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Appendix S1

Section S1. Classic C-C model is a special case of the generalized C-C model

The classic competition-colonization (C-C) model developed by Tilman (1994) is a 

special case of our modelling framework. Tilman’s model can be written as

,                    Equation S1
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― ∑𝑖
𝑗 = 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 ― ∑𝑖 ― 1

𝑗 = 1𝑐𝑗𝑝𝑗𝑝𝑖

with a competitive hierarchy by ranking the species from the best competitor (species 

1) to the poorest (species n). In our model, we have Hij=1 and Hji=0 if i<j (i and j are 

species identity, i.e. 1, 2, 3...n), while Hij=0 and Hji=1 if i>j, according to the strict 

competitive hierarchy (note Hij+Hji=1). As such, we have

     Equation S2
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― ∑𝑛
𝑗 = 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 + ∑𝑛

𝑗 = 1(𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 ― 𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖)

   , = 𝑐𝑖𝑝𝑖 ― 𝑐𝑖𝑝𝑖(∑𝑖
𝑗 = 1𝑝𝑗 + ∑𝑛

𝑗 = 𝑖 + 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 + ∑𝑛
𝑗 = 1(𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 ― 𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖)

in which =0 when i>j (as Hij=0 and Hji=1), and  if i<j (as 𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖 = 0

Hji=0 and Hij=1). Here Hii=0 for all diagonal elements in the zero-sum tournament 

matrix H. Thus we obtain

.                           Equation S3{∑𝑛
𝑗 = 1𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 = ∑𝑛

𝑗 = 𝑖 + 1, 𝑗 > 𝑖𝑐𝑖𝑝𝑖𝑝𝑗

∑𝑛
𝑗 = 1𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖 = ∑𝑖 ― 1

𝑗 = 1,𝑗 < 𝑖𝑐𝑗𝑝𝑗𝑝𝑖

Integrating these expressions into our modelling framework above (Appendix S1: 

Equation S2), we have

 
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖 ― 𝑐𝑖𝑝𝑖(∑𝑖
𝑗 = 1𝑝𝑗 + ∑𝑛

𝑗 = 𝑖 + 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 + 𝑐𝑖𝑝𝑖∑
𝑛
𝑗 = 𝑖 + 1𝑝𝑗 ― ∑𝑖 ― 1

𝑗 = 1𝑐𝑗𝑝𝑗𝑝𝑖

 
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖 ― 𝑐𝑖𝑝𝑖∑
𝑖
𝑗 = 1𝑝𝑗 ― 𝑒𝑖𝑝𝑖 ― ∑𝑖 ― 1

𝑗 = 1𝑐𝑗𝑝𝑗𝑝𝑖 
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,                  Equation S4
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― ∑𝑖
𝑗 = 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 ― ∑𝑖 ― 1

𝑗 = 1𝑐𝑗𝑝𝑗𝑝𝑖

which is the same as Tilman’s model as shown in Appendix S1: Equation S1.

Literature cited

Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. 

Ecology 75:2–16.
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Appendix S2

Section S1. General properties of the disturbed model

Disturbance is introduced in our model via the forcing function :𝑓(𝑡,𝐷,𝑇)

.  Equation S1
𝑑𝑝𝑖

𝑑𝑡 = 𝑐𝑖𝑝𝑖(1 ― ∑𝑛
𝑗 = 1𝑝𝑗) ― 𝑒𝑖𝑝𝑖 + ∑𝑛

𝑗 = 1(𝑐𝑖𝑝𝑖𝐻𝑖𝑗𝑝𝑗 ― 𝑐𝑗𝑝𝑗𝐻𝑗𝑖𝑝𝑖) + 𝑝𝑖𝑓(𝑡,𝐷,𝑇)

The forcing function removes a fraction  of each species within each period , 𝐷 𝑇

though the function itself need not be periodic. We rearrange the equation:

