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Multi-Class Fuzzily Weighted Adaptive
Boosting-based Self-Organising Fuzzy Inference

Ensemble Systems for Classification
Xiaowei Gu and Plamen P Angelov, Fellow, IEEE

Abstract—Adaptive boosting (AdaBoost) is a widely used
technique to construct a stronger ensemble classifier by com-
bining a set of weaker ones. Zero-order fuzzy inference systems
(FISs) are very powerful prototype-based predictive models for
classification, offering both great prediction precision and high
user-interpretability. However, the use of zero-order FISs as base
classifiers in AdaBoost has not been explored yet. To bridge the
gap, in this paper, a novel multi-class fuzzily weighted AdaBoost
(FWAdaBoost)-based ensemble system with self-organising fuzzy
inference system (SOFIS) as the ensemble component is proposed.
To better incorporate SOFIS, FWAdaBoost utilises the confidence
scores produced by SOFIS in both sample weight updating and
ensemble output generation, resulting in more accurate classi-
fication boundaries and greater prediction precision. Numerical
examples on a wide range of benchmark classification problems
demonstrate the efficacy of the proposed approach.

Index Terms—AdaBoost, ensemble classifier, fuzzy inference
system, multi-class classification.

I. INTRODUCTION

ENSEMBLE learning [1]–[3] is a powerful scheme aim-
ing to construct a stronger classifier by merging many

individual weaker classifiers. As an important topic in ma-
chine learning, it has been widely researched and successfully
applied in many real-world applications such as image seg-
mentation [4], face recognition [5], pattern analysis [6], data
stream mining [7], etc.

Currently, bagging [8], [9] and boosting [10], [11] are the
two mainstream methods for constructing ensemble classifiers
[12]. Bagging is a parallel ensemble learning method, short for
bootstrap aggregation. It firstly samples a standard training
set with replacement into multiple subsets, each of which
is used for training one base classifier. The obtained base
classifiers are then combined by majority voting. In contrast,
boosting trains a series of base classifiers consecutively with
various distributed training data such that each base classifier
complements its predecessors. The learned base classifiers
are then combined by weighted majority voting with more
weights given to the ones that perform better on training set.
Therefore, boosting gives more focus to harder samples and
can effectively reduce classification bias, leading to stronger
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generalisation capability and greater classification precision
[12]–[14].

Adaptive boosting (AdaBoost) is one of the most widely
used boosting methods [10], [12], [15] at present. The main
advantage of AdaBoost over alternative boosting methods is
its ability to maximise the classification margins, providing
good generalisation [16]. To further improve the performance
and robustness of AdaBoost, there have been many famous
variants introduced. For example, a generalised version of
AdaBoost called Real AdaBoost (ReAdaBoost) is presented
in [15], [17] by involving prediction confidences in weight
updating. A variant of ReAdaBoost called Parameterised Ad-
aBoost (PAdaBoost) is proposed in [18]. This variant em-
ploys a weight updating strategy designed to penalise the
misclassification of already correctly classified samples, which
effectively increases the classification margins. Another ver-
sion of ReAdaBoost named Gentle AdaBoost (GAdaBoost)
is presented in [17] by leveraging adaptive Newton steps
to minimise the training loss. Empirical studies show that
GAdaBoost outperforms ReAdaBoost in noisy environments.
To reduce overfitting, Modest AdaBoost (MAdaBoost) [19]
is designed to focus more on training samples with lowest
classification margin by decreasing the contributions of base
classifiers that perform well on easy training samples only.
As a result, MAdaBoost demonstrates better performance
than ReAdaBoost and GAdaBoost. AveBoost2 [20] effectively
prevents the weights of noisy samples from getting excessively
large and mitigates the overfitting problem by averaging the
training sample weights of current boosting iteration and
previous iterations. FloatBoost is introduced in [21] to achieve
the minimum classification errors through utilization of a back-
track mechanism. The backtrack mechanism removes these
base classifiers that do not improve the overall classification
precision each time when a new base classifier is added to the
ensemble. Noise-detection AdaBoost (NDAdaBoost) improves
the robustness of AdaBoost to noisy data by utilizing a noise-
detection based loss function to adjust the weight distribution
at each iteration [22]. In this way, the base classifiers are more
focused on these misclassified noisy samples and correctly
classified non-noisy samples. Robust AdaBoost (RoAdaBoost)
[23] is developed using the majorisation-minimisation prin-
ciple. Based on the truncated loss functions, this algorithm
can reduce the impact of outliers and construct more sparse
predictive models with improved prediction accuracy and
variable selection. In addition, many variants of AdaBoost
have been introduced for solving multi-class classification
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problems. The most popular multi-class AdaBoost variants
include AdaBoost.M1 [24], AdaBoost.M2 [24], AdaBoost.MH
[25], AdaBoost.MR [15], stagewise additive modelling using a
multi-class exponential loss function (SAMME) [26] and Real
SAMME (ReSAMME) [26].

The vast majority of existing studies employed mainstream
classifiers, such as decision trees (DTs) [14], [15], artificial
neural networks (ANNs) [27]–[29], support vector machines
(SVMs) [12], [30] and k-nearest neighbours (KNNs) [22], [32]
as the ensemble components for AdaBoost and its variants.
The constructed ensemble models have demonstrated greater
predictive abilities than single-model classifiers on a wide
variety of benchmark problems [33]. However, the lack of
transparency and explainability is a critical issue remaining
unsolved for mainstream classifiers. It is well known that
ANNs and SVMs are the typical types of “black box” model.
DTs are usually considered as easy to interpret, but large
ones with many branches are not easily interpretable. Without
constraining the maximum depth, DT models learned from
high-dimensional problems often are highly complex and pose
presentation difficulties [34], [35]. KNNs use all the training
samples to classify unlabelled data by following the “nearest
neighbours” principle. Despite that the operating mechanism
of KNNs is simple and straightforward, their interpretability is
limited when applied to large-scale problems. With the rapid
development and wide deployment of artificial intelligence
techniques, the transparency and explainability of machine
learning models have become increasingly important, espe-
cially for life-critical applications. Therefore, there is a high
demand for developing novel high-precision ensemble models
that are constructed from transparent, explainable classifiers.

Fuzzy (neuro-fuzzy) systems are powerful tools widely
used for classification, offering both great precision and high
interpretability. To date, there have been a few ensemble
models proposed in the literature that employ fuzzy systems
as ensemble components. For example, an AdaBoost-based
ensemble classifier based on relational neuro-fuzzy systems
is proposed in [36]. To improve the interpretability of the
constructed ensemble models, the paper [36] further presents
a method to combining the fuzzy rules learned by individual
base models into a large rule base via normalisation. Later,
this work [36] is extended in [37] by using logical-type
neuro-fuzzy systems as ensemble components. To tackle high
dimensional problems effectively, an ensemble framework
combining multiple simpler fuzzy systems trained on different
projections of data is proposed in [38]. An ensemble system
based on eClass0 fuzzy classifiers [39] is introduced for
streaming data classification [40]. pENsemble proposed in [41]
is equipped with an evolving ensemble framework that can
automatically initialise new base classifiers and prune stale
ones to follow the changing patterns in data streams. A deep
rule-based ensemble classifier combining deep convolutional
neural networks and conventional fuzzy systems is proposed
in [42] for remote sensing scene classification. With the
aim of reducing the requirements for computational resources
and improving efficiency of ensemble fuzzy classifiers, the
influence of reducing the reference sets in collective decision-
making via instance selection is investigated in [43]. In [44],

a ensemble fuzzy classifier named SENFIS is proposed for
big data classification. SENFIS is formed by a committee
of fuzzy models learned from subsets of training data. In
addition, to improve the overall classification accuracy, only
the selected fuzzy models satisfying the prediction precision
and diversity criteria can join the decision-making committee.
An ensemble classification model combines a fuzzy classifier
and a less interpretable but more accuracy classifier, i.e., ANN,
is proposed in [45]. This ensemble aims to achieve high
classification precision while maintaining its interpretability
by utilising the so-called confidence-based voting strategy
such that the fuzzy classifier serves as the main component
and the second classifier will be activated only when the
confidence level of the fuzzy classifier is low. In [46], the
functional equivalence of Takagi–Sugeno–Kang (TSK) fuzzy
systems to different regression approaches including stacking
ensemble regression is studied, and it is shown that each
IF-THEN rule in the fuzzy system is equivalent to a base
model in stacking ensemble regression. Self-organising fuzzy
inference system (SOFIS) [47], [48] is a recently introduced
zero-order fuzzy inference system (FIS) for classification.
It is capable of self-organising a set of prototype-based
IF-THEN fuzzy rules from labelled training samples in a
computationally efficient manner and classifying unlabelled
samples with great precision. Utilising nonparametric statistic
operators [49], SOFIS is free from prior assumptions on data
generation models with predefined parameters, and operates on
human-understandable prototypes identified from empirically
observed data based on their ensemble properties and mutual
distances. By forming Voronoi tessellations [50] around these
prototypes with nearby data samples, SOFIS naturally self-
calibrates highly precise decision boundaries in the data space
for classification. Thanks to the prototype-based nature, its
internal reasoning and decision-making processes are fully
interpretable, explainable and traceable to/by human. Since
being firstly introduced, SOFIS has been applied to many
real-world problems such as fault diagnosis [51], industrial
control [52]. Although preliminary works [53] on constructing
ensemble classifiers with SOFIS via random subsampling
(a variant of bagging) have reported encouraging results,
the potential of SOFIS in ensemble models constructed by
mainstream boosting methods has not been investigated, yet.

