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Abstract

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that
has a large genetic component. It has been researched multiple times using
Genome Wide Association Studies (GWAS), mainly with European and Asian
cases. These studies have tested and analysed genetic markers separately and
are simplistic statistically, with strict corrections made for multiple testing to re-
duce the false positives that they produce. In 2015, the largest GWAS of SLE at
that time was investigated by Bentham et al. Using the data employed in their
research, the goal of the work presented here was to complement the study’s
results by applying sophisticated statistical methods to the data whilst reducing
the number of false positives. Four methods were implemented with the data,
two Bayesian approaches and two frequentist. Three methods implemented a
mixture of optimization and regularization techniques, whilst the other uses a
standard frequentist association test. The methods were sporadic in finding the
published associated hits and lacked consistency. Dense blocks of SNPs that
were in high linkage disequilibrium were reduced to selecting just one or a few
SNPs to represent the associated risk allele, which is a clear advantage of these
methods. Although the results were inconclusive, it was noticeable, that on
average, the percentage of non-zero coefficients chosen by the variable selection
methods grows as the chromosomes get smaller in size which is counterintuitive,
and may be an undesirable artefact produced by these methods. Furthermore,
on three occasions (chromosome 3, 19 and 22), methods have chosen numer-
ous non-zero coefficients per chromosome in comparison to the other methods.
Overall, further research is required, to produce a consistent and reliable model
using variable selection techniques, that reduce false positives and reveal novel
associated hits that ultimately result in discovery of casual SNPs in the fight
against disease. This work is a step towards this goal.
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1 Introduction

1.1 Introduction

With the advent of technological advancements from the early microarrays to
the invention of next generation DNA sequencing technology, we now have a far
better understanding of the workings of the human genome. This has enabled
us partially to grasp the complexities of the building blocks of life. The hu-
man genome holds all the information for us to function and live, with around
99.9% of DNA the same for every person [1]. A variation in the genome af-
fects an individual’s risk of disease and response to medicine [2]. Since the mid
1990s the evolution in superior techniques has delivered on finding rarer vari-
ants that are associated with causes of diseases through improved coverage of
the genome. The revolution of personalised medicine has begun, with whole
genomes being sequenced in just a day with the cost decreasing rapidly and so
the number of datasets will continue to grow [3]. Through increased work in
mathematics, statistics, and computer science a new era has begun in the form
of bioinformatics and biostatistics.

This thesis presents biostatistics analysis based on data for systemic lupus
erythematosus (SLE) from Bentham et al (2015) entitled “Genetic association
analyses implicate aberrant regulation of innate and adaptive immunity genes
in the pathogenesis of systemic lupus erythematosus” [4]. The overall aim of
this work is to assess whether advanced statistical models can be applied to a
practical dataset to find associations with the disease. The main objective of
the study is to assess the chosen statistical methods. In the first instance, this
is to assess whether the chosen statistical methods perform well in finding SNPs
or loci that are already known to be associated with the disease. Secondly, it is
necessary to assess whether the methods produce large numbers of false positive
results. The long term goal is to replace the existing simplistic statistical models
used by large genetic studies, but this is beyond the scope of this thesis as this
would be a major research project. The overall literature gap is between the
large-scale genetic studies that use relatively simplistic statistical models, and
sophisticated statistical models that have not been tested on large, practical
genetic datasets.

1.1.1 Genetic Disease and Personalized Medicine

Diseases that are classified as genetic are caused by the variations in DNA se-
quences [5]. Some variants increase the risk while others decrease the risk of
disease but most cause no effect at all. These changes are called genetic vari-
ants. Some genetic variants can lead to single gene disease like cystic fibrosis
while others like lupus are a complex disease caused by multiple variants in-
teracting with environmental influences [6]. Studies in genetics are providing a
foundation for future work into the eventual goal of personalized medicine. This
would help to target the correct drugs to administer to the patient, can help in
the diagnosis of a disease at an earlier stage than was previously possible, and
help with the prediction of risk of contracting a variety of diseases [1]. Due to
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the uniqueness of a person’s DNA these will become standard practice in the
future, reducing costs of treating long-term illness by optimization of therapies
resulting in the individual health needs of patients around the world becoming
easier and cheaper to diagnose whilst saving millions of lives. This is the moti-
vation for work in this field.

1.1.2 Original data set

In 2015 Bentham et al [4] set out to unearth associations of novel susceptibility
loci with the autoimmune disease systemic lupus erythematosus (SLE) based on
European ancestry. The study comprised of a fresh GWAS of 4946 cases (before
data cleaning) with SLE and 1286 controls that were added to 5727 other healthy
controls taken from the University of Michigan Health and Retirement Study.
Additional data from Hom et al [7] was utilized, containing an extra 1165 cases
and 2107 controls. Imputation software Impute [8] and SHAPEIT [9] was used
on both sets of data to the density of the 1000 Genomes project [10], however,
only the genotyped data from the GWAS was analysed in this work. The paper
was the largest GWAS on lupus at the time. The statistical modelling in this
study involved single SNP logistic regression that did not take in account any
linkage disequilibrium. In statistical terms, this analysis was therefore somewhat
simplistic. Each of the cleaning steps for GWA studies described in section 1.3
were carried out on this dataset, and so the data used in this thesis did not
require any additional cleaning, i.e., the dataset is that used in the Bentham
et al [4] study without any modifications, with the cleaning steps having been
considered by the reviewers of that paper.

1.1.3 Study Objectives

Using the 4036 SLE cases and 6959 controls with data comprising of 644,674
SNPs of post-cleaned data from the original research by Bentham et al [4], this
study will attempt to go further statistically using advanced variable selection
techniques, with the aim to produce a relatively small number of non-zero coef-
ficients to analyse that also accounts for linkage disequilibrium and potentially
recording fewer false positives. This thesis will aim to compare and assess the
performance of the statistical models chosen, that can be capable of processing
this large data set by different frequentist and Bayesian methods. This thesis
can also be used as a replication study in conjunction with any potential findings
of associations that have not been shown to be prevalent in European popula-
tions but are known in Asian and African populations. Comparisons with the
previously known associated SNPs will be made in the results section which will
be insightful to whether the methods have successfully found the hits, producing
confidence in the results. The standard techniques of GWAS in the study of SLE
use PLINK [11] and SNPTest [12] and have resulted in successful associations.
It is estimated that over 50% of the disease’s heritability can be explained from
the 13 GWAS studies of European and Asian ancestry, resulting in 84 loci that
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have been associated with the disease [13]. The future requires new methods
to gain further advancement into the missing heritability that remains. This
could be explained by rare variants that fail to produce low enough p-values
to be classed as statistically significant with the standard measure of genome
wide significance of p-values at p < 5×10−08. There are also linkage disequilib-
rium (correlation) problems that can potentially be better understood by using
variable selection methods. This thesis attempts to trial advanced statistical
methods with the potential that one may become a new standard.

1.1.4 Statistical methods of previous lupus GWAS

Genome-wide association studies involve hundreds of thousands of different
SNPs to analyse, and need to take into account linkage disequilibrium amongst
those SNPs, therefore GWA studies are complicated statistical problems that
have no ideal format after years of studies performing many types of meth-
ods [14]. Very little literature has appeared with regularization methods that
have studied the disease lupus in the pursuit of finding phenotypic variation
of complex traits. Unfortunately the types of GWAS carried out to date will
not point out the rare variants that lie beneth the genetic p-value threshold
of 5 × 10−08, although a paper in 2019 reported 24 previous GWAS on Lupus
and a total of 388 suggestive associations made that were below the genetic
threshold [15]. This thesis will try to fill some of the current void.

1.2 Genetics

1.2.1 Introduction

The study of genes and heredity was formed in the 1800s by an Augustinian
monk, Gregor Mendel [16], whose work into pea plants and their inheritance
structure began the basis of what we know as genetics. The expansion of the
field over the past 150 years has revolutionised the way we think about every
living cell on Earth. A paper from 2000 estimates that a human has around
28,000 to 34,000 genes [17]. It is thought that not all these are protein coding
genes. Genes that do not code for proteins are called functional RNA. The whole
set of genes in a cell is called the cell’s genome. Nucleotides are made up of a
phosphate group, a pentose sugar, and a nucleobase, and it is these nucleotides
that make up DNA and RNA. DNA is used to store genetic information and
their molecules are extremely long and are compacted into a cell’s nucleus [18].
Each DNA nucleotide has one of a possible four bases - A Adenine, T Thymine,
C Cytosine and G Guanine. A gene is a sequence of DNA bases. RNA transfers
genetic information from the DNA to the ribosomes [5].

1.2.2 Chromosomes

There are 23 pairs of chromosomes in most humans, 22 autosomal chromosomes
(1-22 in order of size with 1 being the largest) and a pair of sex chromosomes
(generally XX for female and XY for male). The Y chromosome is smaller than
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the X chromosome and thus carries fewer genes. Each chromosome is made
up of DNA wrapped around proteins called histones (as shown in Figure 1).
There are two sections in a chromosome divided by the centromere. One arm
has a side named q (the longer of the two) and the other is called p. They have
hundreds and occasionally thousands of genes [5].

Figure 1: Chromosome Facts: Source - National Human Genome Research
Institute [1]

The chromosomes 1-22 are almost the same size in each person and have the
same genes, but there can be different versions of a single gene, called alleles.
Each human has the same genes although they have different alleles. The alleles
in a gene are what brings about genetic diversity. Genes are varied in size and
can be coding or non-coding for proteins. Genes are inherited one from each
biological parent [5]. Deletions, Duplications, Translocations, Inversions and
Rings are all alterations that can happen to a chromosome’s structure [1] as
shown in Figure 2.

1.2.3 Single Nucleotide Polymorphisms

A single nucleotide polymorphism (SNP) is a point mutation that usually takes
place during DNA replication that produces a single base pair. This occurs
when the DNA sequence differs from the majority of the population. There
are around 4-5 million SNPs in a human genome [19], and it is estimated that
they account for 90% of genetic variation in the genome. The high frequency of
SNPs occurring makes it possible for high density profiling to be tackled. Each
position of a SNP has its own identity and is encoded by a marker beginning
with rs.
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Figure 2: Chromosome Abnormalities: Source - National Human Genome Re-
search Institute [1]

SNPs can be positioned in:

- Coding sequence of a gene
- Non-coding regions of a gene
- Intergenic regions between genes.

1.3 Genome Wide Association Studies

1.3.1 Introduction

GWAS has been used as a statistical analysis tool for 18 years, with its origins
in a 2002 paper researching myocardial infarction [20]. This was followed up in
2005, when a study was produced for age related macular degeneration by Klein
et al [21]. Since then and up to 29th October 2018 there have been 3639 research
papers that have been published across 3508 unique diseases tested through the
GWAS format with thousands of associations with disease having been made
[22]. GWAS are designed to detect and analyse individual or regional areas
of SNPs that are potentially associated with disease. Although the causality
cannot be defined by these types of studies, they are beneficial for helping other
research (often laboratory based) to determine the true causality associated
with the disease in question. Rarer genetic variants with small effects are being
searched for, through regional association analysis rather than individual SNP
analysis [23]. This new method through exome and whole genome sequencing
of rare variants has the potential to discover causation of complex diseases.
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1.3.2 Allele Frequency

At each locus, two (and occasionally three) alleles are observed. The second
most common allele that is observed at that particular locus is denoted as the
minor allele and it’s count can be divided by the total amount of alleles to
produce a minor allele frequency as shown in Equation (1).

Allele frequency =
number of copies of the allele

number of all copies of the allele at the locus
(1)

SNPs are of huge significance in genetics, particularly in comparing cases
and controls in GWA studies. Early GWA studies were based around SNPs
with minor allele frequency (MAF) of less than 5%. As time has moved on, the
studies now use a MAF of less than 1%. As databases increase in size, so will
population study numbers and the frequency thresholds will continue to drop.

1.3.3 Population Stratification and Cryptic Relatedness

When performing Genome Wide Association Studies, a systematic difference in
allele frequencies between subpopulations arises. This is called population strat-
ification. The two main types of statistical GWAS are family-based design and
unrelated population-based design. It is in the latter in which population strat-
ification can lead to false positive and false negative findings if not accounted
for. Although it is easier to collect samples on unrelated individuals rather
than relations in a family, there have been cases where studies have produced
spurious associations through variations in ancestry. There are 3 main types of
genetic population structures globally: European, Asian, and African. There
is also much diversity amongst minor subpopulations too. The mixing of peo-
ple through migration has resulted in complications for genetic based studies.
For example, the genetic diversity in Brazil is very high. This has formed over
time by migration from Europeans, native Americans and Africans resulting in
a high multiracial mix. The GWAS landscape has been dominated by studies
of European ancestry with 86.0% discovery and 76.7% of replications with most
of the remainder being from Asian subjects with the majority of funding for
GWAS coming through the United States of America (85.1%) and the United
Kingdom (14.4%) [22].

Genetic diversity between populations in case-control studies is a problem
due to SNP alleles that are common in one geographical or ethnic group being
much rarer in another. Small differences in the effect of alleles may produce
confounding.

A strict part of a GWAS quality control now must contain standard pop-
ulation stratification methods. To deal with population stratification, cryptic
relatedness and missing genotype rates are dealt with by quality control using
software such as EIGENSTRAT [24] or PLINK [11].

When dealing with population stratification in case control studies, cryptic
relatedness needs to be a consideration. Close relatives that are not known
to the study organisers could well confound the results. A study in 1999 by
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Devlin and Roeder [25] reported that cryptic relatedness was a source of con-
founding in studies. The independence of populations is brought into question
if close relatives are found in the data and thus the design of the study must
be adjusted. Although using family-based data is used less in design meth-
ods, it has more control over population stratification than a design based on
population studies but is simply not practical if sample sizes reach 1000 or more.

1.3.4 Cleaning Data and Imputation

Cleaning of the data is a key part of a successful GWAS. Quality control steps
are taken to remove markers with high error rates. There will be expected to be
numerous imperfections including poor DNA hybridization to the array, some
samples of DNA not being of high enough standard and there may even be
contaminated samples.
Checking the consistency of sex, minor allele frequency exclusions, sample re-
latedness, population stratification, heterozygosity rates, missingness of SNPs
and Hardy Weinberg equilibrium deviation rates are all analysed in carrying
out quality control of the uncleaned data. Software packages like PLINK [11]
and SNPTest [12] clean the data under supervision of the researcher. This dra-
matically reduces the number of SNPs with significant associations that studies
must further analyse. Imputation is required when there are missing data (for
example when datasets use different genotyping chips) or unobserved genotypes
in a GWA study. Imputation can improve the statistical power in a single study
or meta-analysis where causal SNPs are not present on the genotyping chip but
are in the 1000 Genomes dataset, for example. The method is based around
known levels of linkage disequilibrium (i.e. correlation) using knowledge of hap-
lotype structure. Imputation software like Impute [8] and SHAPEIT [9] link
up with reference panels from HapMap [26] or the 1000 Genome project [27].
However, in the case of the data analysed in this thesis, only directly geno-
typed data was used and the dataset had been cleaned previously, so no further
cleaning was carried out by the author. There were no SNPs with LD=1 in the
final cleaned dataset and so there were no need to allow for this in these analy-
ses. LD is taken into account implicitly by the regression models. There is no
missingness in the data, and the methods were each applied to the same dataset.

1.3.5 Hardy Weinberg Principle

The Hardy-Weinberg principle states “that under the condition of large pop-
ulation size, diploid organisms with non-overlapping generations and random
mating, the genotype frequencies at a locus are determined by the allele fre-
quencies, and both the genotype and the allele frequencies will stay constant
in future generations when the conditions of no mutation, no migration and no
selection hold” [28].

The Hardy-Weinberg Equilibrium test (HWE) is a vital part of statistical
analysis in population studies involving genetics based on the Hardy-Weinberg
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Principle. It assesses the allele frequency changes through generations. These
can be caused by mutations, deletions, genetic drift, inbreeding and cryptic re-
latedness. The allele frequencies should be passed down with the same ratio.
Based on a single gene with only two alleles, with the minor allele represented
by a, and the major allele represented by A, Equation 2, presents the expected
genotype frequencies under random mating for AA, Equation 3 for aa and Equa-
tion 4 for Aa, with the frequency of observed alleles are represented by p and q,
where q = (1− p) and where p2 + q2 + 2pq = 1.

f(AA) = p2 (2)

f(aa) = q2 (3)

f(Aa) = 2pq (4)

p, q ∈ [0, 1]

also as shown in Table 1 (which is known as a punnet square) with the allele
from both parents:

Table 1: Hardy-Weinberg Punnet Square
Calculations of expected allele frequency

PATERNAL PATERNAL

MATERNAL AA(p2) Aa(pq)
MATERNAL Aa(pq) aa(q2)

From the punnet square we record the expected allele frequencies (from the
control group) and compare them to the observed allele frequencies (from the
case group). If the values are considerably different then it is said to not be in
HWE. This test was carried out in the original study as part of the data quality
checks.

1.3.6 Cochran Armitage Test

In case-control studies for complex traits the standard test of genetic association
is the Cochran Armitage trend test [29,30]. This standard procedure for single
SNP analysis uses a null hypothesis of no association between a disease risk and a
genotype. Different genetic models can be used in case control analysis including
Full genotype model, Dominant model, Recessive model, Multiplicative model
and finally the Additive model [31]. In genetic studies the additive model is
considered the most realistic representation of genetic risk and so is preferred
and thus is used in this thesis.

An additive model consists of homozygous genotype coded 0 (0+0=0), het-
erozygous 1 (0+1=1, or 1+0=1) and another homozygous genotype 2 (1+1=2)
and it is thought that in an additive model the risk changes when there is a
potential exposure of risk.
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With the use of contingency tables the additive model is used to calculate
the risk of disease based on the amount of risk alleles per loci. For risk allele
(A) and Non risk allele (a): With homozygous aa = (0) there are no risk alleles
(weights of 0), heterozygous aA = (1) one risk allele and homozygous AA = (2)
two risk alleles. It is assumed in this model that Aa has a risk factor of r-fold
for the risk of developing the disease and AA is 2r-fold (double the risk factor)
of the risk. The test results in a set of scores and can be used as a score test.
All four methods used additive methods in this study.

1.3.7 Haplotypes and Linkage Disequilibrium

Haplotypes are a group of SNPs that are inherited together in blocks across a
chromosome. They are passed down through generations by genetic recombina-
tion, although this does not occur so often inside each block because they are
positioned very close to each other. The haplotypes that appear in blocks should
have higher levels of linkage disequilibrium (i.e. correlation), and this can help
or hinder any GWA study. The alleles can be inside different genes or even
between genes. GWAS will highlight SNPs with true genetic associations. With
the use of software like Plink [11], block analysis and linkage disequilibrium can
be calculated.

Linkage is when two alleles are located on the same chromosome therefore,
they are physically linked together. If they are in linkage equilibrium then the
observed frequencies will be the same as the expected frequencies, thus there is
an equal probability of inheriting each allele. For linkage disequilibrium it can
be assumed that the observed frequencies (f) are different from the expected
frequencies.
The linkage disequilibrium coefficient is D′ and is calculated as in Equation 5.

D′ =
D

|D|max
(5)

where D = fAB ×faB × fAb×fab and Dmax = min(fA × fb, fa × fB).

If D > 0, |D|max is equal to the smaller value fA × fb and fa × fB .
If D < 0, |D|max is equal to the smaller value fA × fB and fa × fb.

r2 is used for the correlation between loci with r2 = 0 (linkage equilibrium)
and r2 = 1 (complete linkage disequilibrium).

1.3.8 GWAS Limitations

It is perceived that there are multiple rare or low frequency variants that cannot
be identified by a GWAS owing to a lack of statistical power. It is these rare
multiple traits analysed together that have small effect sizes [32]. It was reported
by Yang et al [33] that many SNPs gave such small effects that they were not
significant enough to be noted in a GWAS and it was this that was causing the
missing heritability proposed by Maher [34]. Yang et al also reported that some
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or all of the genetic mutations are not in perfect linkage disequilibrium and this
was another possible reason for missing heritability. Yang et al results noted
causal variants have lower MAF than common SNPs and their frequencies are
too small to be picked up by a GWAS. Some scientists believe the focus should be
on ultra-rare variants and researched through other techniques like differential
network analysis using next generation sequencing [35]. Another limitation is
the standard association testing that has been used frequently in large data
environments. More sophisticated techniques can be used to reduce processing
times and the vast amount of false positives that these tests produce. This is a
key motivation for the work presented in this thesis.

1.4 Genetics of Systemic Lupus Erythematosus

1.4.1 Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with
strong genetic and environmental makeup. There are four types of lupus: Sys-
temic lupus erythematosus, the most common form, Cutaneous lupus erythe-
matosus, Drug-induced lupus erythematosus and Neonatal lupus [36]. It is a
case of an autoimmune disease that attacks healthy cells inside the body using
its own immune system. It has been assumed that SLE is ignited by environ-
mental factors like smoking, UV light and alcohol consumption [37]. Hormonal
factors in females that are pregnant or are on hormone replacement therapy can
bring on SLE in genetically susceptible people. It has a range of severity from
mild cases like fever, joint pain, and rash to potentially life threatening condi-
tions affecting major organs like kidney disorder, heart attacks and strokes if
not diagnosed early [36]. Research estimated around 12 percent of people with
lupus will prematurely die from lupus complications [38]. Estimations from the
Lupus Foundation of America notes that a possible 5 million people worldwide
have lupus [39]. It is prone to be in females aged 15-44 (child-bearing age),
particularly in women that are of an African, Asian, or Caribbean origin. Lu-
pus is primarily a female disorder but can also affect males too with a ratio
of 9:1. This shows that gender and population group are a major factor when
considering any study on lupus [40].

1.4.2 GWAS in SLE

The first two main genome wide association studies involving SLE were by
Harley et al [41] and Hom et al [7] both in 2008. Harley et al researched
720 females for the study with 2337 controls all of European ancestry. All
cases were considered under classification of SLE from the American College
of Rheumatology and stated the diagnosis of SLE is 4 or more of their criteria
must be met [42]. This is presented in Table 2.

Hom et al [7] studied 1435 of both female and male cases with 3583 con-
trols all from a European descent with replication through Swedish case-controls.
Both studies found association with replication: Hom et al found SNP rs13277113
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Table 2: SLE diagnosis criteria from the American College of Rheumatology.

4 or more of the following criteria:

Anemia
Anti-nuclear antibodies
Arthritis
Cardio Pulmonory involvement
Immunological disorder
Kidney disorder
Malar Rash
Mouth or nose ulcers
Neurological disorder
Photosensitivity
Skin rash.

between the genes BLK and C8orf13 in chromosome 8 and between ITGAM and
ITGAX on chromosome 16 in SNP rs11574637. Harley et al [41] found 4 regions
that were associated with SLE: On chromosome 16 ITGAM, on chromosome 11
KIAA1542, chromosome 3 PXT and the SNP rs10798269 on chromosome 1.
The majority of loci that have been associated with SLE are in European and
Asian population studies. In 2016, a meta-analysis of these studies showed that
over half of the published SLE genetic associations are present in both popula-
tions [43]. SLE has been associated with many reported loci but despite this, a
large slice of genetic component remains to be discovered [13].

The standard statistical methods used in GWAS were also used in the studies
involving SLE, and all used association testing based on logistic regressions, with
disease status being predicted by genotype. They applied additive single SNP
models, using PLINK [11] and SNPTest [12] for association testing. Bentham
et al pooled the datasets of Hom et al, Harley et al and their own study to form
a meta-analysis which increased the power of the study but for each of these
studies used single SNP logistic regression models, which is still the standard
for GWAS.

1.4.3 Major Histocompatibility Complex

The major histocompatibility complex (MHC) lies within 6p22.1 to 6p21.3 on
the short arm in chromosome 6 and contains 224 genes spanning 3.6 mega base
pairs [44]. First associations of a genetic link to SLE were reported in the MHC
in 1971 [45, 46]. The MHC region of genes plays a crucial role in susceptibility
to autoimmune diseases and studies for lupus have previously concentrated in
this area [2, 47, 48], see Figure 3. The MHC is the densest part of the human
genome. This region of genes has high linkage disequilibrium amongst SNPs,
and this causes problems in identifying single SNPs for association [49].
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Figure 3: Manhattan plots showing a thick correlated region of SNPs that make
up the complex region MHC partly using Bentham et al European data and
Hansombe et al African American data. The title of each panel presents the
SNP with the lowest p-value score with correlation of the other markers shown
by the r2 values. The darkest shaded dot is the most significant marker with LD
shown using pink and red. The coloured dots represent genes in genes within
the MHC, with alleles for DRB denoted by asterisks and MHC classes denoted
by I, II and III. Source: Hanscombe et al [2]

1.4.4 Associated Genes to SLE in European populations

Genes that were associated with SLE pre-GWAS were: PTPN22 (chr 1) [50],
FCGR3A (chr 1) [51], FCGR2A (chr 1) [51], STAT4 (chr 2) [52], PDCD1 (chr
2) [53], TREX1 (chr 3) [54], SPP1 (chr 4) [55], BANK1 (chr 4) [56], HLA-
DRB1 in the HLA region (chr 6) [57], IRF5 (chr 7) [58]. SNPs associated with
lupus through GWA studies are shown in Table 3 and Table 4.
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Table 3: Timeline of asscociated SNPs with lupus through GWAS 2008-2014.
GWAS 2008-2014

Year Chr Associated
SNP

Likely causal
gene

Study
popula-
tion

Author

2008 1 rs10798269 TNFSF4 EUR HAR

2008 3 rs6445975 PXK EUR HAR
2008 6 rs5029939 TNFAIP3 EUR GRA
2008 8 rs13277113 BLK,C8orf13 EA HOM
2008 11 rs4963128 KIAA1542 EUR HAR
2008 16 rs11574637 ITGAX EA HOM
2008 16 rs9888739 ITGAM EUR HAR
2009 1 rs3024505 IL10 EA GAT
2009 5 rs7708392 TNIP1 EA GAT
2009 6 rs6568431 PRDM1 EA GAT
2009 6 rs11755393 UHRF1BP1 EA GAT
2009 7 rs849142 JAZF1 EA GAT
2011 1 rs525410 LAMC2 EUR CHU
2011 4 rs4956211 COL25A1 EUR CHU
2011 6 rs1150754 TNXB EUR CHU
2011 5 rs2431697 PTTG1 EUR CHU
2014 1 rs10911628 EDEM3 EUR ARM
2014 2 rs12993006 BIN1 EUR ARM
2014 2 rs4544377 KCNJ3 EUR ARM
2014 3 rs4684256 CNTN6 EUR ARM
2014 7 rs6946131 SEC61G EUR ARM
2014 10 rs10857712 MTG1 EUR ARM
2014 11 rs10466455 EHF EUR ARM
2014 15 rs11073328 FAM98B EUR ARM
2014 15 rs12259 TYRO3 EUR ARM
2014 15 rs8023715 SPATA8 EUR ARM
2014 17 rs11655550 MED1 EUR ARM
2014 20 rs6084875 RASSF2 EUR ARM
2014 20 rs11697848 RNF114 EUR ARM

KEY: EUR=European, EC=European and Chinese, EA=European American,
HAR=Harley et al [41], GRA=Graham et al [59], HOM=Hom et al [7],

GAT=Gateva et al [60], CHU=Chung et al [61], ARM=Armstrong et al [62].
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Table 4: Timeline of asscociated SNPs with lupus through GWAS 2015-2020.
GWAS 2015-2020

Year Chr Associated
SNP

Likely causal
gene

Study
Popula-
tion

Author

2015 2 rs67040462 SPRED2 EUR BEN
2015 2 rs3768792 IKZF2 EUR BEN
2015 3 rs564799 IL12A EUR BEN
2015 5 rs7726414 TCF7,SKP1 EUR BEN
2015 11 rs3794060 DHCR7,NADSYN1 EUR BEN
2015 12 rs10774625 SH2B3 EUR BEN
2015 14 rs4902562 RAD51B EUR BEN
2015 16 rs9652601 CIITA,SOCS1 EUR BEN
2015 17 rs2286672 PLD2 EUR BEN
2015 X rs887369 CXorf21 EUR BEN
2016 1 rs34889541 PTPRC(CD45) EC MOR
2016 1 rs2297550 IKBKE EC MOR
2016 2 rs7579944 LBH EC MOR
2016 2 rs17321999 LBH EC MOR
2016 3 rs6762714 LPP,TPRG1-

AS1
EC MOR

2016 6 rs17603856 ATXN1 EC MOR
2016 6 rs597325 BACH2 EC MOR
2016 7 rs73135369 GTF2IRD1-

GTF2I
EC MOR

2016 9 rs1887428 JAK2 EC MOR
2016 11 rs494003 RNASEH2C EC MOR
2016 16 rs1170426 ZFP90 EC MOR
2017 4 rs3733345 DGKQ EA LAN
2017 6 rs10498722 LRRC16A EA LAN
2017 6 rs4712969 SLC17A4 EA LAN
2017 6 rs2327832 OLIG3-

LOC100130476
EA LAN

2017 8 rs2955587 FAM86B3P EA LAN
2017 8 rs1966115 PKIA-ZC2HC1A EA LAN
2017 17 rs930297 GRB2 EA LAN
2018 1 rs1780813 SMYD3 EUR JUL
2018 5 rs55849330 ST85IA4 EUR JUL
2018 7 rs150518861 LAT2 EUR JUL
2018 17 rs114038709 ARHGAP27 EUR JUL
2018 17 rs36023980 GRB2 EUR JUL
2018 X rs13440883 GPR173 EC ZHG

KEY: EUR=European, EC=European and Chinese, EA=European American,
BEN=Bentham et al [4], MOR=Morris et al [43], LAN=Langefeld et al [63],

JUL=Julia et al [64], ZHG=Zhang et al [65].
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1.5 Summary

This section introduced foundation information in genetics along with details
of the autoimmune disease SLE. Also described was the application of previous
statistical methods and the process that is used to produce a GWAS involv-
ing genetic data. Furthermore, the motivation was explained for this thesis
which uses the Bentham et al data using advanced statistical methods which
are explained in the next section.
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2 Statistical Methods

In this section, the methods that are employed to analyse the data described
in the previous chapter are explained, starting with basic information on fre-
quentist statistics involving hypothesis testing, statistical significance and a cor-
rection method for false positives. The next section reviews the foundation in
Bayesian statistics, presenting what the distributions are and how they are put
together to form a posterior distribution using Bayes theorem. Exchangeability
is described leading into hierarchical models that are the focus of the meth-
ods presented in this thesis. Regularization techniques are discussed with the
various methods that have been applied to the data including optimization al-
gorithms. The section is completed with an examination of the four methods
that were used to analyse the data.

2.1 Introduction

A key issue in biostatistics is the vast amounts of variables that are present in
genetic datasets. When dealing with the applications of genomics, proteomics
and transcriptomics data involving hundreds of thousands (or even millions) of
parameters, it would be desirable to reduce the number of random variables in
a study. High dimensional data often have the number of features exceeding
the number of observations with more predictors than data points (with large
p and small n). Reduction in dimensionality is required ultimately reducing
computational processing speeds. Reducing high dimensional data also helps
interpretability, and relieves potential problems of overfitting. Another problem
is the effects of linkage disequilibrium that produce multicollinearity amongst
SNPs. Methods have been developed to account for all these problems including
methods like variable selection and regularization.