,            Equation S2
𝑑𝑝𝑖

𝑑𝑡 = 𝑝𝑖[𝑐𝑖 ― 𝑒𝑖 + 𝑓(𝑡,𝐷,𝑇)
𝑏𝑖

+ ∑𝑛
𝑗 = 1(𝑐𝑖𝐻𝑖𝑗 ― 𝑐𝑗𝐻𝑗𝑖 ― 𝑐𝑖)

𝐴𝑖𝑗

𝑝𝑗]
where the  are effective intrinsic growth rates,  are effective interaction 𝑏𝑖 𝐴𝑖𝑗

coefficients, and the bracketed term above is the per-capita growth rate  of 𝑟𝑖 =
1
𝑝𝑖

𝑑𝑝𝑖

𝑑𝑡

species i. In this notation, the per capita rates are manifestly linear in the , and have 𝑝𝑖

the Lotka-Volterra form

.                                         Equation S3𝑟𝑖 = 𝑏𝑖 + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗

This linearity means that one can take the time-average of these growth rates directly:

,                                         Equation S4𝑟𝑖 = 𝑏𝑖 + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗

where the over-bar denotes time averaging. If we simply replace the fluctuating model 

with the one where parameters are set to their time-averages obtained from the 

fluctuating model, the long-term outcomes will not change.

In our case,  drops to  during every period . Thus we replace the 𝑝𝑖 (1 ― 𝐷)𝑝𝑖 𝑇

mortality rate  with , which gives the same long-term average 𝑒𝑖 𝑒𝑖 ―𝑙𝑜𝑔(1 ― 𝐷) 𝑇

result as the periodically-disturbed model. To explain this, we simply calculate how 
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much mortality a rate of  causes within one period T. Integrating 𝑙𝑜𝑔(1 ― 𝐷) 𝑇 𝑑𝑝𝑖 𝑑𝑡

 over time, we get , or equivalently, = [𝑙𝑜𝑔(1 ― 𝐷) 𝑇]𝑝𝑖 𝑝𝑖(𝑡) = 𝑒𝑥𝑝[𝑙𝑜𝑔(1 ― 𝐷)𝑡 𝑇] ∙ 𝑝𝑖(0)

, which gives  for . We therefore have𝑝𝑖(𝑡) = 𝑝𝑖(0) ∙ (1 ― 𝐷)𝑡 𝑇 𝑝𝑖(𝑇) = (1 ― 𝐷)𝑝𝑖(0) 𝑡 = 𝑇

.                                    Equation S5𝑏𝑖 = 𝑐𝑖 ― 𝑒𝑖 +𝑙𝑜𝑔(1 ― 𝐷) 𝑇

Writing this back into Appendix S2: Equation S4, we have

.                    Equation S6𝑟𝑖 = (𝑐𝑖 ― 𝑒𝑖 + 𝑙𝑜𝑔(1 ― 𝐷) 𝑇) + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗

Due to the time averaging, the steady-state is now characterized by all average 

per-capita growth rates being equal to zero: . At this steady state, Appendix S2: 𝑟𝑖 = 0

Equation S6 reads

,                    Equation S70 = (𝑐𝑖 ― 𝑒𝑖 + 𝑙𝑜𝑔(1 ― 𝐷) 𝑇) + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝 ∗

𝑗

where  are the average site occupancies of species i at steady state. We can 𝑝 ∗
𝑖

express these site occupancies explicitly, by inverting the matrix :𝐴

,                    Equation S8𝑝 ∗
𝑖 = ― ∑𝑛

𝑗 = 1(𝐴 ―1)𝑖𝑗[𝑐𝑗 ― 𝑒𝑗 + 𝑙𝑜𝑔(1 ― 𝐷) 𝑇]

where  is the th entry of ’s inverse. Appendix S2: Equation S8 gives the (𝐴 ―1)𝑖𝑗 (𝑖,𝑗) 𝐴

average stationary site occupancies in response to a disturbance of period  and 𝑇

extent .𝐷

Appendix S2: Equation S8 depends on both the extent and periodicity of the 

disturbance. Fortunately, the effects of varying T can be fully understood, because a 

disturbance regime with periodicity T and extent D is exactly equivalent to another 