Therefore, in this paper, a novel AdaBoost-based ensemble
system with SOFIS as its ensemble component is proposed
for multi-class classification. The proposed ensemble classifier
employs the multi-class AdaBoost algorithm SAMME as its
implementation basis. However, to take advantages of the
unique features of zero-order FISs [39], [47], [48], [54],
SAMME is modified to utilise the confidence scores pro-
duced by the IF-THEN fuzzy rules of SOFIS in both sample
weight updating and ensemble output generating, resulting
in the new multi-class AdaBoost algorithm named fuzzily
weighted AdaBoost (FWAdaBoost). Accordingly, the proposed
new ensemble system is named as FWAdaBoost-based self-
organising fuzzy inference ensemble system (FWAdaBoost-
SOFIES). Compared with its predecessor (SAMME), FWAd-
aBoost gives extra weights to these challenging and easy-
to-misclassify samples such that more precise classification
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boundaries can be constructed. FWAdaBoost further integrates
the levels of confidence that each ensemble component has
towards its individual predictions into the final ensemble
outputs, thereby effectively boosting the classification perfor-
mance of FWAdaBoost-SOFIES. Numerical examples based
on benchmark datasets demonstrated that FWAdaBoost can
boost the performance of SOFIS to a greater extent than
alternative boosting algorithms, and the constructed ensemble
system is able to achieve the state-of-the-art classification
accuracy outperforming the comparative algorithms involved
in the experimental investigations.

To summarise, key features of this paper include:
1) a novel multi-class AdaBoost algorithm with both the

sample weight updating and ensemble output generation
schemes designed specifically for zero-order FISs by
incorporating the confidence scores produced by base
learners in system identification and decision-making;

2) a novel multi-class AdaBoost-based fuzzy inference en-
semble system with highly transparent system structure
and explainable decision-making process thanks to its
prototype-based nature as well as greater prediction
precision.

The remainder of this paper is organised as follows. Section
II provides the theoretical background of this study. Technical
details of the proposed approach are presented in Section
III and a theoretical analysis on the bound of training error
is presented in Section IV. Numerical examples serving as
the proof of concept are given in Section V. This paper is
concluded by Section VI.

II. PRELIMINARIES

First of all, let {x}K = {x1,x2, . . . ,xK} be a dataset in the
real data space, ℜM with {y}K = {y1, y2, . . . , yK} being the
corresponding class labels; xk = [xk,1,xk,2, . . . ,xk,M ]T ∈
ℜM ; M denotes the dimensionality; yk is the class label of
xk. It is assumed that {x}K is composed of data samples of C
different classes, namely, yk ∈ {1, 2, . . . , C} for ∀yk ∈ {y}K .
Based on the class labels, {x}K can be split to C subsets, de-
noted as {x}iKi (i = 1, 2, . . . , C). xi

Ki = {xi
1,x

i
2, . . . ,x

i
Ki}

is the set of data samples within {x}K that belong to the
ith class; Ki is the number of such samples. There are
{x}1K1∪{x}2K2∪. . .∪{x}CKC = {x}K and {x}iKi∩{x}jKj =
∅ for ∀i ̸= j. In addition, it is often observed that different
samples of the same classes may share exactly the same
values, i.e., xi

n = xi
m and n ̸= m. Therefore, without loss

of generality, the set of unique samples of the ith class is
denoted as {u}iLi = {ui

1,u
i
2, . . . ,u

i
Li}({u}iLi ⊆ {x}iKi )

and the corresponding occurrence frequencies are denoted as
{f}iLi = {f i

1, f
i
2, . . . , f

i
Li}; f i

k is the occurrence frequency of
xi
k; Li is the number of unique data samples (i = 1, 2, . . . , C);

and
∑Li

l=1 f
i
l = Ki.

A. SOFIS

The general architecture of SOFIS is given by Fig. 1. It
can be observed from this figure that SOFIS is composed of
C zero-order AnYa type IF-THEN fuzzy rules (one rule per

Fig. 1: Architecture of SOFIS [47], [48].

class) [55] formed by prototypes, which are given in the form
of Eqn. (1) [47], [48].

Ri : IF (x ∼ pi
1) OR (x ∼ pi

2) OR ... OR (x ∼ pi
Ni)

THEN (class i)
(1)

where x is the input sample; “∼” denotes similarity; pi
j stands

for the jth prototype of the ith class; and N i is the number
of identified prototypes of the ith class. These prototypes are
highly representative samples in the data space and they help
the classifier preserve the structure and underlying patterns of
the original data.

One can see from Eqn. (1) that the premise part of AnYa
type fuzzy rules is simplified to a more compact, objective and
non-parametric form of prototypes. The prototypes of Ri are
connected by the logic “OR” connectives, hence, Ri can be
viewed as a parallel ensemble of multiple simpler fuzzy rules
as follows (j = 1, 2, ..., N i):

Ri
j : IF (x ∼ pi

j) THEN (class i) (2)

Remark 1: By using these prototypes to attract nearby data
samples and build Voronoi tessellations [50], SOFIS partitions
the data space into non-overlapping, shape-free clusters. Each
cluster belongs to a particular class, and the shared borders be-
tween clusters of different classes naturally form the decision
boundaries for classification [47].

The identification and validation processes of SOFIS are
summarised as follows. By default, it employs cosine dissim-
ilarity as the distance measure, which is formulated as Eqn.
(3) [48].

d(xi,xj) =
√
1− cos(θij) =

1√
2
∥ xi

∥ xi ∥
− xj

∥ xj ∥
∥ (3)

where θij is the angle between xi and xj ; ∥ x ∥ is the
Euclidean norm of x. Therefore, to facilitate computation, all
data samples are normalised by their corresponding Euclidean
norm, namely, x ← x

∥x∥ for ∀x ∈ {x}K so that the cosine
dissimilarity is simplified to Euclidean distance.

A. Identification process
The system identification process consists of the following

three stages [47], [48].
Stage 1. Forming Voronoi tessellation from data
In this stage, multimodal density values at the unique data

samples are firstly calculated using Eqn. (4) [49].

DMM (ui
k) =

f i
k

1 +
∥ui

k−x̄i∥2

1−∥x̄i∥2

(4)
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where x̄i is the arithmetic mean of {x}iKi , namely, x̄i =
1
Ki

∑Ki

k=1 x
i
k.

Then, unique data samples of each class are ranked one-
by-one in terms of their multimodal density values and
mutual distances using Eqn. (5), re-denoted as {r}iLi =
{ri1, ri2, . . . , riLi} (i = 1, 2, ..., C) [47], [48].

rik = argmax
u∈{u}i

Li

(DMM (u)), if k = 1

rik = argmin
u∈{u}i

Li ;

u̸=ri
1,r

i
2,...,r

i
k−1

(∥ u− rik−1 ∥2), else (5)

After the ranking operation, local maxima of multimodal
density, denoted as {l}iQi ({l}iQi ← {ri1}, i = 1, 2, . . . , C),
are identified from unique data samples of each class using
Condition 1 [47], [48]:

Condition 1 : if (DMM (rik)−DMM (rik−1) > 0)

and (DMM (rik)−DMM (rik+1) > 0)

then ({l}iQi ← {l}iQi ∪ {rik})
(6)

where k = 2, 3, . . . , Li−1; Qi is the number of local maxima
of the ith class.

