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 30 

ABSTRACT 31 

The pathogenic fungus Cryptococcus enters the human host via inhalation into the lung and is able to 32 

reside in a niche environment that is serum (opsonin) limiting. Little is known about the mechanism by 33 

which non-opsonic phagocytosis occurs via phagocytes in such situations. Using a combination of 34 

soluble inhibitors of phagocytic receptors and macrophages derived from knockout mice and human 35 

volunteers, we show that uptake of non-opsonised Cryptococcus neoformans and Cryptocccous gattii 36 

via the mannose receptor is dependent on macrophage activation by cytokines. However, while uptake 37 

of C. neoformans is via both dectin-1 and dectin-2, C. gattii uptake occurs largely via dectin-1. 38 

Interestingly, dectin inhibitors also blocked phagocytosis of unopsonised Cryptococci in wax moth 39 

(Galleria mellonella) larvae and partially protected the larvae from infection by both fungi, supporting 40 

a key role for host phagocytes in augmenting early disease establishment. Finally, we demonstrated that 41 

internalisation of non-opsonised Cryptococci is not accompanied by the nuclear translocation of NFB 42 

or its concomitant production of proinflammatory cytokines such as TNF. Thus, non-opsonised 43 

Cryptococci are recognised by mammalian phagocytes in a manner that minimises proinflammatory 44 

cytokine production and potentially facilitates fungal pathogenesis.  45 

 46 

 47 

 48 

 49 
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INTRODUCTION 50 

Cryptococcus neoformans and Cryptococcus gattii are encapsulated human fungal pathogens that cause 51 

cryptococcosis in immunocompromised and, more rarely, immunocompetent individuals. Often found 52 

as free-living cells in soil and avian excreta, Cryptococci are not intrinsic human pathogens. However, 53 

Cryptococci become human pathogens because several defence mechanisms possessed by these fungi 54 

also act as virulence factors within a human or animal host (1), including the ability firstly, to survive 55 

and replicate within free-living soil amoeba and, secondly to evade clearance by the host immune 56 

system by hiding and persisting within macrophages (2, 3). 57 

As Cryptococci enter hosts via inhalation into the lungs, they are detected and phagocytosed by 58 

resident alveolar macrophages (4). Phagocytosis is a multi-step process that sequentially involves 59 

receptor-mediated particle recognition, actin-driven uptake, phagosome maturation and particle 60 

clearance. It is critical during the early innate immune response to ensure the removal of 61 

microorganisms and apoptotic cells as well as subsequent priming of the adaptive immune response 62 

through the production and release of cytokines, such as Tumour Necrosis Factor- (TNF-) (5). 63 

Phagocytosis of Cryptococci is typically inefficient unless they are opsonised (coated) by antibodies or 64 

complement proteins found in serum within the circulatory system.  Interestingly, there is a lack of 65 

serum opsonins in the alveoli of the lungs, and so the initial uptake of Cryptococcus upon colonisation 66 

is most likely through a non-opsonised route (6). 67 

Non-opsonic phagocytosis requires host cell phagocytic pattern recognition receptors (PRRs) to 68 

directly recognise fungal cell wall components (pathogen associated molecular patterns; PAMPs) (7) 69 

such as β-glucans or mannan polysaccharides, but the nature of this interaction for Cryptococci remains 70 

unknown.  Here we show that non-opsonised C. neoformans and C. gattii enter macrophages in a Syk-71 

dependent, mannose receptor-independent manner that involves the receptors Dectin-1 and Dectin-2. 72 

This differential uptake of C. neoformans and C. gattii corresponds to differential exposure of PAMPs 73 

found on the fungal cell wall. Phagocytic kinetics of macrophages and insect haemocytes in the 74 
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absence or presence of cellular receptor inhibitors were similar in response to fungal targets. Finally, 75 

we demonstrate that entry of Cryptococcus does not affect NFB nuclear translocation or subsequent 76 

TNF- release, highlighting the remarkably non-inflammatory capabilities of this organism.  77 

 78 
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MATERIALS AND METHODS 99 

Reagents  100 

All reagents (e.g. heat-inactivated fetal bovine serum, FBS; Dulbecco’s Modified Eagle’s Medium 101 

(DMEM); L-glutamine; powdered yeast-extract peptone dextrose, YPD and phosphate buffered saline, 102 

