

s(λ4− 3λ3−λ5)t23 ∈ R5t4. Since s 6= 0 (Appendix C), it follows that λ4− 3λ3−λ5 = 0,

and so λ5 = λ4 − 3λ3. Otherwise, there will be a contradiction using the basis of R5

(Proposition 4.1.4). We now have δ(z1) = −(λ3 + λ5)z1. From the previous lemma, we

have that t2 = 0. As a result, the relation z2 = t2 − bt33t
−1
4 in Remark 4.1.8 becomes

z2 = −bt33t−1
4 . It follows that δ(z2) = (3λ3 − λ4)z2 = −λ5z2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. It follows from points (1) and (2) that

D(eκ,5) = adx(eκ,5) + λκeκ,5 for all κ ∈ {1, · · · , 6}.

�

We now describe D as a derivation of Aα,0.

4.2.8 Lemma. 1. x ∈ Aα,0.

2. λ6 = 2λ5, δ(e1) = −λ5e1, δ(e2) = −λ5e2, δ(e3) = 0 and δ(e4) = λ5e4.

3. Set λ1 := −λ5, λ2 := −λ5, λ3 := 0 and λ4 := λ5. Then, D(eκ) = adx(eκ) +λκeκ

for all κ ∈ {1, · · · , 6}.

Proof. 1. Similar to the proof of Lemma 4.2.4(1).

2. From Lemma 4.2.7, we have λ5 = λ4 − 3λ3, which implies that λ4 = 3λ3 + λ5.

Furthermore, from Remark 4.1.8, we have e4 = t4−bt35t−1
6 . One can confirm that δ(e4) =

(3λ3 +λ5)e4 +b(3λ3−2λ5 +λ6)t35t
−1
6 . Now, D(e4) = adx(e4)+δ(e4) = adx(e4)+(3λ3 +

λ5)e4 + b(3λ3 − 2λ5 + λ6)t35t
−1
6 ∈ Aα,0. Since adx(e4) + (3λ3 + λ5)e4 ∈ Aα,0, it follows

that b(3λ3 − 2λ5 + λ6)t35t
−1
6 ∈ Aα,0. This implies that b(3λ3 − 2λ5 + λ6)t35 ∈ Aα,0t6.

Note, b 6= 0 (Appendix C). As a result, 3λ3 − 2λ5 + λ6 = 0, otherwise, we will have a

contradiction using the basis of Aα,0 (Proposition 3.2.2). Consequently, λ6 = 2λ5 − 3λ3

and δ(e4) = (3λ3 + λ5)e4.
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The relation δ(e3) = λ3e3+a(λ3−λ4+λ5)e4t
−1
5 +[s(λ3−2λ5+λ6)+q−3ab(λ3−λ4+

λ5)]t25t
−1
6 (see (4.2.15)) is also valid in Aα,0. Given that λ4 = 3λ3+λ5 and λ6 = 2λ5−3λ3,

one can easily verify that δ(e3) = λ3e3−2aλ3e4t
−1
5 (note, from Appendix C, we have that

q−3ab + s = 0). Now, D(e3) = adx(e3) + δ(e3) = adx(e3) + λ3e3 − 2aλ3e4t
−1
5 ∈ Aα,0.

Since adx(e3)+λ3e3 ∈ Aα,0, we have that 2aλ3e4t
−1
5 ∈ Aα,0, which implies that 2aλ3e4 ∈

Aα,0t5. Hence, λ3 = 0, otherwise, we will have a contradiction using the basis of Aα,0

(note, from Appendix C, a 6= 0). Since λ3 = 0, we have: λ6 = 2λ5, δ(e4) = λ5e4 and

δ(e3) = 0. From Remark 4.1.8, we have: e1 = e1,6−rt5t−1
6 , e1,6 = z1−he3,6t

−1
5 −gt4t−2

5

and e3,6 = t3 − at4t−1
5 . Putting these three relations together gives

e1 = z1 − rt5t−1
6 − ht3t−1

5 + (ah− g)t4t
−2
5 . (4.2.31)

From the previous lemma, we have that δ(z1) = −(λ3+λ5)z1. Given that λ6 = 2λ5, λ4 =

λ5, λ3 = 0 and δ(t5) = λ5t5, one can verify that δ(e1) = −λ5e1. Finally, from the

commutation relations of Aα,0 in Chapter 3, we have that e3e1 = q−1e1e3 − (q + q−1 +

q−3)e2. Since δ(e1) = −λ5e1 and δ(e3) = 0, applying δ to this relation gives δ(e2) =

−λ5e2.

3. Set λ1 := −λ5, λ2 := −λ5, λ3 := 0 and λ4 := λ5, it follows from points (1) and

(2) that D(eκ) = adx(eκ) + λκeκ for all κ ∈ {1, · · · , 6}. �

Derivations of A0,β. Every derivation D of A0,β extends uniquely to a derivation

of each of the series of algebras in (4.1.2). Therefore, D extends to a derivation of the

quantum torus R3 = CqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. It follows from [40, Corollary 2.3] that D

can uniquely be written as

D = adx + δ,

where x ∈ R3, and δ is a scalar derivation of R3 defined as δ(ti) = λiti for each

i = 3, 4, 5, 6. Note, λi ∈ Z(R3) = C (Lemma 4.1.7). Also, adx is an inner derivation of

R3 defined as adx(L) = xL− Lx for all L ∈ R3.

We want to describe D as a derivation of A0,β. We begin by describing D as a
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derivation of R4.

4.2.9 Lemma. 1. x ∈ R4.

2. δ(f1) = −(λ3 + λ4 + λ6)f1 and δ(t2) = −(λ6 + λ4)t2.

3. Set λ1 := −(λ3+λ4+λ6) and λ2 := −(λ6+λ4). Then, D(eκ,4) = adx(eκ,4)+λκeκ,4

for all κ ∈ {1, · · · , 6}.

Proof. 1. Similar to that of Lemma 4.2.2(1).

2. Recall from Section 3.1 that t1 = 0 and t2 = βt−1
6 t−1

4 in R3 = A0,β. Observe

that δ(t2) = −(λ4 + λ6)t2. From Remark 4.1.8, the relation f1 = t1 − at2t−1
3 becomes

f1 = −at2t−1
3 = −aβt−1

6 t−1
4 t−1

3 . It follows that δ(f1) = −(λ3 + λ4 + λ6)f1.

3. Set λ1 := −(λ3 + λ4 + λ6) and λ2 := −(λ6 + λ4), it follows from points (1) and

(2) that D(eκ,4) = adx(eκ,4) + λκeκ,4 for all κ ∈ {1, · · · , 6}. �

We proceed to describe D as a derivation of R5.

4.2.10 Lemma. 1. x ∈ R5.

2. λ6 = −3λ3, δ(z1) = (2λ3 − λ4)z1 and δ(z2) = (3λ3 − λ4)z2.

3. Set λ1 := (2λ3 − λ4) and λ2 := 3λ3 − λ4. Then, D(eκ,5) = adx(eκ,5) + λκeκ,5 for

all κ ∈ {1, · · · , 6}.

Proof. 1. Similar to the proof of Lemma 4.2.3(1).

2. Recall that δ(ti) = λiti, i = 3, 4, 5, 6, and δ(t2) = −(λ4 + λ6)t2. From Remark

4.1.8, we have that z2 = t2 − bt33t−1
4 . This implies that δ(z2) = −(λ4 + λ6)z2 − b(λ6 +

3λ3)t33t
−1
4 . Now, D(z2) = adx(z2)+δ(z2) = adx(z2)−(λ4+λ6)z2−b(λ6+3λ3)t33t

−1
4 ∈ R5.

Since adx(z2)− (λ4 +λ6)z2 ∈ R5, we have that b(λ6 + 3λ3)t33t
−1
4 ∈ R5. This implies that

b(λ6 + 3λ3)t33 ∈ R5t4. Since α = 0, from (4.1.5), we have that t33 =
β

b
t−1
6 +

1

ab
z1t3t4.

Therefore, b(λ6 + 3λ3)t33 = (λ6 + 3λ3)

(
βt−1

6 +
1

a
z1t3t4

)
= β(λ6 + 3λ3)t−1

6 +
1

a
(λ6 +

3λ3)z1t3t4 ∈ R5t4. Observe that z1t3t4 ∈ R5t4. This implies that β(λ6 +3λ3)t−1
6 ∈ R5t5.

Hence, β(λ6 + 3λ3) ∈ R5t5t6. Since β 6= 0, we must have: λ6 + 3λ3 = 0, and so λ6 =
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−3λ3. Otherwise, there will be a contradiction using the basis of R5 (Proposition 4.1.4).

As a result, δ(z2) = −(λ4 + λ6)z2 = (3λ3 − λ4)z2.

Again, from Remark 4.1.8, we have that z1 = f1−st23t−1
4 . From the previous lemma,

we also have δ(f1) = −(λ3 + λ4 + λ6)f1. Given that λ6 = −3λ3, one can easily verify

that δ(z1) = (2λ3 − λ4)z1.

3. Set λ1 := (2λ3 − λ4) and λ2 := 3λ3 − λ4, it follows from points (1) and (2) that

D(eκ,5) = adx(eκ,5) + λκeκ,5 for all κ ∈ {1, · · · , 6}.

�

We now describe D as a derivation of A0,β.

4.2.11 Lemma. 1. x ∈ A0,β.

2. λ6 = 3λ5, δ(e1) = −2λ5e1, δ(e2) = −3λ5e2, δ(e3) = −λ5e3 and δ(e4) = 0.

3. Set λ1 := −2λ5, λ2 := −3λ5, λ3 := −λ5 and λ4 := 0. Then, D(eκ) = adx(eκ) +

λκeκ for all κ ∈ {1, · · · , 6}.

Proof. 1. Similar to the proof of Lemma 4.2.4(1).

2. From Remark 4.1.8, we have e4 = t4 − bt35t
−1
6 . One can confirm that δ(e4) =

λ4e4 + b(λ4 − 3λ5 − 3λ3)t35t
−1
6 . Now, D(e4) = adx(e4) + δ(e4) = adx(e4) + λ4e4 +

b(λ4− 3λ5− 3λ3)t35t
−1
6 ∈ A0,β. Since adx(e4) +λ4e4 ∈ A0,β, it follows that b(λ4− 3λ5−

3λ3)t35t
−1
6 ∈ A0,β. This implies that b(λ4 − 3λ5 − 3λ3)t35 ∈ A0,βt6. Note, from Appendix

C, b 6= 0. Therefore, λ4−3λ5−3λ3 = 0, otherwise, there will be a contradiction using the

basis of A0,β (Proposition 3.2.2). Hence, λ4 = 3(λ3 +λ5), and δ(e4) = 3(λ3 +λ5)e4. The

relation δ(e3) = λ3e3+a(λ3−λ4+λ5)e4t
−1
5 +[s(λ3−2λ5+λ6)+q−3ab(λ3−λ4+λ5)]t25t

−1
6

(see (4.2.15)) is also valid in A0,β. From Lemma 4.2.10, we have that λ6 = −3λ3. Given

that λ4 = 3(λ3 + λ5) and λ6 = −3λ3, one can confirm that δ(e3) = λ3e3 − 2a(λ3 +

λ5)e4t
−1
5 (note, from Appendix C, q−3ab + s = 0). Now, D(e3) = adx(e3) + δ(e3) =

adx(e3) + λ3e3 − 2a(λ3 + λ5)e4t
−1
5 ∈ A0,β. Since adx(e3) + λ3e3 ∈ A0,β, it follows that

2a(λ3 + λ5)e4t
−1
5 ∈ A0,β. This implies that 2a(λ3 + λ5)e4 ∈ A0,βt5. We must have

λ3 + λ5 = 0, and so λ3 = −λ5 (note, a 6= 0). Otherwise, there will be a contradiction
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using the basis of A0,β (Proposition 3.2.2). As a result, δ(e3) = −λ5e3, δ(e4) = 0 and

λ6 = 3λ5.

From (4.2.31), we have e1 = z1 − rt5t
−1
6 − ht3t

−1
5 + (ah − g)t4t

−2
5 . Recall from

Lemma 4.2.10 that δ(z1) = (2λ3− λ4)z1. Given that λ6 = 3λ5, λ4 = 0, λ3 = −λ5 and

δ(t5) = λ5t5, one can verify that δ(e1) = −2λ5e1. From the commutation relations of

A0,β in Chapter 3, we have that e3e1 = q−1e1e3−(q+q−1+q−3)e2. Since δ(e1) = −2λ5e1

and δ(e3) = −λ5e3, applying δ to this relation gives δ(e2) = −3λ5e2. �

In the next lemma, we prove that the first Hochschild cohomology groups of A0,β

and Aα,0 are non-trivial.

4.2.12 Lemma. Let (α, β) ∈ C2 \{(0, 0)} and, θ and θ̃ be linear maps of Aα,0 and A0,β

respectively defined by

θ(e1) = −e1, θ(e2) = −e2, θ(e3) = 0, θ(e4) = e4, θ(e5) = e5, θ(e6) = 2e6,

and

θ̃(e1) = −2e1, θ̃(e2) = −3e2, θ̃(e3) = −e3, θ̃(e4) = 0, θ̃(e5) = e5, θ̃(e6) = 3e6.

Then, θ and θ̃ are C−derivations of Aα,0 andA0,β respectively.

Proof. Given the algebra relations of Aα,β in Chapter 3, we verify that θ satisfies the

relations of Aα,β when α 6= 0 and β = 0, and θ̃ satisfies the relations of Aα,β when α = 0

and β 6= 0. We will verify this for only one of the relations, and leave the remaining ones

for the reader to check. From (3.0.1), we have that

e1e3e5 + ae1e4 + ae2e5 + a′e2
3 = α

in Aα,0.
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Now,

θ(e1)e3e5 + e1θ(e3)e5 + e1e3θ(e5) + aθ(e1)e4 + ae1θ(e4) + aθ(e2)e5 + ae2θ(e5) + 2a′θ(e3)e3

= 0

as expected. In A0,β, we have that

e1e3e5 + ae1e4 + ae2e5 + a′e2
3 = 0.

Observe that

θ̃(e1)e3e5 + e1θ̃(e3)e5 + e1e3θ̃(e5) + aθ̃(e1)e4 + ae1θ̃(e4) + aθ̃(e2)e5 + ae2θ̃(e5) + 2a′θ̃(e3)e3

= −2(e1e3e5 + ae1e4 + ae2e5 + a′e2
3) = 0,

as expected.

�

4.2.13 Remark. From Lemma 4.1.7, Z(Aα,β) = C. Let (α, β) ∈ C2 \ {(0, 0)} and

Der(Aα,β) represent the C−derivations of Aα,β. Then, the first Hochschild cohomology

group of Aα,β (denoted by HH1(Aα,β)) defined by

HH1(Aα,β) :=
Der(Aα,β)

InnDer(Aα,β)

is a free module over Z(Aα,β) = C, where InnDer(Aα,β) := {adx | x ∈ Aα,β} is the set

of inner derivations of Aα,β.
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We summarize our main results in this chapter in the theorem below.

4.2.14 Theorem. Given that Aα,β = U+
q (G2)/〈Ω1 − α,Ω2 − β〉, with (α, β) ∈ C2 \

{(0, 0)}, we have the following results:

1. if α, β 6= 0; then every derivation D of Aα,β can uniquely be written as D = adx,

where x ∈ Aα,β.

2. if α 6= 0 and β = 0, then every derivation D of Aα,0 can uniquely be written as

D = adx + λθ, where λ ∈ C and x ∈ Aα,0.

3. if α = 0 and β 6= 0, then every derivation D of A0,β can uniquely be written as

D = adx + λθ̃, where λ ∈ C and x ∈ A0,β.

4. HH1(Aα,0) = C[θ] and HH1(A0,β) = C[θ̃], where [θ] and [θ̃] respectively denote

the classes of θ and θ̃ modulo the space of inner derivations.

5. if α, β 6= 0; then HH1(Aα,β) = {[0]}, where [0] denotes the class of 0 modulo the

space of inner derivations.

Proof. Points (1), (2) and (3) are as a result of Lemmas 4.2.4, 4.2.8 and 4.2.11 re-

spectively. Point (4) is a consequence of Lemma 4.2.12, and (5) is a consequence of

(1). �



Chapter 5

Semiclassical limit of the simple

quotients of U+
q (G2)

In this chapter, we study a semiclassical limit of U+
q (G2), and its simple quotients. Unless

stated explicitly, we do not transfer notations used in the previous chapters to this and

the subsequent chapter. Given a non-commutative algebra A, one can obtain a Poisson

algebra A from A through a process called semiclassical limit. Conversely, given a Poisson

algebra A, one can obtain a non-commutative algebra A from A through a process called

quantization. We briefly explain these concepts in line with the presentations in [14] in

the next section. Since U+
q (G2) is a non-commutative algebra, we study its semiclassical

limit in Section 5.2. Following strategies similar to that of U+
q (G2) in Chapter 2, we

study the Poisson maximal ideals (of height 2) of the semiclassical limit of U+
q (G2) using

H−stratification by Goodearl [16], and Poisson deleting derivations algorithm by Launois

and Lecoutre [34]. We finally conclude in Section 5.3 that the simple quotients of the

semiclassical limit of U+
q (G2) are the semiclassical limits of the non-commutative algebra

Aα,β. Most of the results in this and the subsequent chapters are analogues to their

non-commutative counterparts.

We begin with some preliminaries on Poisson algebras.

112
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5.1 Preliminaries

This section studies some preliminary materials such as semiclassical limit, Poisson prime

spectrum and Poisson deleting derivations algorithm. We begin with the following defi-

nitions and examples.

5.1.1 Definitions and examples. A Poisson algebra A is a commutative algebra over

a field K endowed with a skew-symmetric K−bilinear map {−,−} : A×A −→ A which

satisfies the following properties:

• {x, yz} = {x, y}z + y{x, z} for all x, y, z ∈ A (Leibniz rule).

• {x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0 for all x, y, z ∈ A (Jacobi identity).

Note, the skew-symmetric K−bilinear map {−,−} is called the Poisson bracket. Every

Poisson algebra is also a Lie algebra since they both satisfy the Jacobi identity. Since

the Poisson bracket also satisfies the Leibniz rule, it is well known that for each x ∈ A

the K−linear map hamx := {x,−} : A −→ A is a derivation known as the Hamiltonian

derivation associated to x. A Poisson ideal I of A is any ideal such that {x, u} ∈ I for

all x ∈ A and u ∈ I. The set ZP (A) := {a ∈ A | {a, x} = 0, ∀x ∈ A} is a Poisson

subalgebra of A called the Poisson center of A.

5.1.2 Remark. If A is a Poisson algebra and {x1, · · · , xn} is a generating set for A (as

an algebra), then it is enough to define a Poisson bracket {−,−} on A by defining it on

only the generating set.

5.1.3 Example. The following are some examples of Poisson algebras.

1. The polynomial ring C[x, y] is a Poisson algebra via {x, y} = a, where a ∈ C.

When a = 0, then we have a trivial Poisson structure on C[x, y]. In fact, any

commutative algebra can be endowed with the trivial Poisson structure to form a

Poisson algebra.

2. Let R = K[y1, · · · , yN ] be a polynomial algebra over the field K, with {yi, yj} =

µijyiyj, i, j ∈ N≥1, where M = (µij) is an N × N skew-symmetric matrix over
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the field K. Then, R is a Poisson algebra known as the Poisson affine space. Note,

for all f, g ∈ R, we have that:

{f, g} =
n∑

i,j=1

µijyiyj
∂f

∂yi

∂g

∂yj
.

The set S := {λyi11 · · · y
iN
N | i1, · · · , iN ∈ N and λ ∈ C∗} is a multiplicative set of

R. Hence, one can localize R at S as RS−1 = K[y±1
1 , · · · , y±1

N ]. Note, the Poisson

bracket of R extends uniquely to a Poisson bracket of RS−1. Therefore, RS−1 is a

Poisson algebra known as the Poisson torus associated to the Poisson affine space

R.

In general, let S 3 1 be a multiplicative set of a Poisson algebra A. Then, the

localization AS−1 admits a Poisson bracket extended uniquely from A as follows:

{xs−1, yt−1} = {x, y}s−1t−1 − {x, t}ys−1t−2 − {s, y}xs−2t−1 + {s, t}xys−2t−2,

for all x, y ∈ A and all s, t ∈ S.

In a special case where A is a domain, then the Poisson structure of A extends

uniquely to its field of fractions.

3. Set R := O(M2(C)) = C [ a bc d ] . Then, R is a Poisson algebra called 2× 2 Poisson

matrix algebra with Poisson bracket defined as follows:

{a, b} = ab, {a, c} = ac, {b, c} = 0, {b, d} = bd, {c, d} = cd, {a, d} = 2bc.

4. Take any arbitrary Poisson algebra A and a Poission ideal I of A. Then, it is well

known that the quotient algebra A/I is a Poisson algebra with an induced Poisson

bracket defined as {x̄, ȳ} = {x, y}, where x̄ := x+I and ȳ := y+I, with x, y ∈ A.

5.1.4 Semiclassical limit. As already stated, given a non-commutative algebra A, one

can obtain a Poisson algebra A from A through a process called semiclassical limit.
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Conversely, given a Poisson algebra A, one can obtain a non-commutative algebra A

from A through a process called quantization. That is, one can either view A as a

quantization of A or A as the semiclassical limit of A under certain conditions, which we

present in the next paragraph. Unless stated otherwise, we present ideas similar to [14,

§1.1.3].

Let R be a commutative principal ideal domain containing the field K and hR be a

maximal ideal of R for a fix h ∈ R. According to [7, Chapter III.5], in practice, R will

always be either a polynomial or Laurent polynomial ring over K in one variable, and h

will be a linear polynomial. Take an algebra A (which is not necessarily commutative

torsion-free R−algebra) such that the factor algebra A := A/hA is commutative. Let

u, v ∈ A. Then, ū := u+ hA and v̄ := v+ hA are the canonical images of u and v in A

respectively. Since ūv̄ = v̄ū, we have that [u, v] := uv− vu ∈ hA. There exists a unique

element γ(u, v) of A such that [u, v] = hγ(u, v). It follows that

{ū, v̄} := γ(u, v) + hA =
[u, v]

h
+ hA

defines a Poisson bracket on A. One can prove that the above definition defines a Poisson

bracket on A by showing that it is well-defined, the Jacobi identity and the Leibniz rule

hold. The details of the proof can be found in [14, §1.1.3]. Given the above presentation,

A is said to be a quantization of A, and A is termed as the semiclassical limit of A.

Let λ ∈ K, then the algebra Aλ := A/(h− λ)A is a deformation of the Poisson algebra

A = A0 provided the central element h− λ is not invertible in A.

5.1.5 Example. 1. From Remark 1.5.1, we can define a quantum affine space of the

form OΛ(KN) = KΛ[Y1, · · · , YN ], with YjYi = qµjiYiYj, where Λ = (qµij) is a

skew-symmetric matrix defined in Remark 1.5.1. Set R := K[z±1]〈Y1, · · · , YN |

YjYi = zµjiYiYj for all 1 ≤ i, j ≤ N〉. The element z−1 is central and not invertible

in R. Hence, R := R/(z − 1)R = K[y1, · · · , yN ], with yi := Yi + (z − 1)R, 1 ≤

i ≤ N. Now, yiyj = yjyi for all 1 ≤ i, j ≤ N, hence, R is a commutative algebra.
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A Poisson structure is defined on R as follows:

{yj, yi} =
[Yj, Yi]

z − 1
+ (z − 1)R =

(zµji − 1)YiYj
z − 1

+ (z − 1)R = µjiyiyj,

for all 1 ≤ i, j ≤ n. Therefore, R is a Poisson affine space and it is the semiclassical

limit of the algebra R. Moreover, R/(z − q)R = OΛ(KN) is a deformation of the

Poisson affine space R. Since a Poisson bracket on a Poisson affine space extends

uniquely to a Poission bracket of the associated Poisson torus, one can also conclude

that the Poisson torus K[y±1
1 , · · · , y±1

N ] is the semiclassical limit of the quantum

torus KΛ[Y ±1
1 , · · · , Y ±1

N ].

2. Recall that the 2×2 quantum matrices Oq(M2(C)) = C [ a bc d ] satisfies the relation:

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc, ad−da = (q−q−1)bc

(see [7, Example 1.1.7]). Now, the 2×2 Poisson matrix algebra in Example 5.1.3(3)

is the semiclassical limit of the non-commutative algebra Oq(M2(C)).

5.1.6 Poisson prime spectrum. In Section 1.6 we discussed the prime spectrum

Spec(A) of an algebra A. In this section, we discuss the Poisson analogue called the

Poisson prime spectrum. Let P be a proper Poisson ideal of a Poisson algebra A and I1,

I2 be Poisson ideals of A such that P ⊇ I1I2, the ideal P is called a Poisson prime ideal

provided P ⊇ I1 or P ⊇ I2. It is well known that a Poisson ideal which is also a prime

ideal is a Poisson prime ideal, however, the converse is not always true, except the case

where A is noetherian (see [16, Lemma 1.1]). The collection of all Poisson prime ideals of

A is called the Poisson prime spectrum of A, denoted by P.Spec(A). The largest Poisson

prime ideal contained in a given maximal ideal of A is called a Poisson primitive ideal of

A. The collection of all these primitive ideals is also called Poisson primitive spectrum of

A, denoted by P.Prim(A).

Let A be a K−algebra. Recall from Section 1.6 that the prime spectrum Spec(A)

of A endowed with a suitable torus action can be partitioned into a disjoint union of
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strata, a partition known as the H−Stratification of Spec(A). In a similar manner,

P.Spec(A) can also be partitioned into a disjoint union of strata in the presence of a

suitable torus. We discuss this partition in the next paragraph. In [16, §3], Goodearl

described this process for a commutative noetherian differential K−algebras and, in [35,

§2.2], Launois and Lecoutre described the process for noetherian Poisson algebras via

the Cauchon diagrams. Since we have already described this process for any arbitrary

K−algebra in Section 1.6, we will only provide a summary for the Poisson version.

Let A be a noetherian Poisson algebra and H be an algebraic torus acting rationally

on A by Poisson automorphism (an automorphism that preserves the Poisson bracket).

A Poisson prime ideal P is H−invariant if h · P = P for all h ∈ H. The set

P.SpecJ(A) := {P ∈ P.Spec(A) | (P : H) = J}

is called the J−stratum of P.Spec(A). Note, J :=
⋂
h∈H h · P is the largest Pois-

son H−invariant prime ideal contained in P. The H−strata P.SpecJ(A) partitioned

P.Spec(A) into a disjoint union of strata. Hence,

P.Spec(A) =
⊔

J∈H−P.Spec(A)

P.SpecJ(A),

where H − P.Spec(A) is the collection of all the Poisson H−invariant prime ideals

of A. This process is called H−stratification of P.Spec(A). In a similar manner, a

H−stratification of P.Prim(A) is obtained as follows:

P.Prim(A) =
⊔

J∈H−P.Prim(A)

P.PrimJ(A),

where P.PrimJ(A) = P.SpecJ(A) ∩ P.Prim(A) and H − P.Prim(A) is the collection of

all the Poisson H−invariant primitive ideals of A.