With the obtained local maxima, Voronoi tessellations are
formed around each local maximum by attracting data samples
of the same class to form a micro-cluster around it [47], [48]:

Ci
j∗ ← Ci

j∗ ∪ {xi
k}; j∗ = argmin

j=1,2,...,Qi

(∥ lij − xi
k ∥2); (7)

where Ci
j is the micro-cluster formed around lij ; i =

1, 2, . . . , C and k = 1, 2, . . . ,Ki. Centres, denoted as {q}iQi

of the micro-clusters are then obtained as raw prototypes:

qi
j =

1

|Ci
j |

∑
x∈Ci

j

x (8)

where |Ci
j | is the cardinality of Ci

j .
Stage 2. Deriving the data-driven soft distance threshold
In the second stage, the average radius of area of in-

fluence around each micro-cluster centre, denoted as γi
G

(i = 1, 2, . . . , C) is derived based on mutual distances of data
samples and the level of granularity, denoted as G defined by
users. G is a non-negative integer which can be determined
without prior knowledge of the problems. γi

G provides an
objective estimation of the distance between any two micro-
clusters of the same class that are strongly associated with
each other and can be combined as one. It is derived directly
from data using Eqn. (9) [47], [48].

γi
g =

∑Ki

j=1

∑Ki

l=1∥x
i
j−xi

l∥
2

(Ki)2 , if g = 1

γi
g =

∑Ki

j=1

∑Ki

l=1 vi
g,j,l∥x

i
j−xi

l∥
2∑Ki

j=1

∑Ki

l=1 vi
g,j,l

, else
(9)

where vig,j,l =

{
1, ∥ xi

j − xi
l ∥2≤ γi

g−1

0, else
; g = 1, 2, . . . , G.

Comparing with the commonly used crisp thresholds by other
approaches, the average radius γi

G is a reliable soft distance
threshold calculated directly from data and, thus, is always
guaranteed to be meaningful. In addition, it also offers users

more freedom to adjust the fineness of the learning outcomes
without specialised expertise.

Stage 3. Identifying prototypes from local maxima
In the final stage of system identification, prototypes are

identified as the more representative raw prototypes of each
class. To identify such prototypes, the set of neighbouring
raw prototypes, denoted by {q∗}ij around each individual raw
prototype is firstly identified using Condition 2 with the help
of the soft distance threshold, γi

G [47], [48]:

Condition 2 : if (∥ qi
j − qi

k ∥2≤ γi
G)

then ({q∗}ij ← {q∗}ij ∪ {qi
k})

(10)

where i = 1, 2, . . . , C; j, k = 1, 2, . . . , Qi and j ̸= k.
More representative raw prototypes, {q̂}iNi (N i is car-

dinality of {q̂}iNi ) of each class are then identified from
{q}iNi are performed using Condition 3 (i = 1, 2, . . . , C;
j = 1, 2, . . . , Qi) [47], [48]:

Condition 3 : if (DMM (qi
j) > max

q∈{q∗}i
j

(DMM (q))

then ({q̂}iNi ← {q̂}iNi ∪ {qi
j})

(11)

Finally, {q̂}iNi are used for forming Voronoi tessellations from
data samples of the same class using Eqn. (12):

Ci
j∗ ← Ci

j∗ ∪ {xi
k}; j∗ = argmax

j=1,2,...,Ni

(∥ q̂i
j − xi

k ∥2) (12)

and prototypes, {p}iNi are obtained as (i = 1, 2, . . . , C; j =
1, 2, . . . , N i):

pi
j =

1

|Ci
j |

∑
x∈Ci

j

x (13)

With the extracted prototypes, {p}iNi (i = 1, 2, . . . , C), the
IF-THEN fuzzy rules, Ri (i = 1, 2, . . . , C) are built in the
same form as Eqn. (1), and the system identification process
is completed with the decision boundaries built from shape-
free Voronoi tessellations formed around prototypes [50].

Remark 2: An important feature of SOIFS is its strong ca-
pability of handling potential class overlaps. As the prototype
identification process is conducted class-wise, highly represen-
tative data samples of different classes will be identified from
the overlapping regions as prototypes. Hence, more prototypes
will reside in such regions compared with non-overlapping
regions, and more precise decision boundaries will naturally
be formed in these overlapping regions because of the finer
partitioning of data locally.

The identification process of SOFIS is given by Algorithm
1 [47], [48].

B. Validation process
During the validation process, for each unlabelled data sam-

ple, xk, every IF-THEN fuzzy rule will provide a confidence
score based on the similarity between xk and the nearest
prototype associated with the rule (one score per rule):

λi(xk) = max
p∈{p}i

Ni

(e−∥xk−p∥2

) (14)
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Algorithm 1 SOFIS identification.
input: training set, {x}K

for i = 1 to C do
calculate DMM at {u}iLi using Eqn. (4);
rank {u}iLi and obtain {r}iLi using Eqn. (5);
identify {l}iQi using Condition 1;
form {C}iQi around {l}iQi using Eqn. (7);
derive qi

Qi from {C}iQi using Eqn. (8);
calculate γi

G from {x}iKi using Eqn. (9);
for j = 1 to Qi do

identify {q∗}ij using Condition 2;
end for
identify {q̂}iNi from {q}iQi using Condition 3;
form {C}iNi around {q̂}iNi using Eqn. (12);
derive {p}iNi from {C}iNi using Eqn. (13);

end for
output: classifier, ŷ = h(x)

The class label of xk is determined by the IF-THEN rule
providing the highest confidence score, following the “winner
takes all” principle [47], [48].

ŷk ← i∗; i∗ = argmax
i=1,2,...,C

(λi(xk)) (15)

Remark 3: SOFIS determines the class labels of unlabelled
samples based on their similarity to the identified prototypes.
Prototypes are highly representative samples in the data space
preserving the structure and underlying pattern of the original
data. Hence, the decision-making process of SOFIS can be
traced easily by finding out the nearest prototypes in the
data space, and the rationales behind its predictions can be
interpreted by examining these prototypes.

B. AdaBoost

AdaBoost is one of the mostly used boosting algorithms
[10], [15] aiming at solving binary classification problems
(namely, C = 2). In the first learning cycle of AdaBoost,
all training samples are given the equal weights. For the
subsequent learning cycles, the weights are adjusted according
to the classification results so that correctly classified train-
ing samples receive lower weights and incorrectly classified
ones receive greater weights. AdaBoost focuses more on the
training samples with higher weights since they are more
challenging for the base classifiers. At the end, AdaBoost
linearly combines all the base classifiers to create an ensemble
model, where greater weights are given to the base classifiers
with lower error rates.

The algorithmic procedure of AdaBoost is summarised by
Algorithm 2 [10], [15].

C. Multi-Class AdaBoost Algorithm SAMME

SAMME [26] is a very popular and powerful multi-class
boosting algorithm (namely, C ≥ 2). SAMME modifies
the original AdaBoost to multi-class classification without
dividing the original problem into multiple binary ones.

Algorithm 2 AdaBoost.
input: training set, {x}K ; number of iteration, T ;

base classifier, ŷ = h(x)

for k = 1 to K do
initialise sample weight as: w0,k = 1

K ;
end for
for t = 1 to T do

train a base classifier ht(x) with the weighted {x}K ;
use ht(x) to predict the class labels {ŷt}K of {x}K ;
calculate the training error of ht(x) by Eqn. (16):

εt =

K∑
k=1

wt−1,kI(ŷt,k ̸= yk) (16)

if εt < 0.5 and εt > 0 then
calculate classifier weight, αt by Eqn. (17):

αt =
1

2
ln(

1− εt
εt

) (17)

for k = 1 to K do
update sample weight, wt,k by Eqns. (18) and (19):

wt,k =
wt−1,ke

−αt(I(ŷt,k=yk)−I(ŷt,k ̸=yk))

Zt
(18)

Zt =

K∑
j=1

wt−1,je
−αt(I(ŷt,j=yj)−I(ŷt,j ̸=yj)) (19)

end for
else
αt ← 0;
for k = 1 to K do

wt,k ← wt−1,k;
end for

end if
end for
output: ensemble classifier,

FA(x) = argmax
c=1,2,. . . ,C

(
∑T

t=1 αtI(ŷt = c))

The algorithmic procedure of SAMME is summarised by
Algorithm 3 [26], [31]. Comparing between Algorithms 2
and 3, one may conclude that the main differences between
SAMME and AdaBoost include [31]: 1) the weights of base
classifiers are updated differently (see Eqn. (20)), and; 2) the
accuracy requirement of base classifiers is different. It is worth
noting that SAMME is exactly the same as AdaBoost if C = 2.

