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Abstract
Triangles with integer length sides and integer area are known as Heron triangles. Tak-
ing rescaling freedom into account, one can apply the same namewhen all sides and the
area are rational numbers. A perfect triangle is a Heron triangle with all three medians
being rational, and it is a longstanding conjecture that no such triangle exists. However,
Buchholz and Rathbun showed that there are infinitely many Heron triangles with two
rational medians, an infinite subset of which are associated with rational points on an
elliptic curve E(Q) with Mordell–Weil group Z×Z/2Z, and they observed a con-
nection with a pair of Somos-5 sequences. Here we make the latter connection more
precise by providing explicit formulae for the integer side lengths, the two rational
medians, and the area in this infinite family of Heron triangles. The proof uses a com-
bined approach to Somos-5 sequences and associated Quispel–Roberts–Thompson
(QRT) maps in the plane, from several different viewpoints: complex analysis, real
dynamics, and reduction modulo a prime.

Keywords Heron triangle · Somos sequence · Elliptic function · QRT map
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1 Introduction

The formula

� = √
s(s − a)(s − b)(s − c) (1.1)
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Heron triangles with two rational medians and Somos-5… 1425

for the area of a triangle with sides (a, b, c), where

s = a + b + c

2

is the semiperimeter, is attributed to Heron of Alexandria. If (a, b, c) is a triple of
positive integers and the area � is also an integer, then this is called a Heron triangle.
More generally, due to rescaling freedom, we say that a triangle is Heron whenever the
side lengths and the area are all rational numbers. A method for enumerating Heron
triangles was given by Schubert in [44], but a parametric formula equivalent to

a = p2 + r2

p
, b = q2 + r2

q
, c = ± (r2 − pq)(p + q)

pq
, (1.2)

for p, q, r ∈ Q and area � = rc ∈ Q was already known to Brahmagupta in the 7th
century A.D. [10]. Any Pythagorean triple gives a right-angled Heron triangle, while
the triangle with integer side lengths (5, 5, 6) and area 12 arising from the choice
p = q = 1, r = 2 in Brahmagupta’s formula is the simplest isosceles Heron triangle
(in the sense of having the smallest value of a + b+ c), and the simplest example of a
Heron triangle that is neither right-angled nor isosceles has side lengths (15, 13, 14)
and area 84, being obtained by taking p = 3, q = 4, r = 6 in the same formula. There
are numerous Diophantine problems concerning Heron triangles, many of which are
related to the theory of elliptic curves [13, 23, 30, 52].

It is an old problem to answer the question as to whether there exists a perfect
triangle: one with integer sides, medians, and area; or equivalently, is there a Heron
triangle with three rational medians? The expectation is that there is no such triangle,
but to prove it seems very difficult, and it is remarked in [26] that despite incorrect
“proofs” in the literature, the problem remains open. One of the first incorrect argu-
ments is implicit in Schubert’s work [44], where he claimed to present a complete
parametrization of Heron triangles with one of the medians being rational, and used
this to argue that Heron triangles with two rational medians are impossible. However,
his proposed parametrization was incomplete, and Schubert’s oversight was pointed
out by Dickson [10] and in the PhD thesis of Buchholz [6], who initially found the case
(73, 51, 26)with area 420 and two rational medians, of lengths 35

2 and 97
2 respectively,

as well as a small number of other examples—see Table 1, in which each triangle is
represented (up to scale) by an integer triple with gcd(a, b, c) = 1.

Henceforth we denote the medians that bisect sides a, b, c by k, �,m, respectively,
so that

k2 = 1

4
(2b2 + 2c2 − a2),

�2 = 1

4
(2c2 + 2a2 − b2),

m2 = 1

4
(2a2 + 2b2 − c2), (1.3)
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1426 A.N.W. Hone

Fig. 1 Triangle with one labelled median

and label the angles adjacent to the median k as in Fig. 1. Then the area of the triangle
satisfies � = bk sin α = ck sin β = 1

2 ak sin γ, and, following [44], it is helpful to
consider the half-angle cotangents

M = cot(α/2), P = cot(β/2), X = cot(γ /2), (1.4)

which we will refer to as the Schubert parameters, using the same nomenclature
and notation as in [7]. Up to rescaling, these three parameters completely determine
the triangle; clearly they are not independent, but as shown by Schubert they satisfy
the equation

M − 1

M
= P − 1

P
+ 2

(
X − 1

X

)
. (1.5)