5.1.7 Proposition. [16, Theorem 4.3] Let P ∈ P.SpecJ(A), P is Poisson primitive if

and only if P is maximal in P.SpecJ(A).
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5.1.8 Poisson deleting derivation algorithm (PDDA). We have already studied

Cauchon’s theory of deleting derivation algorithm for non-commutative algebras in Section

1.7. In [35], Launois and Lecoutre studied the Poisson version of the deleting derivation

algorithm called the Poisson deleting derivation algorithm (PDDA) for some class of

Poisson algebras with a base field of characteristic zero and prime characteristic. In this

section, we will only discuss the algorithm for the characteristic zero case. We begin with

the following theorem.

5.1.9 Theorem. [39, Theorem 1.1] Let A be a Poisson K−algebra and σ, δ : A → A

be K−linear maps. Then, the polynomial algebra R = A[X] endowed with a Poisson

bracket (i.e. {X, a} = σ(a)X + δ(a) for all a ∈ A) extending from the Poisson bracket

of A is a Poisson algebra if and only if:

1. σ is a Poisson derivation of A. That is, σ is a K−derivation of A with

σ({a, b}) = {σ(a), b}+ {a, σ(b)} for all a, b ∈ A.

2. δ is a Poisson σ−derivation of A. That is, δ is a K−derivation of A with

δ({a, b}) = {δ(a), b}+ {a, δ(b)}+ σ(a)δ(b)− δ(a)σ(b) for all a, b ∈ A.

Given a Poisson algebra R = A[X] satisfying the above conditions, one can simply

write R as R = A[X, σ, δ]P . This is called the Poisson-Ore extension of A. If δ = 0, then

A[X, σ, 0]P is simply written as A[X, σ]P . Furthermore, R is called an iterated Poisson-

Ore extension over A if there exists a set {σi | i = 1, · · · , N} of Poisson derivations and

a set {δi | i = 1, · · · , N} of Poisson σi− derivations such that

R = A[X1;σ1, δ1]p · · · [Xn;σn, δn]P .

5.1.10 Example. In Example 5.1.3(3), we have that the matrix Poisson algebra



Section 5.1. Preliminaries 119

R = C [ a bc d ] satisfies the relations:

{a, b} = ab, {a, c} = ac, {b, c} = 0, {b, d} = bd, {c, d} = cd, {a, d} = 2bc.

Now, set X1 := a, X2 := b, X3 := c and X4 := d. Then, R can be written as an

iterated Poisson-Ore extension as:

R = C[X1][X2;σ2]P [X3;σ3]P [X4;σ4, δ4]P ,

where σ2(X1) = X1, σ3(X1) = X1, σ3(X2) = 0, σ4(X1) = 0, σ4(X2) = X2, σ4(X3) =

X3, and δ4(X1) = 2X2X3, δ4(X2) = δ4(X3) = 0. Note, σj is a Poisson derivation and δj

is a Poisson σj−derivation of C[X1][X2;σ2]P · · · [Xj−1;σj−1, δj−1]P for each 2 ≤ j ≤ 4

(note, δ2 = δ3 = δ4 = 0).

We are now going to discuss the PDDA process.

Let K be a field with characteristic zero, and A = K[X1][X2;σ2, δ2]p · · · [XN ;σN , δN ]P

be an iterated Poisson polynomial algebra over K. Suppose that A satisfies the conditions

in the hypothesis below.

5.1.11 Hypothesis. (H1) For all 1 ≤ j < i ≤ N, there exists µij ∈ K, with µji :=

−µij, such that σi(Xj) = µijXj.

(H2) The derivation δi is locally nilpotent and δiα−αδi = ηiδi for some non-zero scalar

ηi for all 2 ≤ i ≤ N.

Then, the PDDA can be used to study the Poisson prime spectrum of A. Let j ∈

{N+1, · · · , 2}. The algorithm (PDDA) constructs a family (X1,j, · · · , XN,j) of elements

of Fract(A) as follows. For j = N + 1, set (X1,N+1, · · · , XN,N+1) := (X1, · · · , XN).

Now, suppose that the family (X1,j+1, · · · , XN,j+1) has already been constructed. Then,

for j < N + 1, construct X1,j, · · · , XN,j from X1,j+1, · · · , XN,j+1 using the relation
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Xi,j :=


Xi,j+1 if i ≥ j
+∞∑
k=0

1

ηkj k!
δkj (Xi,j+1)X−kj,j+1 if i < j,

for all i ∈ {1, · · · , N}. Since δj is locally nilpotent, the summation is finite.

For each j ∈ {2, · · · , N+1}, the algebra A(j) represents the subalgebra of Fract(A)

generated by all the Xi,j. That is, A(j) = K[X1,j, · · · , XN,j]. Note, A(N+1) = A. It

follows from [35, Proposition 1.11] that

A(j) ∼= K[X1][X2;σ2, δ2]P · · · [Xj−1;σj−1, δj−1]P [Xj; τj]P · · · [XN ; τN ]P ,

by an isomorphism that maps Xi,j to Xi, and τj, · · · , τN denote the Poisson derivations

defined by τl(Xi) = µliXi for all 1 ≤ i < l ≤ N. With a slight abuse of notation, one

can identify τj, · · · , τN with σj, · · · , σN respectively.

Moreover, the set Sj := {Xn
j,j+1 | n ∈ N} = {Xn

j,j | n ∈ N} is a multiplicative

system of regular elements of A(j) and A(j+1), and A(j)S−1
j = A(j+1)S−1

j [35, Proposition

1.11]. Launois and Lecoutre [35] used the PDDA to relate P.Spec(A) to P.Spec(Ā), where

Ā := A(2), by constructing an embedding ψj : P.Spec(A(j+1)) ↪→ P.Spec(A(j)) for each

j ∈ {2, · · · , N}. Suppose that P ∈ P.Spec(A(j+1)) and Xj,j+1 6∈ P, then ψj is defined

by

ψj(P ) = PS−1
j ∩ A(j) = Q,

with Q ∈ P.Spec(A(j)). In the case where Xj,j 6∈ Q, then the inverse map ψ−1
j is also

given by

ψ−1
j (Q) = QS−1

j ∩ A(j+1) = P.

The map ψj is injective but not necessarily bijective, however, ψj induces a bijection from

{P ∈ P.Spec(A(j+1)) | P ∩ Sj = ∅} onto {Q ∈ P.Spec(A(j)) | Q ∩ Sj = ∅} [35, Section

2.1]. The so-called canonical embedding ψ : P.Spec(A) ↪→ P.Spec(Ā) is obtained by

composing all the ψj. That is, ψ := ψ2 ◦ · · · ◦ ψN . This canonical embedding ψ helps to



Section 5.2. Semiclassical limit of U+
q (G2) 121

construct a partition of P.Spec(A) into a disjoint union of strata known as the canonical

partition via the Cauchon diagrams. See [35] for further details on this, and how the map

ψj is defined when Xj,j+1 ∈ P (we omit this case).

5.2 Semiclassical limit of U+
q (G2)

We are now ready to study the semiclassical limit of the algebra A := U+
q (G2) studied

in Chapter 2. Recall that A satisfies the following relations:

E2E1 = q−3E1E2 E3E1 = q−1E1E3 − (q + q−1 + q−3)E2

E3E2 = q−3E2E3 E4E1 = E1E4 + (1− q2)E2
3

E4E2 = q−3E2E4 −
q4 − 2q2 + 1

q4 + q2 + 1
E3

3 E4E3 = q−3E3E4

E5E1 = qE1E5 − (1 + q2)E3 E5E2 = E2E5 + (1− q2)E2
3

E5E3 = q−1E3E5 − (q + q−1 + q−3)E4 E5E4 = q−3E4E5

E6E1 = q3E1E6 − q3E5 E6E2 = q3E2E6 + (q4 + q2 − 1)E4+

E6E3 = E3E6 + (1− q2)E2
5 (q2 − q4)E3E5

E6E4 = q−3E4E6 −
q4 − 2q2 + 1

q4 + q2 + 1
E3

5 E6E5 = q−3E5E6.

Set Ui := (q − 1)Ei for i = 1, 3, 4, 5, and Ui := f(q)(q − 1)Ei for i = 2, 6; where

f(q) = q4 + q2 + 1. Then, A is now generated by U1, · · · , U6 subject to the relations:

U2U1 = q−3U1U2 U3U2 = q−3U2U3

U3U1 = q−1U1U3 − q−3(q − 1)U2 U4U1 = U1U4 + (1− q2)U2
3

U4U2 = q−3U2U4 − (q + 1)2(q − 1)U3
3 U4U3 = q−3U3U4

U5U1 = qU1U5 − (1 + q2)(q − 1)U3 U5U2 = U2U5 + f(q)(1− q2)U2
3

U5U3 = q−1U3U5 − f(q)(q−2 − q−3)U4 U5U4 = q−3U4U5
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U6U1 = q3U1U6 − f(q)(q4 − q3)U5 U6U2 = q3U2U6 + f(q)2(q2 − q4)U3U5+

U6U3 = U3U6 + f(q)(1− q2)U2
5 f(q)2(q4 + q2 − 1)(q − 1)U4

U6U4 = q−3U4U6 − (q + 1)2(q − 1)U3
5 U6U5 = q−3U5U6.

We are now going to find a “new” presentation for A that allows us to introduce a

quantisation of A. We discuss this as follows. Let Â be a C[z±1]−algebra generated by

Û1, · · · , Û6 subject to the relations:

Û2Û1 = z−3Û1Û2 Û3Û2 = z−3Û2Û3

Û3Û1 = z−1Û1Û3 − z−3(z − 1)Û2 Û4Û1 = Û1Û4 + (1− z2)Û2
3

Û4Û2 = z−3Û2Û4 − (z + 1)2(z − 1)Û3
3 Û4Û3 = z−3Û3Û4

Û5Û1 = zÛ1Û5 − (1 + z2)(z − 1)Û3 Û5Û2 = Û2Û5 + f(z)(1− z2)Û2
3

Û5Û3 = z−1Û3Û5 − f(z)(z−2 − z−3)Û4 Û5Û4 = z−3Û4Û5

Û6Û1 = z3Û1Û6 − f(z)(z4 − z3)Û5 Û6Û2 = z3Û2Û6 + f(z)2(z2 − z4)Û3Û5+

Û6Û3 = Û3Û6 + f(z)(1− z2)Û2
5 f(z)2(z4 + z2 − 1)(z − 1)Û4

Û6Û4 = z−3Û4Û6 − (z + 1)2(z − 1)Û3
5 Û6Û5 = z−3Û5Û6,

where f(z) = z4 + z2 + 1. For λ ∈ C∗, observe that the element z−λ is central and not

invertible in Â. Hence, we can set Aλ := Â/(z − λ)Â. Now, Aq is the non-commutative

algebra A, and A1 = C[X1, · · · , X6] with Xi := Ûi + (z− 1)Â is a Poisson algebra with

the Poisson bracket defined as follows (see Appendix B.1 for the necessary details):

{X2, X1} = −3X1X2 {X3, X1} = −X1X3 −X2

{X3, X2} = −3X2X3 {X4, X1} = −2X2
3

{X4, X2} = −3X2X4 − 4X3
3 {X4, X3} = −3X3X4

{X5, X1} = X1X5 − 2X3 {X5, X2} = −6X2
3

{X5, X3} = −X3X5 − 3X4 {X5, X4} = −3X4X5
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{X6, X1} = 3X1X6 − 3X5 {X6, X2} = 3X2X6 + 9X4 − 18X3X5

{X6, X3} = −6X2
5 {X6, X4} = −3X4X6 − 4X3

5

{X6, X5} = −3X5X6.

Therefore, A1 is the semiclassical limit of the non-commutative algebra Â, and Aq is a

deformation of the Poisson algebra A1.

Aλ

A1 Aq
Deformation

λ = 1 λ = q

Henceforth, for simplicity, we set

A := A1 = C[X1, · · · , X6].

One can write the Poisson algebra A as an iterated Poisson-Ore extension as:

A = C[X1][X2;σ2]P [X3;σ3, δ3]P [X4;σ4, δ4]P [X5;σ5, δ5]P [X6;σ6, δ6]P ;

where,

σ2(X1) = −3X1 σ3(X1) = −X1 σ3(X2) = −3X2 σ4(X1) = 0

σ4(X2) = −3X2 σ4(X3) = −3X3 σ5(X1) = X1 σ5(X2) = 0

σ5(X3) = −X3 σ5(X4) = −3X4 σ6(X1) = 3X1 σ6(X2) = 3X2

σ6(X3) = 0 σ6(X4) = −3X4 σ6(X5) = −3X5,

and
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δ3(X1) = −X2 δ3(X2) = 0 δ4(X1) = −2X2
3 δ4(X2) = −4X3

3

δ4(X3) = 0 δ5(X1) = −2X3 δ5(X2) = −6X2
3 δ5(X3) = −3X4

δ5(X4) = 0 δ6(X1) = −3X5 δ6(X2) = 9X4 − 18X3X5 δ6(X3) = −6X2
5

δ6(X4) = −4X3
5 δ6(X5) = 0.

Note, σj is a Poisson derivation and δj is a Poisson σj−derivation of

C[X1][X2;σ2]P · · · [Xj−1;σj−1, δj−1]P for each 2 ≤ j ≤ 6 (note, δ2 = 0).

5.2.1 PDDA of A. The algebra

A = C[X1][X2;σ2]P [X3;σ3, δ3]P [X4;σ4, δ4]P [X5;σ5, δ5]P [X6;σ6, δ6]P

satisfies H1 and H2 in Hypothesis 5.1.11, and so the theory of PDDA applies to A. We

construct the following elements of Fract(A) (computations have been omitted here, but

can be found in Appendix B.2):

X1,6 = X1 −
1

2
X5X

−1
6

X2,6 = X2 +
3

2
X4X

−1
6 − 3X3X5X

−1
6 +X3

5X
−2
6

X3,6 = X3 −X2
5X
−1
6

X4,6 = X4 −
2

3
X3

5X
−1
6

X1,5 = X1,6 −X3,6X
−1
5,6 +

3

4
X4,6X

−2
5,6

X2,5 = X2,6 − 3X2
3,6X

−1
5,6 +

9

2
X3,6X4,6X

−2
5,6 −

9

4
X2

4,6X
−3
5,6

X3,5 = X3,6 −
3

2
X4,6X

−1
5,6

X1,4 = X1,5 −
1

3
X2

3,5X
−1
4,5

X2,4 = X2,5 −
2

3
X3

3,5X
−1
4,5

X1,3 = X1,4 −
1

2
X2,4X

−1
3,4



Section 5.2. Semiclassical limit of U+
q (G2) 125

T1 := X1,2 = X1,3

T2 := X2,2 = X2,3 = X2,4

T3 := X3,2 = X3,3 = X3,4 = X3,5

T4 := X4,2 = X4,3 = X4,4 = X4,5 = X4,6

T5 := X5,2 = X5,3 = X5,4 = X5,5 = X5,6 = X5

T6 := X6,2 = X6,3 = X6,4 = X6,5 = X6,6 = X6.

From the theory of the PDDA, we have that for each j ∈ {2, · · · , 7}, the algebra

A(j) := C〈Xi,j | i = 1, · · · , 6〉 is a subalgebra of Fract(A). Since (X1,7, · · · , X6,7) :=

(X1, · · · , X6), it follows that A(7) = A.

We recall the skew-symmetric matrix in Subsection 2.2.3 below:

M =



0 3 1 0 −1 −3

−3 0 3 3 0 −3

−1 −3 0 3 1 0

0 −3 −3 0 3 3

1 0 −1 −3 0 3

3 3 0 −3 −3 0


.

Observe that Ā := A(2) = C[T1, · · · , T6] satisfies the relation TiTj = µijTjTi for all

1 ≤ i, j ≤ 6, with µij ∈ M, hence A is a Poisson affine space. Set Ω1 := T1T3T5 and

Ω2 := T2T4T6. One can verify that Ω1 and Ω2 are Poisson central elements of Ā. That

is, {Ωi, Tj} = 0 for all i = 1, 2, and 1 ≤ j ≤ 6. We now want to successively pull Ω1 and

Ω2 from the Poisson affine space Ā into the algebra A using the PDDA of A discussed

above. Through a direct computation, one can confirm that:
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Ω1 := T1T3T5

= X1,3X3,3X5,3

= X1,4X3,4X5,4 −
1

2
X2,4X5,4

= X1,5X3,5X5,5 −
1

2
X2,5X5,5

= X1,6X3,6X5,6 −
3

2
X1,6X4,6 −

1

2
X2,6X5,6 +

1

2
X2

3,6

= X1X3X5 −
3

2
X1X4 −

1

2
X2X5 +

1

2
X2

3 ,

and

Ω2 := T2T4T6

= X2,4X4,4X6,4

= X2,5X4,5X6,5 −
2

3
X3

3,5X6,5

= X2,6X4,6X6,6 −
2

3
X3

3,6X6,6

= X2X4X6 −
2

3
X3

3X6 −
2

3
X2X

3
5 + 2X2

3X
2
5 − 3X3X4X5 +

3

2
X2

4 .

As a result, Ω1 and Ω2 are also Poisson central elements of A(j) for each 2 ≤ j ≤ 7

since Fract(A(j)) = Fract(Ā). We now want to show that the Poisson center of A is a

polynomial ring generated by Ω1 and Ω2 over C. The following discussions (similar to that

of the non-commutative algebra U+
q (G2) in Subsection 2.2.3) will lead us to the proof.

Set Sj := {λT ijj T
ij+1

j+1 · · ·T
i6
6 | ij, · · · , i6 ∈ N} for each 2 ≤ j ≤ 6. One can observe

that Sj is a multiplicative system of non-zero divisors of A(j) = C〈Xi,j | for all i =

1, · · · , 6〉. One can therefore localize A(j) at Sj as follows:

Rj := A(j)S−1
j .

Note, the set Σj := {T nj | n ∈ N} is a multiplicative set in both A(j) and A(j+1) for each
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2 ≤ j ≤ 6. It follows from the discussions in Subsection 5.1.8 that

A(j)Σ−1
j = A(j+1)Σ−1

j .

Similar to (2.2.1), one can verify that

Rj = Rj+1Σ−1
j , for all 2 ≤ j ≤ 6.

Again, the localization

R1 := R2[T−1
1 ]

also holds in R2 since T1 generates a multiplicative system in R2. In fact, R1 is the Pois-

son torus associated to the Poisson affine space Ā. As a result, R1 = C[T±1
1 , · · · , T±1

6 ],

where TiTj = µijTjTi for all 1 ≤ i, j ≤ 6 and µij ∈ M. Similar to (2.2.2), we construct

the following embeddings:

A := R7 ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4

⊂ R3 = R4Σ−1
3 ⊂ R2 = R3Σ−1

2 ⊂ R1. (5.2.1)

Note, the family (Xk1
1,j · · ·X

k6
6,j), where ki ∈ N if i < j and ki ∈ Z otherwise is a PBW-

basis of Rj for all 1 ≤ i, j ≤ 7. Therefore, the family (T k11 T k22 T k33 T k44 T k55 T k66 )k1,··· ,k6∈Z is

a basis of R1.

5.2.2 Lemma. ZP (R1) = C[Ω±1
1 ,Ω±1

2 ].

Proof. Obviously, C[Ω±1
1 ,Ω±1

2 ] ⊆ ZP (R1). For the reverse inclusion, let y ∈ ZP (R1).

Then, y can be written in terms of the basis of R1 as:

y =
∑

(i,··· ,n)∈Z6

a(i,··· ,n)T
i
1T

j
2T

k
3 T

l
4T

m
5 T

n
6 .
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One can verify that {y, T1} = (−3j−k+m+3n)yT1. Since y ∈ ZP (R1), it follows that

−3j − k +m+ 3n = 0.

Similarly, {y, T2} = (3i− 3k − 3l + 3n)yT2. Since y ∈ ZP (R1), we have:

3i− 3k − 3l + 3n = 0.

Following the same pattern for T3, T4, T5 and T6, one can confirm that

i+ 3j − 3l −m =0,

3j + 3k − 3m− 3n =0,

−i+ k + 3l − 3n =0,

−3i− 3j + 3l + 3m =0.

We already know the solution to this system of equations as i = k = m and j = l = n

(see the proof of Lemma 2.2.4). One can therefore write

y =
∑

(i,j)∈Z2

a(i,j)T
i
1T

j
2T

i
3T

j
4T

i
5T

j
6 =

∑
(i,j)∈Z2

q•a(i,j)T
i
1T

i
3T

i
5T

j
2T

j
4T

j
6 =

∑
(i,j)∈Z2

q•a(i,j)Ω
i
1Ωj

2.

This implies that y ∈ C[Ω±1
1 ,Ω±1

2 ] as expected. �

5.2.3 Corollary. 1. ZP (R3) = C[Ω1,Ω2].

2. ZP (Ā) = C[Ω1,Ω2].

Proof. 1. Clearly, C[Ω1,Ω2] ⊆ ZP (R3). For the reverse inclusion, let y ∈ ZP (R3). Then,

y can be written in terms of the basis of R3 (recall, Ti = Xi,3) as:

y =
∑

(i,··· ,n)∈N2×Z4

a(i,··· ,n)T
i
1T

j
2T

k
3 T

l
4T

m
5 T

n
6 .

Note, the generators T1, · · · , T6 of R3 satisfy the Poisson bracket of R1. Hence, following
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procedures similar to the lemma above, one will arrive at the conclusion that i = k = m

and j = l = n. Since i, j ≥ 0; it follows that y =
∑

(i,j)∈N2 a(i,j)T
i
1T

i
3T

i
5T

j
2T

j
4T

j
6 =∑

(i,j)∈N2 a(i,j)Ω
i
1Ωj

2. This implies that y ∈ C[Ω1,Ω2] as expected.

2. Similar to (1). �

5.2.4 Lemma. ZP (A) = C[Ω1,Ω2].

Proof. Since Ri is a localization of Ri+1, it follows that ZP (Ri+1) ⊆ ZP (Ri). From

(5.2.1), we have that ZP (A) ⊆ ZP (R3). Observe that C[Ω1,Ω2] ⊆ ZP (A) ⊆ ZP (R3) =

C[Ω1,Ω2]. Hence, ZP (A) = C[Ω1,Ω2]. �

5.2.5 Poisson H−invariant prime ideals of A of at most height 2. We begin this

section by showing that 〈Ω1〉 and 〈Ω2〉 are Poisson prime ideals. Note, the data of the

PDDA of A and expressions for Ω1 and Ω2 in the previous subsection will be very helpful

in the proofs of Lemmas 5.2.6 and 5.2.7. In fact, Lemmas 5.2.6 and 5.2.7 are similar to

Lemmas 2.3.1 and 2.3.2 respectively, as a result, the strategies of their proofs are also

similar. Recall that 〈Θ〉R denotes an ideal generated by the element Θ in any arbitrary

ring R. Where no doubt arises, we will simply write 〈Θ〉.

Recall that ψj : P.Spec(A(j+1)) ↪→ P.Spec(A(j)) for all j ∈ {2, · · · , 7}, and ψ :=

ψ2 ◦ · · · ◦ ψ6 : P.Spec(A) ↪→ P.Spec(Ā). Let Q ∈ P.Spec(A(j)). If Tj = Xj,j 6∈ Q,

then we already know that ψ−1
j (Q) = QS−1

j ∩ A(j+1) = P ∈ P.Spec(A(j+1)) for all

j ∈ {2, · · · , 7} (see Subsection 5.1.8). Observe that 〈T1〉 and 〈T2〉 are both elements of

P.Spec(Ā). Note, A(7) = A and A(2) = Ā.

The following result shows that 〈T1〉 ∈ Im(ψ) and that 〈Ω1〉 is the Poisson prime

ideal of A such that ψ(〈Ω1〉) = 〈T1〉.

5.2.6 Lemma. 〈Ω1〉 ∈ P.Spec(A).

Proof. We will prove this result in several steps by showing that:

1. 〈T1〉 ∈ P.Spec(A(3)).

2. 〈X1,4T3 − 1
2
T2〉 ∈ P.Spec(A(4)) [note, 〈T1〉[T−1

3 ] ∩ A(4) = 〈X1,4T3 − 1
2
T2〉].
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3. 〈X1,5T3 − 1
2
X2,5〉 ∈ P.Spec(A(5)) [note, 〈X1,4T3 − 1

2
T2〉[T−1

4 ] ∩ A(5) =

〈X1,5T3 − 1
2
X2,5〉].

4. 〈X1,5T3 − 1
2
X2,5〉[T−1

5 ] ∩ A(6) = 〈Ω1〉A(6) , hence 〈Ω1〉A(6) ∈ P.Spec(A(6)).

5. 〈Ω1〉A(6) [T−1
6 ] ∩ A = 〈Ω1〉A, hence 〈Ω1〉A ∈ P.Spec(A).

We proceed to prove the above claims.

1. One can easily verify that A(3)/〈T1〉 is isomorphic to a Poisson affine space of

rank 5. Hence, 〈T1〉 is a Poisson prime ideal in A(3).

2. Set I := 〈X1,4T3 − 1
2
T2〉. One can verify that {Xi,4, I} ⊆ I for all i = 1, · · · , 6.

Therefore, I is a Poisson ideal in A(4). In addition, A(4)/I is isomorphic to a polynomial

ring in five variables which is a domain, hence, I is a prime ideal. Since I is both Poisson

and prime ideal, it is a Poisson prime ideal in A(4).

3. Similar to (2).

4. Observe that Ω′1 := X1,5T3 − 1
2
X2,5 = Ω1T

−1
5 in A(6)[T−1

5 ]. Since 〈Ω′1〉 ∈

P.Spec(A(5)), we want to show that 〈Ω′1〉[T−1
5 ]∩A(6) = 〈Ω1〉A(6) . Observe that 〈Ω1〉A(6) ⊆

〈Ω′1〉[T−1
5 ] ∩ A(6). We establish the reverse inclusion. Let y ∈ 〈Ω′1〉[T−1

5 ] ∩ A(6). Then,

y ∈ 〈Ω′1〉[T−1
5 ]. There exists i ∈ N such that yT i5 ∈ 〈Ω′1〉. Hence, yT i5 = Ω′1v, for

some v ∈ A(5). Furthermore, since A(5)[T−1
5 ] = A(6)[T−1

5 ], there exists j ∈ N such that

vT j5 = v′ for some v′ ∈ A(6). It follows from yT i5 = Ω′1v that yT i+j5 = Ω′1vT
j
5 = Ω′1v

′.