2.2 Frequentist Statistics

2.2.1 Statistical Testing and Significance

Medical studies using the case-control method involve people who have the
associated disease (cases) and a group that have no known link to the disease
(the controls). They are run as hypothesis tests with the null hypothesis (H0)
representing no difference in allele frequency between the populations for each
SNP while the alternative hypothesis (H1) assumes that there is a difference
between the populations. These tests are based on normal distributions and
the usual level for significance testing is at the 5% level. In medical statistics
rejecting the null hypothesis when true can have serious consequences. If one
rejects theH0 when it is true, this is classed as a Type I error with the probability
of this represented by α. If one doesn’t reject the H0 when it is false, this
is classed as a Type II error and the probability of this is represented by β.
Optimally the test would have minimal values for α and β, where α is the SIZE
of the test and 1 − β is the POWER of the test. When the null hypothesis of
no difference is true (based on a 5% level) and is in the 95% confidence level
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this is classed as non-significant. Also if the null hypothesis is not true and
lies outside the confidence levels, this is classed as significant as shown in Table
5. Controlling these false positive associations is strongly desirable. Increasing
the sample size also increases the power but at a cost to the size of the risk
expected.

Table 5: Classification of Statistical Errors

NON-SIGNIFICANT SIGNIFICANT

TRUE H0 CORRECT Type I error
NOT-TRUE H0 Type II error CORRECT

Example:
A study of 1,000 SNPs at 5% significance level, resulting in 50 false positives
A study of 10,000 SNPs at 5% significance level, resulting in 500 false positives
A study of 100,000 SNPs at 5% significance level, resulting in 5000 false posi-
tives.
With hundreds of thousands of statistical tests per study, the need to correct
for multiple comparisons is paramount to control false positive rates. The paper
by Benjamini and Hochberg [66] entitled “Controlling the false discovery rate”
which is a highly cited statistical paper, addressed the problem of multiple com-
parisons.
Generally, in genetics, when testing large amounts of data, studies now have
100,000 or more hypotheses, and it is clear to see that the potential resulting
false positives are far too high. The resulting rejection area (say 5%) becomes
sizeable and the chance of a rare event increases, thus a more stringent test is
required. A potential way of solving this issue is to use the most widely used
method, the Bonferroni Correction [67].
In the Bonferroni correction method, if there are m number of hypothesis tests
with a rejection level of α, then we would only reject α

m tests. A standard
GWAS threshold of p = 5 × 10−8 was used for association analysis in most
GWA studies.

This method has been called into question from Perneger [68]. Perneger
noted the inflation of type II error if the type I error decreases, debating that
type I errors are no more false than type II. Also, Nakagawa [69] critiqued
the correction method in a report noting a weakness in statistical power when
rejecting an incorrect null hypothesis with a potential of publication bias to
follow.
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2.3 Bayesian Statistics

Bayesian statistics can be described as the technique of assigning probabili-
ties given recorded data and updating previous views about unknown parame-
ters to reach a suitable probability statement for complex problems. We treat
the unknown parameters as random variables. The whole of Bayesian statistics
is based around three probability distributions, the prior, the likelihood and the
posterior.

The prior is a probability distribution that consists of prior beliefs about the
true value of a parameter. These can be informative, where we have some kind
of information that leads us to a certain distribution, weakly informative, where
we have an approximate idea as to what the distribution could look like or unin-
formative, that relies on no information about the parameter. Informative and
weakly informative priors allow some subjectiveness into the distribution cho-
sen whereas uninformative priors lack any subjectivity. Whatever probability
distribution is chosen for the prior, this is represented as p(θ).

The likelihood contains all the observed data that has been collected up to
the current point for a fixed value y. This is represented as p(y|θ).

The posterior probability is found by using data that has been observed
combined with subjective (or uninformative) prior beliefs of what the data could
be. This produces an updated probability distribution that can be inferred from,
to make an informed decision. It brings together an educated belief with known
data to make a robust conclusion of unknown parameters. This is represented
by p(θ|y). The posterior distribution is a combination of prior and likelihood
resulting in the Equation 6.

p(θ|y) =
p(y|θ)p(θ)∫ {
p(y|θ)p(θ)

}
dθ

(6)

The posterior distribution is attained from Bayes’ rule, the denominator
is averaged over and returns a constant to produce Equation 7. With this
new information our beliefs are changed, and we can infer from the posterior
distribution for a more informed estimation.

p(θ|y) ∝ p(θ)p(y|θ) (7)
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2.3.1 Exchangeability

For a sequence of random variables, (y1, y2, ...., yn), that are identically dis-
tributed with a symmetry for all permutations π of 1, ...., n and thus the prod-
uct of Equation 7 does not depend on order, then in Equations 8 and 9 the π
represents any permutation of the indices.

p(y1, y2, ......, yn) = p(yπ(1)
, ....., yπ(n)

) (8)

If Equation 8 is satisfied for any permutation π, it can be said that the un-
certainty in the joint probability density is exchangeable. Based around the
property of de Finetti’s theorem of exchangeable sequences of random variables,
exchangeability can be assumed in a joint density if there is a lack of knowledge
about the random variables and they are conditionally independent [70]. Using
the prior p(θ) and a sampling model p(yπ(i)

|θ)

p(y1, y2, ...., yn) =

∫ { n∏
i=1

p(yπ(i)
|θ)
}
p(θ)dθ (9)

We have independent samples from a population for a fixed but unknown
value of a parameter φ.

If the observations are denoted as exchangeable, then a subset can be classed
as a random sample of a model and thus a prior distribution on the parameters
exists. This leads to an approach that requires Bayesian techniques that builds
a framework with a hierarchical feature,

p(θ|φ) =

J∏
j=1

p(θj |φ) (10)

p(θ) =

∫ { J∏
j=1

p(θj |φ)
}
p(φ)dφ (11)

Due to φ being unknown, it can be averaged over the prior which integrates out
the φ.

2.3.2 Bayesian Hierarchical Models

Hierarchical models are a natural way of taking into account relations between
variables, by assuming a common distribution for a set of relevant parameters,
thought to underlay the outcomes of interest The key advantage of the hierarchi-
cal approach is that it uses information across groups of observations to reduce
our lower-level parameters’ sensitivity to noise. A hierarchical model is a model
in which lower levels are sorted under a hierarchy of successively higher-level
units. It is often useful to think of the analysis of marketing data using one
model for within-unit analysis, and another model for across-unit analysis. The
within-unit model could be used to describe the behaviour of individual respon-
dents over time, while the across-unit analysis could be used to describe the
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diversity, or heterogeneity, of the units. The sub-models combine to form the
hierarchical model, and Bayes theorem is used to integrate the pieces together
and account for all the uncertainty that is present.

A hierarchical model is made from different sub-models, that model the rela-
tionships between variables and are related in some way ultimately producing a
joint probability model. A hierarchical approach utilizes layered complex mod-
els that pool the information from separate groups that are not independent.
This works well with haplotypes that have correlated SNPs and can be treated
as dependent variables amongst each group.

Sophisticated models like Bayesian hierarchical models have seen steady
growth in usage over recent years as computational power has increased. These
models use two or more structured levels from multiple sources to combine to
form the hierarchical model, using a tractable Bayesian prior with a well esti-
mated likelihood to produce a posterior that can be easily sampled from. This
technique helps with multiparameter problems and accounts for the hetero-
geneity of means across groups. The prior distribution parameters are known
as hyperparameters.

Figure 4: A Bayesian Hierarchical model.

λ1, λ2

↙↓↘

θ1 θ2 .....θn

↓ ↓ ..... ↓

Y1 Y2 ...Yn

Equation 12 shows a general Bayesian Hierarchical model with 2 levels.

P (θ, φ|Y ) ∝ P (Y |θ)P (θ|φ)P (φ) (12)

The likelihood P (Y |θ) only depends on φ through θ. The distribution of the
hyperprior is P (φ) and represents information about an unknown parameter.
The joint posterior distribution P (θ, φ|Y ) is now a hierarchical model.

A 3 level hierarchical model contains a prior distribution, within group sam-
pling variability and between group sampling variability. Equation 13 shows a
general Bayesian Hierarchical model with 3 levels.

P (θ, φ,X|Y ) ∝ P (Y |θ)P (θ|φ)P (φ|X)P (X) (13)

2.3.3 Bayes Factor

Bayes Factor (BF) is the measure of support of evidence to an association (in
this study with SLE). Using multiple tests of different null hypotheses we can
compare models resulting in Equation 14.
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BF =
Likelihood of data given alternative hypothesis

Likelihood of data given null hypothesis
=
P (y|H1)

P (y|H0)
(14)

The alternative hypothesis (H1) is the probability of genotype configuration
of association with SLE and the null hypothesis (H0) being the probability of
genotype configuration with genotype independence with SLE.

BF =
Posterior odds

Prior odds
(15)

A BF of 1 shows no evidence to support the null hypothesis, meanwhile an
increasing BF shows stronger support for the alternative hypothesis. A BF
of less than one shows moderate eveidence to H0 and a declining value to 0
produces stronger support to H0.

2.3.4 Sampling from the Posterior Distribution

When inference is required from the posterior distribution, posterior sampling
can be drawn by Markov Chain Monte Carlo (MCMC) methods such as Gibbs
sampling [71] and the Metropolis Hastings algorithm [72]. Bayesian computation
is also often sampled by means of numerical iterative algorithms. Techniques
that evaluate gradients are popular, iterating until convergence to a maximum
or a minimum with a specified stopping criterion. More recent work has seen the
posterior sampled by numerical approximation methods including Expectation
Propagation [73], Variational Bayes [74], and Expectation Maximization [75]
techniques. The methods in this thesis will only use Expectation Maximization
and numerical iterative algorithms.
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2.4 Regularized Regression (Penalized Regression)

When using linear regression, we use ordinary least squares with the aim of
minimizing the sum of squared errors. From the standard model for multiple
linear regression, Y = Xβ+ε, where Y is the response variable, the matrix X is
made up of n observations x p predictors (x1.....xp), β is a vector of regression
coefficents where β0 is the intercept and ε is an error term. When models
are complex and have too many parameters to produce a reasonable model,
a simplified model is required that retains most of the important information,
using fewer parameters than a saturated model. This method of summarising
parameters using sparsity can be adopted for large scale models as are needed for
genetic datasets. With fewer variables in the model rather than a saturated one,
the aim is to fit the best model for more accurate predictions producing a more
efficient model. Penalized regression is required for interpretation, overfitting
and underfitting problems and helps with reducing computational processing
times.

For statistical models that have more predictors than observations using
penalized regression methods can achieve superior fits resulting in an optimal
model. A reduction in variance can be achieved but with a trade off with an
increase in the bias. There have been many ways to attempt this including prin-
cipal component analysis [76], backwards elimination, and forward selection [41]
with many more subset selection algorithms that have been implemented. One
needs to apply these methods when attempting to reduce dimensionality al-
though correlated alleles make the process problematic. To address the prob-
lem of multicollinearity, variable selection and regularization can be employed
to treat correlated variables with high “R scores” of linkage disequilibrium, by
grouping all SNPs that are highly correlated with each other and producing just
one predictor for the final model. Many early GWAS had not put in place this
statistical advancement, that reduces the number of markers into a sparser more
parsimonious model. The need to utilise variable selection to choose the relevant
predictors that are in highly correlated haplotype blocks with linkage disequi-
librium is required. To control overfitting which was previously performed by
stepwise selection, penalized regression can manipulate the objective (or cost)
function with the use of a penalty function.

2.4.1 Regularized Logistic Regression

In this GWAS, the aim is to find which predictors (SNPs) are important for
associations with SLE. The response variable is binary, representing the presence
of SLE or not, resulting in categorical data that is valued either as a 1 or a 0. The
approach is to model the probability as a logistic model using the conditional
mean of Y given x.

π(x) = E(Y |x) (16)

log
p(x)

1− p(x)
= β0 + xβ (17)
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Solving for p , gives

P (yi = 1) = πi =
exi β

1 + exi β
(18)

l(β) =

n∑
i=1

yi log(πi) + (1− yi) log(1− πi)

=

n∑
i=1

yi log
{ πi

1− πi

}
+ log(1− πi) =

n∑
i=1

yixiβ − log(1 + exiβ) (19)

The log likelihood function (Equation 19) is maximized for parameter esti-
mation.

2.4.2 Regularization - Logisitc Ridge Regression

The earliest of the techniques to appear was ridge regression [77]. This method
shrinks some of the coefficients more when the penalty function is larger, hence
more of the coefficients are penalized. This method will keep all the coefficients
in the model. The maximized log likelihood functions coefficients has a penalized
parameter applied (barring the intercept) so Equation 19 now becomes logistic
ridge regression as shown in Equation 20.

l(β) =

n∑
i=1

yixiβ − log(1 + exiβ)− λ
p∑
j=1

β2
j (20)

The ridge penalty function part is a squared value, and is constrained using a
tuning parameter (λ) where λ ≥ 0. This produces the l2 penalties. The larger
the value of λ the stronger the penalty is. The log likelihood function is then
maximized and the coefficients will shrink towards zero (but not to exactly zero)
and will remain in the model selection.

2.4.3 Regularization - Logistic Lasso Regression

From the origins of Robert Tibshirani’s groundbreaking paper in 1996 [78], this
method produced the choice to select a regressor and either keep it in the model
or shrink its coefficient to zero, effectively eliminating its presence. This keeps
the important covariates in the model that explain the data the best, creating
a parsimonious model that results in a less complex modelling problem. This
variable selection method was called least absolute shrinkage and selection op-
erator, and the lasso was born. It has been noted in previous literature that the
lasso does not handle correlated predictors well [79].

l(β) =

n∑
i=1

yixiβ − log(1 + exiβ)− λ
p∑
j=1

|βj | (21)
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The penalty function part is an absolute value, and this produces the l1
penalties as convex so numerical solutions can be found by coordinate descent
techniques which are computationally efficient.

Many lasso methods have evolved since 1996 and have been adapted to pro-
duce many other variations: the group lasso in 2006 [80], the Bayesian lasso
in 2008 [81], adaptive lasso in 2006 [82], and other techniques have arisen from
mixing the lasso with another method: for example, the blending of the Spike
and Slab Bayesian method with lasso in 2018 [83].

2.4.4 Regularization - The Elastic Net

In 2005, Zou and Hastie [79] devised an amalgamation of the ridge regression
and the lasso method entitled “The Elastic Net”. Zou and Hastie came up with
the name as they thought “it is like a stretchable fishing net that retains all
the big fish”. Combining the l1 and the l2 penalties this method contains the
ability to use variable selection while selecting groups of correlated variables.
This grouping effect allows either the correlated group to be in the model or left
out.

l(β) =

n∑
i=1

yixiβ − log(1 + exiβ) + α

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj | (22)

The α is another tuning parameter. Once the predictors have been standardized
and centred with variance of 1, the intercept (β0) can be omitted. The left
part is the mean squared error loss function, and the centre and right part is
the regularization with penalty. When α is 1 the regularization becomes the
lasso (l1 norm). When α is 0 the regularization becomes ridge regression (l2
norm). Solving the elastic net can be managed by gradient ascent and descent
algorithms due to the convexity nature when α < 1.

2.4.5 Optimization for regularization

Using regularization methods with certain parameters results in the need for
convex optimization. Optimization aims to achieve high prediction accuracy
by maximizing (for coordinate ascent) or minimizing (for coordinate descent).
It is an iterative optimization algorithm to find the minimum of a function.
Three of the statistical methods in this study use a form of pathwise coordinate
optimization (EBEN [84] uses cyclical coordinate ascent, Lasso [85] and Spike
[86] use cyclical coordinate descent). This technique searches for the complete
set of solutions for the λ value (tuning parameter) then steadily increasing or
decreasing the λ value until convergence. Using warm starts from the previous
calculation this is a very efficient method. Most of the coefficients will be zero
and the optimization exploits this sparsity.

In the case of logistic regression, a local search optimization algorithm is
commonly used.

36



2.4.6 Expectation Maximization Algorithm

The expectation maximization algorithm (EM) is an iterative algorithm that is
made up of two parts, the expectation step and the maximization step, starting
with estimating the initial values of the parameters, then iteratively step by step
updating the estimates until convergence. Originally an idea based on finding
missing data problems, the EM is also used for maximum likelihood estima-
tions, by means of numerical iterative computation, in frequentist statistics. In
Bayesian statistics, many high dimensional problems become intractable when
making approximations to the joint mode and they require the need for optimal
approximations via the conditional posterior distribution. In 1977, Dempster,
Laird and Rubin [75] published a paper showing that if the likelihood func-
tion is unimodal then the EM will guarantee to converge to that stationary
point which is the Maximum Likelihood Estimator. Dempster, Laird and Ru-
bin demonstrated that at no point after an EM iteration does the likelihood
function decrease and thus showing monotonicity. In multimodal situations, it
will converge to either a local maximum, a global maximum, or a saddle point
(except exceptional cases) depending on what the first estimations were. In
1983 Wu [87], found an error in the proof of the EM and corrected it.

There are many numerical methods that can be implemented into problems
to achieve a result. In this thesis there are optimization methods that entwine
with others (e.g., Expectation Maximization Coordinate Descent Algorithm)
are used.

2.4.7 Regularization - Variations

Park and Cassella (2008) [81] produced a “Bayesian Lasso”, a lasso in Bayesian
style with a hierarchical structure that treats the parameters as random vari-
ables. The Laplacian prior (also known as the double exponential prior) was
the base for the conditional prior for β

π(β\σ2) =

p∑
j=1

λ

2
√
σ
2 e
−
λ|βj |√
σ2 (23)

2.5 Frequentist Penalised Methods

The two frequentist methods differ by a lasso regularization technique. The
paper by Kohannim et al [85] employed the lasso to produce a sparse but parsi-
monious fitted model that predicts disease association. The frequentist method
by Lu et al [88] uses a standard statistical method for a GWAS and does not
use variable selection. It is the only method in this study to leave all the pre-
dictors in the final model, whereas the other three methods use some type of
regularization.
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2.5.1 Frequentist approach with no regularization (Frequentist).

Based on the method in the paper by Lu et al [88], this standard method of
multiple logistic regressions was processed by SNPTest software [12]. Quality
control steps were conducted to improve the quality of the analysis, while miss-
ing information from individuals were removed from the GWAS [89]. These
exclusions are SNPs that are missing from a large proportion of subjects. This
is known as SNP-level missingness. After filtering, SNPs with a threshold rate
of p <0.05 were kept in for analysis. Also, minor allele frequencies of less than
0.1 were discarded. Using an additive genetic model, the data was tested at each
marker versus a model of no association. With no regularization this method
kept all the predictors in and a vast amount of false positives was predicted.

2.5.2 Frequentist approach with Lasso regression (Lasso).

This analysis was based on the method in the paper by Kohannim et al [85].
In preparation for the method, the data was analysed by means of the software
Plink [11]. The software was used to extract SNPs that had MAF greater than
0.1 and HWE p-values of less than 5.7 x 10−7.
Using the penalized regression technique of lasso on the SNPs in a gene-centric
manner, this method allows for correlated variables in the gene and produces
sparse groups amongst the SNPs.

The standard lasso regression model is

β∗ = argmin||y −Xβ||2 + λ||β||1 (24)

where X is the matrix from the additive model of single SNPs, β∗ is the vector
of fitted coefficients, and λ is the tuning parameter of the penalty function. This
was processed using the R package GLMnet [90].

It was required to find the optimal penalty parameter for the lasso regu-
larization, and this was achieved through leave one out cross validation. In
general, cross validation divides the sample data into two subsets, one of the
subsets being the training data and the rest of the data being the validation
set [91]. Successive rounds are repeatedly performed using different subsets of
the training and validation data. The evaluated value from each round is com-
bined to produce an estimate of the parameter that does not overfit or underfit
the model. This prediction using computational means measures the combined
fitness of the model. Meanwhile, leave one out Cross validation (When K=N)
uses all but one of the data as training sets while leaving just a single datum as
a test set. This can result in a drawback of low bias with large variance due to
all training sets being near identical. This method is computationally expensive
so Kohannim et al added cyclical coordinate descent in a path-wise fashion to
the algorithm to increase speed of the process, producing greater confidence in
the results, as described in the original paper.

Due to the function convexity of β we can utilize cyclical coordinate descent.
The objective function is optimized while searching for the best direction keeping
the other parameters at a fixed amount for each search, repeating cycle after
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cycle searching for the best update at each iteration until this function converges
to a global minimum after following a path that utilizes warm starts from each
previous calculation. The full solution is calculated over the entire range of
values for λ concluding in a fast efficient algorithm.

2.6 Bayesian Methods Applied

The two methods used here are Bayesian Hierarchical models, each with a differ-
ent type of regularization. The first method is “Spike and Slab Lasso GLM” [86]
from 2017. This advanced method contains multiple statistical techniques to
achieve sparse regularization. The second method “The Empirical Bayesian
Elastic Net” (EBEN) from 2015, incorporates the elastic net into a Bayesian
environment which manipulates groups of strongly correlated variables into a
single important non-zero coefficient [84]. They both feature coordinate opti-
mization methods and a variant of cross validation.

2.6.1 Spike and Slab Lasso GLM (Spike).

This method was based on the paper by Tang et al [86] and is a blend of the
lasso [78], Generalised linear models [92], Bayesian hierarchical models and the
expectation maximization algorithm for numerical optimization [75]. It has
a foundation in generalized linear models (GLM) with logistic regression. A
GLM is an extension of a linear model using three components: a link function,
a linear predictor, and a response distribution.

ηi = β0 +

J∑
j=1

xijβj = Xiβ (25)

Here β is a vector of the intercept and all the coefficients, Xi is all variables.
The relationship involves a link function

E(yi|Xi) = h−1(Xiβ) (26)

giving the response of a binomial distribution

p(y|Xβ, φ) =

n∑
i=1

p(yi|Xiβ, φ) (27)

Tang et al [86] noted that “GLM’s cannot jointly analyse multiple correlated
predictors due to unidentifiability and overfitting”. The GLM will need modi-
fying with a form of regularisation. The lasso penalty penalizes the maximum
log likelihood resulting in convexity that can be optimized through coordinate
descent.

The roots of the spike and slab materialised from Lempers [93] and was car-
ried forward by Mitchell and Beauchamp [94] when they first quoted the term
“Spike and Slab”. In 1993, George and McCulloch [95] came up with the term
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Stochastic Search Variable Selection (SSVS) which is built through a hierarchi-
cal Bayesian framework. It is designed to detect the best subsets of variables
from two normal mixture models. It produces strong shrinkage on irrelevant
coefficients resulting in a mass around 0 (the spike) and a diffuse distribution
to weakly shrunk coefficients (the slab). This is mixed with the generalized lin-
ear model that contains a large number of correlated predictors. Starting with
a Bayesian Hierarchical modelling framework, the Laplace distribution (also
known as the double exponential distribution (DE)) serves as a suitable model
for the prior (Equation 28) which places mass at 0 (spike) or on large values
and thus in the tails (slab) [78], where the s controls the amount of shrinkage.

βj |s ∼ DE(βj |0, s) =
1

2s
exp

(
−|βj |

s

)
(28)

The spike and slab mixture double exponential prior is shown in Equation 29.

βj |γj , s0, s1 ∼ (1− γj)DE(βj |0, s0) + γjDE(βj |0, s1) (29)

The indicator Variables (γj), are γj =1 or 0, and the scale (Sj) is (1 − γj)s0
+ γjs1. The scale s0 is chosen to be small and acts as the spike, hence strong
shrinkage. The scale s1 is chosen to be large and acts as the slab, hence weak or
no shrinkage. Equation 30 shows the link that the scale parameters have with the
coefficients where θ is the probability parameter and assume that θ ∼ U(0, 1).

γj |θ ∼ Bin(γj |1, θ) = θγj (1− θ)1−γj (30)

The EM algorithm (described above) finds the marginal posterior modes in a
Bayesian context. In the paper by Tang et al [86], the EM algorithm is mixed
with a coordinate decent algorithm treating the indicator variables γj as missing
values. The development of a fast efficient algorithm was required to fit the spike
and slab lasso GLM important predictors.

EM Coordinate Descent Algorithm

The EM coordinate descent algorithm is based on the log joint posterior density
of the parameters (β, φ, γ, θ)

log p(β, φ, γ, θ|y) = log p(y|β, φ) +

J∑
j=1

log p(βj |Sj) +

J∑
j=1

log p(γj |θ) + log p(θ)

(31)

∝ l(β, φ)−
J∑
j=1

1

Sj
|βj |+

J∑
j=1

[(γj log θ + (1− γj) log(1− θ)] (32)

The maximizing step is obtained from the log joint posterior (β, φ).

l(β, φ)−
J∑
j=1

(S−1j |βj |) (33)
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They are updated by maximizing Q1(β, φ) with the second part serving as the
L1 lasso penalty.
From the log joint posterior θ is updated by maximizing the expressions Q1 and
Q2.

Q1(β, φ) = l(β, φ)−
J∑
j=1

1

sj
|βj | (34)

Q2(θ) =

J∑
j=1

[γj log θ + (1− γj) log(1− θ)] (35)

The expectation step involves updating γj and S−1j by their conditional posterior
expectations.

2.6.2 Empirical Bayesian Elastic Net Method (EBEN).

This method is based on the paper by Huang, Xu and Cai [84]. Huang, Xu
and Cai had presented their earlier studies on their EBlasso algorithms [96,
97] that laid the foundations for their 2015 paper. Their work was based on
Bayesian hierarchical models with Normal, Gamma and Exponential priors.
The Empirical Bayesian Elastic Net method (EBEN) incorporates the elastic
net into a Bayesian environment. Huang, Xu and Cai developed the EBEN
that manipulates groups of strongly correlated variables into a single important
non-zero coefficient. This method applies strict variable selection. The EBlasso
has an exponential prior distribution for the variance components but could
not reveal the highly correlated predictors. The method uses a non-informative
uniform prior with unknown parameters µ, p(µ) ∝ 1 and σ2

0 , p(σ2
0) ∝ 1 using

a two level hierarchical model for β to help with correlated variables. The first
level follows a normal distribution βj ∼ N(0, σ2

j ), with

αj =
1

σ2
j

(36)

The second level is a Gamma distribution (Equation 38) where λ1 and λ2 are
the hyperparameters, and αj is decomposed as λ1 ≥ 0 and α̃j > 0 in Equation
37.

αj = λ1 + (α̃j) (37)

f(σ2
j ) = c(λ1σ

2
j + 1)−(

1
2 ) exp(−λ2σ2

j ) (38)
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The prior distribution of β when the value of λ1 = 0 produces the exponential
distribution p(βj) (Equation 39) which is the Laplace distribution using the lasso
penalty.

p(βj) ∝ exp(−
√

2λ2|βj |) (39)

f(σ2
j |a, b, γ) =

ba

Γ(a)
(σ2
j − γ)a−1 exp(−b(σ2

j − γ)) (40)

The prior distribution of β when λ1 > 0, λ2 ≥ 0 , a = 1
2 , b = λ2 and γ = − 1

λ1
and

c=
√
λ1, λ2/πexp(−λ2/λ1) becomes a shifted Gamma distributiom (Equation

40) which uses the elastic net penalty, as shown in Equation 41.

p(βj) ∝ exp

(
−λ1

2
β2
j −

√
2λ2|βj |

)
(41)

To control the degree of shrinkage, two hyperparameters (λ1 and λ2) were de-
rived by means of 5-fold cross validation which obtained the optimal parameters
for input into the EBEN algorithm. When we require a measurement of esti-
mation for prediction error, a common method is cross validation. To combat
overfitting in a model, cross validation can optimize the prediction of new data
using K-fold cross validation.

The data is divided into subsets of K, usually 5 or 10, with K − 1 being the
training sets and one subset being the test set. There are no overlapping sets,
and all the data is used up in either type of set. The validation results are then
averaged and the prediction error is calculated for the K−1 sets. Table 6 shows
an example of 5-Fold cross validation. Each row is an iteration of the full data
set

Table 6: 5-Fold cross validation.
An example of 5-Fold cross validation

Test Tr Tr Tr Tr
Tr Test Tr Tr Tr
Tr Tr Test Tr Tr
Tr Tr Tr Test Tr
Tr Tr Tr Tr Test

Cross Validation used in EBEN, where ν ∈ [0, 1] :

λ1 = (1− ν)λ

and

λ2 = νλ

The smallest pair of (ν, λ) from the prediction error calculations are taken as the
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optimal parameters, with prediction error = 1
n

∑n
i=1(yi − ŷi)2. The posterior

distribution of β is inferred after the unknown parameters are estimated.
The posterior distribution of parameters θ, where θ = (µ, σ2

0 , β, σ̃
2) is given

by:

p(θ|y) ∝ p(y|µ, β, σ2
0)p(µ)p(σ2

0)p(β|σ2)p(σ2|λ1λ2) (42)

The marginal posterior distribution has the β integrated out

p(µ, σ̃2, σ2
0 |y) =

∫
p(θ|y)dβ (43)

The likelihood P (y|µ, β, σ2
0) only depends on λ through σ2.

The coordinate ascent method is used to estimate the parameters α1, ...., αk, µ
and σ2

0 . The log marginal posterior distribution has a global maximum. This
is found through the EBEN algorithm involving coordinate ascent numerical
method (iterations until convergence) and concludes when it achieves a spec-
ified value. The optimal value for α∗j maximizes the log marginal posterior
distribution solved with the following equations:

α∗j =

{
r, if q2j − sj > λ1 + 2λ2,∞, otherwise (44)

where

sj = xTj C
−1
−j xj , qj = xTj C

−1
−j (y − µ) (45)

r = − sj + λ1 + 4λ2)−
√

∆

2(sj − q2j + λ1 + 2λ2)
.(sj + λ1) (46)

with also

∆ = (sj + λ1)2 + 8λ2q
2
j (47)

C = σ2
0I + Σkj=1(λ1 + α̃j)

−1xjx
T
j (48)

C−j = C − (λ1 + α̃j)
−1xjx

T
j (49)

2.7 Applied Methods Summary

The previous section has explained the theory of all four methods applied to
Bentham et al data [4]. These are two types of frequentist methods and two
Bayesian techniques. The frequentist method with no variable selection, will
keep all variables in the model, in contrast to the more sophisticated method, the
lasso, which will reduce the predictors. The key research questions are whether
these methods will find SNPs known to be associated with lupus, whether the
methods will produce large numbers of false positive results, and ultimately
whether these complex variable selection methods can be used as an alternative
to the current simplistic statistical models used in GWA studies.

