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In the face of increasing numbers of cyber-attacks, it is critical for organisations to understand the risk 

they are exposed to even after deploying security controls. This residual risk forms part of the ongo- 

ing operational environment, and must be understood and planned for if resilience is to be achieved. 

However, there is a lack of rigorous frameworks to help organisations reason about how their use of risk 

controls can change the nature of the potential losses they face, given an often changing threat landscape. 

To address this gap, we present a system that calculates Cyber Value-at-Risk (CVaR) of an organisation. 

CVaR is a probabilistic density function for losses from cyber-incidents, for any given threats of interest 

and risk control practice. It can take account of varying effectiveness of controls, the consequences for 

risk propagation through infrastructures, and the cyber-harms that result. We demonstrate the utility of 

the system in a real case study by calculating the CVaR of an organisation that experienced a significant 

cyber-incident. We show that the system is able to produce predictions representative of the actual fi- 

nancial loss. The presented system can be used by insurers offering cyber products to better inform the 

calculation of insurance premiums, and by organisations to reason about the effects of using particular 

risk control setups on reducing their exposure to cyber-risk. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cyber Value-at-Risk (CVaR) is designed to take account of the 

otential harm that can arise from cyber-threats, and the variable 

ffectiveness of commonly-used risk controls ( World Economic Fo- 

um and Deloitte, 2015 ). This is ultimately aimed at understand- 

ng the residual risk of organisations, the harms they may be ex- 

osed to in cyberspace, and the consequences of adopting risk con- 

rols. Obtaining an in-depth understanding of the risks that organ- 

sations face can lead to informed decisions on risk-control adop- 

ion, which can reduce the likelihood of a cyber threat occurring 

r improve the capability to mitigate different types of harm. Such 

nformation is critical to organisation’s risk oversight and leader- 

hip functions as they plan for resilience and set risk appetite, and 

lso to the cyber-security practitioners who need to understand 

he residual risk that can result from use of risk controls and a 

hanging threat landscape ( Ipsos MORI, 2020 ). 
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In a similar vein, insurance companies that underwrite poli- 

ies to help organisations share and transfer cyber-risk have a 

ested interest in an accurate estimation of CVaR. Unlike in 

he property insurance market where underwriting takes place 

ased on coverage alone, underwriters of cyber policies exam- 

ne evidence of security posture of organisations ( European Insur- 

nce and Occupational Pensions Authority, EIOPA, 2018 ) ( Nurse, 

xon, Erola, Agrafiotis, Goldsmith, Creese, 2020 ). The corner- 

tone for estimating premiums in cyber policies is, therefore, 

he effectiveness of the risk controls that organisations de- 

loy. Here CVaR insights could inform the estimation of pre- 

iums, given the organisational behaviours around risk con- 

rols, the consequence they have for residual risk, and the po- 

ential losses organisations face as a result of being victim to 

yber-attack. 

The problem, however, is that risk controls typically viewed as 

ecessary by the professional and expert community are generally 

ot underpinned by any framework that facilitates rigorous reason- 

ng, qualification or quantification of the benefits resulting from 

heir deployment. This means that the real value of compliance, 

r variability of compliance, to risk-control standards is not well- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

A i ∈ A Asset A i in the set of assets A 

a i Value of (replacement) asset A i 

T i ∈ T Threat T i in the set of all threats T 
t i Probability of a threat T i 
C i ∈ C Set of controls C i in the set of all controls C
c i Residual risk of controls in C i (prob. of failure) 

c i j Residual risk of the control C i j ∈ C i (probability of 

failure of this specific control) 1 

H i � H Sub-graph H i in the graph of all harms H
H i j 

Harm H i j 
in the harm sub-ghraph H i 

h i Set of probabilities for harms in H i 

h i j Probability of the harm H i j 
∈ H i 

v i j Cost of the harm H i j 
∈ H i 

N Number of harms triggered in a Monte Carlo simu- 

lation run for a given harm graph H i 

easoned or measurable in a scientific, unambiguous or verifiable 

ense. 

Furthermore, gaining an accurate understanding of the CVaR 

f an organisation is challenging, due to the multitude of factors 

hat may influence cyber-risk. Essential factors that underpin CVaR 

odels are the assets of the organisation, the threat landscape, 

he risk controls that are in place, and the effect of these factors. 

efining how the effectiveness of specific risk controls may reduce 

yber-risk, as well as the likelihood and severity of certain threats 

ccurring, is a relatively difficult task. 

There is a clear need for reliable and verifiable methodologies 

y which the likely exposure to losses given the effect of deploying 

pecific risk controls can be calculated. Companies are already us- 

ng approaches to calculating value-at-risk (VaR) more generally; 

odels for VaR have been published and their results reported 

utside the cyber domain ( Hendricks, 1997 ). While the develop- 

ent of CVaR models has been considered, with the World Eco- 

omic Forum (WEF) providing insights on the general components 

hat CVaR models must consider ( World Economic Forum and De- 

oitte, 2015 ), there has been no presentation of a fully-developed 

odel, nor reporting of the results of a CVaR model. 

In order to address this gap, we developed a model to calcu- 

ate CVaR and applied it in a real case study to asses its viability.

he aim of the CVaR model is to enable an understanding of the 

esidual risk of organisations, the harms they may be exposed to 

n cyberspace and the consequences of adopting risk controls. The 

ain contribution of this paper, therefore, is the CVaR model un- 

erpinning this reasoning. The validation case study has been pre- 

ented solely for illustrative purposes, and not designed for re-use 

n other studies. 

The remainder of this article is structured as follows: in 

ection 2 we provide a review of the background and related lit- 

rature, and highlight the importance of data schemas in risk- 

uantification models. Section 3 presents our conceptual model 

nd the architecture of our CVaR system. The implementation of 

he CVaR tool based on the system architecture, alongside with the 

chema that guides the input of data, is presented in Section 4 . 

ection 5 reports our application of the CVaR tool to a real case 

tudy and the results we obtained. In Section 6 we discuss limita- 

ions affecting the accurate calculation of CVaR and Section 7 con- 

ludes this paper by highlighting avenues for future research. 
1 Note that we consider controls in harms and assets in sets, i.e., more than one 

ontrol usually protects an asset or mitigates a specific harm. 

e

o

c

p

2 
. Related work 

.1. VaR and Cyber VaR 

The concept of Value at Risk (VaR) is well-established in the 

eld of economics ( Amaya et al., 2015; Cabedo and Moya, 2003; 

uffie and Pan, 1997; Fantazzini, 2009; Guermat and Harris, 2002; 

endricks, 1997; Hoffman and Hammonds, 1994; Hull and White, 

998; Jorion, 20 0 0; Linsmeier and Pearson, 20 0 0; Rockafellar and 

ryasev, 20 0 0 ). Financial institutions use VaR as a benchmark to 

easure their trading portfolios and their exposure to market risk 

o the extent that regulators have included it as a quantitative 

easure for disclosing information ( Linsmeier and Pearson, 20 0 0 ). 

s a summative statistical measure, VaR provides an estimation of 

he maximum probable losses for a specific confidence interval. For 

 specific time framework t and a probability p, the VaR is the 

alue that can be lost over time t with probability p ( Duffie and 

an, 1997; Guermat and Harris, 2002 ). 

To calculate the VaR of an asset, it is important to identify the 

ore metrics or variables that affect the value of this asset. In fi- 

ance for example, the metrics for assessing fluctuations in the 

alue of the portfolio are identified by decomposing the portfo- 

io into simpler concepts for which basic market risk factors are 

stablished ( Linsmeier and Pearson, 20 0 0 ). Once the datasets are 

dentified, three methods are used to calculate VaR, namely histor- 

cal simulations, delta-normal approach and Monte Carlo simula- 

ions ( Linsmeier and Pearson, 20 0 0 ). 

Historical simulations rely on statistical distributions of histor- 

cal data to identify past changes in the value of the asset. The 

elta-normal approach assumes that the risk factors have a mul- 

ivariate normal distribution, therefore relying on computing cor- 

elations between these risk factors. Monte Carlo simulations are 

imilar to historical simulations, with the difference being that 

he generated scenarios are based on distributions of the histor- 

cal data and not on calculating N values based on the changes 

bserved for every single data point over a period of N historical 

ays. 