Hence, yT δ5 = Ω′1T5v
′ = Ω1v

′, where δ = i + j + 1 (note, Ω′1T5 = Ω1 in A(6)). Let

S = {s ∈ N | ∃v′ ∈ A(6) : yT s5 = Ω1v
′}. Since δ ∈ S, we have that S 6= ∅. Let s = s0 be

the minimum element of S such that yT s05 = Ω1v
′ for some v′ ∈ A(6). We want to show

that s0 = 0. Suppose that s0 > 0. Since T5 is irreducible, yT s05 = Ω1v
′ implies that T5 is

a factor of Ω1 or v′. Clearly, T5 is not a factor of Ω1, hence, it must be a factor of v′. Now

A(6) can be viewed as a free C〈X1,6, X2,6, X3,6, T4, T6〉−module with basis
(
T ξ5

)
ξ∈N

. One

can therefore write v′ =
∑n

ξ=1 βξT
ξ
5 , where βξ ∈ C〈X1,6, X2,6, X3,6, T4, T6〉. Returning

to yT s05 = Ω1v
′, we have that yT s05 = Ω1

∑n
ξ=1 βξT

ξ
5 . This implies that yT s0−1

5 = Ω1v
′′,

where v′′ =
∑n

ξ=1 βξT
ξ−1
5 ∈ A(6). Consequently, s0 − 1 ∈ S, a contradiction! Therefore,

s0 = 0 and y = Ω1v
′ ∈ 〈Ω1〉A(6) . Hence, 〈Ω′1〉[T−1

5 ] ∩ A(6) ⊆ 〈Ω1〉A(6) as expected.



Section 5.2. Semiclassical limit of U+
q (G2) 131

5. The proof is similar to (4). We want to show that 〈Ω1〉A = 〈Ω1〉A(6) [T−1
6 ] ∩ A.

Note, 〈Ω1〉A ⊆ 〈Ω1〉A(6) [T−1
6 ]∩A is trivial. Let y ∈ 〈Ω1〉A(6) [T−1

6 ]∩A. Then, there exists

i ∈ N such that yT i6 = Ω1v for some v ∈ A(6). Furthermore, since A(6)[T−1
6 ] = A[T−1

6 ],

there exists j ∈ N such that vT j6 = v′ for some v′ ∈ A. It follows from yT i6 = Ω1v that

yT δ6 = Ω1v
′, where δ = i + j. Similar to (4), one can easily verify that δ = 0. Hence,

y = Ω1v
′ ∈ 〈Ω1〉A. Consequently, 〈Ω1〉A(6) [T−1

6 ] ∩ A ⊆ 〈Ω1〉A. �

Similarly, the following result also shows that 〈T2〉 ∈ Im(ψ), and that 〈Ω2〉 is the

Poisson prime ideal of A such that ψ(〈Ω2〉) = 〈T2〉.

5.2.7 Lemma. 〈Ω2〉 ∈ P.Spec(A).

Proof. We will also prove this result in several steps by showing that:

1. 〈T2〉A(3) ∈ P.Spec(A(3)).

2. 〈T2〉A(4) ∈ P.Spec(A(4)).

3. 〈T2〉A(4) [T−1
4 ] ∩ A(5) = 〈X2,5T4 − 2

3
T 3

3 〉, hence 〈X2,5T4 − 2
3
T 3

3 〉 ∈ P.Spec(A(5)).

4. 〈X2,5T4 − 2
3
T 3

3 〉[T−1
5 ] ∩ A(6) = 〈Ω′2〉A(6) , hence 〈X2,6T4 − 2

3
X3

3,6〉 ∈ P.Spec(A(6)).

5. 〈X2,6T4 − 2
3
X3

3,6〉[T−1
6 ] ∩ A = 〈Ω2〉, hence 〈Ω2〉 ∈ P.Spec(A).

We now proceed to prove the above claims.

1. Observe that A(3)/〈T2〉 is isomorphic to a Poisson affine space of rank 5 which is

a domain. Hence, 〈T2〉 is a Poisson prime ideal in A(3).

2. Similar to (1).

3. Recall from the PDDA that T2 = X2,5 − 2
3
T 3

3 T
−1
4 . We want to show that

〈T2〉A(4) [T−1
4 ] ∩A(5) = 〈X2,5T4 − 2

3
T 3

3 〉. Clearly, 〈X2,5T4 − 2
3
T 3

3 〉 ⊆ 〈T2〉A(4) [T−1
4 ] ∩A(5).

For the reverse inclusion, let y ∈ 〈T2〉A(4) [T−1
4 ] ∩ A(5). Then, y ∈ 〈T2〉A(4) [T−1

4 ]. Hence,

there exists i ∈ N such that yT i4 = vT2, for some v ∈ A(4). Furthermore, since

A(4)[T−1
4 ] = A(5)[T−1

4 ], there exists j ∈ N such that vT j4 = v′ for some v′ ∈ A(5).

It follows from yT i4 = vT2 that yT i+j4 = vT j4T2 = v′
(
X2,5 − 2

3
T 3

3 T
−1
4

)
. Consequently,
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yT δ4 = Ω′2v
′, where Ω′2 := X2,5T4 − 2

3
T 3

3 and δ = i + j + 1. Let S = {s ∈ N | ∃v′ ∈

A(5) : yT s4 = Ω′2v
′}. Since δ ∈ S, we have that S 6= ∅. Let s = s0 be the minimum

element of S such that yT s04 = Ω′2v
′ for some v′ ∈ A(5). Suppose that s0 > 0. We

want to show that s0 = 0. Since T4 is irreducible, yT s04 = Ω′2v
′ implies that T4 is a

factor of Ω′2 or v′. Clearly, T4 is not a factor of Ω′2, hence, it must be a factor of v′.

Now A(5) can be viewed as a free C〈X1,5, X2,5, T3, T5, T6〉−module with basis
(
T ξ4

)
ξ∈N

.

One can therefore write v′ =
∑n

ξ=1 βξT
ξ
4 , where βξ ∈ C〈X1,5, X2,5, T3, T5, T6〉. Given

yT s04 = Ω′2v
′, we have that yT s04 = Ω′2

∑n
ξ=1 βξT

ξ
4 . This implies that yT s0−1

4 = Ω′2v
′′,

where v′′ =
∑n

ξ=1 βξT
ξ−1
4 ∈ A(5). Consequently, s0 − 1 ∈ S, a contradiction! Therefore,

s0 = 0 and y = Ω′2v
′ ∈ 〈Ω′2〉. Hence, 〈T2〉A(4) [T−1

4 ] ∩ A(5) ⊆ 〈Ω′2〉 as desired.

4. The proof is similar to point (3). Note, Ω′2 = X2,5T4 − 2
3
T 3

3 = X2,6T4 −
2
3
X3

3,6. We want to show that 〈Ω′2〉A(5) [T−1
5 ]∩A(6) = 〈Ω′2〉A(6) . The inclusion 〈Ω′2〉A(6) ⊆

〈Ω′2〉A(5) [T−1
5 ] ∩ A(6) is trivial. For the reverse inclusion, let y ∈ 〈Ω′2〉A(5) [T−1

5 ] ∩ A(6).

This implies that there exists i ∈ N such that yT i5 = vΩ′2 for some v ∈ A(5). Since

A(5)[T−1
5 ] = A(6)[T−1

5 ], there exists j ∈ N such that vT j5 = v′ for some v′ ∈ A(6).

Therefore, yT δ5 = v′Ω′2, where δ = i + j. An argument similar to point (3) above will

reveal that δ = 0. As a result, y = v′Ω′2 = 〈Ω′2〉A(6) . Consequently, 〈Ω′2〉A(5) [T−1
5 ]∩A(6) ⊆

〈Ω′2〉A(6) as expected.

5. Note, Ω′2 = X2,5T4−2
3
T 3

3 = Ω2T
−1
6 inA[T−1

6 ]. We want to show that 〈Ω′2〉A(6) [T−1
6 ]∩

A = 〈Ω2〉. Clearly, 〈Ω2〉 ⊆ 〈Ω′2〉A(6) [T−1
6 ] ∩ A. For the reverse inclusion, let y ∈

〈Ω′2〉A(6) [T−1
6 ] ∩ A. Then, y ∈ 〈Ω′2〉A(6) [T−1

6 ]. Hence, there exists i ∈ N such that

yT i6 = Ω′2v, for some v ∈ A(6). Furthermore, since A(6)[T−1
6 ] = A[T−1

6 ], there ex-

ists j ∈ N such that vT j6 = v′ for some v′ ∈ A. Now, yT i6 = Ω′2v implies that

yT s06 = Ω′2v
′T6 = Ω2v

′, where s0 = i + j + 1. Note, Ω2 = Ω′2T6 in A. Similar

to point (3), one can easily show that s0 = 0 and y = Ω2v
′ ∈ 〈Ω2〉. As a result,

〈Ω′2〉A(6) [T−1
6 ] ∩ A ⊆ 〈Ω2〉 as desired. �

Observe that 〈T1, T2〉 and 〈T2, T3〉 are Poisson prime ideals of Ā. In the next lemma,

we will show that 〈T1, T2〉, 〈T2, T3〉 ∈ ψ(P.Spec(A)).
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5.2.8 Lemma. 〈T1, T2〉, 〈T2, T3〉 ∈ ψ(P.Spec(A)).

Proof. Let J (j) ∈ P.Spec(A(j)) for all 2 ≤ j ≤ 6. We already know that J (j+1) =

J (j)[T−1
j ] ∩ A(j+1) ∈ P.Spec(A(1+j)) provided Tj 6∈ J (j). Note, J (7) = J and A(7) = A.

We begin by showing that 〈T1, T2〉 ∈ ψ(P.Spec(A)).

Set J
(3)
1,2 := 〈T1, T2〉 ∈ P.Spec(A(3)). Observe that T3 6∈ J

(3)
1,2 . Therefore, J

(3)
1,2 [T−1

3 ] ∩

A(4) = J
(4)
1,2 . Suppose that T4 ∈ J (4)

1,2 . Then, since J
(3)
1,2 [T−1

3 ] = J
(4)
1,2 [T−1

3 ], we have that

T4 ∈ J (3)
1,2 [T−1

3 ] ∩ A(4) = J
(4)
1,2 [T−1

3 ] ∩ A(3) = J
(3)
1,2 , a contradiction! Therefore, T4 6∈ J (4)

1,2 .

Hence, J
(4)
1,2 [T−1

4 ] ∩ A(5) = J
(5)
1,2 . Suppose that T5 ∈ J (5)

1,2 . Then, T5 ∈ J (4)
1,2 [T−1

4 ] ∩ A(5) =

J
(5)
1,2 [T−1

4 ]∩A(4) = J
(4)
1,2 , a contradiction! Therefore, T5 6∈ J (5)

1,2 . Hence, J
(5)
1,2 [T−1

5 ]∩A(6) =

J
(6)
1,2 . Similarly, one can show that T6 6∈ J

(6)
1,2 . Hence, J

(6)
1,2 [T−1

6 ] ∩ A = J1,2. Therefore,

there exists J1,2 ∈ P.Spec(A) such that ψ(J1,2) = 〈T1, T2〉.

We finally show that 〈T2, T3〉 ∈ ψ(P.Spec(A)).

Set J
(4)
2,3 := 〈T2, T3〉 ∈ P.Spec(A(4)). Similar to (1), one can verify that Tj 6∈ J (j)

2,3 for all

j = 4, 5, 6. By an induction on j (note, j = 4, 5, 6), we have that J
(j)
2,3 [T−1

j ] ∩ A(j+1) =

J
(j+1)
2,3 . Therefore, there exists J

(7)
2,3 = J2,3 ∈ P.Spec(A) such that ψ(J2,3) = 〈T2, T3〉. �

In Ā, recall that Ω1 = T1T3T5 and Ω2 = T2T4T6. Observe that Ω1,Ω2 are both

elements of 〈T1, T2〉 and 〈T2, T3〉. In the above lemma, we know that J1,2 and J2,3 are

the elements of P.Spec(A) such that ψ(J1,2) = 〈T1, T2〉 and ψ(J2,3) = 〈T2, T3〉. In the

next lemma, we show that J1,2 and J2,3 contain Ω1 and Ω2.

5.2.9 Lemma. Ω1 and Ω2 are elements of J1,2 and J2,3.

Proof. Recall that Ω1 and Ω2 are central elements of A(j) for all 2 ≤ j ≤ 7. Given the set-

up in the proof of Lemma 5.2.8, we know that Ω1,Ω2 ∈ J (3)
1,2 = 〈T1, T2〉. By an induction

on j (where j = 3, 4, 5, 6), one can confirm that Ω1,Ω2 ∈ J (j)
1,2 [T−1

j ] ∩ A(j+1) = J
(j+1)
1,2 .

Therefore; Ω1,Ω2 ∈ J1,2.

Similarly; Ω1,Ω2 ∈ J (4)
2,3 = 〈T2, T3〉. By an induction on j (where j = 4, 5, 6), one

can confirm that Ω1,Ω2 ∈ J (j)
2,3 [T−1

j ] ∩ A(j+1) = J
(j+1)
2,3 . Therefore, Ω1,Ω2 ∈ J2,3. �
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We now want to find the height one Poisson H−invariant prime ideals of A, and

show that the height 2 Poisson H−invariant prime ideals of A contain those of height

one. Of course, the zero ideal 〈0〉 is the only height zero Poisson H−invariant prime

ideal.

Let the torus H := (C∗)2 acts by Poisson automorphisms on A via:

h ·X1 = α1X1 h ·X2 = α3
1α6X2 h ·X3 = α2

1α6X3

h ·X4 = α3
1α

2
6X4 h ·X5 = α1α6X5 h ·X6 = α6X6,

for all h := (α1, α6) ∈ H. ThisH−action is rational. Furthermore, Ω1 and Ω2 are Poisson

H−eigenvectors. Hence, 〈Ω1〉 and 〈Ω2〉 are Poisson H−invariant prime ideals.

Set θ1 := idP.Spec(Ā). For all 2 ≤ j ≤ 6, define θj := θj−1 ◦ ψj. Then, θj :

P.Spec(A(j+1)) ↪→ P.Spec(Ā). The map θj is injective [35, Section 2.3]. Let 〈Xj,j+1〉P

denote the smallest Poisson ideal in A(1+j) containing Xj,j+1. It follows from [35, Lemma

2.2] that there is a surjective Poisson algebra homomorphism gj : A(j) −→ A(j+1)/〈Xj,j+1〉P

given by gj(Xi,j) = Xi,j+1 := Xi,j+1 + 〈Xj,j+1〉P for all 1 ≤ i ≤ 6. Denote the kernel of

gj by ker(gj) and the image of ψ by Im(ψ). We have the following lemma.

5.2.10 Lemma. [35, Proposition 2.8] Let P ∈ P.Spec(Ā). The following are equivalent:

• P ∈ Im(ψ),

• for all 2 ≤ j ≤ 6, we have P ∈ Im(θj−1) and either Xj,j = Xj,j+1 6∈ θ−1
j−1(P ) or

ker(gj) ⊆ θ−1
j−1(P ).

Note, the map ψ induces a canonical embedding fromH−P.Spec(A) toH−P.Spec(Ā).

Observe that {〈Ti〉 | i = 1, · · · , 6} is the set of only height one Poisson H−invariant

prime ideals we have in Ā. Since ψ preserves the height of a prime ideal, if ψ−1(〈Ti〉) ∈

P.Spec(A), then it is a height one Poisson H−invariant prime ideal in A for all 1 ≤ i ≤ 6.

For example, we already know that ψ−1(〈T1〉) = 〈Ω1〉 and ψ−1(〈T2〉) = 〈Ω2〉. Therefore,

〈Ω1〉 and 〈Ω2〉 are height one Poisson H−invariant prime ideals in A. We will show in
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the next lemma that 〈Ω1〉 and 〈Ω2〉 are the only height one Poisson H−invariant prime

ideals we have in A.

5.2.11 Lemma. For each j ∈ {3, 4, 5, 6}, 〈Tj〉 6∈ ψ(P.Spec(A)).

Proof. Suppose that there exists j ∈ {3, 4, 5, 6} such that 〈Tj〉 ∈ ψ(P.Spec(A)). Then,

there exists P ∈ P.Spec(A) such that ψ(P ) = 〈Tj〉A(j) , where ψ := ψj ◦ · · ·ψ6. Set

P (j) := 〈Tj〉A(j) . Since Tj ∈ P (j), it follows from Theorem 5.2.10 that ker(gj) ⊆ P (j).

The rest follows in cases.

• When j = 3, then ker(g3) ⊆ P (3) = 〈T3〉A(3) . One can easily deduce from the

Poisson bracket of A that {X3,4, X1,4} = −X1,4X3,4 − X2,4. This implies that

X2,4 = −{X3,4, X1,4} − X1,4X3,4 ∈ 〈X3,4〉P = 〈T3〉P . It follows that g3(X2,3) =

X2,4 + 〈T3〉P = 0. Hence, X2,3 = T2 ∈ ker(g3) ⊆ 〈T3〉A(3) , a contradiction!

Consequently, 〈T3〉 6∈ ψ(P.Spec(A)).

• When j = 4, then ker(g4) ⊆ P (4) = 〈T4〉A(4) . From the Poisson bracket of A, we

have that X2
3,5 = −1

2
{X4,5, X1,5} ∈ 〈X4,5〉P = 〈T4〉P . Since g4 is a homomorphism,

it follows that g4(X2
3,4) = (g4(X3,4))2 = X2

3,5 + 〈T4〉P = 0. Therefore, X2
3,4 = T 2

3 ∈

ker(g4) ⊆ 〈T4〉A(4) , a contradiction! Hence, 〈T4〉 6∈ ψ(P.Spec(A)).

• When j = 5, then ker(g5) ⊆ P (5) = 〈T5〉A(5) . One can deduce from the Poisson

bracket of A that X4,6 = −1
3
X3,6X5,6 − 1

3
{X5,6, X3,6} ∈ 〈X5,6〉P = 〈T5〉P . It

follows that g5(X4,5) = X4,6 + 〈T5〉P = 0. Hence, X4,6 = T4 ∈ ker(g5) ⊆ 〈T5〉A(5) ,

a contradiction! Therefore, 〈T5〉 6∈ ψ(P.Spec(A)).

• Finally, when j = 6, then ker(g6) ⊆ P (6) = 〈T6〉A(6) . Similarly, one can verify that

X5 = X1X6 − 1
3
{X6, X1} ∈ 〈X6〉P = 〈T6〉P . Now, g6(X5,6) = X5 + 〈T6〉P =

0. Therefore, X5,6 = T5 ∈ ker(g6) ⊆ 〈T6〉A(6) , a contradiction! Hence, 〈T6〉 6∈

ψ(P.Spec(A)).

In conclusion, 〈Tj〉 6∈ ψ(P.Spec(A)) for all j ∈ {3, 4, 5, 6} as expected.

The corollary below is deduced from the above proof (i.e. the proof of Lemma

5.2.11). �
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5.2.12 Corollary. Let P ∈ ψ(P.Spec(A)). If Tj ∈ P, then Tj−1, · · · , T2 ∈ P for all

3 ≤ j ≤ 6.

Recall from Lemma 5.2.8 that there exist J1,2 and J2,3 of P.Spec(A) such that

ψ(J1,2) = 〈T1, T2〉 and ψ(J2,3) = 〈T2, T3〉. As a result of Corollary 5.2.12, the Poisson

ideals 〈T1, T2〉 and 〈T2, T3〉 are the only height two Poisson H−invariant prime ideals

of ψ(P.Spec(A)). Since ψ preserves Poisson H−invariant prime ideals and the height

of a Poisson prime ideal, it implies that J1,2 and J2,3 are the only height two Poisson

H−invariant prime ideals of A. It follows from Lemma 5.2.9 that the height two Poisson

H−invariant prime ideals of A contain Ω1 and Ω2.

5.2.13 Remark. Since the height two Poisson H−invariant prime ideals of A contain

Ω1 and Ω2, every non-zero Poisson H−invariant prime ideal of A will contain either Ω1

or Ω2. Note, those Poisson H−invariant primes of at least height 2 will contain both Ω1

and Ω2.

5.2.14 H−strata corresponding 〈0〉, 〈Ω1〉 and 〈Ω2〉. In this subsection, we aim to find

the H−strata corresponding to 〈0〉, 〈Ω1〉 and 〈Ω2〉. We state the results in Propositions

5.2.15, 5.2.16 and 5.2.17. The proofs of these three propositions are similar to those of

Propositions 2.4.4, 2.4.5 and 2.4.6 respectively. As a result, we will only prove Proposition

5.2.15, and leave the remaining ones for the reader to verify. Note, all Poisson ideals in

A shall be written as 〈Θ〉, where Θ ∈ A. However, if we want to refer to a Poisson ideal

in any other Poisson algebra, say R, then that Poisson ideal shall be written as 〈Θ〉R,

where in this case, Θ ∈ R.

5.2.15 Proposition. Let P be the set of those unitary irreducible polynomials P (Ω1,Ω2) ∈

C[Ω1,Ω2] with P (Ω1,Ω2) 6= Ω1 and P (Ω1,Ω2) 6= Ω2. Then P.Spec〈0〉(A) = {〈0〉} ∪

{〈P (Ω1,Ω2)〉 | P (Ω1,Ω2) ∈ P} ∪ {〈Ω1 − α,Ω2 − β〉 | α, β ∈ C∗}.

Proof. We claim that P.Spec〈0〉(A) = {Q ∈ P.Spec(A) | Ω1,Ω2 6∈ Q}. To estab-

lish this claim, let us assume that this is not the case. That is, suppose there exists

Q ∈ P.Spec〈0〉(A) such that Ω1,Ω2 ∈ Q, then the product Ω1Ω2 which is Poisson
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H−eigenvector belongs to Q. Consequently, Ω1Ω2 ∈
⋂
h∈H h ·Q = 〈0〉, a contradiction!

Hence, we have shown that P.Spec〈0〉(A) ⊆ {Q ∈ P.Spec(A) | Ω1,Ω2 6∈ Q}. Con-

versely, suppose that Q ∈ P.Spec(A) such that Ω1,Ω2 6∈ Q, then
⋂
h∈H h ·Q is a Poisson

H−invariant prime ideal of A, which contains neither Ω1 nor Ω2. The only possibility for⋂
h∈H h ·Q is the zero ideal since every non-zero Poisson H−invariant prime ideal of A

contains Ω1 or Ω2 (Remark 5.2.13). Thus,
⋂
h∈H h ·Q = 〈0〉. Hence, Q ∈ P.Spec〈0〉(A).

Therefore, {Q ∈ P.Spec(A) | Ω1,Ω2 6∈ Q} ⊆ P.Spec〈0〉(A). This confirms our claim.

Since Ω1,Ω2 ∈ ZP (A), we have that the set {Ωi
1Ωj

2 | i, j ∈ N} is a multiplicative set

in A. We can now localize A as R := A[Ω−1
1 ,Ω−1

2 ]. Given Q ∈ P.Spec〈0〉(A), the map

φ : Q −→ Q[Ω−1
1 ,Ω−1

2 ] is an increasing bijection from P.Spec〈0〉(A) onto P.Spec(R).

Let us verify that R is Poisson H−simple before we describe P.Spec(R). Now, φ

still induces a bijection between the set of those Poisson H−invariant prime ideals of

P.Spec〈0〉(A) and the set of Poisson H−invariant prime ideals of P.Spec(R). It is already

known that the set of Poisson H−invariant prime ideals of A that contains neither Ω1

nor Ω2 consists only of the zero ideal {〈0〉} (Remark 5.2.13). This implies that 〈0〉R

is the only Poisson H−invariant prime ideal of R. Every Poisson H−invariant proper

ideal of R is contained in a Poisson H−invariant prime ideal of R. Therefore, 〈0〉R is

the only unique Poisson H−invariant proper ideal of R. This confirms that R is Poisson

H−simple. It follows from [16, Theorem 4.2] that the extension and contraction maps

provide a mutually inverse bijection between P.Spec(R) and Spec(ZP (R)). From Lemma

5.2.4, ZP (A) = C[Ω1,Ω2], and so ZP (R) = C[Ω±1
1 ,Ω±1

2 ]. Since C is algebraically closed,

we have that Spec(ZP (R)) = {〈0〉ZP (R)}∪{〈P (Ω1,Ω2)〉ZP (R) | P (Ω1,Ω2) ∈ P}∪{〈Ω1−

α,Ω2 − β〉ZP (R) | α, β ∈ C∗}. One can now recover P.Spec(R) from Spec(ZP (R)) as

follows: P.Spec(R)= {〈0〉R} ∪ {〈P (Ω1,Ω2)〉R | P (Ω1,Ω2) ∈ P} ∪ {〈Ω1 − α,Ω2 − β〉R |

α, β ∈ C∗}. It follows that P.Spec〈0〉(A) = {〈0〉R∩A}∪{〈P (Ω1,Ω2)〉R∩A | P (Ω1,Ω2) ∈

P} ∪ {〈Ω1 − α,Ω2 − β〉R ∩ A | α, β ∈ C∗}.

Undoubtedly, 〈0〉R ∩ A = 〈0〉. We now have to show that 〈P (Ω1,Ω2)〉R ∩ A =

〈P (Ω1,Ω2)〉, ∀P (Ω1,Ω2) ∈ P , and 〈Ω1−α,Ω2−β〉R∩A = 〈Ω1−α,Ω2−β〉, ∀α, β ∈ C∗,
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in order to complete the proof.

Fix P (Ω1,Ω2) ∈ P . Clearly, 〈P (Ω1,Ω2)〉 ⊆ 〈P (Ω1,Ω2)〉R ∩ A. To show the reverse

inclusion, let y ∈ 〈P (Ω1,Ω2)〉R ∩ A. Since y ∈ 〈P (Ω1,Ω2)〉R, it implies that y =

dP (Ω1,Ω2) for some d ∈ R. Also, d ∈ R implies that there exists i, j ∈ N such that

d = aΩ−i1 Ω−j2 , where a ∈ A. Therefore, y = aΩ−i1 Ω−j2 P (Ω1,Ω2), which implies that

yΩi
1Ωj

2 = aP (Ω1,Ω2). Choose (i, j) ∈ N2 minimal (in the lexicographic order on N2)

such that the equality holds. Without loss of generality, let us suppose that i > 0, then

aP (Ω1,Ω2) ∈ 〈Ω1〉. Since 〈Ω1〉 is a prime ideal, it implies that a ∈ 〈Ω1〉 or P (Ω1,Ω2) ∈

〈Ω1〉. Since P (Ω1,Ω2) ∈ P , it implies that P (Ω1,Ω2) 6∈ 〈Ω1〉. Hence, a ∈ 〈Ω1〉, which

implies that a = tΩ1 for some t ∈ A. Returning to yΩi
1Ωj

2 = aP (Ω1,Ω2), we have that

yΩi
1Ωj

2 = tΩ1P (Ω1,Ω2). Finally, yΩi−1
1 Ωj

2 = tP (Ω1,Ω2). This clearly contradicts the

minimality of (i, j), hence (i, j) = (0, 0). As a result, y = aP (Ω1,Ω2) = 〈P (Ω1,Ω2)〉.

Consequently, 〈P (Ω1,Ω2)〉R ∩ A = 〈P (Ω1,Ω2)〉 for all P (Ω1,Ω2) ∈ P as desired.

