
Standardized crypto-loans on
the Cardano blockchain

Dmytro Kondratiuk1, Pablo Lamela Seijas1[0000−0002−1730−1219], Alexander
Nemish1, and Simon Thompson?1,2[0000−0002−2350−301X]

1 IOHK, Hong Kong, dmytro.kondratiuk@iohk.io, pablo.lamela@iohk.io,

alexander.nemish@iohk.io, simon.thompson@iohk.io
2 School of Computing, University of Kent, UK, s.j.thompson@kent.ac.uk

Abstract. Crypto-loans are innovative financial instruments that allow
trustless peer-to-peer lending, and potentially providing a safe and conve-
nient source of liquidity for cryptocurrency holders. In this paper we ex-
plore a smart contract framework for building standardised crypto-loans
using the Marlowe domain-specific language and the ACTUS standard
for financial contracts.

Keywords: ACTUS · blockchain · Cardano · finance · Haskell · Marlowe
· smart contract · static analysis

1 Introduction

Smart contracts – programs that run in a blockchain environment – can be de-
fined in a variety of ways [9]. Many such approaches are general purpose, and can
be used to program any kind of contract it makes sense to run on a blockchain;
moreover, they tend to be expressive enough to be Turing complete (in some
cases with restrictions on the runtime environment). For example, Plutus, the
general-purpose language running on the Cardano blockchain [3], is a dialect
of Haskell. Another approach is to develop special-purpose or domain-specific
languages (DSLs) which embody a particular application domain: Marlowe [8]
is a high-level DSL for writing financial contracts on the Cardano blockchain.

In this paper we explore ways in which contracts described in ACTUS (Al-
gorithmic Contract Types Unified Standards) can be defined in the contract
languages Marlowe, Plutus and Haskell. Of course, Plutus or Haskell are able
to express these contracts, but rendering them in Marlowe brings extra advan-
tages. Marlowe is defined to provide a range of guarantees by design: a Marlowe
contract will only make a finite number of interactions with its environment,
and its lifetime can be read off from the code for a contract; moreover, when
the contract terminates, any assets held by the contract will automatically be
returned to the participants. None of these guarantees can be provided by a
general purpose language.

? Corresponding author.



2 D. Kondratiuk, et al.

Each Marlowe contract has a finite set of possible execution paths, and so it is
possible to analyse the complete behaviour of a contract without running it. Such
static analysis, based on SMT solving [12], can be used to check properties of a
contract; for example, it is possible to check whether a contract will honour all the
Pay constructs that it contains, however it is executed. In the case that a Pay can
fail, the analysis gives an example trace showing how that failure happens. The
language design and static analysis provide assurance that Marlowe contracts
are much less likely to “misbehave” than contracts written in a general-purpose
language like Solidity.

In implementing ACTUS on Cardano we are able to provide further assur-
ance in three other ways. First, we are able to use the declarative nature of
Haskell to transliterate ACTUS formulas term-by-term into an executable form
in Haskell. Secondly, we are able to use random, property-based testing to val-
idate the Haskell implementation against another written in Java. Finally, we
are able to automatically generate ACTUS contracts in Marlowe from the terms
– i.e. parameters – of the contracts; for a simple loan these would include the
start and end dates of the loan and the amount loaned (the ‘principal’). The
generated contracts use the executable spec in calculating values of cash flows
in the Marlowe contracts.

The contribution of our work is to show that that it is possible to implement
financial contracts on blockchain in a way that multiple forms of assurance are
provided: from the language itself, from the static analysis, and from custom
property verification. The development environment for Marlowe, the Marlowe
Playground 3, also provides a simulation environment for contracts for stepping
forwards (and backwards) through contract execution, and thus allowing users
to validate that contracts perform as they should. In addition, implementing
ACTUS provides a suitable benchmark against which to assess the design of
Marlowe; we illustrate how the implementation has led to the addition of a
conditional expression construct to the language.