Upon rewriting the latter as 2MP(X2 − 1) + MX(P2 − 1) − PX(M2 − 1) = 0, we
see that this defines an affine quartic surface in three dimensions, which we call the
Schubert surface. The Schubert parameters are given in terms of the area, side lengths
and the median k by the formulae

M = 4�

4bk + a2 − 3b2 − c2
,

P = 4�

4ck + a2 − b2 − 3c2
,

X = 4�

2ak − b2 + c2
,

(1.6)

which follow from the half-angle identity cot(α/2) = sin α/(1−cosα) and the cosine
rule, while the ratios of side lengths are given in terms of the Schubert parameters by

a

c
= 2(X + X−1)

P + P−1 ,
b

c
= M + M−1

P + P−1 . (1.7)

In view of the formulae (1.6), for a Heron triangle with rational median k the
corresponding Schubert parameters are rational, and conversely, if (M, P, X) ∈ Q3 is
a rational point on the Schubert surface (1.5), then the triangle is Heron with (at least)
one rational median. Strictly speaking, we require positive rational solutions, since
the half-angle cotangents must be positive, but the surface (1.5) admits the obvious
involutions M → −M−1, P → −P−1, X → −X−1, as well as (M, P, X) →
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1428 A.N.W. Hone

(M−1, P−1, X−1), so if one of the coordinates is negative it can be replaced by minus
its reciprocal, while all three coordinates can simultaneously be replaced by their
reciprocals, and we shall exploit this freedom in what follows. The inherent subtlety
in the problem of characterizing Heron triangles with one rational median, to which
Schubert gave an incomplete solution, can be seen from the fact that the Schubert
surface admits three different elliptic fibrations, obtained by fixing the value of any
one of the parameters. For instance, setting M = M0 ∈ P1(Q) gives the cubic curve
2P(X2 − 1) + X(P2 − 1) + CPX = 0, where the constant C = 1/M0 − M0; so
for generic values of C the fibre is an elliptic curve, with j-invariant (C4 + 40C2 +
208)3/(16(C4+40C2+144)), and each (finite) element of the group of rational points
on the curve corresponds to a Heron triangle with one rational median.

For aHeron trianglewith two rationalmedians k, �, there are two associated rational
points on the Schubert surface, namely the point (Ma, Pa, Xa) associated with the
median k bisecting side a, as given by the formulae (1.6), and the point (Mb, Pb, Xb)

associatedwith themedian � bisecting side b, given by the same formulae but replacing
a → b, b → c, c → a and k → �. As well as satisfying the equation (1.5), these two
sets of Schubert parameters must be related by the compatibility conditions

2(Xa + X−1
a )

Pa + P−1
a

= Pb + P−1
b

Mb + M−1
b

,
Ma + M−1

a

Pa + P−1
a

= 2(Xb + X−1
b )

Mb + M−1
b

, (1.8)

corresponding to the ratios of the side lengths as in (1.7). Thus the problem of finding
a Heron triangle with two rational medians is equivalent to finding a pair of positive
rational points on the Schubert surface (1.5), subject to the pair of constraints (1.8).
The angles α, β as in Fig. 1 must also satisfy α+β < π , so this imposes the additional
requirements

arccot(Ma) + arccot(Pa) <
π

2
, arccot(Mb) + arccot(Pb) <

π

2
, (1.9)

but once a pair of compatible positive triples has been found, these requirements
can always be satisfied by applying (Ma, Pa, Xa) → (M−1

a , P−1
a , X−1

a ) and/or
(Mb, Pb, Xb) → (M−1

b , P−1
b , X−1

b ) if necessary, since these transformations leave
the constraints (1.8) invariant.

There is another approach to the problem, based on the formulae

a = τ (− 2θ2φ − θφ2 + 2θφ − φ2 + θ + 1),

b = τ (θ2φ + 2θφ2 − θ2 + 2θφ − φ + 1),

c = τ (θ2φ − θφ2 + θ2 + 2θφ + φ2 + θ − φ),

(1.10)

found by Buchholz [6], which provide a rational parametrization of triangles with
two rational medians k, �, where θ, φ are rational numbers (constrained suitably to
ensure positivity), and the parameter τ ∈ Q allows for the arbitrary choice of scale.
Conversely, θ, φ ∈ Q can be written as functions of the (ratios of) side lengths, given
by
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θ = c − a ± 2�

2s
, φ = b − c ± 2k

2s
, (1.11)

with s = 1
2 (a + b + c) being the semiperimeter, as before.