Similarly, we show that 〈Ω1 − α,Ω2 − β〉R ∩ A = 〈Ω1 − α,Ω2 − β〉; ∀α, β ∈ C∗.

Fix α, β ∈ C∗. Obviously, 〈Ω1 − α,Ω2 − β〉 ⊆ 〈Ω1 − α,Ω2 − β〉R ∩ A. We establish

the reverse inclusion. Let y ∈ 〈Ω1 − α,Ω2 − β〉R ∩ A. Since y ∈ 〈Ω1 − α,Ω2 − β〉R,

we have that y = m0(Ω1 − α) + n0(Ω2 − β), where m0, n0 ∈ R. Also, m0, n0 ∈

R implies that there exists i, j ∈ N such that m0 = mΩ−i1 Ω−j2 and n0 = nΩ−i1 Ω−j2

for some m,n ∈ A. Therefore, y = mΩ−i1 Ω−j2 (Ω1 − α) + nΩ−i1 Ω−j2 (Ω2 − β), which

implies that yΩi
1Ωj

2 = m(Ω1 − α) + n(Ω2 − β). Choose (i, j) ∈ N2 minimal (in the

lexicographic order on N2) such that the equality holds. Without loss of generality,

suppose that i > 0 and let f : A −→ A/〈Ω2 − β〉 be a canonical surjection. We have

that f(y)f(Ω1)if(Ω2)j = f(m)f(Ω1 − α). It follows that f(m)f(Ω1 − α) ∈ 〈f(Ω1)〉.

Note, f(Ω1 − α) 6∈ 〈f(Ω1)〉. It implies that f(m) ∈ 〈f(Ω1)〉. Therefore, ∃λ ∈ A such

that f(m) = f(λ)f(Ω1). Consequently, f(y)f(Ω1)if(Ω2)j = f(λ)f(Ω1)f(Ω1 − α).

Since f(Ω1) 6= 0, it implies that f(y)f(Ω1)i−1f(Ω2)j = f(λ)f(Ω1 − α). Therefore,

yΩi−1
1 Ωj

2 = λ(Ω1 − α) + λ′(Ω2 − β), for some λ′ ∈ A. This contradicts the minimality

of (i, j). Hence, (i, j) = (0, 0) and so y = m(Ω1 − α) + n(Ω2 − β) ∈ 〈Ω1 − α,Ω2 − β〉.
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In conclusion, 〈Ω1 − α,Ω2 − β〉R ∩ A = 〈Ω1 − α,Ω2 − β〉, ∀α, β ∈ C∗. �

5.2.16 Proposition. P.Spec〈Ω1〉(A) = {〈Ω1〉} ∪ {〈Ω1,Ω2 − β〉 | β ∈ C∗}.

Proof. The proof is similar to that of Proposition 2.4.5. �

5.2.17 Proposition. P.Spec〈Ω2〉(A) = {〈Ω2〉} ∪ {〈Ω1 − α,Ω2〉 | α ∈ C∗}.

Proof. The proof is similar to that of Proposition 2.4.6. �

5.2.18 Corollary. The Poisson ideal 〈Ω1−α,Ω2−β〉 is primitive in A for each (α, β) ∈

C2 \ {(0, 0)}.

Proof. Since the Poisson ideal 〈Ω1 − α,Ω2 − β〉 is maximal in its respective strata for

each (α, β) ∈ C2 \ {(0, 0)}, it is also primitive (see Proposition 5.1.7). �

5.2.19 Proposition. Let (α, β) ∈ C2\{(0, 0)}. The Poisson prime ideal 〈Ω1−α,Ω2−β〉

is maximal in A.

Proof. The proof is similar to that of Proposition 2.4.8. Suppose that there exists a

maximal Poisson ideal I of A such that 〈Ω1−α,Ω2−β〉  I  A. Let J be the Poisson

H−invariant prime ideal in A such that I ∈ P.SpecJ(A). By Propositions 5.2.15, 5.2.16

and 5.2.17, J cannot be 〈0〉, 〈Ω1〉 or 〈Ω2〉, since either of these will lead to a contradiction.

Every non-zero Poisson H−invariant prime ideal contains Ω1 only or Ω2 only or both

(Remark 5.2.13). Since J 6= 〈Ω1〉, 〈Ω2〉, it implies that J contains both Ω1 and Ω2.

Moreover, since J ⊆ I, it implies that Ω1,Ω2 ∈ I. Given 〈Ω1 − α,Ω2 − β〉 ⊂ I, we have

that Ω1 − α,Ω2 − β ∈ I. It follows that α, β ∈ I, hence I = A, a contradiction! This

confirms that 〈Ω1 − α,Ω2 − β〉 is a maximal Poisson ideal in A. �

5.3 Semiclassical limit of Aα,β

In Chapter 3, we studied the simple quotients Aα,β. Similarly, in this section, we will

also study the simple quotients of A = C[X1, · · · , X6], which we denote by Aα,β (note,
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α, β ∈ C2 \ {(0, 0)}). We will conclude that Aα,β is the semiclassical of the non-

commutative algebra Aα,β, and close this section by finding a C−basis for Aα,β.

Let α, β ∈ C2 \ {(0, 0)}, and set

Aα,β :=
A

〈Ω1 − α,Ω2 − β〉
.

We denote the canonical image of Xi by xi := Xi + 〈Ω1 − α,Ω2 − β〉 for each i ∈

{1, · · · , 6}. The algebra Aα,β is commutative, and satisfies the following two relations:

x1x3x5 −
3

2
x1x4 −

1

2
x2x5 +

1

2
x2

3 = α, (5.3.1)

x2x4x6 −
2

3
x3

3x6 −
2

3
x2x

3
5 + 2x2

3x
2
5 − 3x3x4x5 +

3

2
x2

4 = β. (5.3.2)

We also have the following extra relations in Aα,β.

5.3.1 Lemma.

(1) x2
3 =2α + 3x1x4 + x2x5 − 2x1x3x5.

(2) x2
4 =

2

3
β +

8

9
αx3x6 +

4

3
x1x3x4x6 +

4

9
x2x3x5x6 −

16

9
αx1x5x6 −

8

3
x2

1x4x5x6

+
16

9
x2

1x3x
2
5x6 −

8

9
x2x

3
5 −

8

3
αx2

5 − 4x1x4x
2
5 +

8

3
x1x3x

3
5 + 2x3x4x5 −

2

3
x2x4x6

− 8

9
x1x2x

2
5x6.

(3) x2
3x4 = 2αx4 + x2x4x5 + 2βx1 +

8

3
αx1x3x6 + 4x2

1x3x4x6 +
4

3
x1x2x3x5x6

− 8x3
1x4x5x6 −

8

3
x2

1x2x
2
5x6 +

16

3
x3

1x3x
2
5x6 −

8

3
x1x2x

3
5 − 8αx1x

2
5 − 12x2

1x4x
2
5

+ 8x2
1x3x

3
5 + 4x1x3x4x5 − 2x1x2x4x6 −

16

3
αx2

1x5x6.
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(4) x3x
2
4 =

2

3
βx3 +

16

9
α2x6 +

16

3
αx1x4x6 +

16

9
αx2x5x6 +

16

9
αx1x3x5x6 +

4

9
x2

2x
2
5x6

+
8

9
x1x2x3x

2
5x6 −

64

9
αx3

1x5x
2
6 −

160

9
αx2

1x
2
5x6 −

80

3
x3

1x4x
2
5x6 −

64

9
x2

1x2x
3
5x6

−8

9
x2x3x

3
5 −

8

3
αx3x

2
5 + 4x1x3x4x

2
5 +

160

9
x3

1x3x
3
5x6 − 16x2

1x4x
3
5 −

8

3
x1x2x

4
5

−4

3
x1x2x4x5x6 +

8

3
βx2

1x6 +
32

9
αx2

1x3x
2
6 +

16

3
x3

1x3x4x
2
6 +

16

9
x2

1x2x3x5x
2
6

−32

3
x4

1x4x5x
2
6 −

8

3
x2

1x2x4x
2
6 + 4αx4x5 + 2x2x4x

2
5 + 4βx1x5 +

64

9
x4

1x3x
2
5x

2
6

−2

3
x2x3x4x6 −

32

3
αx1x

3
5 +

32

3
x2

1x3x
4
5 +

32

3
x2

1x3x4x5x6 −
32

9
x3

1x2x
2
5x

2
6.

Now, the commutative algebra Aα,β is a Poisson C−algebra with the Poisson bracket

defined as follows:

{x2, x1} = −3x1x2 {x3, x1} = −x1x3 − x2 {x3, x2} = −3x2x3

{x4, x1} = −2x2
3 {x4, x2} = −3x2x4 − 4x3

3 {x4, x3} = −3x3x4

{x5, x1} = x1x5 − 2x3 {x5, x2} = −6x2
3 {x5, x3} = −x3x5 − 3x4

{x5, x4} = −3x4x5 {x6, x1} = 3x1x6 − 3x5 {x6, x2} = 3x2x6 + 9x4 − 18x3x5

{x6, x3} = −6x2
5 {x6, x4} = −3x4x6 − 4x3

5 {x6, x5} = −3x5x6.

Since 〈Ω1−α,Ω2−β〉 is a maximal Poisson prime ideal of A (Proposition 5.2.19), Aα,β is

a simple domain. Moreover, Aα,β is noetherian since it is a factor algebra of a noetherian

ring A.

5.3.2 Remark. The Poisson algebraAα,β is the semiclassical limit of the non-commutative

algebra Aα,β.

Let α, β 6= 0. Recall that Ω1 = T1T3T5 and Ω2 = T2T4T6 in Ā. There exists a

multiplicative set Sα,β such that

Aα,βS−1
α,β
∼= Pα,β :=

R1

〈T1T3T5 − α, T2T4T6 − β〉
,

where R1 = C[T±1
1 , · · · , T±1

6 ] is a Poisson torus associated to the Poisson affine space
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Ā. Let ti := Ti + 〈T1T3T5−α, T2T4T6−β〉 denote the canonical image of Ti in Pα,β for

each 1 ≤ i ≤ 6. The algebra Pα,β is a Poisson torus generated by t±1
1 , · · · , t±1

6 subject

to the relations:

t1 = αt−1
3 t−1

5 and t2 = βt−1
4 t−1

5 .

One can verify that Pα,β
∼= C[t±1

3 , t±1
4 , t±1

5 , t±1
6 ]. One can also verify that this isomorphism

holds when either α = 0 or β = 0 (see Section 3.1 for a similar construction). Henceforth,

we will identify Pα,β with C[t±1
3 , t±1

4 , t±1
5 , t±1

6 ] for all (α, β) ∈ C \ {(0, 0)}.

Set Aβ := A/〈Ω2 − β〉, β ∈ C. Denote the canonical image of Xi in Aβ by

x̂i := Xi + 〈Ω2 − β〉 for each 1 ≤ i ≤ 6. It can be verified that Aα,β ∼= Aβ/〈Ω̂1 − α〉.

Note, Aβ satisfies the relation:

x̂4
2 =

2

3
β − 2

3
x̂2x̂4x̂6 +

4

9
x̂3

3x̂6 +
4

9
x̂2x̂5

3 − 4

3
x̂3

2x̂5
2 + 2x̂3x̂4x̂5. (5.3.3)

5.3.3 Proposition. The set F = {x̂1
ix̂2

jx̂3
kx̂4

ξx̂5
lx̂6

m | (ξ, i, j, k, l,m) ∈ {0, 1} × N5}

is a C−basis of Aβ.

Proof. Since (Π6
s=1X

is
s )is∈N is a basis of A over C, we have that (Π6

s=1x̂s
is)is∈N is a

spanning set of Aβ over C. We want to show that F is a spanning set of Aβ. It is

sufficient to do that by showing that x̂1
i1x̂2

i2x̂3
i3x̂4

i4x̂5
i5x̂6

i6 can be written as a finite

linear combination of the elements of F over C for all i1, · · · , i6 ∈ N. We do this by an

induction on i4. The result is clear when i4 = 0. For i4 ≥ 0, suppose that

x̂1
i1x̂2

i2x̂3
i3x̂4

i4x̂5
i5x̂6

i6 =
∑

(ξ,v)∈I

a(ξ,v)x̂1
ix̂2

jx̂3
kx̂4

ξx̂5
lx̂6

m,

where v := (i, j, k, l,m) ∈ N5, I is a finite subset of {0, 1} × N5, and a(ξ,v) are complex

numbers. It follows that

x̂1
i1x̂2

i2x̂3
i3x̂4

i4+1x̂5
i5x̂6

i6 =
∑

(ξ,v)∈I

a(ξ,v)x̂1
ix̂2

jx̂3
kx̂4

ξ+1x̂5
lx̂6

m.
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We have to show that x̂1
ix̂2

jx̂3
kx̂4

ξ+1x̂5
lx̂6

m ∈ Span(F) for all (ξ, v) ∈ I. The result is ob-

vious when ξ = 0. For ξ = 1, then using (5.3.3), one can verify that x̂1
ix̂2

jx̂3
kx̂4

2x̂5
lx̂6

m ∈

Span(F). Consequently, x̂1
i1x̂2

i2x̂3
i3x̂4

i4+1x̂5
i5x̂6

i6 ∈ Span(F). Therefore, F spans Aβ.

We proceed to show that F is a linearly independent set. Note, the ordering <4

in the proof of Proposition 3.2.1 (see item ♣) will be helpful in this part of the proof.

Suppose that ∑
(ξ,v)∈I

a(ξ,v)x̂1
ix̂2

jx̂3
kx̂4

ξx̂5
lx̂6

m = 0.

It follows that ∑
(ξ,v)∈I

a(ξ,v)X
i
1X

j
2X

k
3X

ξ
4X

l
5X

m
6 = ν(Ω2 − β),

where ν ∈ A. Write ν =
∑

(i,··· ,n)∈J b(i,··· ,n)X
i
1X

j
2X

k
3X

l
4X

m
5 X

n
6 , where J is a finite

subset of N6, and b(i,··· ,n) are complex numbers. From Subsection 5.2.1, we have that

Ω2 = X2X4X6 − 2
3
X3

3X6 − 2
3
X2X

3
5 + 2X2

3X
2
5 − 3X3X4X5 + 3

2
X2

4 . It follows that:

∑
(ξ,v)∈I

a(ξ,v)X
i
1X

j
2X

k
3X

ξ
4X

l
5X

m
6 =

∑
(i,··· ,n)∈J

b(i,··· ,n)X
i
1X

j
2X

k
3X

l
4X

m
5 X

n
6 (Ω2 − β)

=
∑

(i,··· ,n)∈J

3

2
b(i,··· ,n)X

i
1X

j
2X

k
3X

l+2
4 Xm

5 X
n
6 + LT<4 ,

where LT<4 contains lower order terms with respect to <4 (see item ♣ in the proof of

Proposition 3.2.1). Moreover, LT<4 vanishes when b(i,··· ,n) = 0 for all (i, · · · , n) ∈ J.

One can easily confirm this when the previous line of equality (right hand side) is fully

expanded.

Suppose that there exists (i, j, k, l,m, n) ∈ J such that b(i,j,k,l,m,n) 6= 0.

Let (i′, j′, k′, l′,m′, n′) be the greatest element of J with respect to <4 such that

b(i′,j′,k′,l′,m′,n′) 6= 0. Note, the family (X i
1X

j
2X

k
3X

l
4X

m
5 X

n
6 )i,··· ,n∈N is a basis forA and LT<4

contains lower order terms. Hence, identifying the coefficients of X i′
1 X

j′

2 X
k′
3 X

l′+2
4 Xm′

5 Xn′
6 ,

we have 3
2
b(i′,j′,k′,l′,m′,n′) = 0. Therefore, b(i′,j′,k′,l′,m′,n′) = 0, a contradiction! As a result,

b(i,j,k,l,m,n) = 0 for all (i, j, k, l,m, n) ∈ J, and
∑

(ξ,v)∈I a(ξ,v)X
i
1X

j
2X

k
3X

ξ
4X

l
5X

m
6 = 0.

Consequently, a(ξ,i,j,k,l) = 0 for all (ξ, i, j, k, l) ∈ I. �
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We are now ready to find a basis for Aα,β.

5.3.4 Proposition. The set P = {xi1x
j
2x

ε1
3 x

ε2
4 x

k
5x

l
6 | (ε1, ε2, i, j, k, l) ∈ {0, 1}2 × N4} is

a C−basis of Aα,β.

Proof. Since the set F = {x̂1
i1x̂2

i2x̂3
i3x̂4

ξx̂5
i5x̂6

i6 | (i1, i2, i3, ξ, i5, i6) ∈ {0, 1} × N4} is

a C−basis of Aβ over C (Proposition 5.3.3) and Aα,β is identified with Aβ/〈Ω̂1 − α〉, it

follows that (xi11 x
i2
2 x

i3
3 x

ξ
4x

i5
5 x

i6
6 )(i1,i2,i3,ξ,i5,i6)∈{0,1}×N5 is a spanning set of Aα,β over C. We

want to show that P spansAα,β by showing that ei11 e
i2
2 e

i3
3 e

ξ
4e
i5
5 e

i6
6 can be written as a finite

linear combination of the elements of P over C for all (i1, i2, i3, ξ, i5, i6) ∈ {0, 1} × N5.

By Proposition 5.3.3, it is sufficient to do this by an induction on i3. The result is obvious

when i3 = 0 or 1. For i3 ≥ 1, suppose that

xi11 x
i2
2 x

i3
3 x

ξ
4x

i5
5 x

i6
6 =

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x
i
1x

j
2x

ε1
3 x

ε2
4 x

k
5x

l
6,

where v := (i, j, k, l) ∈ N4, a(ε1,ε2,v) are complex numbers, and I is a finite subset of

{0, 1}2 × N4. It follows from the inductive hypothesis that

xi11 x
i2
2 x

i3+1
3 xξ4x

i5
5 x

i6
6 =

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x
i
1x

j
2x

ε1+1
3 xε24 x

k
5x

l
6.

We need to show that xi1x
j
2x

ε1+1
3 xε24 x

k
5x

l
6 ∈ Span(P) for all (ε1, ε2, v) ∈ I. The result is

obvious when (ε1, ε2) = (0, 0), (0, 1). Using Lemma 5.3.1(1),(3), one can also show that

xi1x
j
2x

ε1+1
3 xε24 x

k
5x

l
6 ∈ Span(P) for all (ε1, ε2) = (1, 0), (1, 1); and i, j, k, l ∈ N. Therefore,

xi11 x
i2
2 x

i3+1
3 xξ4x

i5
5 x

i6
6 ∈ Span(P). As a result, P spans Aα,β.

We proceed to show that F is a linearly independent set. Note, the ordering <3

in the proof of Proposition 3.2.2 (see item ♠) will be helpful in this part of the proof.

Suppose that

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x
i
1x

j
2x

ε1
3 x

ε2
4 x

k
5x

l
6 = 0.
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Then, we have that

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x̂1
ix̂2

jx̂3
ε1x̂4

ε2 ê5
kê6

l = (Ω̂1 − α)ν

in Aβ, where ν ∈ Aβ. Set w := (i, j, k, l,m) ∈ N5, and let J1 and J2 be finite subsets

of N5. One can write ν in terms of the basis F of Aβ as

ν =
∑
w∈J1

bwx̂1
ix̂2

jx̂3
kx̂4x̂5

lx̂6
m +

∑
w∈J2

cwx̂1
ix̂2

jx̂3
kx̂5

lx̂6
m,

where bw and cw are complex numbers. Note, Ω̂1 = x̂1x̂3x̂5 − 3
2
x̂1x̂4 − 1

2
x̂2x̂5 + 1

2
x̂3

2.

Given this expression, and the relation (5.3.3), one can express the above equality as

follows:

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x̂1
ix̂2

jx̂3
ε1x̂4

ε2 ê5
kê6

l =
∑
w∈J1

bwx̂1
ix̂2

jx̂3
kx̂4x̂5

lx̂6
m(Ω̂1 − α)

+
∑
w∈J2

cwx̂1
ix̂2

jx̂3
kx̂5

lx̂6
m(Ω̂1 − α)

=
∑
w∈J1

1

2
bwx̂1

ix̂2
jx̂3

k+2x̂4x̂5
lx̂6

m

−
∑
w∈J1

2

3
bwx̂1

i+1x̂2
jx̂3

k+3x̂5
lx̂6

m+1

−
∑
w∈J2

3

2
cwx̂1

i+1x̂2
jx̂3

kx̂4x̂5
lx̂6

m

+
∑
w∈J2

1

2
cwx̂1

ix̂2
jx̂3

k+2x̂5
lx̂6

m + Υ,

where Υ is defined on the next page.
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Υ =
∑
w∈J1

r1bwx̂1
i+1x̂2

jx̂3
kx̂5

lx̂6
m +

∑
w∈J1

r2bwx̂1
i+1x̂2

1+jx̂3
kx̂4x̂5

lx̂6
m+1

+
∑
w∈J1

r3bwx̂1
i+1x̂2

j+1x̂3
kx̂5

l+3x̂6
m +

∑
w∈J1

r4bwx̂1
i+1x̂2

jx̂3
k+2x̂5

l+2x̂6
m

+
∑
w∈J1

r5bwx̂1
i+1x̂2

jx̂3
k+1x̂4x̂5

l+1x̂6
m +

∑
w∈J1

r6bwx̂1
ix̂2

j+1x̂3
kx̂4x̂5

l+1x̂6
m

+
∑
w∈J1

r7bwβx̂1
ix̂2

jx̂3
kx̂4x̂5

lx̂6
m +

∑
w∈J1

r8bwx̂1
i+1x̂2

jx̂3
k+1x̂4x̂5

l+1x̂6
m

+
∑
w∈J2

r9cwx̂1
i+1x̂2

jx̂3
k+1x̂5

l+1x̂6
m +

∑
w∈J2

r10cwx̂1
ix̂2

j+1x̂3
kx̂5

l+1x̂6
m

+
∑
w∈J2

r11cwαx̂1
ix̂2

jx̂3
kx̂5

lx̂6
m.

Note: r1, · · · , r11 are some non-zero rational numbers.

Observe that Υ contains lower order terms with respect to <3 (defined in ♠, see the

proof of Proposition 3.2.2) in each monomial type (note, there are two different types of

monomials in the basis of Aβ; one with x̂4 and the other without x̂4 ). Now, suppose

that there exists (i, j, k, l,m) ∈ J1 and (i, j, k, l,m) ∈ J2 such that b(i,j,k,l,m) 6= 0 and

c(i,j,k,l,m) 6= 0. Let (v1, v2, v3, v5, v6) and (w1, w2, w3, w5, w6) be the greatest elements

of J1 and J2 respectively with respect to <3 such that b(v1,v2,v3,v5,v6) and c(w1,w2,w3,w5,w6)

are non-zero. Since F is a linear basis for Aβ and Υ contains lower order terms with

respect to <3, we have the following: if w3 − v3 < 2, then identifying the coefficients

of x̂1
v1x̂2

v2x̂3
v3+2x̂4x̂5

v5x̂6
v6 , we have 1

2
b(v1,v2,v3,v5,v6) = 0, a contradiction! Finally, if

w3 − v3 ≥ 2, then identifying the coefficients of x̂1
w1x̂2

w2x̂3
w3+2x̂5

w5x̂6
w6 , we have

1
2
c(w1,w2,w3,w5,w6) = 0, another contradiction! This implies that either all b(i,j,k,m,n) or all

c(i,j,k,m,n) are zero. Without loss of generality, suppose that there exists (i, j, k,m, n) ∈ J2

such that c(i,j,k,m,n) is not zero. Then, b(i,j,k,m,n) are all zero. Let (w1, w2, w3, w5, w6)

be the greatest element of J2 such that c(w1,w2,w3,w5,w6) 6= 0. Identifying the coefficients

of x̂1
w1x̂2

w2x̂3
w3+2x̂5

w5x̂6
w6 in the above equality, we have that 1

2
c(w1,w2,w3,w5,w6) = 0,

a contradiction! We can therefore conclude that b(i,j,k,m,n) and c(i,j,k,m,n) are all zero.
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Consequently,

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x̂1
ix̂2

jx̂3
ε1x̂4

ε2x̂5
kx̂6

l = 0.

Since F is a basis for Aβ, it implies that a(ε1,ε2,v) = 0 for all (ε1, ε2, v) ∈ I. Therefore, P

is a linearly independent set. �

5.3.5 Corollary. Let v = (i, j, k, l) ∈ N2 × Z2, I represent a finite subset of {0, 1}2 ×

N2 × Z2, and (a(ε1,ε2,v))(ε1,ε2,v)∈I be a family of complex numbers. If

∑
(ε1,ε2,v)∈I

a(ε1,ε2,v)x
i
1x

j
2e
ε1
3 x

ε2
4 t

k
5t
l
6 = 0,

then a(ε1,ε2,v) = 0 for all (ε1, ε2, v) ∈ I.

Proof. The result is obvious when k, l ≥ 0 due to Proposition 5.3.4. When k (resp. l) is

negative, then one can multiply the above equality enough times by t5 (resp. t6) to kill

all the negative powers and then apply Proposition 5.3.4 to complete the proof. �



Chapter 6

Poisson derivations of the

semiclassical limits of Aα,β

In this chapter, we compute the Poisson derivations ofAα,β. We employ the same strategy

used in computing the derivations of the non-commutative algebra Aα,β in Chapter 4.

We begin by finding the Poisson derivations of a Poisson group algebra by following a

pattern similar to [40]. We conclude that every Poisson derivation of the Poisson group

algebra is the sum of an inner Poisson derivation and a scalar Poisson derivation. Since

the Poisson torus is a Poisson group algebra, we have that every Poisson derivation of a

Poisson torus is the sum of an inner and a central/scalar Poisson derivation. Knowing

the Poisson derivations of the Poisson torus, we embed each of the Poisson algebra Aα,β

into a suitable Poisson torus, and then extend every Poisson derivation of Aα,β uniquely

to the Poisson torus. We then restrict the Poisson derivations of the Poisson torus back

to Aα,β, and conclude that the Poisson derivations of Aα,β are all inner when α and β are

non-zero. However, when either α or β is zero, we conclude that every Poisson derivation

of Aα,β is the sum of an inner and a scalar Poisson derivation. More precisely, the first

Hochschild cohomology group of Aα,β is of dimension 0 when α and β are non-zero

and 1 when either α or β is zero. The results in this chapter are congruent to their

non-commutative counterparts.

148
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6.1 Poisson derivations of Poisson group algebras

Osborn and Passman have studied the derivations of the twisted group algebras [40,

§1&2]. In this section, we produce the Poisson version of their results. That is, we

will study the Poisson derivations of the Poisson group algebras. Where applicable,

we will maintain their notations. Let G be a finitely generated abelian group and K

be a field with characteristic zero. A Poisson group algebra Kλ
P [G] is a commutative

K−algebra which has a copy G := {ḡ | g ∈ G} of G as a basis and satisfies the Poisson

bracket via {x̄, ȳ} = λ(x, y)x̄ȳ = λ(x, y)xy for all x, y ∈ G; and λ : G × G −→ K

(note, x̄ȳ = xy). The map λ satisfies the following properties: λ(y, x) = −λ(x, y) and

λ(x, yz) = λ(x, y) + λ(x, z). Obviously, λ(x, y) = 0 if and only if {x̄, ȳ} = 0.

