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The double ratio geometric process for the analysis of

recurrent events

Shaomin Wu*

Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, UK

Abstract

Since its introduction, the geometric process (GP) has attracted extensive research attention from authors

in various research communities, including probability, statistics, and reliability mathematics. However,

the GP can only model a process with its gap times (i.e., times between events/failures) having a mono-

tonic trend (either increasing or decreasing). It also implicitly assumes that the level of the modification

on the hazard rate functions and that on the age after the occurrence of an event are the same, which is

too restrictive and may limit its application. To overcome these drawbacks, this paper extends the GP

to a new stochastic model. Probabilistic properties of the proposed model are investigated. The maxi-

mum likelihood method is used to estimate the parameters in the model. Case studies are performed to

illustrate the parameter estimation process and obtain favourable performance.

This paper has online supplementary material.

Keywords: Stochastic processes, geometric processes, recurrent events, doubly geometric process, repair.

1 Introduction

The geometric process (GP), introduced by Lam (1988), defines an extension to the renewal process

(RP): A sequence of random variables {Xk, k = 1, 2, . . . } is a GP if {Xk, k = 1, 2, . . . } are independent

and the cumulative distribution function (CDF) of Xk is given by F (ak−1t) for k = 1, 2, . . . , where a is a

positive constant and F (t) is a cumulative distribution function. Probabilistic and statistical properties

related to the GP have been investigated by Lam (2007), Aydoğdu and Karabulut (2014), Pekalp and

Aydoğdu (2018), Chukova and Minkova (2020) and Biçer et al. (2021). Unlike the RP that can only

fits data without a trend, the GP is able to describe a stochastically increasing or decreasing trend:

{Xk, k = 1, 2, . . . } is stochastically decreasing if a > 1 and it is stochastically increasing otherwise. This

property has many practical applications.

*E-mail: s.m.wu@kent.ac.uk.
Suggested citation: Shaomin Wu, The double ratio geometric process for the analysis of recurrent events, Naval Research
Logistics , DOI: 10.1002/nav.22021
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Several extensions of the GP have been proposed to overcome its drawbacks (Finkelstein, 1993; Chan

et al., 2006; Braun et al., 2005; Wu and Clements-Croome, 2006; Bordes and Mercier, 2013; Wu, 2017;

Wu and Wang, 2018) and find their applications, some of which include:

(a) Scheduling maintenance policy and warranty claim analysis: There are an enormous number of publi-

cations in applying the GP to schedule maintenance policies and optimise warranty policies, in which

times between failures are assumed to be shorter and shorter and repair times becomes longer and

longer over time (Gao, 2020; Wang et al., 2021; Marshall et al., 2018);

(b) Modelling the number of infected cases of epidemic disease : Chan et al. (2006) model the number

of daily infected cases due to the severe acute respiratory syndrome (SARS) in Hong Kong and

Singapore in 2002–2004, respectively; and

(c) Modelling electricity price: Chan et al. (2014) incorporate an extension of the GP and a time series

model to propose a conditional autoregressive geometric process model with thresholds and jump

and then use their proposed method to model electricity price.

In both applications (b) and (c), the authors used the threshold GP (i.e., model 3 in Table 1), which is

an extension of the GP and can model a series of time-between-events data with multiple monotonically

changing trends.

The reader is also referred to two recently published review papers by Arnold et al. (2020) and

Wu et al. (2020) for more discussions. The existing extensions of the GP have some disadvantages, as

discussed in Section 1.2. This paper therefore proposes a novel extension of the GP that will address

those disadvantages. The proposed model can be applied to the real-world problems, including those

above-mentioned applications of the GP. It should be noted: although this paper is developed from a

reliability engineering perspective, its results can also be applied to other disciplines that need recurrent

event data analysis.

1.1 Related work

Given a sequence of independent random variables {Xk, k = 1, 2, . . . }, denote Fk(t) as the probabil-

ity distribution of Xk. Then, the extensions/variants of the GP can be summarised in Table 1, in

which column 2 lists different versions of Fk(t); column 3 checks whether Xk and Xk−1 are indepen-

dent or not; column 4 shows whether the corresponding model is able to model a process with a non-

monotonic trend or not; and the last column lists the corresponding references. Note: in Model 3,

1 = M1 < M2 < · · · < Mi < Mi+1 = ∞ and Mi ≤ j < Mi+1. In all of the models, a, ak, b ∈ (0,+∞) (i.e.,

non-negative numbers); bk, α0 ∈ (−∞,+∞) (i.e., real numbers); α, β ∈ [0,+∞) that satisfy α2 + β2 ̸= 0;

and g(θ, k) is a function of k and parameter θ.

The extensions shown in Table 1 can be broken down into the following categories.
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Table 1: Extensions of the GP

Model No Fk(t) Independent? Non-monotonic trend? Reference

1 F (ak−1t) Yes No Lam (1988)

2 F (akt) Yes No Finkelstein (1993)

3 F (ak−Mi
i t) Yes Yes Chan et al. (2006)

4 F (kα0t) Yes No Braun et al. (2005)

5 F ((αak−1 + βbk−1)t) Yes Yes Wu and Clements-Croome (2006)

6 F (abk t) Yes No Bordes and Mercier (2013)

7 F (ak−1tg(θ,k)) Yes Yes Wu (2017)

8 F (ak−1t) No No Wu and Wang (2018)

� Relaxation of the infinite expected number of occurrences: The expected number of counts at an

arbitrary time of the GP does not exist for the decreasing geometric process. To overcome this

drawback, Braun et al. (2005) and Bordes and Mercier (2013) propose models (i.e., models 4 and

6) to extend the GP, respectively.

� Relaxation of the monotonicity assumption: The GP can only model the process with a monotonic

trend. To overcome this drawback, Chan et al. (2006), Wu and Clements-Croome (2006), and Wu

(2017) propose models (i.e., models 3, 5, and 7) to extend the GP and allow their models to model

non-monotonic trends.

� Relaxation of the independence. The GP assumes that Xk−1 and Xk are dependent. To overcome

this drawback, Wu and Wang (2018) extends the GP by assuming that Xk−1 and Xk are dependent

(see model 8).

Model 2 aims to extend the GP by replacing ak−1 with ak (Finkelstein, 1993), which cannot be classified

into any of the above three categories.