In the remainder of the paper, Section 2 covers the relevant financial back-
ground, including the ACTUS financial standard. Section 3 builds an executable
specification of ACTUS in Haskell, and this is used in Section 4 to generate the
Marlowe code for an ACTUS contract from the contract terms. Section 5 ex-
plains how tokens are used to represent ownership of roles in a running contract,
and Section 6 describes how we provide assurance that contracts behave as they
should. Section 7 examines related work and Section 8 concludes.

A note on notation: typewriter font will be used for Marlowe constructs
while math font will be used for mathematical formulas and pseudo-code.

2 Financial contracts

In this section we give a brief introduction to financial contracts, and to loans
in particular, and then describe the ACTUS financial standard.

3 https://alpha.marlowe.iohkdev.io/#/

https://alpha.marlowe.iohkdev.io/#/


Standardized crypto-loans on the Cardano blockchain 3

2.1 Crypto-loans

A loan is a form of debt incurred by an individual or other entity. The lender
advances a sum of money to the borrower. In return, the borrower agrees to a
certain set of terms including any finance charges, interest, repayment date, and
other conditions [10].

Cryptocurrency-backed loans must have collateral when there is no trust be-
tween party and counterparty. While a loan is usually settled in a stable-coin
currency (e.g. USDT/USDC), collateral is typically denominated in a cryptocur-
rency (e.g. BTC). The purpose of such a loan is to give the borrower access to
the fiat value of their crypto-funds without actually selling them for fiat. The
borrower pays interest in exchange for gaining liquidity.

Every loan has a positive net payoff (return minus investment) that is either
rendered as a one-time payment – often called a zero-coupon bond (ZCB) – or by
scheduling payment of the interest. The rate of interest could be fixed throughout
the lifetime of a contract: for example, zero-risk bonds have a fixed interest
proportional to the inflation rate. However, in the generic case the interest rate
is variable and depends on an external factor agreed in advance, and the rate is
periodically updated by observing the state of that factor.

Such loans often represent an investment in a particular venture or industry.
As a somewhat fictional example, one could imagine a cryptocurrency miner
who decided to scale their crypto-farm: a loan (in USD) with variable interest
that directly depends on cryptocurrency prices would be more attractive for a
miner because it would directly correlate with miner’s profits. For example, if
the price of the cryptocurrency goes down in a particular month the borrower
would have to pay lower interest, and so would always pay a fixed share of the
profits. In a more traditional setup the interest rate could depend on prices of
other commodities: a canonical example would be a power plant taking a loan
with interest depending on electricity prices.

In both cases, the prices of cryptocurrency or electricity become a driver for
the interest rate. However, one cannot simply take the bare price of the asset
and turn it into a rate. In order to make units of measurement compatible with
each other adjustments should be made. Fluctuations of the interest rate driver
are embedded thus:

∆r = capfloor(driver ∗multiplier + spread − interestRatet−1)

interestRatet = capfloor(interestRatet−1 +∆r),

where capfloor is a function that limits the range of fluctuation, and so limiting
the lender’s exposure to risk:

capfloor(x) = max(min(x,floor), cap)

The spread parameter here loosely represents the difference between the average
prime rate that the lender expects – the benchmark yield – and the rate imposed
by the driver: the higher the spread, the higher the resulting interest rate. The
multiplier rescales the interest rate curve in order to represent the changes to



4 D. Kondratiuk, et al.

be made converting between different units of measurement: how many rate
percentage points you would get for a USD-to-kilowatt conversion and so on.

In the context of ACTUS and similar frameworks, there is one more factor
influencing interest rates thorough scaling:

interestPayment = interestScalingFactor ∗ interestRate ∗ notional

This scaling is dynamic and loosely adjusts for variance (volatility) of the asset
that the interest rate driver represents.