In the field of finance, the risk factors for market changes are 

ell established and the appropriate historical data is available. 

herefore, efforts have focused on improving the statistical under- 

tanding of the historical data and identifying methods that cap- 

ure changes best. Several parametric models are proposed to cap- 

ure different situations based on assumptions about normality, 

erial independence, non-linearity of variables, skewness, kurto- 

is and volatility ( Hendricks, 1997 ). Fantazzini explores how skew- 

ess and volatility in the historical data can lead to values that 

nderestimate the VaR with the use of several Monte Carlo sim- 

lations ( Fantazzini, 2009 ). Guermat and Harris (2002) , examine 

ow volatility in time-series data may be influenced when the as- 

umption that kurtosis remains constant does not hold. They fur- 

her provide Exponentially Weighted Moving Average (EWMA) and 

eneralised Autoregressive Conditional Heteroscedasticity (GARCH) 

odels to address such scenarios. In a similar vein, Hull et al., pro- 

ose a model where the user can choose between different proba- 

ility distributions, accommodating cases where changes in daily 

alues of historical data are not normally distributed ( Hull and 

hite, 1998 ). 

In stark contrast to the field of finance, risk quantification in the 

yber domain is in its infancy ( Gordon et al., 2003 ). Despite the

act that data is gathered at exponential rates in terms of volume, 

ariety and speed, traditionally cybersecurity risk assessments only 

onsider the types of cyber attacks and the motives of the attack- 

rs ( World Economic Forum and Deloitte, 2015 ). Note that most 

f the literature focuses on attacks (antagonistic threats), while we 

onsider all threats (antagonistic and non-antagonistic). Other ap- 

roaches utilise cyber-attack datasets, and apply methods from ac- 
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uarial science to reason about VaR ( Eling and Wirfs, 2019 ). Atten- 

ion has been drawn to the inference of losses from cyber events 

hrough examination of insurance pricing in cyber policies ( Woods 

t al., 2019 ), and the lack of consensus on the security expenditure 

hat could reduce such losses ( Woods and Böhme, 2021 ). 

These approaches remain oblivious to the assets that are tar- 

eted, yet according to the World Economic Forum (WEF) novel 

pproaches should focus on the intersection of cyber attacks, as- 

ets at risk and motivations of attackers ( World Economic Forum 

nd Deloitte, 2015 ). VaR can effectively combine all these factors 

nd successfully be used as “a proxy concept for risk exposure 

ppeal[ing] to a wide range of industries and enterprises” ( World 

conomic Forum and Deloitte, 2015 ), giving rise to the concept of 

yber VaR. WEF define Cyber VaR as a metric to estimate, given a 

yber attack, the maximum amount of loss for an organisation over 

 period of time t with a probability p. Although this definition 

dentifies CVaR as a single number, effectively capturing the worse 

ase scenario, VaR has traditionally been represented as a distribu- 

ion, which is useful because it allows us to consider a range rather 

han a single worst case by providing a full spectrum of possible 

osses. Henceforth, in this paper we consider CVaR as a distribution 

f losses which have likelihoods associated with them. 

In the same WEF report, the authors deem that it is essential 

or a cyber-risk model to consider three key components: namely 

ssets, profile of an attacker, and vulnerabilities. The dependencies 

etween these components must also be considered, with the ul- 

imate goal being a single distribution of losses. While the WEF 

rovides insights on the general components that cyber-risk mod- 

ls must consider, the authors do not suggest how such a model 

hould be designed. 

Böhme et al., also argue for consideration of an additional risk 

actors, and suggest that controls should be considered in cyber- 

isk approaches ( Böhme et al., 2018 ). Ruan (2017) concurs with this 

rgument and emphasises the need to establish data schemas that 

ill provide information on estimating digital assets and classify- 

ng cyber incidents. Pal et al. (2017) , further argue that to provide 

uch rich datasets the cybersecurity risk management community 

hould seek synergies between security vendors, who hold infor- 

ation on price differentiating their clients, and insurance compa- 

ies, who possess information about the security investments of 

uch clients. Carfora et al. (2019) explore the peculiarities of cy- 

er insurance, and exemplify these by using a database of pub- 

icly available breaches to calculate event distributions and esti- 

ate value at risk. 

In Ipsos MORI (2020) a similar idea is followed to calculate the 

osses of a breach after it has occurred, which requires manual in- 

utting of data, and differs from CVaR as it is not predicting losses. 

indings of the study make emphasis on the importance to develop 

 tool to facilitate the tedious work of inputting data, and the sub- 

ectivity of data if there are no models to underpin it. Similarly, 

uganbayar et al. (2021) looks at which controls would benefit the 

ost to the exposure risk, considering controls costs and effective- 

ess to be independent, and assuming cost of losses and risks are 

alculated beforehand. 

In the field of Cybersecurity Risk Assessment (CRA), some pro- 

osals also consider assets, threats, and controls to calculate resid- 

al risk. Cherdantseva et al. (2016) provides a comprehensive 

verview of several risk assessment methods, some of them us- 

ng attack trees that map the capabilities of the attacker to the risk 

aced by organisations. In Wang et al. (2020) , the Factor Analysis of 

nformation Risk 2 (FAIR) is extended to incorporate Bayesian net- 

orks in the quantification process allowing different distributions 

f losses. They also extend this approach to allow modelling the in- 
2 https://www.fairinstitute.org/ 

t

o

t

3 
eraction between attackers and defenders using process-oriented 

odel and game theory. These approaches, however, do not fully 

apture the context of the risk assessment, such as the interdepen- 

encies between components of the system, such as assets, con- 

rols, and threats, like our approach does. Also, CRA methods are 

arely validated against real case studies, which is another contri- 

ution of our research. 

.2. Scope of existing third party data available 

The main obstacles, identified in the literature, to designing 

odels to estimate cyber risk are the challenges involved in iden- 

ifying risk factors in cybersecurity, and the scarce presence of re- 

iable and relevant data for these risk factors ( Moore et al., 2019; 

orld Economic Forum and Deloitte, 2015 ). Unlike the field of fi- 

ance where data regarding risk factors is in abundance, in cyber- 

ecurity such data is scarce or does not exist yet. There have been 

ndeavours to capture cyber incidents and their impact, such as 

he VERIS community’s work ( Veris, 2019 ) and the Advisen loss 

ataset ( Advisen, 2019 ) (see also Section 4.2 ). There are, however, 

ifficulties in capturing data due to delays between occurrences of 

he threats and their detection, and the complex dependencies be- 

ween the event and types of risk factors ( Schatz and Bashroush, 

018 ). Furthermore, data regarding assets and how these depend 

n IT systems, as well as data describing the effectiveness of con- 

rols is not captured by organisations in a systematic manner ( PwC, 

019; Zurkus, 2018 ). 

Our review of the related work in the field of data specifica- 

ions for Value-at-Risk and insurance identified two data schemas, 

amely those from Risk Management Solutions (RMS) RMS and 

ambridge Centre for Risk Studies (2016) and Applied Insurance 

esearch (AIR) AIR (2016) , which are similar in purpose to a data 

chema that can be used as input in our CVaR system. The funda- 

ental difference is that both of these schemas only consider the 

erspective of an insurer, whereas our system focuses on under- 

tanding organisations in detail, by linking assets, controls, cyber 

arms and threats, thus providing a much richer capture. This cap- 

ure will be crucial to the calculation of appropriate CVaR values 

nd to enhanced modelling. 

The AIR schema provides options for assets, considers the trans- 

erence of data and presents quality criteria which are similar in 

ature to the notion of controls in our model. Specific emphasis is 

laced on the type of cyber insurance offered and a field is pro- 

ided to link specific data to transfers. The RMS schema comprises 

ix different fields, which mainly focus on describing the type of 

he company being insured, the insurance product and the poten- 

ial loss it covers against. A field titled “cyber risk” attributes at- 

empts to gather information regarding assets, with particular fo- 

us on data and revenue generated online, as well as generic infor- 

ation on controls/standards that companies apply/adhere to; the 

uthors, however, do not provide sufficient information regarding 

he values this field may contain. 

