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This presentation is based on the paper: Wang, X., Jiang, B., Wu, S., Lu,
N. and Ding, S., 2021. Multivariate Relevance Vector Regression based
Degradation Modeling and Remaining Useful Life Prediction. IEEE
Transactions on Industrial Electronics, doi: 10.1109/TIE.2021.3114724.

I would like to thank my co-authors of the paper;

I would also like to thank the organisers of the International Conference in
Mathematical Modeling in Physical Sciences, Social Sciences and
Technology (icmm-21) for their invitations.
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Importance of RUL Prediction and our methods

Remaining Useful Life (RUL) RUL is the length of an industrial item
from its current time to the end of its useful life.

Importance of RUL estimation It is needed in condition based
maintenance, prognostics and health management.

Some methods for RUL estimation
▶ With lifetime data and other data, one can build a Cox regression model and then

derive the probability distribution of the RUL,
▶ One may also estimate the distribution of the first hitting time based on a

degradation path, which will be adopted in this talk.
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Regression with OLS, Ridge, LASSO, ElasticNet

Ordinary least squares (OLS): Given a set of data points,
{(x1, y1), . . . , (xn, yn)}, such that xi (= (1, xi1, . . . , , xip)

T ) ∈ Rn+1 is a feature vector
for the ith case and yi ∈ R1 is a target output, one can build a linear regression model

yn = wTx+ ϵn, ,

with the aim to minimise the error on the training datasets

min
n∑

i=1

(yi − xTi w) (1)

where w = (w0,w1, . . . ,wp)
T is the weight vector.

Extensions: Ridge, LASSO (least absolute shrinkage and selection operator), and

ElasticNet are extensions of OLS, with an additional penalty on the weights that aims

to maximise the generalisation.
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Support Vector Regression (SVR)
SVR aims to minimize the weights,

min
1

2
w

T
w (2)

|yi − xTi w | ≤ ϵ (3)

where w is the weight vector and ϵ is the error term.

ϵ-SVR is given by

min
w ,b,ξ,ξ∗

1

2
wTw + C (

l∑
i=1

ξi +
l∑

i=1

ξ∗i )

yi − wTϕ(xi )− b ≤ ϵ+ ξi ,

wTϕ(xi ) + b − yi ≤ ϵ+ ξ∗i ,

ξi , ξ
∗
i ≥ 0, i = 1, . . . , l .

where C is the regularization parameter and balances the trade-off between the model complexity

and empirical error, ξi and ξ∗i are slack variables.
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Limitations of SVR

SVR has been used in many applications Nevertheless, they suffer some
limitations:
▶ non-probabilistic: SVR does not output probabilistic predictions;
▶ C and ϵ: parameters of C and ϵ must be determined by cross-validation; and
▶ Mercer’s condition: the kernels must satisfy Mercer’s condition. Relevance

vector regression To overcome the above limitations, Tipping introduces a novel
model: Relevance Vector Regression

Source: Tipping, M.E., 2001. Sparse Bayesian learning and the relevance vector machine. Journal of

Machine Learning Research, 1(Jun), pp.211-244
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Relevance Vector Regression (RVR)

Assume the relationship between {xn} and {yn}Nn=1 is:

yn = wTϕ(x) + ϵn,

where ϵn are i.i.d with the Gaussian distribution having mean-zero and variance σ2.

Due to the assumption of independence of the tn, the likelihood of the complete data
set can be written as

p(y|w, σ2) = (2πσ2)−N/2 exp

{
− 1

2σ2
∥y −Φw∥2

}
, (4)

where y = (y1 . . . yN)
T, w = (w0 . . .wN)

T and Φ is the N × (N + 1) ‘design’ matrix
with Φ = [ϕ(x1),ϕ(x2), . . . ,ϕ(xN)]T, wherein
ϕ(xn) = [1,K (xn, x1),K (xn, x2), . . . ,K (xn, xN)]T and K (., .) is a kernel function.
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RVR (cont’d)

Tipping assumes a zero-mean Gaussian prior distribution over w:

p(w|α) =
N∏
i=0

N (wi |0, α−1
i ), (5)

with α a vector of N + 1 hyperparameters.