Other properties of the GP variants are also succinctly summarised in Wu (2017).

1.2 Motivation

The existing variants shown in Table 1 have extended the GP, which widens their applications in practice.

However, there is still room for improvement, as discussed in the following.

� The extensions for depicting the bath-tub curve include the work by Chan et al. (2006) and that

by Wu and Clements-Croome (2006). However, in addition to the parameters in F (t), both include

more than three parameters in the process. The distributions F (αak−1 + βbk−1)t) in the extension

by Wu and Clements-Croome (2006) have four parameters (i.e., a, b, α, and β) and the distribution

F (aj−Mi
i t) in the extension by Chan et al. (2006) have more parameters (i.e., ai and the changing

points). When sample size for model-fitting is small, a model with a large number of parameters

estimated on the dataset will have large standard errors of the estimated parameters.
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� The doubly geometric process (DGP) assumes that the gap timesXk follow distributions F (ak−1tg(k)),

where g(k) is a function of k (Wu, 2017). The DGP differs from the model proposed by Wu and

Clements-Croome (2006) and the one by Chan et al. (2006) in that the shape parameters in the

DGP changes over k and that the DGP has a smaller number of parameters, i.e., the DGP is more

parsimonious than those two models.

There is a lack of the GP-like process that satisfies the following three requirements: (1) it can model

a process with non-monotonic trends; (2) it has fewer parameters than those in models proposed in Wu

and Clements-Croome (2006) and Chan et al. (2006); and (3) the shape parameter in the distributions

of Xk keep fixed over k’s if the lifetime distribution of the time to the first failure (i.e., X1) is a Weibull

distribution.

To meet the above three requirements, this paper proposes a new stochastic process, investigates its

probabilistic properties and likelihood function properties, which presents novelty and makes contribu-

tions to the literature.

The models developed in this paper may be used in asset management, in which the number of failures

needs estimation. Models with better accuracy can help asset managers to make more precise budget

plans. They may also be used in other scenarios such as those applications (b) and (c) illustrated in the

first paragraph under Section 1.

1.3 Overview

The remainder of this paper is structured as follows. Section 2 introduces a new stochastic process,

i.e., the double-ratio geometric process and discusses its probabilistic properties. Section 3 introduces

the maximum likelihood estimation methods for the cases when the failure data are collected from one

system and multiple systems, respectively. Section 4 investigates the methods of hypothesis testing and

model checking. Section 5 estimates parameters for the DRGP based on four real datasets. Section 6

concludes the paper and proposes future research.

The online supplementary material recalls the geometric process, the α-series process, and presents

the real datasets used in this paper.

2 Double-ratio geometric process

Some existing definitions relating to stochastic ordering and the geometric process (GP) can be found

in the online supplementary material. This section introduces a new extension of the GP process: a

double-ratio geometric process (DRGP).
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2.1 Double-ratio geometric process

The relationship of the hazard rate functions between the kth cycle and the (k+1)th cycle of the GP in

Definition 3 (see the online supplementary material) is given by

hk(t) = ahk−1(at). (1)

If we assume that the changes of the hazard rate functions between two consecutive gap-times are

due to the effectiveness of imperfect maintenance, we can have the following interpretations:

� The first parameter a, which is at the outside of hk−1(·) of the right hand side in equation (1), has

effectiveness of decreasing (if a < 1) or increasing (if a > 1) the failure rate function after the kth

repair, or we can regard this a as playing the role of modifying the hazard rate and refer to it as

the hazard rate modification parameter.

� The second parameter a, which is in the parentheses of the function hk−1(·), has an effect of

modifying the age (as it multiples the time t): reducing the age for a < 1 or increasing the age for

a > 1 after the kth repair, or we can regard this a as playing the role of modifying the age and

refer to it as the age modification parameter.

From the above analysis, it can be seen that the underlying assumption of the GP is that the hazard

rate modification parameter and the age modification parameter are the same. A similar analysis can be

carried out for the α-series process. These parameter assumptions are too restrictive and may therefore

limit their applications in practice. An intuitive extension of Eq. (1) is to assume that these effects are

different, which leads to the following definition.

Definition 1 (Double Ratio Geometric Process) Given a sequence of non-negative random vari-

ables {ZD
k , k = 1, 2, . . . }, if they are independent and the cdf of ZD

k is given by FD
k (t) = 1−exp{−

∫ t
0 bkh(aku)du}

for k = 1, 2, . . . , where ak and bk are positive parameters (or ratios) and a1 = b1 = 1. We call the stochas-

tic process the double-ratio geometric process (DRGP).

The reason we refer to the stochastic process defined in Definition 1 as the double-ratio geometric

process is that its definition is inspired by the GP and ak and bk may be set to αk−1
1 or kβ1 . In what

follows, we set ak and bk to be αk−1
1 or kβ1 where needed.

It is also straightforward to see from Proposition 1 that the DRGP reduces to the GP if ak = bk = ak−1

and to the α-series process if ak = bk = kα.

As can be seen, the first six models listed in Table 1 are special cases of the DRGP.

2.2 Probabilistic properties

In this subsection, we will investigate some probabilistic properties of the DRGP.
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Proposition 1 (cdf of ZD
k ) (i). FD

k (t) = 1− (1− FD
1 (akt))

bk
ak ,

(ii). Assume ZD
1 follows the exponential distribution with hazard function h(u) = λ, then FD

k (t) =

1− exp{−bkλt}. That is, ak does not play a role in DRGP. Below are two special cases.

� If bk = bk−1, regardless of the form of ak, then {ZD
k , k = 1, 2, . . . } is a GP with the cdf of Xk

being FD
k (t) = 1− exp(−bk−1λt), and

� If bk = kα, regardless of the form of ak, then {ZD
k , k = 1, 2, . . . } is an α-series process with

the cdf of Xk being FD
k (t) = 1− exp(−kαλt).

The proofs of the above and the other propositions can be found in Appendices.

From (i) of Definition 1, FD
k (t) can be regarded as the cdf of the first order statistic of the bk

ak
random

variables with their cdf’s as FD
1 (akt). Alternatively, it can also be regarded as the reliability of a series

system composed of bk
ak

components, each of which has reliability 1− FD
1 (akt) (although

bk
ak

may not be

an integer).