AIR and RMS fields revolve around assets, insurance policies 

nd controls that are related to these policies. Neither captures de- 

criptions of how assets are connected, how harms are linked to 

pecific assets and, most importantly, which assets are protected 

y which controls, which threats target which assets and which 

arms can manifest when assets are targeted. If the links between 

hese layers are not captured, all possible simulations are very ab- 

tract and provide inaccurate results. Thus, there is a need for a 

ovel schema that will provide utility to existing applications built 

pon AIR and RMS, whilst also supporting the calculation of CVaR 

istributions. To address this gap, we proceed in defining a concep- 

ual model for CVaR, a system architecture for a CVaR tool based 

n Monte Carlo simulations and a schema to incorporate data into 

he system. 

https://www.fairinstitute.org/
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Fig. 1. A summary of the theoretical model displaying the association between as- 

sets, threats, harms, controls and CVaR. 
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Fig. 2. Architecture overview. 
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use USD. Therefore: 

3 In principle there could be compromised assets as a result of harms, such as ex- 

filtration of a password database. At present we model such scenarios in the prop- 

agation of harms and we do not attempt to link harms that have been triggered 

back to other assets. 
. A model for estimating Cyber Value-at-Risk 

.1. Conceptual model for CVaR 

Our conceptual model is presented in Fig. 1 . This CVaR Model 

onsiders four different areas that are important in determining 

he fifth: CVaR, which is a probabilistic density function for losses 

rom cyber incidents. These four areas are: assets, harms (types of 

osses from cyber threats, also known here as cyber harms), con- 

rols and threats. The model also provides links across and be- 

ween its four areas. Organisations can declare how different as- 

ets (technical or otherwise) are linked together, their dependen- 

ies, what controls protect these assets, as well as what assets may 

ive rise to what harms. Organisations can further define harms, 

xpress magnitude of losses and link harms to other harms, as well 

s note which controls reduce harm magnitudes. Controls can be 

apped to assets or harms but can also be linked to other con- 

rols to capture dependencies between controls. Organisations can 

ndicate which threat surfaces they intend to prevent from being 

ealised, or mitigate the impact of realisation of, and with which 

ontrols. 

Threats can be modelled based on their likelihood, the specific 

ssets they target and the presence of threat actors with vary- 

ng potential for introducing harms. At the CVaR level, the schema 

hould allow for scenarios where more than one threat is present. 

inally, and with a long-term view, the schema should capture dif- 

erent insurance products and link these to organisations, in an 

nitial attempt to reason about systemic risk. Systemic risk oc- 

urs when catastrophic events target many organisations simulta- 

eously. By capturing insurance products and linking these to or- 

anisations with specific assets, the schema allows us to consider 

cenarios where the same policy is triggered in multiple organisa- 

ions in a short period of time. The model also provides the foun- 

ations for the design of a data schema that will be sufficiently ex- 

ressive and rich to capture all of the datasets required for a CVaR 

alculation. 

.2. System architecture 

In this section we describe a support tool for CVaR calculations, 

ts implementation and potential system configurations. Figure 2 

resents an overview of the architecture of the system where 
4 
he inputs are data files, which follow the schema described in 

ection 3 , and the output is the CVaR distribution, which is cal- 

ulated by running Monte Carlo simulations. 

We opt for a sequential execution of Monte Carlo simulations 

hroughout all levels of the model (assets, threats, controls and 

arms); the starting point is the assets of an organisation and 

he system moves gradually towards harms. This approach allows 

or granularity and can potentially indicate the events that lead 

o catastrophic scenarios. We first introduce the formalisation of 

hese sequential calculations before discussing the values and dis- 

ributions used. 

.2.1. Formalisation of the system 

Conceptually, the model consists of an unlabelled dependency 

raph over assets A (such that the compromise of an asset triggers 

he compromise of those assets dependent upon it), and a prop- 

gation graph of harms H. Over these is superimposed a set of 

dges (labelled with controls and residual risk probabilities, which 

enote the probability that a control will fail to deter or mitigate 

 harm), linking assets to the harms that they may provoke. 3 Fi- 

ally, threats T provide an entry point into the combined graph at 

sset nodes. One might consider CVaR in the face of one particular 

hreat, or in the face of all conceivable threats. 

We say CVaR for an organisation is effectively constructed by 

umming the CVaR for all assets, given all threats of interest. 

Assets are assigned a replacement value, harms have a distri- 

ution of resulting costs, threats have a probability of success and 

ontrols a residual risk value associated with their likelihood of be- 

ng effective. For a single asset and threat pair A i , T i , if the harm

raph associated with an asset is a linear chain 〈 H i j 
, h i j , v i j | j ∈

 1 , . . . , N〉〉 , then the total losses associated with the asset’s com-

romise in that particular threat, (occurring with probability t i ) 

nd residual risk c i after the application of controls to that asset, 

where each harm has its own probability of propagation h i j and 

esidual risk c i with potential loss v i j ), is its own replacement value 

 i plus the sum of the harm costs down the chain, as far as the

arm actually propagates. Thus, to estimate the CVaR for an asset 

f value a i we need to combine information from all four concepts. 

All probabilities have values between [0,1] therefore: 

• t i ∈ [0 , 1] 

• c i j ∈ [0 , 1] 

• h i j ∈ [0 , 1] 

Assets and harms are valued in a specific currency and get val- 

es greater than 0. For the case studies presented in Section 5 we 
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• a i ≥ 0 

• v i j ≥ 0 

We obtain for every given asset A i of value a i , all threats T i with

ikelihood of occurring t i targeting that asset, the set of controls C i 
ith residual risk probabilities < c i > that protect the asset, and 

 graph of harms H i that may occur directly or indirectly if the 

hreat is successful. These are noted within the tool using tuples of 

he form: << A i , a i >, < T i , t i >, C i , H i > , where A i is an asset with a

eplacement value a i ; T i is a specific threat which can occur with 

robability t i ; C i is a set of controls that are applied to asset A i ;

nd H i is the set of harms that can occur when asset A i is targeted

y threat T i . 

Our approach takes account of the variability of risk control ef- 

ectiveness by abstracting away any environmental details (such as 

perational processes, configurations, use practices etc.) to a sim- 

le binary model whereby a control is either effective or ineffec- 

ive. An effective control both prevents harm to the asset AND pre- 

ents onward harm propagation. An ineffective control does not 

rotect the asset AND may allow onward harm propagation. Given 

he lack of empirical data, generating a more complex or subtle 

odel felt too contrived at this time. 

We extract each harm H i j 
from a graph of harms that de- 

nes probabilities and values for each of the nodes and edges (i.e, 

 H i j 
, v i j , h i j > ), where H i j 

is a type of harm, v i j is the monetised

alue of this particular type of harm and h i j is the probability of 

he corresponding harm being realised. The position of different 

ypes of harm in the graphs denotes the sequence of these types 

f harm as an event unfolds. It is important to note that the like- 

ihood of a harm H i j 
occurring is influenced by the presence of 

ontrols that may mitigate such harms. 

A data schema was created for the purpose of capturing the 

ecessary inputs, presented in Section 4 . An example of such a tu- 

le is: 

((Email _ system, $10 0 0) , 
〈 ((P hishing, 0 . 0 0 02) , 〈 (P hishing _ sof tware, 0 . 7) 〉 ) , 

〈 (Data _ Breach, $20 0 0 0 , 0 . 02) , 
( Notification , $10 0 0 0 , 0 . 6) , 
( Monitoring , $250 0 0 , 0 . 6) , 
(Regulator _ F ines, $10 0 0 0 0 0 , 0 . 0 01) 〉 〉 ) 

here a phishing attack targets an email account and can lead 

o a data breach. The full harm tree in this example for a data

reach entails notification and monitoring costs, as well as regu- 

atory fines. 

lgorithm 1 Single Monte Carlo iteration. 