43



3 Results

The results section is divided into seven parts. The six chromosomes with
the most well established associations appear after an initial review of the whole
genome. For each chromosome there is a short introduction reviewing the re-
ported pre-GWAS associations with SLE and a timeline including a review of
post GWAS findings. Every entry featured, has been associated with SLE per-
taining to a partial or full dataset of European ancestry so a comparison can be
made with this study’s European based data set. Each subsection presents the
results of each chromosome by means of comparison tables, Manhattan plots
and a linkage disequilibrium plot that involves a relevant block of SNPs. For
each method, the SNPs are ranked, analysed and comparisons are made with
previous known associations. The remaining results that have been produced
arise in the appendix, for each of the other autosomal chromosomes

3.1 Whole Genome

3.1.1 Introduction

The post-cleaned data from the Bentham et al study [4] was analysed using the
four different statistical methods described previously, to produce the results
that will appear presented in tables, and graphically in Manhattan plots. There
will be two types of Manhattan plot that will appear in this thesis depending
on which methods data it is supporting. For the frequentist and EBEN meth-
ods the plots will have a y-axis of negative log values representing p-values,
meanwhile the lasso and spike methods Manhattan plots will show negative log
beta coefficients on the y-axis. All the Manhattan plots present the results in a
graphic form with the chromosomes 1 - 22 on the x-axis. Each data point repre-
sents a SNP that has been analysed using one of the four methods and any data
points (representing p-values) that feature higher than the red genome wide sig-
nificance value of − log10(5.00E− 08) are classed as significant. The blue line is
measured at − log10(1.00E−05) as the commonly used genome wide suggestive
association value.

Also featured graphically are linkage disequilibrium (LD) plots. These plots
will concentrate on a small area of SNPs that are close together, surrounding
a previously associated SNP or a locus of interest. The LD plots demonstrate
the correlation between neighbouring SNPs and the possibility of making asso-
ciations with disease and non-causal marker.

Three methods processed the large data set approximately at the same speed
but the computation time of the EBEN method was considerably longer than
the other three methods.

3.1.2 Associations with SLE

The published associated SNPs that arose from the results of the original study
by Bentham et al [4], are compared with the Spike method and the Lasso method
in Table 7, and are also compared with the Frequentist method and the EBEN
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method in Table 8. The SNPs rs9652601, rs34572943 and rs2286672 were im-
puted in the original study and so do not appear in this analysis. If a zero
appears in the coefficient columns, this equates to a variable selection method
not selecting this SNP to be part of the model, and thus no ranking is made.
From Table 7 the spike method produced 14 zero beta-coefficients with just one
associated SNP in the top 25 rankings and six in the top 100. The lasso method
calculated 10 zero beta-coefficients and also had only one SNP in the top 25
and eight in the top 100.

Table 8 shows the EBEN method recorded 11 zero beta coefficients with 10
top 25 ranking SNPs of associated risk alleles and fifteen in the top 100. The
EBEN has chosen more of the previously associated SNPs than the other two
variable selection methods in this area, although only one associated SNP has a
genetically significant p-value by the EBEN method and that is rs7444 (2.52E-
08). The frequentist method found 26 SNPs in the top 100 rankings, with 22
in the top 25. 25 of the associated SNPs were recorded as being statistically
significant by the frequentist method. From the tables of top ten ranked SNPs
by method that are highlighted throughout the results section by chromosome
(see below), 32 of the 60 SNPs were shared between the spike and lasso method.
The most extreme value from Bentham et al study was in chromosome 6. SNP
rs1270942 recorded a p-value of 1.70E-101. In this study, the frequentist method
also recorded an extreme value of 6.31E-81 for this SNP, although the variable
selection methods all recorded zero beta coefficients. This marker has negligible
linkage disequilibrium with close by SNPs although it is inside the major histo-
compatibility complex.
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Table 7: Associated SNPs from Bentham et al
Associated SNPs

Chr SNP Bentham SPIKE RANK LASSO RANK
p-value Coefficient Coefficient

1 rs2476601 8.34E-13 3.31E-01 160 2.17E-01 48
1 rs1801274 6.05E-11 1.13E-01 168 9.01E-02 172
1 rs704840 1.65E-13 7.43E-02 189 7.49E-02 206
1 rs17849501 1.63E-59 -9.25E-01 17 -6.54E-01 2
1 rs3024505 2.55E-03 0 0 0 0
1 rs9782955 5.58E-04 0 0 3.39E-02 469
2 rs6740462 2.31E-08 9.90E-02 151 8.85E-02 158
2 rs2111485 3.44E-06 -3.79E-02 388 -3.16E-02 44
2 rs11889341 1.17E-65 -5.54E-01 71 -3.46E-01 20
2 rs3768792 2.35E-08 0 0 5.66E-02 257
3 rs9311676 5.37E-06 0 0 0 0
3 rs564799 1.15E-06 0 0 0 0
4 rs10028805 4.50E-10 0 0 0 0
5 rs7726414 9.17E-10 -4.52E-01 82 -2.63E-01 46
5 rs10036748 2.83E-18 -2.60E-01 139 -1.22E-01 167
5 rs2431697 3.23E-14 -1.14E-01 145 -1.30E-01 148
6 rs1270942 1.70E-101 0 0 0 0
6 rs9462027 1.80E-05 0 0 0 0
6 rs6568431 4.33E-12 2.27E-01 169 1.28E-01 145
6 rs6932056 1.23E-16 0 0 3.13E-02 793
7 rs849142 3.49E-05 5.27E-02 190 4.03E-02 519
7 rs4917014 4.10E-05 -5.46E-02 179 -5.78E-02 311
7 rs10488631 2.66E-44 2.97E-01 122 3.27E-01 28
8 rs2736340 2.14E-16 0 0 0 0
10 rs2663052 1.59E-08 1.03E-01 151 9.27E-02 256
10 rs4948496 1.17E-06 0 0 0 0
11 rs12802200 8.43E-09 -2.65E-01 124 -1.11E-01 100
11 rs2732549 1.31E-10 0 0 0 0
11 rs3794060 1.13E-04 5.21E-02 198 4.77E-02 302
11 rs7941765 9.82E-07 9.02E-02 127 5.67E-02 241
12 rs10774625 9.47E-08 1.57E-02 654 1.88E-02 893
12 rs1059312 3.20E-06 0 0 2.52E-02 730
14 rs4902562 4.85E-05 5.09E-02 204 4.57E-02 303
15 rs2289583 9.35E-09 1.64E-01 93 1.38E-01 66
16 rs11644034 1.25E-15 -1.99E-02 567 -4.08E-02 461
17 rs2941509 4.32E-06 0 0 0 0
19 rs2304256 2.34E-12 -1.43E-01 65 -6.52E-02 942
22 rs7444 1.30E-13 1.03E-01 76 1.45E-01 485
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Table 8: Associated SNPs from Bentham et al
Associated SNPs

Chr SNP Bentham FREQ RANK EBEN RANK
p-value p-value p-value

1 rs2476601 8.34E-13 3.20E-10 25 3.08E-04 4
1 rs1801274 6.05E-11 1.51E-09 28 1.82E-03 19
1 rs704840 1.65E-13 5.69E-11 18 1.03E-01 1910
1 rs17849501 1.63E-59 1.50E-72 1 0 0
1 rs3024505 2.55E-03 1.58E-02 4051 0 0
1 rs9782955 5.58E-04 6.03E-05 262 3.07E-01 1227
2 rs6740462 2.31E-08 9.26E-09 32 2.33E-02 364
2 rs2111485 3.44E-06 6.46E-06 155 5.24E-02 601
2 rs11889341 1.17E-65 1.37E-70 2 1.35E-04 40
2 rs3768792 2.35E-08 4.96E-08 46 1.24E-01 1100
3 rs9311676 5.37E-06 2.35E-03 1159 0 0
3 rs564799 1.15E-06 4.28E-11 9 2.23E-04 994
4 rs10028805 4.50E-10 1.18E-08 12 0 0
5 rs7726414 9.17E-10 4.66E-17 5 3.70E-01 306
5 rs10036748 2.83E-18 3.30E-22 2 7.69E-03 5
5 rs2431697 3.23E-14 3.82E-14 8 3.83E-03 1
6 rs1270942 1.70E-101 6.31E-81 4 0 0
6 rs9462027 1.80E-05 1.36E-07 1658 0 0
6 rs6568431 4.33E-12 2.06E-11 1112 2.27E-05 4
6 rs6932056 1.23E-16 5.12E-16 704 0 0
7 rs849142 3.49E-05 4.28E-04 277 1.09E-01 64
7 rs4917014 4.10E-05 1.88E-04 181 8.13E-02 33
7 rs10488631 2.66E-44 8.86E-43 1 5.85E-03 6
8 rs2736340 2.14E-16 2.96E-15 4 0 0
10 rs2663052 1.59E-08 8.72E-05 187 4.43E-04 45
10 rs4948496 1.17E-06 1.47E-09 6 0 0
11 rs12802200 8.43E-09 3.05E-11 6 5.11E-02 314
11 rs2732549 1.31E-10 9.21E-13 3 0 0
11 rs3794060 1.13E-04 9.76E-10 18 4.32E-03 60
11 rs7941765 9.82E-07 6.57E-05 205 5.71E-04 17
12 rs10774625 9.47E-08 3.10E-08 14 1.10E-01 156
12 rs1059312 3.20E-06 1.93E-07 27 1.76E-01 111
14 rs4902562 4.85E-05 2.55E-02 2346 2.32E-02 266
15 rs2289583 9.35E-09 2.36E-09 9 9.18E-04 1
16 rs11644034 1.25E-15 1.17E-21 9 2.45E-01 778
17 rs2941509 4.32E-06 1.21E-05 36 0 0
19 rs2304256 2.34E-12 2.85E-14 1 9.65E-05 1
22 rs7444 1.30E-13 3.84E-13 2 2.52E-08 6
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Figure 5 is drawn from the frequentist methods data, highlighting all SNPs
from the whole genome (minus the sex chromosomes) that have been processed.
Note the tall column of SNP values on chromosome 6 that is topped by the SNP
rs2854275. This is the dense complex region of SNPs called the MHC.

Figure 5: A Manhattan plot with a selection of the lowest p-values annotated
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3.1.3 Non-Zero coefficient SNPs across all 4 methods

Across the genome, in general, it is noticeable from Table 9 and Figure 6 (be-
low) that the number of non-zero coefficients chosen by each variable selec-
tion method per chromosome, increases proportionally, as the chromosomes get
smaller in physical size. There is no obvious genetic reason for this and this
could be an area for future work as this may be artefactual. There are a few
cases where there is an extreme difference in numbers of non-zero coefficients
chosen. For instance, the spike and the lasso method selected far fewer variables
in chromosome 3 than the EBEN method, by a considerable amount. The EBEN
produced 18.47% of SNPs with non-zero coefficients, meanwhile the spike and
lasso recorded 8.98% and 7.52% respectively. This also occurred in chromosome
19 and 22 where this time it was the lasso method that chose far higher numbers
of SNPs. The Lasso produced 25.42% for chromosome 19 , meanwhile the spike
method produced 8.98% and the EBEN method 7.52%. For chromosome 22
the Lasso produced 33.9% non-zero coefficents, while the Spike method made
12.23% and the EBEN 11.62%.

Table 9: The amount and the percentage of SNPs with non-zero coefficient
chosen by the spike, lasso and the EBEN methods. Figures in bold are extreme
comparison percentages compared to the other methods per chromosome.

Percentage of SNPs with non-zero coefficient chosen by each method
Chr SNPs SPIKE % LASSO % EBEN %
1 52418 1801 3.44% 1701 3.25% 2304 4.40%
2 51086 1752 3.43% 1556 3.05% 3793 7.42%
3 42483 1443 3.40% 1645 3.87% 7848 18.47%
4 36441 1222 3.35% 1716 4.71% 970 2.66%
5 37924 1368 3.61% 2605 6.87% 850 2.24%
6 42993 1255 2.92% 2309 5.37% 488 1.14%
7 33932 1366 4.03% 2246 6.62% 1154 3.40%
8 33319 1328 3.99% 1511 4.53% 1820 5.46%
9 29764 1349 4.53% 2390 8.03% 1549 5.20%
10 34698 1469 4.23% 2413 6.95% 1551 4.47%
11 32336 1319 4.08% 1648 5.10% 788 2.44%
12 31785 1280 4.03% 1879 5.91% 1504 4.73%
13 24265 1175 4.84% 1470 6.06% 1334 5.50%
14 20959 1438 6.86% 1398 6.67% 1038 4.95%
15 19521 1143 5.86% 1196 6.13% 747 3.83%
16 20388 1272 6.24% 1772 8.69% 1303 6.39%
17 18084 1438 7.95% 1307 7.23% 717 3.96%
18 19037 1422 7.47% 2386 12.53% 1037 5.45%
19 13157 1181 8.98% 3345 25.42% 990 7.52%
20 16936 1171 6.91% 1101 6.50% 568 3.35%
21 9324 1124 12.05% 1556 16.69% 725 7.78%
22 9563 1170 12.23% 3242 33.90% 1111 11.62%
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Figure 6: As the chromosomes decrease in physical size (from chromosome 1 to
22) the percentage of non-zero coefficient SNPs chosen increased.

3.1.4 SNPs that agree across all 4 methods

In Chromosome 2, SNP rs2573219 appears in the top 14 associations for all 4
methods. In chromosome 4, SNP rs17087866 appears third in the spike and slab
method and had the strongest association for the other methods. This SNP has
zero LD with nine SNPs either side. In chromosome 5, SNP rs1078324 was top
in two methods and in the top 25 for the lasso and elastic net. In chromosome 7,
SNP rs10264693 appears in the top 3 of all 4 methods. In chromosome 10, SNPs
rs12775513 and rs10826385 were in the top 28 of all 4 methods. Both SNPs has
zero LD with closeby SNPs. In chromosome 12, SNP rs1564363 featured in the
top 15 of all 4 methods. In chromosome 14, SNP rs6575958 featured in the top
13 of all methods and had low LD with neighbouring SNPs. In chromosome
20, SNP rs6023308 was ranked first in the lasso and the elastic net and was
also in the top 8 for the other 2 methods. In chromosome 22, SNP rs7285053
was ranked first by all 4 methods and was the only marker for which this was
the case. A common theme across the genome is SNPs that are highly ranked
(minimum 28th) across all four methods, demonstrate a lack of linkage dise-
quilibrium with their neighbouring SNPs. All the SNPs that are included in
this set also have had no previous reported associations to any disease, which
suggests that they are false positives.
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3.2 Chromosome 1

3.2.1 Introduction

Chromosome 1 is the largest chromosome in a human. Previously, there have
been many studies that have produced associated SNPs with lupus on chro-
mosome 1 resulting in this chromosome being of particular interest. The gene
protein tyrosine phosphatase nonreceptor type 22 (PTPN22 ) [98] and the re-
ceptor type II (FcyRII) gene FCGR2A and FcyRIII gene FCGR3A [99] were
found to have significant associations to lupus even before the GWAS era.

3.2.2 Previous GWAS associations in Chromosome 1

The first GWAS association with lupus was made in the gene TNFSF4 by Harley
et al [41]. In 2009, SNP rs3024505, that lies downstream of the IL10 gene, which
had previously been associated with multiple diseases such as inflammatory
bowel disease, type I diabetes, ulcerative colitis, and Crohn’s disease was also
linked with lupus in a study of European and Asian populations by Gateva et
al [60]. In the same study, Gateva et al found an associated SNP rs9782955 in
the LYST gene and this was replicated by Bentham et al [4]. The SNP rs525410
(in or near LAMC2 ) was found to be associated with lupus by Chung et al in
2011 [61]. This study was based on the data from the Hom et al study although
no association was found in the replication study based on the Harley et al
data [7]. The Bentham et al study found SNP rs704840 to be associated with
lupus after Martin et al [100] had reported this risk locus 2 years previously, with
both studies based on European populations. SNP rs10911628 was associated
with lupus after a study by Armstrong et al in a European population [62].
In 2016, Morris et al [43], produced a study combining European population
(4,036 cases and 6,959 controls) with Chinese population (meta-analysis of two
Chinese GWASs comprising 1,659 cases and 3,398 controls). Two associations
were found at SNPs rs34889541 in or near gene PTPRC and rs2297550 in or
near gene IKBKE. SNP rs6662618 in the gene region GFI1-EVI5 has been
associated with SLE in 2017 by Langefeld et al [63] and multiple sclerosis by
Wang et al [101] in 2016. The SNP rs1780813 that is in the intron of the gene
SMYD3, had been associated with lupus in the 2018 study by Julia et al [64].
Table 10 shows the associations with lupus from GWA studies that utilize partial
or whole European populations over the period from 2008-2018.
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Table 10: Timeline of associated SNPs with lupus in Chromosome 1
GWAS 2008-2018

Year Chr SNP Likely causal gene Population Author

2008 1 rs10798269 TNFSF4 EUR HAR
2009 1 rs3024505 IL10 EA GAT
2009 1 rs9782955 LYST EA GAT
2011 1 rs525410 LAMC2 EUR CHU
2013 1 rs704840 TNFSF4 EUR MAR
2014 1 rs10911628 EDEM3 EUR ARM
2016 1 rs34889541 PTPRC(CD45) EC MOR
2016 1 rs2297550 IKBKE EC MOR
2017 1 rs6662618 GFI1-EVI5 EAH LAN
2018 1 rs1780813 SMYD3 EUR JUL

KEY: EUR=European, EC=European and Chinese, EA=European American,
EAH=European, African and Hispanic Amerindian, ARM=Armstrong et
al [62], CHU=Chung et al [61], GAT=Gateva et al [60], HAR=Harley et
al [41], JUL=Julia et al [64], LAN=Langefeld et al [63], MAR=Martin et

al [100], MOR=Morris et al [43].

3.2.3 Results - Spike and Slab Method

Figure 7 is from the data of the spike method and presents a Manhattan plot of
SNP beta coefficients from chromosome 1. It highlights the SNP with the most
significant coefficient on chromosome 1 from the spike method (rs1780813). This
marker was ranked first by the lasso and the spike method with the frequentist
method ranking it the second most significant.

Table 11: Top ten SNPs ranked for Chromosome 1 and accompanied with their
coefficient

Spike and Slab
SNP Position RANK COEFFICIENT

RS1780813 246444082 1 -2.16E+00
RS6681218 47959645 2 1.38E+00
RS11808094 47989572 3 -1.35E+00
RS12061058 185891053 4 1.33E+00
RS17117228 98271048 5 1.29E+00
RS904295 100963041 6 1.23E+00
RS17020562 213542706 7 1.17E+00
RS6680879 100965683 8 1.12E+00
RS11204930 152151950 9 1.05E+00
RS10911789 185940266 10 -1.03E+00
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Figure 7: A Manhattan plot with the top SNP highlighted for the spike method

3.2.4 Results - Lasso Method

Table 12 presents the top ten ranked SNPs for chromosome 1 along with beta
coefficients. Figure 8 shows a Manhattan plot with each beta coefficients as a
point. This has been produced from the lasso data and is annotated with the
top 5 extreme valued SNPs.

Table 12: Top ten SNPs ranked for Chromosome 1 and accompanied with their
coefficient. The associated SNP is highlighted in bold.

Lasso
SNP POSITION RANK COEFFICIENT

RS1780813 246444082 1 -1.35E+00
RS17849501 183542323 2 -0.65E+00
RS35358165 248900100 3 0.60E+00
RS6681218 47959645 4 0.58E+00
RS17020562 213542706 5 0.57E+00
RS11204930 152151950 6 0.53E+00
RS17117228 98271048 7 0.48E+00
RS11811658 6641758 8 0.48E+00
RS2256917 182249873 9 0.46E+00
RS17117203 98265210 10 -0.44E+00
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Figure 8: Manhattan Plot of the top 5 SNPs for the lasso method

3.2.5 Results - Frequentist Method

Figure 9 is drawn from the frequentist methods data, highlighting all SNPs
of chromosome 1 that have been processed. The annotated SNPs featured
are the three lowest p-values including SNP rs17849501. The Bentham et al
(Europeans) and the Morris et al (European and Asians) studies found SNP
rs17849501 as a genetic risk locus for lupus. This study ranked three of the
methods highly while the EBEN produced a zero beta coefficient. The frequen-
tist p-value was extremely low at 1.51E-72.
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Table 13: Top ten SNPs ranked for Chromosome 1 and accompanied with their
p-value. The associated SNP is highlighted in bold.

Frequentist
SNP Position RANK P-VALUE

RS17849501 183542323 1 1.51E-72
RS1780813 246444082 2 9.53E-21
RS10911346 183468420 3 5.61E-18
RS17349278 4836929 4 3.33E-17
RS12081621 61943156 5 1.42E-16
RS2298083 183515428 6 1.10E-15
RS789177 183515777 7 1.08E-14
RS3845622 159171603 8 1.94E-13
RS4916334 173333829 9 2.44E-13
RS10798269 173309713 10 3.89E-13

Figure 9: A Manhattan plot with top ranked SNPs annotated from the frequen-
tist methods data
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Figure 10 reveals the associated SNP rs17849501 has very little linkage with
surrounding SNPs. Contrastively, the two SNPs either side, have high correla-
tion between each other.

Figure 10: An associated risk loci rs17849501 showing low to zero linkage dise-
quilibrium with surrounding SNPs.
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3.2.6 Results - EBEN Method

All SNPs failed to make genome wide significance, although the associated SNP
rs2476601 did rank 5th overall.

Table 14: Top ten SNPs ranked for Chromosome 1 and accompanied with their
p-value. The associated SNP is highlighted in bold.

EBEN
SNP Position RANK P-VALUE

RS3845622 159171603 1 1.61E-05
RS1538971 161676394 2 1.44E-04
RS4240539 115603844 3 2.83E-04
RS2476601 114377568 4 3.08E-04
RS1032608 167131321 5 4.35E-04
RS10913245 176705147 6 4.69E-04
RS490800 92592905 7 6.72E-04
RS17494681 181480183 8 8.52E-04
RS901917 92292407 9 9.21E-04
RS10159082 204160450 10 1.01E-03

Figure 11: A Manhattan plot with the associated SNP rs2476601 highlighted
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3.2.7 Results - Summary

Associated SNP rs10798269, found by Harley et al [41] in 2008, was ranked
10th in this study by the frequentist method, but with a weak result from the
EBEN and 2 zero coefficients from the other two methods. The associated SNP
rs3024505 fared poorly in this study with the variable selection methods all
producing a zero-beta coefficient and an insignificant p-value by the frequentist
method. Also, the SNP rs9782955 produced 2 zero coefficients and 2 weak
scores in this study. The associated SNP rs525410 produced weak results from
the frequentist and EBEN method, while the Spike and the lasso reported zero
coefficients. Associated SNP rs10911628 produced three zero coefficients and
a poor result from the frequentist method. Associated SNPs featured in the
Morris et al study [43] rs34889541 and rs2297550 were not part of this study. In
a report by Han et al [102] that involved Asian and European populations, SNP
rs1234315 in gene TNFSF4 was associated with lupus. This SNP was ranked
in the top 350 of all four methods and was 22nd by the frequentist method.
Bentham et al study found SNP rs704840 to be associated with lupus and was
ranked 18th by the frequentist method, while the variable selection methods each
had a small non-zero coefficient. Martin et al [100] had previously reported this
risk locus 2 years previous, with both studies based on European populations.
The associated SNP rs1801274 from Bentham et al study ranked 171st or higher
for all methods with the frequentist ranking 28th with a p-value of 1.51E-09 and
the EBEN recording 19th rank.

In 2015, Sheng et al [103] produced a study of an association of lupus with
SNP rs4916219 to a genome wide level of significance in Chinese population.
In this study, the variable selection methods calculated a non-zero beta value
and the frequentist method ranked it 47th. SNP rs6662618 had a p-value of
9.76E-06 recorded by the frequentist method.

SNP rs2476601 that was ranked 4th by the EBEN method and ranked 161st
and higher by the other methods, has reported links with other disease including
autoimmune thyroid disease [104], arthritis [105], and many more including
SLE first recorded by Gateva et al [60]. All cases of lupus were in European
population studies.

SNP rs35358165 has no association with any disease but has a very high
consistency amongst the variable selection methods ranking 12th for the spike,
3rd for the lasso and 20th for EBEN.
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Table 15 below shows the SNPs that were highly ranked once the data for
chromosome 1 had been analysed using each of the four methods. Each block
starting with the spike method produces a set of top ten ranked SNPs, followed
by the lasso’s top ten that do not feature in the spike’s ten and so on. For
example, if the methods each found the same 10 SNPs, only 10 SNPs would be
listed in the table. If they all found different SNPs, 40 SNPs would be listed.
The table therefore allows readers to see how consistent the results are across
the four methods. If a zero is featured, this means the method used variable
selection to discard this SNP and used a closely located one that is highly cor-
related with the original SNP. Any figures in bold type are associated SNPs
from Bentham et al study. This table therefore provides an overall summary of
the results and how they compare with the previous GWAS findings. This is
presented in a standardised style throughout the thesis, in an attempt to make
the very large number of results to be presented as easy to follow as possible.

For chromosome 1, from 52418 SNPs studied, spike produced 1801 non-zero
variables, lasso produced 1701 and EBEN produced 2304.

Table 16 records the coefficients produced from the Spike and the lasso
method and shows the p-values from the frequentist and EBEN methods in the
exact format as the previous table.
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Table 15: Chromosome 1 - Top ten SNPs ranked for each method
Chromosome 1

SNP Position SPIKE LASSO FREQ EBEN

RS1780813 246444082 1 1 2 274
RS6681218 47959645 2 4 21174 200
RS11808094 47989572 3 58 2281 0
RS12061058 185891053 4 101 904 0
RS17117228 98271048 5 7 24422 223
RS904295 100963041 6 111 81 0
RS17020562 213542706 7 5 101 0
RS6680879 100965683 8 571 3170 0
RS11204930 152151950 9 6 3067 0
RS10911789 185940266 10 596 39501 0
RS17849501 183542323 17 2 1 0
RS35358165 248900100 12 3 18436 20
RS11811658 6641758 25 8 17614 105
RS2256917 182249873 13 9 3559 77
RS17117203 98265210 16 10 41930 304
RS10911346 183468420 0 0 3 371
RS17349278 4836929 0 0 4 0
RS12081621 61943156 0 0 5 0
RS2298083 183515428 0 0 6 367
RS789177 183515777 0 0 7 0
RS3845622 159171603 0 0 8 1
RS4916334 173333829 0 0 9 2046
RS10798269 173309713 0 0 10 264
RS1538971 161676394 170 199 133 2
RS4240539 115603844 159 74 694 3
RS2476601 114377568 161 48 25 4
RS1032608 167131321 165 126 13726 5
RS10913245 176705147 232 241 3210 6
RS490800 92592905 176 304 669 7
RS17494681 181480183 196 257 9141 8
RS901917 92292407 172 88 6052 9
RS10159082 204160450 189 259 6065 10

60



Table 16: Chromosome 1 - Top ten SNPs for each method with their coefficient
or p-value. The associated SNP is highlighted in bold.

Chromosome 1
SNP SPIKE LASSO FREQ EBEN

Coefficient Coefficient p-value p-value

RS1780813 -2.16E+00 -2.16E+00 9.53E-21 7.04E-02
RS6681218 1.38E+00 1.38E+00 2.56E-01 5.25E-02
RS11808094 -1.35E+00 -2.02E-01 5.56E-03 0
RS12061058 1.33E+00 1.42E-01 8.81E-04 0
RS17117228 1.29E+00 1.29E+00 3.21E-01 7.03E-02
RS904295 1.23E+00 1.29E-01 9.74E-07 0
RS17020562 1.17E+00 1.17E+00 3.06E-06 0
RS6680879 1.12E+00 2.73E-02 1.02E-02 0
RS11204930 1.05E+00 1.05E+00 9.52E-03 0
RS10911789 -1.03E+00 -2.61E-02 6.66E-01 0
RS17849501 -9.25E-01 -9.25E-01 1.51E-72 0
RS35358165 1.02E+00 1.02E+00 2.05E-01 1.85E-03
RS11811658 8.41E-01 8.41E-01 1.89E-01 2.46E-02
RS2256917 1.01E+00 1.01E+00 1.26E-02 1.82E-02
RS17117203 -9.25E-01 -9.25E-01 7.28E-01 3.30E-01
RS10911346 0 0 5.61E-18 9.95E-02
RS17349278 0 0 3.33E-17 0
RS12081621 0 0 1.42E-16 0
RS2298083 0 0 1.10E-15 3.48E-01
RS789177 0 0 1.08E-14 0
RS3845622 0 0 1.94E-13 1.61E-05
RS4916334 0 0 2.44E-13 5.54E-01
RS10798269 0 0 3.89E-13 3.17E-01
RS1538971 1.06E-01 8.19E-02 7.59E-06 1.44E-04
RS4240539 3.46E-01 1.78E-01 5.19E-04 2.83E-04
RS2476601 3.31E-01 2.17E-01 3.20E-10 3.08E-04
RS1032608 1.34E-01 1.21E-01 1.25E-01 4.35E-04
RS10913245 5.72E-02 6.80E-02 1.05E-02 4.69E-04
RS490800 8.97E-02 5.16E-02 4.73E-04 6.72E-04
RS17494681 7.21E-02 6.42E-02 6.39E-02 8.52E-04
RS901917 1.03E-01 1.58E-01 3.13E-02 9.21E-04
RS10159082 7.57E-02 6.31E-02 3.14E-02 1.01E-03
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3.3 Chromosome 2

3.3.1 Introduction

Chromosome 2 is the second largest in a human. The first link with lupus (in
humans) and chromosome 2 came in 2002 when significant associations on the
genes STAT4 [52] and PDCD1 [53] were picked up.

3.3.2 Previous GWAS associations in Chromosome 2

In 2014 Armstrong et al [62] linked SNP rs12993006 in gene BIN1 and rs4544377
in gene KCNJ3. A year later Bentham et al reported SNPs rs67040462 in
SPRED2 and rs3768792 in IKZF2 as risk alleles. The Morris et al study [43]
found the gene LBH to have two risk alleles (rs7579944 and rs17321999).

Table 17: Timeline of asscociated SNPs with lupus through GWAS 2008-2018.
GWAS 2008-2018

Year Chr Associated
SNP

Likely causal
gene

Study
popula-
tion

Author

2014 2 rs12993006 BIN1 EUR ARM
2014 2 rs4544377 KCNJ3 EUR ARM
2015 2 rs67040462 SPRED2 EUR BEN
2015 2 rs3768792 IKZF2 EUR BEN
2016 2 rs7579944 LBH EC MOR
2016 2 rs17321999 LBH EC MOR

KEY: EUR=European, EC=European and Chinese, EA=European American,
BEN=Bentham et al [4], MOR=Morris et al [43], ARM=Armstrong et al [62].