PBS) were purchased from Sigma unless stated otherwise. Mouse macrophage- and Human 103 

granulocyte-macrophage- colony stimulating factors (mM-CSF, 130-094-129 and hGM-CSF, 130-093-104 

862) were purchased from Miltenyi Biotec. Commercially sourced inhibitors tested included the Syk 105 

inhibiting plant metabolite, Piceatannol (527948, Calbiochem), the β-1,3-glucan from brown algae 106 

Laminaria digitata, Laminarin (L9634, Sigma) and mannan from Saccharomyces cerevisiae (M7504, 107 

Sigma). 108 

The antibodies used in this study were rabbit anti-sheep red blood cells, IgG fraction (#55806, MP 109 

Biomedicals), rabbit anti-sheep red blood cells, IgM fraction (CL9000M, VH Bio/Cedarlane), rabbit 110 

anti-p65 NFkB monoclonal antibody (clone D14E12, #8242, NEB/Cell Signalling), rat anti-M (clone 111 

5c6, MCA2289, Bio-Rad/AbD Serotec), rabbit anti-Phospho-Syk (Tyr525/526 in humans, Tyr519/520 112 

in mice, clone C87C1, #2710, NEB/Cell Signalling, a kind gift from Yotis Senis, University of 113 

Birmingham). Rhodamine-Phalloidin and Alexa Fluor conjugated secondary antibodies were purchased 114 

from Life Technologies and Calcofluor White from Sigma. Glucan-6-phosphate and mouse anti-115 

cryptococcal capsule antibody (clone 18B7) were kind gifts from David Williams (East Tennessee 116 

State University) and Arturo Casadevall (Albert Einstein College of Medicine) respectively.  117 

 118 

Mice 119 

Mice devoid of specific PRRs (in C57BL/6 background) were published before (8, 9) and were housed 120 

under pathogen-free conditions in the registered animal facility at the University of Aberdeen. Mice 121 

were allocated to experimental groups on the basis of genotype and age-matching. All animal 122 

procedures were performed according to the protocols provided by the Animal, Welfare and Ethical 123 
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Review Body (AWERB) of the University of Aberdeen and is regulated by the UK Home Office’s 124 

Animal (Scientific Procedures) Act of 1986 and European Directive 2010/63/EU. 125 

 126 

Yeast and bacterial cell growth conditions 127 

C. neoformans strain H99, C. gattii strain R265, Candida albicans strains SC5314 were incubated in 128 

liquid YPD medium for 24hr (unless stated otherwise) at 25
o
C on a rotator at 20rev/min (or 37

o
C, 200 129 

rpm for C. albicans). Escherichia coli strain DH5 was incubated in Luria-Bertani broth for 16hr at 130 

37
o
C in a shaking incubator at 200rpm. Yeast cells were centrifuged at 3000g for 2.5min (or 6000g for 131 

1min for E. coli), washed three times in PBS and counted with a haemocytometer prior to use. 132 

 133 

Mammalian cell growth conditions 134 

Cells from the murine macrophage-like cell line J774.A1 (American Type Culture Collection number 135 

TIB-67) were cultured in DMEM supplemented with 2mM L-glutamine and 10% heat-inactivated FBS 136 

at 37
o
C, 5% CO2 (10). As required, macrophages were scrapped in PBS, counted and seeded (50 000 137 

per well) onto 13mm acid-washed glass coverslips and incubated for 24hr at 37°C, 5% CO2 – prior to 138 

experimental use.  139 

Macrophages devoid of specific PRRs were derived from mouse bone marrow. Bone marrows were 140 

flushed using a 21-gauge needle from the hind leg bones of either receptor knockout or litter-matched 141 

wild type mice. Monocytes were differentiated into macrophages with 20ng/ml macrophage-colony 142 

stimulating factor (M-CSF, Miltenyi Biotec) for 7 days.   143 

Pooled peripheral blood mononuclear cells (PBMC) were isolated from whole blood from healthy 144 

volunteers using density gradient centrifugation with Ficoll-Paque (GE Healthcare). The mononuclear 145 

layer was collected and washed with PBS to remove platelets. Monocytes were purified by adherence 146 

to plastic in RPMI-1640 media supplemented with 5% heat-inactivated FBS, 2mM glutamine, 147 