Hence an efficient method to search for Heron triangles with two rational medians
is to run through the rational parameters θ, φ, ordered by height, and checkwhether the
corresponding value of � is a rational number. More precisely, given θ = R/S ∈ Q

written as a fraction in lowest terms, its naive height is H(θ) = max(|R|, |S|), and pairs
(θ, φ) ∈ Q2 can be enumerated in order of increasing height H̃ = max(H(θ), H(φ)),
so fixing the scale τ = 1 in (1.10), the side lengths (a, b, c) of triangles with two ratio-
nal medians can be calculated from this parametrization for each pair of parameters
with H̃ = 1, 2, 3, . . . and then it can be checked from Heron’s formula (1.1) whether
s(s − a)(s − b)(s − c) is a perfect square, corresponding to the area being rational.
(This method leads to duplicate triangles related to one another by different values
of the scaling τ, but still seems more efficient than finding Heron triangles with one
rational median and then checking whether a second median is rational.)

The latter method was implemented by Buchholz and Rathbun, initially working
independently (an independent search was also carried out by Kemnitz), yielding the
first six rows in Table 1. In [7] they observed remarkable properties of certain triangles
in the latter table, with respect to their Schubert parameters, which are shown in Table
2: for the rows labelled by an integer n = 1, 2, 3, . . ., the factorizations are related,
and in particular the parameter Mb in row n is minus the reciprocal of the parameter
Pa in row n+1 (see Table 3 for details of the factorizations). The triangles labelled by
asterisks do not seem to fit into any obvious pattern, but their observations on the other
triangles (corresponding to n = 1, . . . , 5 in Tables 1 and 2) led them to suggest that
these examples should extend to an infinite family of triangles labelled by a positive
integer n, with a conjectured factorization of the Schubert parameters as

Ma = − Sn+1S2n+2Tn

SnTn+1T 2
n+2

,

Pa = − Sn+1Sn+2Tn+1Tn+2

SnSn+3TnTn+3
,

Xa = 2(−1)n+1 SnS2n+2Tn+3

Sn+3TnT 2
n+2

,

(1.12)

Mb = Sn+1Sn+4Tn+1Tn+4

Sn+2Sn+3Tn+2Tn+3
,

Pb = − S2n+2Sn+3Tn+4

Sn+4T 2
n+2Tn+3

,

Xb = 2(−1)n Sn+1T 2
n+2Tn+4

S2n+2Sn+4Tn+1
,

(1.13)

where (Sn) and (Tn) are integer sequences given by
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1430 A.N.W. Hone

(Sn) : 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, . . . , (1.14)

and

(Tn) : 0, 1,−1, 1, 1,−7, 8,−1,−57, 391, . . . , (1.15)

(the terms above are listed starting from the index n = 0). These are Somos sequences,
of the kind introduced in [46]. More specifically, they are both Somos-5 sequences:
(Sn) is generated by the fifth order quadratic recurrence

Sn+5Sn = Sn+4Sn+1 + Sn+3Sn+2 (1.16)

(see [40]); the sequence is usually generated starting from five initial 1s, but here we
have indexed it so that it extends symmetrically to negative n, with S−n = Sn . As
we shall see, the sequence (Tn) is closely related to (Sn): it is generated by the same
fifth order recurrence (1.16), and extends backwards in an antisymmetric fashion, so
that T−n = −Tn ; it is also a divisibility sequence, having the property that Tn | Tm
whenever n |m. (It is almost an elliptic divisibility sequence in the sense of [55], but
the terms with even/odd index satisfy different relations of order four.) Henceforth
we shall refer to the sequence of triangles corresponding to the pairs of Schubert
parameters (1.12) and (1.13) as the main sequence.

Despite being provided with a theta function formula for the Somos-5 sequence
(Sn) by Elkies [15], Buchholz and Rathbun were unable to use this to prove that the
Schubert parameters for this proposed infinite family of Heron triangles with two
rational medians are given by the factorizations (1.12) and (1.13). Nevertheless, they
were able to make further progress by plotting the coordinates of the sequence of
parameters (θ, φ) given by (1.11) (with both signs taken as +) corresponding to these
triangles, which were empirically found to lie on one of five birationally equivalent
curves C1−5 of genus one, repeating in the pattern C2,C1,C4,C3,C2,C1,C5 with
period 7, the simplest such curve being the biquadratic cubic

C4 : θ2φ − θφ2 + θφ + 2θ − 2φ − 1 = 0. (1.17)

Over Q, this is birationally equivalent to the elliptic curve

y2 + xy = x3 + x2 − 2x, (1.18)

which has Mordell–Weil group Z×Z/2Z, the same curve corresponding to the theta
function formula for theSomos-5 sequence (1.14) foundbyElkies [15]. In a subsequent
paper [8], Buchholz and Rathbun proved the following result.