It is also of interest to see from Proposition 1 that the DRGP is exactly the same as the GP for

bk = bk−1 and the α-series process for bk = kb, given that the time to the first event follows the

exponential distribution.

From (i) of Proposition 1, one can obtain the following lemma that provides an equivalent definition

of the DRGP.

Lemma 1 Given a sequence of non-negative random variables {ZD
k , k = 1, 2, . . . }, if they are independent

and the cdf of a−1
k ZD

k is given by FD
k (t) = 1 −

(
1− FD

1 (akt)
) bk

ak for k = 1, 2, . . . , where ak and bk are

positive parameters (or ratios), and a1 = b1 = 1. Then {ZD
k , k = 1, 2, . . . } is a double-ratio geometric

process.

From From (i) of Proposition 1, we have

fD
k (t) = bkf

D
1 (akt)(1− FD

1 (akt))
bk
ak

−1
. (2)

From Eq. (2), we can calculate the expected value and the variance of ZD
k . We can also use the following

proposition to find the lower and upper bounds of the expected value of ZD
k based on the distribution of

ZD
1 .

Proposition 2 (The expected value of ZD
k ) Suppose that both the expected value, E[ZD

1 ](= µ1), and

variance, V[ZD
1 ](= σ2

1), of Z
D
1 exist. Then

� if 0 < bk
ak

≤ 1, bka
−2
k µ

bk
ak

−1

1 E[(ZD
1 )

2− bk
ak ] ≤ E[ZD

k ] ≤ bka
−2
k E

[
ZD
1

(
1− σ2

1

σ2
1+µ2

1−2akµ1ZD
1 +a2k(Z

D
1 )2

) bk
ak

−1
]
,

assuming the three expected values in the inequalities exist;

� if bk
ak

> 1, the above inequalities change their directions.
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Apparently, if we simply use the rule 1−FD
1 (akt) ≤ 1, then E[ZD

k ] ≥ bka
−2
k µ1 for the case 0 < bk

ak
≤ 1

and E[ZD
k ] < bka

−2
k µ1 for the case bk

ak
> 1. On the other hand, according to Theorem 3 in Ghosh

(2002), we may apply the sharpest inequalities for P(ZD
1 ≥ akt) as follows: (a) If 0 < akt < µ1,

then (µ1−akt)
2

σ2
1+(µ1−akt)2

< P(ZD
1 ≥ akt) ≤ 1; (b) If µ1 ≤ akt ≤ µ1 + µ−1

1 σ2
1, then 0 ≤ P(ZD

1 ≥ akt) ≤
σ2
1

σ2
1+(akt−µ1)2

; and (c) If akt > µ1 + µ−1
1 σ2

1, then 0 < P(ZD
1 ≥ akt) ≤ µ1

akt
. It is easy to apply these

inequalities to bkf
D
1 (akt)(1 − FD

1 (akt))
bk
ak

−1
= bkf

D
1 (akt)

(
P(ZD

1 ≥ akt)
) bk

ak
−1

, we can then obtain the

sharpest inequalities for E[ZD
k ]:

bk

∫ µ1
ak

0
tfD

1 (akt)dt+ bk

∫ µ1+µ−1
1 σ2

1
ak

µ1
ak

tfD
1 (akt)

(
σ2
1

σ2
1 + (akt− µ1)2

) bk
ak

−1

dt

+ bk

∫ ∞

µ1+µ−1
1 σ2

1
ak

fD
1 (akt)µ

bk
ak

−1

1 a
1− bk

ak
k t

2− bk
ak dt ≤ E[ZD

k ] ≤
∫ µ1

ak

0
tbkf

D
1 (akt)

(µ1 − akt)
2

σ2
1 + (µ1 − akt)2

dt. (3)

Unlike those properties shown in Remark 1 (see the online supplementary material), the stochastic

monotonicity of the DRGP behaves differently from the GP, as discussed in the proposition below.

Proposition 3 (Monotonicity) Suppose h(t) is a monotonously increasing function in t, {ZD
k , k =

1, 2, . . . } is a DRGP, then

(i). If both ak and bk are increasing in k, then the DRGP is stochastically decreasing;

(ii). If both ak and bk are decreasing in k, then the DRGP is stochastically increasing; and

(iii). If ak (or bk) is increasing in k and bk (or ak) is decreasing in k, then the DRGP may not be

stochastically monotonic.

In what follows, we investigate four special scenarios, as shown in Table 2, in which N+ denotes the

set of all positive integers.

Table 2: Four models

ak bk Constraint Model name

βk−1
1 βk−1

2 β1, β2 ∈ (0,+∞), k ∈ N+ DRGP-I

kα1 kα2 α1, α2 ∈ (−∞,+∞), k ∈ N+ DRGP-II

kα1 βk−1
1 β1 ∈ (0,+∞), α1 ∈ (−∞,+∞), k ∈ N+ DRGP-III

βk−1
1 kα1 β1 ∈ (0,+∞), α1 ∈ (−∞,+∞), k ∈ N+ DRGP-IV

Let SD
n =

∑n
k=1 Z

D
k , SG

n =
∑n

k=1X
G
k , ND(t) = sup{n : SD

n ≤ t} and NG(t) = sup{n : SG
n ≤ t}, where

t > 0.
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Proposition 4 (Comparison) Suppose h(t) is a monotonously increasing function in t, XG
k ∼ FG

k (t) =

1 − exp{−βk−1
1

∫ t
0 h(β

k−1
1 u)du} in the GP, Y A

k ∼ FA
k (t) = 1 − exp{−kα1

∫ t
0 h(k

α1u)du} in the α-series

process, and ZD
k ∼ FD

k (t) = 1− exp{−
∫ t
0 bkh(aku)du} in the DRGP.

(i). Let ak = βk−1
1 and bk = βk−1

2 , or ak = βk−1
2 and bk = βk−1

1 ,

� if β2 ≥ β1, then: (1) ZD
k ≤st X

G
k ; (2) E[ND(t)] ≥ E[NG(t)]; and (3) if β1 > 1 and FD

1 (ϵ) > 0

for all ϵ > 0, E[ND(t)] = ∞;

� if β2 < β1, then: (1) ZD
k >st XG

k ; (2) E[ND(t)] < E[NG(t)]; and (3) if 0 < β1 ≤ 1 and

FD
1 (0) < 1, E[ND(t)] < ∞.