3.3.3 Results - Spike and Slab Method

The top 3 ranked SNPs by the spike and slab method are the same as the
lasso method and are located close to each other. Both have no known asso-
ciations to any disease. In this block of 3 SNPs, the top ranked SNP for the
frequentist method SNP rs13019891 and the top ranked SNP for the EBEN SNP
rs10165797 are joined by SNP rs9308682. These can be seen in Figures 12 and 14
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Table 18: Top ten SNPs ranked for Chromosome 2 and accompanied with their
coefficient

Spike and Slab
SNP Position RANK COEFFICIENT

RS13019891 113829869 1 3.19E+00
RS10165797 113828450 2 -2.91E+00
RS9308682 113828425 3 -2.35E+00
RS2287610 169929059 4 1.53E+00
RS17017386 79866200 5 1.43E+00
RS1906892 163997890 6 1.40E+00
RS10209445 12465306 7 1.38E+00
RS17043443 22376557 8 1.30E+00
RS2192890 36899898 9 1.23E+00
RS6748674 192236620 10 1.19E+00

Figure 12: A Manhattan plot with the top three ranked SNPs highlighted for
the spike method.
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3.3.4 Results - Frequentist Method

Table 19: Top ten SNPs ranked for Chromosome 2 and accompanied with their
p-value. The associated SNP is highlighted in bold.

Frequentist
SNP Position RANK P-VALUE

RS13019891 113829869 1 4.75E-92
RS11889341 191943742 2 1.37E-70
RS7574865 191964633 3 9.25E-67
RS10174238 191973034 4 5.23E-63
RS10168266 191935804 5 1.98E-43
RS2573219 233288667 6 9.78E-39
RS3024886 191900449 7 2.24E-35
RS10931481 191954852 8 1.20E-34
RS3024866 191922841 9 4.70E-24
RS2293765 191520845 10 2.82E-22

Figure 13: A Manhattan plot with the top 6 ranked SNPs annotated.
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3.3.5 Results - Lasso Method

Figure 14 shows beta coefficients. This has been produced from the lasso data
and highlights the top 2 extreme valued SNPs rs13019891 and rs10165797.

Table 20: Top ten SNPs ranked for Chromosome 2 and accompanied with their
coefficient

Lasso
SNP POSITION RANK COEFFICIENT

RS13019891 113829869 1 1.88E+00
RS10165797 113828450 2 -1.35E+00
RS9308682 113828425 3 -9.89E-01
RS17043443 22376557 4 6.82E-01
RS4074976 9546695 5 -6.21E-01
RS16831215 135722328 6 -6.16E-01
RS17017386 79866200 7 5.76E-01
RS2287610 169929059 8 5.76E-01
RS3738888 215595164 9 4.93E-01
RS10445824 220236756 10 -4.73E-01

Figure 14: Manhattan plot of the top ranked SNPs for lasso method.
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3.3.6 Results - EBEN Method

Table 21: Top ten SNPs ranked for Chromosome 2 and accompanied with their
p-value. No associated SNP ranked in the top ten.

EBEN
SNP Position RANK P-VALUE

RS10165797 113828450 1 4.44E-15
RS2573219 233288667 2 8.15E-14
RS17583054 71342142 3 1.09E-08
RS12373778 47253485 4 3.86E-07
RS2072532 40366301 5 6.31E-07
RS11687809 61003193 6 1.08E-06
RS2339929 24051245 7 1.27E-06
RS6760940 56784574 8 2.34E-06
RS2579500 97201682 9 6.07E-06
RS2309389 98784275 10 7.24E-06

Figure 15: A Manhattan plot with the top 2 ranked SNPs rs10165797 and
rs2573219 highlighted.
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3.3.7 Results - Summary

For chromosome 2, from 51086 SNPs, spike method produced 1752 non-zero
variables, lasso method produced 1556 and the EBEN method produced 3793.
SNP rs2573219 was consistent across all four methods with all four being ranked
in the top 14. This SNP has no known associations to any disease.

The associated SNPs found by Armstrong in 2014 [62], were rs12993006 and
rs4544377. rs12993006 produced 3 zero coefficients with the variable selection
methods and a weak p-value from the frequentist method. The SNP rs4544377
was not included in the data used in this study.

Located in the gene LBH, SNP rs7579944 was associated with lupus in stud-
ies by Morris et al [43] and Langefeld et al [63], both with multi-ethnic cases.
The results from this study produced weak beta and p-values. Also in gene
LBH, Morris et al stated that SNP rs17321999 was a risk locus for lupus. This
SNP was not part of this study.

All four methods calculated strong results for rs13023118. It was ranked
111th by spike, 52nd by lasso, frequentist 30th and EBEN 211th.

In a study of Chinese population Yang et al [106] found SNP rs7601754
associated with lupus, as did Martin et al [100] with Europeans as the subjects.
This SNP ranked in the top 150 for all methods with the frequentist ranking it
12th.

In Bentham et al study, SNP rs6740462 in the gene SPRED2 was associ-
ated with lupus. This SNP was ranked in the top 200 of the spike, lasso and
frequentist methods with a weaker p-value from the EBEN method (ranked
364th). Also, SNP rs2111485 in the gene IFIH1, featured in the top 500 ranked
SNPs for all methods. This has been previously noted as being a risk locus for
vitiligo, psoriasis, inflammatory bowel disease and ulcerative colitis. Bentham
et al found another SNP linked to lupus that has been associated with other
diseases (rheumatoid arthritis and Sjogren’s syndrome). SNP rs11889341 in the
gene STAT4 ranked highly (top 72 or higher) in all four methods in this study
including the frequentist method producing a 1.37E-70 p-value and 2nd ranking
(as shown in Figure 22).
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Also in the Bentham et al study, SNP rs3768792 was found to be a risk locus
for SLE. This study found no significant association resulting in low-ranking
scores. This SNP is in high linkage disequilibrium with rs10932459, rs13023118,
rs10048743 and rs9808132 as shown in Figure 16.

Figure 16: Block of SNPs that have strong LD with the associated risk locus
rs3768792
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Table 22: Chromosome 2 - Top ten SNPs for each method
Chromosome 2

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS13019891 3.19E+00 1.88E+00 4.75E-92 0
RS10165797 -2.91E+00 -1.35E+00 4.20E-02 4.44E-15
RS9308682 -2.35E+00 -9.89E-01 6.95E-02 4.54E-02
RS2287610 1.53E+00 5.76E-01 2.15E-01 4.63E-02
RS17017386 1.43E+00 5.76E-01 1.44E-02 1.92E-02
RS1906892 1.40E+00 3.49E-01 5.80E-04 0
RS10209445 1.38E+00 2.60E-01 2.56E-03 0
RS17043443 1.30E+00 6.82E-01 7.81E-07 0
RS2192890 1.23E+00 3.45E-01 4.87E-02 1.25E-03
RS6748674 1.19E+00 3.60E-01 2.00E-03 0
RS4074976 -7.55E-01 -6.21E-01 5.37E-15 0
RS16831215 -1.05E+00 -6.16E-01 6.25E-01 0
RS3738888 8.00E-01 4.93E-01 3.69E-03 1.42E-03
RS10445824 -9.54E-01 -4.73E-01 3.04E-02 1.60E-01
RS11889341 -5.54E-01 -3.46E-01 1.37E-70 1.35E-04
RS7574865 0 -4.27E-02 9.25E-67 3.68E-03
RS10174238 0 0 5.23E-63 4.36E-01
RS10168266 0 0 1.98E-43 3.45E-01
RS2573219 1.17E+00 4.20E-01 9.78E-39 8.15E-14
RS3024886 0 0 2.24E-35 0
RS10931481 0 0 1.20E-34 1.32E-01
RS3024866 0 0 4.70E-24 0
RS2293765 1.58E+02 -6.93E-02 2.82E-22 6.19E-05
RS17583054 -5.13E-02 -8.07E-02 3.13E-01 1.09E-08
RS12373778 -1.21E-02 -3.34E-02 1.22E-01 3.86E-07
RS2072532 0 0 8.88E-03 6.31E-07
RS11687809 0 0 9.91E-01 1.08E-06
RS2339929 0 2.16E-02 1.10E-02 1.27E-06
RS6760940 2.51E-02 0 2.03E-02 2.34E-06
RS2579500 5.22E-02 1.89E-02 5.36E-04 6.07E-06
RS2309389 -5.02E-02 -2.06E-02 1.36E-02 7.24E-06
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Table 23: Chromosome 2 - Top ten SNPs ranked for each method
Chromosome 2

SNP Position SPIKE LASSO FREQ EBEN

RS13019891 113829869 1 1 1 0
RS10165797 113828450 2 2 7463 1
RS9308682 113828425 3 3 9898 542
RS2287610 169929059 4 8 19153 549
RS17017386 79866200 5 7 4299 327
RS1906892 163997890 6 19 827 0
RS10209445 12465306 7 32 1744 0
RS17043443 22376557 8 4 81 0
RS2192890 36899898 9 21 8073 96
RS6748674 192236620 10 18 1526 0
RS4074976 9546695 41 5 18 0
RS16831215 135722328 19 6 37101 0
RS3738888 215595164 36 9 2104 99
RS10445824 220236756 24 10 6287 1344
RS11889341 191943742 71 20 2 40
RS7574865 191964633 0 326 3 145
RS10174238 191973034 0 0 4 2897
RS10168266 191935804 0 0 5 2407
RS2573219 233288667 14 11 6 2
RS3024886 191900449 0 0 7 0
RS10931481 191954852 0 0 8 1150
RS3024866 191922841 0 0 9 0
RS2293765 191520845 158 202 10 27
RS17583054 71342142 258 172 23977 3
RS12373778 47253485 1076 422 13693 4
RS2072532 40366301 0 0 3314 5
RS11687809 61003193 0 0 50753 6
RS2339929 24051245 0 618 3740 7
RS6760940 56784574 524 0 5105 8
RS2579500 97201682 252 682 786 9
RS2309389 98784275 272 632 4117 10
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3.4 Chromosome 5

3.4.1 Introduction

Chromosome 5 is the fifth largest chromosome in the human body accounting
for approximately 181 million base pairs.

3.4.2 Previous GWAS associations in Chromosome 5

An interesting area of chromosome 5 with respect to SLE associations lies in
the gene MIR3142HG, with reported associations in European populations to
SLE positioned just 18kb apart. A report concluded in a European population
in 2009 by Gateva [60] that the marker rs2431099 had an association with SLE.
In 2011 a study by Chung [61] connected SNP rs2431697 with lupus. Finally,
Marquez et al [107] in 2016 in a joint study of SLE and rheumatoid arthritis
discovered the risk allele rs4921283. This small group with rs2431697 in the
centre has rs2431099 positioned 8kb away upstream with a r2 values of 0.75 and
D’ of 0.97 with rs4921283 downstream, a r2 value of 0.27 and D’ of 0.6. In 2015,

Figure 17: A linkage disequilibrium plot of 3 associated SNPs.

Bentham et al [4] noted rs7726414, located near the genes TCF7 and SKP1,
had an association to lupus and this was replicated by Langefeld et al [63] in
2017. Another find came from Julia et al [64] in 2018 with the SNP rs55849330
in the gene ST8SIA4. Located 6kb away is SNP rs2548279 with a r2 value of
0.9 and a D’ of 1 to rs55849330. This was also noted as a risk allele in Langefeld
et al [63]. Langefeld’s study of European, Hispanic and African American pop-
ulations reported an association with SNP rs461193 in the gene BC034612 and
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SLE. Martin et al [100] in 2013 in a mixed study for systemic sclerosis and sys-
temic lupus erythematosus cases, produced an asociation with SNP rs960709.
Associated SNP rs2431099 was observed by all methods with strong results from
the frequentist and EBEN methods. This locus was mentioned in the Gateva et
al [60] 2009 study of Europeans along with SNP rs7708392. This SNP is in the
gene TNIP1 and was followed up by Alarcon-Riqelme et al [108] and Langefeld
et al. This SNP now has links to African American, Hispanic, European and
native American populations. SNP rs10036748 has been associated with lupus
in East Asian populations [102] followed up by Bentham et al in Europeans and
Langefeld et al in Hispanic, Afro Caribbean, and African Americans. This SNP
has also been associated with Psoriasis [109]. In this study it ranked top ten in
the frequentist and EBEN methods. Both spike and the lasso ranked it in their
top 200.

Table 24: Timeline of asscociated SNPs with lupus through GWAS 2008-2018.
GWAS 2008-2018

Year Chr Associated
SNP

Likely causal
gene

Study
Popula-
tion

Author

2009 5 rs7708392 TNIP1 EA GAT
2011 5 rs2431697 PTTG1 EUR CHU
2015 5 rs7726414 TCF7,SKP1 EUR BEN
2018 5 rs55849330 ST85IA4 EUR JUL

KEY: EUR=European, EC=European and Chinese, EA=European American,
BEN=Bentham et al [4], JUL=Julia et al [64], GAT=Gateva et al [60] ,

CHU=Chung et al [61].
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3.4.3 Results - Spike and Slab Method

From the top 16 SNPs ranked by spike, 11 of the lasso are the same. For
chromosome 5, the results are very similar for the two methods. They also
share rs1078324 and rs11739489 in their top 3 as shown in Figures 18 and 19.

Table 25: Top ten SNPs ranked for Chromosome 5 and accompanied with their
coefficient

Spike and Slab
SNP POSITION RANK COEFFICIENT

RS1078324 149202268 1 -3.20E+00
RS741580 149201670 2 2.34E+00
RS11739489 76325361 3 -2.08E+00
RS16875609 5470026 4 1.78E+00
RS16875597 5460434 5 1.60E+00
RS17087649 96971199 6 1.31E+00
RS2003604 149205940 7 1.30E+00
RS6872933 107336419 8 -1.28E+00
RS1107233 60020520 9 1.27E+00
RS7733069 60057836 10 1.21E+00

Figure 18: A Manhattan plot with the top SNPs highlighted for spike method
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3.4.4 Results - Lasso Method

Another demonstration that the spike and lasso methods are similar sharing
6 markers that feature in both of their lists of top 8 SNPs, of which neither
contain previously associated loci.

Table 26: Top ten SNPs ranked for Chromosome 5 and accompanied with their
coefficient

Lasso
SNP POSITION RANK COEFFICIENT

RS11739489 76325361 1 -1.54E+00
RS1078324 149202268 2 -1.53E+00
RS6872933 107336419 3 -1.07E+00
RS741580 149201670 4 9.27E-01
RS1394603 155811990 5 6.94E-01
RS16875609 5470026 6 6.62E-01
RS16875597 5460434 7 6.53E-01
RS6883894 107037375 8 6.35E-01
RS7714120 137919850 9 -5.56E-01
RS1025488 139892331 10 5.37E-01

Figure 19: Manhattan plot of the top SNPs for lasso method
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3.4.5 Results - Frequentist Method

Out of the top ten SNPs ranked by the frequentist method, six are positioned
in a tightly grouped block, 10kb in length. It can clearly be seen from Figure
20 the medium-high linkage disequilibrium amongst all six.

Table 27: Top ten SNPs ranked for Chromosome 5 and accompanied with their
coefficient

Frequentist
SNP POSITION RANK COEFFICIENT

RS1078324 149202268 1 1.76E-22
RS10036748 150458146 2 3.30E-22
RS960709 150461049 3 5.43E-22
RS1422673 150438988 4 9.71E-19
RS7726414 133431834 5 4.66E-17
RS3792785 150451650 6 2.58E-15
RS3792783 150455732 7 2.56E-14
RS2431697 159879978 8 3.82E-14
RS2233287 150440097 9 5.35E-14
RS2431099 159886620 10 8.95E-14

Figure 20: A LDHeatmap showing 6 of the top 10 SNPs ranked by the frequen-
tist method
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Figure 21: A Manhattan plot with the lowest p-value SNP rs1078324 is anno-
tated with four known hits highlighted in green.

3.4.6 Results - EBEN Method

Two of the previous associated markers feature in the top ten SNPs but none
achieved p-values that were statistically significant.

Table 28: Top ten SNPs ranked for Chromosome 5 and accompanied with their
coefficient

EBEN
SNP POSITION RANK COEFFICIENT

RS2431697 159879978 1 3.83E-03
RS10037643 60565864 2 5.95E-03
RS6872933 107336419 3 7.02E-03
RS2431099 159886620 4 7.04E-03
RS10036748 150458146 5 7.69E-03
RS7737958 113067189 6 2.12E-02
RS447817 155651950 7 3.06E-02
RS11241783 124358513 8 3.41E-02
RS4700181 56574452 9 3.66E-02
RS4958296 151612227 10 3.70E-02
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Figure 22: A Manhattan plot with associated SNPs highlighted

3.4.7 Results - Summary

In this study SNP rs2431697 was successfully found by all four methods and with
the EBEN method calculating it to be the top ranked SNP. All methods found
associated SNP rs7726414 with the spike, lasso and the frequentist methods
ranked in the top 100. Langefeld et al [63] study of European, Hispanic and
African American populations reported an association with SNP rs461193 in
the gene BC034612 and SLE. All four methods found this SNP but with weak
scores. This study also found SNP rs4921283 with all four methods, including
the frequentist and EBEN methods in their top 25 ranked SNPs.

The associated SNP rs960709, was 3rd in the frequentist method ranking
and was also picked out by EBEN.

The marker rs2431099 was observed by all methods with strong results from
the frequentist and EBEN methods. This locus was mentioned in the Gateva et
al study of Europeans along with SNP rs7708392 [60]. This SNP is in the gene
TNIP1 and was followed up by Alarcon-Riqelme et al [108] and Langefeld et
al [63]. This SNP now has links to African American, Hispanic, European and
native American populations.

Although SNP rs6872933 was found in all four methods and ranked in the
top ten by three of them it has no previous associations with lupus.
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For chromosome 5, from 37924 SNPs, the spike method produced 1368 non-
zero variables, the lasso method produced 2605 and the EBEN method produced
850.

Table 29: Chromosome 5 - Top ten SNPs for each method
Chromosome 5

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p- value p-value

RS1078324 -3.20E+00 -1.53E+00 1.76E-22 8.07E-02
RS741580 2.34E+00 9.27E-01 9.27E-01 0
RS11739489 -2.08E+00 -1.54E+00 5.40E-08 0
RS16875609 1.78E+00 6.62E-01 4.60E-04 0
RS16875597 1.60E+00 6.53E-01 7.47E-01 4.91E-01
RS17087649 1.31E+00 1.42E-01 2.19E-05 2.27E-01
RS2003604 1.30E+00 3.54E-02 4.70E-01 0.00E+00
RS6872933 -1.28E+00 -1.07E+00 2.00E-03 7.02E-03
RS1107233 1.27E+00 4.32E-01 5.05E-01 0
RS7733069 1.21E+00 1.90E-01 1.88E-01 0
RS1394603 9.45E-01 6.94E-01 5.24E-02 2.54E-01
RS6883894 1.02E+00 6.35E-01 1.31E-01 2.59E-01
RS7714120 -8.45E-01 -5.56E-01 5.00E-03 0
RS1025488 1.02E+00 5.37E-01 6.30E-02 0
RS10036748 -2.60E-01 -1.22E-01 3.30E-22 7.69E-03
RS960709 0 0 5.43E-22 3.30E-01
RS1422673 0 -5.87E-03 9.71E-19 6.57E-02
RS7726414 -4.52E-01 -2.63E-01 4.66E-17 3.70E-01
RS3792785 0 -8.65E-02 2.58E-15 3.35E-01
RS3792783 0 0 2.56E-14 3.33E-01
RS2431697 -1.14E-01 -1.30E-01 3.82E-14 3.83E-03
RS2233287 0 0 5.35E-14 0
RS2431099 3.97E-02 1.55E-02 8.95E-14 7.04E-03
RS10037643 -7.18E-02 -6.07E-02 1.04E-04 5.95E-03
RS7737958 8.85E-02 9.23E-02 1.46E-03 2.12E-02
RS447817 4.10E-02 2.83E-02 1.18E-03 3.06E-02
RS11241783 -1.09E-01 -9.56E-02 2.43E-04 3.41E-02
RS4700181 4.62E-02 4.62E-02 8.73E-03 3.66E-02
RS4958296 1.20E-01 1.29E-01 1.24E-02 3.70E-02
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Table 30: Chromosome 5 - Top ten SNPs ranked for each method
Chromosome 5

SNP Position SPIKE LASSO FREQ EBEN

RS1078324 149202268 1 2 1 25
RS741580 149201670 2 4 35772 0
RS11739489 76325361 3 1 28 0
RS16875609 5470026 4 6 362 0
RS16875597 5460434 5 7 30630 476
RS17087649 96971199 6 132 100 127
RS2003604 149205940 7 771 22268 0
RS6872933 107336419 8 3 814 3
RS1107233 60020520 9 16 23373 0
RS7733069 60057836 10 118 12304 0
RS1394603 155811990 16 5 5663 167
RS6883894 107037375 15 8 9865 176
RS7714120 137919850 24 9 1397 0
RS1025488 139892331 14 10 6336 0
RS10036748 150458146 139 167 2 5
RS960709 150461049 0 0 3 255
RS1422673 150438988 0 2078 4 21
RS7726414 133431834 82 46 5 306
RS3792785 150451650 0 250 6 268
RS3792783 150455732 0 0 7 262
RS2431697 159879978 145 149 8 1
RS2233287 150440097 0 0 9 0
RS2431099 159886620 284 761 10 4
RS10037643 60565864 166 388 186 2
RS7737958 113067189 151 237 681 6
RS447817 155651950 271 971 603 7
RS11241783 124358513 150 230 261 8
RS4700181 56574452 137 573 1948 9
RS4958296 151612227 93 127 2393 10

The associated SNPs rs7708392 found by Gateva et al, Langefeld et al
rs2548279 and rs55849330 found by Julia et al [64] were not part of this study.
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3.5 Chromosome 6

3.5.1 Introduction

Inside chromosome 6 lies the dense genetic system, the Major Histocompatiblity
Complex (MHC). As discussed in subsection 1.4.3., this area has the highest
linkage disequilibrium in the human genome. Many studies were undertaken
pre-GWAS in small numbers of subjects to look into links between SLE and the
gene HLA-DRB1. Dong et al [110] in 1993 studied Japanese patients, Brennan
et al [57] in 1997 undertook a joint study into Rheumatoid Arthritis and SLE,
and Reveille et al [111] in 2004 used subjects from multi-ethnicities.

3.5.2 Previous GWAS associations in Chromosome 6

Graham et al in 2008 [59] produced the first GWAS linking rs5029939 in the gene
TNFAIP3 with lupus. Many more followed in 2009 from the study by Gateva
et al [60] of European cases showing SNPs rs6568431 (PRDM1 ), rs11755393
(UHRFIBP1 ) and rs9271366 (HLA-DRB1 ) having statistical significance. Han
et al [102] and Yang et al [112] reported HLA-DRB1 in East Asian cases in
2009 and 2012 respectively. Figure 23 clearly shows the MHC’s dense region of
complex highly linked SNPs.

In a Gateva et al study with European ancestries, an associated SNP rs6568431
located in the gene PRDM1 was found with follow up studies including Mor-
ris et al and Bentham et al agreeing with the findings. In Bentham et al [4]
study, it was reported that SNP rs1270942 has an association with lupus. This
SNP has previously been associated with autoimmune thyroid disease and type
I diabetes. In a study by Armstrong et al [62] SNP rs9275572 (in the HLA
region) reported an association with lupus, and has associations with hepatitis
and alopecia too. In studies by Chen et al and Langefeld et al they both found
SNP rs2327832 in the gene OLIG3 to have an association with lupus. In 2011,
Chung et al [61] found the SNP rs1150754 to be a risk allele. In a study by Mor-
ris et al [43] with Chinese and European populations, they found SNP rs597325
in the gene BACH2 to have an association, also noted was SNP rs17603856 as
a risk allele.
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Table 31: Timeline of asscociated SNPs with lupus through GWAS 2008-2018.
GWAS 2008-2018

Year Chr Associated
SNP

Likely causal
gene

Study
popula-
tion

Author

2008 6 rs5029939 TNFAIP3 EUR GRA
2009 6 rs6568431 PRDM1 EA GAT
2009 6 rs11755393 UHRF1BP1 EA GAT
2011 6 rs1150754 TNXB EUR CHU
2016 6 rs17603856 ATXN1 EC MOR
2016 6 rs597325 BACH2 EC MOR
2017 6 rs10498722 LRRC16A EA LAN
2017 6 rs4712969 SLC17A4 EA LAN
2017 6 rs2327832 OLIG3-

LOC100130476
EA LAN

KEY: EUR=European, EC=European and Chinese, EA=European American,
MOR=Morris et al [43], LAN=Langefeld et al [63], GAT=Gateva et al [60] ,

CHU=Chung et al [61], GRA=Graham et al [59].

3.5.3 Results - Spike and Slab Method

A very similar result from the spike and the lasso methods was observed again.
Of the top 15 SNPs by both methods, 11 of the same SNPs appear.

Table 32: Top ten SNPs ranked for Chromosome 6 and accompanied with their
coefficient

Spike and Slab
SNP POSITION RANK COEFFICIENT

RS9969061 71862393 1 -2.73E+00
RS2517490 31038756 2 1.91E+00
RS505997 32121932 3 -1.78E+00
RS9396560 15136789 4 -1.73E+00
RS2517491 31038338 5 1.54E+00
RS16895550 164339125 6 -1.47E+00
RS2849013 32132590 7 -1.44E+00
RS7747637 15172268 8 1.40E+00
RS11962557 20407282 9 1.24E+00
RS9501430 30256841 10 1.21E+00

81



3.5.4 Results - Lasso Method

Table 33: Top ten SNPs ranked for Chromosome 6 and accompanied with their
coefficient

Lasso
SNP POSITION RANK COEFFICIENT

RS9969061 71862393 1 -1.88E+00
RS16895550 164339125 2 -1.04E+00
RS11962557 20407282 3 7.70E-01
RS710090 106644953 4 6.87E-01
RS9501430 30256841 5 6.11E-01
RS9396560 15136789 6 -5.84E-01
RS17064525 104460722 7 -5.61E-01
RS6935887 143047226 8 4.87E-01
RS17073598 144622457 9 4.81E-01
RS11962528 68611523 10 4.73E-01

3.5.5 Results - Frequentist Method

In complete contrast to the previous methods results, the top 1500 SNPs ranked
by the frequentist method produced sparse non-zero coefficients with the other
three methods. This is likely caused by the dense linkage of the MHC, which
is clearly visible on the Manhattan plot in Figure 23. The top 1593 SNPs by
the frequentist method were below the statistically significant level of p-value
of 5E-08.

Table 34: Top ten SNPs ranked for Chromosome 6 and accompanied with their
coefficient

Frequentist
SNP POSITION RANK COEFFICIENT

RS2854275 32628428 1 7.86E-94
RS9273327 32623223 2 5.04E-92
RS2187668 32605884 3 1.39E-91
RS1270942 31918860 4 6.31E-81
RS519417 31878433 5 2.18E-80
RS558702 31870326 6 1.33E-79
RS497309 31892484 7 1.45E-79
RS3117574 31725230 8 1.52E-79
RS1150753 32059867 9 1.93E-79
RS3101017 31733466 10 3.13E-79
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Figure 23: A Manhattan plot exhibiting the densely packed SNPs of the Ma-
jor Histocompatibility Complex annotated with rs2854275 from the frequentist
method’s data.

3.5.6 Results - EBEN Method

Table 35: Top ten SNPs ranked for Chromosome 6 and accompanied with their
coefficient

EBEN
SNP POSITION RANK COEFFICIENT

RS2327832 137973068 1 5.79E-06
RS7452689 104016969 2 1.49E-05
RS3104406 32682443 3 2.15E-05
RS6568431 106588806 4 2.27E-05
RS17064525 104460722 5 4.33E-05
RS9375268 123898505 6 9.04E-05
RS6919638 3756043 7 9.21E-05
RS670369 138147048 8 1.31E-04
RS2517491 31038338 9 1.44E-04
RS9402743 136001034 10 2.62E-04
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Figure 24: The block showing the 6 SNPs all ranked between 8th-21st by the
frequentist method in near perfect disequilibrium

3.5.7 Results - Summary

For chromosome 6, from 42993 SNPs, spike method produced 1255 non-zero
variables, lasso method produced 2309 and EBEN produced 488. The associated
SNP rs6568431 located in the gene PRDM1 was found by all four methods
including a ranking of 4th by the EBEN method. The risk allele rs9271366 was
recorded with zero coefficients by the variable selection methods and achieved a
weak result from the frequentist method. Another associated SNP rs11755393,
again produced zero coefficients for the variable selection methods, a ranking of
only 1420th for the frequentist although it did record a statistically significant p-
value of 3.03E-09. Associated SNP rs6568431 was ranked 4th by EBEN method,
144th (lasso), 167th (spike), and 1112th by frequentist method with a p-value
of 2.06E-1.