1: losses = 0 

2: triggered = [] 

3: for each A i ∈ A 

4: for all Tuples containing A i 

5: if Bernoul l i (t i ) 

6: ## the threat is triggered 

7: if protects( C i , T i ) 

8: ## the asset is protected 

9: continue 

0: if A i / ∈ triggered 

11: losses += a i ∗ random () 

2: triggered.append(a i ) 

3: losses += F_HARMS (C i , H i ) 

14: return losses 

The harm graph is typically non-linear, rendering analytic so- 

utions difficult for a general directed-acyclic graph, as we need 

o take care to avoid double-counting while we sum across the 
5 
arms. To avoid this, we walk the graph marking the nodes that 

re reached by any propagation path that is triggered, and then 

gain to sum the harm costs of the marked nodes, as described in 

lgorithm 2 , which thus produces total CVaR for the organisation. 

lgorithm 2 Harm propagation algorithm. 

1: function f_harms ( C i , H i ) 

2: f rontier ← H i 

3: total _ harm = 0 

4: triggered = [] 

5: while f rontier do 

6: harm ← f rontier.pop() 

7: if Bernoul l i (harm.h i ) then 

8: al l fail ed ← T rue 

9: for controls ∈ C i do 

0: if not Bernoul l i (control .c i ) then 

11: al l fail ed ← F al se 

2: if al l fail ed then 

3: ## the harm is triggered 

4: if not harm in triggered then 

5: total _ harm += harm. v ∗ random () 

6: triggered.append(harm ) 

17: for successor ∈ harm.successors do 

18: f rontier.append(successor) 

9: return total _ harm 

.2.2. Data distributions for frequency of events 

We run a number of Monte Carlo simulations which are exe- 

uted sequentially for every asset in the tuples. The results of these 

imulations are combined to calculate the overall CVaR for a sin- 

le run. This approach provides an explanation of how catastrophic 

vents may occur for a given period of time. 

More specifically, the first step of the Monte Carlo simulations 

ntails determining if a threat occurs or not. We use the Ad- 

isen dataset (see Section 4.2 ) to retrieve the probabilities of the 

hreats occurring, but this is a single number and not a distribu- 

ion. Other work has used Poison distributions ( Wang and Franke, 

020 ) or Negative binomial distributions ( Carfora et al., 2019 ) to 

etermine frequency of random events. We are considering, how- 

ver, Bernoulli distributions as we assume threats to be indepen- 

ent and we do not observe threats occurring more than once 

ithin a time period (a year) for the same organisation in the Ad- 

isen dataset. Bernoulli distributions are discrete distributions with 

wo possible outcomes, 1 or 0, with a probability p and 1 − p. This 

atches our requirements, as we obtain this probability from the 

dvisen dataset and we want to calculate the occurrence of threats 

n independent simulations. For example, if the probability of a 

hreat occurring is 20% and the Bernoulli trial output is success- 

ul, the next step of the simulation is triggered. 

If a threat is realised, the system will move to the next level, 

hich is the control level. Similarly to threats, Bernoulli distri- 

utions are selected to determine if the controls available can 

top a threat or not. The control effectiveness is a probability 

istribution (in our case study we use qualitative descriptions 

f ’High’, ’Medium’ and ’Low’) that will determine if the con- 

rol will be effective in a specific run or not. In the case where 

he control is not effective, the first part of the system con- 

ludes and prepares the transition to the next level, which is the 

arm level. This is described in Algorithm 1 , where the function 

protects (controls, threat) returns a T rue or F alse value, depending 

n whether any of the controls succeed in stopping the threat 

ausing damage to the asset. The Function Bernoul l i (p) returns 

 rue or F alse based on the probability p. To interpret the value 

p, if for example a control is 80% effective, the system produce a 
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Fig. 3. Illustration of Monte Carlo simulations based on different probability distri- 

butions for choosing numbers randomly with μ = 1 . 
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Fig. 4. Q-Q plot for 1,0 0 0 runs using a normal distribution 

Fig. 5. Q-Q plot for 10 0,0 0 0 runs using a normal distribution 
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andom number between 0 and 100. If the number is greater than 

0, the control is not effective in this specific run. Otherwise, the 

ontrols is effective. Therefore, the overall number of simulations, 

ased on the big number theorem, will observe the given proba- 

ility distribution for the control effectiveness as in approximately 

0% of the runs as effective. 

The system will move next to the harm level and run a Monte 

arlo simulation with a Bernoulli distribution for the likelihood of 

he first harm in the graph occurring. We use Bernoulli distribu- 

ions in this case as harms can only happen once for an asset and

hreat pair, thus having the same output than a Poison distribution. 

f the harm is realised, the system will randomly select a value 

rom a normal distribution with mean v 1 , which is the value of 

he harm H 1 and move to the next type of harm in the graph. The

rocess is repeated and the run completes when the following step 

rom the current state of the system is not triggered or when all 

arms in the graph are realised and their respective losses are es- 

imated. In case a node is revisited the additional harm value will 

ot be added to the overall loss. 

In order to accommodate cases where the same type of harm 

ay exist in more than one path of the harm graph, the system 

ill keep a state of all nodes in the harm graph that are triggered.

his approach ensures that the system does not add the loss from 

 single type of harm more than once. The overall CVaR of a run is

he summation of the values that occur from the random selection 

f random numbers with mean values of the respective harms and 

ssets. This part of the system is described in Algorithm 2 , where 

f rontier contains all nodes of the graph and the realisation of a 

arm (probability function) depends, amongst other things, on the 

ffectiveness of controls that organisations deploy to mitigate such 

arms. 

.2.3. Distributions for loss sizes 

For the Monte Carlo simulations and the random generated val- 

es, the tool supports a number of different probability distribu- 

ions: namely Beta, Chi-square, Exponential, Gamma, Gumbel, Nor- 

al (Gaussian), Log-normal, Triangular, and Weibull. The tool’s op- 

rator should select the distribution that better fits the losses to 

stimate. Depending on the selected distribution, the CVaR distri- 

ution can be heavy tailed (high kurtosis), thus producing larger 

osses. Figure 3 illustrates the shapes of different distributions with 

ean μ = 1 over 10,0 0 0,0 0 0 samples. 

Finding a distribution that closely fits losses is crucial to ac- 

urate calculations, yet a difficult task. Previous work on data 

reaches has used lognormal or skew-normal distributions to cal- 

ulate losses finding them adequate for this task ( Carfora et al., 

019; Edwards et al., 2016; Farkas et al., 2020; Franke et al., 2014 ).

ther works, however, use different distributions with equally 
6 
ood results too. It is therefore clear that there is no distribution 

hat fits all data ( Woods and Böhme, 2021 ). 

Nevertheless, our harms are not only related to data breaches, 

ut to many other types of losses. We cannot therefore be certain 

hat the data would fit any of the proposed distributions. Unfortu- 

ately, the data analysed from claim forms do not provide enough 

etail to calculate the loss distributions, so we opt to run the sim- 

lations with two different distributions: normal and lognormal. 

ur decision was informed by the fact that: (i) normal distribu- 

ions are used to represent random variables whose distributions 

re not known ( Azzalini and Valle, 1996 ) as well as they are more

oderate when deviating from the mean compared to other distri- 

utions; and (ii) lognormal has been used in many studies achiev- 

ng good results. This will allow us to compare the result differ- 

nces just by using different distributions (see Section 6 ). 

.2.4. Estimating an optimal number of runs 

It is important to identify a minimum number of Monte Carlo 

uns z. Given the same probability distribution, a high number of 

uns will provide a richer set of values to create the CVaR plot and 

t is more likely to produce extreme values (closely fitting the tail 

f CVaR) than a small number of runs. However, by increasing the 

umber of runs, we increase linearly the time required to execute 

he simulation. 