one with period T’ = 1 and extent

.                                         Equation S9𝐷′ = 1 ― (1 ― 𝐷)1 𝑇

Indeed, considering that the average effect of disturbance is a  ―𝑙𝑜𝑔(1 ― 𝐷) 𝑇
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contribution to mortality (Appendix S2: Equation S5) and therefore requiring 𝑙𝑜𝑔

 to hold, we immediately arrive at Appendix S2: Equation S9 (1 ― 𝐷′) = 𝑙𝑜𝑔(1 ― 𝐷) 𝑇

after solving for D’. For example, Appendix S2: Fig. S1 below demonstrates this for 

the diversity-disturbance curves of two 4-species communities: one with T and D and 

the other with T’ = 1 and D’. As shown, the two curves are identical, as they should 

be. In conclusion, any change in T can be understood as a change to D instead, via 

Appendix S2: Equation S9, keeping T equal to 1.

Figure S1. Effect of varying disturbance periodicity (T=1 and 2) on DDRs at 

equilibrium in a 4-species system with a strict competitive hierarchy H. Note both the 

dashed red line (T = 2) and the solid blue one (T = 1) fully overlap. Parameters: 

species mortality rates are all equal to ei = 0.2, and colonization rates ci are evenly 

spaced between 0.45 and 0.8.

    The time-averaged model does not capture stochastic extinctions of species at 

low abundances (demographic stochasticity). This means that no matter how low 

abundances fall after a disturbance event, they can always recover. This allowed us to 
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average over the disturbances without ignoring stochastic extinctions. While ignoring 

the effect of demographic stochasticity is a limitation of our model, this limitation 

becomes irrelevant if we assume there are rare species-reintroduction events from 

outside the system. Then, species which have been knocked extinct by a particularly 

violent disturbance event will be reintroduced, and get a chance to recover again. 

Putting it differently, the global dynamical stability of feasible n-species equilibria 

(Appendix S3) means that when we remove one of the species, this reduced system is 

unstable against the reintroduction of the removed species. Thus, assuming an ever so 

small rate of immigration from outside can counteract stochastic extinctions and keep 

our results intact even in the face of demographic stochasticity.

Page 38 of 81Ecology



For Review Only

1

Supporting Information. Liao, J., G. Barabás, and D. Bearup. 2021. 

Competition-colonization dynamics and multimodality in diversity-disturbance 

relationships. Ecology.

Appendix S3

Section S1. Local and global stability of feasible equilibria

As shown in Appendix S2, the time-averaged model can be written as

                                   Equation S1
𝑑𝑝𝑖

𝑑𝑡 = 𝑝𝑖(𝑏𝑖 + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗),

where  is the time-averaged effective intrinsic growth 𝑏𝑖 = 𝑐𝑖 ― 𝑒𝑖 + log(1 ― 𝐷) 𝑇

rate (colonization minus extinction, plus the time averaged disturbance effect), and 

 is the effective interaction matrix. Here we show that as long 𝐴𝑖𝑗 = 𝑐𝑖𝐻𝑖𝑗 ― 𝑐𝑗𝐻𝑗𝑖 ― 𝑐𝑖

as the matrix  is fully hierarchical (  if  and  otherwise), any 𝐻 𝐻𝑖𝑗 = 1 𝑖 < 𝑗 0

feasible equilibrium point is stable.

Since Appendix S3: Equation S1 is an effective Lotka–Volterra system, it has at 

most one fixed point, , where all equilibria  are positive. 𝑝 ∗
𝑖 = ― ∑𝑛

𝑗 = 1(𝐴 ―1)𝑖𝑗𝑏𝑗 𝑝 ∗
𝑖

Let us assume that this fixed point is indeed feasible. The Jacobian matrix  of 𝐽

Appendix S3: Equation S1, evaluated at this equilibrium, has entries . 𝐽 ∗
𝑖𝑘 = 𝑝 ∗

𝑖 𝐴𝑖𝑘

Indeed,

 𝐽𝑖𝑘 =
∂(𝑑𝑝𝑖 𝑑𝑡)