The associated SNP rs6932056 produced 2 zero beta coefficients in the vari-
able selection methods. Positioned 3 SNPs away is rs2230926. This SNP was
ranked 65th by the spike and slab and 55th by the lasso. It also produced
better results for the frequentist and EBEN methods than rs6932056 did. The
pair have LD calculations of R2 = 0.839 and D’ = 0.972. Only the frequen-
tist method found the associated SNP rs1270942 resulting in a 4th rank and
a p-value of 6.31E-81. The other three methods all made this a zero beta co-
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Figure 25: The block shows the top 3 SNPs all ranked by the frequentist method
in near perfect disequilibrium

Figure 26: A Manhattan plot for chromosome 6 highlighting rs6568431 and
rs2327832 using the EBEN data.
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efficient. Spike and lasso methods produced the nearby SNP rs2072634 to be
ranked 39th and 30th respectively although there is no LD between these two
markers. For the associated SNP rs9275572, this study produced a p-value of
4.86e-48 ranked 79th by the frequentist method but were given zero coefficients
by the others. SNP rs2187668 (ranked 3rd by frequentist method) is a tag SNP
for the HLA-DRB1*0301 allele and was reported to have the highest risk for
developing SLE in a study of UK family based association study by Fernando
et al [48]. The same study reported SNP rs419788 (frequentist method p-value
of 1.31e-34) and a SNP found in the gene SKIV2L also had an association. All
four methods found rs2327832 with the EBEN producing a top hit with a co-
efficient of 5.79E-06. For the associated SNP rs1150754 the frequentist method
produced a p-value of 6.07E-65 and ranked this 37th. The variable selection
methods produced two zero coefficients and a weak beta score. The variable
selection methods all failed to report a hit for the associated SNP rs597325.
The SNP rs10807150 in gene DEF6 from a study by Sun et al [113] in an Asian
population failed to produce a hit in this study.
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Table 36: Chromosome 6 - Top ten SNPs ranked for each method
Chromosome 6

SNP Position SPIKE LASSO FREQ EBEN

RS9969061 71862393 1 1 945 0
RS2517490 31038756 2 813 41124 0
RS505997 32121932 3 11 1522 0
RS9396560 15136789 4 6 1386 86
RS2517491 31038338 5 26 38469 9
RS16895550 164339125 6 2 1438 0
RS2849013 32132590 7 90 7261 0
RS7747637 15172268 8 24 30504 0
RS11962557 20407282 9 3 695 0
RS9501430 30256841 10 5 16439 80
RS710090 106644953 12 4 2630 0
RS17064525 104460722 15 7 10304 5
RS6935887 143047226 31 8 4698 320
RS17073598 144622457 23 9 28705 0
RS11962528 68611523 14 10 36866 286
RS2854275 32628428 0 0 1 479
RS9273327 32623223 0 47 2 14
RS2187668 32605884 0 0 3 474
RS1270942 31918860 0 0 4 0
RS519417 31878433 0 0 5 0
RS558702 31870326 0 0 6 0
RS497309 31892484 0 0 7 0
RS3117574 31725230 0 0 8 0
RS1150753 32059867 0 0 9 0
RS3101017 31733466 0 0 10 0
RS2327832 137973068 168 115 3222 1
RS7452689 104016969 171 117 4185 2
RS3104406 32682443 0 284 362 3
RS6568431 106588806 167 145 1112 4
RS9375268 123898505 194 159 2958 6
RS6919638 3756043 210 155 2284 7
RS670369 138147048 373 201 1372 8
RS9402743 136001034 306 1041 2227 10
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Table 37: Chromosome 6 - Top ten SNPs for each method
Chromosome 6

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS9969061 -2.73E+00 -1.88E+00 4.39E-13 0
RS2517490 1.91E+00 3.02E-02 9.37E-01 0
RS505997 -1.78E+00 -4.61E-01 1.32E-08 0
RS9396560 -1.73E+00 -5.84E-01 1.67E-09 1.21E-02
RS2517491 1.54E+00 3.62E-01 8.47E-01 1.44E-04
RS16895550 -1.47E+00 -1.04E+00 3.83E-09 0
RS2849013 -1.44E+00 -1.72E-01 2.68E-02 0
RS7747637 1.40E+00 3.73E-01 5.86E-01 0
RS11962557 1.24E+00 7.70E-01 3.20E-16 0
RS9501430 1.21E+00 6.11E-01 1.91E-01 1.12E-02
RS710090 1.01E+00 6.87E-01 1.10E-04 0
RS17064525 -9.32E-01 -5.61E-01 6.79E-02 4.33E-05
RS6935887 7.20E-01 4.87E-01 5.55E-03 7.49E-02
RS17073598 8.05E-01 4.81E-01 5.28E-01 0
RS11962528 9.33E-01 4.73E-01 7.94E-01 6.19E-02
RS2854275 0 0 7.86E-94 2.01E-01
RS9273327 0 -2.58E-01 5.04E-92 5.22E-04
RS2187668 0 0 1.39E-91 1.72E-01
RS1270942 0 0 6.31E-81 0
RS519417 0 0 2.18E-80 0
RS558702 0 0 1.33E-79 0
RS497309 0 0 1.45E-79 0
RS3117574 0 0 1.52E-79 0
RS1150753 0 0 1.93E-79 0
RS3101017 0 0 3.13E-79 0
RS2327832 -2.01E-01 -1.48E-01 5.83E-04 5.79E-06
RS7452689 -1.01E-01 -1.47E-01 2.93E-03 1.49E-05
RS3104406 0 -7.91E-02 1.23E-24 2.15E-05
RS6568431 2.27E-01 1.28E-01 2.06E-11 2.27E-05
RS9375268 6.48E-02 1.20E-01 2.88E-04 9.04E-05
RS6919638 4.92E-01 1.22E-01 2.61E-05 9.21E-05
RS670369 3.32E-02 1.01E-01 1.39E-09 1.31E-04
RS9402743 -4.08E-02 -5.06E-03 2.12E-05 2.62E-04

The associated SNPs rs5029939 [59], rs10498722 and rs4712969 [63], rs2230926
and rs17603856 [43] in Europeans and Lessard et al [114] in East Asians were
not part of this study.
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3.6 Chromosome 16

3.6.1 Introduction

Chromosome 16 has approximately 90 million base pairs. Pre-GWAS links with
SLE through Hispanic populations were reported in 2004 [115].

3.6.2 Previous GWAS associations in Chromosome 16

Early studies in 2008 by Harley et al and Hom et al found associated SNPs in
chromosome 16, rs11574637 located in the gene ITGAX and the SNP rs9888739
in the gene ITGAM. Bentham et al report made an association with lupus and
SNP rs9652601 as did Morris et al in 2016 with SNP rs1170426. SNP rs12599402
in the gene CLEC16A was found to have an association in a Chinese population
in a study by Zhang et al [65].

Table 38: Timeline of associated SNPs with lupus through GWAS 2008-2018.
GWAS 2008-2018

Year Chr Associated
SNP

Likely causal
gene

Study
popula-
tion

Author

2008 16 rs11574637 ITGAX EA HOM
2008 16 rs9888739 ITGAM EUR HAR
2015 16 rs9652601 CIITA,SOCS1 EUR BEN
2016 16 rs1170426 ZFP90 EC MOR

KEY: EUR=European, EC=European and Chinese, EA=European American,
BEN=Bentham et al [4], MOR=Morris et al [43], HAR=Harley et al [41],

HOM=Hom et al [7].
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3.6.3 Results - Spike and Slab Method

Although SNP rs28707189 was ranked top by spike it has no previous associa-
tions with any disease.

Table 39: Top ten SNPs ranked for Chromosome 16 and accompanied with their
coefficient

Spike and Slab
SNP POSITION RANK COEFFICIENT

RS28707189 2566752 1 2.64E+00
RS8059824 67963284 2 1.50E+00
RS16957597 67946356 3 1.34E+00
RS13335252 67808212 4 1.31E+00
RS8058306 67440289 5 1.23E+00
RS9930906 2534525 6 1.18E+00
RS7187296 3036551 7 -1.01E+00
RS16965197 62855866 8 9.87E-01
RS1486445 51857372 9 9.84E-01
RS2734743 4937909 10 9.68E-01

Figure 27: A Manhattan plot with the top SNPs annotated for spike method
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3.6.4 Results - Lasso Method

Although SNP rs28707189 was ranked top by lasso it has no previous associa-
tions with any disease.

Table 40: Top ten SNPs ranked for Chromosome 16 and accompanied with their
coefficient

Lasso
SNP POSITION RANK COEFFICIENT

RS28707189 2566752 1 7.82E-01
RS8058306 67440289 2 7.12E-01
RS2734743 4937909 3 6.57E-01
RS12598147 81995177 4 -6.08E-01
RS16965197 62855866 5 5.50E-01
RS9930906 2534525 6 5.29E-01
RS9932300 7939088 7 5.22E-01
RS4523927 2471582 8 4.42E-01
RS4122247 49476172 9 4.39E-01
RS17136933 4288958 10 4.36E-01

Figure 28: Manhattan Plot of the top three SNPs annotated for lasso method.
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3.6.5 Results - Frequentist Method

Results for the top ten SNPs ranked by the frequentist method revolve around
one spike of SNPs located close together. It can be seen from Table 41, Figure
30 and Table 42 that blocks of SNPs that are 3rd, 4th, 5th and 6th (***)
ranked by the frequentist method, are in near perfect linkage disequilibrium
with each other. The block of four SNPs (**), rs7206295, rs4597342, rs8060268
and rs4075052 also share high linkage disequilibrium. Another block shows
SNPs rs9888879 and rs35314490 (*) are in perfect linkage disequilibrium. All
blocks have high R2 scores with each other, meaning they are highly correlated.

Table 41: Top ten SNPs ranked for Chromosome 16 and accompanied with their
p-value

Frequentist
SNP POSITION RANK P-VALUE

RS35314490 31283164 1 1.13E-60
RS9888879 31310372 2 2.69E-60
RS4632147 31363381 3 8.39E-54
RS1143678 31343005 4 4.59E-51
RS1143683 31336888 5 2.04E-50
RS11574637 31368874 6 4.90E-49
RS4548893 31364493 7 3.21E-41
RS9937837 31298939 8 4.75E-29
RS11644034 85972612 9 1.17E-21
RS13332545 31377390 10 2.85E-19
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Figure 29: A Manhattan plot with SNPs rs35314490 annotated and rs11644034
highlighted with a green spot

Figure 30: Strong linkage disequilibrium amongst highly ranked SNPs
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Table 42: Chromosome 16 - A block of SNPs showing position, result and LD.
Chromosome 16 from Position 31281147-31367318

SNP LD Position SPIKE LASSO FREQ EBEN

RS2359661 31281147 0 0 2.68E-18 8.90E-02
RS35314490 * 31283164 5.80E-01 3.42E-01 1.13E-60 2.34E-02
RS11861251 31289396 0 0 1.03E-02 0
RS9937837 31298939 0 1.00E-02 4.75E-29 1.24E-02
RS9888879 * 31310372 0 4.00E-02 2.69E-60 7.00E-02
RS11645653 31312855 -7.00E-02 -6.00E-02 4.39E-09 1.36E-01
RS7206295 ** 31336519 0 0 2.81E-04 0
RS1143683 *** 31336888 0 0 2.04E-50 0
RS1143678 *** 31343005 0 0 4.59E-51 0
RS4597342 ** 31343769 0 0 1.59E-04 0
RS8060268 ** 31345280 0 0 3.42E-04 0
RS3925075 31347748 0 0 8.69E-19 0
RS4075052 ** 31348233 0 0 1.58E-04 0
RS4632147 *** 31363381 0 -9.00E-02 8.39E-54 4.48E-02
RS4548893 31364493 0 -6.05E-04 3.21E-41 1.94E-01
RS11863903 31364909 0 0 1.39E-04 0
RS11150614 31366016 0 0 6.90E-05 0
RS11574633 31367318 0 0 2.71E-03 0
RS7190997 31368178 0 0 1.83E-09 0
RS11574637 *** 31368874 0 0 4.89E-49 4.82E-01
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3.6.6 Results - EBEN Method

All SNPs failed to make genome wide significance.

Table 43: Top ten SNPs ranked for Chromosome 16 and accompanied with their
p-value

EBEN
SNP POSITION RANK P-VALUE

RS9926690 79638121 1 4.57E-05
RS305059 85976018 2 1.79E-04
RS11640961 30979818 3 2.26E-04
RS3764261 56993324 4 2.75E-04
RS17829520 84724295 5 3.11E-04
RS12596171 24338109 6 3.28E-04
RS158481 57075253 7 3.46E-04
RS2288012 58327646 8 4.02E-04
RS1992893 10125302 9 5.62E-04
RS1473204 60514331 10 5.87E-04

Figure 31: Manhattan Plot of the top SNPs for the lasso method
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3.6.7 Results - Summary

For chromosome 16, from 20388 SNPs, the spike method produced 1272 non-
zero variables, lasso method produced 1772 and EBEN method produced 1303.
The study found the associated SNP rs11574637 but only with frequentist and
EBEN methods. This SNP has previously been acknowleged to be a risk locus
for myeloid leukemia [116], and IgA nephropathy [117] in European populations.
SNP rs35314490 was found by all four methods and was the top ranked SNP
by the frequentist method (see Figure 45 and Table 44) although no previous
associations have been found with any disease.
The associated SNP rs9888739 found by Harley et al [41] in 2008, and SNP
rs1170426 found by Morris et al [43] in 2016 in Asian and European populations,
were not included in this study. Associated SNPs rs9652601 and rs34572943
were both imputed in the original study by Bentham et al and were also not
part of this study.

Associated SNP in Chinese populations, rs12599402 [118], ranked 136th in
the frequentist method but had a zero-coefficient with the variable selection
methods.

The associated SNP rs11644034 reported by Bentham et al in the gene IRF8
was found by all four methods but it was only ranked in the top ten in the
frequentist method. Bentham et al found SNP rs2288012 which was chosen by
all four methods and featured in the top 20 ranked in two methods (frequentist
and EBEN).

SNP rs8058306 features highly amongst three of the methods but has no
recorded associations with lupus but a recent study found a link between the
SNP and variants affecting bone mineral density in Hispanic people [119]. SNP
rs3764261 has been linked with cholesterol problems [120] and is ranked in the
top 160 by all four methods but no previous associations have been made with
lupus. Langefeld et al study [63] in Hispanic Americans made an association
between SNPs rs2550333, rs2731763 (in gene CCDC113 ) and SLE. The variable
selection methods produced zero-coefficients but the frequentist method made
the SNP rs2550333 as the 158th top ranked SNP. The SNP rs 2731763 which
has a D’=1 and r2 = 0.848 with rs2550333 and a distance close to 25Kb was
found in this study by all four methods with robust results.
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Table 44: Chromosome 16 - Top ten SNPs ranked for each method
Chromosome 16

SNP Position SPIKE LASSO FREQ EBEN

RS28707189 2566752 1 1 3465 0
RS8059824 67963284 2 0 4748 0
RS16957597 67946356 3 47 1483 0
RS13335252 67808212 4 32 4834 0
RS8058306 67440289 5 2 18255 12
RS9930906 2534525 6 6 12713 136
RS7187296 3036551 7 42 2873 171
RS16965197 62855866 8 5 14639 41
RS1486445 51857372 9 108 4917 0
RS2734743 4937909 10 3 17609 36
RS12598147 81995177 11 4 92 0
RS9932300 7939088 12 7 339 0
RS4523927 2471582 16 8 15724 0
RS4122247 49476172 28 9 4684 22
RS17136933 4288958 22 10 1593 0
RS35314490 31283164 46 20 1 110
RS9888879 31310372 0 446 2 252
RS4632147 31363381 0 188 3 178
RS1143678 31343005 0 0 4 0
RS1143683 31336888 0 0 5 0
RS11574637 31368874 0 0 6 1103
RS4548893 31364493 0 1705 7 418
RS9937837 31298939 0 1152 8 70
RS11644034 85972612 567 461 9 698
RS13332545 31377390 0 771 10 868
RS9926690 79638121 132 223 359 1
RS305059 85976018 108 200 17 2
RS11640961 30979818 87 420 16902 3
RS3764261 56993324 131 160 44 4
RS17829520 84724295 120 210 167 5
RS12596171 24338109 109 152 5202 6
RS158481 57075253 184 521 12313 7
RS2288012 58327646 111 164 19 8
RS1992893 10125302 123 403 525 9
RS1473204 60514331 116 173 13644 10
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Table 45: Chromosome 16 - Top ten SNPs for each method
Chromosome 16

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS28707189 2.64E+00 7.82E-01 5.82E-02 0
RS8059824 1.50E+00 0 9.68E-02 0
RS16957597 1.34E+00 2.42E-01 1.27E-02 0
RS13335252 1.31E+00 3.02E-01 9.98E-02 0
RS8058306 1.23E+00 7.12E-01 8.56E-01 7.28E-04
RS9930906 1.18E+00 5.29E-01 4.91E-01 3.15E-02
RS7187296 -1.01E+00 -2.67E-01 4.21E-02 4.30E-02
RS16965197 9.87E-01 5.50E-01 6.17E-01 5.22E-03
RS1486445 9.84E-01 1.47E-01 1.02E-01 0
RS2734743 9.68E-01 6.57E-01 8.13E-01 3.78E-03
RS12598147 -9.53E-01 -6.08E-01 2.35E-05 0
RS9932300 9.24E-01 5.22E-01 5.70E-04 0
RS4523927 8.28E-01 4.42E-01 6.88E-01 0
RS4122247 6.40E-01 4.39E-01 9.52E-02 1.64E-03
RS17136933 7.12E-01 4.36E-01 1.48E-02 0
RS35314490 5.78E-01 3.42E-01 1.13E-60 2.34E-02
RS9888879 0 4.26E-02 2.69E-60 7.00E-02
RS4632147 0 -8.92E-02 8.39E-54 4.48E-02
RS1143678 0 0 4.59E-51 0
RS1143683 0 0 2.04E-50 0
RS11574637 0 0 4.90E-49 4.82E-01
RS4548893 0 -6.05E-04 3.21E-41 1.94E-01
RS9937837 0 1.46E-02 4.75E-29 1.24E-02
RS11644034 -1.99E-02 -4.08E-02 1.17E-21 2.45E-01
RS13332545 0 2.33E-02 2.85E-19 3.45E-01
RS9926690 7.33E-02 7.67E-02 6.45E-04 4.57E-05
RS305059 1.06E-01 8.54E-02 3.20E-12 1.79E-04
RS11640961 4.26E-01 4.54E-02 7.13E-01 2.26E-04
RS3764261 7.41E-02 1.00E-01 3.22E-06 2.75E-04
RS17829520 8.84E-02 8.10E-02 1.26E-04 3.11E-04
RS12596171 1.04E-01 1.07E-01 1.13E-01 3.28E-04
RS158481 -5.36E-02 -3.69E-02 4.68E-01 3.46E-04
RS2288012 1.01E-01 9.86E-02 1.98E-10 4.02E-04
RS1992893 -8.74E-02 -5.97E-02 1.51E-03 5.62E-04
RS1473204 -9.23E-02 -9.37E-02 5.53E-01 5.87E-04
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3.7 Chromosome 22

3.7.1 Introduction

Chromosome 22 is the second smallest in the whole genome containing around
49 million base pairs.

3.7.2 Previous GWAS associations in Chromosome 22

Previously, this chromosome has only one associated risk allele to lupus in Eu-
ropean population, rs7444 (see Table 46). This marker first came to attention in
2012 in a paper by Wang et al [121], they concluded that in a functional haplo-
type of UBE2L3, rs7444 was associated with the disease lupus. Bentham et al [4]
replicated this in Europeans, resulting in a post–replication study meta–analysis
p-value of 1.84E-22. Associated SNP rs131654 was found in a study by Han et
al [102] in an East Asian population, to have an association to lupus.

Table 46: Timeline of asscociated SNPs with lupus through GWAS 2008-2018.
GWAS 2008-2018

Year Chr Associated
SNP

Likely causal
gene

Study
popula-
tion

Author

2012 22 rs7444 UBE2L3 EC WAN
KEY: EUR=European, EC=European and Chinese, EA=European American,

WAN=Wang et al [121].

3.7.3 Results - Spike and Slab Method

Table 47: Top ten SNPs ranked for Chromosome 22 and accompanied with their
coefficient

Spike and Slab
SNP POSITION RANK COEFFICIENT

RS7285053 48872193 1 2.48E+00
RS7292957 37057019 2 1.96E+00
RS4821348 35446992 3 1.53E+00
RS6000370 37056207 4 1.48E+00
RS138070 44229508 5 -1.37E+00
RS1800706 19928022 6 1.27E+00
RS9605031 19921378 7 1.27E+00
RS138065 44226987 8 1.19E+00
RS12484382 35443638 9 -1.08E+00
RS204970 34871591 10 -1.07E+00
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Figure 32: A Manhattan plot with the top four SNPs annotated for the spike
method

3.7.4 Results - Lasso Method

The lasso method’s data was again similar to that of the spike method in SNPs
chosen that were highly ranked. The lasso method produced 3242 (33.9%) of
non-zero coefficients, the highest seen across the whole genome. Compared to
the other methods, this was extremely high with no apparent reason for this
figure (see Table 9).

3.7.5 Results - Frequentist Method

SNPs that were ranked 2-11 by the frequentist method are positionally tightly
packed within a block of 10 SNPs. Figure 35 represents this block indicating
the R2 calculations. It is worth noting that the other methods produced mostly
zero coefficients for this specific group.

3.7.6 Results - EBEN Method

The associated SNP rs7444 returned a rank of 6th using the EBEN method. As
per the other methods the top SNP was rs7285053.
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Table 48: Top ten SNPs ranked for Chromosome 22 and accompanied with their
coefficient using the spike method.

Lasso
SNP POSITION RANK COEFFICIENT

RS7285053 48872193 1 3.26E+00
RS7292957 37057019 2 1.77E+00
RS6000370 37056207 3 1.46E+00
RS138070 44229508 4 -1.29E+00
RS138065 44226987 5 9.48E-01
RS9618690 19777791 6 8.92E-01
RS7287114 37040092 7 8.81E-01
RS6002526 42289565 8 8.39E-01
RS17002469 41856041 9 -7.87E-01
RS6002958 43218614 10 7.50E-01

Figure 33: Manhattan Plot of the top SNPs for the lasso method

3.7.7 Results - Summary

For chromosome 22, from 9563 SNPs, the spike method produced 1170 non-zero
variables, lasso produced 3242 and EBEN produced 1111. From Table 51, the
SNP rs7285053 was the only SNP in this study that was ranked first for all
methods. This SNP has no previous acknowledgement of any association with
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Table 49: Top ten SNPs ranked for Chromosome 22 and accompanied with their
p-value using data from the frequentist method.

Frequentist
SNP POSITION RANK P-VALUE

RS7285053 48872193 1 7.42E-27
RS7444 21976934 2 3.84E-13
RS11089637 21979096 3 4.13E-13
RS5754217 21939675 4 5.76E-13
RS878825 21982249 5 9.92E-13
RS181360 21928916 6 8.07E-12
RS1034329 21943938 7 1.01E-11
RS140498 21927064 8 1.12E-11
RS4821116 21973319 9 1.78E-11
RS5998619 21945851 10 1.97E-11

Figure 34: A Manhattan plot with SNPs rs7444 and rs7285053 annotated from
the frequentist data

any disease. SNPs that ranked from 5-10 by the frequentist method, all had
received a zero coefficient from the other three methods. All the SNPs ranked
in the top ten by the EBEN method were also ranked highly in the other vari-
able selection methods but not by the frequentist method (barring rs7285053).
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Figure 35: A LD heatmap of a dense block of ten strongly correlated SNPs that
ranked in the top 11 by the frequentist method.

Table 50: Top ten SNPs ranked for Chromosome 22 and accompanied with their
coefficient using data from the EBEN method.

EBEN
SNP POSITION RANK P-VALUE

RS7285053 48872193 1 3.57E-12
RS9605179 17412216 2 3.69E-12
RS9606542 17410658 3 8.17E-11
RS4821348 35446992 4 2.25E-10
RS8135828 29929239 5 9.27E-09
RS7444 21976934 6 2.52E-08
RS5756407 37316259 7 2.99E-08
RS17344701 41132402 8 1.52E-07
RS9614670 45838817 9 6.90E-07
RS11704508 46638540 10 1.12E-06

This group of SNPs have no recorded association with lupus apart from rs7444
although rs878825 has links to red cell distribution [122] and rs4821116 links
with HDL cholesterol levels [123]. SNP rs6000370 was found by all four methods
ranking in the top 14 by methods spike, lasso and EBEN, although there has
been no association recorded with any disease. Associated SNP rs131654 was
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Figure 36: A Manhattan plot with the associated SNP rs7444 highlighted for
the EBEN method

found in a study by Han et al [102] in 2009 in an East Asian population, to have
an association to lupus. This SNP was weakly represented by methods spike
and lasso and ranked 27th by the frequentist method, although the EBEN pro-
duced a zero coefficient. Associated SNP rs7444 was found by all four methods
with strong results.
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Table 51: Chromosome 22 - Top ten SNPs ranked for each method
Chromosome 22

SNP Position SPIKE LASSO FREQ EBEN

RS7285053 48872193 1 1 1 1
RS7292957 37057019 2 2 127 476
RS4821348 35446992 3 11 9244 4
RS6000370 37056207 4 3 76 14
RS138070 44229508 5 4 58 0
RS1800706 19928022 6 37 219 0
RS9605031 19921378 7 42 1147 928
RS138065 44226987 8 5 9054 318
RS12484382 35443638 9 697 9325 59
RS204970 34871591 10 69 7245 269
RS9618690 19777791 0 6 3873 0
RS7287114 37040092 23 7 2156 25
RS6002526 42289565 21 8 1592 185
RS17002469 41856041 0 9 4805 0
RS6002958 43218614 43 10 12 1095
RS7444 21976934 76 485 2 6
RS11089637 21979096 0 998 3 0
RS5754217 21939675 83 2167 4 0
RS878825 21982249 0 0 5 0
RS181360 21928916 0 0 6 0
RS1034329 21943938 0 0 7 0
RS140498 21927064 0 0 8 0
RS4821116 21973319 0 0 9 0
RS5998619 21945851 0 0 10 0
RS9605179 17412216 25 27 7891 2
RS9606542 17410658 29 40 7104 3
RS8135828 29929239 32 43 1678 5
RS5756407 37316259 30 65 2624 7
RS17344701 41132402 121 68 1105 8
RS9614670 45838817 69 87 7621 9
RS11704508 46638540 24 53 2260 10
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Table 52: Chromosome 22 - Top ten SNPs for each method
Chromosome 22

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS7285053 2.48E+00 3.26E+00 7.42E-27 3.57E-12
RS7292957 1.96E+00 1.77E+00 5.73E-04 1.00E-01
RS4821348 1.53E+00 7.38E-01 9.53E-01 2.25E-10
RS6000370 1.48E+00 1.46E+00 2.49E-04 3.03E-06
RS138070 -1.37E+00 -1.29E+00 1.36E-04 0
RS1800706 1.27E+00 5.46E-01 1.72E-03 0
RS9605031 1.27E+00 5.05E-01 3.59E-02 4.02E-01
RS138065 1.19E+00 9.48E-01 9.28E-01 4.19E-02
RS12484382 -1.08E+00 -1.08E-01 9.64E-01 2.96E-04
RS204970 -1.07E+00 -4.50E-01 6.72E-01 2.90E-02
RS9618690 0 8.92E-01 2.63E-01 0
RS7287114 7.98E-01 8.81E-01 1.03E-01 2.59E-05
RS6002526 8.18E-01 8.39E-01 6.23E-02 1.24E-02
RS17002469 0 -7.87E-01 3.61E-01 0
RS6002958 6.22E-01 7.50E-01 4.31E-08 5.84E-01
RS7444 1.03E-01 1.45E-01 3.84E-13 2.52E-08
RS11089637 0 7.99E-02 4.13E-13 0
RS5754217 -9.37E-02 -3.07E-02 5.76E-13 0
RS878825 0 0 9.92E-13 0
RS181360 0 0 8.07E-12 0
RS1034329 0 0 1.01E-11 0
RS140498 0 0 1.12E-11 0
RS4821116 0 0 1.78E-11 0
RS5998619 0 0 1.97E-11 0
RS9605179 -7.63E-01 -5.76E-01 7.56E-01 3.69E-12
RS9606542 -7.40E-01 -5.23E-01 6.52E-01 8.17E-11
RS8135828 -7.31E-01 -5.11E-01 6.88E-02 9.27E-09
RS5756407 -7.40E-01 -4.61E-01 1.43E-01 2.99E-08
RS17344701 -6.96E-02 -4.51E-01 3.40E-02 1.52E-07
RS9614670 -1.18E-01 -3.93E-01 7.21E-01 6.90E-07
RS11704508 -7.84E-01 -4.96E-01 1.12E-01 1.12E-06
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From Table 52, it is plain to see, the EBEN method has combined all the
linkage disequilibrium and produced just one SNP to represent this correlation
(rs7444). Whilst the Spike method has been a little less certain and spread
its correlated SNPs into two but with a slightly weaker result (rs7444 and
rs5754217). Furthermore, the lasso method has been even looser and allowed
three of the SNPs to be representative of the block with SNPs rs7444, rs5754217
and rs11089637 compensated with a weaker beta coefficient score. Figure 37 be-
low presents a larger area of SNPs including the correlated alleles.

Figure 37: A larger area of SNPs containing the dense block of correlated SNPs
that was displayed above.
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4 Conclusion and Discussion

In this section it is discussed how the methods performed and what more gen-
eral conclusions can be made. The frequentist and EBEN methods are presented
individually but the spike and lasso have been presented together as they pro-
duced very similar results. The comparisons of the methods applied are noted,
with what we can learn from the results and any future work moving forwards.

4.1 Introduction

In the analysis of large scale genetic datasets, advanced statistical techniques of
variable selection are designed to reduce the number of predictors included in
the model of disease susceptibility and hence we can reduce the number of false
positives. It is challenging to do this in a realistic way using simulated data and
so this work presents an insight into how these methods work with real data. In
this thesis, four methods were applied to the post-cleaned dataset from Bentham
et al [4]. The data involved 4036 SLE cases and 6959 healthy controls totalling
644,674 SNPs. SNPs that are inherited together in the same biological pathway
tend to be correlated and thus variable selection methods were chosen to see
how they deal with this. Disease association with potential risk alleles was as-
sessed by means of different advanced statistical methods of regularization using
Bayesian and frequentist techniques. Correlated genetic markers were grouped,
measured and studied, with the aspiration of finding positive association with
SLE. The results were put into tabular form with rankings and their p-values or
beta coefficients. Comparisons were made with 38 associated SNPs that were
found on the dataset from Bentham et al across the whole genome barring the
sex chromosomes.

4.2 Spike and Lasso

The lasso [85] and spike [86], methods adopt lasso as their regularization tech-
niques. Regularization is required for problems with fitting and interpretability
to produce an optimal model. The lasso uses a regressor selecting process that
either reduces the coefficent to zero or classes it as important and keeps it in
the model. The spike method that incorporated a double exponential prior on
coefficients is known to act like lasso penalized regression. By introducing a
mixture model into the prior this technique goes beyond a standard lasso. The
spike method used the same software for the lasso method including choosing
the optimal penalty value (glmnet) [90] which was further processed using the
BhGLM package [124] using a logistic regression with the spike and slab double
exponential prior. Although the results obtained could possibly be viewed as
similar in which non-zero coefficients were included, the spike method has been
more severe in the reduction of parameters. This was due to the predictors
being divided into groups with the assumption that they follow the spike and
slab priors, with the main spike around zero and the diffuse distribution for the
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slab. There was a steady increase in the percentage of non-zero coefficients that
the spike method chose as the chromosomes got smaller in size. This relation-
ship appears to carry through to all methods. The technique of the lasso that
did not involve the extra BMlasso software package of the spike method [86],
produced a less complex model, consequently, culminating in a less sparse set
of SNPs. The spike results were a reduced replication of the lasso’s. The six
chromosomes featured in the main results section produced an insight into the
comparatively similar product of both lasso style methods. Covering the 60
SNPs that featured in the top ten ranked per chromosome by the spike method,
32 of the same SNPs were featured in the top ten of the lasso. In general, for
each SNP chosen by the spike, it was very likely the lasso had chosen it too.
The spike and slab appears to have over-shrunk the variables too much in favour
of sparsity over accuracy or potentially has a poorly chosen prior that leads to
predictions that are strongly incorrect.

4.3 EBEN

The EBEN method [84] was computationally intensive. The elastic net, through
the l1, lasso penalty part, uses variable selection and the l2, the ridge penalty
part, produces better prediction accuracy. It has used groups of correlated vari-
ables and produced sparse efficient predictors. The elastic net has been made
to control the within group correlations. The EBEN’s most extreme results
feature in chromosome 3, where there is a stark difference in non-zero SNPs
chosen compared to the other variable selection methods. Of the top 30 most
extreme p-values produced by the EBEN method, 28 appear in chromosome 3.
The SNPs rs10148260 in chromosome 14 (2.40E-14) and rs9605179 (3.69E-12)
in chromosome 22 are the other two. 320 SNPs were recorded at the Bonfer-
roni correction of 5 × 10−8 or less and they are not positioned close to each
other. The reason for this extremity is unexplained but is possibilty related to
the complexity of the model that produced extended computational processing
time compared to the other methods. In comparison to chromosome 6 that
had around the same amount of SNPs tested (42483 compared with 42993) the
resulting non-zero variables were a contrast to that of chromosome 3. For chro-
mosome 3 totalling 7848 SNPs chosen (compared to chromosome 6 of 488). A
theory might be that this is due to the high linkage disequilibrium blocks that
are contained in the MHC. This could bring into question EBEN’s technique of
how to deal with low linkage disequilibrium SNPs.