For example, take the additive group G = Z2, and let C[G] be a group alge-

bra generated by x±1, y±1 over C with a basis G = {xiyj | (i, j) ∈ G}. One can

define a Poisson structure on C[G] via {xiyj, xkyl} = λ((i, j), (k, l))xi+kyj+l, where

λ((i, j), (k, l)) := il − jk. In general, Kλ
P [Zn] is a Poisson torus of rank n over the field

K for some λ : Zn × Zn → K, where Zn is the usual additive group.

For any γ ∈ Kλ
P [G], one can write γ as γ =

∑
g cgḡ with g ∈ G and cg ∈ K.

Note, cg = 0 for almost all cg ∈ K. The set supp(γ) := {g ∈ G | cg 6= 0 in γ} is

called the support of γ. Furthermore, set C := {g ∈ G | {ḡ, x̄} = 0 for all x ∈ G} and

∆(x̄) := {g ∈ G | {ḡ, x̄} = 0}. One can observe that C and ∆(x̄) are both subgroups

of G. If g1, · · · , gn are the generators of G, then C =
⋂n
i=1 ∆(gi).

6.1.1 Lemma. The Poisson center ZP (Kλ
P [G]) of Kλ

P [G] is Kλ
P [C].

Proof. Clearly, Kλ
P [C] ⊆ ZP (Kλ

P [G]). For the reverse inclusion, take γ =
∑

g cgḡ ∈

ZP (Kλ
P [G]). It follows that 0 = {γ, x̄} =

∑
g cg{ḡ, x̄} =

∑
g cgλ(g, x)ḡx̄ for any x ∈ G.

Consequently, λ(g, x) = 0 for all g ∈ supp(γ). This implies that supp(γ) ⊆ C, hence,

γ ∈ Kλ
P [C]. �

6.1.2 Remark. Let e be the identity element of G. One can easily observe that

ZP (Kλ
P [G]) = K if and only if C = {e}.
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Central and inner Poisson derivations. Let θ : (G, ·) −→ (Kλ
P [C],+) be a group

homomorphism. That is, θ(xy) = θ(x) + θ(y) for all x, y ∈ G. Define the K−linear

operator D := Dθ by D(x̄) = θ(x)x̄ for all x ∈ G. We claim that D is a Poisson derivation

of Kλ
P [G]. To establish this claim, we need to show that D(x̄ȳ) = D(x̄)ȳ + x̄D(ȳ)

and D({x̄, ȳ}) = {D(x̄), ȳ} + {x̄,D(ȳ)} for all x, y ∈ G. Now, D(x̄ȳ) = θ(xy)xy =

θ(xy)x̄ȳ = θ(x)x̄ȳ + θ(y)x̄ȳ = D(x̄)ȳ + x̄D(ȳ). Secondly, D({x̄, ȳ}) = λ(x, y)D(x̄ȳ) =

θ(xy)λ(x, y)x̄ȳ = θ(xy){x̄, ȳ} = [θ(x) + θ(y)]{x̄, ȳ} = θ(x){x̄, ȳ} + θ(y){x̄, ȳ} =

{θ(x)x̄, ȳ} + {x̄, θ(y)ȳ} = {D(x̄), ȳ} + {x̄,D(ȳ)} (note: {θ(x), ȳ} = {x̄, θ(y)} = 0,

since θ(x) and θ(y) are Poisson central elements). This establishes our claim. Call any

derivation D in line with this construction a central Poisson derivation. If ZP (Kλ
P [G]) =

K, then call D a scalar Poisson derivation. Observe that D(x̄) ∈ Kλ
P [Cx] for all x ∈ G.

Let γ =
∑

g cgḡ ∈ Kλ
P [G], where cg ∈ K, and hamγ := {γ,−}. It is well known that

hamγ : Kλ
P [G] −→ Kλ

P [G] is a derivation called the hamiltonian derivation associated to

γ. Moreover, hamγ(x̄) = {γ, x̄} =
∑

g λ(g, x)cgḡx̄ ∈ Kλ
P [Gx] for all x ∈ G. Observe

that the elements of C ∩ supp(γ) do not have any effect on the map hamγ. That is,

hamγ = hamγ+µt̄ for all t ∈ C ∩ supp(γ) and µ ∈ K. As a result, one can always assume

that C ∩ supp(γ) = ∅. Therefore, hamγ(x̄) ∈ Kλ
P [(G \ C)x] for all x ∈ G. Let us call

the hamiltonian derivation hamγ an inner Poisson derivation. We have the following

theorem.

6.1.3 Theorem. Every Poisson derivation of Kλ
P [G] is uniquely the sum of an inner

Poisson derivation and a central Poisson derivation.

Proof. Let D be a Poisson derivation of Kλ
P [G]. Then, for x ∈ G, we have that D(x̄) ∈

Kλ
P [G]. Hence, D(x̄) =

∑
h∈G bh(x)h̄ =

∑
h∈G bh(x)h̄x̄−1x̄. Now, the map G→ G with

h 7→ hx−1 is bijective, and so

D(x̄) =
∑
g

ag(x)ḡx̄,

where g := hx−1 and ag(x) := bgx(x). Note; ag : G −→ K and ag(x) = 0 for almost all
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x ∈ G.

Since D is a Poisson derivation, we have that D(x̄ȳ) = D(x̄)ȳ + x̄D(ȳ) for all

x, y ∈ G. As a result,

∑
g

ag(xy)ḡx̄ȳ =
∑
g

ag(x)ḡx̄ȳ +
∑
g

ag(y)ḡx̄ȳ =
∑
g

[ag(x) + ag(y)]ḡx̄ȳ.

Identifying the coefficients in the above equality reveals that

ag(xy) = ag(x) + ag(y).

Secondly, D({x̄, ȳ}) = {D(x̄), ȳ}+ {x̄,D(ȳ)}. Now,

D({x̄, ȳ}) = λ(x, y)D(x̄ȳ) =
∑
g

λ(x, y)ag(xy)ḡx̄ȳ. (6.1.1)

On the other hand,

{D(x̄), ȳ}+ {x̄,D(ȳ)} =
∑
g

ag(x){ḡx̄, ȳ}+
∑
g

ag(y){x̄, ḡȳ}

=
∑
g

ag(x){gx, ȳ}+
∑
g

ag(y){x̄, gy}

=
∑
g

[ag(x)λ(gx, y) + ag(y)λ(x, gy)]ḡx̄ȳ

=
∑
g

ag(x)[λ(g, y) + λ(x, y)] + ag(y)[λ(x, g) + λ(x, y)]ḡx̄ȳ

=
∑
g

[λ(x, y)ag(xy) + ag(x)λ(g, y)− ag(y)λ(g, x)]ḡx̄ȳ.

(6.1.2)

Since D({x̄, ȳ} = {D(x̄), ȳ}+ {x̄,D(ȳ)}, comparing (6.1.1) to (6.1.2) reveals that

λ(x, y)ag(xy) = λ(x, y)ag(xy) + ag(x)λ(g, y)− ag(y)λ(g, x).
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This implies that

ag(x)λ(g, y) = ag(y)λ(g, x). (6.1.3)

Suppose that g ∈ C, it follows that λ(g, y) = λ(g, x) = 0 for all x, y ∈ G. Since

ag(xy) = ag(x)+ag(y), the map θ : (G, ·) −→ (Kλ
P [C],+) given by θ(x) =

∑
g∈C ag(x)ḡ

is a group homomorphism. Hence, θ defines a central Poisson derivation Dθ of Kλ
P [G],

where

Dθ(x̄) =
∑
g∈C

ag(x)ḡx̄. (6.1.4)

Now, let g 6∈ C. There exists y ∈ G such that λ(g, y) 6= 0. Fix y and define

cg :=
ag(y)

λ(g, y)
.

Take any arbitrary element x ∈ G. It follows that

cgλ(g, x) =
ag(y)λ(g, x)

λ(g, y)
.

From (6.1.3), we have that

cgλ(g, x) =
ag(y)λ(g, x)

λ(g, y)
=
ag(x)λ(g, y)

λ(g, y)
= ag(x),

for all x ∈ G.

Define γ ∈ Kλ
P [G] as γ :=

∑
g 6∈C cgḡ. Then,

hamγ(x̄) = {γ, x̄} =
∑
g 6∈C

cgλ(g, x)ḡx̄ =
∑
g 6∈C

ag(x)ḡx̄. (6.1.5)

From (6.1.4) and (6.1.5), one can conclude that every Poisson derivation D of Kλ
P [G]

can be written as D = Dθ + hamγ. This decomposition of D into an inner Poisson

derivation (hamγ) and a central Poisson derivation (Dθ) is actually unique. This is
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because Kλ
P [Gx] can be decomposed as Kλ

P [Gx] = Kλ
P [Cx]⊕Kλ

P [(G\C)x]. Now, every

central Poisson derivation maps x̄ to an element of the subspace Kλ
P [Cx], and every inner

Poisson derivation maps x̄ to an element of the subspace Kλ
P [(G \ C)x]. �

6.1.4 Corollary. Suppose that C = {e} (equivalently, ZP (Kλ
P [G]) = K). Then, ev-

ery Poisson derivation of Kλ
P [G] is uniquely the sum of an inner and a scalar Poisson

derivation.

6.2 Preliminaries on the Poisson derivations of Aα,β

Let 2 ≤ j ≤ 7 and (α, β) ∈ C2 \ {(0, 0)}. Set

A(j)
α,β :=

A(j)

〈Ω1 − α,Ω2 − β〉
,

where A(j) is defined in Subsection 5.2.1, and Ω1 and Ω2 are the generators of the center

of A(j) (Subsection 5.2.1). Recall that A(7) = A = C[X1, · · · , X6]. It follows that

A(7)
α,β = Aα,β. For each 2 ≤ j ≤ 7, denote the canonical images of the generators Xi,j of

A(j) in A(j)
α,β by xi,j for all 1 ≤ i ≤ 6. Since the data of the PDDA of Aα,β is going to be

useful in this section, we present them below (note, we deduce them from that of A in

Subsection 5.2.1):

x1,6 = x1 −
1

2
x5x

−1
6

x2,6 = x2 +
3

2
x4x

−1
6 − 3x3x5x

−1
6 + x3

5x
−2
6

x3,6 = x3 − x2
5x
−1
6

x4,6 = x4 −
2

3
x3

5x
−1
6

x1,5 = x1,6 − x3,6x
−1
5,6 +

3

4
x4,6x

−2
5,6

x2,5 = x2,6 − 3x2
3,6x

−1
5,6 +

9

2
x3,6x4,6x

−2
5,6 −

9

4
x2

4,6x
−3
5,6

x3,5 = x3,6 −
3

2
x4,6x

−1
5,6
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x1,4 = x1,5 −
1

3
x2

3,5x
−1
4,5

x2,4 = x2,5 −
2

3
x3

3,5x
−1
4,5

x1,3 = x1,4 −
1

2
x2,4x

−1
3,4

t1 := x1,2 = x1,3

t2 := x2,2 = x2,3 = x2,4

t3 := x3,2 = x3,3 = x3,4 = x3,5

t4 := x4,2 = x4,3 = x4,4 = x4,5 = x4,6

t5 := x5,2 = x5,3 = x5,4 = x5,5 = x5,6 = x5

t6 := x6,2 = x6,3 = x6,4 = x6,5 = x6,6 = x6.

Note, the ti are the canonical images of Ti in A(2)
α,β for all 1 ≤ i ≤ 6. For each 2 ≤ j < 7,

define Sj := {λtijj t
ij+1

j+1 · · · t
i6
6 | ij, · · · , i6 ∈ N, λ ∈ C∗}. One can observe that Sj is a

multiplicative system of non-zero divisors (or regular elements) of A(j)
α,β. As a result, one

can localize A(j)
α,β at Sj. Let us denote this localization by Rj. That is,

Rj := A(j)
α,βS

−1
j .

Again, set Σj := {tkj | k ∈ N}, with 2 ≤ j ≤ 6. Then, Σj is a multiplicative set in both

A(j)
α,β and A(j+1)

α,β . Therefore,

A(j)
α,βΣ−1

j = A(j+1)
α,β Σ−1

j .

One can also verify that (similar to (2.2.1)):

Rj = Rj+1Σ−1
j , (6.2.1)

for all 2 ≤ j ≤ 6, with the convention that R7 := Aα,β.
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Similar to (4.1.2), we have the following tower of algebras:

R7 = Aα,β ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4 ⊂ R3. (6.2.2)

Observe that R3 = A(3)
α,βS

−1
3 = R4Σ−1

3 is the Poisson torus Pα,β = C[t±1
3 , t±1

4 , t±1
5 , t±1

6 ]

in Section 5.3.

Linear bases for R3,R4 and R5.

We aim to find a basis for Rj for each j = 3, 4, 5. Since R3 is a Poisson torus generated

by t±1
3 , · · · , t±1

6 over C, the set {ti3t
j
4t
k
5t
l
6 | i, j, k, l ∈ Z} is a basis of R3.

For simplicity, we set

f1 : = x1,4 F1 : = X1,4

z1 : = x1,5 –Z1 : = X1,5

z2 : = x2,5 –Z2 : = X2,5.

Basis for R4. Observe that

A(4)
α,β =

A(4)

〈Ω1 − α,Ω2 − β〉
,

where Ω1 = F1T3T5 − 1
2
T2T5 and Ω2 = T2T4T6 in A(4) (Subsection 5.2.1). Set

A(4)
β S−1

4 :=
A(4)S−1

4

〈Ω2 − β〉
,

where β ∈ C. We will denote the canonical images of Xi,4 (resp. Ti) in A(4)
β by x̂i,4

(resp. t̂i) for all 1 ≤ i ≤ 6. Observe that t̂2 = βt̂6
−1
t̂4
−1

in A(4)
β S−1

4 . As usual, one can

identify R4 with A(4)
β S−1

4 /〈Ω1 − α〉.

The proofs of the following two propositions are similar to that of Propositions 4.1.2

and 4.1.4, nonetheless, we will still prove the results.
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6.2.1 Proposition. The set P4 = {f i11 t
i4
4 t

i5
5 t

i6
6 , t

i3
3 t

i4
4 t

i5
5 t

i6
6 | (i1, i3, i4, i5, i6) ∈ N2 × Z3}

is a C−basis of R4.

Proof. One can verify that
(
f̂1

k1
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N2×Z3
is a basis of A(4)

β S−1
4

(the proof is similar to that of Proposition 4.1.1). Since A(4)
β S−1

4 = A(4)S−1
4 /〈Ω2 − β〉,

the family (fk11 tk33 t
k4
4 t

k5
5 t

k6
6 )(k1,k3,··· ,k6)∈N2×Z3 spans R4. We show that P4 is a spanning

set of R4 by showing that fk11 tk33 t
k4
4 t

k5
5 t

k6
6 can be written as a finite linear combination

of the elements of P4 for all (k1, k3, · · · , k6) ∈ N2 × Z3. It is sufficient to do this by an

induction on k1. The result is clear when k1 = 0. Assume that the statement is true for

k1 ≥ 0. That is,

fk11 tk33 t
k4
4 t

k5
5 t

k6
6 =

∑
i∈I1

aif
i1
1 t

i4
4 t

i5
5 t

i6
6 +

∑
j∈I2

bjt
i3
3 t

i4
4 t

i5
5 t

i6
6 ,

where i = (i1, i4, i5, i6) ∈ I1 ⊂ N × Z3 and j = (i3, i4, i5, i6) ∈ I2 ⊂ N × Z3. Note, ai

and bj are all complex numbers.

fk1+1
1 tk33 t

k4
4 t

k5
5 t

k6
6 = f1(fk11 tk33 t

k4
4 t

k5
5 t

k6
6 ) =

∑
i∈I1

aif
i1+1
1 ti44 t

i5
5 t

i6
6 +

∑
j∈I2

bjf1t
i3
3 t

i4
4 t

i5
5 t

i6
6 .

Clearly, the monomial f i1+1
1 ti44 t

i5
5 t

i6
6 ∈ Span(P4). We have to also show that f1t

i3
3 t

i4
4 t

i5
5 t

i6
6 ∈

Span(P4) for all i3 ∈ N and i4, i5, i6 ∈ Z. This can easily be achieved by induction on

i3, and the use of the relation f1t3 = αt−1
5 + 1

2
βt−1

4 t−1
6 . Therefore, by the principle of

mathematical induction, P4 is a spanning set of R4 over C.

We prove that P4 is a linearly independent set. Suppose that

∑
i∈I1

aif
i1
1 t

i4
4 t

i5
5 t

i6
6 +

∑
j∈I2

bjt
i3
3 t

i4
4 t

i5
5 t

i6
6 = 0.

It follows that there exists ν ∈ A(4)
β S−1

4 such that

∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

=
(

Ω̂1 − α
)
ν.
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Write ν =
∑
l∈J

clf̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
, with l = (i1, i3, i4, i5, i6) ∈ J ⊂ N2 × Z3, and

cl ∈ C. One can easily deduce that Ω̂1 = f̂1t̂3t̂5 − 1
2
t̂2t̂5 = f̂1t̂3t̂5 − 1

2
βt̂6
−1
t̂4
−1
t̂5 (note,

t̂2 = βt̂6
−1
t̂4
−1

). It follows that

∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

=
∑
l∈J

clf̂1

i1+1
t̂3
i3+1

t̂4
i4
t̂5
i5+1

t̂6
i6

−
∑
l∈J

1

2
βclf̂1

i1
t̂3
i3
t̂4
i4−1

t̂5
i5+1

t̂6
i6−1

−
∑
l∈J

αclf̂1

i1
t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6
.

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that c(i1,i3,i4,i5,i6) 6= 0.

Let (w1, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on

N2×Z3) of J such that c(w1,w3,w4,w5,w6) 6= 0. Since
(
f̂1

k1
t̂3
k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N2×Z3

is a basis of A(4)S−1
4 , it implies that the coefficients of f̂1

w1+1
t̂3
w3+1

t̂4
w4
t̂5
w5+1

t̂6
w6

in the

above equality can be identified as: c(w1,w3,w4,w5,w6) = 0. Hence, c(w1,w3,w4,w5,w6) = 0,

a contradiction! Therefore, c(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J. This further

implies that ∑
i∈I1

aif̂1

i1
t̂4
i4
t̂5
i5
t̂6
i6

+
∑
j∈I2

bj t̂3
i3
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

Consequently, ai and bj are all zero. In conclusion, P4 is a linearly independent set. �

Basis for R5. We will identify R5 with A(5)
α S−1

5 /〈Ω̂2 − β〉, where A(5)
α S−1

5 =

A(5)S−1
5 /〈Ω1 − α〉. Note, the canonical images of Xi,5 (resp. Ti) in A(5)

α will be de-

noted by x̂i,5 (resp. t̂i) for all 1 ≤ i ≤ 6. We now find a basis for A(5)
α S−1

5 . Recall

from Subsection 5.2.1 that Ω1 = –Z1T3T5 − 1
2
–Z2T5 and Ω2 = –Z2T4T6 − 2

3
T 3

3 T6 in A(5)

(remember, –Z1 := X1,5 and –Z2 := X2,5 ). Since z2t4t6− 2
3
t33t6 = β and ẑ1t̂3t̂5− 1

2
ẑ2t̂5 = α

in R5 and A(5)
α S−1

5 respectively, we have the relation ẑ2 = 2
(
ẑ1t̂3 − αt̂5

−1
)

in A
(5)
α S−1

5

and, in R5, we have the following two relations:
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z2 = 2(z1t3 − αt−1
5 ). (6.2.3)

t33 =
3

2
(z2t4 − βt−1

6 ) = 3z1t3t4 −
3

2
βt−1

6 − 3αt4t
−1
5 . (6.2.4)

6.2.2 Proposition. The set P5 =
{
zi11 t

ξ
3t
i4
4 t

i5
5 t

i6
6 | (ξ, i1, i4, i5, i6) ∈ {0, 1, 2} × N2 × Z2

}
is a basis of R5.

Proof. One can easily show that the family
(
ẑ1
k1 t̂3

k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,k4,k5,k6)∈N2×Z2
is

a basis of A(5)
α S−1

5 /〈Ω̂2 − β〉 (the proof is similar to that of Proposition 4.1.3). Since

R5 is identified with A(5)
α S−1

5 /〈Ω̂2 − β〉, we show that zk11 t
k3
3 t

k4
4 t

k5
5 t

k6
6 can be written as

a finite linear combination of the elements of P5 for all (k1, k3, k4, k5, k6) ∈ N3 × Z2. It

is sufficient to do this by an induction on k3. The result is obvious when k3 = 0, 1 or 2.

For k3 ≥ 2, suppose that

zk11 t
k3
3 t

k4
4 t

k5
5 t

k6
6 =

∑
(ξ,i)∈I

a(ξ,i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 ,

where I is a finite subset of {0, 1, 2} × N2 × Z2, and a(ξ,i) are all complex numbers. It

follows that

zk11 t
k3+1
3 tk44 t

k5
5 t

k6
6 =

(
zk11 t

k3
3 t

k4
4 t

k5
5 t

k6
6

)
t3 =

∑
(ξ,i)∈I

a(ξ,i)z
i1
1 t

ξ+1
3 ti44 t

i5
5 t

i6
6 .

Now, zi11 t
ξ+1
3 ti44 t

i5
5 t

i6
6 ∈ Span(P5) when ξ = 0, 1. For ξ = 2, one can easily verify that

zi11 t
3
3t
i4
4 t

i5
5 t

i6
6 ∈ Span(P5) by using the relation in (6.2.4). Therefore, by the principle of

mathematical induction, P5 spans R5.

We now prove that P5 is a linearly independent set. Suppose that

∑
(ξ,i)∈I

a(ξ,i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 = 0.
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Since R5 is identified with A(5)
α S−1

5 /〈Ω̂2 − β〉, we have that

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

= 〈Ω̂2 − β〉ν,

where ν ∈ A(5)
α S−1

5 . Write ν =
∑

j∈J bj ẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6
, with j = (i1, i3, i4, i5, i6) ∈

J ⊂ N3 × Z2 and bj ∈ C. Given that Ω2 = –Z2T4T6 − 2
3
T 3

3 T6 in A(5) and the relation

(6.2.3), one can deduce that

Ω̂2 = ẑ2t̂4t̂6 −
2

3
t̂3

3
t̂6 = 2ẑ1t̂3t̂4t̂6 − 2αt̂4t̂5

−1
t̂6 −

2

3
t̂3

3
t̂6.

Therefore,

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

=
∑
j∈J

2bj ẑ1
i1+1t̂3

i3+1
t̂4
i4+1

t̂5
i5
t̂6
i6+1

−
∑
j∈J

2

3
bj ẑ1

i1 t̂3
i3+3

t̂4
i4
t̂5
i5
t̂6
i6+1

−
∑
j∈J

2αbj ẑ1
i1 t̂3

i3
t̂4
i4+1

t̂5
i5−1

t̂6
i6+1

−
∑
j∈J

βbj ẑ1
i1 t̂3

i3
t̂4
i4
t̂5
i5
t̂6
i6
.

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that b(i1,i3,i4,i5,i6) 6= 0.

Let (w1, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on N3×

Z2) of J such that b(w1,w3,w4,w5,w6) 6= 0. Given that
(
ẑ1
k1 t̂3

k3
t̂4
k4
t̂5
k5
t̂6
k6
)

(k1,k3,··· ,k6)∈N3×Z2

is a basis of A(5)
α S−1

5 , one can identify the coefficients of ẑ1
w1+1t̂3

w3+1
t̂4
w4+1

t̂5
w5
t̂6
w6+1

in

the above equality as: 2b(w1,w3,w4,w5,w6) = 0. Hence, b(w1,w3,w4,w5,w6) = 0, a contradiction!

Therefore, b(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J. Consequently,

∑
(ξ,i)∈I

a(ξ.i)ẑ1
i1 t̂3

ξ
t̂4
i4
t̂5
i5
t̂6
i6

= 0.

It follows that a(ξ,i) = 0 for all (ξ, i) ∈ I. As a result, P5 is a linearly independent set. �
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6.2.3 Corollary. Let I be a finite subset of {0, 1, 2}×N×Z3 and (a(ξ,i))i∈I be a family

of complex numbers. If ∑
(ξ,i)∈I

a(ξ.i)z
i1
1 t

ξ
3t
i4
4 t

i5
5 t

i6
6 = 0,

then a(ξ,i) = 0 for all (ξ, i) ∈ I.

Proof. When i4 ≥ 0, then the result is obvious as a result of Proposition 6.2.2. For

i4 < 0, multiply both sides of the equality enough times by t4 to kill all the negative

powers of t4, and then apply Proposition 6.2.2 to complete the proof. �

6.2.4 Remark. We were not successful in finding a basis for R6. However, this has no

effect on our main result in this chapter. Since R7 = Aα,β, we already have a basis for

R7 (Proposition 5.3.4).

6.2.5 Lemma. ZP (Ri) = C for each 3 ≤ i ≤ 7.

Proof. Similar to that of Lemma 4.1.7. �

6.2.6 Remark. Recall the notations:

f1 : = x1,4 F1 : = X1,4

z1 : = x1,5 –Z1 : = X1,5

z2 : = x2,5 –Z2 : = X2,5.

Let (α, β) ∈ C2 \ {(0, 0)}. Given the above notations, we present the following selected

data of the PDDA of Aα,β, listed at the beginning of this section, in a manner that would

be very useful in Subsections 6.3.1. They are as follows:

f1 = t1 +
1

2
t2t
−1
3 x3,6 = t3 +

3

2
t4t
−1
5

z1 = f1 +
1

3
t23t
−1
4 x1 = x1,6 +

1

2
t5t
−1
6
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z2 = t2 +
2

3
t33t
−1
4 x3 = x3,6 + t25t

−1
6

x1,6 = z1 + x3,6t
−1
5 −

3

4
t4t
−2
5 x4 = t4 +

2

3
t35t
−1
6 .

The remark below will also be helpful in Subsection 6.3.1.

6.2.7 Remark. Fix n ∈ N. Let Rs = K〈u1, · · · , u±1
s , u±1

s+1, · · · , u±1
n 〉 be a commutative

algebra generated by the elements u1, · · · , u±1
s , u±1

s+1, · · · , u±1
n over the field K, with

1 ≤ s ≤ n+ 1 (note, Rn+1 := K〈u1, · · · , un〉). Then, for all f, g ∈ Rs, we have that

{f, g} =
n∑

i,j=1

{ui, uj}
∂f

∂ui

∂g

∂uj
.