(ii). Let ak = kα1 and bk = kα2, or ak = kα2 and bk = kα1,

� If α2 ≥ α1, then: (1) Z
D
k ≤st Y

A
k ; (2) E[ND(t)] ≥ E[NA(t)] (3) if α1 ≥ 1, then E[ND(t)] = ∞;

� If α2 < α1, then: (1) Z
D
k >st Y

A
k ; (2) E[ND(t)] < E[NA(t)] (3) if α1 < 0, then E[ND(t)] < ∞.

(iii). Let ak = βk−1
1 and bk = kα1, or ak = kα1 and bk = βk−1

1 ,

� If α1/ ln(β1) ≥ (k−1)/ ln(k), then: (1) ZD
k ≤st X

G
k and ZD

k ≤st X
A
k ; (2) E[ND(t)] ≥ E[NG(t)]

and E[ND(t)] ≥ E[NA(t)]; (3) if β1 > 1 and FD
1 (ϵ) > 0 for all ϵ > 0, or α1 > 1, then

E[ND(t)] = ∞;

� If α1/ ln(β1) < (k−1)/ ln(k), then: (1) ZD
k >st X

G
k and ZD

k >st X
A
k ; (2) E[ND(t)] < E[NG(t)]

and E[ND(t)] < E[NA(t)]; (3) if 0 < β1 ≤ 1 and FD
1 (0) < 1, or α1 < 0, then E[ND(t)] < ∞.

Due to their complexity, other cases that have not been covered in Proposition 4 will be investigated

in our future research.

In the special case that ZD
1 follows a Weibull distribution, we have the following discussion.

Suppose ZD
1 follows the Weibull distribution, F1(t) = 1−exp{−θ1θ

−θ1
2

∫ t
0 u

θ1−1du}, for example, then

the cumulative distribution function of ZD
k is given by

FD
k (t) = 1− exp{−aθ1−1

k bk

∫ t

0
θ1θ

−θ1
2 uθ1−1du}

= 1− exp{−(θ2a
1−θ1
θ1

k b
− 1

θ1
k )−θ1

∫ t

0
θ1u

θ1−1du}. (4)

Then the shape parameter in the distribution of ZD
k is θ1, which is the same as that of ZD

1 . The scale

parameter of ZD
k changes from θ2 to θ2a

(1−θ1)/θ1
k b

−1/θ1
k . Hence, for this special case, the monotonicity of

{ZD
k , k = 1, 2, . . . } can be analysed in the following four cases (a)–(d).

(a) If ak = βk−1
1 and bk = βk−1

2 . Then the scale parameter of ZD
k is θ2(β

(1−θ1)/θ1
1 β

−1/θ1
2 )k−1, which is

positively proportional to the expectation of ZD
k . ZD

k increases (or decreases) stochastically in k if

(1− θ1) lnβ1 > lnβ2 (or (1− θ1) lnβ1 < lnβ2), according to Proposition 3.
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(b) If ak = kα1 and bk = kα2 . Then the scale parameter of ZD
k is θ2k

((1−θ1)α1−α2)/θ1 . Similarly, ZD
k

increases (or decreases) stochastically in k if (1− θ1)α1 > α2 (or (1− θ1)α1 < α2).

(c) If ak = kα1 and bk = βk−1
1 . Then the scale parameter of ZD

k is θ2k
α1(1−θ1)/θ1β

(1−k)/θ1
1 . Then ZD

k

increases stochastically in k if α1(θ1 − 1) ln k
k+1 > lnβ1 and decreases stochastically otherwise.

(d) If ak = βk−1
1 and bk = kα1 . Then the scale parameter of ZD

k is θ2β
(1−θ1)(k−1)/θ1
1 k−α1/θ1 . Then ZD

k

increases stochastically in k if (1− θ1) lnβ1 > α1 ln
k+1
k (or (1− θ1) lnβ1 < α1 ln

k+1
k ) and decreases

stochastically otherwise.

The processes {ZD
k , k = 1, 2, . . . } in cases (a) and (b) are monotonic, while those in cases (c) and (d)

are not. For cases (c) and (d), see Figures 1 and 2 for the scenario ak = kα and bk = βk−1 (i.e., the

above case (c)), and Figures 3 and 4 for the scenario ak = βk−1 and bk = kα (i.e., the above case (d)),

respectively.

Example 1 Suppose h(t) = θ1θ
−θ1
2 tθ1−1. The dots in Figures 1 and 2 represent the mean of the random

variables following Fk(t) for model DRGP-III with different parameters α1 and β1, respectively. The dots

in Figures 3 and 4 represent the means of the random variables following Fk(t) for model DRGP-IV with

different parameters α1 and β1, respectively. The X-axis and the Y -axis in each figure represents k and

the means of the random variables following Fk(t), respectively.

Figure 1: DRGP-III: θ1 = 0.6, θ2 = 10, β1 = 1.2.

Figures 1, 2, 3, and 4 portray non-monotonic trends in the expected values of DRGP against k.

It is noted that, for a given set of parameters α1 and β1, the trend of a stochastic process that DRGP

III and DRGP IV can describe can be increasing (e.g., with condition (ii) in Proposition 3), decreasing

(e.g., with condition (i) in Proposition 3), or both (e.g., Figures 1–4), or constant (only if ak = bk = 1).

Nevertheless, DRGP III and DRGP IV are unable to model the failure process with a constant trend

9



Figure 2: DRGP-III: θ1 = 0.6, θ2 = 10, α1 = 1.1.

Figure 3: DRGP-IV: θ1 = 1.2, θ2 = 10, β1 = 1.5.

followed by an increasing/decreasing trend since the condition ak = bk = 1 and ak ̸= 1 (or bk ̸= 1) are

mutually exclusive events.

3 Parameter estimation

This section presents the likelihood functions for two scenarios: the failure data are collected from a

single system scenario and from a multiple system scenario, respectively.

10



Figure 4: DRGP-IV: θ1 = 1.2, θ2 = 10, α1 = −0.5.