III. PROPOSED FWADABOOST APPROACH

As aforementioned, the vast majority of existing researches
use mainstream classifiers, such as DT, SVM, KNN, ANN
as the ensemble components for AdaBoost. The constructed
ensemble models offer better classification precision than
single-model classifiers, but they usually lack transparency
and human-interpretability. To overcome this bottleneck, a
novel multi-class AdaBoost-based fuzzy ensemble system is
proposed. Technical details of this new ensemble system are
described in this section.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2021 6

Algorithm 3 SAMME.
input: training set, {x}K ; number of iteration, T ;

base classifier, ŷ = h(x)

for k = 1 to K do
initialise sample weight as: w0,k = 1

K ;
end for
for t = 1 to T do

train a base classifier ht(x) with the weighted {x}K ;
use ht(x) to predict the class labels {ŷt}K of {x}K ;
calculate the training error of ht(x) by Eqn. (16);
if εt < C−1

C and εt > 0 then
calculate classifier weight, αt by Eqn. (20):

αt =
1

2
(ln(

1− εt
εt

) + ln(C − 1)) (20)

for k = 1 to K do
update sample weight, wt,k by Eqns. (18) and (19);

end for
else
αt ← 0;
for k = 1 to K do

wt,k ← wt−1,k;
end for

end if
end for
output: ensemble classifier,

FS(x) = argmax
c=1,2,. . . ,C

(
∑T

t=1 αtI(ŷt = c))

The general architecture of FWAdaBoost-SOFIES is given
by Fig. 2, where one can see that the proposed ensemble
system is composed of T SOFISs implemented in parallel.
As stated in Section II.A, SOFIS determines the class label of
a particular unlabelled sample based on the confidence scores
produced by its IF-THEN fuzzy rules. These confidence scores
are calculated based on the similarities between the unlabelled
sample and prototypes of each class, providing valuable fuzzy
information about the fitness of this unlabelled sample to the
local models of data distribution. To utilise this information for
better prediction precision, SAMME is modified such that the
confidence scores are involved in both sample weight updating
and ensemble output generation, resulting in the proposed
FWAdaBoost algorithm. Hence, the constructed ensemble
system is named as FWAdaBoost-SOFIES. Since SOFIS is
employed as the base classifier and its technical details have
been summarised in Section II.A, the main focus of this section
is to present the proposed FWAdaBoost algorithm.

As aforementioned, FWAdaBoost follows the same frame-
work of SAMME but uses the new 1) sample weight up-
dating and 2) ensemble output generation schemes to better
incorporate SOFIS for greater performance. The proposed new
schemes are detailed as follows.

Fig. 2: Architecture of FWAdaboost-SOFIES.

A. The proposed sample weight updating scheme

During each iteration of FWAdaBoost, assuming the tth one,
the sample weights are updated by Eqn. (21):

wt,k =
wt−1,ke

−αtφt,k

Wt
(21)

where
φt,k = λyk

t (xk)− λc∗

t (xk) (22)

Wt =

K∑
j=1

wt−1,je
−αtφt,j (23)

λc∗

t (xk) = max
c=1,2,. . . ,C;

c̸=yk

(λc
t(xk)) (24)

Here, Wt (Eqn. (23)) is a normalisation factor; λyk
r (xk) is the

confidence score produced by the fuzzy rule Ryk
t of the tth

base classifier, which is identified from training samples of
the same class as xk; λc∗

t (xk) (Eqn. (24)) is the maximum
confidence score produced by other fuzzy rules of the tth base
classifier. Consequently, φt,k can be reformulated as:

φt,k = |φt,k|(I(ŷt,k = yk)− I(ŷt,k ̸= yk)) (25)

where a greater value of |φt,k| suggests that SOFIS has higher
confidence towards its prediction, and vice versa. By substi-
tuting Eqn. (25) into Eqn. (21), Eqn. (21) can be converted
into a similar form as Eqn. (18).

Generally speaking, predictions made by the base classifier,
namely, SOFIS can be roughly divided into four categories
(note that this is not hardcoded):

Category 1: correct predictions with high confidence,
namely, λyk

r (xk) is significantly higher than λc∗

t (xk);
Category 2: correct predictions with low confidence,

namely, λyk
r (xk) is slightly higher than λc∗

t (xk);
Category 3: wrong predictions with high confidence,

namely, λyk
r (xk) is slightly lower than λc∗

t (xk), and;
Category 4: wrong predictions with low confidence, namely,

λyk
r (xk) is significantly lower than λc∗

t (xk).
Hence, the value of φt,k calculated by Eqn. (22) serves as a

soft indicator describing both the correctness of the prediction
on the class label of xk and the level of confidence SOFIS
has towards its prediction.

In contrast with the conventional sample weight updating
scheme used by AdaBoost and SAMME, involving the soft
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indicator φt,k in sample weight updating offers several bene-
fits. Firstly, more weights are put on samples that are classified
by the base classifier wrongly with high confidence (namely,
category 4) and less weights are given to the samples classified
correctly with high confidence (namely, category 1). Thus, in
each iteration, the base classifier is able to focus more on these
highly challenging samples and pay less attention to these
easy-to-classify samples. Secondly, weights of correctly classi-
fied samples but with low confidence (namely, category 2) will
decrease more slowly. These samples are much closer to the
classification boundaries (with low classification margins) and
could be misclassified if the boundaries are altered. Slowing
down the weight decline for these data samples enables the
base classifier to pay sufficient attention to these samples in
later iterations, effectively preventing the base classifier from
making wrong predictions on them. Thirdly, the absolute value
of φt,k is always changing smoothly. This can effectively avoid
the abrupt increase/decrease in the sample weights, preventing
overfitting. Lastly, these confidence scores are produced by
base classifiers based on the similarity between data samples
and prototypes, and are intrinsically explainable to/by human.
Hence, involving confidence scores in sample weight updating
can further improve the interpretability of the boosting process
because one can easily understand the rationales behind the
changes of sample weights.

B. The proposed ensemble output generation scheme

The confidence scores that the base classifiers produced
on unlabelled testing samples are also involved in the en-
semble output generation. For a particular testing sample,
xk, each base classifier (assuming the tth one) will pro-
duce a predicted class label denoted as ŷt,k. The predicted
label, ŷt,k is further encoded as a C-dimensional vector,
Ŷt,k = [Ŷ 1

t,k, Ŷ
2
t,k, . . . , Ŷ

C
t,k]

T using Eqn. (26) [26], where
c = 1, 2, . . . , C.

Ŷ c
t,k =

{
1, if c = ŷt,k

− 1
C−1 , else

(26)

The final output, namely, the predicted label of xk of the
ensemble system is produced by Eqn. (27) as follows.

ŷk = F (xk) = argmax
c=1,2,. . . ,C

(f c(xk)) (27)

where

f c(xk) =

T∑
t=1

αtφ̂t,kŶ
c
t,k (28)

φ̂t,k = λ
ŷt,k

t (xk)− λĉ∗

t (xk) (29)

λĉ∗

t (xk) = max
c=1,2,. . . ,C;

c̸=ŷk

(λc
t(xk)) (30)

Here φ̂t,k is the difference between the highest and the second
highest confidence scores, indicating the level of confidence
the base classifier has towards its prediction. A higher value of
φ̂t,k means that the base classifier is highly confident about the
correctness of its prediction, and vice versa. In this way, the
predictions that base classifiers are highly confident with can

contribute more in the final ensemble outputs and, at the same
time, the predictions with less confidence will play a much
smaller role in the final outputs, resulting in greater overall
prediction precision of the ensemble system.

Remark 4: FWAdaBoost only utilise two of the C confi-
dence scores in sample weight updating and ensemble output
generation, hence, it can be used for both binary and multi-
class classification problems.

The algorithmic procedure of FWAdaBoost is summarised
by Algorithm 4.