Figures 4 and 5 show the Q-Q plot for a normal distribution 

unning the simulations 1,0 0 0 and 10 0,0 0 0 times, respectively. For 

0 0,0 0 0 runs, results are closer to the distribution, especially in the 

ail. If we check the skewness and kurtosis of the data, we obtain 
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.061 and 0.122 for 1,0 0 0 runs and 0.006 and 0.012 for 10 0,0 0 0

uns, which indicates that the data has better symmetry and is 

etter normally tailed. Similar results are obtained for the other 

istributions. We therefore opt to run simulations with at least 

0 0,0 0 0 runs per case study. 

. Tool implementation 

Based on the system architecture, we have designed a CVaR tool 

hat outputs CVaR calculations. The tool has been implemented in 

ython. The input files , contain data about assets, threats, harms and 

ontrols , they use the standard json library and follow our schema 

escribed in the section below, ensuring that all functionalities de- 

cribed in the system architecture are adhered to. 

The number of Monte Carlo simulations that the system runs 

s determined by the number of tuples k , corresponding to the set 

f assets A and the set of threats T affecting them. The number 

f simulations z is configurable in the system, although a mini- 

um of 10 0,0 0 0 is recommended. Therefore, the cost of running 

he system is k × z, which is linear to both variables. 

As an example, for the real scenario described in Section 5 , the 

umber of tuples k is 13. To execute z = 1 , 0 0 0 , 0 0 0 runs the sys-

em needs 32 s on a standard laptop and 320 s when the num- 

er of runs is increased to z = 10 , 0 0 0 , 0 0 0 . Further optimisation

f the code can be achieved parallelising different runs, given that 

ll runs for all tuples are independent. 

.1. A schema for the CVaR tool 

Guided by the conceptual model and the architecture of our 

VaR system, we define a schema, whose components are needed 

o perform cyber-risk calculations. The schema guides how data 

ill be used as input to our tool. It encompasses all elements 

hich are present in AIR and RMS described in Section 2.2 , and 

ncorporates new fields to facilitate the needs of our system ar- 

hitecture as described in Section 3.2 , resulting in a rich and ex- 

ressive schema. This additional data, however, may be difficult to 

btain from organisations. For instance, challenges may arise from 

he amount of information that organisations may be willing to 

isclose (to a cyber insurer for example), as well from the availabil- 

ty of appropriate metrics to estimate the effectiveness of controls 

nd the magnitude of harms. To address this issue, not all fields in 

ur schema are required in our tool, which can be applied with the 

ata that other schemas require and is data that insurance compa- 

ies currently collect. The more information there is available from 

rganisations however, the more accurate the results of the simu- 

ations of our tool will be. 

We should note that for every field in our schema, we provide 

he accepted type of a value (e.g., a string as a series of letters, 

r a list of strings to be presented as [string] ). Functions which 

ink layers are written in capital letters (e.g., CONTAINS). The list 

f fields (or simply, items of data) presented in this research seeks 

o be exhaustive. However, the range of values which these fields 

an accept should be extended and refined to capture the different 

ontexts in which organisations operate 4 

At the organisational level, the data which our schema seeks to 

ather about organisations is as follows: 
4 A full description of the schema, definitions and examples can be found in The 

elative Effectiveness of widely used Risk Controls and the Real Value of Compli- 

nce. 

a

d

v

w

w

7 
The necessary fields for capturing organisational assets are: 

We use two functions to describe relationships across assets: 

ONTAINS and PROTECTED_BY. CONTAINS can be either a physi- 

al or a logical relationship. For instance, Asset A (e.g., a set of 

ustomer records) is on Asset B (e.g., a computer server). An im- 

ortant point about this relationship is that it is (a) directional 

nd (b) transitive. Therefore, in the example above, it should be 

oted that Asset A is within Asset B, as opposed to Asset B be- 

ng on or a part of Asset A. Transitivity is relevant as if Asset C

e.g., data) is within Asset D (e.g., a server) and Asset D is within 

sset E (e.g., a physical server room), then Asset C is also within 

sset E. CONTAINS also implies that Asset A depends on Asset B, 

n the example above. That means that if Asset B (computer server) 

s compromised, Asset A is also compromised. PROTECTED_BY de- 

cribes which controls are applied to assets. For instance, IP data 

s protected by two-factor authentication and appropriate respec- 

ive access controls. The fields number of records and cost unit are 

pecific for when the asset is a dataset, and they are 0 otherwise. 

he fields cost and cost unit are integers representing the cost in 

he organisation’s currency. 

Throughout the schema, we use values High, Medium and Low 

o define magnitudes of certain relevance. Given the lack of objec- 

ive ways to precisely measure such qualitative events, it is prefer- 

ble to describe such events with qualitative values. Nonetheless, 

 numerical interpretation of the qualitative values can be intro- 

uced as well. For our calculations in the case study, the qualitative 

alues of High, Medium and Low are quantified by being replaced 

ith 0.8, 0.5, and 0.2 respectively. 

Progressing from assets, the next component of the schema that 

e consider is harm. 
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In this section of the schema, we present four functions, namely 

RIGGERS, AMPLIFIES, MITIGATED_BY and PROBABLE. TRIGGERS 

ighlights that one harm may cause another harm to be realised. 

or instance, loss of customers’ data may lead to reputational dam- 

ge. AMPLIFIES is to add the loss from a type of harm, which has

lready been realised. For instance, regulator fines as a result of a 

yber-attack lead to financial losses, and these financial losses may 

e further exacerbated (amplified) due to the loss in customers. 

ITIGATED_BY refers to a harmful situation being mitigated by a 

ontrol in some fashion. This definition describes the relationship 

etween a control and a harm over a specific asset. PROBABLE de- 

nes the probability of this harm’s occurrence. 

Our schema to define the threats faced by the organisation is 

ext. In it we utilised three functions, namely TARGETS, CAUSES 

nd ADDRESSED_BY. TARGETS aims to capture the specific asset or 

et of assets which the threat would affect. For instance, phishing 

mails target the “IT admin” of the organisation (hence the “peo- 

le” element). CAUSES associates a threat to a direct harm that can 

ccur when an asset is targeted, or another threat that can occur 

fter. ADDRESSED_BY seeks to define the control or set of controls 

hat have been put in place to prevent the threat from being suc- 

essful. For instance, ransomware is partially addressed by having 

 back-up storage facility. 
8 
The schema for risk controls that have been put in place by 

he organisation is last. MITIGATES describes how the control con- 

trains harmful situations. For instance, Control A (e.g., back-up 

ata) may reduce the impact of an attack aimed at reducing the 

vailability of data. This definition describes the relationship be- 

ween a control and a harm over a specific asset. AGAINST maps a 

ontrol to a threat it aims to eliminate. APPLIED maps a control to 

he asset it is applied to. 

.2. Using the schema 

In this section we describe the data sources we used to run 

ur experiments. The general idea about operating our tool is that 

ata input can be automated from external feeds, although these 

an be not cost free. In this way, the only data that would need to

e introduced by the underwriter when calculating the risk would 

e the one related to the company’s assets. 

The assets that are present in the schema for modelling differ- 

nt scenarios vary depending on the organisation. Assets are drawn 

rom the typology below, which can be extended to incorporate 

ny further assets that an organisation possesses: 

• Machine: local server, desktop, laptop, smart phone, USB device, 

external storage devices, cloud server, etc. 
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• Data: Personally Identifiable Information (PII), payment card in- 

formation, Intellectual Property (IP), commercially confidential 

information, trade data, etc. 

• Software: MacOS version Y, Windows version X, Ubuntu version 

X, Office, applications, middleware, cloud services, etc. 

• People: Sales employee, PA, CEO, contractor, consultant, etc. 

• Routine: Finance, Sales, Dispatch, Production, Online service, 

Research and Development, Human Resources, etc. 

• Enterprise: Reputation, Knowledge, Profitability, Financial, sta- 

bility, Policy, Culture, Governance, etc. 

The more details on the assets of the company the more gran- 

lar our system can be. The system is also able to perform the 

alculations with any number of assets, and therefore we can run 

imulations with only one asset if needed. 