Interest accrual and capitalisation. A counterparty might decide to reinvest
profit received as interest from the loan. In the simplest case, this renders as
compound interest. This can be modelled through interest accrual and capi-
talisation (conversion of income or assets into capital); for instance, contracts
from the ACTUS specification accrue interest between interest payments and
can transfer interest to a notional during interest capitalisation event (IPCL).

Overall, variable interest rates introduce a certain risk for a lender, thus they
can be subject to hedging. While any instrument that depends on the same
risk factor (interest rate driver) would suffice, the most popular way to hedge a
variable interest rate loan is an interest rate swap. This instrument allows two
(or more) parties to exchange their incomes - one from a fixed interest rate loan,
the other from a variable-rate loan.

Counterparty risk. Trustless setups, especially ones in the cryptocurrency world,
including decentralised smart-contracts and exchanges, require no trust between
party and counterparty involved in a contract. In case of a loan, this literally
means that counterparty has zero obligation to pay the money back, thus render-
ing the loan useless for a party. Such risks are usually addressed by introducing
collaterals, as in the following scenario.

1. Alice would like to borrow 1000 USD
2. She has Bitcoin assets cost around 1500 USD, which she intends to hold

throughout a year, so Alice has high confidence in the market (she expects
prices to double or triple)

3. Bob would like to lend 1000 USD and get an interest higher than traditional
interest rate offered by banks (let’s say 15% instead of 10%). He is either
bearish or neutral towards Bitcoin.

4. Alice transfers her BTC as collateral to a contract, and Bob transfers his
USD to Alice

5. If Alice pays the interest and notional on time, and the BTC price does not
render collateral worthless, she can get her collateral back; otherwise the
loan gets liquidated and the collateral is transferred to Bob.

2.2 ACTUS

The Algorithmic Contract Types Unified Standards (ACTUS) [1] define the logic
embedded in legal agreements that eventually turn the contract terms into actual



Standardized crypto-loans on the Cardano blockchain 5

cash flows, or more generally business events. Most of its basic contract types
represent different variations of lending contracts. ACTUS provides additional
benefit of being regulatory friendly, and the ACTUS foundation provides a set
of tools allowing Monte-Carlo simulations of ACTUS contracts.

ACTUS relies on a state machine formalism in order to describe the behaviour
of a given contract. Every payoff – i.e. transfer of funds in or out of a contract
– can be inferred for any given state. Every state can be derived from previous
events and observed risk factors:

payoff i = POF (statei)

pathi = STF (ct, ev1) ◦ STF (ct, ev2) ◦ . . . ◦ STF (ct, evi)

statei = pathi(INIT (ct)),

where ct stands for contract terms, INIT returns initial state, sched returns
scheduled events, STF takes contract terms, event, and state and returns the
next state, and POF returns the payoff in a state.

2.3 Oracles

In order to support variable interest rates and scaling, ACTUS requires a smart
contract to be able to observe the value of a given risk factor, such as an interest
rate, at a particular point in time t. This is due to the state of the risk factor
not being known at instantiation time.

riskfactor it = Orf (i, t)

In the case of the Cardano blockchain, these values are usually provided through
an oracle mechanism[11]. An oracle could be a trusted party providing necessary
data or network of parties under consensus [2].

From a Marlowe DSL perspective, the exact mechanism that provides exter-
nal data is less important, as Marlowe abstracts over IO by requiring a particular
type of input – a Choice – that is protected with a cryptographic signature by
the source of the choice. As a result, the event of receiving data from an oracle
is treated the same as receiving numeric input in other languages

3 Building an executable specification of ACTUS

ACTUS is defined in a textual specification4 which, while expressed in math-
ematical notation, is essentially informal. In this section we describe how this
specification is turned into an executable version by rendering it in Haskell. This
translation is in fact a transliteration, since notation, variable names and so forth
are respected.