Algorithm 4 FWAdaBoost.
input: training set, {x}K ; number of iteration, T ;

base classifier, ŷ = h(x)

for k = 1 to K do
initialise sample weight as: w0,k = 1

K ;
end for
for t = 1 to T do

train a base classifier ht(x) with the weighted {x}K ;
use ht(x) to predict the class labels {ŷt}K of {x}K ;
calculate the training error of ht(x) by Eqn. (16);
if εt < C−1

C and εt > 0 then
calculate classifier weight, αt by Eqn. (20);
for k = 1 to K do

update sample weight, wt,k by Eqn. (21);
end for

else
αt ← 0;
for k = 1 to K do

wt,k ← wt−1,k;
end for

end if
end for
output: ensemble classifier,

F (x) = argmax
c=1,2,. . . ,C

(
∑T

t=1 αtφ̂tŶ
c
t )

IV. THEORETICAL JUSTIFICATION

In this section, a theoretical analysis on the upper bound
of the training error of FWAdaBoost is presented. It is ac-
knowledged that the mathematical derivations to the proof are
inspired by [15], [26]

Theorem 1: The following bound holds on the training
error, eo of the ensemble system constructed by FWAdaBoost:

eo <

T∏
t=1

Wt (31)

Proof: For a particular training sample xk, if the predicted
label by Eqn. (27), ŷk does not match its true label yk, namely,
I(ŷk ̸= yk) = 1, the following inequality holds:

L(xk) = fyk(xk)− f ŷk(xk) < 0 (32)

L(xk) in inequality (32) can be reformulated as:

L(xk) =

T∑
t=1

αtφ̂t,kζt,k (33)
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where ζt,k = Ŷ yk

t,k − Ŷ ŷk

t,k and, based on Eqn. (26), there is (on
condition that ŷk ̸= yk):

ζt,k =


C

C−1 , if ŷt,k = yk & ŷt,k ̸= ŷk

− C
C−1 , if ŷt,k = ŷk & ŷt,k ̸= yk

0, if ŷt,k ̸= yk & ŷt,k ̸= ŷk

(34)

The following relationship can be derived via a comparison
between Eqns. (22) and (29),{

|φt,k| = φ̂t,k, if ŷt,k = yk

|φt,k| ≥ φ̂t,k, if ŷt,k ̸= yk
(35)

Based on Eqns. (34) and (35), one can tell that the following
inequality always holds:

C

C − 1
φt,k ≤ φ̂t,kζt,k (36)

Considering that αt ≥ 0 ∀t = 1, 2, ..., T , inequality (37)
can be derived from inequalities (32) and (36):

C

C − 1

T∑
t=1

αtφt,k <

T∑
t=1

αtφ̂t,kζt,k < 0 (37)

Hence, there is
∑T

t=1 αtφt,k < 0. By unravelling the proposed
sample weight updating rule (Eqn. (21)), there is [15]:

wT,k =
e−

∑T
t=1 αtφt,k

K
∏T

t=1 Wt

(38)

and the following inequality (39) holds:

I(ŷk ̸= yk) < e−
∑T

t=1 αtφt,k = wT,k ·K
T∏

t=1

Wt (39)

Since the overall training error of the ensemble system, eo
can be formulated in the form of Eqn. (40) [15],

eo =
1

K

K∑
k=1

I(ŷk ̸= yk) (40)

and inequality (41) can be obtained.

eo <
1

K

K∑
k=1

e−
∑T

t=1 αtφt,k =

T∏
t=1

Wt (41)

■

Remark 5: It can be concluded from inequality (41) that
the training error of FWAdaBoost is upper bounded. This
conclusion coincides with the Theorem 1 in [15], but it
considers the more general multi-class classification problems.

V. EXPERIMENTAL INVESTIGATIONS

In this section, numerical examples on a wide range of
benchmark problems are presented to demonstrate the efficacy
of the proposal FWAdaBoost-SOFIES. The algorithms were
developed on MATLAB 2018b platform. The performance was
evaluated on a laptop with dual core i7 processer 2.60GHz×2
and 16GB RAM. By default, all the numerical experiments
were conducted in offline scenarios and the reported results
were obtained as the average of 25 Monte-Carlo experiments
to allow a certain degree of randomness.

Since FWAdaBoost is suitable for both binary and multi-
class classification problems, benchmark datasets of the two
types are used for numerical experiments. In this study,
nine numerical binary classification problems, 12 numerical
multi-class classification problems and two multi-class image
classification problems are considered. Key information of
binary problems is tabulated in Supplementary Table S1.
Key information of the 14 numerical and image classification
problems is provided in Supplementary Table S2. Web links
to the 23 datasets are given in Supplementary Table S3.

A. Visual illustration

In this subsection, an illustrative example is presented to
demonstrate the process of FWAdaBoost-SOFIES to build
a more precise decision-boundaries from training data. For
visual clarity, principle component analysis (PCA) is applied
to reduce the dimensionality of the original data to two and
the obtained first two principle components (PCs) are further
normalised to the value range of [0, 1]. After pre-processing,
half of the dataset is used to form the training set and the
rest is used for testing. In this example, Euclidean distance is
used as the distance measure for convenient illustration. The
constructed ensemble system by FWAdaBoost is composed of
six base classifiers, and the level of granularity, G is set as 3.

Firstly, the spatial distributions of the 2-dimensional training
and testing samples in the data space are depicted in Sup-
plementary Fig. S1(a) and (b), respectively, where dots “·”
in light blue represent data samples of class 1 and the dots
“·” in orange represent data samples of class 2. It can be
observed from Supplementary Fig. S1 that the data samples
of two classes are mixed together in the dense central area.

Same as the standard AdaBoost-based ensemble frame-
work, the six base classifiers of FWAdaBoost-SOFIES are
learned sequentially from training data, and the classification
boundaries of each base classifier will be different due to the
weighted random sampling. The prototypes identified from
training data by SOFIS during each training iteration are
visualised in Supplementary Fig. S2(a)-(f), where the larger
dots “•” in blue represent the prototypes identified from data
samples of class 1 and the larger dots “•” in red represent
the prototypes identified from data samples of class 2. The
Voronoi tessellations [50] formed by these prototypes are also
visualised in Supplementary Fig. S2, where the black dash
lines “- -” represent the boundaries of Voronoi tessellations.
Based on the formed Voronoi tessellations in the data space,
the classification boundaries of the predictive model are then
built naturally, presented by the green lines “—” in Supple-
mentary Fig. S2. The integrated classification boundaries of
the six base classifiers are given by Fig. 3. By comparing
between Supplementary Fig. S2 and Fig. 3, one can see that
more sophisticated classification boundaries are constructed by
forming an ensemble system from the six base learners.

To demonstrate the effectiveness of the proposed FWAd-
aBoost algorithm, the classification error rate of FWAdaBoost-
SOFIES on the testing set is reported in Supplementary Table
S4, and the respective classification error rates of the six base
classifiers are reported in the same table as well. One can
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Fig. 3: The integrated decision boundaries of the six base
learners through training (dots“·” in light blue –data samples
of class 1; the dots “·” in orange – data samples of class 2;
the larger dots“•” in blue - prototypes of class 1; the larger

dots “•” in red – prototypes of class 2; black dash lines “- -”
– the boundaries of Voronoi tessellations; the green lines

“—” – the decision boundaries)

clearly see from Supplementary Table S3 that FWAdaBoost
is capable of constructing a more precise predictive ensemble
model from the learned base classifiers.

B. Sensitivity analysis

In this subsection, numerical experiments are conducted to
investigate the influence of the level of granularity, G and the
number of base classifiers, T within the ensemble system on
the performance of FWAdaBoost-SOFIES. Four benchmark
datasets (one binary ones and three multi-class ones) are
used for the numerical examples presented in this subsection,
namely, MG, IS, MF and WF. For MG, MF, and WF datasets,
half of the data samples are randomly selected out to form
the training sets, and the remaining ones are used to form the
testing sets. For IS dataset, the original train/test split is kept,
but the orders of the training samples are scrambled randomly
during the experiments.

Firstly, the influence of the externally controlled parameter,
G on system performance is studied. In this numerical exam-
ple, the ensemble system is composed of 20 base classifiers,
namely, T = 20. The value of G varied from 1 to 14. The
obtained results in terms of classification accuracy rates on the
testing sets are reported in Supplementary Table S5, where the
prediction results by SOFIS are also reported as the baseline.

It can be observed from Supplementary Table S5 that
the proposed FWAdaBoost algorithm effectively boosts the
prediction performance of SOFIS, and the boosting effect is
even more significant when a lower level of granularity is
used. Taking MG and WF datasets as example, the prediction
accuracy rates of FWAdaBoost-SOFIES are improved by ap-
proximately 30% and 13% with the level of granularity set

as G = 1, and approximately 14% and 10% with the level
of granularity set as G = 2. The proposed ensemble system
reaches the maximum prediction precision with G greater
than 5 on the considered benchmark problems. Beyond this
range, increasing the value of G will not bring significant
improvement to the system performance. Meanwhile, SOFIS
reaches the maximum prediction precision with G greater than
7. This example also serves as a strong evidence, showing the
effectiveness of the proposed FWAdaBoost on boosting the
performance of SOIFS.

Secondly, the influence of the externally controlled param-
eter, T on system performance is studied. In this numerical
example, the number of the base classifiers in the ensemble
system, namely, T varies from 5 to 35. Two different levels
of granularity, G are considered, namely, G = 2 and G = 12.
The obtained results in terms of classification accuracy rates
on the testing sets are reported in Supplementary Table S6.
The prediction results by SOFIS under the same experimental
settings (in this case, T = 1) are also reported in the same
table for better illustration.