Threats can be specified manually but an initial list extracted 

rom the Advisen (2019) dataset is proposed. The Advisen dataset 

rovides a comprehensive list of insurance claims related to cyber- 

ncidents. From this list, we can calculate the probability of a threat 

ccurring over a fixed period of time (see Section 3.2.2 for con- 

ersion to a distribution). The types of threats it contains are as 

ollows: 

• Cyber Extortion 

• Data Exfiltration 

• IT Errors 

• Identity Theft/Digital Breach 

• Industrial Controls & Operations 

• Network/Website Disruption 

• Phishing, Spoofing, Social Engineering 

• Privacy - Unauthorized Contract or Disclosure, Unauthorized 

Data Collection 

• Skimming, Physical Tampering 

• Denial of Service (DDoS)/System Disruption 

• Other 

To capture elements for the control fields we use as a guideline 

he SANS Critical Security Controls (SANS Top 20) SANS (2019) be- 

ause they contain information on the dependencies of security 

ontrols as well as metrics on the effectiveness of these controls. 

e complement SANS Top 20 with other less technical and more 

rocedural controls (common in the NIST Cybersecurity Frame- 

ork National Institute of Standards and Technology (2019) and 

SO 27001 Internationl Organization for Standardization (2019) ) 

uch as: organisational culture, information-security programme, 

isk assessment or business-continuity plan. Reports from under- 

riters who write cyber policies can be used to link controls to as- 

ets, since before signing a policy organisations provide a detailed 

escription of their infrastructure and evidence on which controls 

re deployed to protect their assets. Claim reports can guide us 

hen deciding which procedural/technical controls mitigate which 

ypes of harm, considering that there are specific details on how 

hreats occurred, how organisations responded to these threats and 

hy certain losses were realised. In some cases, controls are ap- 

lied to the entire organisation, such as information security pro- 

ram, and not to specific assets, thus we allow this mapping in our 

ool as well. 

Finally, we need to take account of the likelihood that an or- 

anisation’s risk controls are effective in meeting the threats they 

ace, which means deciding for each control application the likeli- 

ood of residual risk being high, medium or low. CVaR will then 

onvert these to our working probability estimates as referred to 

bove (0.8, 0.5 and 0.2 respectively). Any user of CVaR could chose 

heir own basis upon which to set this. There is scarce data avail- 

ble to evaluate the effectiveness of controls and organisations 

ften rely on experts’ opinions when deciding which controls to 

mplement. There are also datasets such as Cyence (2019) (see 
9 
ection 5.2 ) which recently have been created, providing a com- 

arison of cybersecurity postures between organisations based on 

vidence gathered from outside the perimeter of an organisation’s 

etwork. 

Different harms originating from different types of threats 

hould be considered in the schema. We have created a taxon- 

my of the most common harms observed from data bases of inci- 

ents ( Agrafiotis et al., 2018 ); we have extended this work by iden-

ifying patterns of harm propagation in real cases. By obtaining ac- 

ess to claim forms from the AXIS Insurance Company containing 

ctual claims data, we investigated how harms occur, how specific 

ypes propagate and trigger new harms and the frequency of these 

ropagations. Finally, we used the same claim reports to estimate 

he value for each type of harm and to design the harm propaga- 

ion trees ( Axon et al., 2019 ). Examples of harm trees can be found

n Figure 8 . Given the sample sizes, we were only able to extract 

verage value of harms and probabilities of harm propagations. In 

ection 5.2 we discuss how we use them. 

. Validating the tool in a real case study 

We now move to validating our tool using a real case study 

ased on data provided by an insurance company. In collabora- 

ion with the AXIS Insurance company we examined datasets that 

hey possess regarding claim forms, forensic reports, underwriter 

eports and information from tools that provide intelligence on ef- 

ectiveness of controls and the threat landscape. 

We decided to simulate a real case where an organisation filed 

 large claim. The rationale behind this decision was that for large 

laims detailed forensic reports are provided which may shed light 

n the specific sets of controls that contribute towards defending 

gainst cyber threats. Furthermore, more elaborate data exists from 

he underwriting screening process that can help to better capture 

ontrols, identify assets and estimate risk. Our aim is to validate 

he system by calculating CVaR based on information from the re- 

orts of underwriters and suggest a premium for this organisation. 

ur goal is not to approximate the premium that the large organ- 

sation paid but to simulate different situations and understand 

hich controls are more important for defending against which 

hreats. In this way, we can produce a powerful tool that under- 

riters and risk managers in organisations can use to run multiple 

cenarios, create different threat landscapes and better understand 

he risk. For insurers, this is a key activity before suggesting a pre- 

ium while for risk managers this allows much better security in- 

ight than they have had before. 

.1. Description of the case study 

We used the data from the screening process, as well as un- 

erwriters’ notes, to understand the structure of the organisation, 

he value of the business processes, the systems that support these 

rocesses, and the controls that organisations have in place to pro- 

ect assets and mitigate harms. We used the data from the claim 

orms to understand how events unfolded after the cyber incident 

ccurred, and the data from Cyence (2019) to estimate the values 

or the effectiveness of the controls. Finally, we used the data from 

dvisen (2019) to identify the threat landscape and estimate the 

robabilities of these threats being realised. The output of these 

ools is a probability function for controls and threats respectively 

nd these functions can be derived from other intelligence sources. 

In order to construct the harm trees for the real case, we did 

ot rely only on the claim form that the organisation filed, since 

t presents a single event that occurred from a specific threat. We 

sed the harm trees presented in Agrafiotis et al. (2018) , and ad- 

usted the harm values accordingly to reflect the values of the as- 

ets that the organisation held when the cyber-event happened. 
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Fig. 6. Overview of the real scenario based on data that the insurer holds. Orange circles represent threats and green circles controls that apply to specific systems. Controls 

8 and 9, “Risk assessment” and “Business continuity plan”, are applied at organisational level, thus we apply them to the harm graphs to protect at operational level. Harm 

graphs at the bottom left corner are further represented in Fig. 8 . 
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hese harm trees were created by analysing cyber claim forms that 

XIS Insurance company holds. They contain not only the sequence 

f events, but also variables that allow for better calculation of the 

alues of these harms as well as averages of losses that occurred 

er harm type in all claim forms. 

.2. Data inputs and analysis of the case study 

Below we present the CVaR analysis for the organisation which 

led a large claim. The candidate company suffered business inter- 

uption due to a malfunction of a network device that appeared 

o be a single point-of-failure. The failure of this piece of hard- 

are resulted in a cascade failure of multiple systems and their 

ormal operations were disrupted. The IT support team managed 

o contain the incident within the first hour but it took a few 

ours to bring back all the systems, and multiple days to recover 

nd process stored transactions until they returned all processes 

o normal. The overall estimated losses are in the order of tens 

f millions of USD and are classified into business-interruption 

osts, customer loss and other expenses. For this scenario, we will 

nonymise all systems that the organisation possessed and refrain 

rom providing values for assets and types of harm that may help 

dentify the insured. 

The first step was to formalise the scenario with the data 

chema presented in Section 4 . Expressing the assets, harms, 

hreats and controls in the format of our schema allowed us to 

onvert the data into a JSON schema that can be used by the 

imulation software. We also had the opportunity to identify gaps 

here information required in the data schema was absent from 

ll the data sources we had at our disposal. These gaps were 

ainly in the links between controls, assets and harms. Figure 6 

hows how the data that the insurer holds for this organisation 

an be inserted into the model. This figure is created based on in- 

ormation from the underwriters’ report, the claims data, the Ad- 

isen dataset and information from the Cyence tool pertaining to 

he organisation’s effectiveness of controls ( Cyence, 2019 ). Cyence 
10 
cores organisations for their performance in countering risk fac- 

ors compared to their peer organisations. We map the Cyence risk 

actors to the security controls the organisation in question is us- 

ng; when Cyence determines them to rank higher than all peers 

e assume high control effectiveness; where or ganisations rank in 

he mid-range we presume medium effectiveness, and low effec- 

iveness otherwise. 