3.1 Likelihood for a single system

Suppose n successive failures have been observed on a system. The gap times are {t1, t2, . . . , tn}, that is,
the failures occurred at times t1, t1 + t2, . . . ,

∑n
k=1 tk. The likelihood of the DRGP is given by

L(θ; t, n) =

n∏
k=1

(
bkf

D
1 (aktk)(1− FD

1 (aktk))
bk
ak

−1
)
, (5)

where θ is the vector of parameters containing ak and bk, and the parameters in FD
1 (t); t = (t1, t2, . . . , tn).

Then the log likelihood of the DRGP is given by

lnL(θ; t, n) =

n∑
k=1

(
ln(bk) + ln(fD

1 (aktk)) +

(
bk
ak

− 1

)
ln(1− FD

1 (aktk))

)
. (6)

Let l(θ; t, n) = lnL(θ; t, n). Then the Fisher’s score function can be obtained by u(θ) = ∂l(θ;t,n)
∂θ . By

setting u(θ) = 0, we can obtain the maximum likelihood estimate of θ: θ̂ = arg maxθ∈Θ l(θ; t, n). Define

the observed information matrix I(θ) of the log-likelihood function as I(θ) = E
[
−∂2l(θ;t,N)

∂θ∂θT

]
. Then,

using the Newton-Raphson method, we have θ̂ = θ0 + I−1(θ0)u(θ0).

If the total number n of observations is large and appropriate conditions on the model hold, θ̂ can be

treated as approximately normally distributed, based on which the confidence limits for parameters can

be obtained.

3.2 A special case: ZD
1 following the Weibull distribution

In this section, we investigate the likelihood function on a special case.

11



Proposition 5 (Equivalence) Let ZD
1 follow the Weibull distribution FD

1 (t) = 1 − exp

{
−
(
akt
θ2

)θ1}
,

where ak = kα1 and bk = βk−1
1 for model DRGP-III, and ak = βk−1

2 and bk = kα2 for model DRGP-IV.

Denote the maximum log-likelihood estimates from Eq (22) for model DRGP-III and model DRGP-IV

by l̂1 and l̂2, respectively. Then the two models DRGP-III and DRGP-IV are equivalent with respect of

modelling a given dataset based on the maximum likelihood estimation from the following perspectives.

(i). l̂1 = l̂2;

(ii). θ̂1 and θ̂2 from model DRGP-III equal θ̂1 and θ̂2 from model DRGP-IV, respectively; and

(iii). β̂1 = β̂θ̂1−1
2 and α̂1 =

α̂2

θ̂1−1
.

According to Proposition 5, due to the equivalence between DRGP-III and DRGP-IV, we investigate

the maximum likelihood estimates for model DRGP-III in the following.

Let ak = kα1 and bk = βk−1
1 , then

lnL = n ln θ1 − nθ1 ln θ2 +
n(n− 1) lnβ1

2
+

n∑
k=1

(
(θ1 − 1)(α1 ln k + ln tk)− kα1(θ1−1)βk−1

1

(
tk
θ2

)θ1
)
. (7)

Let ∂ lnL
∂α1

= 0, ∂ lnL
∂β1

= 0, ∂ lnL
∂θ1

= 0 and ∂ lnL
∂θ2

= 0, after some simplifications, we obtain the following

equations. That is, the estimated parameters should satisfy the conditions listed in Eqs. (8), (9), (10),

and (11).
n∑

k=1

(k − 1)kα1(θ1−1)βk−1
1

(
tk
θ2

)θ1

=
n(n− 1)

2
, (8)

n∑
k=1

(ln k)kα1(θ1−1)βk−1
1

(
tk
θ2

)θ1

=

n∑
k=1

ln k, (9)

n∑
k=1

(ln tk)k
α1(θ1−1)βk−1

1

(
tk
θ2

)θ1

=
n

θ1
+

n∑
k=1

ln tk, (10)

and
n∑

k=1

kα1(θ1−1)βk−1
1

(
tk
θ2

)θ1

= n. (11)

From Eq. (11), we have θ2 =

(
1

n

n∑
k=1

kα1(θ1−1)βk−1
1 tθ1k

)1/θ1

.

3.3 Likelihood for several systems with random effect

In this subsection, we assumem systems were working in different operating conditions and/or in different

working load. For simplicity, we restrict our attention to the case with no observed covariates. Suppose

12



nj successive failures have been observed on the jth system, which has gap times {tj,1, tj,2, . . . , tj,nj}. We

assume the hazard rate function of ZD
k is given by

hk(t) = γjbkh1(akt), (12)

where γj are unobserved and represent heterogeneity between systems. We further assume γj are inde-

pendently distributed according to a probability distribution G(.) and the expected value of γj equals 1.

Then the likelihood of the jth system is given by

Lj =

n∏
k=1

(
γjbkf

D
1 (aktk)(1− FD

1 (aktk))
γjbk
ak

−1
)
, (13)

and the likelihood of the m systems is given by

L =
m∏
j=1

∫ ( n∏
k=1

γjbkf
D
1 (aktk)(1− FD

1 (aktk))
γjbk
ak

−1

)
dG(γj). (14)

Similar to Proposition 5, we can analogously prove that models DRGP III and DRGP IV are equivalent

with respect to the likelihood function shown in Eq. (14) when the probability distribution of time to

first failure is the Weibull distribution. G(.) is usually assumed to be the gamma distribution.

4 Hypothesis testing and model checking

Given a set of gap-time observations {X1, X2, . . . }. Denote Uk = XD
2k/X

D
2k−1 and U ′

k = XD
2k+1/X

D
2k. The

process for selecting the GP-like models is illustrated in Figure 5, where the models in the box “use

other models such as NHPP” can be other imperfect repair processes, including virtual age models or

superposition of imperfect repair processes. More elaboration is given below.

Step 1. Checking the independence: This step aims to check where {X1, X2, . . . , } are an independent

series.

� If the test shows that they are independently and identically distributed, the renewal process

may be fitted to the series of observations;

� if the test shows that they are independently but not identically distributed, go to Step 2;

� if the test shows that they are neither independently nor identically distributed, other models

such as the virtual age models or superposition of imperfect repair models (Wu, 2019) can be

used.

Step 2. Checking Uk and U ′
k: According to Theorem 4.2.1 in Lam (2007), if {X1, X2, . . . } is a GP, then

{Uk, k = 1, 2, . . . } and {U ′
k, k = 1, 2, . . . } are two sequences of i.i.d. random variables, respectively.