100mg/ml streptomycin, 100units/ml penicillin at 37
o
C, 5% CO2 for 1hr. Non-adherent cells were 148 
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removed with PBS and adherent cells differentiated into macrophages with 20ng/ml recombinant 149 

human granulocyte macrophage-colony stimulating factor (rhGM-CSF, Miltenyi Biotec) for 7 days. 150 

This study was covered by the University of Birmingham’s Science, Technology, Engineering and 151 

Mathematics Ethical Review Committee. 152 

 153 

Phagocytic challenge 154 

Macrophages were serum starved for 2 – 16hr with serum-free medium at 37
o
C, 5% CO2. Where 155 

needed, inhibitors were added directly and left for a further 30min. Next, media was removed prior to 156 

fresh serum-free medium added containing either 1g/ml 18B7 antibody (against cryptococcal capsule) 157 

or unopsonised targets at a multiplicity of infection (MOI) of either 10:1 or 20:1 for 20-180min at 158 

37°C, 5% CO2. Cells were washed three times with PBS to remove unbound yeast/bacteria cells and 159 

fixed in 4% paraformaldehyde for 10min at room temperature.  160 

 161 

Galleria mellonella maintenance 162 

Larvae of the greater wax moth, G. mellonella, were sourced from Livefoods Direct (UK) and stored in 163 

wood shavings in the dark at 13
o
C. This study was covered by the University of Stirling’s Animal, 164 

Welfare and Ethical Review Body (AWERB). Healthy larvae weighing between 0.2 and 0.4 g were 165 

used in all experiments. Larvae were inoculated with different concentrations of inhibitors via 166 

intrahaemocoel injection 1hr prior to infection with 1 million C. neoformans H99 per larva as described 167 

previously (11). Controls consisted of larvae that received a 20l PBS inoculum. 3-5 larvae were used 168 

per treatment, with all treatments being performed on at least three independent occasions. 169 

For phagocytosis, larvae were bled and haemolymph treated as previously described (12). Briefly, 170 

pooled haemolymph was mixed with 0.5ml PBS and added onto a 13mm coverslip in a 24-well plate. 171 

Haemocytes were centrifuged onto the coverslips for 10 min at 500 x g at room temperature (RT), 172 
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before washing 3 times with PBS to remove non-internalised yeasts. Cells were then fixed with 4% 173 

paraformaldehyde before permeabilisation and immunostained as described below. All determinations 174 

were performed on at least three independent occasions.  175 

 176 

Immunofluorescence and scoring  177 

Fixed cells on coverslips were permeabilised with 0.1% Triton-X-100 for 5 min (if necessary to 178 

identify internalised yeasts), washed with PBS and blocked with 0.5% bovine serum albumin (BSA) in 179 

PBS for 30 min. Appropriate primary antibodies (1:200 dilution) were added to cells, left for 30 min at 180 

room temperature, washed with PBS, and counter stained with the appropriate fluorophore-conjugated 181 

secondary antibody, along with Rhodamine-Phalloidin and Calcofluor White. Coverslips were then 182 

washed in PBS and distilled water before mounted in ProLong Gold antifade reagent (Life 183 

Technologies) and analysed by microscopy. 184 

For counting of phagocytosed yeast/bacteria, fixed but unpermeabilised cells on coverslips were 185 

stained with Calcofluor White to highlight the external yeasts. Coverslips were analysed with a Nikon 186 

Eclipse Ti microscope under a 63x oil immersion objective. Between 5 – 10 fields of view of each 187 

coverslip were counted for number of macrophages and association of microbial cells. At least 100 188 

macrophages were observed for each cover-slip.   189 

The enrichment in phosphorylated Syk at sites of yeast binding and the translocation of p65 into the 190 

nucleus during NFB activation were studied and scored by the Nikon A1R confocal microscope using 191 

20x – 63x objectives. For the former, a minimum of 25 infected cells per condition were analysed for a 192 

discrete local enrichment in marker signal (Syk) at bound particles. For the latter, between 3-5 fields of 193 

view for each sample/coverslip were counted for the number of macrophages with p65 marker signal 194 

located within the nucleus and expressed as a percentage of the total number of macrophages (%NFB 195 

nuclear translocation).   196 
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 197 