It is evident from Fig. 6 that for the tool to be more accurate 

n its simulations, certain assumptions need to be made. These as- 

umptions revolve around the links between assets, harms, con- 

rols and threats. We also had to make assumptions about the sys- 

em architecture of the company and the value of assets due to the 

igh level of the overview of the assets given by the underwriters’ 

eport. Finally, we assumed that the harmful situation described in 

he claim form is a worst case business interruption scenario. Our 

ecision was informed by the fact that this was one of the largest 

laims filed by a company in the last few years. Figure 7 illustrates 

he model we run in the simulations based on the aforementioned 

ssumptions. A visual comparison between Figs. 6 and 7 reveals 

ow much more data is required by the system to improve the ac- 

uracy of the model. 

Regarding the harmful scenarios, we opted for three different 

ypes of harm. Our decision was informed by the assets which are 

resent in the organisation and the evidence provided in the claim 

orm. Figure 8 illustrates the harm trees and shows how harms 

ay propagate for the three scenarios, namely data breach, IP theft 

nd business interruption. In the model, we have three different 

nstances of data breaches that can occur (loss of customer data 

ith credit card details, loss of customer data without credit card 

etails and loss of employee data), one instance of IP theft and two 

ifferent instances of business interruption (one where the core 

rocess of the organisation is interrupted and one where it is not). 

We mapped all of the risk factors that Cyence provides infor- 

ation for, to the nine controls identified in the underwriter’s re- 

ort. For the needs of this simulation we had to group the controls 

hat the organisation had in place and map these to the risk cat- 
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Fig. 7. Overview of the real scenario with the additional data required for the model. Orange circles represent threats, green circles controls that apply to specific systems, 

and yellow circles represent which harms to expect when a specific asset is compromised. Controls 8 and 9, “Risk assessment” and “Business continuity plan”, are applied at 

organisational level, thus we apply them to the harm graphs to protect at operational level. Harm graphs at the bottom left corner, painted in yellow, are further represented 

in Fig. 8 . 

Fig. 8. Overview of the harm tree scenarios which are considered in our modelling 

based on the claim form. 
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gories that Cyence provided. Cyence defines scores based on how 

ell organisations are performing when compared to their peers. 

erforming best amongst your peers, however, does not guaran- 

ee a good cybersecurity posture. It may well be that all organ- 
11 
sations in a specific sector have very poor configuration of con- 

rols. Therefore, the score obtained from Cyence is informative but 

ay be misleading. Below we present the mapping between con- 

rols elicited in underwriter reports (left side of the arrow) and the 

yence risk factors (right side of the arrow): 

1. Information security programme → Employee sentiment 

2. PCI → Credit card exposure, Online payment present 

3. Secure Web Configuration → Risky software/apps, Connected 

DB, Shared hosting, https misconfiguration, Website perfor- 

mance 

4. Secure Network → Bad activity, SPF misconfiguration, Commu- 

nication Device, DNS leakage, Network connectivity, Perimeter 

posture 

5. Hardware/Software Inventory → Risky software/Apps, Technol- 

ogy exposure, Industrial control systems, Remediation rate, Out- 

standing vulnerabilities 

6. Authorisation change → Dark web, Passwords, Compromised 

passwords, Leaked user accounts 

7. Redundancy → CDN, Concurrent services 

8. Risk assessment → Cybersecurity staff, Security breaches 

9. Business continuity plan → Cybersecurity staff, Security 

breaches, Social media presence, Company stature 

The majority of the risk factors from Cyence indicated that the 

rganisation has very effective controls in place, with the exception 

f a “Business continuity plan” and “Risk assessment” which are 

edium. 
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Fig. 9. CVaR estimation with control effectiveness High for controls 1-7 and Medium for 8-9, and different distributions to calculate losses. 

Table 1 

Estimated losses for different values of effectiveness of controls. In bold-italic, the simulation with Lognromal distribution using Cyence to inform 

effectiveness of controls. In italic, the result that better describes the real losses, 87M, which is when using the effectiveness of controls from 

Cyence and a normal distribution. 

Distribution 1 2 3 4 5 6 7 8 9 95% 99% 

Normal Low Low Low Low Low Low Low Low Low 75M 115M 

Normal Medium Medium Medium Medium Medium Medium Medium Medium Medium 38M 88M 

Normal High High High High High High High Medium Medium 38M 87M 

Lognormal High High High High High High High Medium Medium 118M 378M 

Normal High High High High High High High High High 5M 1M 
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.3. Analysis of results of the case study 

We decided to run several instances of the model presented in 

ig. 7 where we have linked controls to assets and harms and have 

pecified which threats can target which assets. The Systems in 

ig. 6 have been grouped into higher-order Systems in Fig. 7 as 

hey are affected by the same threats, but they are still treated 

s independent Systems (assets) by our tool. In Fig. 9 we can 

ee results of CVaR using normal and lognormal distributions for 

he losses. The tail of CVaR using lognormal distributions is much 

onger, producing bigger losses than the normal one. In fact, the 95 

ercentile for both simulations are 118 and 38 millions ( Table 1 ), 

espectively, which is three times higher. 

.3.1. Sensitivity of CVaR to control effectiveness 

We further evaluate the sensitivity of CVaR to control effective- 

ess for this case study by experimenting with different configura- 

ions of the system. Table 1 shows the 95th and 99th percentiles 

or different values of the effectiveness of controls. As expected, 

he lower the effectiveness of controls, the higher the losses. 

When comparing these results with the real claim, the losses 

ccurred fall in the 99% percentile of the normal distribution. 

iven that it was an unusual big claim for the affected insurer, 

e believe our calculations match real losses. This does not mean 

hat the affected company had no controls in place, but that they 

ailed at some point, maybe as an effect of series of unfortunate 

vents. The results obtained with the lognormal distribution are 

uch larger (378 million for the 99th percentile) than the real 
12 
nes, thus diminishing the fitness of lognormal distribution for the 

VaR calculations on this case study. 

In Figure 10 , we can also see that when ‘Business Interruption’ 

nd ‘Risk Assessment’ controls have high effectiveness, the losses 

hat occur are reduced drastically. These results indicate that the 

arm resulting from interruption of critical systems is dispropor- 

ionate to the harms occurring when other systems are impacted 

r when data exfiltration occurs (even when there is an IP theft 

vent). Given the strict regulatory framework under which this or- 

anisation operates, the lack of IP value (the company is not a 

anufacturer) and the need for effective and rapid customer ser- 

ice, these results are expected, indicating that ‘Risk assessment’ 

ontrols and ‘Business continuity plan’ are of paramount impor- 

ance for this organisation. 

. Discussion on insights and gaps with calculating accurate 

VaR 

Applying the CVaR model to a real case study has validated the 

tility of such a tool. Our results indicate that the system is able to 

roduce CVaR distributions representative of the actual loss values. 

urthermore, we can also understand how residual risk changes in 

ifferent scenarios and determine which controls have greater im- 

act in protecting the organisation from threats and in mitigating 

armful situations. The novelty of our model compared to other 

ork ( Eling and Wirfs, 2019; Pal et al., 2017; Woods et al., 2019 )

resented in Section 2 , is that our approach is not limited to in-

ormation from datasets that detail losses from cyber threats. Our 
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Fig. 10. CVaR estimation for control effectiveness High and Medium for Business continuity plan (BCP) and Risk assessment controls. All other controls have High effective- 

ness. 
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odel provides an holistic view of the assets of an organization, 

he possible harms and how they can unfold, and which controls 

re deployed. The result is a more nuanced approximation of the 

isk that organisations have. 

Such a tool can effectively be used by underwriters and risk 

ractitioners to run multiple configurations with varying degrees 

f effectiveness of controls and different threat landscapes. These 

xercises will facilitate organisations to better capture the residual 

isk to which they are exposed and the range of potential losses 

hat might arise. Gaining a deeper understanding of residual risk 

s fundamental to informing not only threat detection strategies, 

ut also whether and to what degree cyber-insurance might be 

ppropriate as a risk sharing strategy, and whether risk avoidance 

r transference (if at all possible) should be considered. Therefore, 

yber-insurers have a powerful tool to run scenarios and calculate 

nsurance premiums and secondly, organisations (e.g., CISOs and 

orporate risk managers) can visualise the impact of risk-control 

nvestments on their overall exposure to cyber-risk, as well as un- 

erstanding general exposure. 