As a result,

{ui11 · · ·uinn , uj} = i1u
i1−1
1 ui22 · · ·uinn {u1, uj}+ i2u

i1
1 u

i2−1
2 ui33 · · ·uinn {u2, uj}

+ · · ·+ inu
i1
1 · · ·u

in−1

n−1u
in−1
n {un, uj},

for all (i1, · · · , in) ∈ Zn. Note, {ui, uj} = 0 whenever i = j.

6.3 Poisson derivations of Aα,β

We are now going to study the Poisson derivations of Aα,β. We will begin with the case

where both α and β are non-zero, and then proceed to look at the case where either α

or β is zero.

6.3.1 Poisson derivations of Aα,β (α, β 6= 0). Throughout this subsection, we assume

that α and β are non-zero. Let DerP (A) be the collection of all the Poisson derivations

of Aα,β and D ∈ DerP (A). Then, it follows from (6.2.1) that D extends uniquely to a

Poisson derivation of each of the series of algebras in (6.2.2) via localization. Hence, D

is a Poisson derivation of the Poisson torus R3 = C[t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. As a result, D can

be written as

D = hamx + ρ,
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where ρ is a scalar Poisson derivation of R3 defined as ρ(ti) = λiti, i = 3, 4, 5, 6. Note,

λi ∈ ZP (R3) = C and hamx := {x,−} : R3 → R3 with x ∈ R3 (see Corollary 6.1.4).

We aim to describe D as a Poisson derivation of Aα,β. We do this in several steps.

We first describe D as a Poisson derivation of R4.

6.3.2 Lemma. 1. x ∈ R4.

2. λ5 = λ4 + λ6, ρ(f1) = −(λ3 + λ5)f1 and ρ(t2) = −λ5t2.

3. D(xκ,4) = hamx(xκ,4) + λκxκ,4 for all κ ∈ {1, · · · , 6}, where λ1 := −(λ3 + λ5)

and λ2 := −λ5.

Proof. 1. Observe that Q := C[t±1
4 , t±1

5 , t±1
6 ] is a subalgebra of both R3 and R4. Fur-

thermore, R3 = R4[t−1
3 ]. One can easily verify that z := t4t

−1
5 t6 is a Poisson central

element of Q. Since R3 is a Poisson torus, it can be presented as a free Q−module

with basis (tj3)j∈Z. One can therefore write x ∈ R3 as: x =
∑

j∈Z bjt
j
3, where bj ∈ Q.

Decompose x as follows: x = x− + x+, where x+ :=
∑

j≥0 bjt
j
3 and x− :=

∑
j<0 bjt

j
3.

Clearly, x+ ∈ R4. We now want to show that x− ∈ R4. Write x− =
∑−m

j=−1 bjt
j
3 for some

m ∈ N>0.

Now, D(z) = hamx(z) + ρ(z) = hamx−(z) + hamx+(z) + (λ4−λ5 +λ6)z ∈ R4. We

have that hamx+(z)+(λ4−λ5+λ6)z ∈ R4, hence, hamx−(z) ∈ R4. Note: {t3, z} = 2zt3,

and {γ, z} = 0 for all γ ∈ Q since z is Poisson central in Q. One can therefore express

hamx−(z) as follows:

hamx−(z) = {x−, z} =
−m∑
j=−1

bj{tj3, z} =
−m∑
j=−1

2jbjzt
j
3 ∈ R4.

Let n ∈ N>0, and set

`(n) := {{· · · {︸ ︷︷ ︸
n−times

x−, z}, z}, · · · , z}︸ ︷︷ ︸
n−times

∈ R4.
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We claim that

`(n) =
−m∑
j=−1

(2j)nznbjt
j
3,

for all n ∈ N>0. Observe that

`(1) = hamx−(z) =
−m∑
j=−1

2jbjzt
j
3,

hence, the result is true for n = 1. Suppose that the result is true for n ≥ 1. Then,

`(n+1) = {`(n), z} =
−m∑
j=−1

(2j)nznbj{tj3, z} =
−m∑
j=−1

(2j)n+1zn+1bjt
j
3

as expected. By the principle of mathematical induction, the claim is proved.

Given that `(n) =
∑−m

j=−1(2j)nznbjt
j
3, it follows that

µn =
−m∑
j=−1

(2j)nbjt
j
3, where µn := `(n)z−n ∈ R4.

The above equality can be written as a matrix equation in the form:



−2 −4 −6 · · · −2m

(−2)2 (−4)2 (−6)2 · · · (−2m)2

(−2)3 (−4)3 (−6)3 · · · (−2m)3

...
...

...
. . .

...

(−2)m (−4)m (−6)m · · · (−2m)m





b−1t
−1
3

b−2t
−2
3

b−3t
−3
3

...

b−mt
−m
3


=



µ1

µ2

µ3

...

µm


.

One can observe that the coefficient matrix



−2 −4 −6 · · · −2m

(−2)2 (−4)2 (−6)2 · · · (−2m)2

(−2)3 (−4)3 (−6)3 · · · (−2m)3

...
...

...
. . .

...

(−2)m (−4)m (−6)m · · · (−2m)m
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is similar to a Vandermonde matrix (since the terms in each column form a geometric

sequence) which is well known to be invertible. This therefore implies that each bjt
j
3 is

a linear combination of the µn ∈ R4. As a result, bjt
j
3 ∈ R4 for all j ∈ {−1, · · · ,−m}.

Consequently, x− =
∑−m

j=−1 bjt
j
3 ∈ R4 as desired.

2. Recall that ρ(tκ) = λκtκ for all κ ∈ {3, 4, 5, 6} and λκ ∈ C. From Remark 6.2.6,

we have that f1 = t1 + 1
2
t2t
−1
3 . Again, recall from Section 5.3 that t1 = αt−1

3 t−1
5 and

t2 = βt−1
4 t−1

6 in R3 = Pα,β. As a result, f1 = αt−1
3 t−1

5 + 1
2
βt−1

3 t−1
4 t−1

6 . Therefore,

ρ(f1) =− (λ3 + λ5)αt−1
3 t−1

5 −
1

2
(λ3 + λ4 + λ6)βt−1

3 t−1
4 t−1

6 . (6.3.1)

Also, ρ(f1) ∈ R4 implies that ρ(f1) can be written in terms of the basis P4 of R4

(Proposition 6.2.1) as:

ρ(f1) =
∑
r>0

arf
r
1 +

∑
s≥0

bst
s
3, (6.3.2)

where ar and bs belong to Q = C[t±1
4 , t±1

5 , t±1
6 ].

f r1 =

(
αt−1

3 t−1
5 +

1

2
βt−1

3 t−1
4 t−1

6

)r
=

r∑
i=0

(
r

i

)
(α)i(β/2)r−1t−r3 ti−r4 t−i5 t

i−r
6

= crt
−r
3 , (6.3.3)

where

cr =
r∑
i=0

(
r

i

)
(α)i(β/2)r−iti−r4 t−i5 t

i−r
6 ∈ Q \ {0}. (6.3.4)

Substitute (6.3.3) into (6.3.2) to obtain

ρ(f1) =
∑
r>0

arcrt
−r
3 +

∑
s≥0

bst
s
3. (6.3.5)
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One can rewrite (6.3.1) as

ρ(f1) = dt−1
3 , (6.3.6)

where d = −(λ5 +λ3)αt−1
5 − 1

2
(λ6 +λ4 +λ3)βt−1

4 t−1
6 ∈ Q. Comparing (6.3.5) to (6.3.6)

shows that bs = 0 for all s ≥ 0, and arcr = 0 for all r 6= 1. Therefore, ρ(f1) = a1c1t
−1
3 .

Moreover, from (6.3.4), c1 = 1
2
βt−1

4 t−1
6 + αt−1

5 . Hence,

ρ(f1) = a1c1t
−1
3 = a1

(
1

2
βt−1

4 t−1
6 + αt−1

5

)
t−1
3 = a1αt

−1
3 t−1

5 +
1

2
a1βt

−1
3 t−1

4 t−1
6 . (6.3.7)

Comparing (6.3.7) to (6.3.1) reveals that a1 = −(λ5 + λ3) = −(λ6 + λ4 + λ3). Conse-

quently, λ5 = λ6 + λ4. Hence, ρ(f1) = −(λ5 + λ3)αt−1
3 t−1

5 − 1
2
(λ5 + λ3)βt−1

3 t−1
4 t−1

6 =

−(λ5 + λ3)f1. Finally, since t2 = βt−1
4 t−1

6 in R4, it follows that

ρ(t2) = −(λ6 + λ4)βt−1
4 t−1

6 = −(λ6 + λ4)t2 = −λ5t2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5, it follows from points (1) and (2)

that D(xκ,4) = hamx(xκ,4) + ρ(xκ,4) = hamx(xκ,4) + λκxκ,4 for all κ ∈ {1, · · · , 6}. In

conclusion, D = hamx + ρ, with x ∈ R4. �

We now proceed to describe D as a Poisson derivation of R5.

6.3.3 Lemma. 1. x ∈ R5.

2. λ4 = 3λ3 + λ5, λ6 = −3λ3, ρ(z1) = −(λ3 + λ5)z1 and ρ(z2) = −λ5z2.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5, then D(xκ,5) = hamx(xκ,5) + λκxκ,5 for all

κ ∈ {1, · · · , 6}.

Proof. In this proof, we denote υ := (i, j, k, l) ∈ N× Z3.

1. We already know that x ∈ R4 = R5[t−1
4 ]. Given the basis P5 of R5 (Proposition

6.2.2), x can be written as x =
∑

(ξ,υ)∈I

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6, where I is a finite subset of
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{0, 1, 2} × N× Z3 and a(ξ,υ) are complex numbers. Write x = x− + x+, where

x+ =
∑

(ξ,υ)∈I
j≥0

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6 and x− =

∑
(ξ,υ)∈I
j<0

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

Suppose that there exists a minimum j0 < 0 such that a(ξ,i,j0,k,l) 6= 0 for some (ξ, i, j0, k, l) ∈

I and a(ξ,i,j,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I with j < j0. Given this assumption, write

x− =
∑

(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

Let s = 3, 6. Then, D(ts) = hamx+(ts) + hamx−(ts) + ρ(ts) ∈ R5 for each s = 3, 6.

This implies that hamx−(ts) ∈ R5, since hamx+(ts) + ρ(ts) = hamx+(ts) + λsts ∈ R5.

Set w := (i, j, k, l) ∈ N2 × Z2. One can therefore write hamx−(ts) ∈ R5 in terms of the

basis P5 of R5 as:

hamx−(ts) =
∑

(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6, (6.3.8)

where J is a finite subset of {0, 1, 2} × N2 × Z2 and b(ξ,w) are all complex numbers.

When s = 6, then using Remark 6.2.7, one can also express hamx−(t6) as:

hamx−(t6) =
∑

(ξ,υ)∈I
j0≤j≤−1

3(k + j − i)a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l+1
6 .

Comparing this expression for hamx−(t6) to (6.3.8) (when s = 6), we have that

∑
(ξ,υ)∈I
j0≤j≤−1

3(k + j − i)a(ξ,υ)z
i
1t
ξ
3t
j
4t
k
5t
l+1
6 =

∑
(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6.

As P5 is a basis for R5 (Proposition 6.2.2), we deduce from Corollary 6.2.3 that(
zi1t

ξ
3t
j
4t
k
5t
l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ]. Now, at j = j0, denote υ =

(i, j, k, l) by υ0 := (i, j0, k, l). Since v0 ∈ N × Z3 (with j0 < 0) and w = (i, j, k, l) ∈
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N2 × Z2 (with j ≥ 0), it follows from the above equality that, at υ0, we must have

k = i− j0, (6.3.9)

for some (ξ, v0) ∈ I.

Similarly, when s = 3, then using Remark 6.2.7, one can also express hamx−(t3) as:

hamx−(t3) =−
∑[

3

2
β(3i− k − 3j0)a2,i,j0,k,l+1 + 2(i+ 1)αa(0,i+1,j0,k+1,l)

]
zi1t

j0
4 t

k
5t
l
6

+
∑[

(3i− k − 3j0)a(0,i,j0,k,l) − 2(i+ 1)αa(1,i+1,j0,k+1,l)

]
zi1t3t

j0
4 t

k
5t
l
6

+
∑[

(3i− k − 3j0)a(1,i,j0,k,l) − 2(i+ 1)αa(2,i+1,j0,k+1,l)

]
zi1t

2
3t
j0
4 t

k
5t
l
6 +K,

where K ∈ Span
(
P5 \ {zi1t

ξ
3t
j0
4 t

k
5t
l
6 | (ξ, i, j0, k, l) ∈ {0, 1, 2} × N× Z3}

)
(note, one will

need the following two expressions z2 = 2(z1t3 − αt−1
5 ) and t33 = 3z1t3t4 − 3αt4t

−1
5 −

3β

2
t−1
6 from (6.2.3) and (6.2.4) to express some of the monomials in terms of the basis

P5 of R5). Comparing this expression for hamx−(t3) to (6.3.8) (when s = 3) reveals

that:

∑
(ξ,w)∈J

b(ξ,w)z
i
1t
ξ
3t
j
4t
k
5t
l
6

=−
∑[

3

2
β(3i− k − 3j0)a(2,i,j0,k,l+1 + 2(i+ 1)αa(0,i+1,j0,k+1,l)

]
zi1t

j0
4 t

k
5t
l
6

+
∑[

(3i− k − 3j0)a(0,i,j0,k,l) − 2(i+ 1)αa(1,i+1,j0,k+1,l)

]
zi1t3t

j0
4 t

k
5t
l
6

+
∑[

(3i− k − 3j0)a(1,i,j0,k,l) − 2(i+ 1)αa(2,i+1,j0,k+1,l)

]
zi1t

2
3t
j0
4 t

k
5t
l
6 +K.

We have already established that
(
zi1t

ξ
3t
j
4t
k
5t
l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ].

Since v0 = (i, j0, k, l) ∈ N × Z3 (with j0 < 0) and w = (i, j, k, l) ∈ N2 × Z2 (with
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j ≥ 0), it follows from the above equality that, at υ0, we must have

3

2
β(3i− k − 3j0)a(2,i,j0,k,l+1) + 2(i+ 1)αa(0,i+1,j0,k+1,l) = 0, (6.3.10)

(3i− k − 3j0)a(0,i,j0,k,l) − 2(i+ 1)αa(1,i+1,j0,k+1,l) = 0, (6.3.11)

(3i− k − 3j0)a(1,i,j0,k,l) − 2(i+ 1)αa(2,i+1,j0,k+1,l) = 0. (6.3.12)

Suppose that there exists (ξ, i, j0, k, l) ∈ I such that 3i− k − 3j0 = 0. Then,

k = 3(i− j0). (6.3.13)

Comparing (6.3.13) to (6.3.9) clearly shows that i−j0 = 0 which implies that i = j0 < 0,

a contradiction (note: i ≥ 0). Therefore, 3i− k − 3j0 6= 0 for all (ξ, i, j, k) ∈ I.

Now, observe that if there exists ξ ∈ {0, 1, 2} such that a(ξ,i,j0,k,l) = 0 for all

(i, j0, k, l) ∈ N × Z3, then one can easily deduce from equations (6.3.10), (6.3.11)

and (6.3.12) that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This contradicts our initial

assumption. Therefore, there exists some (i, j0, k, l) ∈ N × Z3 such that a(ξ,i,j0,k,l) 6= 0

for each ξ ∈ {0, 1, 2}. Without loss of generality, let (u, j0, v, w) be the greatest element

in the lexicographic order on N× Z3 such that a(0,u,j0,v,w) 6= 0 and a(0,i,j0,k,l) = 0 for all

i > u.

From (6.3.11), at (i, j0, k, l) = (u, j0, v, w), we have:

(3u− v − 3j0)a(0,u,j0,v,w) − 2(u+ 1)αa(1,u+1,j0,v+1,w) = 0.

From (6.3.12), at (i, j0, k, l) = (u+ 1, j0, v + 1, w), we have:

(3u− v − 3j0)a(1,u+1,j0,v+1,w) − 2(u+ 1)αa(2,u+2,j0,v+2,w) = 0.
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Finally, from (6.3.10), at (i, j0, k, l) = (u+ 2, j0, v + 2, w − 1), we have:

3

2
β(3u− v − 3j0)a(2,u+2,j0,v+2,w) + 2(u+ 1)αa(0,u+3,j0,v+3,w−1) = 0.

Since 3i − k − 3j0 6= 0 for all (i, j0, k, l) ∈ I and u + 3 > u, it follows from the above

list of equations (starting from the last one) that

a(0,u+3,j0,v+3,w−1) = 0⇒ a(2,u+2,j0,v+2,w) = 0⇒ a(1,u+1,j0,v+1,w) = 0⇒ a(0,u,j0,v,w) = 0,

a contradiction! Hence, a(0,i,j0,k,l) = 0 for all (i, j0, k, l) ∈ N×Z3. From (6.3.10), (6.3.11)

and (6.3.12), one can easily conclude that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This

contradicts our initial assumption, hence x− = 0. Consequently, x = x+ ∈ R5 as desired.

2. From Remark 6.2.6, we have that z2 = t2 + 2
3
t33t
−1
4 . Since ρ(tκ) = λκtκ, κ ∈

{2, 3, 4, 5, 6}, with λ2 := −λ5 (see Lemma 6.3.2), it follows that

ρ(z2) =− λ5t2 +
2

3
(3λ3 − λ4)t33t

−1
4 = −λ5z2 +

2

3
(3λ3 − λ4 + λ5)t33t

−1
4 .

Furthermore,

D(z2) = hamx(z2) + ρ(z2) = hamx(z2)− λ5z2 +
2

3
(3λ3 − λ4 + λ5)t33t

−1
4 ∈ R5.

We have that (3λ3−λ4 +λ5)t33t
−1
4 ∈ R5, since hamx(z2)−λ5z2 ∈ R5. This implies that

(3λ3 − λ4 + λ5)t33 ∈ R5t4. Set w := 3λ3 − λ4 + λ5. Suppose that w 6= 0. From (6.2.4),

we have:

t33 = 3z1t3t4 −
3

2
βt−1

6 − 3αt4t
−1
5 .

It follows that

wt33 = 3wz1t3t4 − 3wαt4t
−1
5 −

3

2
wβt−1

6 ∈ R5t4.

Since t33, t4t
−1
5 and z1t3t4 are all elements of R5t4, it implies that t−1

6 ∈ R5t4. Hence,

1 ∈ R5t4t6. Using the basis P5 of R5 (Proposition 6.2.2), this leads to a contradiction.
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Therefore, w = 0. That is, w = 3λ3 − λ4 + λ5 = 0, and so λ4 = 3λ3 + λ5. This further

implies that ρ(z2) = −λ5z2 as desired.

Again, from Lemma 6.3.2, we have that ρ(f1) = −(λ3 + λ5)f1. Recall from Remark

6.2.6 that z1 = f1 + 1
3
t23t
−1
4 . It follows that

ρ(z1) =− (λ3 + λ5)f1 +
1

3
(2λ3 − λ4)t23t

−1
4 = −(λ3 + λ5)z1 +

1

3
(3λ3 − λ4 + λ5)t23t

−1
4

=− (λ3 + λ5)z1 +
1

3
(3λ3 − (3λ3 + λ5) + λ5)t23t

−1
4 = −(λ3 + λ5)z1.

Finally, we know that ρ(t6) = λ6t6. From the relation (6.2.4), we have:

t33 = 3z1t3t4 − 3αt4t
−1
5 −

3β

2
t−1
6 .

This implies that

t−1
6 =

2

3β
(3z1t3t4 − 3αt4t

−1
5 − t33).

Apply ρ to this relation to obtain

−λ6t
−1
6 = 3λ3

(
2

3β

(
3z1t3t4 − 3αt4t

−1
5 − t33

))
.

Clearly, λ6 = −3λ3 as desired.

3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. It follows from points (1) and (2)

that D(xκ,5) = hamx(xκ,5) + ρ(xκ,5) = hamx(xκ,5) + λκxκ,5 for all κ ∈ {1, · · · , 6}. In

conclusion, D = hamx + ρ with x ∈ R5. �

We are now ready to describe D as a Poisson derivation of Aα,β.

6.3.4 Lemma. 1. x ∈ Aα,β.

2. ρ(xκ) = 0 for all κ ∈ {1, · · · , 6}.

3. D = hamx.

Proof. In this proof, we denote υ := (i, j, k, l) ∈ N2 × Z2. Also, recall from the PDDA

of Aα,β at the beginning of this section that t5 = x5 and t6 = x6.
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1. Given the basis P of Aα,β (Proposition 5.3.4), one can write x ∈ R5 =

Aα,β[t−1
5 , t−1

6 ] as

x =
∑

(ε1,ε2,υ)∈I

a(ε1,ε2,υ)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6,

where I is a finite subset of {0, 1}2×N2×Z2 and a(ε1,ε2,υ) are complex numbers. Write

x = x− + x+, where

x+ =
∑

(ε1,ε2,υ)∈I
k, l≥0

a(ε1,ε2,υ)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6,

and

x− =
∑

(ε1,ε2,υ)∈I
k<0 or l<0

a(ε1,ε2,υ)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6.

Suppose that there exists a minimum negative integer k0 or l0 such that a(ε1,ε2,i,j,k0,l) 6=

0 or a(ε1,ε2,i,j,k,l0) 6= 0 for some (ε1, ε2, i, j, k0, l), (ε1, ε2, i, j, k, l0) ∈ I; and a(ε1,ε2,i,j,k,l) = 0

whenever k < k0 or l < l0. Write

x− =
∑

(ε1,ε2,υ)∈I
k0≤k≤−1 or l0≤l≤−1

a(ε1,ε2,υ)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6,

Now, D(x3) = hamx+(x3) + hamx−(x3) + ρ(x3) ∈ Aα,β. From Remark 6.2.6, we

have that x3 = x3,6 + t25t
−1
6 and x3,6 = t3 + 3

2
t4t
−1
5 . Putting these two together gives

x3 = t3 +
3

2
t4t
−1
5 + t25t

−1
6 .

Again, from Remark 6.2.6, we also have that t4 = x4− 2
3
t35t
−1
6 . Note, ρ(tκ) = λκtκ, κ =

3, 4, 5, 6.
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Now,

ρ(x3) = λ3t3 +
3

2
(λ4 − λ5)t4t

−1
5 + (2λ5 − λ6)t25t

−1
6

= λ3

(
x3,6 −

3

2
t4t
−1
5

)
+

3

2
(λ4 − λ5)t4t

−1
5 + (2λ5 − λ6)t25t

−1
6

= λ3x3,6 −
3

2
(λ3 − λ4 + λ5)t4t

−1
5 + (2λ5 − λ6)t25t

−1
6

= λ3(x3 − t25t−1
6 )− 3

2
(λ3 − λ4 + λ5)

(
x4 −

2

3
t35t
−1
6

)
t−1
5 + (2λ5 − λ6)t25t

−1
6

= λ3x3 + α1x4t
−1
5 + α2t

2
5t
−1
6 , (6.3.14)

where α1 = 3
2
(λ4−λ3−λ5) and α2 = (3λ5−λ4−λ6). Therefore, D(x3) = hamx+(x3)+

hamx−(x3)+λ3x3+α1x4t
−1
5 +α2t

2
5t
−1
6 ∈ Aα,β. It follows thatD(x3)t5t6 = hamx+(x3)t5t6+

hamx−(x3)t5t6 + λ3x3t5t6 + α1x4t6 + α2t
3
5 ∈ Aα,β. Hence, hamx−(x3)t5t6 ∈ Aα,β, since

hamx+(x3)t5t6 + λ3x3t5t6 + α1x4t6 + α2t
3
5 ∈ Aα,β.

Using Remark 6.2.7, one can verify that

hamx−(x3)t5t6 =
∑

(ε1,ε2,v)∈I

a(ε1,ε2,v)

(
(i+ 3j − 3ε2 − k)xi1x

j
2x

ε1+1
3 xε24 t

k+1
5 tl+1

6

− 3kxi1x
j
2x

ε1
3 x

ε2+1
4 tk5t

l+1
6 + ixi−1

1 xj+1
2 xε13 x

ε2
4 t

k+1
5 tl+1

6

−6lxi1x
j
2x

ε1
3 x

ε2
4 t

k+3
5 tl6

)
. (6.3.15)

Assume that there exists l < 0 such that a(ε1,ε2,i,j,k,l) 6= 0. It follows from our

initial assumption that a(ε1,ε2,i,j,k,l0) 6= 0. Now, at l = l0, denote υ = (i, j, k, l) by

υ0 := (i, j, k, l0). From (6.3.15), we have that

hamx−(x3)t5t6 =−
∑

(ε1,ε2,υ0)∈I

6l0a(ε1,ε2,υ0)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k+3
5 tl06 + J1,

where J1 ∈ Span
(
P \ {xi1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l0
6 | ε1, ε2 ∈ {0, 1}, k ∈ Z and i, j ∈ N}

)
.

Set w := (i, j, k, l) ∈ N4. One can also write hamx−(x3)t5t6 ∈ Aα,β in terms of the
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basis P of Aα,β (Proposition 5.3.4) as:

hamx−(x3)t5t6 =
∑

(ε1,ε2,w)∈J

b(ε1,ε2,w)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6, (6.3.16)

where J is a finite subset of {0, 1}2 × N4 and b(ε1,ε2,w) ∈ C. It follows that

∑
(ε1,ε2,w)∈J

b(ε1,ε2,w)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6 = −

∑
(ε1,ε2,υ0)∈I

6l0a(ε1,ε2,υ0)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k+3
5 tl06 + J1.

As P is a basis for Aα,β, we deduce from Corollary 5.3.5 that(
xi1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is a basis forAα,β[t−1
5 , t−1

6 ]. Since v0 = (i, j, k, l0) ∈

N2 × Z2 (with l0 < 0) and w = (i, j, k, l) ∈ N4 (with l ≥ 0) in the above equality, we

must have

6l0a(ε1,ε2,υ0) = 0.

Note, l0 6= 0, it follows that a(ε1,ε2,υ0) = a(ε1,ε2,i,j,k,l0) are all zero. This is a contradiction.

Therefore, l ≥ 0 (i.e. there is no negative exponent for t6).

Given that l ≥ 0, it follows from our initial assumption that there exists k = k0 < 0

such that a(ε1,ε2,i,j,k0,l) 6= 0. The rest of the proof will show that this assumption cannot

also hold. Set υ0 := (i, j, k0, l) ∈ N2 × Z× N. From (6.3.15), we have that

hamx−(x3)t5t6 =−
∑

(ε1,ε2,υ0)∈I

3ka(ε1,ε2,υ0)x
i
1x

j
2x

ε1
3 x

ε2+1
4 tk05 t

l+1
6 + V,

where V ∈ J2 := Span
(
P \ {xi1x

j
2x

ε1
3 x

ε2
4 t

k0
5 t

l
6 | ε1, ε2 ∈ {0, 1} and i, j, l ∈ N}

)
. It fol-

lows that:
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hamx−(x3)t5t6 =

−
∑

(ε1,ε2,v)∈I

3k0a(0,0,v)x
i
1x

j
2x4t

k0
5 t

l+1
6 −

∑
(ε1,ε2,v)∈I

3k0a(1,0,v)x
i
1x

j
2x3x4t

k0
5 t

l+1
6

−
∑

(ε1,ε2,v)∈I

3k0a(0,1,v)x
i
1x

j
2x

2
4t
k0
5 t

l+1
6 −

∑
(ε1,ε2,v)∈I

3k0a(1,1,v)x
i
1x

j
2x3x

2
4t
k0
5 t

l+1
6 + V.