In vitro cytokine production 198 

J774.A1 and primary human macrophages were cultured in 96-well microtiter plates (Greiner) at 10000 199 

cells/well, in a final volume of 200l. Cells were stimulated with either control medium or LPS or a 200 

range of unopsonised pathogenic yeasts. After 6hr of incubation at 37
o
C, plates were centrifuged (500g 201 

for 10min), and the supernatant was collected and stored at -80
o
C until cytokine assays were 202 

performed. Levels of TNF- were determined by commercial ELISA kits, used according to the 203 

instructions of the manufacturer (R&D Systems). 204 

 205 

Statistical analyses 206 

Analysis carried out on the results described in this paper was by a generalise linear model (GLM) 207 

using a Poisson error distribution in R (R Development Core Team). This was tested for significance 208 

using a Posthoc Tukey Honesty Significant Difference (HSD) test.  209 

 210 

RESULTS 211 

Uptake of non-opsonised Cryptococci via mannose receptor is activation dependent 212 

As previously observed, the levels of non-opsonic uptake of Cryptococci is very low (e.g. 0.4% of C. 213 

neoformans serotype D was taken up by unstimulated mouse peritoneal macrophages; or 7-21% of C. 214 

gattii R265 was taken up by human dendritic cells; 13, 14) and our results are in agreement with those 215 

findings – 8.89% or 5.83% of primary human macrophages contained one or more C. neoformans H99, 216 

or C. gatii R265, respectively (based on the carrier controls in Figures 1C and 2B) after two hours of 217 

incubation. The mannose receptor is broadly expressed on macrophages and important for the non-218 

opsonic uptake of fungal pathogens such as Candida albicans and Pneumocystis carinii (15, 16).  The 219 

uptake of C. neoformans H99, or C. gatii R265 by J774.A1 macrophages pre-treated with soluble 220 
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mannan (a competitive inhibitor of mannose receptor binding) was unaltered relative to control 221 

(untreated) cells (Figure 1A). Similarly, M-CSF differentiated bone marrow macrophages from 222 

mannose receptor knock-out mice (MR KO) showed no reduction in uptake of either Cryptococcus 223 

neoformans (Cn) or Cryptococcus gattii (Cg) relative to wildtype control cells (Figure 1B). 224 

Interestingly, however, GM-CSF differentiated primary human macrophages showed a strong 225 

inhibition of uptake under the same conditions (Figure 1C), suggesting that the mannose receptor may 226 

play a greater role in cryptococcal uptake into human cells than those of mice. 227 

 228 

Phagocytosis of unopsonised Cryptococci is Syk-dependent  229 

The other major class of non-opsonic phagocytic receptors for fungi are the dectins (17). Both dectin-1 230 

and dectin-2 require Syk activity for their function, via immunoreceptor tyrosine-based activation 231 

motifs (ITAM) contained within dectin-1 itself or via membrane association with ITAM-containing Fc 232 

receptor  chain in the case of dectin-2 (18). Inhibiting Syk activity in J774.A1 cells by using 233 

piceatannol (19) resulted in a marked reduction in their ability to phagocytose either C. neoformans 234 

H99 or C. gattii R265 (Figure 2A, p<0.05). The same observation was also seen in GM-CSF 235 

differentiated primary human macrophages from pooled monocytes isolated from human volunteers 236 

(Figure 2B). In line with this, staining with an anti-Phospho-Syk antibody showed intense 237 

accumulation of active Syk at phagocytic cups forming around non-opsonised Cryptococci (Figure 3). 238 

This antibody was raised against the tyrosine phosphorylated residues at positions 525 and 526, located 239 

in the activation loop of the Syk kinase domain and essential for Syk function (20). Therefore, we 240 

propose that the localisation of this antibody to the sites of non-opsonic uptake of Cryptococci and the 241 

activity of piceatannol in blocking uptake suggests that Syk activity is required for internalisation.  242 

 243 

Phagocytosis of unopsonised Cryptococci is partially dependent on Dectin-1 244 
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To test for a role for the dectin family of receptors during phagocytic uptake of non-opsonised 245 