The suitable priors for α and α are Gamma distributions:

p(α) =
N∏
i=0

Gamma(αi |a, b),

p(β) = Gamma(β|c, d),

with β ≡ σ−2 and where Gamma(α|a, b) = Γ(a)−1baαa−1e−bα, with
Γ(a) =

∫∞
0

ta−1e−tdt, the ‘gamma function’.
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Pros and Cons of RVR

Pros
▶ The relevance vector machine or RVM (Tipping, 2001) is a probabilistic regression

model under the Bayesian framework;
▶ compared to the SVR, the RVR results in a sparser model;
▶ The kernels do not need to satisfy Mercer’s condition;

Con RVR only allows regression from multivariate inputs to a univariate
output variable, but not to multiple variables. The operation of many
engineering systems is influenced by multiple variables. For example,
current and voltage are indispensable for electrical systems.
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Literature review and our methods

RVR has been used to predict the remaining useful life.
Literature review
▶ Some authors combine a set of univariate RVR models to output multiple variables,

and
▶ Some authors regard that the weight matrix is inducted by separating into a vector

distribution;

Our methods:
▶ We propose a multivatiate RVR model (MRVR), in which the weight matrix is a

matrix Gaussian distribution;
▶ The hyperparameters of the MRVR model are estimated by Nesterov’s Accelerated

Gradient (NAG) method to obtain numerical solutions
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Multivariate RVR

An MRVR is proposed as following

xn+l =Wϕ(xn) + ϵ, (6)

where
▶ xn+l = [x1,n+l , · · · , xM,n+l ]

T ∈ RM is the l−step forward prediction vector, and
1 < n + l ≤ N;

▶ ϕ(xn) = [1,K(xn, x1), · · · ,K(xn, xN)] ∈ RN+1 denotes a design vector, in which
K(xn, xj) ∈ R is a kernel function,

▶ W ∈ RM×(N+1) is a weight matrix of the design vector ϕ(xn) ≜ ϕ, and
▶ ϵ is assumed to be a Gaussian distributed random error vector with the zero mean

and a diagonal covariance matrix Σ0 = diag{σ2
1 , σ

2
2 , · · · , σ2

M} ∈ RM×M , and diag(·)
denotes a diagonal matrix.

Multivariate Relevance Vector Regression 14/ 26



Multivariate RVR

An MRVR is proposed as following

xn+l =Wϕ(xn) + ϵ, (6)

where
▶ xn+l = [x1,n+l , · · · , xM,n+l ]

T ∈ RM is the l−step forward prediction vector, and
1 < n + l ≤ N;

▶ ϕ(xn) = [1,K(xn, x1), · · · ,K(xn, xN)] ∈ RN+1 denotes a design vector, in which
K(xn, xj) ∈ R is a kernel function,

▶ W ∈ RM×(N+1) is a weight matrix of the design vector ϕ(xn) ≜ ϕ, and
▶ ϵ is assumed to be a Gaussian distributed random error vector with the zero mean

and a diagonal covariance matrix Σ0 = diag{σ2
1 , σ

2
2 , · · · , σ2

M} ∈ RM×M , and diag(·)
denotes a diagonal matrix.

Multivariate Relevance Vector Regression 14/ 26



Multivariate RVR

An MRVR is proposed as following

xn+l =Wϕ(xn) + ϵ, (6)

where
▶ xn+l = [x1,n+l , · · · , xM,n+l ]

T ∈ RM is the l−step forward prediction vector, and
1 < n + l ≤ N;

▶ ϕ(xn) = [1,K(xn, x1), · · · ,K(xn, xN)] ∈ RN+1 denotes a design vector, in which
K(xn, xj) ∈ R is a kernel function,

▶ W ∈ RM×(N+1) is a weight matrix of the design vector ϕ(xn) ≜ ϕ, and
▶ ϵ is assumed to be a Gaussian distributed random error vector with the zero mean

and a diagonal covariance matrix Σ0 = diag{σ2
1 , σ

2
2 , · · · , σ2

M} ∈ RM×M , and diag(·)
denotes a diagonal matrix.

Multivariate Relevance Vector Regression 14/ 26



Multivariate RVR

An MRVR is proposed as following

xn+l =Wϕ(xn) + ϵ, (6)

where
▶ xn+l = [x1,n+l , · · · , xM,n+l ]

T ∈ RM is the l−step forward prediction vector, and
1 < n + l ≤ N;

▶ ϕ(xn) = [1,K(xn, x1), · · · ,K(xn, xN)] ∈ RN+1 denotes a design vector, in which
K(xn, xj) ∈ R is a kernel function,

▶ W ∈ RM×(N+1) is a weight matrix of the design vector ϕ(xn) ≜ ϕ, and
▶ ϵ is assumed to be a Gaussian distributed random error vector with the zero mean

and a diagonal covariance matrix Σ0 = diag{σ2
1 , σ

2
2 , · · · , σ2

M} ∈ RM×M , and diag(·)
denotes a diagonal matrix.

Multivariate Relevance Vector Regression 14/ 26



PDF of xn+1

Probability Density Function (PDF) of xn+l conditioned on W and Σ0 can be
written by

p(xn+l |W ,Σ0) = (2π)−
M
2 |Σ0|−

1
2

× exp

(
−1

2
(xn+l −Wϕ)TΣ−1

0 (xn+l −Wϕ)

)
, (7)

here | · | is the determinant of a square matrix.
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Prior and Posterior distributions ofW

Prior distributions of W To avoid the over-fitting problem of model (6), a prior
matrix Gaussian distribution is assigned on the M × (N + 1) dimension weight matrix
W , which is denoted as W ∼ MNM,N+1(0,Ψ,Γ), which gives

p(W |Ψ,Γ) = (2π)−
M(N+1)

2 |Ψ|− N+1
2 |Γ|−M

2

× etr
(
− 1

2Γ
−1
W

TΨ−1
W

)
,

(8)

where etr(·) is the exponential of trace of a function of the trace of the matrix.