13



Figure 5: Hypothesis testing

Step 3. Checking the non-monotonicity: Since DRGP III and DRGP IV are able to model the non-

monotonic trend in the data whereas models such as DRGP I, DRGP II and the α-series process

are not, one can check whether {X1, X2, . . . , } show a monotonic trend or not. If not, DRGP I,

DRGP II and the α-series process may be used; otherwise, DRGP III or DRGP IV can be used.

Apparently, models 3, 5, and 7 listed in Table 1 can also be used for such a set of observations with

a non-monotonic trend. References on testing for non-monotonicity include Viertävä and Vaurio

(2009).

As long as {X1, X2, . . . } are tested independent, the DRGP models can be applied to fit the dataset

as the GP is a special case of the DRGP.

5 Numerical example

Chapter 5 in Lam (2007) compares the performance of the GP with three other models on a number of

real world datasets and shows the superiority of the GP. In the following, we show four cases with the best

model performance in terms of the AICc (corrected Akaike Information Criterion) for the DRGP III and

DRGP IV, respectively. It should be noted that the AICc penalises more on the number of parameters in

a model than AIC and it is therefore recommended for measuring model performance on small datasets.

Let L̂ be the maximum value of the likelihood function for a model and q be the number of parameters

in the model, the definition of the AICc is given by

AICc = −2ln(L̂) + 2q +
2q2 + 2q

n− q − 1
. (15)
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We estimate the DRGP models on four real datasets and compare their performance with that of three

other models that can model non-monotonic trends: the threshold geometric process (TGP), the extended

geometric process (EGP) and the doubly geometric process (DGP), which are models 3, 5 and 7 in Table

1, respectively. The four datasets are listed in Table 3, in which column 1 includes the dataset number,

column 2 includes the name of a dataset, column 3 shows the sample size, column 4 is a one sentence

description of the dataset, and the last column is the source of the dataset. Dataset 4 is a time-between-

failure dataset including both failure times and preventive maintenance times. For convenience, the data

are also reproduced in Table 1 in Online Appendix.

We first use the Ljung-Box test to test the autocorrelations in the data in each dataset. The null

hypothesis of the Ljung-Box test assumes that there is no serial correlation in the series under testing.

From the test, we conclude that there is no serial correlation in each dataset as the p-value of the Ljung-

Box test is greater than 0.05 (which is the significance level we use in this paper), as shown in column 2 in

Table 4. We then test the non-monotonicity of each dataset by applying the testing methods, V1 and V4,

proposed by Viertävä and Vaurio (2009), where the null hypothesis assumes that the data under testing

is monotonic and both V1 and V4 therefore follows the standard normal distribution. The tests show

that the p-values of V1 and V4 on datasets 1 and 2 are smaller than 0.025, the p-value of V1 on dataset

3 is smaller than 0.025, and the p-value of V4 on dataset 3 is slightly larger than 0.025, respectively. We

conclude that the four datasets show non-monotonic trends, which justifies the application of the three

models, i.e., TGP, EGP, DGP, and DRGP in our comparison.

Assume that F1(t) = 1− exp{−θ−θ1
2 tθ1} for all of the models. Table 5 shows the AICc values of the

models, from which one can see that the AICc values of the models DRGP-III and DRGP-IV are the

smallest on the respective dataset. This suggests that models DRGP-III and DRGP-IV outperforms the

three other models on these four datasets in terms of AICc.

The parameters of these two models are shown in Table 6, where the values in the parentheses are

standard errors of the corresponding estimates, obtained by computing the inverse of the square root

of the diagonal elements of the observed Fisher information matrix. Figure 6 illustrates the cumulative

failure intensity (CFI) of the observations (empirical CFI) and the CFI from model DRGP III on the

first dataset (i.e., dataset LHD3). Each gap-time of the CFI from model DRGP III is generated based

on the averages of the gap-times of 5,000 iterations from the model with parameters shown in Table 6.

6 Conclusions

This paper proposed a new stochastic process, which is referred to as the double-ratio geometric process

(DRGP). It considered four special scenarios with different parameter settings and referred them to as

DRGPs I, II, III and IV, respectively. The paper then investigated some probabilistic properties of the

DRGPs, proposed to use the maximum likelihood method to estimate the parameters in the DRGPs,

and illustrated their applications in a numerical example.

15



Table 3: The datasets.

No. Dataset n Description Reference

1 LHD3 25 failures of a load-haul-dump (LHD) machine
deployed at Kiruna mine, Sweden

Kumar and Klefsjö (1992)

2 LHD11 28 failures of a load-haul-dump (LHD) machine
deployed at Kiruna mine, Sweden

Kumar and Klefsjö (1992)

3 Calvert Cliffs 23 diesel generator failure data from power plant
“Calvert Cliffs”

Kvam et al. (2002)

4 Pump D 30 reliability data collected from a main pump
(A) at an oil refinery

Percy and Alkali (2007)

Table 4: Test for non-monotonic trend.

No. p-value from the Ljung-Box test p-value from V1 p-value from V4

1 0.886 0.00866 0.0216

2 0.899 0.0159 0.0114

3 0.509 0.0194 0.0276

4 0.107 0.00874 0.00180

Table 5: AICc values of the models

No. EGP DGP TGP DRGP-I DRGP-II DRGP-III DRGP-IV

1 310.198 301.345 309.431 307.040 305.281 300.228 300.228

2 328.790 323.711 324.103 325.802 324.983 321.312 321.312

3 224.545 221.461 222.055 221.490 222.299 219.632 219.632

4 297.200 300.939 298.127 306.622 308.924 295.031 295.031

Table 6: Parameters

No. DRGP-III (âk = kα̂1 and b̂k = β̂k−1
1 ) DRGP-IV (âk = β̂k−1

2 and b̂k = kα̂2)

α̂1 β̂1 θ̂1 θ̂2 α̂2 β̂2 θ̂1 θ̂2

1 6.942 0.848 1.231 553.510 1.603 0.490 1.231 553.510

(5.502) (0.0621) (0.200) (308.283) (0.671) (0.287) (0.200) (340.652)