Cryptococci, we first exposed J774.A1 macrophages (Figure 4A) or differentiated primary human 246 

macrophages (Figure 4B) to the dectin-1 inhibitor glucan-6-phosphate before challenging with either 247 

unopsonised C. gattii R265 or C. neoformans H99. This inhibitor partially blocked the uptake of both 248 

species of Cryptococcus, suggesting dectin-1 contributes towards Cryptococci uptake but is not the sole 249 

recognition receptor involved in this process (Figures 4A and 4B).  In line with this, M-CSF-250 

differentiated bone marrow macrophages (BMM) from dectin-1 and dectin-2 knockout mice both 251 

showed substantially impaired uptake of C. neoformans H99 – surprisingly, this was not the case for C. 252 

gattii R265 (Figure 4C). This suggests either the presence of another Syk-dependent non-opsonic 253 

receptor, or that both dectins are redundant with each other for C. gattii, but not C. neoformans uptake. 254 

 255 

Non-opsonic uptake in the Galleria model 256 

The greater wax moth, Galleria mellonella, is widely used as a model organism in the study of host-257 

pathogen interactions with a variety of human pathogens (21). As with other insects, G. mellonella does 258 

not possess an adaptive immune system like mammals but possesses a complex innate immune system 259 

that includes phagocytic cells, termed haemocytes (22, 23). We therefore tested whether non-opsonic 260 

uptake of Cryptococci in G. mellonella showed similar receptor dependency as in mammalian cells by 261 

pre-treating larvae for 1hr with soluble mannan or glucan-6-phosphate or laminarin. The full genome 262 

sequence of Galleria is currently available though not fully annotated (24). However, several β-1,3-263 

glucan binding protein analogues and C-type lectins have been characterised in this species, as well as 264 

other Lepidopterans, namely Manduca sexta (25, 26), Bombyx mori (27) and Plodia interpunctella 265 

(28). Recognition of fungal PAMPs (e.g. curdlan and mannan) by membrane bound receptors modulate 266 

cellular (haemocyte)-directed immunity in insects (encapsulation, nodulation and phagocytosis) (29).  267 

Whilst soluble mannan did not significantly reduce association of Cryptococci with Galleria 268 
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haemocytes in data presented here, both glucan-6-phosphate and laminarin led to a marked reduction in 269 

uptake (Figure 5, p<0.001 for both when compared to the PBS controls).  270 

Interestingly, administering glucan-6-phosphate or laminarin for 24 h appeared to partially protect the 271 

insect larvae from infection by both unopsonised species of Cryptococcus (Figure 6) suggesting that 272 

disease establishment in this model organism requires the fungus to grow intracellularly, something 273 

that has previously been proposed for human hosts (30). 274 

 275 

Cryptococcal uptake by macrophages does not lead to increased proinflammatory cytokine 276 

secretion  277 

Unlike many pathogens, internalisation of opsonised Cryptococci into phagocytes is not accompanied 278 

by the production of proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin 279 

(IL)-1 or IL-1 (31, 32). To test whether this is also true of non-opsonic uptake, we measured the 280 

secretion of TNF and nuclear translocation of p65 (a major regulator of cytokine transcription) from 281 

J774.A1 macrophages upon challenge with unopsonised or serum-opsonised C. neoformans H99 or C. 282 

gattii R265. Although LPS-stimulated macrophages showed strong nuclear translocation of p65, 283 

neither IgG-opsonised nor unopsonised C. neoformans H99 or C. gattii R265 stimulated NFB 284 

activation (Figure 7A).  However, NFB activation could be restored in cryptococcal exposed 285 

macrophages by the subsequent addition of LPS (Figure 7B).   286 

Furthermore, to test whether internalisation of unopsonised Cryptococci into J774.A1 mouse 287 

macrophages or primary human macrophages elicits the production of proinflammatory cytokines such 288 

as tumor necrosis factor (TNF), we measured the secretion of TNF from J774.A1 macrophages or 289 

primary human macrophages upon challenge with unopsonised C. neoformans H99 or C. gattii R265, 290 

with Candida albicans and LPS as controls.  With J774.A1 mouse macrophage and primary human 291 

macrophages, C. albicans- or LPS- stimulated macrophages showed stronger TNF production 292 



For P
ee

r R
ev

iew
. D

o n
ot d

ist
rib

ute
. D

es
tro

y a
fte

r u
se

.