4 Available from https://www.actusfrf.org/techspecs.

https://www.actusfrf.org/techspecs


6 D. Kondratiuk, et al.

3.1 Rendering the specification in Haskell

The ACTUS standard is specified in terms of scheduling, payoff and state transi-
tion functions that are polymorphic on event and contract type, as noted in Sec-
tion 2.2 above. The specification also follows quite specific naming conventions
that are incompatible with Haskell’s conventions. The executable specification
follows original ACTUS conventions as closely as possible in order to ease code
base maintenance when faced with updates of the ACTUS spec repository5.

Using Haskell itself as a DSL for explicitly encoding formulas without using
advanced language idioms also simplifies code generation. In case of ACTUS this
comes at a cost reduced type-safety, handling nullable values explicitly introduces
risk of exceptions. However this risk is addressed using property-based testing,
and in particular QuickCheck generators. This is discussed in more detail in
Section 6 below.

3.2 Utilising polymorphism to abstract over basic operations

In order to keep our executable specification independent of the carrier – whether
it is a smart-contract engine, proof assistant, analytical framework or even ma-
chine learning model – we abstract over the underlying representation of state
variables,

-- Definitions/ContractState.hs

data ContractStatePoly a b = ContractStatePoly

{

tmd :: b

, nt :: a

, ipnr :: a

, ipac :: a

, feac :: a

, fac :: a

, nsc :: a

, isc :: a

, prf :: ContractStatus

, sd :: b

, prnxt :: a

, ipcb :: a

} deriving (Show)

and arithmetic operations,

-- Ops.hs

class ActusOps a where

_min :: a -> a -> a

_max :: a -> a -> a

5 https://github.com/actusfrf/actus-techspecs

https://github.com/actusfrf/actus-techspecs


Standardized crypto-loans on the Cardano blockchain 7

_zero :: a

_one :: a

class ActusNum a where

(+) :: a -> a -> a

(-) :: a -> a -> a

(*) :: a -> a -> a

(/) :: a -> a -> a

class YearFractionOps a b where

_y :: DCC -> a -> a -> a -> b

class DateOps a b where

_lt :: a -> a -> b --returns pseudo-boolean

class RoleSignOps a where

_r :: ContractRole -> a

Thus, every formula in the executable spec could be instantiated to:

– a formula on some atomic type, like Double or Day, which could be used to
directly compute cash-flows for analytical purposes or precompute payoffs
for smart contracts that do not depend on oracles; or

– a formula representing a piece of abstract syntax, e.g. a Marlowe Value or
Observation, that could be used to generate smart contracts that depend
on oracles or to generate code in another language, such as Agda.

This approach of abstracting formulas has a limitation of not allowing condi-
tionals to be expressed in an abstract way: in other words, there is no ActusIf

typeclass. Luckily most of conditional expressions in ACTUS specification don’t
depend on variable state of a contract, they depend on ContractTerms that
are known in advance during contract generation. This allows us to dispatch
appropriate formulas during generation rather than execution.

The only exception to this are the rare situations where we need to compare
2 state variables and choose either formula ′ or 0 depending on the result of the
comparison result:

formula(st) =

{
formula ′(st) var1(st) < var2(st)

0 otherwise

We rely on a pseudo-Boolean less than function in order to address that:

formula(st) = pseudoLt(var1(st), var2(st))) ∗ formula ′

pseudoLt(a, b) = Cond(a > b, 1, 0)



8 D. Kondratiuk, et al.

3.3 Contract term representation and explicit applicability

In order to simplify serialisation and deserialisation of contract terms across
ACTUS related services maintained by Cardano we rely on “superposed” repre-
sentation of contract terms: all ACTUS contract types are represented with the
same type.

While such a representation allows both encoder and decoder to express any
ACTUS contract terms, it also allows for invalid combinations of terms (for
example PRNXT cannot be applied to a PAM contract), which means contracts
require specific validation that is implemented by means of the applicability
function:

Applicability : ContractTerms → Bool

ACTUS standard defines a family of applicability functions polymorphic on
contract type:

Applicability : ContractType × ContractTerms → ApplicabilityType

where applicability could be: none, always, nullable, or multiple.