∂𝑝𝑘
=

∂
∂𝑝𝑘

[𝑝𝑖(𝑏𝑖 + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗)]

                               Equation S2= 𝛿𝑖𝑘[𝑏𝑖 + ∑𝑛
𝑗 = 1𝐴𝑖𝑗𝑝𝑗] + 𝑝𝑖𝐴𝑖𝑘,

where  if  and  otherwise. We evaluate this expression at  to get𝛿𝑖𝑘 = 1 𝑖 = 𝑘 0 𝑝 ∗
𝑖

                     Equation S3𝐽 ∗
𝑖𝑘 = 𝛿𝑖𝑘[𝑏𝑖 + ∑𝑛

𝑗 = 1𝐴𝑖𝑗𝑝 ∗
𝑗 ]

0

+ 𝑝 ∗
𝑖 𝐴𝑖𝑘 = 𝑝 ∗

𝑖 𝐴𝑖𝑘.
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The braced term was by Appendix S3: Equation S1. At equilibrium,  is zero, 𝑑𝑝𝑖 𝑑𝑡

so based on the right hand side of Appendix S3: Equation S1, either  or the term 𝑝 ∗
𝑖

in parentheses (which is identical to the braced term above) is zero. Since the 

equilibrium is assumed to be feasible, , and the braced term disappears.  𝑝 ∗
𝑖 > 0

With a fully hierarchical matrix ,  is lower triangular. This is because in 𝐻 𝐴𝑖𝑗

the upper triangle ( ), the nonzero contribution is ; but since  for 𝑖 < 𝑗 𝑐𝑖𝐻𝑖𝑗 ― 𝑐𝑖 𝐻𝑖𝑗 = 1

, we have  for all . In turn, the lower triangular part ( ) is 𝑖 < 𝑗 𝑐𝑖 ― 𝑐𝑖 = 0 𝑖 < 𝑗 𝑖 > 𝑗 𝐴𝑖𝑗

; and the diagonal entries are simply equal to . Thus = ― 𝑐𝑗𝐻𝑗𝑖 ― 𝑐𝑖 = ― 𝑐𝑗 ― 𝑐𝑖 ― 𝑐𝑖

the matrix  has the following structure:𝐴

.                          Equation S4𝐴 = ― ( 𝑐1 0
𝑐1 + 𝑐2 𝑐2

0 ⋯ 0
0 ⋯ 0

𝑐1 + 𝑐3 𝑐2 + 𝑐3
⋮ ⋮

𝑐3 ⋯ 0
⋮ ⋱ )

This means that  is also lower triangular, with the th row of  above is 𝐽 ∗
𝑖𝑗 = 𝑝 ∗

𝑖 𝐴𝑖𝑗 𝑖 𝐴

multiplied by :𝑝 ∗
𝑖

.                  Equation S5𝐽 ∗ = ― ( 𝑝 ∗
1 𝑐1 0

𝑝 ∗
2 (𝑐1 + 𝑐2) 𝑝 ∗

2 𝑐2

0 ⋯ 0
0 ⋯ 0

𝑝 ∗
3 (𝑐1 + 𝑐3) 𝑝 ∗

3 (𝑐2 + 𝑐3)
⋮ ⋮

𝑝 ∗
3 𝑐3 ⋯ 0
⋮ ⋱

)
The local stability of the equilibrium point is determined by the eigenvalues of this 

matrix. But a triangular matrix’s eigenvalues  are simply the diagonal entries 𝜆𝑖

themselves. In this case, , which are manifestly real and negative, 𝜆𝑖 = ― 𝑝𝑖𝑐𝑖

indicating that any feasible -species equilibrium point is stable.𝑛

In case  is not fully hierarchical, the above argument no longer applies. 𝐻

However, since eigenvalues are continuous functions of the matrix entries (they are 

roots of the characteristic polynomial), a sufficiently small perturbation of the perfect 
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hierarchy will not be able to change the signs of the eigenvalues’ real parts from 

negative to positive. Thus, the above stability result will still hold for sufficiently 

small departures from a perfect hierarchy.