Supplementary Table S6 shows that generally, the more
base classifiers are used in the ensemble system, the better
the prediction accuracy will be. However, it is also worth
noting that when FWAdaBoost-SOFIES is composed of more
than 20 base classifiers, adding more base classifiers to the
ensemble systems will not bring significant benefits to the
overall prediction performance.

Based on Supplementary Tables S5 and S6, for the rest of
this section, unless specifically declared otherwise, the level
of granularity of SOFIS is set to be G = 12 to ensure that
SOFIS always achieves strong prediction performance, and
the ensemble classifier is composed of 20 base classifiers,
namely, T = 20. Note that this is a recommended parameter
setting, and the performance of FWAdaBoost-SOFIES can
be further improved on a particular problem by tuning the
two parameters. However, it is demonstrated through nu-
merical examples later that with this recommended setting,
FWAdaBoost-SOFIES outperforms its competitors on a wide
range of benchmark problems (different from the four datasets
considered in this subsection).

C. Ablation analysis
In this subsection, ablation analysis is performed to justify

the effectiveness and validity of the proposed concept and
general principles. As stated in Section III, FWAdaBoost
employs the same framework of the widely used SAMME,
but its sample weight updating and ensemble output gener-
ation schemes have been modified to utilise the confidence
scores produced by SOFIS during decision-making for greater
prediction precision. In the following example, two variations
of FWAdaBoost are considered, namely, FWAdaBoost1 and
FWAdaBoost2. Both variations follow the same framework of
SAMME. However, FWAdaBoost1 uses the proposed sample
weight updating scheme only, while FWAdaBoost2 uses the
proposed ensemble output generation scheme only. 10 bench-
mark datasets are used in this example, which include four
binary ones, namely, MG, PID, PW and SP, and six multi-
class ones, namely, CA, IS, MF, OR, PR and WF. For MG,
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PID, SP, CA, MF and WF datasets, half of the data samples
are randomly selected out to form the training sets, and the
remaining ones are used to form the testing sets. For IS, OR
and PR datasets, the original train/test splits are kept, but
the orders of the training samples are scrambled randomly
during the experiments. The prediction results of the ensem-
ble systems constructed by FWAdaBoost, FWAdaBoost1 and
FWAdaBoost2 on the testing sets of the eight benchmark
problems are tabulated in Supplementary Table S7 with the
results obtained by SAMME given as the baseline. The average
classification accuracy rates over the ten datasets are presented
by Fig. 4.

Fig. 4: Overall average classification accuracy comparison
for ablation analysis

One can see from Supplementary Table S7 and Fig. 4 that
FWAdaBoost2 is able to construct more precise ensemble
systems than SAMME in most of the cases. However, FWAd-
aBoost1 only outperforms SAMME (AdaBoost) on binary
classification problems. This is due to the fact that FWAd-
aBoost1 gives much less weights to correct predictions with
high confidences during the training process than SAMME. As
a result, the classification boundaries of some base classifiers
within the ensemble system are altered by the less confident
predictions and wrong predictions to a greater degree in order
to correctly classifying such samples. However, this may also
lead to the issue that some of the easy-to-classify samples
will be wrongly classified by these base classifiers. This
causes the lower classification performance of the ensemble
system constructed by FWAdaBoost1. However, with both
proposed sample weight updating and ensemble output genera-
tion schemes, this issue can be successfully addressed because
the levels of confidence each base classifier have towards its
individual predictions are considered in the overall ensemble
outputs. Therefore, it can be concluded from Supplementary
Table S7 and Fig. 4 that FWAdaBoost can effectively improve
the prediction performance of the overall ensemble system.

D. Performance demonstration

In this subsection, numerical experiments are conducted for
comparing the performance of FWAdaBoost over AdaBoost
and its variations. Since FWAdaBoost is suitable for both
binary and multi-class classification problems, experiments are
performed on the two types of problems separately.

Firstly, seven binary classification problems, namely, ESR,
GC, OD, PID, PW, SE and SP are used for evaluating the per-
formance of FWAdaBoost-SOFIES. During the experiments,

the original train/test split of OD dataset is kept but the
order of the training samples are randomly scrambled in
each experiment. For the other six datasets, 50% of the data
samples are selected out randomly to form the training sets
and the rest are used for testing. In addition, the following six
two-class boosting algorithms are used to construct ensemble
classifiers with SOFIS serving as benchmark comparison: 1)
AdaBoost [10]; 2) ReAdaBoost [15], [17]; 3) AveBoost2 [20];
4) PAdaBoost [18]; 5) NDAdaBoost [22], and; 6) RoAdaBoost
[12]. Classification results of the ensemble systems constructed
by FWAdaBoost and its competitors are reported in Table I
in terms of balanced accuracy rate (BAcc) [56], where the
best results are highlighted. The results obtained by SOFIS
are also reported in the same table as the baseline. For better
demonstration, performances of the eight algorithms over the
seven binary classification datasets are ranked from best to
worst in terms of BAcc, and the average ranks are reported
in Table I. It is shown by Table I that the ensemble system
constructed by FWAdaBoost is able to achieve very high
balanced accuracy on the seven binary datasets, surpassing the
alternative ensemble systems constructed by other two-class
boosting algorithms involved in this example. This example
justifies the effectiveness of the proposed algorithm.

Next, nine multi-class benchmark datasets are used for
performance evaluation, which include AB, CA, GP, LR, OR,
PB, PR, SH and TE. Following the same experimental protocol
used before, for OR and PR datasets, the original train/test
splits are kept, but the orders of the training samples are
scrambled randomly in each experiment. For the other seven
datasets, 50% of the data samples are selected out randomly
to build the training sets and the remaining samples are used
to form the testing sets. The following four well-known multi-
class boosting algorithms are used for benchmark comparison:
1) AdaBoost.M1 [24]; 2) AdaBoost.M2 [24]; 3) SAMME [26],
and; 4) ReSAMME [26].

Classification performances of the ensemble classifiers con-
structed by the five multi-class boosting algorithms are re-
ported in Table II in terms of BAcc [56] with the best
results being highlighted. The results obtained by SOFIS are
also reported in the same table as baseline. Similar, average
performance ranks of the six approaches over the nine datasets
are also reported. Table II shows that the ensemble system
constructed by the proposed FWAdaBoost algorithm outper-
forms alternative ensemble systems with the highest overall
rank, demonstrating its efficacy.

It is also interesting to notice from the comparison given
by Tables I and II that FWAdaBoost, ReAdaBoost and Re-
SAMME all involve the prediction confidences (confidence
scores in this case) in sample weight updating and ensemble
output generation, but FWAdaBoost outperforms the other two
algorithms in most of the cases thanks to the unique operating
mechanism proposed in this paper.

Then, the performance of FWAdaBoost-SOFIES is com-
pared with a number of classification approaches on the
nine multi-class datasets for benchmark comparison. The
following nine widely used classification approaches are used
for comparison (the first three are zero-order FISs): 1) self-
organizing fuzzy inference ensemble system (SOFEnsemble)
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TABLE I
PERFORMANCE COMPARISON BETWEEN DIFFERENT BOOSTING ALGORITHMS ON BINARY CLASSIFICATION PROBLEMS

Algorithm ESR GC OD PID PW SE SP Rank
FWAdaBoost 0.8296 0.6044 0.9439 0.6179 0.9423 0.5003 0.8342 2.5

AdaBoost 0.8112 0.5890 0.9398 0.6126 0.9367 0.5269 0.8099 6.2
ReAdaBoost 0.8273 0.5972 0.9440 0.6117 0.9419 0.5004 0.8337 4.4
AveBoost2 0.8213 0.5965 0.9452 0.6128 0.9413 0.5106 0.8283 4.3
PAdaBoost 0.8246 0.6034 0.9435 0.6158 0.9402 0.5002 0.8342 4.2

NDAdaBoost 0.8298 0.6015 0.9421 0.6118 0.9399 0.5048 0.8317 4.6
RoAdaBoost 0.8277 0.6036 0.9423 0.6155 0.9422 0.5042 0.8349 3.0

Baseline 0.8112 0.5863 0.9398 0.5994 0.9367 0.5269 0.8099 6.8

TABLE II
OVERALL PERFORMANCE COMPARISON BETWEEN DIFFERENT BOOSTING ALGORITHMS ON MULTI-CLASS

CLASSIFICATION PROBLEMS

Algorithm AB CA GP LR OR PB PR SH TE Rank
FWAdaBoost 0.5398 0.7389 0.7378 0.9409 0.9777 0.6650 0.9763 0.9078 0.9886 2.1
AdaBoost.M1 0.5083 0.7288 0.7360 0.9287 0.9759 0.7084 0.9757 0.8947 0.9873 4.0
AdaBoost.M2 0.5325 0.7202 0.6869 0.9346 0.9791 0.6855 0.9779 0.9036 0.9884 3.1

SAMME 0.5189 0.7287 0.7340 0.8924 0.9759 0.7084 0.9757 0.8775 0.9851 4.8
ReSAMME 0.5416 0.7094 0.7706 0.9361 0.9790 0.6593 0.9773 0.9036 0.9882 2.8

Baseline 0.5080 0.7287 0.7360 0.9287 0.9760 0.7084 0.9757 0.8945 0.9873 4.2

[53]; 2) zero-order autonomous learning multiple-model clas-
sifier (ALMMo0) [54]; 3) eClass0 classifier [39]; 4) SVM with
linear kernel; 5) KNN; 6) DT; 7) multilayer perceptron (MLP);
8) sequence classifier (SC) [58], and; 9) extreme learning
machine (ELM) [59].