In order to build superposed contract terms type for such functions, we have
to resolve conflicting applicability types for merged contract terms using the
following resolution rules:

weaken(a1, a2) =


nullable a1 = none ∧ a2 = always

nullable a1 = always ∧ a2 = none

a1 priority(a1) > priority(a2)

a2 otherwise

priority(x) =


0 x = always

1 x = none

2 x = nullable

3 x = multiple

where ai is the applicability of a given term of the ith contract type to be merged.

4 Generating Marlowe contracts from standardised
ACTUS contract terms

In this section we describe how concrete Marlowe contracts are generated from
the terms – i.e. parameters – of standard ACTUS contracts. We also describe
the implementation of the system, and reflect on the limitations of generating
contracts in Marlowe, where contracts have a predefined lifetime and a predefined
collection of interactions with contract participants.



Standardized crypto-loans on the Cardano blockchain 9

POF (Payoff Calculator)

PayoffModel.hs
(specification)

PayoffFs.hs
(fixed 
rates)

Payoff.hs
(variable 
rates)

STF (StateTransition Calculator)

StateTransition
Model.hs
(specification)

State
TransitionFs.hs
(variable 
rates)

State
Transition.hs
(fixed 
rates)

INIT (Initial State Calculator)

State
Initialisation
Model.hs
(specification)

State
InitialisationFs.hs
(variable 
rates)

State
Initialisation.hs
(fixed 
rates)

Generator.hs

genStaticContract()
(fixed rates)

SCHED (Schedule Calculator)

Schedule.hs
Schedule
Model.hs
(specification)

genFsContract()
(variable rates)

Analysis.hs
sampleCashFlows()

(variable rates)

Fig. 1. Modules responsible for contract generation.



10 D. Kondratiuk, et al.

4.1 Overall architecture

A generated contract is essentially a continuation chain of smaller contracts:

chainlink(t) = receiveData(t) ◦ calculatePayoff(t) ◦ processPayoff(t)

contract(ct) = collaterals(ct) ◦ INIT (ct) ◦
∏

t∈SCHED(ct)

chainlink(t)

where the component receiveData asks an oracle for Marlowe Choice if needed,
and calculatePayoff calculates the payoff formula. For fixed-rate contracts this
is optimised into a pre-calculated constant function. The processPayoff function
awaits the Deposit of a payoff amount from a party: if the deposit is made them
it directs the funds to a counterparty, otherwise it transfers the collateral to the
counterparty and closes the contract.

The principal components of the system are shown in Figure 1. There are
three categories of components representing ACTUS functions: specification with
formulas, formula wiring for fixed rates (produces precomputed payoffs) and
formula wiring for variable rates, which produces Marlowe-code that computes
payoffs. Different types of wiring correspond to different implementations of
ActusOps implementations (either Double or Value).

The chain is generated from the fixed schedule of events, known in advance
of execution, using the SCHED() function from ACTUS, as shown in Figure 2.

contract

terms SCHED

P
O

F

date1 date2 daten

Schedule (list of days and events)

event1 event2 eventn

st1 st2STF STF stn

P
O

F

P
O

F

st0 STFINIT

payoff1 payoffnpayoff2

Fig. 2. Chain of sub-contracts representing ACTUS logic



Standardized crypto-loans on the Cardano blockchain 11

4.2 Avoiding exponential growth

Marlowe contracts are finite, and in particular Marlowe itself does not have
constructs for functions or recursion; these are available in the Haskell and
JavaScript embeddings of Marlowe, but they are unrolled on translation to pure
Marlowe. Naive usage of the If operator in Marlowe could lead to exponential
growth of a contract, as in this pesudocode example:

if condition

then

perform something1()

continue()

else

perform something2()

continue()

Translating this to Marlowe would inline contents of continue() twice and,
given that ACTUS contracts are essentially generated using continuation as an
accumulator, this would lead to exponential explosion of the size of any ACTUS
contract that has conditionals in their state transition logic.