When the matrix  is fully hierarchical, the feasible, locally stable equilibrium 𝐻

point is also globally stable. This follows from the fact that a hierarchical  leads to 𝐻

an effective interaction matrix  whose upper triangular entries are all zero. Then 𝐴

Appendix S3: Equation S1 gives, for species 𝑖 = 1

                                Equation S6
𝑑𝑝1

𝑑𝑡 = 𝑝1(𝑏1 + 𝐴11𝑝1).

This is a simple logistic equation for , therefore it reaches its equilibrium value  𝑝1 𝑝 ∗
1

from any positive initial condition. Turning to the second species:

                            Equation S7
𝑑𝑝2

𝑑𝑡 = 𝑝2(𝑏2 + 𝐴21𝑝1 + 𝐴22𝑝2).

But since species 1 grows logistically, it will eventually reach its equilibrium 𝑝 ∗
1

. At that point, we have , where  is a constant. 
𝑑𝑝2

𝑑𝑡 = 𝑝2(𝑏2 + 𝐴21𝑝1 + 𝐴22𝑝2) 𝑏2 + 𝐴21𝑝 ∗
1

Then it can be thought of as an effective intrinsic growth rate, and the above equation 

is again just a logistic equation, with a globally stable equilibrium. And so on, for 

each subsequent species – due to  having zeros in the upper triangle, the right hand 𝐴

side always depends only on species below  in the hierarchy, and thus the overall 𝑖

long-term growth is logistic for each species. This proves that the feasible equilibrium 

is not just locally, but also globally stable. 
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Appendix S4

Section S1. The checkerboard pattern of the inverse community matrix

Here we show that the observed relative abundance patterns in Fig. 2 of the main text 

can be understood from the equation

                     Equation S1𝑝 ∗
𝑖 = ― ∑𝑛

𝑗 = 1(𝐴 ―1)𝑖𝑗[𝑐𝑗 ― 𝑒𝑗 + 𝑙𝑜𝑔(1 ― 𝐷) 𝑇]

(see Appendix S2: Equation S8), which yields giving the average long-term patch 

occupancies as a function of disturbance extent. The effective interaction matrix  𝐴

has entries  (Appendix S2: Equation S2). Here we assume 𝐴𝑖𝑗 = 𝑐𝑖𝐻𝑖𝑗 ― 𝑐𝑗𝐻𝑗𝑖 ― 𝑐𝑖

that the matrix  is fully hierarchical:  if  and 0 otherwise. As such, 𝐻 𝐻𝑖𝑗 = 1 𝑖 < 𝑗 𝑐𝑖

 cancels each other for upper triangular ( ) entries, and  reduces to 𝐻𝑖𝑗 ― 𝑐𝑖 𝑖 < 𝑗 𝐴 ―

 in the lower triangular entries and to  along its diagonal. Introducing (𝑐𝑗 + 𝑐𝑖) ― 𝑐𝑖

the matrices  and , where  is diagonal with its -th diagonal entry equal to 𝐶 𝐿 𝐶 𝑖 ―

, and  is lower triangular with entries  (where  for 𝑐𝑖 𝐿 𝐿𝑖𝑗 = ― (𝑐𝑖 + 𝑐𝑗)𝛩𝑖𝑗 𝛩𝑖𝑗 = 1

 and  otherwise), we can then write  as the sum of the two: .𝑖 > 𝑗 0 𝐴 𝐴 = 𝐶 + 𝐿

Since all , the diagonal matrix  is invertible. Its inverse  is itself a 𝑐𝑖 > 0 𝐶 𝐶 ―1

diagonal matrix with the  along its diagonal. One can then equivalently write ― 1 𝑐𝑖

 as𝐴 = 𝐶 + 𝐿

                                           Equation S2𝐴 = 𝐶(𝐼 + 𝐶 ―1𝐿).

The inverse of  as a whole can thus be written as𝐴
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                                     Equation S3𝐴 ―1 = (𝐼 + 𝐶 ―1𝐿) ―1𝐶 ―1.