4.4 Frequentist Method

Produced using SNPTest software [12], the frequentist method ran association
tests on the data from Bentham et al study [4]. This technique with no variable
selection chose the most SNPs previously associated with lupus from the 2015
paper. 21 hits ranking in the top 25 from the 38 risk alleles and 26 hits from
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38 were ranked in the top 100. Although finding the most previously reported
hits of the four methods, the results included many false positives. For many
chromosomes, the frequentist method had chosen high ranking SNPs that are
positioned in local groups close to each other where high linkage disequilibrium
exists. This is repeated time and again for each chromosome. It is also notice-
able when the variable selection methods have a high ranking, the frequentist
method does not.

4.5 Overview

In conclusion, noting the small number of non-zero coefficients chosen in chro-
mosome 6 and the aforementioned correlated block of 10 SNPs in chromosome
22, there is some belief that the EBEN method is stricter with correlated blocks
of SNPs than the other two variable selection methods. Also, from the results
of high ranking SNPs, the EBEN predicts with better accuracy. The spike
method has been more severe in variable selection and with less predictive ac-
curacy with known associated SNPs. The frequentist method ranks blocks of
correlated SNPs that incorporate the associated risk allele highly, resulting in
many false positives. In general, the results were found to be inconsistent with
known associations although a disadvantage of using real data is that the true
associations are unknown and so it could not be clarified whether the SNPs with
significant results were in fact true or false positives. This would require further
analysis from bioscientists. The results on chromosome 22 around rs7444 are
encouraging, as this is a well established association where the SNP is known to
be causal. The frequentist method selects multiple SNPs that are in close LD
with rs7444, but the EBEN method only selects this SNP, while the spike and
slab, and lasso methods select one or two other SNPs respectively.

Although many SNPs do not pass GWAS significant thresholds, it is likely
that some of these SNPs are associated with the disease and further research will
be required to produce associations in the future. Overall, the methods show
promise statistically, as they generally identify known associations with lupus.
However, the methods all clearly identify many false positives, and so could
not be used currently in a practical genome-wide association study. Further
work will be needed to refine these methods, so that they are producing results
that can be replicated robustly. Given this outcome, it is not clear which of
the potential novel associations are genuinely linked with lupus and which are
false positives. It is therefore not possible to draw any conclusions about the
biological implications of the results or about which method might have superior
performance in terms of sensitivity or specificity. To the author’s knowledge,
this is the first time that these methods have been applied to a practical genetics
dataset, and so this study cannot be compared with previous findings. This work
is the first step in statistical analysis, which will need to be followed by further
statistical work, then validation using multiple large genetic datasets, before
finally immunological work can be carried out to show the biological effects of
the genuine associations with the disease. The very large number of associations
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found across the four methods mean that many must be false positives. It would
therefore not be sensible to start to carry out bioinformatics studies to assess
which genes each of these many hundereds of SNPs are in. This means that
it is not possible to assess whether novel genes have been found. Summarising
the results into a single plot would also not be appropriate since we know that
many of the associations are false positives.

4.6 Future work

An area for future work involves the rising percentage of non-zero coefficients
chosen per chromosome as the chromosomes get smaller in size. In addition,
an area to further understand is the rationale of EBEN’s selection procedure
for blocks with high and low linkage disequilibrium. Overall, it is clear to see
that other techniques of variable selection should be researched and utilized in
place of standard association testing for genetic data. Variations of the group
lasso, with sparse and overlap group lasso in particular, could potentially be
more consistent with blocks of correlated data. With this in mind, the goal is
to find a more consistent model producing reduced number of false positives,
that conclude in novel associated hits and will help in the search for the missing
heritability in the fight against disease. This work is part of the long process of
unravelling the human genome in order to treat complex diseases such as lupus.

111



A Appendix: Software

Appendix A presents the two main pieces of genetics software used in this thesis
with the individual file names that they produced.

A.1 Files for Genetic Software

The main pieces of software used to produce this thesis was SNPTest [12] and
PLINK [11].

PLINK v.1.07 (Shaun Purcell http://pngu.mgh.harvard.edu/purcell/plink/)
.bim (txt) file contains genetic markers
Chromosome Number/SNP/Genetic Distance/Base pair postion/Allele 1/Al-

lele 2
.fam (txt) file contains information on the individuals
Family ID/Individual ID/Paternal ID/Maternal ID/Sex/Phenotype
.bed file (Binary fileset) contains binary information
.map file (txt) file contains
Chromosome Number/SNP/Genetic Distance/Base pair postion
.ped file
Family ID/Individual ID/Paternal ID/Maternal ID/Sex/Phenotype/Allele

call (1st var)/Allele call (1st var)/Allele call (2nd var)/Allele call (2nd var)
The bim, fam and bed files accompany each other as does the map accom-

panies the ped files.

SNPTest v.2.4.1. (Jonathon Marchini and Gavin Band)
.gen (Genesis ROM) file contains genotype data for the cohort
Chromosome/SNP/Base pair position/Allele 1/Allele 2
.sample (txt) file contains the IDs and phenotype information
Family ID 1/Within family ID 2/Missing call frequency/Sex/Phenotype
A .gen file should be accompanied by a .sample file
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B Appendix: Results

Appendix B relays the rest of the information from the results that do not appear
in the results section. These chromosomes have fewer known associations with
SLE.

B.1 Chromosome 3

For chromosome 3, from 42483 SNPs, spike method produced 1443 non-zero
variables, lasso method produced 1645 and EBEN method produced 7848.

SNP rs9311676 [4] produced 3 zero-coefficients and a weak p-value for fre-
quentist.

SNP rs564799 (Bentham et al) ranked 9th in the frequentist method and
had a weak EBEN p-value. Spike and lasso methods produced zero beta values.
The closest in distance to SNP rs564799 is rs574808 and this has the spike, lasso
and frequentist methods ranked in their top 200.

The frequentist method ranked 33rd with SNP rs10936599 that is situated
in gene MYNN. The other three methods produced zero-coefficients. This SNP
is an associated SNP from Molineros study of Asian and Europeans also Wens
study in Chinese population [125].

Figure 38: A Manhattan plot with the lowest p-value SNPs rs9852014, rs1464446
and rs11928304 highlighted
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Table 53: Chromosome 3 - Top ten SNPs ranked for each method
Chromosome 3 - Top ten SNPs ranked for each method

SNP Position SPIKE LASSO FREQ EBEN
RS9852014 129084581 1 1 3 0
RS6810203 129083281 2 3 38480 0
RS35755212 197346971 3 4 12 480
RS6414259 93791390 4 5 5 387
RS11921784 118468553 5 2 393 0
RS1464446 146601295 6 7 2 0
RS35992 74267575 7 44 86 0
RS4688732 50360802 8 12 20743 272
RS11928304 18998569 9 6 1 0
RS4318522 146594746 10 8 28130 0
RS6779649 179076879 11 9 10543 11
RS9811883 43121691 14 10 735 384
RS1444766 123925271 135 107 4 0
RS6441275 159501673 193 183 6 3390
RS574808 159732983 143 167 7 0
RS1675497 159582382 0 0 8 0
RS564799 159728987 0 0 9 994
RS26298 159611291 0 0 10 0
RS9827067 24808506 0 0 32797 1
RS7642268 60084924 0 0 32450 2
RS4234583 1051760 105 248 34185 3
RS6796963 196662275 0 0 10285 4
RS6797560 196620294 0 0 25086 5
RS796313 12449528 0 0 13893 6
RS6787169 149211986 65 26 20201 7
RS2177044 146601081 66 58 39691 8
RS9860651 153416484 145 118 1266 9
RS7618684 57545993 0 1509 17990 10
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Table 54: Chromosome 3 - Top ten SNPs for each method
Chromosome 3

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS9852014 -2.96E+00 -1.61E+00 2.75E-25 0
RS6810203 -2.89E+00 -1.44E+00 8.75E-01 0
RS35755212 -2.82E+00 -1.39E+00 4.39E-10 5.26E-06
RS6414259 -1.95E+00 -1.16E+00 6.21E-12 1.44E-06
RS11921784 -1.95E+00 -1.45E+00 3.80E-04 0
RS1464446 -1.88E+00 -9.82E-01 2.22E-25 0
RS35992 1.26E+00 2.16E-01 8.76E-06 0
RS4688732 1.23E+00 4.22E-01 3.61E-01 1.65E-07
RS11928304 -1.02E+00 -1.00E+00 4.55E-42 0
RS4318522 -1.01E+00 -5.34E-01 5.59E-01 0
RS6779649 1.01E+00 4.94E-01 1.24E-01 1.98E-14
RS9811883 -9.08E-01 -4.79E-01 1.17E-03 1.41E-06
RS1444766 -1.25E-01 -1.20E-01 5.16E-12 0
RS6441275 5.68E-02 7.02E-02 1.43E-11 4.69E-02
RS574808 -9.00E-02 -7.38E-02 1.91E-11 0
RS1675497 0 0 3.53E-11 0
RS564799 0 0 4.28E-11 2.23E-04
RS26298 0 0 8.02E-11 0
RS9827067 0 0 6.99E-01 2.22E-16
RS7642268 0 0 6.89E-01 4.44E-16
RS4234583 3.74E-01 5.45E-02 7.42E-01 6.66E-16
RS6796963 0 0 1.19E-01 1.33E-15
RS6797560 0 0 4.75E-01 1.78E-15
RS796313 0 0 1.95E-01 4.00E-15
RS6787169 5.37E-01 2.96E-01 3.47E-01 7.33E-15
RS2177044 -5.30E-01 -1.70E-01 9.11E-01 9.77E-15
RS9860651 -8.37E-02 -1.05E-01 3.27E-03 1.51E-14
RS7618684 0 -1.65E-03 2.90E-01 1.71E-14
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The EBEN method processed chromosome 3 and returned 226 p-values that
were statistically significant. See Table 55 for the top 35 ranked SNPs.

Table 55: Chromosome 3 - Top thirty five SNPs ranked by EBEN
Chromosome 3 - Top thirty five SNPs ranked by EBEN
SNP Position p-value
RS9827067 24808506 2.22E-16
RS7642268 60084924 4.44E-16
RS4234583 1051760 6.66E-16
RS6796963 196662275 1.33E-15
RS6797560 196620294 1.78E-15
RS796313 12449528 4.00E-15
RS6787169 149211986 7.33E-15
RS2177044 146601081 9.77E-15
RS9860651 153416484 1.51E-14
RS7618684 57545993 1.71E-14
RS6779649 179076879 1.98E-14
RS2715671 127128648 2.18E-14
RS2720309 123237517 2.78E-14
RS9818318 58782604 4.04E-14
RS6776465 143296624 8.22E-14
RS4284958 184359263 1.39E-13
RS12493138 184359176 1.91E-13
RS9836757 179642221 2.18E-13
RS7646362 64642313 3.12E-13
RS3774490 53663648 3.35E-13
RS1026572 160887654 4.23E-13
RS4683749 142867543 8.85E-13
RS4928154 98899033 1.42E-12
RS6764014 33980449 1.50E-12
RS335825 196672840 1.64E-12
RS1242075 143366830 1.76E-12
RS12486909 176556131 2.40E-12
RS1687282 14810854 2.88E-12
RS2320958 2780449 3.00E-12
RS11926725 3434942 4.38E-12
RS9855458 27639142 4.45E-12
RS11705763 112856961 5.14E-12
RS12696007 153418189 5.90E-12
RS13098112 29263650 6.68E-12
RS4679644 59351946 8.53E-12
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B.2 Chromosome 4

Bentham et al [4] found SNP rs10028805 and was ranked 12th in the frequen-
tist method with a p-value of 1.18e-08. The other methods calculated a zero-
coefficient. This SNP had previously been reported to be a risk locus for chronic
lymphocytic leukemia [126].

Also in the gene BANK1, the SNP rs17266594 that was ranked 8th by the
frequentist method, has been associated with SLE [63].

Figure 39: A Manhattan plot with SNPs rs17087866, rs6532924, rs4699262 and
rs4637409 highlighted
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Table 56: Chromosome 4 - Top ten SNPs ranked for each method
Chromosome 4

SNP Position SPIKE LASSO FREQ EBEN
RS11466649 38776725 1 107 2516 0
RS9996228 38777517 2 0 29395 0
RS17087866 67876041 3 1 1 1
RS1497941 167058019 4 13 34243 18
RS904246 167044948 5 84 33257 0
RS788927 73364994 6 50 75 0
RS3775152 72630642 7 3 35835 0
RS6828254 110737549 8 6 7371 0
RS6532924 102239170 9 2 2 0
RS11133414 53069867 10 7 4045 0
RS17086015 56555805 12 4 227 0
RS4974786 4315388 22 5 9036 0
RS4585329 115560225 30 8 343 0
RS11569047 110909169 28 9 2172 235
RS17191192 74440419 21 10 4165 0
RS4699262 102726005 0 0 3 72
RS4637409 102753408 185 240 4 463
RS10031210 102714886 295 473 5 127
RS11944613 102718795 0 0 6 0
RS3733197 102839287 0 0 7 0
RS13146194 102723640 0 0 8 0
RS17266594 102750922 0 0 9 0
RS4699258 102710688 0 0 10 0
RS1351357 5746620 213 274 27 2
RS1459455 34595042 171 154 472 3
RS10005935 78682581 179 363 2028 4
RS1458043 81113195 217 432 21 5
RS1263338 2939018 182 148 1250 6
RS10024198 95060602 210 262 576 7
RS1491370 20908415 286 421 223 8
RS17473710 164571285 168 144 252 9
RS12649485 113350665 169 199 81 10
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Table 57: Chromosome 4 - Top ten SNPs for each method
Chromosome 4

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS11466649 -1.95E+00 -1.28E-01 1.48E-02 0
RS9996228 -1.61E+00 0 7.47E-01 0
RS17087866 -1.49E+00 -1.21E+00 2.80E-21 1.79E-11
RS1497941 1.30E+00 3.96E-01 9.20E-01 2.69E-02
RS904246 -1.28E+00 -1.47E-01 8.83E-01 0
RS788927 -1.26E+00 -1.84E-01 6.38E-06 0
RS3775152 1.21E+00 6.12E-01 9.78E-01 0
RS6828254 1.14E+00 5.39E-01 8.94E-02 0
RS6532924 1.13E+00 7.26E-01 3.10E-17 0
RS11133414 1.13E+00 4.89E-01 3.31E-02 0
RS17086015 -1.10E+00 -6.11E-01 1.34E-04 0
RS4974786 -8.74E-01 -5.65E-01 1.24E-01 0
RS4585329 7.43E-01 4.43E-01 3.12E-04 0
RS11569047 7.91E-01 4.43E-01 1.15E-02 2.21E-01
RS17191192 8.90E-01 4.20E-01 3.48E-02 0
RS4699262 0 0 4.74E-11 9.14E-02
RS4637409 6.89E-02 6.32E-02 6.22E-10 3.85E-01
RS10031210 -3.87E-02 -3.80E-02 1.30E-09 1.41E-01
RS11944613 0 0 1.50E-09 0
RS3733197 0 0 2.45E-09 0
RS13146194 0 0 4.89E-09 0
RS17266594 0 0 5.35E-09 0
RS4699258 0 0 6.60E-09 0
RS1351357 5.54E-02 5.71E-02 1.67E-07 1.66E-03
RS1459455 7.85E-02 9.20E-02 6.81E-04 4.42E-03
RS10005935 -7.01E-02 -4.47E-02 1.04E-02 5.91E-03
RS1458043 5.35E-02 3.81E-02 1.09E-07 9.04E-03
RS1263338 7.02E-02 9.49E-02 4.55E-03 1.14E-02
RS10024198 5.62E-02 5.96E-02 1.03E-03 1.33E-02
RS1491370 3.98E-02 3.92E-02 1.27E-04 1.36E-02
RS17473710 -9.89E-02 -9.63E-02 1.61E-04 1.37E-02
RS12649485 9.57E-02 7.25E-02 7.85E-06 1.48E-02
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Table 58: An area of SNPs in gene BANK1 around three associated risk alleles,
two (underlined) found by Langefeld et al in 2017 and one (bold) found by
Bentham et al. The lower block of six SNPs are in high linkage disequilibrium.

Chromosome 4
SNP Position SPIKE LASSO FREQ EBEN

RS10031210 102714886 -3.87E-02 -3.80E-02 1.30E-09 1.41E-01
RS11944613 102718795 0 0 1.50E-09 0
RS13146194 102723640 0 0 4.89E-09 0
RS4699262 102726005 0 0 4.74E-11 9.14E-02
RS6833249 102726073 0 0 2.18E-01 0
RS13136297 102736456 0 0 1.30E-08 2.60E-01
RS10028805 102737250 0 0 1.18E-08 0
RS4276281 102746780 0 0 1.36E-07 0
RS17266594 102750922 0 0 5.35E-09 0
RS10516486 102751276 0 0 1.12E-07 4.68E-01
RS4637409 102753408 6.89E-02 6.32E-02 6.22E-10 3.85E-01

Figure 40: A block of SNPs around three associated risk alleles rs10028805,
rs17266594 and rs4637409 in high linkage disequilibrium.
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B.3 Chromosome 7

For chromosome 7, from 33932 SNPs, the spike method produced 1366 non-zero
variables, lasso method produced 2246 and the EBEN method produced 1154.

Hom et al [7] had observed an association between rs10488631 and lupus.
Bentham et al [4] produced significant results too. In this study, all methods
produced a rank of 122nd or lower with the frequentist method calculating it as
the lowest ranked SNP.

In the gene IKZF1 Han et al [102] made an association with SNP rs4917014
in Eastern Asian population followed by studies from Bentham et al in Euro-
peans and a mixed population study from Morris et al [47]. All 4 methods chose
the SNP ranking between 33rd and 311th.

In a study by Gateva et al [60], SNP rs849142 was found by all 4 methods
but weakly.

Associated SNP rs729302 [127] was ranked 13th by frequentist method with
a p-value of 4.59E-18 and EBEN producing a p-value of 4.72E-02 and was
17th rank. Another notable hit was rs10954213 that has been associated with
Japanese and Korean population [128] ranked 10th by the frequentist method.

In a study from Langefeld et al [63] over a wide population the SNP rs2092540
was found to have an association. The risk locus in the gene SKAP2 was found
by all four methods although weakly.

SNP rs4728142 in the gene IRF5 was originally observed in a study by Han
et al in 2009 in East Asian population followed up by Armstrong et al [62] in
2014 in Europeans. Strong results were observed from all four methods for this
SNP.

SNPs associated rs150518861 and rs73135369 by Julia et al [64] and Morris
et al respectively, were not found in the study.

Figure 41: A Manhattan plot with the top ranked SNP 10488631 highlighted

121



Table 59: Chromosome 7 - Top ten SNPs ranked for each method
Chromosome 7

SNP Position SPIKE LASSO FREQ EBEN

RS10264693 134289147 1 1 3 1
RS12540166 88573021 2 7 25864 711
RS17880470 94993261 3 29 6906 0
RS17161201 139576284 4 45 10141 0
RS12535041 88573471 5 10 36 0
RS10225000 141728209 6 24 740 0
RS17161202 139578862 7 20 22151 429
RS6960030 89825608 8 5 1117 0
RS17144825 21677467 9 3 550 137
RS10279821 128683547 10 86 16 20
RS17161157 139521462 18 2 2042 0
RS2699717 118468611 23 4 1940 0
RS11970855 71280299 13 6 13482 0
RS17156813 82515876 20 8 22253 481
RS6979581 108506274 11 9 8521 0
RS10488631 128594183 122 28 1 6
RS13246321 128701331 0 0 2 7
RS3807306 128580680 0 224 4 2
RS4728142 128573967 106 96 5 3
RS17425212 128721724 0 0 6 546
RS752637 128579420 0 0 7 177
RS3757385 128577304 0 110 8 54
RS17340646 128722514 0 0 9 117
RS10954213 128589427 0 0 10 164
RS6973874 26657873 127 121 25 4
RS4723133 32247043 132 168 384 5
RS10242586 13497326 226 257 127 8
RS40634 81892962 211 364 3014 9
RS865860 42121553 178 303 35 10
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Table 60: Chromosome 7 - Top ten SNPs for each method
Chromosome 7

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS10264693 -1.87E+00 -1.55E+00 1.47E-36 1.11E-08
RS12540166 1.44E+00 5.69E-01 6.94E-01 5.39E-01
RS17880470 1.43E+00 3.23E-01 9.17E-02 0
RS17161201 1.27E+00 2.52E-01 1.69E-01 0
RS12535041 -1.20E+00 -4.48E-01 1.61E-06 0
RS10225000 -1.15E+00 -3.35E-01 2.41E-03 0
RS17161202 1.14E+00 3.53E-01 5.56E-01 3.87E-01
RS6960030 -1.14E+00 -5.96E-01 4.66E-03 0
RS17144825 1.09E+00 6.70E-01 1.46E-03 2.00E-01
RS10279821 -1.07E+00 -1.66E-01 2.05E-15 5.26E-02
RS17161157 -8.54E-01 -6.74E-01 1.25E-02 0
RS2699717 -7.07E-01 -6.21E-01 1.15E-02 0
RS11970855 1.00E+00 5.79E-01 2.63E-01 0
RS17156813 7.98E-01 5.14E-01 5.60E-01 4.15E-01
RS6979581 1.04E+00 5.04E-01 1.29E-01 0
RS10488631 2.97E-01 3.27E-01 8.86E-43 5.85E-03
RS13246321 0 0 1.28E-42 7.02E-03
RS3807306 0 8.00E-02 2.36E-34 2.79E-04
RS4728142 3.52E-01 1.53E-01 6.29E-32 3.30E-04
RS17425212 0 0 8.36E-27 4.47E-01
RS752637 0 0 1.33E-20 2.32E-01
RS3757385 0 -1.35E-01 2.23E-20 9.83E-02
RS17340646 0 0 5.65E-20 1.81E-01
RS10954213 0 0 2.12E-18 2.28E-01
RS6973874 -1.04E-01 -1.04E-01 3.69E-08 6.60E-04
RS4723133 -1.03E-01 -9.53E-02 7.56E-04 3.80E-03
RS10242586 4.65E-02 7.30E-02 8.77E-05 9.92E-03
RS40634 4.99E-02 5.49E-02 2.42E-02 2.27E-02
RS865860 -5.46E-02 -6.21E-02 1.56E-06 3.28E-02
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B.4 Chromosome 8

SNP rs2736340 has been associated with lupus including Gateva et al [60],
Bentham et al [4], Marquez et al [107], and Chung et al [61]. This has been
reported to be a risk locus for rheumatoid athritis [129], lupus, systemic sclerosis
in European populations [130] and was found to be a risk for mucocutaneous
lymph node syndrome in Asians. Only the frequentist method ranked it 4th
while the others produced a zero-beta coefficient. Meanwhile rs13277113 which
is the closest SNP to rs2736340 and has a LD score of R2 = 0.978 and D’ =
0.994, with rankings lower than 112th and below across all four methods.

Figure 42: A Manhattan plot of the 3 SNPs with the lowest p-values highlighted
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Table 61: Chromosome 8 - Top ten SNPs ranked for each method
Chromosome 8

SNP Position SPIKE LASSO FREQ EBEN

RS1519371 139549273 1 2 66 0
RS7000460 19803802 2 30 29694 537
RS1470186 19795789 3 979 32901 0
RS10106666 65534695 4 1 7303 0
RS7008834 34567092 5 78 2395 4
RS1882851 91293849 6 0 10526 0
RS7826148 34568015 7 0 1770 34
RS28473203 144873279 8 4 84 1511
RS16889548 118292446 9 3 25102 3
RS16904269 91297472 10 23 7564 1137
RS7823055 55511676 15 5 1 0
RS10090071 108705946 13 6 33193 458
RS17063339 5369835 24 7 32067 118
RS10089147 114878624 12 8 29788 415
RS1358115 4400199 14 9 32861 66
RS16920295 56984164 26 10 11773 126
RS7386188 50609940 0 0 2 0
RS922483 11351912 0 0 3 0
RS2736340 11343973 0 0 4 0
RS13277113 11349186 112 62 5 31
RS2618476 11352541 0 0 6 0
RS2409781 11359557 0 0 7 0
RS367543 9034148 242 391 8 132
RS1600249 11359638 0 0 9 0
RS7832722 10965442 0 0 10 0
RS4739035 55513201 69 49 12873 1
RS10096780 77402241 128 117 30489 2
RS369240 55523753 111 244 26433 5
RS10101497 77476499 144 214 1209 6
RS2732987 5542087 113 92 21503 7
RS6558668 2426503 114 100 141 8
RS12674710 18263663 45 110 22347 9
RS17243536 122782960 149 237 2419 10
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Table 62: Chromosome 8 - Top ten SNPs for each method
Chromosome 8

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS1519371 1.22E+00 6.95E-01 6.71E-06 0
RS7000460 -1.20E+00 -1.94E-01 8.47E-01 7.10E-02
RS1470186 1.11E+00 8.73E-03 9.83E-01 0
RS10106666 -1.10E+00 -9.24E-01 8.63E-02 0
RS7008834 1.04E+00 1.29E-01 1.16E-02 1.55E-07
RS1882851 9.55E-01 0 1.60E-01 0
RS7826148 -9.51E-01 0 6.49E-03 1.68E-04
RS28473203 -9.11E-01 -4.90E-01 9.61E-06 4.22E-01
RS16889548 -8.84E-01 -6.34E-01 6.64E-01 1.25E-07
RS16904269 8.40E-01 2.24E-01 9.12E-02 2.65E-01
RS7823055 7.55E-01 3.89E-01 4.45E-31 0
RS10090071 7.69E-01 3.81E-01 9.95E-01 5.44E-02
RS17063339 6.75E-01 3.64E-01 9.47E-01 4.55E-03
RS10089147 7.77E-01 3.63E-01 8.51E-01 4.51E-02
RS1358115 7.65E-01 3.52E-01 9.81E-01 1.25E-03
RS16920295 6.65E-01 3.37E-01 1.95E-01 5.03E-03
RS7386188 0 0 4.49E-20 0
RS922483 0 0 2.27E-15 0
RS2736340 0 0 2.96E-15 0
RS13277113 2.58E-01 1.41E-01 8.99E-15 1.24E-04
RS2618476 0 0 1.08E-13 0
RS2409781 0 0 6.42E-12 0
RS367543 4.30E-02 3.45E-02 1.87E-09 5.60E-03
RS1600249 0 0 2.66E-09 0
RS7832722 0 0 2.85E-09 0
RS4739035 4.50E-01 1.64E-01 2.28E-01 1.99E-08
RS10096780 1.10E-01 8.61E-02 8.79E-01 5.69E-08
RS369240 2.76E-01 5.02E-02 7.18E-01 1.27E-06
RS10101497 6.26E-02 5.53E-02 3.14E-03 1.34E-06
RS2732987 1.26E-01 1.08E-01 5.26E-01 2.02E-06
RS6558668 -1.26E-01 -9.61E-02 2.79E-05 2.17E-06
RS12674710 5.38E-01 9.27E-02 5.57E-01 4.39E-06
RS17243536 5.85E-02 5.14E-02 1.18E-02 4.67E-06
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Figure 43: A LD heatmap of a section of gene BLK. The three SNPs highlighted
are in strong linkage disequilibrium.

Each SNP in Figure 43 has been observed as associated by three different
studies (Gateva et al rs2736340 [60], Hom et al [7] rs13277113 and Graham et
al [59] rs2618476). These SNPs were ranked 4th,5th and 6th respectively by the
frequentist method.

127



B.5 Chromosome 9

For chromosome 9, from 29764 SNPs, spike method produced 1349 non-zero
variables, lasso method produced 2390 and EBEN produced 1549.
Langefeld et al [63] made an association in the gene AK057451 at SNP rs11788118
in European Americans but no real association was made in this study.

Figure 44: A Manhattan plot with SNPs rs1183948 and rs10821228 highlighted
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Table 63: Chromosome 9 - Top ten SNPs ranked for each method
Chromosome 9

SNP Position SPIKE LASSO FREQ EBEN

RS3750538 90283514 1 15 225 186
RS3750539 90283509 2 115 29529 0
RS1935314 75729671 3 1 26 0
RS563666 136201470 4 6 19121 670
RS7869843 8746568 5 29 14729 0
RS7862733 21632534 6 136 4942 0
RS10975931 6951639 7 2 83 0
RS2065159 132830460 8 27 28006 127
RS7851378 132882000 9 444 22607 0
RS2029647 37223751 10 9 23701 418
RS7031192 129827789 12 7 286 0
RS7033105 138017572 24 3 3538 86
RS12683163 117815011 13 4 285 0
RS7866230 27474551 21 5 4454 190
RS873836 129567615 27 8 11969 0
RS7038413 139084388 36 10 14284 0
RS1183948 91025781 0 103 1 1202
RS10821228 96586062 215 424 2 8
RS2058485 122996420 128 148 3 1
RS951577 85040109 289 889 4 78
RS3119680 138781516 211 628 5 11
RS6478601 126017354 0 1998 6 0
RS2209725 84828677 0 0 7 0
RS1411664 85106906 0 0 8 0
RS10869701 78740727 402 257 9 124
RS7026194 31822916 0 114 10 0
RS10759637 116025024 150 625 16363 2
RS10974623 4560243 133 192 134 3
RS7869617 113060439 152 482 597 4
RS10810534 16233085 144 299 53 5
RS1173099 93441674 157 320 2582 6
RS1061407 6532544 135 315 81 7
RS12339193 76185813 170 219 1023 9
RS7854358 2759058 147 338 14 10
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Table 64: Chromosome 9 - Top ten SNPs for each method
Chromosome 9

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS3750538 -2.21E+00 -4.40E-01 2.28E-04 9.64E-02
RS3750539 1.87E+00 1.54E-01 9.89E-01 0
RS1935314 1.29E+00 7.68E-01 6.05E-06 0
RS563666 1.20E+00 5.93E-01 5.26E-01 3.00E-01
RS7869843 1.07E+00 3.44E-01 3.49E-01 0
RS7862733 1.03E+00 1.39E-01 6.05E-02 0
RS10975931 1.01E+00 6.61E-01 3.23E-05 0
RS2065159 9.94E-01 3.63E-01 9.24E-01 6.95E-02
RS7851378 9.67E-01 5.47E-02 6.78E-01 0
RS2029647 9.62E-01 5.10E-01 7.26E-01 2.04E-01
RS7031192 -8.97E-01 -5.57E-01 3.44E-04 0
RS7033105 -8.09E-01 -6.48E-01 3.43E-02 4.51E-02
RS12683163 9.35E-01 6.23E-01 3.43E-04 0
RS7866230 -8.38E-01 -6.13E-01 5.08E-02 9.95E-02
RS873836 7.80E-01 5.14E-01 2.52E-01 0
RS7038413 6.83E-01 4.90E-01 3.33E-01 0
RS1183948 0 -1.67E-01 1.55E-10 5.29E-01
RS10821228 -4.81E-02 -5.72E-02 2.19E-08 5.65E-03
RS2058485 1.31E-01 1.34E-01 2.19E-08 4.28E-04
RS951577 -3.65E-02 -2.95E-02 4.01E-08 4.17E-02
RS3119680 -4.89E-02 -4.16E-02 1.61E-07 7.54E-03
RS6478601 0 5.15E-03 1.91E-07 0
RS2209725 0 0 2.05E-07 0
RS1411664 0 0 3.65E-07 0
RS10869701 2.71E-02 7.74E-02 7.25E-07 6.66E-02
RS7026194 0 -1.54E-01 9.66E-07 0
RS10759637 -6.72E-02 -4.17E-02 4.11E-01 1.01E-03
RS10974623 -8.65E-02 -1.03E-01 9.03E-05 3.33E-03
RS7869617 -6.65E-02 -5.13E-02 1.41E-03 3.77E-03
RS10810534 7.11E-02 7.42E-02 1.69E-05 3.94E-03
RS1173099 6.41E-02 6.99E-02 2.05E-02 4.36E-03
RS1061407 -8.15E-02 -7.15E-02 3.15E-05 4.97E-03
RS12339193 5.94E-02 9.56E-02 3.87E-03 5.83E-03
RS7854358 6.99E-02 6.80E-02 1.54E-06 6.28E-03
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B.6 Chromosome 10

For chromosome 10, from 34698 SNPs, spike method produced 1469 non-zero
variables, lasso method produced 2413 and EBEN method produced 1551.