(6.3.17)

Write the relations in Lemma 5.3.1(2),(4) as follows:

x2
4 =

2

3
β − 2

3
x2x4x6 +

8

9
αx3x6 +

4

3
x1x3x4x6 + L1, (6.3.18)

x3x
2
4 =

2

3
βx3 −

2

3
x2x3x4x6 +

16

9
α2x6 +

16

3
αx1x4x6 +

8

3
βx2

1x6

− 8

3
x2

1x2x4x
2
6 +

32

9
αx2

1x3x
2
6 +

16

3
x3

1x3x4x
2
6 + L2, (6.3.19)

where L1 and L2 are some elements of the ideal Aα,βt5 ⊆ J2. Substitute (6.3.18) and

(6.3.19) into (6.3.17) and simplify to obtain:

hamx−(e3)t5t6 =
∑

[λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α
2a(1,1,i,j,k0,l−2)

+ λ1,3βa(1,1,i−2,j,k0,l−2)]x
i
1x

j
2t
k0
5 t

l
6

+
∑

[λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1)

+ λ2,3αa(1,1,i−2,j,k0,l−3)]x
i
1x

j
2x3t

k0
5 t

l
6

+
∑

[λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2)

+ λ3,3a(1,1,i−2,j−1,k0,l−3) + λ3,4a(0,0,i,j,k0,l−1)]x
i
1x

j
2x4t

k0
5 t

l
6

+
∑

[λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2)

+ λ4,3a(1,1,i−3,j,k0,l−3) + λ4,4a(1,0,i,j,k0,l−1)]x
i
1x

j
2x3x4t

k0
5 t

l
6 + V ′,

(6.3.20)
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where V ′ ∈ J2. Also, λs,t := λs,t(j, k0, l) are some families of complex numbers which are

non-zero for all s, t ∈ {1, 2, 3, 4} and j, l ∈ N, except λ1,4 and λ2,4 which are assumed to

be zero since they do not exist in the above expression. Note, although each λs,t depends

on j, k0, l, we have not made this dependency explicit in the above expression since the

minimum requirement we need to complete the proof is for all the λs,t existing in the

above expression to be non-zero, which we already have.

Observe that (6.3.20) and (6.3.16) are equal, hence,

∑
(ε1,ε2,w)∈J

b(ε1,ε2,w)x
i
1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6 =

∑
[λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α

2a(1,1,i,j,k0,l−2)

+ λ1,3βa(1,1,i−2,j,k0,l−2)]x
i
1x

j
2t
k0
5 t

l
6

+
∑

[λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1)

+ λ2,3αa(1,1,i−2,j,k0,l−3)]x
i
1x

j
2x3t

k0
5 t

l
6

+
∑

[λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2)

+ λ3,3a(1,1,i−2,j−1,k0,l−3) + λ3,4a(0,0,i,j,k0,l−1)]x
i
1x

j
2x4t

k0
5 t

l
6

+
∑

[λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2)

+λ4,3a(1,1,i−3,j,k0,l−3) + λ4,4a(1,0,i,j,k0,l−1)]x
i
1x

j
2x3x4t

k0
5 t

l
6 + V ′.

We have previously established that
(
xi1x

j
2x

ε1
3 x

ε2
4 t

k
5t
l
6

)
((ε1,ε2,v)∈{0,1}2×N2×Z2)

is a basis for

Aα,β[t−1
5 , t−1

6 ] (note, in this part of the proof l ≥ 0). Since v0 = (i, j, k0, l) ∈ N2×Z×N

(with k0 < 0) and w = (i, j, k, l) ∈ N4 (with k ≥ 0) in the above equality, it follows that

λ1,1βa(0,1,i,j,k0,l−1) + λ1,2α
2a(1,1,i,j,k0,l−2) + λ1,3βa(1,1,i−2,j,k0,l−2) = 0, (6.3.21)

λ2,1αa(0,1,i,j,k0,l−2) + λ2,2βa(1,1,i,j,k0,l−1) + λ2,3αa(1,1,i−2,j,k0,l−3) = 0, (6.3.22)

λ3,1a(0,1,i,j−1,k0,l−2) + λ3,2αa(1,1,i−1,j,k0,l−2) + λ3,3a(1,1,i−2,j−1,k0,l−3)

+ λ3,4a(0,0,i,j,k0,l−1) = 0, (6.3.23)

λ4,1a(0,1,i−1,j,k0,l−2) + λ4,2a(1,1,i,j−1,k0,l−2) + λ4,3a(1,1,i−3,j,k0,l−3)

+ λ4,4a(1,0,i,j,k0,l−1) = 0. (6.3.24)
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From (6.3.21) and (6.3.22), one can easily deduce that

a(0,1,i,j,k0,l) = −α
2λ1,2

βλ1,1

a(1,1,i,j,k0,l−1) −
λ1,3

λ1,1

a(1,1,i−2,j,k0,l−1), (6.3.25)

a(1,1,i,j,k0,l) = −αλ2,1

βλ2,2

a(0,1,i,j,k0,l−1) −
αλ2,3

βλ2,2

a(1,1,i−2,j,k0,l−2). (6.3.26)

Note, a(ε1,ε2,i,j,k0,l) := 0 whenever i < 0 or j < 0 or l < 0 for all ε1, ε2 ∈ {0, 1}.

Claim. The coefficients a(0,1,i,j,k0,l) and a(1,1,i,j,k0,l) are all zero for all l ≥ 0. We now

justify the claim by an induction on l. From (6.3.25) and (6.3.26), the result is obviously

true when l = 0. For l ≥ 0, assume that a(0,1,i,j,k0,l) = a(1,1,i,j,k0,l) = 0. Then, it follows

from (6.3.25) and (6.3.26) that

a(0,1,i,j,k0,l+1) = −α
2λ1,2

βλ1,1

a(1,1,i,j,k0,l) −
λ1,3

λ1,1

a(1,1,i−2,j,k0,l),

a(1,1,i,j,k0,l+1) = −αλ2,1

βλ2,2

a(0,1,i,j,k0,l) −
αλ2,3

βλ2,2

a(1,1,i−2,j,k0,l−1).

From the inductive hypothesis, a(1,1,i,j,k0,l) = a(1,1,i−2,j,k0,l) = a(0,1,i,j,k0,l) = a(1,1,i−2,j,k0,l−1)

= 0. Hence, a(1,1,i,j,k0,l+1) = a(0,1,i,j,k0,l+1) = 0. By the principle of mathematical induc-

tion, a(0,1,i,j,k0,l) = a(1,1,i,j,k0,l) = 0 for all l ≥ 0 as desired. Given that the fami-

lies a(0,1,i,j,k0,l) and a(1,1,i,j,k0,l) are all zero, it follows from (6.3.23) and (6.3.24) that

a(0,0,i,j,k0,l) and a(1,0,i,j,k0,l) are also zero for all (i, j, k0, l) ∈ N2×Z×N. Since a(ε1,ε2,i,j,k0,l)

are all zero, it contradicts our assumption. Hence, x− = 0. Consequently, x = x+ ∈ Aα,β

as desired.

2. From Remark 6.2.6, we have that x4 = x4,6 + 2
3
t35t
−1
6 = t4 + 2

3
t35t
−1
6 . Again, from

Lemma 6.3.4, we have that λ4 = 3λ3 + λ5 and λ6 = −3λ3. Therefore,
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ρ(x4) = λ4t4 +
2

3
(3λ5 − λ6)t35t

−1
6

= (3λ3 + λ5)x4,6 + 2(λ3 + λ5)t35t
−1
6

= (3λ3 + λ5)

(
x4 −

2

3
t35t
−1
6

)
+ 2(λ3 + λ5)t35t

−1
6

= (3λ3 + λ5)x4 +
4

3
λ5t

3
5t
−1
6 .

Hence,

D(x4) = hamx(x4) + ρ(x4) = hamx(x4) + (3λ3 + λ5)x4 +
4

3
λ5t

3
5t
−1
6 ∈ Aα,β.

It follows that λ5t
3
5t
−1
6 ∈ Aα,β, since hamx(x4) + (3λ3 + λ5)x4 ∈ Aα,β. Consequently,

λ5t
3
5 ∈ Aα,βt6. Clearly, λ5 = 0, otherwise, there will be a contradiction using the basis of

Aα,β (Proposition 5.3.4). Therefore, ρ(x4) = 3λ3x4 and ρ(t5) = 0. We already know from

Lemma 6.3.4 that ρ(t6) = −3λ3t6. From (6.3.14), we have ρ(x3) = λ3x3 + 3
2
(λ4− λ3−

λ5)x4t
−1
5 + (3λ5− λ4− λ6)t25t

−1
6 . Given that λ4 = 3λ3, λ5 = 0 and λ6 = −3λ3, we have

that ρ(x3) = λ3x3 + 3λ3x4t
−1
5 . Now, D(x3) = hamx(x3) + ρ(x3) = hamx(x3) + λ3x3 +

3λ3x4t
−1
5 ∈ Aα,β. Observe that hamx(x3), λ3x3 ∈ Aα,β. Hence, λ3x4t

−1
5 ∈ Aα,β which

implies that λ3x4 ∈ Aα,βt5. Therefore, λ3 = 0, otherwise, there will be a contradiction

using the basis of Aα,β. We now have that ρ(x3) = ρ(x4) = ρ(x5) = ρ(x6) = 0. We

finish the proof by showing that ρ(x1) = ρ(x2) = 0. Recall from (5.3.2) that

x2x4x6 −
2

3
x3

3x6 −
2

3
x2x

3
5 + 2x2

3x
2
5 − 3x3x4x5 +

3

2
x2

4 = β.

Apply ρ to this relation to obtain ρ(x2)x4x6 − 2
3
ρ(x2)x3

5 = 0. This implies that

ρ(x2)
(
x4x6 − 2

3
x3

5

)
= 0. Since x4x6− 2

3
x3

5 6= 0, it follows that ρ(x2) = 0. Similarly, from

(5.3.1), we have that

x1x3x5 −
3

2
x1x4 −

1

2
x2x5 +

1

2
x2

3 = α.
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Apply ρ to this relation to obtain ρ(x1)
(
x3x5 − 3

2
x4

)
= 0. Since x3x5 − 3

2
x4 6= 0, we

must have ρ(x1) = 0. In conclusion, ρ(xκ) = 0 for all κ ∈ {1, · · · , 6}.

3. As a result of (1) and (2), we have that D(xκ) = hamx(xκ). Consequently,

D = hamx as desired. �

6.3.5 Poisson derivations of Aα,0 and A0,β. One can observe that the process we

went through to compute the Poisson derivations of Aα,β (when α, β 6= 0) is similar

to the process we went through to compute the derivations of the non-commutative

analogue Aα,β (see Subsection 4.2.1). Similarly, when α or β is zero, then one can follow

procedures similar to Subsection 4.2.5 to compute the Poisson derivations of Aα,0 and

A0,β. The computations have been done, however, for the avoidance of redundancy, we

are not going to include them here. We only summarize the results. Before we do that,

we compute explicitly the scalar Poisson derivations of Aα,0 and A0,β.

6.3.6 Lemma. Let (α, β) ∈ C2 \{(0, 0)}. Suppose that ϑ and ϑ̃ are linear maps of Aα,0

and A0,β respectively, and, are defined by:

ϑ(x1) = −x1, ϑ(x2) = −x2, ϑ(x3) = 0, ϑ(x4) = x4, ϑ(x5) = x5, ϑ(x6) = 2x6,

and

ϑ̃(x1) = −2x1, ϑ̃(x2) = −3x2, ϑ̃(x3) = −x3, ϑ̃(x4) = 0, ϑ̃(x5) = x5, ϑ̃(x6) = 3x6.

Then, ϑ and ϑ̃ are C−Poisson derivations of Aα,0 and A0,β respectively.

Proof. We need to show that ϑ satisfies the following two relations (see (5.3.1) and

(5.3.2)):

x1x3x5 −
3

2
x1x4 −

1

2
x2x5 +

1

2
x2

3 = α,

x2x4x6 −
2

3
x3

3x6 −
2

3
x2x

3
5 + 2x2

3x
2
5 − 3x3x4x5 +

3

2
x2

4 = β,
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and the Poisson bracket of Aα,β (see Section 5.3) when α 6= 0 and β = 0, and do the

same for ϑ̃ when α = 0 and β 6= 0. We will only do this for the relation x1x3x5− 3
2
x1x4−

1
2
x2x5 + 1

2
x2

3 = α and the Poisson bracket {x6, x2} = 3x2x6 + 9x4 − 18x3x5 in both

cases, and leave the remaining ones for the reader to verify. We have:

ϑ(x1)x3x5 + x1ϑ(x3)x5 + x1x3ϑ(x5)− 3

2
[ϑ(x1)x4 + x1ϑ(x4)]

−1

2
[ϑ(x2)x5 + x2ϑ(x5)] + ϑ(x3)x3

= 0,

and

ϑ({x6, x2}) = ϑ(3x2x6 + 9x4 − 18x3x5)

= 3[ϑ(x2)x6 + x2ϑ(x6)] + 9ϑ(x4)− 18[ϑ(x3)x5 + x3ϑ(x5)]

= 3(−x2x6 + 2x2x6) + 9x4 − 18x3x5

= 3x2x6 + 9x4 − 18x3x5

= {x6, x2}

= 2{x6, x2} − {x6, x2}

= {2x6, x2}+ {x6,−x2}

= {ϑ(x6), x2}+ {x6, ϑ(x2)}.

When α = 0 and β 6= 0, we show that ϑ̃ satisfies the same relations as follows:

ϑ̃(x1)x3x5 + x1ϑ̃(x3)x5 + x1x3ϑ̃(x5)− 3

2
[ϑ̃(x1)x4 + x1ϑ̃(x4)]

−1

2
[ϑ̃(x2)x5 + x2ϑ̃(x5)] + ϑ̃(x3)x3

= −2

(
x1x3x5 −

3

2
x1x4 −

1

2
x2x5 +

1

2
x2

3

)
= 0,
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and

ϑ̃({x6, x2}) = ϑ̃(3x2x6 + 9x4 − 18x3x5)

= 3[ϑ̃(x2)x6 + x2ϑ̃(x6)] + 9ϑ̃(x4)− 18[ϑ̃(x3)x5 + x3ϑ̃(x5)]

= 0

= 3{x6, x2} − 3{x6, x2}

= {3x6, x2}+ {x6,−3x2}

= {ϑ̃(x6), x2}+ {x6, ϑ̃(x2)}.

�

6.3.7 Remark. Let (α, β) ∈ C2 \ {(0, 0)} and λ ∈ C.

1. Every Poisson derivation D of Aα,0 is of the form D = hamx + ρλ, where hamx

is an inner Poisson derivation of Aα,0, and ρ is a scalar Poisson derivation of Aα,0

defined as follows:

ρλ(x1) = −λx1 ρλ(x3) = 0 ρλ(x5) = λx5

ρλ(x2) = −λx2 ρλ(x4) = λx4 ρλ(x6) = 2λx6.

2. Every Poisson derivation D of A0,β is of the form D = hamx + ρλ, where hamx

is an inner Poisson derivation of A0,β, and ρ is a scalar Poisson derivation of A0,β

defined as follows:

ρλ(x1) = −2λx1 ρλ(x3) = −λx3 ρλ(x5) = λx5

ρλ(x2) = −3λx2 ρλ(x4) = 0 ρλ(x6) = 3λx6.
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6.3.8 Theorem. Given that Aα,β = C[X1, · · · , X6]/〈Ω1 − α,Ω2 − β〉, with (α, β) ∈

C2 \ {(0, 0)}, we have the following results:

1. if α, β 6= 0; then every Poisson derivation D of Aα,β can uniquely be written as

D = hamx, where x ∈ Aα,β.

2. if α 6= 0 and β = 0, then every Poisson derivation D of Aα,0 can uniquely be

written as D = hamx + λϑ, where λ ∈ C and x ∈ Aα,0.

3. if α = 0 and β 6= 0, then every Poisson derivation D of A0,β can uniquely be

written as D = hamx + λϑ̃, where λ ∈ C and x ∈ A0,β.

4. HH1(Aα,0) = C[ϑ] and HH1(A0,β) = C[ϑ̃], where [ϑ] and [ϑ̃] respectively denote

the classes of ϑ and ϑ̃ modulo the space of inner Poisson derivations.

5. if α, β 6= 0; then HH1(Aα,β) = {[0]}, where [0] denotes the class of 0 modulo the

space of inner Poisson derivations.

Proof. Points (1) is as a result of Lemma 6.3.4. Points (2) and (3) are as a result of

Remark 6.3.7. Point (4) is a consequence of Lemma 6.3.6, and (5) is a consequence of

(1). �



Conclusion

This thesis studied a q-deformation Aα,β ((α, β) ∈ C2 \{(0, 0)}) of a quadratic extension

of A2(C) and compared some properties of Aα,β to those of A2(C). Similar to A2(C), the

algebra Aα,β is simple, noetherian domain, has GKdim of 4 and the central elements are

all scalars. In addition, if α, β 6= 0; then the group of units of Aα,β is the set of non-zero

complex numbers and the derivations of Aα,β are all inner. However, when either α or β

is zero, then the group of units of Aα,β are non-trivial, and the derivations are the sum of

inner and scalar derivations. Therefore, when α and β are non-zero, then the properties

of Aα,β largely reflect those of A2(C). As a result, Aα,β gives a better deformation of a

quadratic extension of A2(C) when αβ 6= 0. We also compared the derivations of Aα,β

to the Poisson derivations of a semiclassical limit Aα,β of Aα,β. In fact, the derivations

of Aα,β and the Poisson derivations of Aα,β are congruent.

All efforts to compute the automorphism group of Aα,β (i.e. Aut(Aα,β)) were not

successful. Nevertheless, we realized some automorphism subgroups of Aut(Aα,β). Let

µ, λ ∈ C∗; and define φµ,λ : Aα,β → Aα,β by φµ,λ(e1) = µe1 and φµ,λ(e6) = λe6. We

have the following:

• {φµ,λ | µ2λ = 1; ∀µ, λ ∈ C∗} ⊆ Aut(Aα,0), where α 6= 0.

• {φµ,λ | µ3λ2 = 1; ∀µ, λ ∈ C∗} ⊆ Aut(A0,β), where β 6= 0.

• {φµ,λ | µ, λ ∈ {−1, 1}} ⊆ Aut(Aα,β), where α, β 6= 0.

The following questions are worth considering, and are opened for further studies.

Questions. Let (α, β) ∈ C2 \ {(0, 0)}. Are there any automorphisms of Aα,β? Is every

endomorphism of Aα,β an automorphism?
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Appendix A

Computations in U+
q (G2)

In this appendix, we provide the computations of the algebra relations of U+
q (G2) in

Section A.1, computations of the data of the deleting derivations algorithm (DDA) of

U+
q (G2) in Section A.2, and finally, provide computations of the generators of the central

elements of U+
q (G2) in Section A.3.

A.1 Algebra relations of U+
q (G2)

This section focuses on providing a summary of the computations of the defining relations

of U+
q (G2) in Subsection A.1.1, and confirming these relations with GAP in Subsection

A.1.2. We finally provide some general relations of U+
q (G2) in Subsection A.1.3.

A.1.1 Summary of the computations of the defining relations of U+
q (G2). Note,

the actions of T1 and T2 on U+
q (G2) are defined in Section 2.1.

(1) Eβ1Eβ6−q(β1,β6)Eβ6Eβ1 = λEβ5 . This implies that E1E2−q−3E2E1 = λT1T2T1T2(E1)

= λT−1
2 (T2T1T2T1T2(E1)) = λT−1

2 (E1). Hence, T2(E1)T2(E2)−q−3T2(E2)T2(E1) =

λE1. One can verify that T2(E1)T2(E2) − q−3T2(E2)T2(E1) = E1. As a result,

λ = 1. Therefore, Eβ1Eβ6 − q−3Eβ6Eβ1 = Eβ5 .

(2) Eβ1Eβ3 − q(β1,β3)Eβ3Eβ1 = λEβ2 . This implies that E1T1T2(E1)− qT1T2(E1)E1 =

λT1(E2). Hence, T−1
1 (E1)T2(E1) − qT2(E1)T−1

1 (E1) = λE2. One can verify that

183
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T−1
1 (E1)T2(E1)− qT2(E1)T−1

1 (E1) = (q2 + 1 + q−2)E2. As a result, λ = (q2 + 1 +

q−2), and Eβ1Eβ3 − qEβ3Eβ1 = (q2 + 1 + q−2)Eβ2 .

(3) Eβ3Eβ5 − q(β3,β5)Eβ5Eβ3 = λEβ4 . This implies that Eβ3Eβ5 − qEβ5Eβ3 = λEβ4 .

This relation is similar to the relation in point (2). Hence, λ = (q2 + 1 + q−2), and

Eβ3Eβ5 − qEβ5Eβ3 = (q2 + 1 + q−2)Eβ4 .

(4) Eβ2Eβ4 − q(β2,β4)Eβ4Eβ2 = λE3
β3
. This implies that

T1(E2)T1T2T1(E2)−q3T1T2T1(E2)T1(E2) = λT1T2(E3
1). Hence, T−1

2 (E2)T1(E2)−

q3T1(E2)T−1
2 (E2) = λE3

1 . One can verify that T−1
2 (E2)T1(E2)−q3T1(E2)T−1

2 (E2) =

q7 − 2q5 + q3

q4 + q2 + 1
E3

1 . As a result, λ =
q7 − 2q5 + q3

q4 + q2 + 1
, and

Eβ2Eβ4 − q3Eβ4Eβ2 =
q7 − 2q5 + q3

q4 + q2 + 1
E3
β3
.

(5) Eβ4Eβ6 − q(β4,β6)Eβ6Eβ4 = λE3
β5
. This implies that Eβ4Eβ6 − q3Eβ6Eβ4 = λE3

β5
.

This relation is similar to point (4). Hence, λ =
q7 − 2q5 + q3

q4 + q2 + 1
, and

Eβ4Eβ6 − q3Eβ6Eβ4 =
q7 − 2q5 + q3

q4 + q2 + 1
E3
β5
.

(6) Eβ1Eβ5 − q(β1,β5)Eβ5Eβ1 = λEβ3 . This implies that Eβ1Eβ5 − q−1Eβ5Eβ1 = λEβ3 .

Now, Eβ3 = T1T2(E1) = T1(E1E2−q−3E2E1) = T1(E2)T1(E1)−q−3T1(E1)T1(E2).

Further simplification shows that Eβ3 = T1(E2)T1(E1) − q−1
2 T1(E1)T1(E2) =

−1

q + q−1
E2

1E2 +
q−3 + q−1

q + q−1
E1E2E1 −

q−4

q + q−1
E2E

2
1 . Furthermore, from point (1),

Eβ5 = Eβ1Eβ6 − q−3Eβ6Eβ1 = E1E2 − q−3E2E1. It follows that:

Eβ1Eβ5 − q−1Eβ5Eβ1 = E1(E1E2 − q−3E2E1)− q−1(E1E2 − q−3E2E1)E1

= E2
1E2 − (q−3 + q−1)E1E2E1 + q−4E2E

2
1

= −E2
1E2 + (q−3 + q−1)E1E2E1 − q−4E2E

2
1

= (q + q−1)Eβ3 .

Consequently, Eβ1Eβ5 − q−1Eβ5Eβ1 = (q + q−1)Eβ3 .
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(7) Eβ3Eβ6 − q(β3,β6)Eβ6Eβ3 = λE2
β5
. This implies that Eβ3E2−E2Eβ3 = λE2

β5
. From

point (6), one can make substitutions for Eβ3 and Eβ5 , and simplify to obtain

λ = q2 − 1. Therefore, Eβ3Eβ6 − Eβ6Eβ3 = (q2 − 1)E2
β5
.

(8) Eβ1Eβ4−q(β1,β4)Eβ4Eβ1 = λE2
β3
. This implies that Eβ1Eβ4−Eβ4Eβ1 = λE2

β3
. This

relation is similar to (7). Hence, λ = q2−1, and Eβ1Eβ4 − Eβ4Eβ1 = (q2 − 1)E2
β3
.

(9) Eβ2Eβ5 − q(β2,β5)Eβ5Eβ2 = λE2
β3
. This implies that T1(E2)Eβ5 − Eβ5T1(E2) =

λE2
β3
. Similarly, from points (6), we can make substitutions for Eβ3 and Eβ5 . Further

simplification shows that λ = q2−1. As a result, Eβ2Eβ5 − Eβ5Eβ2 = (q2 − 1)E2
β3
.

(10) Eβ2Eβ6−q(β2,β6)Eβ6Eβ2 = λEβ4+µEβ3Eβ5 . This implies that T1(E2)E2−q−3E2T1(E2)

= λEβ4 + µEβ3Eβ5 . Using the expressions for Eβ3 and Eβ5 in point (6), and the

relation: Eβ4 = (q2 +1+q−2)−1(Eβ3Eβ5−qEβ5Eβ3), one can simplify T1(E2)E2−

q−3E2T1(E2) = λEβ4 +µEβ3Eβ5 to obtain λ = −(q+q−1−q−3) and µ = q−q−1.

Consequently, Eβ2Eβ6 − q−3Eβ6Eβ2 = −(q + q−1 − q−3)Eβ4 + (q − q−1)Eβ3Eβ5 .

(11) EβiEβj = q3EβjEβi , for all 1 ≤ i, j ≤ 6 with j − i = 1.