In this example, SOFEnsemble, ALMMo0, eClass0 and SC
classifiers follow the recommended parameter settings given
by [39], [53], [54], [58]. For SVM, KNN, MLP, DT and ELM
classifiers, five different parameter settings are considered for
each of them during the experiments and the best performances
are reported. In particular, the box constraint, C of SVM is
set as: C ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. The number of nearest
neighbours, k for KNN is set as: k ∈ {6, 8, 10, 12, 14}. Five
different architectures are considered for MLP, namely, i) one
hidden layer with 20 neurons; ii) two hidden layers with 20
neurons in each; iii) three hidden layers with 20 neurons in
each; iv) one hidden layer with 40 neurons, and; v) two hidden
layers with 40 neurons in each. The maximum depth of DT
varies from 25, 50, 100, 150 and 200. The maximum number
of neurons of ELM varies from 100, 150, 200, 250 and 300.

In addition, the following eight ensemble classifiers based
on AdaBoost.M2 and SAMME are created from SVM,
KNN, DT and MLP with the respective best performing
parameter settings, and used for benchmark comparison: 1)
AdaBoost.M2-based SVM ensemble classifier (AdaBoost.M2-
SVM); 2) AdaBoost.M2-based KNN ensemble classifier
(AdaBoost.M2-KNN); 3) AdaBoost.M2-based DT ensemble
classifier (AdaBoost.M2-DT); 4) AdaBoost.M2-based MLP
ensemble classifier (AdaBoost.M2-MLP); 5) SAMME-based
SVM ensemble classifier (SAMME-SVM); 6) SAMME-based
KNN ensemble classifier (SAMME-KNN); 7) SAMME-based
DT ensemble classifier (SAMME-DT), and; 8) SAMME-
based MLP ensemble classifier (SAMME-MLP). Following
the experimental setting of FWAdaBoost-SOFIES, the number

of base classifiers for each ensemble model is set as 20.
The results obtained by FWAdaBoost-SOFIES and its com-

petitors are reported in Table III in terms of BAcc [56]. The
results obtained by SOFIS are also presented in the same table
as baseline. The best results in Table III are in bold. For visual
clarity, the performances of the 18 algorithms involved in this
numerical example are ranked from best to worst in terms of
BAcc per dataset, and the average ranks are also tabulated
in Table III. From Table III one can see that the proposed
FWAdaBoost-SOFIES is ranked the top place on nine multi-
class classification problems, demonstrating the efficacy of the
proposed ensemble approach for classification.

To examine the statistical significance of the better perfor-
mance achieved by FWAdaBoost-SOFIES, over the 18 single-
model and ensemble competitors and on the nine benchmark
problems, pairwise Wilcoxon signed rank tests [57] are con-
ducted. The outcomes of the pairwise tests in terms of p-
value are tabulated in Supplementary Table S8, where the
cascaded classification results by each approach from the 25
experiments are used. It can be observed that 88.9% of the
p-values returned by the pairwise Wilcoxon tests are below
the level of significance specified by α = 0.05. This suggests
that the performance of FWAdaBoost-SOFIES is significantly
better than the other 18 classifiers.

As the number and model complexity of base classifiers
can have great impact on the performances of the resulting
ensemble models, additional numerical experiments are per-
formed to compare the performances between FWAdaBoost-
SOFIES and the eight AdaBoost.M2-based and SAMME-
based ensemble classifiers used in the previous example with
the respective optimised parameter settings for better evalu-
ation. AdaBoost.M2-SOFIES and SAMME-SOFIES are also
involved in the numerical comparison. In this example, the
nine multi-class benchmark datasets used before are employed,
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TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT SINGLE-MODEL AND ENSEMBLE CLASSIFIERS

Algorithm AB CA GP LR OR PB PR SH TE Rank
FWAdaBoost-SOFIES 0.5398 0.7389 0.7378 0.9409 0.9777 0.6650 0.9763 0.9078 0.9886 4.6

SOFIS 0.5080 0.7287 0.7360 0.9287 0.9760 0.7084 0.9757 0.8945 0.9873 7.4
SOFEnsemble 0.5373 0.6775 0.7440 0.9370 0.9100 0.5415 0.9426 0.8984 0.9799 10.6

ALMMo0 0.4878 0.7100 0.6516 0.9198 0.9776 0.6875 0.9750 0.8953 0.9857 8.4
eClass0 0.4765 0.6784 0.2971 0.5074 0.8727 0.6440 0.8473 0.7000 0.7783 17.0
SVM 0.5259 0.7431 0.4207 0.8524 0.9625 0.5565 0.9563 0.9173 0.9906 9.3
KNN 0.5337 0.7116 0.7530 0.9294 0.9782 0.6040 0.9760 0.8721 0.9754 7.7
DT 0.5332 0.8338 0.7034 0.6848 0.8542 0.7752 0.9121 0.6943 0.9030 12.6

MLP 0.5503 0.7770 0.5356 0.6535 0.9502 0.5763 0.9573 0.6586 0.9800 11.7
SC 0.4640 0.7723 0.8106 0.8557 0.9547 0.6461 0.9516 0.8955 0.9812 8.8

ELM 0.3750 0.6326 0.4752 0.5606 0.9336 0.2009 0.9595 0.4515 0.9802 15.6
AdaBoost.M2-SVM 0.5205 0.7393 0.4175 0.8522 0.9620 0.6273 0.9577 0.9119 0.9882 9.6
AdaBoost.M2-KNN 0.5223 0.7092 0.7383 0.9254 0.9773 0.5861 0.9761 0.8595 0.9762 9.4
AdaBoost.M2-DT 0.5339 0.8349 0.7550 0.7447 0.9206 0.7861 0.9409 0.7743 0.9466 9.3

AdaBoost.M2-MLP 0.5515 0.7804 0.5457 0.7072 0.9642 0.6237 0.9643 0.8140 0.9849 8.3
SAMME-SVM 0.5259 0.7431 0.4207 0.8354 0.9572 0.6713 0.9562 0.8888 0.9897 9.5
SAMME-KNN 0.5337 0.7116 0.7530 0.9294 0.9782 0.6040 0.9760 0.8721 0.9754 7.7
SAMME-DT 0.5435 0.8340 0.7280 0.7522 0.8787 0.7752 0.9189 0.7338 0.9052 10.5

SAMME-MLP 0.5514 0.7659 0.5354 0.6994 0.9504 0.5768 0.9546 0.7305 0.9710 12.0

TABLE IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT ENSEMBLE CLASSIFIERS WITH OPTIMISED PARAMETER SETTINGS

Algorithm AB CA GP LR OR PB PR SH TE MN FMN Rank
FWAdaBoost-SOFIES 0.5345 0.7289 0.7049 0.9282 0.9753 0.6521 0.9759 0.8909 0.9863 0.9594 0.8447 2.9
AdaBoost.M2-SOFIES 0.5305 0.7171 0.6840 0.9190 0.9758 0.6798 0.9757 0.8881 0.9857 0.9579 0.8408 3.8

AdaBoost.M2-SVM 0.5225 0.7369 0.4140 0.8475 0.9590 0.6051 0.9551 0.9094 0.9859 0.9300 0.8359 6.4
AdaBoost.M2-KNN 0.5212 0.6801 0.7010 0.9060 0.9737 0.5562 0.9742 0.8461 0.9697 0.9432 0.8114 7.0
AdaBoost.M2-DT 0.5254 0.8398 0.7467 0.7622 0.9186 0.8093 0.9396 0.7694 0.9411 0.8942 0.8173 6.5