Posterior distributions of W The posterior distribution of weight matrix W is
matrix Gaussian, and its PDF is formulated in the following form.

p(W |xn+l ,Ψ,Γ,Σ0) = (2π)−
M(N+1)

2 |Ψ̃|− N+1
2

×|Γ̃|−M
2 etr

(
− 1

2 Γ̃
−1(W − µ̃)TΨ̃−1(W − µ̃)

)
.

(9)
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Parameter Estimation

Prediction distribution The distribution of the predicted xk+l , based on
the former prediction xn+l , can be obtained by

p (xk+l |xn+l) =

∫∫∫∫
p (xk+l |W ,Σ0) p (W |xn+l ,Ψ,Γ,Σ0)

× p (Ψ,Γ,Σ0|xn+l) dWdΨdΓdΣ0. (10)

Marginal likelihood function The marginal likelihood function
p (xn+l |Ψ,Γ,Σ0) can be obtained by integrating over the weight
parameters W as

p (xn+l |Ψ,Γ,Σ0) =

∫
p (xn+l |W ,Σ0) p(W |Ψ,Γ)dW

=

∫
p
(
xn+l | vec

(
W

T
)
,Σ0

)
p(vec

(
W

T
)
|Ψ,Γ)d vec

(
W

T
)
. (11)
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Parameter Estimation (cont’d)

The negative log of the marginal likelihood is acquired

L (xn+l |Ψ,Γ,Σ0) =
1

2
ln |Σ0|+

N + 1

2
ln |Ψ|+ M

2
ln |Γ|

+
1

2
ln |A|+ E (µ) +

M

2
ln(2π),

(12)

set ∂L
∂Ψi

= 0, ∂L
∂Γj

= 0, and ∂L
∂σ2

i
= 0, it is difficult to obtain explicit

solutions of the hyperparameters Ψi , Γj and σ2
i .

The NAG (Nesterov’s Accelerated Gradient) method is used to obtain numerical

solutions of the hyperparameters
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solutions of the hyperparameters
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Parameter Estimation (cont’d)

The negative log of the marginal likelihood is acquired

L (xn+l |Ψ,Γ,Σ0) =
1

2
ln |Σ0|+

N + 1

2
ln |Ψ|+ M
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First hitting time

The PDF of the degradation prediction takes the form

p (xk+l |xn+l) = N
(
xk+l |Σ0(Σ

−1
0 ⊗ ϕT(xk))ΛΣ−1µ,Σk

)
, (13)

Given the observed measurements x1, x2, · · · , xk , the RUL of each variable at time tk
is defined by

Lik ≜ Li (tk) = inf{tl : xi (tk + tl) ∈ Bi |x1:k}, (14)

where inf{·} denotes the infimum of a discrete; tl represents the time length of the

multi-step prediction; xi (tk + tl) is the degradation path at time tk + tl , x1:k denotes

the historical measurements from t1 to tk ; and Bi refers to a boundary set, containing

a boundary, barrier, or failure threshold.
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RUL prediction

the mean of the RUL is obtained by

Ei(tk) =
+∞∑
Lik=0

Lik · pi(Lik), (15)

where pi(Lik) =
ϕ(gi,k+l )∆gi,k+l

1−Φ(gi,k)
, ϕ(·) and Φ(·) are the PDF and cumulative

distribution function of a standard normal random variable, respectively;

the confidence interval for the prediction can also be obtained.
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Case study: Data

A bearing dataset is used to demonstrate
our proposed approach. Two
accelerometers are placed on the bearings
and positioned at 90◦ to each other, i.e.,
one is placed on the vertical axis and the
other one is placed on the horizontal axis.

Data from 78 minutes onwards are used for
modelling.

The operation is stopped when the
amplitudes of the horizontal and vertical
vibration signals are higher than 25g and
15g , respectively.
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Case study: Degradation Path Prediction

The peaks during 80− 100min are
used as inputs and those during
80.6− 100.6min are used as outputs

For the sake of comparison, both
MRVR and RVR are built on the data

the predicted degradation path based
on the RVR cannot follow the actual
vertical amplitude so well as that
based on the MRVR.

Observation: The MRVR outperforms
the RVR.
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RUL prediction and Performance metrics

The data extracted from the bearing
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Figure: RUL Comparison Figure: Performance
comparison

MAE=mean absolute error; NRMSE=Normalized Root Mean Relative Error



Conclusions

The MRVR outperforms!
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Thank you all!

Questions?