An example of such logic would be cap/floor limitations on interest rates:

adjusted = max(min(original,floor),cap)

We addressed this issue by introducing the Cond expression construct in order
to represent conditional expressions, rather than only conditional contracts as
was the case before. Instead of using the If contract to decide the value of some
variable, we use a conditional expression instead. Cond is a pure function that
returns a value depending on a condition, in contrast to the If contract that
chooses between two continuation contracts.

4.3 Limitations due to termination

Marlowe doesn’t allow contracts that run indefinitely, even if their recursion is
productive, as would be the case in a perpetual swap contract, for example.
We therefore cannot support certain contract types from ACTUS specification,
namely the ones that don’t have a defined maturity date (like UMP).

There is a possible workaround: contracts with no maturity date could be
represented as actors with a finite number of state transitions. We prototyped
this approach, however it does seem more prone to errors comparing to rendering
predefined schedules. More importantly, it greatly affects static analysis because
the number of reduction steps in the contract grows from

Nscheduled = count(event)

to

NstateTransitions =
max(date(event)) −min(date(event))

precision



12 D. Kondratiuk, et al.

4.4 Fixed-point precision

For numeric types Marlowe supports Integers, while ACTUS is expressed in
terms of real numbers. In order to model a real number in such a setup we rely
on fixed-point precision. The algebra looks like this:

(+) = AddValue -- x/n + y/n = (x + y)/n

(-) = SubValue -- x/n - y/n = (x - y)/n

a * b = Scale (1 % marloweFixedPoint) $ MulValue a b

-- x/n * y/n = (x * y)/n^2

We scale all numbers with marloweFixedPoint factor - which only requires mod-
ification of MulValue. We plan to move Marlowe to fixed-precision numbers for
the on-blockchain implementation available later in 2021.

4.5 Representing Actus state in a Marlowe contract

The Marlowe DSL does not support any notion of records, the variables can only
be of type “Integer”. In order to map contract state – ContractStatePoly – we
pack a set of Marlowe variables of type Value and Observation, representing
the previous (t − 1) state, passing them into ContractStatePoly, to apply the
polymorphic state transition, and finally unpack ContractStatePoly into a set of
Marlowe variables representing the state at t:

stt = unpack(stateTransition(pack(stt−1))),

where pack is a chain of UseValue constructs and unpack is a chain of Lets.

Representing state transitions in Marlowe Marlowe is a declarative language, and
so in particular it does not support mutable variables. We therefore represent
the state at stage t (stt) literally through this naming convention:

variableName(name, t) =

concat(name, ’_’, t)

generateAccessor(name, t) =

UseValue variableName(name, t)

generateSetter(name, t, formula) =

Let variableName(name, t) formula

4.6 Actus Labs

In order to demonstrate and test the capabilities of Actus generators, a visual
online Blockly-based tool was developed for the Marlowe Playground. The Actus
Labs tool, shown in Figure 3, allows users to construct contract terms visually to
generate a corresponding Marlowe contract and then to try it out in a simulation
environment.



Standardized crypto-loans on the Cardano blockchain 13

Fig. 3. Actus Labs - an online tool for generating Actus contracts for Marlowe.

5 Tokenization

Every participant of a Marlowe contact is described by a Role which is in its
turn represented through a unique non-fungible token, created at the time that
the contract instantiated on the blockchain. This makes every ACTUS contract
a tradable security, allowing a participant to sell its share in a contract by selling
a corresponding role token.

Role tokens can potentially allow more complex manipulation over such
shares, especially when the share represents an incoming cash flow; in that case,
participants send funds to a party represented by a given token. Such a token
would represent a positive cashflow, which in turn could not only become trad-
able but could also allow the derivation of tokens representing fractional parts
of a particular cash flow in a contract.