AdaBoost.M2-MLP 0.5600 0.7511 0.5529 0.7088 0.9661 0.6208 0.9654 0.7996 0.9888 0.5428 0.7135 6.5
SAMME-SOFIES 0.5205 0.7151 0.6986 0.9142 0.9730 0.6936 0.9736 0.8712 0.9834 0.9488 0.8280 5.5

SAMME-SVM 0.5268 0.7421 0.4189 0.8487 0.9543 0.6774 0.9535 0.8889 0.9883 0.9266 0.8333 6.0
SAMME-KNN 0.5279 0.6847 0.7152 0.9121 0.9742 0.5677 0.9745 0.8577 0.9695 0.9466 0.8164 5.9
SAMME-DT 0.5368 0.8333 0.7168 0.7595 0.8742 0.7668 0.9105 0.7157 0.8978 0.8678 0.7903 7.3

SAMME-MLP 0.5520 0.7637 0.5254 0.6952 0.9447 0.6126 0.9543 0.7223 0.9784 0.7979 0.7087 8.0

and the same train/test splits are considered. 25% of data
samples in the training sets are randomly picked out to
form the validation sets. These validation sets are used for
identifying the best parameter settings for these ensemble
classifiers aiming at maximising their performances. During
the experiments, the level of granularity, G for FWAdaBoost-
SOFIES, AdaBoost.M2-SOFIES and SAMME-SOFIES varies
from 6, 8, 10, 12 and 14. The same five different parameter
settings used in the previous example are considered for SVM,
KNN, DT and MLP. The number of components within each
ensemble classifier varies from 5 to 40. The obtained BAcc
of FWAdaBoost-SOFIES and the 10 alternative ensemble
classifiers on the nine benchmark problems are tabulated in
Table IV, with the best results in bold.

In addition, to evaluate the effectiveness of FWAdaBoost-
SOFIES on high-dimensional problems, two visual datasets,
namely, MN and FMN are used for performance comparison.
To facilitate computation, 10000 training images (1000 images
per class) are randomly selected to build the training sets,
and 2000 training images (200 images per class) are used for
validation. Classification performances on the testing sets by
FWAdaBoost-SOFIES and its competitors with the optimised
parameter settings are also reported in Table IV in terms of

BAcc. The performances of the nine ensemble classifiers on
each benchmark problem are ranked from best to worst, and
the average ranks are given in the same table.

Similarly, pairwise Wilcoxon signed rank tests [57] are
conducted to examine the statistical significance of the better
performance achieved by FWAdaBoost-SOFIES over the 10
competitors on the 11 benchmark problems. The outcomes
of the pairwise tests are tabulated in Supplementary Table
S9. As illustrative examples, IF-THEN rules learned from the
two visual datasets by ensemble components of FWAdaBoost-
SOFIES are presented in Supplementary Tables S10 and S11.

Table IV shows that FWAdaBoost-SOFIES outperforms
all 10 alternative ensemble classifiers on four benchmark
problems, including the two high-dimensional visual ones,
and its overall performance is ranked at the top. In addition,
77.3% of the p-values returned by the pairwise Wilcoxon
tests as given by Supplementary Table 9 are below the level
of significance specified by α = 0.05. This example further
demonstrates the superiority of FWAdaBoost-SOFIES. Visual
examples given by Supplementary Tables S10 and S11 also
demonstrate the high transparency of FWAdaBoost-SOFIES as
the learned knowledge from data is kept in its knowledge base
in the form of human-understandable, intuitive prototypes.
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TABLE V
PERFORMANCE DEMONSTRATION OF FWADABOOST WITH OTHER TYPES OF BASE CLASSIFIERS

Algorithm AB CA GP IS MF OR TE Overall Acc
FWAdaBoost-ALMMo0 0.5379 0.8820 0.7658 0.8022 0.9469 0.9791 0.9900 0.8434

ALMMo0 0.4854 0.8447 0.6979 0.7689 0.9356 0.7918 0.9857 0.7871
FWAdaBoost-eClass0 0.4923 0.7662 0.4802 0.7486 0.7996 0.8919 0.8034 0.7117

eClass0 0.4587 0.7035 0.2687 0.7134 0.7918 0.8731 0.7005 0.6442

At last, to demonstrate the effectiveness of FWAdaBoost to
alternative zero-order fuzzy inference systems, FWAdaBoost-
ALMMo0 and FWAdaBoost-eClass0 ensemble classifiers are
constructed by using ALMMo0 and eClass0 classifiers as
the ensemble components, respectively, following the same
ensemble framework as FWAdaBoost-SOFIES. The perfor-
mances of the two ensemble classifiers are evaluated on
AB, CA, GP, IS, MF OR and TE datasets, under the same
experimental protocols and reported in Table V .The overall
accuracy rates are given in the same table as well. One can
see from Table V that FWAdaBoost effectively boosts the
classification performances of ALMMo0 and eClass0, showing
the applicability of FWAdaBoost to other types of zero-order
fuzzy inference systems with similar operating mechanisms.

E. Discussions

Based on the numerical examples presented in this sec-
tion, one could conclude that the proposed FWAdaBoost-
SOFIES is a powerful ensemble approach for classification
by offering users both great prediction precision and high
model transparency. In particular, the ablation analysis pre-
sented in subsection V.C, namely, Fig.4 and Supplementary
Table S7 demonstrate the effectiveness and validity of the
new modifications introduced to the multi-class AdaBoost
algorithm, resulting in the proposed FWAdaBoost. The per-
formance comparison presented in Tables I and II justifies
the efficacy of FWAdaBoost as a boosting algorithm designed
specifically for SOFIS. Tables III and IV demonstrates the su-
perior performance of FWAdaBoost-SOFIES over the state-of-
the-art alternatives. Table V further shows that FWAdaBoost
can be used for boosting the performances of other zero-
order fuzzy inference systems such as ALMMo0 and eClass0.
Nevertheless, this study has several limitations and needs to
be further investigated as future work.

Firstly, numerical experiments in this paper are conducted in
noise-free environments. Although it is demonstrated through
numerical examples that FWAdaBoost is able to create a
stronger ensemble fuzzy classifier with higher prediction preci-
sion than alternative boosting algorithms. Further experimental
investigations are needed to evaluate the robustness of FWAd-
aBoost and examine its performance in noisy environments.

Secondly, zero-order FISs are usually linear classifiers. It is
well known that the performance of a linear classifier is often
very limited when applied to nonlinear problems where data
samples are not linearly separable. Despite that this limitation
has been partially lifted through ensemble learning, it would be
worth introducing some modifications, for example, the kernel
tricks to SOIFS such that the performance of FWAdaBoost-

SOFIES on nonlinear classification problems can be further
improved.

Last but not least, FWAdaBoost-SOFIES in this paper uses
cosine dissimilarity as the default distance measure only. It is
well known that distance measures play a significant role in
classification. Different types of distance measures can lead to
different classification results. Although cosine dissimilarity is
widely used for high dimensional data classification, it is not
a full distance metric and may hide important information.
Therefore, it would be interesting to see how FWAdaBoost-
SOFIES performs with other types of distance measures, e.g.,
Euclidean distance, Mahalanobis distance.

VI. CONCLUSION

This paper investigates the potential of AdaBoost to in-
corporate fuzzy inference systems as base classifiers and
proposes FWAdaBoost-SOFIES for multi-class classification.
With the modified sample weight updating and output gener-
ation schemes, FWAdaBoost is able to boost the classification
performance of SOFIS to a greater extent than alternative
boosting algorithms. Numerical examples demonstrated the
superior performance of FWAdaBoost-SOFIES on a wide
range of benchmark problems.

There are several considerations for future work. Firstly,
SOFIS can learn from static data and streaming data, but
FWAdaBoost-SOFIES is limited to offline application scenar-
ios at this moment. It would be very useful to develop an
online version for FWAdaBoost so that the proposed ensemble
classifier can be used for time-critical applications. Secondly,
introducing the kernel tricks to SOFIS and FWAdaBoost-
SOFIES will be an interesting direction for future work.
Such modification can improve the capability of SOFIS and
FWAdaBoost-SOFIES to handle nonlinear problems. In ad-
dition, as aforementioned, the robustness of FWAdaBoost-
SOFIES to noisy data needs to be investigated. Finally, the
impacts of different distance measures on classification per-
formance and robustness of FWAdaBoost-SOFIES also need
to be evaluated.
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