Theorem 1.1 Every rational point (θ, φ) on the genus one curve C4 given by (1.17),
with 0 < θ < 1, 0 < φ < 1, 2θ + φ > 1 corresponds to a Heron triangle with two
rational medians.

In subsequent work [3], they considered the full set of discrete symmetries of the
problem in terms of the parameters a, b, c, k, �, including sign changes, e.g. a → −a,
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1432 A.N.W. Hone

Table 3 Prime factors of the first few Schubert parameters in the main sequence

n Ma Pa Xa Mb Pb Xb

0 0 ∞ ∞ − 3
2 − 2

3
2
3

1 22 2
3

23
3

5 ·7
2 ·3 22 ·3 ·7

5
7

23 ·5
2 2 ·32 − 2 ·3

5 ·7
32 ·7
2 ·5 − 24 ·11

3 ·5 ·7
23 ·32 ·5
7 ·11 25

32 ·11
3 − 3 ·52

2 ·72
3 ·5 ·7
24 ·11

25 ·52
72 ·11

3 ·37
23 ·5 ·7 ·11

52 ·11
23 ·72 ·37 − 3 ·72

2 ·52 ·37
4 5 ·112

26 ·3 ·7 − 23 ·5 ·7 ·11
3 ·37 − 3 ·112

27 ·37 − 3 ·5 ·7 ·19 ·83
23 ·11 ·37 − 3 ·112 ·19 ·37

26 ·83
27 ·3 ·5 ·19
7 ·112 ·83

5 7 ·11 ·372
23 ·5

23 ·11 ·37
3 ·5 ·7 ·19 ·83

2 ·3 ·5 ·19 ·372
7 ·83 24 ·11 ·17 ·23 ·137

3 ·19 ·37 ·83 17 ·23 ·372 ·83
2 ·3 ·19 ·137 11 ·17 ·23

25 ·372 ·137

b → −b, etc., aswell as allowed permutations, such as the reflection symmetry a ↔ b,
k ↔ � (equivalent to changing the orientation of the triangle), and showed that, under
the action of this group on the pairs (θ, φ), they obtained points on a total of eight
isomorphic curves C1−8 corresponding to triangles in the main sequence; yet the four
sporadic triangles, labelled with asterisks in Tables 1 and 2, do not give points on
these curves, and we do not know if there are formulae analogous to (1.12) and (1.13)
for these sporadic cases. More recent work on this problem has consisted of proving
that all of the Heron triangles in the main sequence, corresponding to rational points
on one of these eight curves, have exactly two rational medians, so none of them are
perfect triangles [9, 31, 32]. However, until now, many of Buchholz and Rathbun’s
original observations about this sequence have lacked an explanation.

In considering this problem afresh, we observed an elegant factorization pattern
for the semiperimeter s, the quantities s − a, s − b, s − c, which we refer to as the
reduced lengths, and hence also for the area � of the triangles in the main sequence
(see Table 4), and we found that they could be written in terms of the two Somos-5
sequences. This led us not only to a proof of the formulae (1.12) and (1.13) for the
Schubert parameters, but also to explicit expressions for the lengths of the sides, the
two rational medians, and the area, as well as an explanation for the period 7 cycles
of curves in the (θ, φ) plane. Our main result is the following

Theorem 1.2 For each integer n � 1, the terms in the pair of Somos-5 sequences
(1.14) and (1.15) provide a Heron triangle with two rational medians, having integer
side lengths given by

a = ∣∣Sn+1S
3
n+2Sn+3Tn+2 + S2n Sn+1Tn+3T

2
n+4

∣∣,

b = ∣∣S2n Sn+1Tn+3T
2
n+4 − Tn+1T

3
n+2Tn+3Sn+2

∣∣,

c = ∣∣Tn+1T
3
n+2Tn+3Sn+2 − Sn+1S

3
n+2Sn+3Tn+2

∣∣,

(1.19)
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with gcd(a, b, c) = 1, rational median lengths

k = 1
2

∣∣Sn+4Tn+4(TnT
2
n+1Tn+2 − SnS

2
n+1Sn+2)