13 

 

compared to varying doses of C. neoformans H99 or C. gattii R265 (Figure 8; p = 0.04 for Ca vs. 293 

media control, p > 0.05 for Ca vs. Cn/Cg). Overall this suggests that Cryptococci do not actively block 294 

inflammatory signalling in host cells, and do not induce a strong inflammatory stimulus following non-295 

opsonic uptake. 296 

 297 

DISCUSSION 298 

In this study, we examined the phagocytic uptake of unopsonised cryptococcal yeast particles by 299 

macrophages. This process relies on the use of phagocytic receptors, which can be categorised either as 300 

opsonic or non-opsonic. Opsonic phagocytic receptors include the Fc receptor and complement 301 

receptor families, which recognises antibody- or complement- opsonised (coated) particles, 302 

respectively. Non-opsonic phagocytic receptors are pattern recognition receptors (PRRs), such as the 303 

C-type lectin family of receptors recognizes distinct pathogen-associated molecular patterns (PAMPs) 304 

on the fungal surface (33).  305 

While phagocytosis of Cryptococcus within the circulatory system would occur predominantly through 306 

an opsonised (coated) uptake route due to the presence of antibodies and/or complement proteins found 307 

in serum, this is not always the case. For example, first encounter of the human body with 308 

Cryptococcus is through the lungs when desiccated yeast cells or spores are breathed in. These 309 

cryptococcal particles encounter their initial immunological challenge through resident alveolar 310 

macrophages and dendritic cells in a serum-deficient or low-serum environment (34, 35, 36). 311 

Interestingly, it was reported recently that between 25-40% of mouse lung-resident macrophages are 312 

able to phagocytose C. neoformans particles through a scavenger receptor pathway (37). Therefore, this 313 

confirms that initial uptake of Cryptococcus by macrophages is most likely through a non-opsonised 314 

route and there is a need to understand the mechanisms that underpins this process (6). We confirmed 315 

that, compared to the bacterium Escherichia coli or fungus Candida albicans, Cryptococci cells are not 316 

readily taken up by mammalian macrophages, most likely due to the presence of the capsule which 317 
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renders Cryptococci anti-phagocytic (38, 39).  By using a combination of a soluble mannose inhibitor 318 

and mannose receptor knockout mouse tissue, we demonstrated that mannose receptor was not 319 

necessary for the uptake of either species of Cryptococcus, in line with recent data from the zebrafish 320 

model (40), though this is not the case in primary human macrophages. We note that others have shown 321 

mannose receptor knockout mice to be more susceptible to C. neoformans (41) and demonstrated a role 322 

for this receptor, along with FcRII (CD32) in driving cryptococcal uptake into dendritic cells (42). 323 

Thus, mannose receptor dependency apparently varies across different cell types and tissue contexts.  324 

Next, we pursued a different set of non-opsonic pattern recognition receptors, dectin-1 and dectin-2 325 

which are C-type lectin receptors (CLRs) that are highly expressed in macrophages and are key -326 

glucan receptors (43, 44). Recognition of soluble or surface expressed β-glucans on yeasts is sufficient 327 

to initiate and mediate phagocytosis and pro-inflammatory cytokine responses (45). Both of these 328 

receptors require Syk activity (46, 47, 18) and indeed our data clearly demonstrate the activation of Syk 329 

at phagocytic cups containing unopsonised Cryptococci, as well as a strong dependency on Syk for 330 

particle uptake. Interestingly, pharmacological inhibition of dectins inhibited uptake of both C. 331 

neoformans and C. gattii in J774.A1 mouse and human macrophages, but bone marrow macrophages 332 

(BMM) from dectin-1- and dectin-2- knockout mice showed defects only in the uptake of C. 333 

neoformans and not C. gattii, an effect that has been observed before (48).  The most parsimonious 334 

explanation is therefore that the two dectin receptors are redundant for the uptake of C. gattii, but not 335 

C. neoformans, perhaps reflecting differing the surface components between the two species as 336 

reported recently (49). Such surface variation between species, strains and potentially developmental 337 

stages of Cryptococci may explain many of the previous inconsistencies in the literature regarding 338 

dectin dependency (or otherwise) (50, 51).  339 

Alongside mouse macrophages, we adopted wax worm larvae (Galleria mellonella) as an alternative 340 

model for understanding cryptococcal virulence and host immune responses (52 – 54) in which 341 
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cryptococcal phagocytosis has previously been reported (55). Our data demonstrate striking similarities 342 

in patterns of uptake between this invertebrate host and murine phagocytes.  In addition, we showed 343 

that inhibiting phagocytosis in this alternative host reduces disease burden, highlighting the importance 344 

of host phagocytes as a niche for cryptococcal replication. 345 

We acknowledge that while there are currently no direct dectin receptor homologues identified in G. 346 

mellonella, many C-type lectins have been characterised in other insect models, for example the 347 

tobacco hornworm, Manduca sexta (immulectin-2 facilitates phagocytosis of bacteria; 56), webworm, 348 