We now use the known identity  that holds for any matrix  (𝐼 ― 𝐵) ―1 = ∑∞
𝑘 = 0𝐵𝑘 𝐵

with eigenvalues falling inside the unit circle (the Neumann series expansion). In our 

case, , a strictly lower triangular matrix. The eigenvalues of strictly lower  𝐵 = ― 𝐶 ―1𝐿

triangular matrices are all equal to  (these matrices are nilpotent), which do of 0

course fall in the unit circle. The Neumann series expansion therefore holds, and we 

can write

.                                Equation S4𝐴 ―1 = ∑∞
𝑘 = 0( ―1)𝑘(𝐶 ―1𝐿)𝑘𝐶 ―1

Even more is true: since the -th power of a strictly lower triangular matrix is 𝑛

guaranteed to vanish, we can terminate the above infinite sum at :𝑛 ― 1

.                                Equation S5𝐴 ―1 = ∑𝑛 ― 1
𝑘 = 0( ―1)𝑘(𝐶 ―1𝐿)𝑘𝐶 ―1

For the following, it will be easier if we multiply both sides by  from the right, and 𝐶

work with :𝐴 ―1𝐶

.                                  Equation S6𝐴 ―1𝐶 = ∑𝑛 ― 1
𝑘 = 0( ―1)𝑘(𝐶 ―1𝐿)𝑘

Let us examine the powers of  in more detail. Its -th power is simply the 𝐶 ―1𝐿 0

identity matrix: , or  for its -th entry (the Kronecker  (𝐶 ―1𝐿)0 = 𝐼 (𝐶 ―1𝐿)0
𝑖𝑗 = 𝛿𝑖𝑗 (𝑖,𝑗)

symbol  is  if  and  otherwise). The -th entry of the first power 𝛿𝑖𝑗 1 𝑖 = 𝑗 0 (𝑖,𝑗)

 reads, using , as(𝐶 ―1𝐿)1 = 𝐶 ―1𝐿 𝐿𝑖𝑗 = ― (𝑐𝑖 + 𝑐𝑗)𝛩𝑖𝑗

,                Equation S7 (𝐶 ―1𝐿)𝑖𝑗 = ∑𝑛
𝑘 = 1

1
𝑐𝑖

𝛿𝑖𝑘(𝑐𝑘 + 𝑐𝑗)Θ𝑘𝑗 = (1 +
𝑐𝑗

𝑐𝑖)Θ𝑖𝑗

with  restricting its nonzero entries below the main diagonal. The -th entry of 𝛩𝑖𝑗 (𝑖,𝑗)

the second power is

, Equation S8(𝐶 ―1𝐿)2
𝑖𝑗 = ∑𝑛

𝑘 = 1(1 +
𝑐𝑘

𝑐𝑖)(1 +
𝑐𝑗

𝑐𝑘)Θ𝑖𝑘Θ𝑘𝑗 = ∑𝑖 ― 1
𝑘 = 𝑗 + 1(1 +

𝑐𝑘

𝑐𝑖)(1 +
𝑐𝑗

𝑐𝑘)
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where the summation is understood to yield zero if . Clearly, as long as 𝑗 + 1 > 𝑖 ― 1

, the contribution of (C−1L)2 to the -th entry always exceeds the 𝑗 + 1 ≤ 𝑖 ― 1 (𝑖,𝑗)

contribution of  (since the  are all positive). The condition  𝐶 ―1𝐿 𝑐𝑖 𝑗 + 1 ≤ 𝑖 ― 1

restricts the entries of (C−1L)2 below the first subdiagonal. A similar argument 

establishes that the nonzero entries of (C−1L)3 exceed the corresponding ones in 

(C−1L)2 (and are restricted to below the second subdiagonal), and so on: 

(C−1L)k>(C−1L)k−1 for entries below the -th subdiagonal.(𝑘 ― 1)