∣∣,

� = 1
2

∣∣SnTn(Tn+2T
2
n+3Tn+4 − Sn+2S

2
n+3Sn+4)

∣∣,
(1.20)

and area

� = ∣∣SnSn+1S
2
n+2Sn+3Sn+4TnTn+1T

2
n+2Tn+3Tn+4

∣∣. (1.21)

A brief outline of the paper is as follows. The next section is devoted to Somos-5
sequences and Quispel–Roberts–Thompson (QRT) maps: we rapidly review the nec-
essary analytical fomulae from [27], in terms of Weierstrass functions, which are a
key ingredient in our main argument, and prove some determinantal identities con-
necting the sequences (1.14) and (1.15), before presenting simple preliminary results
on initial value problems and their reduction modulo a prime that will be needed later.
We then connect the two Somos-5 sequences with two different orbits of a QRT map
in the plane, both of which lie on the same biquadratic curve that is isomorphic to
(1.17), and with a single orbit of a QRT map on another curve related by a 2-isogeny.
Section 3 contains the main results of the paper, leading to the proof of Theorem 1.2:
the central result is Theorem 3.3, which is proved by writing the two sets of Schubert
parameters (with signs) in terms of elliptic functions and using analytic arguments to
verify that they lie on the Schubert surface as well as satisfying the constraints (1.8).
However, in order to show that all the signs can be consistently removed by elementary
transformations to end up with positive solutions of Schubert’s equation, we need to
consider the pattern of signs in the sequence (1.15), which turns out to have period 14,
as a consequence of the real dynamics of one of the QRT orbits, which moves around
certain segments of a curve with period 7 (see Lemma 3.4); the latter pattern controls
all the signs in the problem, and incidentally explains one of Buchholz and Rathbun’s
empirical observations on curves in the (θ, φ) plane (Theorem 3.7). The section ends
with a complete description of the periodic dynamics of the QRTmaps and associated
Somos-5 sequences over finite fields, combining and extending various results in the
literature [33–35, 43, 47, 51], which is required to analyse the common divisors of
the side lengths. In Sect. 4 we briefly discuss how geometrical arguments, namely
Brahmagupta’s construction, and a formula of Schubert for the tangents of half-angles
in Heron triangles, lead to some additional identities between the Schubert parameters
and other quantities involved. The final section contains our conclusions.

2 Somos-5 sequences and QRTmaps

Somos sequences are generated by quadratic recurrences of the form

τn+N τn =

⌊
N
2

⌋

∑

j=1

α̃ j τn+N− jτn+ j , (2.1)
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where α̃ j are coefficients. They encompass elliptic divisibility sequences in number
theory, and as such can be regarded as nonlinear generalizations of Fibonacci, Lucas,
or other linear recurrence sequences [16, 55]. If there are precisely two or three mono-
mials on the right-hand side, then they are of the right shape to be generated from a
cluster algebra [18] or an LP algebra [36], providing one of the original examples of
the Laurent phenomenon [19, 22]. In addition, these special types of Somos recur-
rences can be obtained as reductions of integrable partial difference equations on a
three-dimensional lattice, namely the discrete Hirota equation [28] orMiwa’s equation
[17], which are also known by other names: bilinear discrete KP/BKP, or the octa-
hedron/cube recurrences. They also appear in the context of supersymmetric gauge
theories and dimer models [4, 14, 24].

The rest of this section is devoted to presenting geometric, analytic, algebraic and
arithmetic results about Somos-5 sequences, corresponding to the particular case N =
5 of (2.1), aswell as associated birationalmaps of the plane studied byQuispel, Roberts
and Thompson (QRT maps).

2.1 Geometric, analytic and algebraic properties of Somos-5 sequences

The general Somos-5 recurrence is

τn+5τn = α̃ τn+4τn+1 + β̃ τn+3τn+2. (2.2)

We take C as the ambient field, considering all sequences as complex-valued, but
for suitable choices of the initial values and the coefficients α̃, β̃ the recurrence
produces integer sequences such as (1.14). One way to see this is to observe that
the recurrence (2.2) has the Laurent property, as it arises from mutations in a
cluster algebra [20], meaning that the iterates lie in the Laurent polynomial ring
Z[α̃, β̃, τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ±1

4 ]. Hence if all initial values are ±1 and the coeffi-
cients α̃, β̃ are integers then τn ∈ Z for all n. However, as shown in [29], due to
the connection with the arithmetic of elliptic curves, a much stronger version of the
Laurent property holds for this recurrence, and there are many more ways in which
it can produce integer sequences. The geometrical structure of Somos-5 sequences is
based on the following result.