A.1.2 Algebra relations of U+
q (G2) : GAP Code. The code below confirms the defining

relations of U+
q (G2). Recall that Ei = Eβi (see the comments before the relations of

U+
q (G2) in Section 2.1). Moreover, E

(r)
3 =

Er
3

[r]q!
and E

(r)
5 =

Er
5

[r]q!
for all r ∈ N>1.

brk> U:=QuantizedUEA(RootSystem("G",2));;

U:=QuantizedUEA(RootSystem("G",2));;

^

brk> T:=GeneratorsOfAlgebra(U);

T:=GeneratorsOfAlgebra(U);

^

[ F1, F2, F3, F4, F5, F6, K1, (-q+q^-1)*[ K1 ; 1 ]+K1, K2,

(-q^3+q^-3)*[ K2 ; 1 ]+K2, E1, E2, E3, E4, E5, E6 ]

brk> g:=[T[11],T[12],T[13],T[14],T[15],T[16]];

#The generators of U_q^+(G_2) are;

g:=[T[11],T[12],T[13],T[14],T[15],T[16]];

^

[ E1, E2, E3, E4, E5, E6 ]
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brk> #We now compute the algebra relations for U_q^+(G_2)

brk> g[2]*g[1];

(q^-3)*E1*E2

brk> g[3]*g[1];

(q^-1)*E1*E3+(-q-q^-1-q^-3)*E2

brk> g[3]*g[2];

(q^-3)*E2*E3

brk> g[4]*g[1];

E1*E4+(-q^3+q^-1)*E3^(2)

brk> g[4]*g[2];

(q^-3)*E2*E4+(-q^3+q+q^-1-q^-3)*E3^(3)

brk> g[4]*g[3];

(q^-3)*E3*E4

brk> g[5]*g[1];

(q)*E1*E5+(-q^2-1)*E3

brk> g[5]*g[2];

E2*E5+(-q^3+q^-1)*E3^(2)

brk> g[5]*g[3];

(q^-1)*E3*E5+(-q-q^-1-q^-3)*E4

brk> g[5]*g[4];

(q^-3)*E4*E5Page 122

brk> g[6]*g[1];

(q^3)*E1*E6+(-q^3)*E5

brk> g[6]*g[2];

(q^3)*E2*E6+(-q^4+q^2)*E3*E5+(q^4+q^2-1)*E4

brk> g[6]*g[3];

E3*E6+(-q^3+q^-1)*E5^(2)

brk> g[6]*g[4];

(q^-3)*E4*E6+(-q^3+q+q^-1-q^-3)*E5^(3)

brk> g[6]*g[5];

(q^-3)*E5*E6

A.1.3 Some general relations of U+
q (G2). We have the following selected general

relations of U+
q (G2).

A.1.4 Lemma. For any n ∈ N, we have that:

1(a) EjE
n
i = q−3nEn

i Ej (b) En
j Ei = q−3nEiE

n
j for all 1 ≤ i, j ≤ 6, with j−i = 1.
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2(a) E6E
n
4 = q−3nEn

4E6 + d1[n]En−1
4 E3

5 (b) En
6E4 = q−3nE4E

n
6 + d1[n]E3

5E
n−1
6

(c) E4E
n
2 = q−3nEn

2E4 + d1[n]En−1
2 E3

3 (d) En
4E2 = q−3nE2E

n
4 + d1[n]E3

3E
n−1
4 ,

where d1[n] = q3(1−n)d1[1]

(
1− q−6n

1− q−6

)
; d1[1] = −q

4 − 2q2 + 1

q4 + q2 + 1
and d1[0] := 0.

3(a) E3E
n
1 = q−nEn

1E3 + d2[n]En−1
1 E2 (b) En

3E1 = q−nE1E
n
3 + d2[n]E2E

n−1
3

(c) E5E
n
3 = q−nEn

3E5 + d2[n]En−1
3 E4 (d) En

5E3 = q−nE3E
n
5 + d2[n]E4E

n−1
5 ,

where d2[n] = q1−nd2[1]

(
1− q−2n

1− q−2

)
; d2[1] = −(q + q−1 + q−3) and d2[0] := 0.

4(a) En
6E3 = E3E

n
6 + d3[n]E2

5E
n−1
6 (b) E5E

n
2 = En

2E5 + d3[n]En−1
2 E2

3 ,

where d3[n] = d3[1]

(
1− q−6n

1− q−6

)
; d3[1] = 1− q2 and d3[0] := 0.

Proof. We prove the lemma by an induction on n. We will only prove for the first non-

trivial case (i.e. 2(a)), and leave the remaining ones for the reader to verify.

2(a). The result is clear when n = 0. For n ≥ 0, suppose that E6E
n
4 = q−3nEn

4E6 +

d1[n]En−1
4 E3

5 , where d1[n] = q3(1−n)d1[1](1 − q−6n)/(1 − q−6); d1[1] = −(q4 − 2q2 +

1)/(q4 + q2 + 1) and d1[0] := 0. Then, E6E
n+1
4 = (q−3nEn

4E6 + d1[n]En−1
4 E3

5)E4 =

q−3(n+1)En+1
4 E6 +(q−3nd1[1]+q−9d1[n])En

4E
3
5 . Note, E6E4 = q−3E4E6 +d1[1]E3

5 . Now,

q−3nd1[1] + q−9d1[n] = q−3nd1[1] + q3(1−n)−9d1[1](1− q−6n)/(1− q−6) = q−3nd1[1](1−

q−6(n+1))/(1− q−6) = d1[n+ 1] as expected. �

A.2 Deleting derivations algorithm of U+
q (G2)

Given that σj ◦ δj = qjδj ◦ σj (see the comments after Definition 1.7.1), we have that

• σ3 ◦ δ3(E1) = q−2δ3 ◦ σ3(E1) hence q3 = q−2,

• σ4 ◦ δ4(E1) = q−6δ4 ◦ σ4(E1) hence q4 = q−6,

• σ5 ◦ δ5(E1) = q−2δ5 ◦ σ5(E1) hence q5 = q−2,

• σ6 ◦ δ6(E1) = q−6δ6 ◦ σ6(E1) hence q6 = q−6.
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From (1.7.1), we have the relation:

Ei,j =


Ei,j+1 if i ≥ j
+∞∑
k=0

(1− qj)−k

[k]qj !
δkj ◦ σ−kj (Ei,j+1)E−kj,j+1 if i < j.

Given this relation, one can compute the elements of Fract(U+
q (G2)) as follows:

E1,6 = E1 + (1− q6)−1δ6 ◦ σ−1
6 (E1)E−1

6

= E1 + (1− q−6)−1E5E
−1
6

= E1 + rE5E
−1
6 .

E2,6 = E2 + (1− q6)−1δ6 ◦ σ−1
6 (E2)E−1

6 +
(1− q6)−2

[2]q6 !
δ2

6 ◦ σ−2
6 (E2)E−2

6

= E2 + (1− q−6)−1[(q−1 − q)E3E5 + (q + q−1 − q−3)E4]E−1
6

+
(1− q−6)−2

1 + q−6

[
(q−4 − q−2)(1− q2) +

(q−2 + q−4 − q−6)(2q2 − q4 − 1)

(q4 + q2 + 1)

]
E3

5E
−2
6

= E2 +
q−1 − q
1− q−6

E3E5E
−1
6 +

q + q−1 − q−3

1− q−6
E4E

−1
6

+
(q−4 − q−2)(1− q2)(q4 + q2 + 1) + (q−2 + q−4 − q−6)(2q2 − q4 − 1)

(1− q−6)2(1 + q−6)(q4 + q2 + 1)
E3

5E
−2
6

= E2 + tE3E5E
−1
6 + uE4E

−1
6 + nE3

5E
−2
6 .

E3,6 = E3 + (1− q6)−1δ6 ◦ σ−1
6 (E3)E−1

6

= E3 +
1− q2

1− q−6
E2

5E
−1
6

= E3 + sE2
5E
−1
6 .

E4,6 = E4 + (1− q6)−1δ6 ◦ σ−1
6 (E4)E−1

6

= E4 +
−q7 + 2q5 − q3

(1− q−6)(q4 + q2 + 1)
E3

5E
−1
6

= E4 + bE3
5E
−1
6 .
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E1,5 = E1,6 + (1− q5)−1δ5 ◦ σ−1
5 (E1,6)E−1

5,6 +
(1− q5)−2

[2]q5 !
δ2

5 ◦ σ−2
5 (E1,6)E−2

5,6

= E1,6 +
q + q−1

q−2 − 1
E3,6E

−1
5,6 +

q + q−1 + q−3

(1− q−2)2
E4,6E

−2
5,6

= E1,6 + hE3,6E
−1
5,6 + gE4,6E

−2
5,6 .

E2,5 = E2,6 + (1− q5)−1δ5 ◦ σ−1
5 (E2,6)E−1

5,6 +
(1− q5)−2

[2]q5 !
δ2

5 ◦ σ−2
5 (E2,6)E−2

5,6

+
(1− q5)−3

[3]q5 !
δ3

5 ◦ σ−3
5 (E2,6)E−3

5,6

= E2,6 +
1− q2

1− q−2
E2

3,6E
−1
5,6 +

(q−1 + q−3)(q2 − 1)(q + q−1 + q−3)

(1− q−2)2(1 + q−2)
E3,6E4,6E

−2
5,6

+
(q−1 + q−3)(1− q2)(q + q−1 + q−3)2

(1− q−2)3(1 + q−2)(1 + q−2 + q−4)
E2

4,6E
−3
5,6

= E2,6 + fE2
3,6E

−1
5,6 + pE3,6E4,6E

−2
5,6 + eE2

4,6E
−3
5,6 .

E3,5 = E3,6 + (1− q5)−1δ5 ◦ σ−1
5 (E3,6)E−1

3,6

= E3,6 +
q2 + 1 + q−2

q−2 − 1
E4,6E

−1
5,6

= E3,6 + aE4,6E
−1
5,6 .

E1,4 = E1,5 + (1− q4)−1δ4 ◦ σ−1
4 (E1,5)E−1

4,5

= E1,5 +
1− q2

1− q−6
E2

3,5E
−1
4,5

= E1,5 + sE2
3,5E

−1
4,5 .

E2,4 = E2,5 + (1− q4)−1δ4 ◦ σ−1
4 (E2,5)E−1

4,5

= E2,5 +
−q7 + 2q5 − q3

(1− q−6)(q4 + q2 + 1)
E3

3,5E
−1
4,5

= E2,5 + bE3
3,5E

−1
4,5 .

E1,3 = E1,4 + (1− q3)−1δ3 ◦ σ−1
3 (E1,4)E−1

3,4

= E1,4 +
q2 + 1 + q−2

q−2 − 1
E2,4E

−1
3,4

= E1,4 + aE2,4E
−1
3,4 .

Otherwise, Ei,j = Ei,j+1, where 1 ≤ i, j ≤ 6. Note, all the constant coefficients

(a, b, e, f, g, h, n, p, r, s, t, u) are defined in Appendix C.
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A.3 Generators of the center of U+
q (G2)

Recall from Section 2.2 that Ti = Ei,2 for all 1 ≤ i ≤ 6, Ω1 = T1T3T5 and Ω2 = T2T4T6.

Now, using the data of the DDA of U+
q (G2), we have the following:

Ω1 = T1T3T5 = E1,2E3,2E5,2 = E1,3E3,3E5,3

= (E1,4 + aE2,4E
−1
3,4)E3,4E5,4

= (E1,4E3,4 + aE2,4)E5,4

= [(E1,5 + sE2
3,5E

−1
4,5)E3,5 + a(E2,5 + bE3

3,5E
−1
4,5)]E5,4

= (E1,5E3,5 + q3sE3
3,5E

−1
4,5 + abE3

3,5E
−1
4,5 + aE2,5)E5,5

= (E1,5E3,5 + aE2,5)E5,5 (Note, q3s+ ab = 0)

= [(E1,6 + hE3,6E
−1
5,6 + gE4,6E

−2
5,6)(E3,6 + aE4,6E

−1
5,6) + aE2,6 + afE2

3,6E
−1
5,6

+ apE3,6E4,6E
−2
5,6 + aeE2

4,6E
−3
5,6 ]E5,6

= E1,6E3,6E5,6 + (hq + af)E2
3,6 + aE1,6E4,6 + aE2,6E5,6. (A.3.1)

From the data of the DDA of U+
q (G2), one can make the necessary substitutions for Ei,6

(with 1 ≤ i ≤ 6) in (A.3.1), and simplify to obtain

Ω1 = T1T3T5 =E1E3E5 + aE1E4 + aE2E5 + a′E2
3

as desired. In a similar manner, we have that:

Ω2 = T2T4T6 = E2,2E4,2E6,2 = E2,3E4,3E6,3 = E2,4E4,4E6,4

= (E2,5 + bE3
3,5E

−1
4,5)E4,5E6,5

= E2,5E4,5E6,5 + bE3
3,5E6,5

= (E2,6 + fE2
3,6E

−1
5,6 + pE3,6E4,6E

−2
5,6 + eE2

4,6E
−3
5,6)E4,6E6,6

+ b(E3,6 + aE3
4,6E

−1
5,6)3E6,6

= E2,6E4,6E6,6 + bE3
3,6E6,6. (A.3.2)
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Again, from the data of the DDA, one can make the necessary substitutions for Ei,6 (with

1 ≤ i ≤ 6) in (A.3.2), and simplify to obtain:

Ω2 = T2T4T6 = E2E4E6 + bE2E
3
5 + bE3

3E6 + b′E2
3E

2
5 + c′E3E4E5 + d′E2

4

as desired.

Note, the constants a, a′, b, b′, c′ and d′ are defined in Appendix C.

A.3.1 The generators of the center of U+
q (G2) : GAP Code. The code below

confirms that Ω1 and Ω2 commute with E1 and E6 as expected.

brk> U:=QuantizedUEA(RootSystem("G",2));;

U:=QuantizedUEA(RootSystem("G",2));;

^

brk> T:=GeneratorsOfAlgebra(U);

T:=GeneratorsOfAlgebra(U);

^

[ F1, F2, F3, F4, F5, F6, K1, (-q+q^-1)*[ K1 ; 1 ]+K1, K2,

(-q^3+q^-3)*[ K2 ; 1 ]+K2, E1, E2, E3, E4, E5, E6 ]

#The generators of U_q^+(G_2) are;

g:=[T[11],T[12],T[13],T[14],T[15],T[16]];

^

[ E1, E2, E3, E4, E5, E6 ]

brk> a:=-(_q^2+1+_q^-2)/(1-_q^-2);

a:=-(_q^2+1+_q^-2)/(1-_q^-2);

^

(-q^4-q^2-1)/(q^2-1)

brk> a1:=-_q^6/(1-_q^2);

a1:=-_q^6/(1-_q^2);

^

(-q^6)/(-q^2+1)Page 123

brk> b:=(_q^7-2*_q^5+_q^3)/((1-_q^-6)*(_q^4+_q^2+1));

b:=-(_q^7-2*_q^5+_q^3)/((1-_q^-6)*(_q^4+_q^2+1));

^

(q^11-q^9)/(q^8+2*q^6+3*q^4+2*q^2+1)

brk> b1:=(_q^11-_q^13)/(_q^8+2*_q^6+3*_q^4+2*_q^2+1);

b1:=-(_q^11-_q^13)/(_q^8+2*_q^6+3*_q^4+2*_q^2+1);

^
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(-q^13+q^11)/(q^8+2*q^6+3*q^4+2*q^2+1)

brk> c1:=-_q^9/(_q^4+_q^2+1);

c1:=-_q^9/(_q^4+_q^2+1);

^

(-q^9)/(q^4+q^2+1)

brk> d1:=-_q^12/(1-_q^6);

d1:=-_q^12/(1-_q^6);

^

(-q^12)/(-q^6+1)

brk> Omega_1:=g[1]*g[3]*g[5]+a*g[1]*g[4]+a*g[2]*g[5]+a1*g[3]^2;

E1*E3*E5+((-q^4-q^2-1)/(q^2-1))*E1*E4+((-q^4-q^2-1)/(q^2-1))*E2*E5+

((-q^7-q^5)/(-q^2+1))*E3^(2)

brk> Omega_1*g[1]=g[1]*Omega_1;

true

brk> Omega_1*g[6]=g[6]*Omega_1;

true

brk>Omega_2:=g[2]*g[4]*g[6]+b*g[2]*g[5]^3+b*g[3]^3*g[6]+b1*g[3]^2*g[5]^2

+c1*g[3]*g[4]*g[5]+d1*g[4]^2;

E2*E4*E6+((-q^10+q^6)/(q^4+q^2+1))*E2*E5^(3)+((-q^9)/(q^4+q^2+1))*E3*E4*E5

+((q^15+q^13-q^11-q^9)/(q^8+2*q^6+3*q^4+2*q^2+1))*E3^(2)*E5^(2)

+((-q^10+q^6)/(q^4+q^2+1))*E3^(3)*E6+((-q^15-q^9)/(-q^6+1))*E4^(2)

brk> Omega_2*g[1]=g[1]*Omega_2;

true

brk> Omega_2*g[6]=g[6]*Omega_2;

true



Appendix B

Computations in A = C[X1, · · · , X6]

Recall that the Poisson algebra A = C[X1, · · · , X6] is the semiclassical limit of U+
q (G2)

(Section 5.2). In this appendix, we define the Poisson bracket of A in Section B.1, and

the data of the Poisson deleting derivations algorithm (PDDA) of A in Section B.2.

B.1 Poisson bracket of A

Note, f(z) = z4 + z2 + 1 (see Section 5.2). In addition, set g(z) := z2 + z+ 1. We have

the following:

{X3, X1} =
Û3Û1 − Û1Û3

z − 1
+ (z − 1)Â = −z−1Û1Û3 − z−3Û2 + (z − 1)Â

= −X1X3 −X2.

{X4, X1} =
Û4Û1 − Û1Û4

z − 1
+ (z − 1)Â = −(z + 1)Û2

3 + (z − 1)Â = −2X2
3 .

{X4, X2} =
Û4Û2 − Û2Û4

z − 1
+ (z − 1)Â = −z−3g(z)Û2Û4 − (z + 1)2Û3

3 + (z − 1)Â

= −3X2X4 − 4X3
3 .

{X5, X1} =
Û5Û1 − Û1Û5

z − 1
+ (z − 1)Â = Û1Û5 − (z2 + 1)Û3 + (z − 1)Â

= X1X5 − 2X3.

{X5, X2} =
Û5Û2 − Û2Û5

z − 1
+ (z − 1)Â = −(z + 1)f(z)Û2

3 + (z − 1)Â = −6X2
3 .

193
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{X5, X3} =
Û5Û3 − Û3Û5

z − 1
+ (z − 1)Â = −z−1Û3Û5 − z−3f(z)Û4 + (z − 1)Â

= −X3X5 − 3X4.

{X6, X1} =
Û6Û1 − Û1Û6

z − 1
+ (z − 1)Â = g(z)Û1Û6 − z3f(z)Û5 + (z − 1)Â

= 3X1X6 − 3X5.

{X6, X2} =
Û6Û2 − Û2Û6

z − 1
+ (z − 1)Â = g(z)Û2Û6 + (z4 + z2 − 1)f(z)2Û4

− f(z)2(z2 + z3)Û3Û5 + (z − 1)Â

= 3X2X6 + 9X4 − 18X3X5.

{X6, X3} =
Û6Û3 − Û3Û6

z − 1
+ (z − 1)Â = −f(z)(1 + z)Û2

5 + (z − 1)Â = −6X2
5 .

{X6, X4} =
Û6Û4 − Û4Û6

z − 1
+ (z − 1)Â = −z−3g(z)Û4Û6 − (z + 1)2Û3

5 + (z − 1)Â

= −3X4X6 − 4X3
5 .

{Xj, Xi} =
ÛjÛi − ÛiÛj

z − 1
+ (z − 1)Â = −z−3g(z)ÛiÛj + (z − 1)Â = −3XiXj,

for all 1 ≤ i < j ≤ 6 with j − i = 1.

B.2 PDDA of the semiclassical limit of U+
q (G2)

Given that δjαj − αjδj = ηjδj (Hypothesis 5.1.11), we have the following:

• (δ3σ3 − σ3δ3)(X1) = −2X2 and δ3(X1) = −X2, hence η3 = 2;

• (δ4σ4 − σ4δ4)(X1) = −12X2
3 and δ4(X1) = −2X2

3 , hence η4 = 6;

• (δ5σ5 − σ5δ5)(X2) = −12X2
3 and δ5(X2) = −6X2

3 , hence η5 = 2;

• (δ6σ6 − σ6δ6)(X1) = −18X5 and δ6(X1) = −3X5, hence η6 = 6.
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We now compute the data of the PDDA of A using the relation

Xi,j =


Xi,j+1 if i ≥ j
+∞∑
k=0

1

ηkj k!
δkj (Xi,j+1)X−kj,j+1 if i < j

(which can be found in Subsection 5.1.8) as follows:

• X1,6 = X1 + 1
η6
δ6(X1)X−1

6 = X1 − 1
2
X5X

−1
6 .

• X2,6 = X2 + 1
η6
δ6(X2)X−1

6 + 1
2η26
δ2

6(X2)X−2
6 = X2 + 3

2
X4X

−1
6 − 3X3X5X

−1
6 +

X3
5X
−2
6 .

• X3,6 = X3 + 1
η6
δ6(X3)X−1

6 = X3 −X2
5X
−1
6 .

• X4,6 = X4 + 1
η6
δ6(X4)X−1

6 = X4 − 2
3
X3

5X
−1
6 .

• X1,5 = X1,6 + 1
η5
δ5(X1,6)X−1

5,6 + 1
2η25
δ2

5(X1,6)X−2
5,6 = X1,6 −X3,6X

−1
5,6 + 3

4
X4,6X

−2
5,6 .

• X2,5 = X2,6 + 1
η5
δ5(X2,6)X−1

5,6 + 1
2η25
δ2

5(X2,6)X−2
5,6 + 1

3!η35
δ3

5(X2,6)X−3
5,6

= X2,6 − 3X2
3,6X

−1
5,6 + 9

2
X3,6X4,6X

−2
5,6 − 9

4
X2

4,6X
−3
5,6 .

• X3,5 = X3,6 + 1
η5
δ5(X3,6)X−1

5,6 = X3,6 − 3
2
X4,6X

−1
5,6 .

• X1,4 = X1,5 + 1
η4
δ4(X1,5)X−1

4,5 = X1,5 − 1
3
X2

3,5X
−1
4,5 .

• X2,4 = X2,5 + 1
η4
δ4(X2,5)X−1

4,5 = X2,5 − 2
3
X3

3,5X
−1
4,5 .

• X1,3 = X1,4 + 1
η3
δ3(X1,4)X−1

3,4 = X1,4 − 1
2
X2,4X

−1
3,4 .

• Otherwise, Xi,j = Xi,j+1, where 1 ≤ i, j ≤ 6.



Appendix C

Definition of scalars used

In this appendix, we define some scalars used in the thesis. Note, for all n ∈ N, we have

already defined the scalars d2[n] in Lemma A.1.4, hence, we are not going to repeat them

here. Any other scalars not defined here must be defined in/before the context in which

it is found.

a =
q2 + 1 + q−2

q−2 − 1
b = − q7 − 2q5 + q3

(q4 + q2 + 1)(1− q−6)

g =
q + q−1 + q−3

(1− q−2)2
f =

1− q2

1− q−2

h =
q + q−1

q−2 − 1
s =

1− q2

1− q−6

t =
q−1 − q
1− q−6

u =
q + q−1 − q−3

1− q−6

p =
q4 + q2 + 1

q2 − 1
r =

−1

1− q−6

e =
−(q7 + q5 + q3)

q4 − 2q2 + 1
q′′ =

q7 − 2q5 + q3

q4 + q2 + 1

n =
q12

(q4 + q2 + 1)3
q′ = −(q2 + 1 + q−2)

k1 = q−3b2 + b6d2[1] a′ = af + hq =
q6

q2 − 1
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k2 = q−3b3 + b12d2[1] b′ =
q13 − q11

(q4 + q2 + 1)2

k3 = b4c1 d′ =
q12

q6 − 1

k4 = b4c2 + q−3b5c1 + b7d2[1] c′ = − q9

q4 + q2 + 1

k5 = b4c2 + q−1b6c1 c1 =
1

a′

k6 = c3b4 + q−1b7 + q−3b4b13c2 c2 = −ac1

k7 = q−3c2b5 + b8d2[1] c3 = −c1

k8 = b1b13c2 b1 =
1

d′

k9 = q−4b6c2 + b9d2[2] + q−3b2c2b13 + q−3b5c2 b2 = b1bc2(q + q−1 + q−3)− b1

k10 = q−1b6b8c2 b3 = −b′b1c2 − bb1

k11 = b13c1 b4 = −b1bc1

k12 = q−1b6b7c2 b5 = b1b(c3(q + q−1 + q−3)− q−3c2)

k13 = q−4b6c3 + q−2b9 + q−3b6b13c2 + q−1b6b13c2 b6 = −q−1c2b1b

k14 = q−1b1b6c2 b7 = −q−1b1bc1c3

k15 = q−1b2b6c2 b8 = b9 = −q−1b1bc2c3

k16 = q−1b3b6c2 + q−2b10c2 + q−3b8b13c2 b10 = −q−1c2
3b1b

k17 = q−1b4b6c2 b11 = −b′b1c1

k18 = q−1b5b6c2 b12 = −b′b1c3

k19 = q−1b2
6c2 b13 = −b1c

′

k20 = q−1b6b9c2 b14 = −b′b1c2

k21 = q−1b6b11c2 + q−2b10c1 + q−3b7b13c2 b15 = q−3c3 + c2b13

k23 = q−1b6b12c2 + q−2b10c3 + q−3b10b13c2 k22 = q−1b6b10c2

k25 = q−1b12c1 + b11b13c2 k24 = q−1b6b14c2 + q−2b10c2 + q−3b9b13c2

k27 = q−1b12c3 + b12b13c2 k26 = q−1b12c2 + b13b14c2

k29 = b13b15 + q−1b14 k28 = q−3b13c2 + b14d2[1]

k31 = q−3b5b13c2 + q−3b5c3 + q−4b8 + b10d2[2] k30 = b3b13c2 + q−1b12c2



Bibliography

[1] N. Andruskiewitsch and F. Dumas. On the automorphisms of U+
q (g). IRMA Lectures

in Mathematics and Theoritical Physics, 12:107–133, 2008.

[2] V. Bavula. Filter dimension of algebras and modules, a simplicity criterion of gener-

alized Weyl algebras. Communications in Algebra, 24:1971–1992, 1996.

[3] V. V. Bavula. Generalized Weyl algebras and their representations. Algebra i Analiz,

4:75–97, 1992.

[4] J. Bell and S. Launois. On the dimension of H-strata in quantum algebras. Algebra

& Number Theory, 4:175–200, 2010.

[5] A. Belov-Kanel and M. Kontsevich. Automorphisms of the Weyl algebra. Letters in

mathematical physics, 74:181–199, 2005.

[6] A. Belov-Kanel and M. Kontsevich. The Jacobian Conjecture is stably equivalent to

the Dixmier Conjecture. Moscow Mathematical Journal, 7:209–218, 2007.

[7] K. A. Brown and K. R. Goodearl. Lectures on algebraic quantum groups. Advanced

Courses in Mathematics CRM Barcelona (Birkhäuser, Basel, 2002).

[8] G. Cauchon. Effacement des dérivations et spectres premiers des algebres quantiques.

J. Algebra, 260:476–518, 2003.

[9] W. A. De Graaf. Computing with quantized enveloping algebras: PBW-type bases,

highest-weight modules and R-matrices. Journal of Symbolic computation, 32:475–

490, 2001.

198



BIBLIOGRAPHY 199

[10] W. A. De Graaf and T. GAP Team. QuaGroup, computations with quantum groups,

Version 1.8.2. https://gap-packages.github.io/quagroup/, Oct 2019. Ref-

ereed GAP package.

[11] J. Dixmier. Sur les algebres de Weyl. Bulletin de la Société mathématique de France,
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