Hyphantria cunea (lectin; 57, 58) silkworm, Bombyx mori (BmLBP and BmMBP; 59, 60) and the 349 

cockroach, Blaberus discoidalis (a β-glucan-specific lectin; 61). These invertebrate C-type lectins show 350 

up to 35% similarity with mammalian C-type lectins and can bind to several PAMPs, including LPS, 351 

LTA and -glucan and are inducible when the host is exposed to microbial challenge or ligands and the 352 

mechanisms for uptake of pathogenic microbes by G. mellonella hemocytes are similar to that of 353 

human neutrophils (62).   354 

Two key reports have shown that there are at least 3 scavenger receptors involved in the recognition of 355 

different serotypes of Cryptococcus neoformans, namely the homologous genes from the nematode 356 

Caenorhabditis elegans, CED-1 and C03F11.3 as well as the mouse MARCO scavenger receptors (37, 357 

63). Interestingly, knocking out MARCO gene from mice did not abolish uptake of Cryptococcus 358 

neoformans by lung-resident mononuclear phagocytes (37), suggesting role(s) for the extent and 359 

distribution of multiple receptors and ligands on the surface of both host cell and yeast. 360 

Finally, we demonstrate that entry of Cryptococcus does not affect NFB nuclear translocation and its 361 

subsequent TNF- release in the Dectin-1/Syk/NFB signalling axis – both in J774.A1 mouse 362 

macrophages and in primary human macrophages.  Although it is known that Dectin-1 coupling to Syk 363 

leads to downstream activation of NFB, which coordinate the transcription of innate response genes 364 
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including expression of proinflammatory cytokines such as TNF- (64-66), this appears not to be the 365 

case for cryptococcal uptake.  366 

In conclusion, we propose that unopsonised Cryptococci are recognised and engulfed via mannose 367 

receptor- or dectin-based recognition in vitro depending on the activation state of the host cells. The 368 

absence of an associated pro-inflammatory cascade allows the yeast to exploit this intracellular niche 369 

for rapid disease establishment.  370 
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 566 

FIGURE LEGENDS 567 

FIGURE 1. Mannose receptor is important but dispensable during uptake of Cryptococcus particles. 568 

Mouse macrophage cell line J774.A1 (A) or differentiated bone marrow macrophages (B, wildtype, 569 

WT or mannose receptor knock out, MR KO) or differentiated primary human macrophages (C) were 570 

challenged with either Cryptococcus neoformans H99 (Cn, black bars) or Cryptococcus gattii R265 571 

(Cg, white bars) for 60min, processed for immunofluorescence and scored for phagocytosis as 572 

described in Materials and Methods. Where indicated, J774.A1 and primary human macrophages were 573 

pretreated with 100g/ml mannan (MAN) for 30min before the addition of Cryptococcus particles. 574 

Phagocytosis indices were related to the values obtained from the negative controls. Number in bars 575 

indicate the total number of phagocytes counted. Results are expressed as the mean± SD of at least 576 

three independent experiments. 577 

 578 

FIGURE  2: Uptake of Cryptococcus particles is Syk dependent. Mouse macrophage cell line J774.A1 579 

(A) or differentiated primary human macrophages (B) were challenged with unopsonised Cryptococcus 580 

neoformans H99 (Cn, black bars) or Cryptococcus gattii R265 (Cg, white bars) for 60 min, processed 581 

for immunofluorescence and scored for phagocytosis as described in Materials and Methods. 582 

Phagocytosis indices were related to the values obtained from the negative controls. Number in bars 583 
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indicate the total number of phagocytes counted. Results are expressed as the mean± SD of at least 584 

three independent experiments. 585 

 586 

FIGURE 3. Activated Syk is essential for the uptake of Cryptococcus particles. Mouse macrophage 587 

cell line J774.A1 was challenged with either (IgG-opsonised or unopsonised, U/O) Cryptococcus 588 

neoformans H99 or Cryptococcus gattii R265 for 15min (B), processed for immunofluorescence and 589 

analysed by confocal microscopy of localised phospho-Syk (B, C) as described in Materials and 590 