An associated SNP rs4948496 from an Asian and European population re-
ported by Morris et al [43] and was observed by Bentham et al [4] was ranked
6th by the frequentist method, although had zero-coefficients with the other
methods. The adjacent SNPs are in strong linkage disequilibrium and have
been calculated as the SNP of choice by the variable selection methods. SNP
rs10821949 was ranked 13th by EBEN method meanwhile SNP rs6479782 has
joined SNP rs10821949 and shared the coefficients for spike and lasso methods
producing reduced ranks. (See Figure 46 below).

In Bentham et al study, SNP rs2663052 was found to be a risk locus for lupus.
The EBEN method produced a ranking of 45th while the frequentist calculated
a p-value of 8.72E-05 with a ranking of 187th, spike and slab methods ranked
151st and the lasso ranked 256th.

Figure 45: A Manhattan plot of the SNPs with the five lowest p-values high-
lighted
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Table 65: Chromosome 10 - Top ten SNPs ranked for each method
Chromosome 10

SNP Position SPIKE LASSO FREQ EBEN

RS17100053 84179976 1 1 159 0
RS10128274 31690213 2 27 17175 0
RS10826927 31559619 3 11 21564 105
RS10490914 27633772 4 265 7095 0
RS7078512 27632128 5 269 11095 0
RS7921206 73999284 6 52 11206 0
RS11000229 73993518 7 9 19438 61
RS12253008 84153036 8 14 9972 0
RS12249119 14399180 9 7 10059 43
RS7902030 57796442 10 4 208 0
RS1915446 63063518 11 2 6696 379
RS3765181 18836931 13 3 12424 34
RS4980199 125450986 18 5 340 0
RS4609552 33123586 14 6 603 0
RS12775513 23120547 28 8 4 11
RS17094705 118179627 32 10 22074 993
RS1034009 30757105 0 1238 1 633
RS7090925 8479868 367 570 2 75
RS7096374 8484113 0 0 3 0
RS6479782 63806809 1100 619 5 0
RS4948496 63805617 0 0 6 0
RS10821949 63811678 149 466 7 13
RS10826385 28326647 26 21 8 24
RS2646425 8470387 304 1115 9 0
RS11017735 132914909 162 122 10 48
RS10509601 92162800 100 77 12518 1
RS7922067 94819606 551 1567 10844 2
RS2441764 57141578 15 179 7579 3
RS3750768 71859747 169 189 32855 4
RS1782741 92226605 142 379 30734 5
RS7916325 57180675 16 715 5506 6
RS4750511 14391273 146 221 16 7
RS1878249 37416376 191 483 28267 8
RS4082517 71704566 145 170 32 9
RS10903888 2909884 152 187 1303 10
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Figure 46: Strong LD between the associated SNP rs4948496 and the closest
two SNPs
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Table 66: Chromosome 10 - Top ten SNPs for each method
Chromosome 10

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS17100053 -1.73E+00 -1.36E+00 6.56E-05 0
RS10128274 1.43E+00 2.94E-01 3.59E-01 0
RS10826927 1.30E+00 4.49E-01 5.08E-01 3.17E-03
RS10490914 1.16E+00 9.03E-02 8.37E-02 0
RS7078512 1.13E+00 8.99E-02 1.77E-01 0
RS7921206 1.10E+00 2.27E-01 1.80E-01 0
RS11000229 -1.07E+00 -5.03E-01 4.35E-01 1.06E-03
RS12253008 1.05E+00 4.02E-01 1.48E-01 0
RS12249119 -9.60E-01 -5.31E-01 1.50E-01 4.32E-04
RS7902030 9.38E-01 6.33E-01 1.11E-04 0
RS1915446 -9.21E-01 -6.46E-01 7.59E-02 4.74E-02
RS3765181 9.05E-01 6.35E-01 2.14E-01 1.49E-04
RS4980199 7.68E-01 5.45E-01 3.64E-04 0
RS4609552 -8.52E-01 -5.38E-01 1.19E-03 0
RS12775513 -6.70E-01 -5.05E-01 1.98E-10 1.25E-05
RS17094705 6.11E-01 4.53E-01 5.25E-01 1.88E-01
RS1034009 0 1.96E-02 3.63E-16 1.11E-01
RS7090925 3.44E-02 4.95E-02 2.19E-11 1.65E-03
RS7096374 0 0 8.66E-11 0
RS6479782 7.13E-03 4.58E-02 1.02E-09 0
RS4948496 0 0 1.47E-09 0
RS10821949 -1.06E-01 -5.82E-02 2.04E-09 1.91E-05
RS10826385 -6.99E-01 -3.38E-01 4.71E-09 7.76E-05
RS2646425 -4.05E-02 -2.25E-02 2.94E-08 0
RS11017735 -8.21E-02 -1.06E-01 4.21E-08 5.08E-04
RS10509601 -4.07E-01 -1.90E-01 2.16E-01 3.96E-11
RS7922067 -2.38E-02 -1.24E-02 1.70E-01 1.59E-10
RS2441764 -8.31E-01 -1.24E-01 9.31E-02 2.36E-09
RS3750768 7.58E-02 1.19E-01 9.30E-01 4.72E-08
RS1782741 -2.86E-01 -7.08E-02 8.48E-01 1.87E-07
RS7916325 -7.75E-01 -3.94E-02 5.51E-02 5.51E-07
RS4750511 -1.19E-01 -1.07E-01 3.07E-07 6.57E-07
RS1878249 -6.48E-02 -5.69E-02 7.55E-01 7.26E-07
RS4082517 -1.23E-01 -1.27E-01 3.67E-06 1.12E-06
RS10903888 9.89E-02 1.19E-01 4.61E-03 2.90E-06
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B.7 Chromosome 11

For chromosome 11, from 32336 SNPs, spike method produced 1319 non-zero
variables, lasso method produced 1648 and EBEN method produced 788.

SNP rs12802200 [4] ranked 6th by the frequentist method, p-value of 3.05E-
11 and featured in the top 125 ranked SNPs for the spike and lasso method.

All 4 methods found the SNP rs7941765 that was reported originally by
Bentham et al and followed up by Morris et al [43] and Din et al [131].

Bentham et al reported rs3794060 has an association with lupus and all
four methods have produced strong hits. Also reported was SNP rs2732549
has an association with lupus. This was backed up by Langefeld et al [63].
The frequentist method ranked it third while the variable selection methods
calculated zero-coefficients.

In a study by Han et al [102] with an Asian population the SNP rs4639966
was associated with lupus but this study had no hits.

The Morris et al study made an association with SNP rs494003 and the fre-
quentist method produced a robust result, but the other three methods achieved
zero-coefficients.

SNP rs2732552 in a report by Lessard et al [132] in a wide range of popu-
lations produced three zero-coefficients but a significant p-value of 1.81E-10 in
the frequentist method.

Another significant result from the frequentist method was for SNP rs4963128
originally reported by Gateva et al [60]. With a p-value of 5.59E-09 and a rank
of 25th. It also produced three zero-coefficients.

Figure 47: A Manhattan plot of the three SNPs with the lowest p-values high-
lighted
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Table 67: Chromosome 11 - Top ten SNPs ranked for each method
Chromosome 11

SNP Position SPIKE LASSO FREQ EBEN

RS2730034 62577233 1 1108 8770 0
RS2071035 62623017 2 0 27703 0
RS10790651 124082136 3 30 13962 50
RS4271385 22257284 4 53 9061 0
RS2568030 8926205 5 4 28141 295
RS11026467 22250659 6 11 7537 723
RS11219545 124136439 7 1130 16953 0
RS7123689 33695449 8 55 5579 627
RS1516985 35474901 9 1 61 0
RS12290650 33691318 10 28 5787 82
RS3842724 2185556 17 2 82 0
RS11603987 120920430 14 3 23430 16
RS669724 88712013 35 5 24976 1
RS7123001 130232220 31 6 16618 44
RS679051 68156821 40 7 11116 18
RS12418509 27566176 23 8 24817 55
RS7118237 20299460 28 9 8901 74
RS3136532 46760913 37 10 9705 241
RS353590 35120741 493 264 1 422
RS2246614 619789 0 191 2 9
RS2732549 35088399 0 0 3 0
RS11246221 630124 0 1501 4 633
RS693163 35074665 1302 481 5 392
RS12802200 566936 124 100 6 314
RS11246217 623765 0 0 7 0
RS11246213 612967 0 497 8 0
RS10902178 612843 0 0 9 0
RS12805435 612355 0 0 10 0
RS11219741 99262251 92 136 12728 2
RS10431006 49010832 11 17 2353 3
RS593525 65727799 0 0 10012 4
RS1893361 74399425 135 106 3690 5
RS552130 65732800 0 1077 5234 6
RS7932189 44691091 127 161 120 7
RS7118447 99015224 821 1308 3604 8
RS10892549 120075574 131 195 122 10
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Table 68: Chromosome 11 - Top ten SNPs for each method
Chromosome 11

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS2730034 1.45E+00 9.41E-03 1.34E-01 0
RS2071035 -1.43E+00 0 8.09E-01 0
RS10790651 1.42E+00 2.57E-01 2.80E-01 2.62E-03
RS4271385 1.34E+00 2.03E-01 1.41E-01 0
RS2568030 1.34E+00 5.28E-01 8.27E-01 4.62E-02
RS11026467 1.29E+00 3.86E-01 1.06E-01 1.92E-01
RS11219545 -1.27E+00 -8.88E-03 3.84E-01 0
RS7123689 -1.23E+00 -1.93E-01 6.33E-02 1.45E-01
RS1516985 1.15E+00 6.73E-01 4.31E-07 0
RS12290650 1.10E+00 2.66E-01 6.76E-02 7.09E-03
RS3842724 9.22E-01 5.79E-01 2.29E-06 0
RS11603987 1.03E+00 5.29E-01 6.37E-01 4.84E-04
RS669724 -6.64E-01 -5.27E-01 6.97E-01 5.14E-09
RS7123001 -6.99E-01 -4.73E-01 3.73E-01 2.38E-03
RS679051 6.35E-01 4.66E-01 1.95E-01 5.93E-04
RS12418509 7.95E-01 4.32E-01 6.91E-01 3.28E-03
RS7118237 7.09E-01 4.28E-01 1.37E-01 5.71E-03
RS3136532 6.59E-01 4.16E-01 1.57E-01 3.57E-02
RS353590 2.29E-02 5.28E-02 5.53E-14 7.63E-02
RS2246614 0 -7.13E-02 4.62E-13 1.96E-04
RS2732549 0 0 9.22E-13 0
RS11246221 0 1.68E-03 1.13E-11 1.50E-01
RS693163 3.19E-04 3.13E-02 1.25E-11 6.96E-02
RS12802200 -2.65E-01 -1.11E-01 3.05E-11 5.11E-02
RS11246217 0 0 5.06E-11 0
RS11246213 0 3.04E-02 6.24E-11 0
RS10902178 0 0 9.23E-11 0
RS12805435 0 0 1.19E-10 0
RS11219741 -3.79E-01 -9.34E-02 2.42E-01 1.56E-06
RS10431006 -1.08E+00 -3.39E-01 1.49E-02 1.97E-06
RS593525 0 0 1.65E-01 6.37E-05
RS1893361 8.43E-02 1.16E-01 3.10E-02 6.91E-05
RS552130 0 1.01E-02 5.65E-02 1.22E-04
RS7932189 -9.82E-02 -8.15E-02 1.21E-05 1.23E-04
RS7118447 1.08E-02 4.87E-03 2.97E-02 1.33E-04
RS10892549 -8.84E-02 -7.09E-02 1.23E-05 1.97E-04
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Figure 48: A block of SNPs in near perfect linkage disequilibrium between 5 of
the top 10 SNPs by the frequentist method

138



B.8 Chromosome 12

For chromosome 12, from 31785 SNPs, spike method produced 1280 non-zero
variables, lasso method produced 1879 and EBEN method produced 1504.

Bentham et al [4] discovered the association between SNP rs10774625 and
lupus, with all four methods finding the hit. It ranked 14th in the frequentist
method, 156th in EBEN method and was also found in the other methods but
not highly ranked. Morris et al 2016 [43] combined study of European and
Chinese populations also found the associated SNP rs10774625.

SNP rs1059312 in the gene SLC15A4 failed to be found by the spike method
although the other three methods did achieve some results. This locus has been
found in European, African American, Hispanic, and East Asian populations in
Studies by Bentham et al [4], Morris et al, Lessard et al [114] and Langefeld et
al [63], respectively.

In the Langefeld et al study of a wide range of populations, SNP rs17005500
in the gene SYT1 was found to be associated. Spike method did not find this,
but the other three methods did.

In the gene GPR19, the SNP rs34330 was found by the frequentist method
and EBEN although weakly. The study by Yang et al [118] was based on Asian
populations.

Figure 49: A Manhattan plot with SNP rs12309414 highlighted
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Table 69: Chromosome 12 - Top ten SNPs ranked for each method
Chromosome 12

SNP Position SPIKE LASSO FREQ EBEN

RS12309414 18665717 1 1 1 0
RS1564363 21292864 2 3 2 15
RS1797738 31943705 3 120 4464 0
RS10506079 31942106 4 74 6224 796
RS3741809 68595144 5 62 2940 106
RS7294681 105636626 6 597 6272 0
RS10748101 68595787 7 139 5014 0
RS10844643 33734888 8 51 232 0
RS12303965 79206944 9 14 121 0
RS17014005 86813440 10 148 5287 0
RS784892 53822884 13 2 27122 120
RS11047429 24569816 21 4 1275 0
RS2159889 8932110 14 5 9260 0
RS2114900 30919900 25 6 149 0
RS11052707 33589388 45 7 118 0
RS7971685 16156039 46 8 509 0
RS16934306 29630386 31 9 4638 1268
RS1305267 81165156 26 10 22 0
RS11065987 112072424 0 0 3 977
RS1009858 129261435 0 0 4 0
RS7967537 24819762 480 1222 5 572
RS17696736 112486818 0 0 6 621
RS970290 24730245 0 0 7 0
RS10747786 58260601 0 0 8 115
RS11066320 112906415 211 0 9 1031
RS1487657 24722254 0 0 10 0
RS2364484 6511996 122 98 57 1
RS6539072 103777832 128 160 2025 2
RS2667444 34092598 232 661 23 3
RS10842027 22625661 117 52 2263 4
RS201403 99230509 164 333 127 5
RS11060370 129960343 133 179 424 6
RS7965458 12826806 131 235 159 7
RS10773579 129294881 32 318 21636 8
RS17286243 96088546 132 248 645 9
RS7294479 9473157 134 295 771 10
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Table 70: Chromosome 12 - Top ten SNPs for each method
Chromosome 12

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS12309414 -2.54E+00 -2.01E+00 5.70E-37 0
RS1564363 -1.71E+00 -5.82E-01 2.88E-11 1.14E-02
RS1797738 1.27E+00 1.16E-01 4.22E-02 0
RS10506079 1.19E+00 1.58E-01 7.65E-02 4.34E-01
RS3741809 -1.14E+00 -1.75E-01 2.00E-02 7.57E-02
RS7294681 -1.07E+00 -3.23E-02 7.75E-02 0
RS10748101 1.06E+00 1.05E-01 5.14E-02 0
RS10844643 1.04E+00 1.97E-01 1.84E-04 0
RS12303965 9.85E-01 3.35E-01 3.94E-05 0
RS17014005 9.62E-01 9.97E-02 5.67E-02 0
RS784892 9.14E-01 5.91E-01 8.05E-01 8.24E-02
RS11047429 -7.83E-01 -5.79E-01 4.49E-03 0
RS2159889 9.05E-01 5.31E-01 1.47E-01 0
RS2114900 -7.63E-01 -5.14E-01 6.49E-05 0
RS11052707 5.67E-01 4.45E-01 3.63E-05 0
RS7971685 -5.68E-01 -4.42E-01 8.03E-04 0
RS16934306 -6.72E-01 -4.16E-01 4.52E-02 6.57E-01
RS1305267 7.51E-01 4.07E-01 1.06E-07 0
RS11065987 0 0 2.19E-09 5.14E-01
RS1009858 0 0 2.96E-09 0
RS7967537 2.28E-02 1.04E-02 5.01E-09 3.25E-01
RS17696736 0 0 6.29E-09 3.54E-01
RS970290 0 0 8.05E-09 0
RS10747786 0 0 1.37E-08 7.95E-02
RS11066320 4.67E-02 0 1.39E-08 5.43E-01
RS1487657 0 0 1.53E-08 0
RS2364484 -1.58E-01 -1.31E-01 4.10E-06 2.45E-05
RS6539072 -1.04E-01 -9.45E-02 1.04E-02 6.79E-04
RS2667444 4.29E-02 2.89E-02 1.11E-07 2.34E-03
RS10842027 -2.70E-01 -1.89E-01 1.24E-02 2.44E-03
RS201403 -5.72E-02 -5.35E-02 4.31E-05 2.61E-03
RS11060370 -8.23E-02 -8.89E-02 5.84E-04 4.84E-03
RS7965458 -9.61E-02 -7.06E-02 7.72E-05 5.25E-03
RS10773579 -6.49E-01 -5.50E-02 5.80E-01 5.35E-03
RS17286243 9.37E-02 6.75E-02 1.15E-03 6.19E-03
RS7294479 8.08E-02 5.91E-02 1.75E-03 6.46E-03
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B.9 Chromosome 13

For chromosome 13, from 24265 SNPs, spike method produced 1175 non-zero
variables, lasso method produced 1470 and EBEN method produced 1334. There
are no recorded SNPs that are associated with lupus on chromosome 13.

Figure 50: A Manhattan plot with SNP rs2860392 and rs7325300 highlighted
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Table 71: Chromosome 13 - Top ten SNPs ranked for each method
Chromosome 13

SNP Position SPIKE LASSO FREQ EBEN

RS9582104 97738934 1 1 4 0
RS12431281 108845919 2 2 6003 4
RS16972194 108920961 3 5 1334 0
RS2860392 46085180 4 177 2 68
RS2985970 46085864 5 0 21242 0
RS9555736 111497851 6 10 19942 5
RS9529059 66991537 7 667 7982 528
RS9522500 89956070 8 34 2741 0
RS7982531 73547569 9 202 6746 0
RS1373496 66987127 10 0 22647 0
RS8001449 35035782 29 3 7 0
RS7994107 78574175 14 4 22522 469
RS17089102 54521057 33 6 10847 94
RS3013348 56004322 22 7 4192 56
RS9588246 111372460 15 8 23 0
RS865296 108537405 19 9 444 0
RS7325300 107114450 130 181 1 23
RS912784 46785521 126 57 3 206
RS1198329 50390096 505 0 5 0
RS4943189 34736943 0 1452 6 60
RS7992673 41776362 487 431 8 186
RS9535343 50370004 183 222 9 59
RS12429751 28054171 0 212 10 0
RS9574551 36347006 145 189 359 1
RS9598029 34297679 50 15 20764 2
RS9518442 102208507 132 352 4523 3
RS17068766 47314896 66 22 11549 6
RS1183680 112057748 165 300 10951 7
RS6561393 48194319 126 67 21117 8
RS7332131 19619863 136 266 492 9
RS11840971 51615784 134 173 38 10
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Table 72: Chromosome 13 - Top ten SNPs for each method
Chromosome 13

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS9582104 -1.67E+00 -1.29E+00 3.22E-07 0
RS12431281 1.32E+00 6.95E-01 1.10E-01 6.64E-04
RS16972194 1.27E+00 5.79E-01 9.19E-03 0
RS2860392 1.19E+00 7.69E-02 3.92E-08 2.34E-02
RS2985970 1.11E+00 0 8.28E-01 0
RS9555736 -1.09E+00 -4.25E-01 7.58E-01 8.57E-04
RS9529059 1.08E+00 2.11E-02 2.11E-02 2.50E-01
RS9522500 1.07E+00 2.20E-01 2.20E-01 0
RS7982531 1.06E+00 6.75E-02 1.32E-01 0
RS1373496 -1.05E+00 0 9.08E-01 0
RS8001449 -7.96E-01 -5.98E-01 1.38E-06 0
RS7994107 9.48E-01 5.86E-01 9.00E-01 2.22E-01
RS17089102 7.51E-01 5.18E-01 2.92E-01 3.79E-02
RS3013348 8.75E-01 5.04E-01 6.04E-02 1.77E-02
RS9588246 9.18E-01 4.52E-01 1.24E-05 0
RS865296 8.84E-01 4.25E-01 1.42E-03 0
RS7325300 6.09E-02 7.52E-02 3.73E-08 4.86E-03
RS912784 -2.88E-01 -1.71E-01 2.10E-07 9.91E-02
RS1198329 -2.12E-02 0 3.53E-07 0
RS4943189 0 -2.15E-04 5.20E-07 5.37E-01
RS7992673 2.20E-02 3.41E-02 1.60E-06 8.91E-02
RS9535343 -5.27E-02 -6.23E-02 1.89E-06 1.85E-02
RS12429751 0 -6.51E-02 2.16E-06 0
RS9574551 -7.00E-02 -7.01E-02 9.47E-04 1.93E-05
RS9598029 5.85E-01 3.70E-01 8.02E-01 5.40E-04
RS9518442 8.23E-02 4.10E-02 6.78E-02 5.97E-04
RS17068766 4.95E-01 3.15E-01 3.28E-01 1.21E-03
RS1183680 -5.91E-02 -4.78E-02 2.97E-01 1.72E-03
RS6561393 2.89E-01 1.64E-01 8.21E-01 1.81E-03
RS7332131 7.55E-02 5.23E-02 1.70E-03 2.01E-03
RS11840971 -8.09E-02 -7.74E-02 2.39E-05 2.01E-03
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B.10 Chromosome 14

For chromosome 14, from 20959 SNPs, spike method produced 1438 non-zero
variables, lasso method produced 1398 and EBEN method produced 1038.

All four methods found Bentham et al [4] associated SNP rs4902562 but
none were highly ranked.

Figure 51: A Manhattan plot with SNPs rs7159637 and rs17091347highlighted
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Table 73: Chromosome 14 - Top ten SNPs ranked for each method
Chromosome 14

SNP Position SPIKE LASSO FREQ EBEN

RS7154718 64143825 1 0 9625 603
RS7142737 64120206 2 1249 57 201
RS17123116 51371081 3 8 408 7
RS10162571 79958705 4 2 61 568
RS8016080 45373245 5 3 13 0
RS11844619 80082435 6 4 11840 47
RS10132507 31032594 7 5 12354 34
RS10139102 59247190 8 27 6274 22
RS7140746 98244968 9 21 2151 0
RS2275466 51372315 10 735 2187 747
RS17091347 56820049 15 1 1 101
RS10130000 35068168 48 6 2659 172
RS10139139 84114680 42 7 9 0
RS10132319 21423801 45 9 129 11
RS6575958 103716196 13 10 10 9
RS7159637 73123376 0 1074 2 0
RS2803977 73114476 55 22 3 392
RS1957309 60312064 306 477 4 709
RS10148669 96584980 64 16 5 721
RS7159986 73162115 487 116 6 165
RS10137902 86013442 0 0 7 0
RS17096723 60352299 0 0 8 0
RS10148260 22926322 18 35 18556 1
RS4906205 102932447 49 317 12989 2
RS12147516 22915816 22 73 8137 3
RS11851013 66016212 17 48 2164 4
RS12431702 30088138 289 386 12650 5
RS1255720 64009521 129 259 9751 6
RS3818263 92588002 228 417 8369 8
RS2096023 RS2096023 124 254 5129 10
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Table 74: Chromosome 14 - Top ten SNPs for each method
Chromosome 14

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS7154718 -1.77E+00 0 3.03E-01 1.06E-01
RS7142737 -1.71E+00 -1.68E-03 6.38E-05 1.12E-02
RS17123116 1.42E+00 4.66E-01 1.26E-03 2.61E-08
RS10162571 1.28E+00 7.89E-01 6.75E-05 9.39E-02
RS8016080 1.27E+00 7.59E-01 1.10E-06 0
RS11844619 1.24E+00 6.62E-01 4.25E-01 1.38E-04
RS10132507 1.21E+00 6.20E-01 4.54E-01 4.67E-05
RS10139102 -1.13E+00 -2.66E-01 1.48E-01 4.29E-06
RS7140746 -1.13E+00 -2.95E-01 2.19E-02 0
RS2275466 1.13E+00 1.64E-02 2.26E-02 1.57E-01
RS17091347 1.06E+00 9.71E-01 9.84E-13 1.64E-03
RS10130000 -6.44E-01 -5.09E-01 3.25E-02 7.12E-03
RS10139139 7.09E-01 4.72E-01 5.60E-07 0
RS10132319 -6.68E-01 -4.64E-01 2.26E-04 1.89E-07
RS6575958 -1.10E+00 -4.49E-01 8.86E-07 5.32E-08
RS7159637 0 -6.00E-03 6.93E-10 0
RS2803977 -5.83E-01 -2.89E-01 2.02E-09 4.78E-02
RS1957309 -3.67E-02 -2.88E-02 8.55E-08 1.47E-01
RS10148669 5.35E-01 3.44E-01 1.09E-07 1.51E-01
RS7159986 -2.37E-02 -9.95E-02 1.60E-07 6.57E-03
RS10137902 0 0 2.82E-07 0
RS17096723 0 0 4.84E-07 0
RS10148260 1.04E+00 2.39E-01 8.45E-01 2.40E-14
RS4906205 6.36E-01 4.42E-02 4.91E-01 9.59E-11
RS12147516 9.71E-01 1.52E-01 2.31E-01 3.05E-10
RS11851013 1.04E+00 1.94E-01 2.22E-02 3.66E-09
RS12431702 -3.87E-02 -3.56E-02 4.72E-01 1.48E-08
RS1255720 8.28E-02 3.10E-01 2.32E-08
RS3818263 4.55E-02 3.29E-02 2.42E-01 3.06E-08
RS2096023 8.89E-02 5.35E-02 1.05E-01 1.82E-07
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B.11 Chromosome 15

For chromosome 15, from 19521 SNPs, spike method produced 1143 non-zero
variables, lasso method produced 1196 and EBEN method produced 747.

All four methods found rs2289583 in the gene CSK and were in the top 100
including EBEN method being highest ranked SNP.

All 4 methods found rs8035957 that was picked out in a study by Wen et
al [133] in a Chinese population

Figure 52: A Manhattan plot with SNPs rs8028907 and rs916977 highlighted
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Table 75: Chromosome 15 - Top ten SNPs ranked for each method
Chromosome 15

SNP Position SPIKE LASSO FREQ EBEN

RS4774617 52553744 1 8 2359 0
RS4496072 52552535 2 4 3060 624
RS7175376 72842192 3 7 5010 678
RS311917 69358613 4 0 1763 0
RS16957064 72827051 5 28 13548 0
RS2470104 48334867 6 1 921 541
RS2290622 51594669 7 12 13096 0
RS311893 69325581 8 0 2007 0
RS8043143 42948674 9 11 10472 0
RS12592573 43035004 10 62 8185 0
RS9920741 69233869 12 2 15609 0
RS16961587 49052809 11 3 13085 0
RS724099 56650343 19 5 899 0
RS2899058 42818026 18 6 18648 0
RS7342673 52799364 40 9 12235 0
RS7178949 80778153 26 10 3850 0
RS8028907 44574649 0 0 1 0
RS916977 28513364 353 299 2 9
RS4778138 28335820 0 0 3 100
RS7174027 28328765 115 287 4 115
RS4778241 28338713 0 0 5 116
RS3935591 28374012 0 0 6 609
RS12593929 28359258 142 131 7 441
RS12917449 74331659 180 142 8 37
RS2289583 75311036 93 66 9 1
RS7495174 28344238 0 0 10 0
RS925480 70737052 92 34 883 2
RS1947057 86552956 99 78 481 3
RS2656065 78750549 125 205 14379 4
RS17423970 48302064 206 245 56 5
RS4622471 81634574 196 247 210 6
RS16962243 49562732 124 171 496 7
RS2663907 81373032 106 151 160 8
RS627101 64900526 189 301 607 10
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Table 76: Chromosome 15 - Top ten SNPs for each method
Chromosome 15

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS4774617 1.50E+00 3.02E-01 3.04E-02 0
RS4496072 1.36E+00 3.85E-01 4.97E-02 6.61E-01
RS7175376 1.26E+00 3.07E-01 1.18E-01 7.12E-01
RS311917 1.19E+00 0 1.84E-02 0
RS16957064 -1.13E+00 -2.13E-01 5.99E-01 0
RS2470104 1.08E+00 6.41E-01 5.09E-03 5.95E-01
RS2290622 1.05E+00 2.92E-01 5.69E-01 0
RS311893 9.96E-01 0 2.33E-02 0
RS8043143 9.88E-01 2.94E-01 4.08E-01 0
RS12592573 9.77E-01 1.42E-01 2.74E-01 0
RS9920741 8.81E-01 5.25E-01 7.38E-01 0
RS16961587 -9.18E-01 -4.65E-01 5.68E-01 0
RS724099 7.70E-01 3.75E-01 4.87E-03 0
RS2899058 7.78E-01 3.48E-01 9.43E-01 0
RS7342673 5.63E-01 3.02E-01 5.13E-01 0
RS7178949 -6.90E-01 -3.00E-01 7.67E-02 0
RS8028907 0 0 2.10E-22 0
RS916977 2.78E-02 3.77E-02 2.04E-15 4.13E-02
RS4778138 0 0 5.12E-13 1.82E-01
RS7174027 7.45E-02 3.91E-02 5.40E-12 2.95E-01
RS4778241 0 0 1.42E-11 1.94E-01
RS3935591 0 0 1.44E-11 6.49E-01
RS12593929 -5.52E-02 -7.65E-02 1.46E-10 4.97E-01
RS12917449 4.85E-02 7.04E-02 7.67E-02 9.61E-02
RS2289583 1.64E-01 1.38E-01 2.36E-09 9.18E-04
RS7495174 0 0 2.62E-09 0
RS925480 2.36E-01 1.95E-01 4.68E-03 8.36E-03
RS1947057 1.03E-01 1.19E-01 1.41E-03 9.64E-03
RS2656065 5.96E-02 5.15E-02 5.96E-02 2.26E-02
RS17423970 -4.28E-02 -4.40E-02 6.31E-06 2.86E-02
RS4622471 4.51E-02 4.36E-02 1.71E-04 3.77E-02
RS16962243 5.96E-02 5.91E-02 1.51E-03 3.94E-02
RS2663907 8.28E-02 6.74E-02 9.22E-05 3.97E-02
RS627101 -4.65E-02 -3.76E-02 2.26E-03 4.55E-02
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B.12 Chromosome 17

For chromosome 17, from 18084 SNPs, spike method produced 1438 non-zero
variables, lasso method produced 1307 and the EBEN method produced 717.