There are some further contributions to the tool simulation that 

erive from our case study analysis, as it is worth making a dis- 

inction on how we utilise datasets acquired from different organi- 

ations. We believe that when processing data to determine critical 

ssets and their value for organisations, as well as the effective- 

ess of controls, an organisation’s perspective should be adopted 

i.e., the focus is on the effectiveness of controls for the organi- 

ation whose CVaR is being estimated by the system and it is ir- 

elevant to the effectiveness that other similar organisations have). 

n the other hand, when determining harm graphs and datasets 

or threats, aggregate data from organisations that function in the 

ame sector should be considered (i.e., the probability of a ran- 

omware being realised for an organisation is similar to the prob- 

bility of other organisations with similar characteristics). 

This exercise has also highlighted gaps in the availability of 

ata that challenge the design of our CVaR model semantics and 

he analytical tool support. In our case study, we had to assume 

he infrastructure of an organisation and how the controls apply 

o which assets, and link threats to specific assets. Availability of 

ata for the links between the levels of our model is an impor- 

ant and necessary foundation for moving forward. Without in- 
13 
ights into organisational structures, we cannot practically exper- 

ment with datasets in order to determine the utility of the model, 

nd the sensitivity of its outputs to data. This point is particularly 

orth considering, since data in this space is scarce, and there- 

ore the ability to get useful results from coarse estimates would 

e a valuable feature. This analysis has also helped to complement 

xisting research ( Nurse et al., 2020 ) and to gain specific insights 

nto what data must be collected by organisations and (cyber) in- 

urance companies in order to progress the practice of risk man- 

gement and predict the residual risk that organisations carry even 

fter deploying controls. 

It should be noted that our use of the Cyence and Advisen 

atasets is highly exploratory at this stage, and represents a cre- 

tive step in our modelling which should be taken as a hypothesis 

s opposed to a firm proposal at this time. Datasets to enable es- 

imation of probability distributions for threats and the effective- 

ess of controls are scarce and the security-practitioner commu- 

ity should focus their efforts on creating the appropriate datasets. 

o make progress in this direction, we will be exploring the poten- 

ial for a pre-competitive dataset for insurance companies and an 

ccompanying standardised format for claims. The purpose for this 

spect of the discussions is to explore whether it might be possible 

o raise the quality and availability of data by encouraging sharing 

cross insurers. This would not only serve to support CVaR data 

vailability, but would likely have other commercial advantages as 

t could reduce costs in initial due-diligence, create a standardised 

pproach that will facilitate better benchmarking across the sector, 

nd still allow room for market-differentiating products to be de- 

eloped based on the foundational data. Previous attempts to cre- 

te this dataset, however have failed. Insurance companies usually 

ee this data as a competitive advantage for them and as such are 

eticent to share it ( Nurse et al., 2020 ). 

. Conclusions and next steps 

We continue to face an increasing threat in cyberspace and 

hilst a range of controls can prevent and mitigate the harms re- 

ulting from cyber-threats, we are left with residual risks that may 

e realised. It is important that organisations can understand this 
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esidual risk and the range of potential losses that might arise, 

ince this can serve to inform not only threat detection strategies, 

ut also alter decisions on which controls to deploy to mitigate 

isk and whether cyber-insurance might be appropriate as a risk 

haring strategy. There is a lack of rigorous frameworks to help or- 

anisations and insurance companies to reason about the full range 

f losses that may result from a cyber-threat that can take account 

f both the use and effectiveness of risk-controls, and the potential 

or harm propagation across an enterprise. To address this gap, we 

resented a system that calculates the Cyber Value-at-Risk (CVaR) 

f an organisation. 

Our CVaR model takes a broad view of assets, how they are 

ikely to be interdependent, the range of harms that might arise 

rom a cyber-threat, the assets in scope for such a threat, the risk 

ontrols that are in use to protect the assets and their likely effec- 

iveness, and how harm might propagate given the relationships 

etween assets and effectiveness of risk controls. CVaR is then a 

robability distribution for a range of potential losses, which can 

ither be calculated by considering all harms as in scope, or can 

e driven by specific threat intelligence and focused on a particu- 

ar threat type. 

We validated the effectiveness of the system in a real case study 

y calculating the CVaR for an organisation that experienced a sig- 

ificant cyber-incident. We showed that the system is able to pro- 

uce CVaR distributions representative of the actual loss values. 

he results achieved the best fit using a normal distribution for 

osses as the final CVaR has a normal distribution shape. This could 

e a result of being a sum of different random variables, following 

he central limit theorem for sums of sets of random variables. This 

heorem states that if the sample size is large enough, the sum 

alue forms a normal distribution ( Wolfram, 2021 ). In this case, 

he sets are the harm values in each run. 

We believe that the CVaR model development and associated 

nalytics is now demonstrated as having utility in terms of its abil- 

ty to capture organisational security postures at a level of abstrac- 

ion appropriate for calculating and predicting the range of harms, 

nd associated losses, that might arise from residual cyber-risk. 

The next phase of our research will seek to improve the CVaR 

odel’s predictive capability and address the gaps that we iden- 

ified in the availability of datasets required to calculate criti- 

al probability distributions for the accuracy of the tool. We will 

chieve this by focusing on improving the accuracy of the model in 

 range of dimensions, all of which will impact CVaR and therefore 

he predictive loss levels in any threat scenario. Our initial next 

teps will be as follows. 

Capture the Flags (CTFs) exercises are competitions in which 

articipants compete to complete a variety of computer-security 

uzzles designed to represent real-world hacking scenarios. Par- 

icipants obtain flags as proof that they have completed a chal- 

enge. CTFs may consist of a variety of different challenges from 

 broad range of categories such as website security and forensics 

Jeopardy-Style CTFs), or may involve teams playing against each 

ther to attack or defend a network or server, taking flags from 

r planting flags on their opponent’s machine/network (Attack- 

efence CTFs). 

The idea behind running a CTF-based experiment is that we can 

earn the difficulties of attackers in penetrating a system protected 

y different sets of risk controls ( Holm et al., 2012; Moskal et al.,

018 ). Results on the difficulty of attacking a network protected 

y different sets of controls can then inform our CVaR model: the 

ifficulty a control set creates for an attacker can be translated 

o a representation of that control set’s effectiveness in the CVaR 

odel. 

As well as experimenting to assess the relative effectiveness of 

isk controls, we intend to test the sensitivity of the CVaR model to 

ariations in the effectiveness values assigned to controls. This will 
14 
nvolve running the CVaR simulations while varying the presence 

f relevant risk controls, and the level of effectiveness assigned to 

he relevant controls, and observing the effect of this variation on 

he CVaR value. 

If we can determine CVaR to be less sensitive to control perfor- 

ance (for specific sets of controls) then we do not need to con- 

ider deep experimentation into understanding control effective- 

ess for those controls, and might decide that a less granular set 

f estimates will suffice for our purposes. Whereas, if we deter- 

ine CVaR to typically be highly sensitive to the performance of 

articular controls then not only will it be worthwhile developing 

 deeper understanding of the spectrum of performance results for 

VaR, but it would also indicate justification for immediate atten- 

ion to the practice of these controls by insured parties. 

We anticipate that the CVaR model will vary in its sensitivity to 

he presence and effectiveness of the various controls, dependent 

n the type of control, the types of assets the control protects, and 

he types of threats being faced. There may be specific controls, 

or example, varying the presence and effectiveness value of which 

ill have little effect on the CVaR, while for other types of control 

here may be a greater impact. 

By analysing the extent to which the deployment of a set of rel- 

vant risk controls and their effectiveness affect the CVaR of an or- 

anisation according to our model, we hope to identify those con- 

rols of which effective deployment is critical to reducing CVaR. We 

an also verify whether this sensitivity of our CVaR model to con- 

rol effectiveness matches the results of the control effectiveness 

xperimentation. 
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