2 14.233 0.891 1.085 347.046 1.205 0.254 1.085 347.046

(27.230) (0.0555) (0.166) (251.771) (0.617) (0.660) (0.165) (251.777)

3 -29.898 0.855 0.960 92.937 1.192 50.442 0.960 92.937

(144.543) (0.0861) (0.182) (106.597) (0.935) (920.240) (0.176) (106.516)

4 -8.996 1.281 1.297 4.629 -2.673 2.304 1.297 4.629

(4.827) (0.0787) (0.185) (2.985) (0.689) (1.0352) (0.186) (2.985)

The findings include: (1) the DRGP is an extension of many existing extensions of the geometric

process (GP); (2) if the distribution of the time to first event follows the exponential distribution, then

the DRGP reduces to the geometric process or the α-series process, depending on the parameter setting

in the DRGP; (3) for the four DRGPs, two of the DRGP models can model observations with the non-
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Figure 6: LD3: Empirical CFI and estimated CFI.

monotonic trend and the others cannot; and (4) if the distribution of the time to first event follows

the Weibull distribution, two of the DRGP models estimated from the maximum likelihood estimation

methods are equivalent in the sense that the two models have the same maximum likelihood values and

the same estimated Weibull distribution.

As it can be seen, the DRGP retains the shape parameter in the process if the distribution of the

time to first event is the Weibull distribution, which distinguishes the DRGP from other models such as

the doubly geometric process and the threshold geometric process. Our future work aims to develop a

hypothesis testing method to test whether a series of gap times may remain the same shape parameter

or not.
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Appendices

Proofs

Proof of Proposition 1.

17



(i). We can obtain the distribution of ZD
k as following.

FD
k (t) = 1− exp{−

∫ t

0
bkh(aku)du}

= 1− exp{− bk
ak

∫ akt

0
h(u)du}

= 1−
(
exp{−

∫ akt

0
h(u)du}

) bk
ak

= 1− (1− FD
1 (akt))

bk
ak . (16)

(ii). Let FD
1 (t) = 1 − exp{−

∫ t
0

1
θ1
du}. Then from Eq. (16), FD

k (t) = 1 − (1 − FD
1 (akt))

bk
ak = 1 −

exp{− bk−1

θ1
t} = FD

1 (bk−1t). Then {ZD
k , k = 1, 2, . . . } is a GP with ratio b.

Similarly, the proof of the second bullet in (ii) can be established. □

Proof of Proposition 2.

� If 0 < bk
ak

≤ 1, according to Markov’s inequality, P(X ≥ a) ≤ E[X]
a , we have

fD
k (t) = bkf

D
1 (akt)(1− FD

1 (akt))
bk
ak

−1

≥ bkf
D
1 (akt)(

E[ZD
1 ]

akt
)
bk
ak

−1
, (17)

then

E[ZD
k ] =

∫ ∞

0
tfD

k (t)dt

≥
∫ ∞

0
bkf

D
1 (akt)(

E[ZD
1 ]

ak
)
bk
ak

−1
t
2− bk

ak dt

= bka
−2
k E[(ZD

1 )
2− bk

ak ](E[ZD
1 ])

bk
ak

−1

= bka
−2
k µ

bk
ak

−1

1 E[(ZD
1 )

2− bk
ak ]. (18)

On the other hand, using the Cauchy–Schwarz inequality, we have E[X] = E[1{X>0}X] ≤ (P(X >

0))1/2E[X2]1/2, where the indicator function 1{X>0} = 1 if X > 0 and 1{X≤0} = 0. Hence,

P(X > 0) ≥ (E[X])2

E[X2]
, (19)
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then

1− FD
1 (akt) = P(ZD

1 − akt > 0)

≥ (E[ZD
1 − akt])

2

E[(ZD
1 − akt)2]

=
(E[ZD

1 ])2 − 2aktE[ZD
1 ] + a2kt

2

E[(ZD
1 )2]− 2aktE[ZD

1 ] + a2kt
2

= 1 +
(E[ZD

1 ])2 − E[(ZD
1 )2]

E[(ZD
1 )2]− 2aktE[ZD

1 ] + a2kt
2

= 1− V[ZD
1 ]

E[(ZD
1 )2]− 2aktE[ZD

1 ] + a2kt
2
, (20)

then

E[ZD
k ] =

∫ ∞

0
tfD

k (t)dt

=

∫ ∞

0
tbkf

D
1 (akt)(1− FD

1 (akt))
bk
ak

−1
dt

≤
∫ ∞

0
tbkf

D
1 (akt)

(
1− V[ZD

1 ]

E[(ZD
1 )2]− 2aktE[ZD

1 ] + a2kt
2

) bk
ak

−1

dt

= bka
−2
k E

ZD
1

(
1− V[ZD

1 ]

E[(ZD
1 )2]− 2akZ

D
1 E[ZD

1 ] + a2k(Z
D
1 )2

) bk
ak

−1


= bka
−2
k E

ZD
1

(
1− σ2

1

σ2
1 + µ2

1 − 2akµ1ZD
1 + a2k(Z

D
1 )2

) bk
ak

−1
 . (21)

This establishes the inequalities for the case 0 < bk
ak

≤ 1.

� If bk
ak

> 1, a similar proof can be established. □

Proof of Proposition 3.

For (i) and (ii), it is easy to prove that {ZD
k , k = 1, 2, . . . } are decreasing (or increasing) stochastically

and monotonically because
bk+1h(ak+1t)

bkh(akt)
> 1 (or < 1) if both ak and bk are increasing (or decreasing) in k.

On (iii), if
bk+1h(ak+1t)

bkh(akt)
is independent of k, {ZD

k , k = 1, 2, . . . } are decreasing (or increasing) stochas-

tically and monotonically. Otherwise, {ZD
k , k = 1, 2, . . . } may not be stochastically monotonic. □

Proof of Proposition 4.

With Lemma 2 (see the online supplementary material), it is easy to prove the relationship between ZD
k

and XG
k and that between ZD

k and XA
k , i.e., Part (1) in each bullet), by comparing the corresponding

hazard rate functions of XG
k , Y A

k , and ZD
k , respectively.