Bentham et al [4], Morris et al [43], and Din et al [131] all found an associa-
tion with SNP rs2941509 (in the gene IKZF3 ) and lupus but the variable selec-
tion methods found no associations (frequentist method was ranked 36th). The
marker rs9904834 has R2 = 0.971 and D’ = 0.997 in LD with SNP rs2941509.
This locus produced a ranking of 75th by spike, 35th by lasso and 133rd by
EBEN.

Figure 53: A Manhattan plot with SNPs rs8078864 and rs12948819 highlighted
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Table 77: Chromosome 17 - Top ten SNPs ranked for each method
Chromosome 17

SNP Position SPIKE LASSO FREQ EBEN

RS6503802 55344646 1 338 7970 0
RS12948819 42521824 2 1 2 1
RS16958130 55342130 3 0 7018 0
RS9904838 54046321 4 0 1090 0
RS8079652 58679312 5 10 2174 0
RS9903864 3337960 6 91 283 0
RS9914712 54046852 7 156 1239 0
RS4796054 33536506 8 7 419 0
RS8078864 35056109 9 2 1 0
RS12103525 53906248 10 88 15632 41
RS7209106 30986185 23 3 520 0
RS7226346 544747 19 4 8227 0
RS7212285 58790082 11 5 8514 111
RS2290509 18145450 26 6 13727 236
RS9907400 53733289 29 8 10 0
RS1266474 2534710 27 9 17366 318
RS10468514 43456240 109 166 3 3
RS11553545 74470194 0 67 4 0
RS10491182 46120767 82 46 5 204
RS7209072 46110469 0 0 6 247
RS9897629 7857350 0 58 7 0
RS11653037 36179647 0 0 8 0
RS9905070 53833334 0 0 9 0
RS16970025 47243622 103 169 1600 2
RS4793900 55790197 102 175 2027 4
RS7224279 31450715 85 83 3897 5
RS2074190 45811210 100 176 4503 6
RS2157839 43151400 129 276 5853 7
RS584300 18288199 101 160 15 8
RS4789986 77266813 369 350 86 9
RS10445387 31879590 93 222 253 10
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Table 78: Chromosome 17 - Top ten SNPs for each method
Chromosome 17

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS6503802 -1.80E+00 -4.07E-02 2.95E-01 0
RS12948819 -1.74E+00 -1.38E+00 6.84E-22 2.00E-15
RS16958130 1.67E+00 0 2.40E-01 0
RS9904838 -1.53E+00 0 1.01E-02 0
RS8079652 1.45E+00 4.64E-01 3.12E-02 0
RS9903864 1.44E+00 1.10E-01 1.06E-03 0
RS9914712 1.42E+00 6.51E-02 1.06E-03 0
RS4796054 -1.40E+00 -5.36E-01 1.26E-02 0
RS8078864 1.36E+00 1.13E+00 2.05E-03 0
RS12103525 -1.34E+00 -1.12E-01 8.14E-01 7.69E-02
RS7209106 -9.20E-01 -6.58E-01 3.03E-03 0
RS7226346 9.53E-01 6.07E-01 3.10E-01 0
RS7212285 1.31E+00 5.96E-01 3.27E-01 1.59E-01
RS2290509 8.25E-01 5.39E-01 6.75E-01 2.96E-01
RS9907400 -8.16E-01 -5.22E-01 5.97E-07 0
RS1266474 8.31E-01 5.00E-01 9.43E-01 3.80E-01
RS10468514 -5.92E-02 -7.15E-02 7.92E-08 9.86E-03
RS11553545 0 1.44E-01 8.68E-08 0
RS10491182 1.51E-01 1.92E-01 1.01E-07 2.64E-01
RS7209072 0 0 2.50E-07 3.07E-01
RS9897629 0 1.59E-01 3.11E-07 0
RS11653037 0 0 4.12E-07 0
RS9905070 0 0 5.26E-07 0
RS16970025 -8.51E-02 -7.12E-02 1.90E-02 8.80E-03
RS4793900 8.65E-02 6.90E-02 2.77E-02 1.35E-02
RS7224279 1.43E-01 1.18E-01 8.81E-02 1.68E-02
RS2074190 -8.72E-02 -6.89E-02 1.15E-01 1.75E-02
RS2157839 7.19E-02 5.03E-02 1.78E-01 2.37E-02
RS584300 -8.65E-02 -7.67E-02 1.92E-06 2.57E-02
RS4789986 2.38E-02 3.87E-02 9.30E-05 2.67E-02
RS10445387 9.92E-02 5.97E-02 8.82E-04 2.97E-02
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B.13 Chromosome 18

For chromosome 18, from 19037 SNPs, spike method produced 1422 non-zero
variables, lasso method produced 2386 and EBEN method produced 1037.

Figure 54: A Manhattan plot with the top ranked SNP rs9958933 by the fre-
quentist method highlighted
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Table 79: Chromosome 18 - Top ten SNPs ranked for each method
Chromosome 18

SNP Position SPIKE LASSO FREQ EBEN

RS9789108 10703865 1 20 12149 0
RS9789103 10703497 2 11 1019 0
RS17088883 71828924 3 34 2589 412
RS9958933 41759986 4 2 1 278
RS17078922 66004354 5 52 18586 96
RS8092546 66005993 6 99 12979 0
RS7226800 72777472 7 1 6 0
RS5022001 10979948 8 31 2848 0
RS7240739 10975049 9 92 10273 0
RS17080367 66774452 10 77 656 0
RS16967782 33929428 13 3 8020 139
RS4798212 4310797 11 4 15399 145
RS17188179 22487270 23 5 7020 289
RS9965651 62253299 22 6 2056 106
RS33969048 21057210 20 7 2100 0
RS12457549 59380988 24 8 10269 11
RS11663711 4286351 17 9 757 0
RS675604 66290862 28 10 753 0
RS1915 29463735 161 176 2 567
RS7226458 29375892 217 1735 3 563
RS10502578 29375087 0 0 4 531
RS11083322 26684465 0 0 5 78
RS1516786 41653101 279 429 7 37
RS17680285 34233545 0 869 8 0
RS1719961 5553097 0 1544 9 153
RS2056095 26753739 781 0 10 307
RS9947927 24761232 52 143 4674 1
RS7238082 42277189 85 43 18902 2
RS17688362 41745680 96 156 11014 3
RS7243961 69432511 90 69 2305 4
RS17077479 65241380 16 66 3608 5
RS10502819 41290085 94 83 4521 6
RS13381189 631211 132 290 40 7
RS592209 48424454 98 537 1915 8
RS2863264 53948968 124 241 516 9
RS1943227 58058711 95 142 610 10
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Table 80: Chromosome 18 - Top ten SNPs for each method
Chromosome 18

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS9789108 3.23E+00 4.46E-01 5.38E-01 0
RS9789103 -3.02E+00 -5.42E-01 9.42E-03 0
RS17088883 1.46E+00 3.51E-01 4.46E-02 2.42E-01
RS9958933 -1.44E+00 -1.09E+00 1.20E-11 1.64E-01
RS17078922 1.36E+00 2.94E-01 9.69E-01 6.76E-02
RS8092546 -1.29E+00 -1.99E-01 5.91E-01 0
RS7226800 -1.26E+00 -1.11E+00 9.94E-07 0
RS5022001 -1.20E+00 -3.68E-01 5.29E-02 0
RS7240739 1.05E+00 2.03E-01 4.15E-01 0
RS17080367 1.05E+00 2.39E-01 4.81E-03 0
RS16967782 1.02E+00 7.80E-01 2.79E-01 9.07E-02
RS4798212 1.04E+00 6.78E-01 7.49E-01 9.49E-02
RS17188179 8.32E-01 6.74E-01 2.27E-01 1.70E-01
RS9965651 8.36E-01 6.69E-01 2.99E-02 7.44E-02
RS33969048 -8.64E-01 -6.67E-01 3.10E-02 0
RS12457549 8.14E-01 6.18E-01 4.15E-01 3.94E-03
RS11663711 -9.14E-01 -5.92E-01 5.79E-03 0
RS675604 7.41E-01 5.48E-01 5.70E-03 0
RS1915 -6.36E-02 -1.30E-01 2.37E-08 3.36E-01
RS7226458 5.16E-02 1.01E-02 8.74E-08 3.32E-01
RS10502578 0 0 1.12E-07 3.13E-01
RS11083322 0 0 3.30E-07 5.51E-02
RS1516786 4.42E-02 6.56E-02 1.42E-06 2.73E-02
RS17680285 0 -3.50E-02 2.74E-06 0
RS1719961 0 1.41E-02 3.31E-06 1.01E-01
RS2056095 -1.60E-02 0 3.87E-06 1.78E-01
RS9947927 -5.39E-01 -1.52E-01 1.21E-01 1.18E-04
RS7238082 3.48E-01 3.16E-01 9.91E-01 6.46E-04
RS17688362 -1.17E-01 -1.40E-01 4.63E-01 9.33E-04
RS7243961 -1.83E-01 -2.57E-01 3.61E-02 1.43E-03
RS17077479 9.23E-01 2.65E-01 7.87E-02 1.62E-03
RS10502819 2.00E-01 2.32E-01 1.15E-01 2.08E-03
RS13381189 7.28E-02 8.96E-02 5.70E-05 2.30E-03
RS592209 1.16E-01 4.78E-02 2.67E-02 2.39E-03
RS2863264 -7.54E-02 -1.01E-01 3.13E-03 3.25E-03
RS1943227 -1.21E-01 -1.52E-01 4.19E-03 3.75E-03
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B.14 Chromosome 19

For chromosome 19, from 13157 SNPs, spike method produced 1181 non-zero
variables, lasso method produced 3345 and EBEN method produced 990.

The top ranked SNP by the frequentist and EBEN methods, rs2304256 in
the TYK2 gene has been reported to show evidence of association with SLE
in a Finnish case-control study [134], whereas a Japanese case-control study
found no association [135]. Bentham et al [4] and Morris et al [43] both found
associations with SLE and the SNP.

In a study by Kim et al [136] in European, African, Hispanic and Korean
populations found the SNP rs3093030. The frequentist method produced a p-
value of 5.36E-08 and was ranked 8th. The variable selection methods produced
zero-coefficients.

Langefeld et al [63] in 2017 found an association with SNP rs13344313 and
SLE. The frequentist method made it the 136th top ranked SNP while the
variable selections failed to note it.

Figure 55: A Manhattan plot with SNPs rs2304256 and rs12720356 highlighted
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Table 81: Chromosome 19 - Top ten SNPs ranked for each method
Chromosome 19

SNP Position SPIKE LASSO FREQ EBEN

RS8109273 12224172 1 23 1487 0
RS10423417 12221700 2 21 1430 0
RS16970737 36368048 3 5 6193 0
RS457155 36356569 4 22 2917 0
RS8110546 52383556 5 47 6250 0
RS8110461 52383569 6 56 6692 502
RS9304831 32266516 7 29 5661 0
RS8105148 16717675 8 3 1793 0
RS17722868 16301100 9 67 7978 41
RS751403 16311070 10 188 8104 0
RS12460179 7742284 24 1 78 0
RS10403531 23680857 13 2 10 0
RS2650822 21651310 69 4 541 0
RS10407428 31821763 34 6 75 0
RS10409643 44681875 28 7 404 0
RS16972885 39421751 54 8 6235 0
RS17725970 44387820 26 9 1881 187
RS2683028 15774241 31 10 10350 366
RS2304256 10475652 65 942 1 1
RS12720356 10469975 0 732 2 251
RS2278442 10444826 79 198 3 6
RS2228615 10403368 799 2059 4 279
RS2569693 10399904 0 0 5 625
RS447009 18185192 78 164 6 48
RS624899 11612498 84 215 7 151
RS3093030 10397403 0 0 8 0
RS436857 18197635 0 0 9 0
RS7254835 21390608 71 473 118 2
RS11083430 38139488 26 138 496 3
RS10427026 32685150 72 114 302 4
RS7250471 56898853 77 152 1094 5
RS757228 1101992 81 537 58 7
RS4806860 945710 75 246 84 8
RS2972515 48464978 110 1158 211 9
RS601338 49206674 82 654 50 10
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Table 82: Chromosome 19 - Top ten SNPs for each method
Chromosome 19

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS8109273 2.08E+00 6.14E-01 2.86E-02 0
RS10423417 1.96E+00 6.22E-01 2.70E-02 0
RS16970737 -1.83E+00 -9.67E-01 3.29E-01 0
RS457155 1.74E+00 6.16E-01 9.05E-02 0
RS8110546 1.68E+00 4.19E-01 3.34E-01 0
RS8110461 1.68E+00 3.76E-01 3.72E-01 3.88E-01
RS9304831 -1.34E+00 -5.44E-01 2.83E-01 0
RS8105148 -1.32E+00 -1.01E+00 3.85E-02 0
RS17722868 1.24E+00 3.59E-01 4.89E-01 4.13E-02
RS751403 1.22E+00 1.90E-01 5.00E-01 0
RS12460179 -9.44E-01 -1.10E+00 6.18E-05 0
RS10403531 1.13E+00 1.06E+00 1.01E-07 0
RS2650822 2.86E-01 9.70E-01 4.26E-03 0
RS10407428 7.94E-01 9.58E-01 5.83E-05 0
RS10409643 -8.50E-01 -8.09E-01 2.57E-03 0
RS16972885 -4.52E-01 -8.04E-01 3.33E-01 0
RS17725970 8.93E-01 7.98E-01 4.17E-02 1.60E-01
RS2683028 -8.28E-01 -7.78E-01 7.14E-01 2.87E-01
RS2304256 -1.43E-01 -6.52E-02 2.86E-14 9.65E-05
RS12720356 0 -7.76E-02 3.48E-11 1.99E-01
RS2278442 1.02E-01 1.82E-01 2.72E-09 2.69E-03
RS2228615 1.08E-02 2.49E-02 1.40E-08 2.19E-01
RS2569693 0 0 2.84E-08 4.66E-01
RS447009 -1.05E-01 -1.42E-01 3.00E-08 5.13E-02
RS624899 9.09E-02 1.69E-01 4.81E-08 1.32E-01
RS3093030 0 0 5.36E-08 0
RS436857 0 0 6.92E-08 0
RS7254835 1.34E-01 1.06E-01 1.68E-04 6.24E-04
RS11083430 -1.24E-01 -2.29E-01 3.68E-03 8.39E-04
RS10427026 1.33E-01 2.58E-01 1.39E-03 1.00E-03
RS7250471 1.07E-01 2.18E-01 1.66E-02 2.05E-03
RS757228 -9.55E-02 -9.78E-02 3.46E-05 3.28E-03
RS4806860 1.10E-01 1.55E-01 7.31E-05 3.34E-03
RS2972515 6.72E-02 5.43E-02 7.19E-04 8.58E-03
RS601338 -9.45E-02 -8.53E-02 1.91E-05 9.96E-03
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B.15 Chromosome 20

For chromosome 20, from 16936 SNPs, the spike method produced 1171 non-
zero variables, lasso method produced 1101 and EBEN method produced 568.

Figure 56: A Manhattan plot with SNPs rs8116938 and rs461588 highlighted
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Table 83: Chromosome 20 - Top ten SNPs ranked for each method
Chromosome 20

SNP Position SPIKE LASSO FREQ EBEN

RS7271722 21712022 1 3 146 0
RS2281496 3235916 2 2 97 0
RS6042797 14562460 3 44 501 0
RS16982896 21699563 4 14 9944 0
RS6023308 53120052 5 1 8 1
RS6033981 14572059 6 23 840 0
RS10485607 46747298 7 8 9088 0
RS8115004 46742514 8 40 6448 0
RS2424407 21745114 9 159 3575 435
RS6028092 59862019 10 4 2268 0
RS212563 54067278 17 5 8196 203
RS6105463 15740824 22 6 13894 396
RS7509151 38841014 29 7 15177 0
RS6103988 43686734 18 9 2652 0
RS17304572 31761919 34 10 12043 0
RS461588 57719291 89 47 1 0
RS8116938 7838533 0 0 2 414
RS6026721 57712488 0 0 3 0
RS11908000 7358423 0 0 4 0
RS6077251 7752366 90 60 5 39
RS2092380 7756027 0 0 6 0
RS6082457 21556715 496 108 7 480
RS7268823 31755539 0 0 9 0
RS6039399 9127494 0 107 10 0
RS2868890 45450419 91 82 372 2
RS6020482 48988571 124 173 660 3
RS235753 6769533 347 400 1575 4
RS2426960 59493906 377 455 315 5
RS10485438 44708638 169 156 58 6
RS6118380 8892600 133 194 305 7
RS326826 56509185 62 266 321 8
RS2747554 32299042 65 303 2205 9
RS4813344 18830812 132 244 2412 10
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Table 84: Chromosome 20 - Top ten SNPs for each method
Chromosome 20

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS7271722 -2.98E+00 -7.46E-01 2.60E-04 0
RS2281496 1.70E+00 8.67E-01 1.29E-04 0
RS6042797 1.21E+00 1.72E-01 3.33E-03 0
RS16982896 1.19E+00 3.18E-01 4.73E-01 0
RS6023308 -1.18E+00 -9.24E-01 6.92E-07 8.99E-04
RS6033981 1.16E+00 2.32E-01 8.54E-03 0
RS10485607 1.15E+00 4.57E-01 4.15E-01 0
RS8115004 1.14E+00 1.80E-01 2.45E-01 0
RS2424407 1.11E+00 6.53E-02 9.21E-02 5.97E-01
RS6028092 1.06E+00 5.90E-01 4.43E-02 0
RS212563 8.60E-01 5.42E-01 3.54E-01 3.65E-01
RS6105463 7.97E-01 5.00E-01 7.64E-01 5.50E-01
RS7509151 -7.15E-01 -4.67E-01 8.63E-01 0
RS6103988 8.44E-01 4.55E-01 5.71E-02 0
RS17304572 6.79E-01 4.44E-01 6.32E-01 0
RS461588 1.49E-01 1.67E-01 7.51E-08 0
RS8116938 0 0 2.37E-07 5.78E-01
RS6026721 0 0 2.98E-07 0
RS11908000 0 0 3.04E-07 0
RS6077251 -1.32E-01 -1.36E-01 3.41E-07 1.48E-01
RS2092380 0 0 6.12E-07 0
RS6082457 -2.08E-02 -8.26E-02 6.30E-07 6.54E-01
RS7268823 0 0 8.56E-07 0
RS6039399 0 8.99E-02 9.34E-07 0
RS2868890 1.20E-01 9.98E-02 2.03E-03 8.34E-03
RS6020482 6.50E-02 5.96E-02 5.44E-03 3.79E-02
RS235753 3.10E-02 2.89E-02 2.38E-02 4.83E-02
RS2426960 2.91E-02 2.54E-02 1.45E-03 4.87E-02
RS10485438 5.17E-02 6.62E-02 4.23E-05 5.14E-02
RS6118380 6.29E-02 5.77E-02 1.35E-03 5.99E-02
RS326826 -7.24E-02 -4.35E-02 1.49E-03 6.06E-02
RS2747554 -7.16E-02 -3.93E-02 4.27E-02 6.91E-02
RS4813344 6.33E-02 4.69E-02 4.81E-02 7.30E-02
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B.16 Chromosome 21

For chromosome 21, from 9324 SNPs, spike method produced 1124 non-zero
variables, lasso method produced 1556 and the EBEN method produced 725.

Figure 57: A Manhattan plot with SNP rs16995726 highlighted
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Table 85: Chromosome 21 - Top ten SNPs ranked for each method
Chromosome 21

SNP Position SPIKE LASSO FREQ EBEN

RS2828660 25334999 1 9 1682 15
RS587087 44835301 2 48 8544 0
RS476861 44835508 3 69 5292 0
RS8132809 43715801 4 1 198 0
RS2828661 25335327 5 43 2954 0
RS8128762 41907090 6 3 7748 21
RS1997579 16165965 7 58 3154 94
RS2827484 23776582 8 22 3139 14
RS9981655 16186006 9 55 5082 32
RS373477 44453278 10 113 902 7
RS17210142 17815106 11 2 1830 12
RS17000348 26125207 12 4 6689 0
RS762298 23399276 49 5 9243 0
RS11088070 29871279 0 6 2027 0
RS2823279 16807898 39 7 384 0
RS11910928 43716241 16 8 516 0
RS7282856 41891932 29 10 958 0
RS16995726 39400163 43 17 1 0
RS2822918 16141341 55 64 2 1
RS8133752 44271989 61 1001 3 6
RS16978820 28070331 0 853 4 0
RS6586252 44276387 0 0 5 0
RS15736 44273858 0 0 6 0
RS2838295 44808303 364 1067 7 267
RS2837785 42066780 164 361 8 53
RS1487935 21719802 0 0 9 170
RS2826190 21714363 163 1212 10 706
RS2827057 23185634 19 53 707 2
RS9981501 18082155 54 45 8768 3
RS9982633 17419904 60 118 98 4
RS8134569 30164122 33 66 7308 5
RS13052940 23218791 56 60 1375 8
RS2830935 28799489 100 230 7897 9
RS2236674 45880800 142 353 2491 10
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Table 86: Chromosome 21 - Top ten SNPs for each method
Chromosome 21

SNP SPIKE LASSO FREQ EBEN
Coefficient Coefficient p-value p-value

RS2828660 1.36E+00 6.83E-01 7.46E-02 1.33E-03
RS587087 1.27E+00 4.16E-01 8.89E-01 0
RS476861 1.27E+00 3.41E-01 4.57E-01 0
RS8132809 1.22E+00 1.08E+00 1.76E-03 0
RS2828661 1.16E+00 4.52E-01 1.85E-01 0
RS8128762 1.08E+00 9.41E-01 7.79E-01 2.09E-03
RS1997579 -1.05E+00 -3.85E-01 2.05E-01 3.74E-02
RS2827484 1.05E+00 5.64E-01 2.03E-01 1.00E-03
RS9981655 1.04E+00 3.98E-01 4.32E-01 6.33E-03
RS373477 -9.99E-01 -2.39E-01 2.56E-02 2.12E-04
RS17210142 9.82E-01 9.97E-01 8.56E-02 7.26E-04
RS17000348 8.86E-01 9.25E-01 6.42E-01 0
RS762298 5.08E-01 9.01E-01 9.89E-01 0
RS11088070 0 -8.51E-01 1.00E-01 0
RS2823279 6.58E-01 7.48E-01 6.08E-03 0
RS11910928 9.02E-01 6.97E-01 9.71E-03 0
RS7282856 7.39E-01 6.75E-01 2.82E-02 0
RS16995726 -6.29E-01 -6.13E-01 1.01E-10 0
RS2822918 -1.87E-01 -3.58E-01 1.37E-07 6.32E-06
RS8133752 1.18E-01 -5.25E-02 1.66E-06 1.35E-04
RS16978820 0 -6.13E-02 3.98E-06 0
RS6586252 0 0 5.63E-06 0
RS15736 0 0 5.74E-06 0
RS2838295 -3.22E-02 -4.84E-02 9.88E-06 1.55E-01
RS2837785 5.23E-02 1.19E-01 1.52E-05 1.88E-02
RS1487935 0 0 1.52E-05 9.03E-02
RS2826190 -5.15E-02 -4.18E-02 1.82E-05 6.65E-01
RS2827057 8.84E-01 4.02E-01 1.68E-02 7.52E-06
RS9981501 4.00E-01 4.49E-01 9.18E-01 4.47E-05
RS9982633 1.61E-01 2.47E-01 5.48E-04 9.26E-05
RS8134569 7.18E-01 3.47E-01 7.23E-01 1.09E-04
RS13052940 1.64E-01 3.77E-01 5.31E-02 2.78E-04
RS2830935 6.93E-02 1.57E-01 7.99E-01 5.66E-04
RS2236674 -5.67E-02 -1.21E-01 1.40E-01 5.92E-04
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C Appendix: Associated SNPs

Appendix C is in tabular form and shows the associated SNPs from Bentham et al
study that have been implemented into this study.

C.1 Bentham et al 2015 Associated SNPs featured in this
thesis

Table 87 shows the SNPs that were found to be associated with SLE in Bentham et
al original study [4].
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Table 87: Bentham et al 2015 Associated SNPs
Associated SNPs with closely located gene and calculated p-value

SNP Chr GENE P-VALUE
rs2476601 1 PTPN22 8.34E-13
rs1801274 1 FCGR2A 6.05E-11
rs704840 1 TNFSF4 1.65E-13
rs17849501 1 SMG7,NCF2 1.63E-59
rs3024505 1 IL10 2.55E-03
rs9782955 1 LYST 5.58E-04
rs6740462 2 SPRED2 2.31E-08
rs2111485 2 IFIH1 3.44E-06
rs11889341 2 STAT4 1.17E-65
rs3768792 2 IKZF2 2.35E-08
rs9311676 3 ABHD6,PXK 5.37E-06
rs564799 3 IL12A 1.15E-06
rs10028805 4 BANK1 4.50E-10
rs7726414 5 TCF7,SKP1 9.17E-10
rs10036748 5 TNIP1 2.83E-18
rs2431697 5 MIR146A 3.23E-14
rs1270942 6 MHC 1.70E-101
rs9462027 6 UHRF1BP1 1.80E-05
rs6568431 6 PRDM1,ATG5 4.33E-12
rs6932056 6 TNFAIP3 1.23E-16
rs849142 7 JAZF1 3.49E-05
rs4917014 7 IKZF1 4.10E-05
rs10488631 7 IRF5 2.66E-44
rs2736340 8 BLK 2.14E-16
rs2663052 10 WDFY4 1.59E-08
rs4948496 10 ARID5B 1.17E-06
rs12802200 11 IRF7 8.43E-09
rs2732549 11 CD44 1.31E-10
rs3794060 11 DHCR7,NADSYN1 1.13E-04
rs7941765 11 ETS1,FLI1 9.82E-07
rs10774625 12 SH2B3 9.47E-08
rs1059312 12 SLC15A4 3.20E-06
rs4902562 14 RAD51B 4.85E-05
rs2289583 15 CSK 9.35E-09
rs11644034 16 IRF8 1.25E-15
rs2941509 17 IKZF3 4.32E-06
rs2304256 19 TYK2 2.34E-12
rs7444 22 UBE2L3 1.30E-13
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nusson, A. J. Brookes, D. Tentler, H. Kristjansdóttir, G. Gröndal, et al., “A
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[83] V. Ročková and E. I. George, “The spike-and-slab lasso,” Journal of the Amer-
ican Statistical Association, vol. 113, no. 521, pp. 431–444, 2018.

[84] A. Huang, S. Xu, and X. Cai, “Empirical bayesian elastic net for multiple quan-
titative trait locus mapping,” Heredity, vol. 114, no. 1, pp. 107–115, 2015.

[85] O. Kohannim, D. P. Hibar, J. L. Stein, N. Jahanshad, X. Hua, P. Rajagopalan,
A. Toga, C. R. Jack Jr, M. W. Weiner, G. I. De Zubicaray, et al., “Discovery and
replication of gene influences on brain structure using lasso regression,” Frontiers
in neuroscience, vol. 6, p. 115, 2012.

[86] Z. Tang, Y. Shen, X. Zhang, and N. Yi, “The spike-and-slab lasso generalized
linear models for prediction and associated genes detection,” Genetics, vol. 205,
no. 1, pp. 77–88, 2017.

173



[87] C. J. Wu, “On the convergence properties of the em algorithm,” The Annals of
statistics, pp. 95–103, 1983.

[88] X. Lu, E. E. Zoller, M. T. Weirauch, Z. Wu, B. Namjou, A. H. Williams, J. T.
Ziegler, M. E. Comeau, M. C. Marion, S. B. Glenn, et al., “Lupus risk variant
increases pstat1 binding and decreases ets1 expression,” The American Journal
of Human Genetics, vol. 96, no. 5, pp. 731–739, 2015.

[89] B. M. Neale and S. Purcell, “The positives, protocols, and perils of genome-wide
association,” American Journal of Medical Genetics Part B: Neuropsychiatric
Genetics, vol. 147, no. 7, pp. 1288–1294, 2008.

[90] T. Hastie and J. Qian, “Glmnet vignette,” Retrieved June, vol. 9, no. 2016,
pp. 1–30, 2014.

[91] D. M. Allen, “The relationship between variable selection and data agumentation
and a method for prediction,” technometrics, vol. 16, no. 1, pp. 125–127, 1974.

[92] J. A. Nelder and R. W. Wedderburn, “Generalized linear models,” Journal of
the Royal Statistical Society: Series A (General), vol. 135, no. 3, pp. 370–384,
1972.

[93] F. B. Lempers and A. S. Louter, “An extension of the table of the student
distribution,” Journal of the American Statistical Association, vol. 66, no. 335,
pp. 503–503, 1971.

[94] T. J. Mitchell and J. J. Beauchamp, “Bayesian variable selection in linear regres-
sion,” Journal of the american statistical association, vol. 83, no. 404, pp. 1023–
1032, 1988.

[95] E. I. George and R. E. McCulloch, “Variable selection via gibbs sampling,”
Journal of the American Statistical Association, vol. 88, no. 423, pp. 881–889,
1993.

[96] X. Cai, A. Huang, and S. Xu, “Fast empirical bayesian lasso for multiple quan-
titative trait locus mapping,” BMC bioinformatics, vol. 12, no. 1, p. 211, 2011.

[97] A. Huang, S. Xu, and X. Cai, “Empirical bayesian lasso-logistic regression for
multiple binary trait locus mapping,” BMC genetics, vol. 14, no. 1, p. 5, 2013.

[98] G. Orozco, E. Sánchez, M. A. González-Gay, M. A. López-Nevot, B. Torres,
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