As seen from Appendix S4: Equation S6,  is multiplied by  in (𝐶 ―1𝐿)𝑘 ( ―1)𝑘

the summation. When summing over , the main diagonal is . 𝑘 ( ―1)0(𝐶 ―1𝐿)0 = 𝐼

The first subdiagonal is given by the corresponding entries of , which are all ― 𝐶 ―1𝐿

negative. The second subdiagonal is determined by the corresponding entries of ―

; however, since we established that the nonzero entries of  𝐶 ―1𝐿 + (𝐶 ―1𝐿)2 (𝐶 ―1𝐿)𝑘

exceed those of , these entries will be positive. Continuing the same (𝐶 ―1𝐿)𝑘 ― 1

argument, the entries in the second subdiagonal  [ ― 𝐶 ―1𝐿 + (𝐶 ―1𝐿)2 ― (𝐶 ―1𝐿)3]

will again be negative; the ones in the 4-th subdiagonal positive, and so on: the 

subdiagonals keep alternating signs. 

All this is true for  (Appendix S4: Equation S6). To obtain  itself, to 𝐴 ―1𝐶 𝐴 ―1

be used in Appendix S4: Equation S1, we multiply from the right with the diagonal 

matrix . Its effect is to multiply each column of  by . This flips the 𝐶 ―1 𝐴 ―1𝐶 ― 1 𝑐𝑖

sign of each entry and adjusts the magnitudes of the nonzero entries, without affecting 

the alternating sign-pattern in , which therefore looks like this: 𝐴
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.                            Equation S9𝐴 ―1 = ( ― 0 0
+ ― 0
― + ―

0 ⋯ 0
0 ⋯ 0
0 ⋯ 0

+ ― +
⋮ ⋮ ⋮

― ⋯ 0
⋮ ⋱

)
Let us now see what happens when the top species in the hierarchy (species 1) 

goes extinct. It is reasonable to expect this species to be the first to disappear as the 

disturbance extent  increases, because the top species also has the lowest . Thus, 𝐷 𝑐𝑖

the increased mortality due to disturbance will bring the intrinsic growth of the top 

species below zero before other species, which guarantees its extinction. The effect of 

species 1 on the other species is summarized by the first column of : species 2 is 𝐴

positively affected by species 1, species 3 negatively, species 4 positively again, and 

so on. Thus, the removal of species 1 hurts 2, helps 3, hurts 4 again etc., resulting in a 

sharp change in the trajectories of all  as a function of increasing  (Appendix 𝑝 ∗
𝑖 𝐷

S4: Equation S1). If the effect is strong enough to not just change the trajectory but 

turn increasing ones into decreasing ones and vice versa, then the pattern in Fig. 2 of 

the main text is established. With a fully hierarchical matrix H, we thus prove that 

 is a lower triangular matrix whose non-zero entries alternate their signs (+ or –) 𝐴 ―1

in a checkerboard pattern. More specifically, when the topmost species in the 

hierarchy is removed, the direction of the trajectory of  suddenly changes. 𝑝 ∗
𝑖

In fact, while we did not manage to find a formal proof, even more is true: any 

entry  with  is such that(𝐴 ―1)𝑖𝑗 𝑖 > 𝑗

.                        Equation S10|(𝐴 ―1)𝑖𝑗| ≥ ∑𝑖
𝑘 = 𝑗 + 1(𝐴 ―1)𝑖𝑘       (𝑖 > 𝑗)

The consequence is that the extinction of the current top species will indeed change 

increasing  curves to decreasing ones, and vice versa. This conjecture held in 𝑝 ∗
𝑖 (𝐷)
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every case we checked, and we suspect it is in fact a theorem. However, even if one 

treats it as just a well-supported conjecture, it helps explain the pattern of Fig. 2 in the 

main text and therefore the ubiquity of the oscillating diversity-disturbance patterns.