Moreover, this process turns ACTUS loans into derivatives. For example,
contracts like Interest Rate Swap (and Swaps in general) could be approximated
by an Atomic Swap of tokens representing incoming cash flows from loans. For
example, if Alice has fixed income from a loan, or some other investment, and Bob
has comparable but variable (fluctuating) income, Bob can hedge by swapping
cash flows with Alice. If Alice’s income is locked with token1 and Bob’s income
is locked with token2 then an atomic swap of those tokens is equivalent to a
swap of cash flows.



14 D. Kondratiuk, et al.

6 Assurance

This section explains how we provide assurance to users of our Marlowe ACTUS
contracts by means of property-based testing and SMT-based static analysis.

6.1 QuickCheck for cross-testing

First, we are able to test the executable Haskell implementation of ACTUS
for smart-contracts by comparing it with an existing implementation written in
Java. To do this a simple property-based test in QuickCheck [4] was introduced,
where we generate contract terms and risk factors randomly to test the property.

∀ct .∀rf . getCashFlows(”haskell”, ct , rf ) ≡ getCashFlows(”java”, ct , rf )

where ct represents contract terms, rf is risk factor model, and getCashFlows()
returns a set of (date,payoff) tuples.

6.2 QuickCheck for verification

QuickCheck contract terms generators also allow us to check other properties
of a Marlowe contract. This could be enhanced with Marlowe’s static analysis
feature by utilising the Assert operator:

do

let contractTerms = sample(qcgenerator)

contract = generateMarloweContract(contractTerms)

contractWithAssert = appendAssertion(contract, assertion)

runStaticAnalysis(contractWithAssert)

While this scenario does not cover all possible contracts, it could guarantee
that property holds for a statistically significant fraction of a contract.

6.3 Static analysis for verification

Using static analysis for Marlowe [7] it is possible fully to check a particular
contract instead of using random sampling. That would allow some refinements:

– More balanced sampling: the space of contract terms depends linearly on
the coverage, e.g. if we cover 10% of all possible contract terms - we’ll cover
10% of all contracts. Different contracts have different sets of risk factors,
and so different search spaces. For instance, a contract with 3 risk factors
(e.g. 3 observations of an interest rate) would span over n3 values while a
contract with 10 risk factors would span over n10. Meanwhile, the space of
all risk factors in all contracts doesn’t linearly depend on the coverage -
some contracts might have more risk factor observations and some - less.
So covering 10% of all contracts doesn’t necessary mean covering 10% of all
possible observations.



Standardized crypto-loans on the Cardano blockchain 15

– Dependency tracking: an SMT-solver is potentially likely to be more aware
of execution paths that lead to the failure of a test, a feature that could
significantly reduce search space.

– Completeness: if not timed out, SMT-solving is decidable while sampling is
semi-decidable.

6.4 Securing collateral logic with auto-refund warnings

By design, the Marlowe interpreter always refunds any assets held in a contract
when it terminates. This is done in order to ensure that no funds are lost forever.
The funds are returned to whoever’s internal account holds them.

However, this presents as a problem in certain cases where ownership of the
funds could not be determined automatically. For example, if Alice puts collateral
in a crypto-loan contract she would formally maintain ownership, which means
she would get automatically refunded when a Close construct is reached.

This implicit refund is easy to overlook by smart-contract developers as plain
Close is often used as a default action in case of unexpected behaviour like
timeouts, and especially a Choice timeout. This can easily lead to costly mistakes
if Alice maliciously decides to exploit an auto-refund feature in order to get her
collateral without paying back, as in the following scenario:

1. Alice creates a contract where a Deposit timeout would lead to Close
2. Bob doesn’t know or test the timeout path. Even if Bob is a programmer,

he might not be aware that Closeing the contract would cause the collateral
to be refunded to Alice.

3. Alice puts her collateral in the contract and gets the notional from Bob.
4. Alice doesn’t pay for the loan: i.e. there is a Deposit timeout.
5. Alice gets her collateral back.
6. Bob loses his notional.