Methods. (A) Schematic diagram J774.A1 macrophage with intracellular actin cytoskeleton (red) and 591 

yeast particles (blue). To confirm phospho-Syk localisation, the bottom of the cells was observed first 592 

(A, green dash line and B, bottom panels), before moving to the middle of the cells (A, purple dash 593 

line, B, top panels). Pixel intensities for 20 cells per sample were determined (C, right) and normalised 594 

to the intensity at the centre of the cell (C, left). Results are expressed as the mean± SD of at least three 595 

independent experiments. 596 

 597 

FIGURE 4. Dectins are required for uptake of Cryptococcus particles. Mouse macrophage cell line 598 

J774.A1 (A), differentiated primary human macrophages (B) or differentiated bone marrow 599 

macrophages (C, wildtype, WT or Dectin-1 or Dectin-2 knockout, KO) were challenged with either 600 

Cryptococcus neoformans H99 (Cn, black bars) or Cryptococcus gattii R265 (Cg, white bars) for 60 601 

min, processed for immunofluorescence and scored for phagocytosis as described in Materials and 602 

Methods. Where indicated, J774.A1 were pretreated with 100g/ml glucan-6-phosphate (G6P) for 603 

30min before the addition of Cryptococcus particles. Phagocytosis indices were related to the values 604 

obtained from the negative controls. Number in bars indicate the total number of phagocytes counted. 605 

Results are expressed as the mean± SD of at least three independent experiments. ns, not significant, p 606 

≥ 0.05; *, p < 0.05 607 
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FIGURE 5. Administration of polysaccharides blocks uptake of Cryptococcus particles to hemocytes 609 

in the Galleria mellonella larvae model. Larvae were inoculated with 60g of blocking sugars 1hr 610 

prior to infection for 2hr with 10
6
 Cryptococcus neoformans H99 (black bars) or Cryptococcus gattii 611 

R265 (white bars). Uptake of yeast of hemocytes was determined under light microscopy. Results are 612 

expressed as the mean± SD of at least three independent experiments. ns, not significant, p ≥ 0.05; *, p 613 

< 0.05 (related to PBS control) 614 

 615 

FIGURE 6. Glucan administration protects Galleria mellonella larvae from infection by Cryptococcus 616 

neoformans or Cryptococcus gattii. Larvae were inoculated with 60g of blocking sugars 24hr prior to 617 

infection for further 24hr with 10
6
 Cryptococcus neoformans H99 (black bars) or Cryptococcus gattii 618 

R265 (white bars). Fungal load was determined by serially diluting homogenized larvae and plating 619 

aliquots onto erythromycin containing agar plates. Yeast cell density were related to the values 620 

obtained from the negative (PBS) controls and expressed as cfu *10
5
/larva. Results are expressed as the 621 

mean ± SD of at least three independent experiments. ns, not significant, p ≥ 0.05; *, p < 0.05 (related 622 

to PBS control) 623 

 624 

FIGURE 7. Uptake of Cryptococcus did not affect NFB nuclear translocation. J774.A1 macrophages 625 

were challenged with a variety of opsonised or unopsonised pathogenic fungi or sheep red blood cells 626 

(SRBC) or soluble agonists (LPS or PMA), processed for immunofluorescences and analysed by 627 

microscopy (A) and scored for p65 nuclear translocation (B), as described in Materials and Methods. 628 

(A) Representative images of PMA- (top) or LPS- (bottom) stimulated J774.A1 macrophages and 629 

stained to highlight either actin or p65. Bar, 20m. 630 
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FIGURE 8. Uptake of Cryptococcus did not affect proinflammatory cytokine response. J774.A1 632 

macrophages (black bars) or differentiated primary human macrophages (white bars) were challenged 633 

with a variety of unopsonised pathogenic fungi (Cryptococcus neoformans, Cn; Cryptococcus gattii. 634 

Cg; Candida albicans, Ca) or LPS and subsequent supernatants were analysed by ELISA, as described 635 

in Materials and Methods. Results are expressed as the mean ± SD of at least three independent 636 

experiments.  *, p < 0.05 637 
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