On the comparisons between the expected counts between NA(t), NG(t), and NA(t) (i.e., Part (2) in

each bullet), we can prove as follows. If ZD
k ≤st X

G
k , then SD

n ≤st S
G
n , and thus ND(t) ≥st N

G(t). Then,
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E[ND(t)] ≥ E[NG(t)]. Similar proofs can be established on the other relationship between E[ND(t)] and

E[NA(t)].

On the bound of E[ND(t)], i.e., Part (3) in each bullet, we can prove them by using Theorem 1 and

Theorem 2 in Braun et al. (2005). □

Proof of Proposition 5.

Since FD
1 (t) = exp

{
−
(
akt
θ2

)θ1}
, then, fD

1 (akt) = θ1
θ2

(
akt
θ2

)θ1−1
exp

{
−
(
akt
θ2

)θ1}
and

∫ akt
0 h(u)du =(

akt
θ2

)θ1
. Plugging them into Eq. (6), we obtain

lnL = n ln θ1 − nθ1 ln θ2 +

n∑
k=1

(
ln(bk) + (θ1 − 1)(ln ak + ln tk)− aθ1−1

k bk

(
tk
θ2

)θ1
)
. (22)

If ak = kα1 and bk = βk−1
1 , then

lnL1 = n ln θ1−nθ1 ln θ2+
n(n− 1) lnβ1

2
+

n∑
k=1

(
(θ1 − 1)(α1 ln k + ln tk)− kα1(θ1−1)βk−1

1

(
tk
θ2

)θ1
)
. (23)

If ak = βk−1
2 and bk = kα2 , then

lnL2 = n ln θ1−nθ1 ln θ2+
n(n− 1)(θ1 − 1) lnβ2

2
+

n∑
k=1

(
α2 ln k + (θ1 − 1) ln tk − kα2β

(k−1)(θ1−1)
2

(
tk
θ2

)θ1
)
.

(24)

Let β1 = βθ1−1
2 and α1 =

α2
θ1−1 , then l̂1 = l̂2. As such, the maximum likelihood obtained from Eq. (22) for

model DRGP-III (ak = kα1 and bk = βk−1
1 ) and model DRGP-IV (ak = βk−1

2 and bk = kα2) are the same,

with the same values of θ1 and θ2 for the two models, respectively. This establishes the proposition. □

The geometric process and related work

Let X and Y be two random variables with cumulative distribution functions F and G, survival functions

F and G, probability density functions f and g, and hazard rate functions rF = f/F and rG = g/G,

respectively.

Definition 2 (Stochastic order) (see p. 404 in Ross (1996)) If for every real number t, the inequality

F (t) ≥ G(t)

holds, then X is stochastically greater than or equal to Y , or X ≥st Y . Equivalently, Y is stochastically

less than or equal to X, or Y ≤st X.

From Definition 2, one can define the monotonicity of a stochastic process: Given a stochastic pro-

cess {Xk, k = 1, 2, ...}, if Xk ≤st Xk+1 (Xk ≥st Xk+1) for k = 1, 2, ..., then {Xk, k = 1, 2, ...} is said

stochastically to be increasing (decreasing).
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Lemma 2 (p. 405, Ross (1996)) Assume that X and Y are two random variables, then

X ≥st Y if only if E[ν(X)] ≥ E[ν(Y )],

for all increasing functions ν(.).

Definition 3 (p. 4, Shaked and Shanthikumar (2007)) X is said to be smaller than Y in hazard rate

ordering (denoted by X ≤hr Y ) if G(x)/F (x) is increasing in x.

From Definition 3, Lemma 3 can be obtained.

Lemma 3 (p. 18, Shaked and Shanthikumar (2007)) Suppose the hazard rates rG(t) and rF (t) exist.

(i) X ≥hr Y if and only if rG(t) ≥ rF (t) for every t; and

(ii) X ≥hr Y entails X ≥st Y .

Lam proposes the definition of the GP, as shown below (Lam, 1988).

Definition 4 (Geometric Process) (Lam, 1988) Given a sequence of non-negative random variables

{XG
k , k = 1, 2, . . . }, if they are independent and the cdf of XG

k is given by FG(ak−1x) for k = 1, 2, . . . ,

where a(> 0) is a positive constant, then {XG
k , k = 1, 2, · · · } is called a geometric process (GP) and a is

called the ratio of the GP.

We refer to the kth inter-arrival time as the random variable XG
k in what follows.

Remark 1 From Definition 2 and Lemma 4, we have the following results.

� If a > 1, then {XG
k , k = 1, 2, · · · } is stochastically decreasing.

� If a < 1, then {XG
k , k = 1, 2, · · · } is stochastically increasing.

� If a = 1, then {XG
k , k = 1, 2, · · · } is a renewal process (RP).

� If {XG
k , k = 1, 2, . . . } is a GP and XG

1 follows the Weibull distribution, then the shape parameters

in the distributions of XG
k for k = 2, 3, . . . remain the same as that of XG

1 . This observation is not

specific to the Weibull distribution and holds for many other distributions with a scale and shape

parameter such as the Gamma distribution.

� Assume that {XG
k , k = 1, 2, . . . } follows the GP. Suppose that both the expected value and the

variance of XG
1 exist. Denote µ1 = E[XG

1 ] and σ2
1 = V[XG

1 ]. Then the expected value and the

variance of XG
k are E[XG

k ] = a(1−k)µ1 and V[XG
k ] = a(2−2k)σ2

1, respectively.
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Considering the GP only allows for logarithmic growth or explosive growth, but nothing in between,

Braun et al. (2005) proposes a variant, which assumes that the distributions of the gap times are different

from that of the GP, as shown in the following definition.

Definition 5 (α-series Process) (Braun et al., 2005) Given a sequence of non-negative random vari-

ables {Y A
k , k = 1, 2, . . . }, if they are independent and the cdf of Y A

k is given by FA(k−αy) for k = 1, 2, . . . ,

where α is a positive constant, then {Y A
k , k = 1, 2, · · · } is called an α-series process with ratio α.

Braun et al. (2005) also prove that the expected number of event counts before a given time, or anal-

ogously, the Mean Cumulative Function (MCF) (or, the renewal function), tends to be infinite for the

decreasing GP (Braun et al., 2005). As such, they propose Definition 5 as a complement.

7 The four datasets used in the paper

The four datasets used in the paper are shown in Table 7, in which each observation represents time

between two consecutive events, i.e., time between failures.
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