In order to prevent this from happening, an additional Auto-Refund security
check was introduced as part of static analysis tooling which notifies users about
all Close constructs that can lead to automatic refunds and encourages users to
write explicit logic for edge cases.

7 Related work

Unlike current mainstream DeFi lending approaches, our Marlowe ACTUS im-
plementation relies on trade-matching instead of pooling. While asset pooling is
proven to be superior to order-book based approaches when it comes to auto-
mated market makers, using it for lending has been shown to be more susceptible
to attacks [5]. Moving trade matching off-chain also improves scalability of the
protocol - every loan is a separate contract, thus there is no global state.

There are frameworks, like ISDA Common Domain Model [6], providing a
more precise representation of the business processes involved in institutional
trading as well as code-generation capabilities. However, due to its structural
simplicity, ACTUS is more suited for generating code in a financial domain spe-
cific language like Marlowe rather than general-purpose one like Java or Haskell.



16 D. Kondratiuk, et al.

8 Conclusion

The Marlowe language was explicitly designed as a set of building blocks for
financial contracts that could be combined by anyone familiar with basic pro-
gramming. The Marlowe ACTUS generators improve on that by providing a way
to automatically combine blocks based on standardised requirements specified
by the user. Marlowe ACTUS also provides a toolkit for cross-testing against
the original ACTUS spec, a framework for adding new contract types, cash-flow
visualisations and verification tooling.

We are very grateful to colleagues at Quanterall and Finley and Kegan McIl-
waine of the University of Wyoming for their contributions to this project.

References

1. ACTUS Homepage. https://www.actusfrf.org/, [last accessed 02-02-2020] 2.2
2. Beniiche, A.: A study of blockchain oracles. https://arxiv.org/abs/2004.07140

[last accessed 04-02-2020] (2020) 2.3
3. Brünjes, L., Gabbay, M.J.: UTxO- vs Account-Based Smart Contract Blockchain

Programming Paradigms. In: Margaria, T., et al. (eds.) Leveraging Applications
of Formal Methods, Verification and Validation: Applications. Springer (2020) 1

4. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In: ICFP 2000. ACM, New York (2000).
https://doi.org/10.1145/351240.351266 6.1

5. Flash-loan attack definition. https://www.coindesk.com/

harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit,
[last accessed 02-02-2020] 7

6. ISDA Common Domain Model. https://www.isda.org/2019/10/14/

isda-common-domain-model/, [last accessed 02-02-2020] 7
7. Lamela Seijas, P., Smith, D., Thompson, S.: Efficient Static Analysis of Marlowe

Contracts. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Applications. Springer (2020) 6.3

8. Lamela Seijas, P., Thompson, S.: Marlowe: Financial Contracts on Blockchain.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice. Springer (2018) 1

9. Lamela Seijas, P., Thompson, S., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016),
https://eprint.iacr.org/2016/1156 1

10. Loan definition. https://www.investopedia.com/terms/l/loan.asp, [last ac-
cessed 02-02-2020] 2.1

11. Mammadzada, K., et al.: Blockchain Oracles: A Framework for Blockchain-
Based Applications. In: Asatiani, A., et al. (eds.) Business Process Management:
Blockchain and Robotic Process Automation Forum. Springer (2020) 2.3

12. Vanegue, J., Heelan, S., Rolles, R.: SMT Solvers for Software Security. In: Proceed-
ings of the 6th USENIX Conference on Offensive Technologies. p. 9. WOOT’12,
USENIX Association, USA (2012) 1

https://www.actusfrf.org/
https://arxiv.org/abs/2004.07140
https://doi.org/10.1145/351240.351266
https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit
https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit
https://www.isda.org/2019/10/14/isda-common-domain-model/
https://www.isda.org/2019/10/14/isda-common-domain-model/
https://eprint.iacr.org/2016/1156
https://www.investopedia.com/terms/l/loan.asp