Finally, these results are maintained even if the matrix  is not fully 𝐻

hierarchical. By the general continuity of the  mapping that holds for any 𝐴↦𝐴 ―1

invertible matrix, a sufficiently small change in  can only cause a small change in 𝐻

. If  is still upper triangular, then a small enough change cannot alter the sign 𝐴 ―1 𝐻

pattern of Appendix S4: Equation S9. If  is no longer upper triangular, then the 𝐻

upper triangular entries of  will no longer be exactly zero – however, as long as 𝐴 ―1

the deviation of  from upper triangularity is small, this will not override the overall 𝐻

 patterns as shown in Fig. 2.𝑝 ∗
𝑖 (𝐷)
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Supporting Information. Liao, J., G. Barabás, and D. Bearup. 2021. 

Competition-colonization dynamics and multimodality in diversity-disturbance 

relationships. Ecology.

Appendix S5 - Figures S1-S7

Figure S1. Effect of disturbance extent on species relative abundances in 

multispecies systems (n=3, 4, 5, 6; species denoted by color lines) with a high spread 

of vital rates (evenly spaced ci∊[0.25, 1]), simultaneously considering a strict 

competitive hierarchy. Other parameter values are the same as in Fig. 1.
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Figure S2. Diversity-disturbance curves in multispecies systems (n=3, 4, 5, 6) with 

a strict competitive hierarchy, simultaneously by considering both low (blue lines: 

evenly spaced ci∊[0.5, 0.7]) and high (yellow lines: evenly spaced ci∊[0.3, 0.9]) 

spreads by fixing the mean =0.6. Other parameters are the same as in Fig. 1.𝑐
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Figure S3. Effect of disturbance extent on species relative abundances in 

multispecies systems (n=3, 4, 5, 6; species denoted by color lines) with a low spread 

of vital rates (evenly spaced ci∊[0.5, 0.7]), simultaneously considering a strict 

competitive hierarchy. Other parameters seen in Appendix S5: Fig. S2.
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Figure S4. Effect of disturbance extent on species relative abundances in 

multispecies systems (n=3, 4, 5, 6; species denoted by color lines) with a high spread 

of vital rates (evenly spaced ci∊[0.3, 0.9]), simultaneously considering a strict 

competitive hierarchy. Other parameters seen in Appendix S5: Fig. S2.
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Figure S5. Diversity-disturbance curves in multispecies systems (n=3, 4, 5, 6), by 

considering two cases. First, species colonization rates are evenly spaced from 

ci∊[0.25,1] while perturbing the competitive hierarchy H: the upper triangular entries 

are uniformly sampled from Hij∊[0.75, 1] while the lower triangular ones from Hij∊[0, 

0.25] (blue lines). Second, species colonization rates are uniformly drawn from 

ci∊[0.25, 1] and sorted in increasing order, but with a strict competitive hierarchy H 

(yellow lines). Other parameters: see Fig. 1.
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Figure S6. Diversity-disturbance curves in a highly diverse community (n=25), 

with a large perturbation to the competitive hierarchy H: the upper triangular entries 

are uniformly sampled from Hij∊[0.5, 1] while the lower triangular ones from Hij∊[0, 

0.5]. Species colonization rates are uniformly drawn from both low (blue lines: 

ci∊[0.45, 0.8]) and high (yellow lines: ci∊[0.25, 1]) spreads, and sorted in increasing 

order. Other parameters: Fig. 1.
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Figure S7. Diversity-disturbance curves in a highly diverse community (n=25), 

with different levels of violation (u=0.1, 0.3, 0.5 and 0.7) to the competitive hierarchy 

H: the upper triangular entries are uniformly sampled from Hij∊[1-u, 1] while the 

lower triangular ones from Hij∊[0, u]. Species colonization rates are evenly spaced in 

both low (blue lines: ci∊[0.45, 0.8]) and high (yellow lines: ci∊[0.25, 1]) spreads. 

Other parameters: Fig. 1.
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and multimodality in diversity-disturbance relationships. Ecology.

Data S1

        R code for diversity-disturbance relationships complied in DataS1.zip
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File list (files found within DataS1.zip)

Diversity_disturbance.R

Description

Diversity_disturbance.R – R code for diversity-disturbance relationships, including all 

simulation cases in the main text.
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