Lemma 2.1 The recurrence (2.2) has two independent conserved quantities (first inte-
grals), invariant under shifting n → n + 1, namely

Ĩ = τnτn+4

τn+1τn+3
+ α̃

(
τ 2n+1

τnτn+2
+ τ 2n+2

τn+1τn+3
+ τ 2n+3

τn+2τn+4

)
+ β̃

τn+1τn+3

τnτn+4
(2.3)

and

J̃ = τnτn+3

τn+1τn+2
+ τn+1τn+4

τn+2τn+3
+ α̃

(
τn+1τn+2

τnτn+3
+ τn+2τn+3

τn+1τn+4

)
+ β̃

τ 2n+2

τnτn+4
. (2.4)
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These two quantities are built from a 2-invariant, given by

K̃n = τnτn+4 + α̃ τ 2n+2

τn+1τn+3
, (2.5)

whose value repeats with period 2, so that K̃n+2 = K̃n, with

Ĩ = K̃n + K̃n+1, α̃ J̃ + β̃ = K̃n K̃n+1.

Proof Applying (2.2) twice shows that K̃n satisfies

K̃n+1 = α̃

(
τ 2n+1

τnτn+2
+ τ 2n+3

τn+2τn+4

)
+ β̃

τn+1τn+3

τnτn+4
, K̃n+2 = K̃n,

so the value of K̃n repeats with period 2, from which it is an immediate consequence
that the sum K̃n + K̃n+1 = Ĩ and product K̃n K̃n+1 = α̃ J̃ + β̃ define two independent
invariants Ĩ , J̃ , which are given by (2.3) and (2.4), respectively. ��
Remark 2.2 By clearing the denominator in (2.5), it follows that τn satisfies the Somos-
4 relation

τn+4τn = K̃n τn+3τn+1 − α̃ τ 2n+2,

with one of the coefficients depending on the parity of n.

Geometrically, iteration of the Somos-5 recurrence (2.2) is equivalent to iterating
the birational map

(τ0, τ1, τ2, τ3, τ4) �→
(

τ1, τ2, τ3, τ4,
α̃τ4τ1 + β̃τ3τ2

τ0

)
(2.6)

inC5, and the existence of these two conserved quantities means that generic orbits lie
on three-dimensional level sets given by fixed values of Ĩ , J̃ . However, the invariant
Ĩ will not play a very significant role in what follows. The quantity J̃ is much more
important, because it leads to the connection with elliptic curves: indeed, setting

Un = τn+3τn

τn+2τn+1

and comparing with (2.4) shows that, for fixed J̃ , the pairs (Un,Un+1) in the plane lie
on the biquadratic cubic curve defined by

UnUn+1(Un +Un+1) + α̃(Un +Un+1) − J̃UnUn+1 + β̃ = 0, (2.7)

which (for generic values of α̃, β̃, J̃ ) has genus one. The latter curve is birationally
equivalent to an elliptic curve in Weierstrass form (equation (2.9) below), and this is
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what lies behind the analytic formula for the terms of a Somos-5 sequence obtained
in [27], and described as follows.

Theorem 2.3 The general solution of (2.2) can be written in the form

τn = A±B	n/2

± μ	n/2
2σ(z0 + nκ), (2.8)

where the ± subscripts apply for even/odd n, respectively, and σ(z) = σ(z; g2, g3) is
the Weierstrass sigma function associated with the elliptic curve

y2 = 4x3 − g2x − g3 (2.9)

with invariants defined by

g2 = 12λ̃2 − 2 J̃ , g3 = 4λ̃3 − g2λ̃ − μ̃2 (2.10)

in terms of the quantities

μ̃ = (β̃ + α̃ J̃ )1/4, λ̃ = 1

3μ̃2

(
J̃ 2

4
+ α̃

)
. (2.11)

The solution corresponds to a sequence of points P̂0 + nP on the curve (2.9), where
the initial point P̂0 = (℘ (z0), ℘′(z0)) is arbitrary, and at each step it is translated by
P = (℘ (κ), ℘′(κ)) = (λ̃, μ̃). The other parameters appearing in (2.8) are

μ = μ̃

σ (2κ)
= − σ(κ)−4, (2.12)

and A+, A−, B+, B− which are arbitrary up to the constraint that

B+
B−

= − μ−1 = σ(κ)4. (2.13)

Remark 2.4 From the above result, the general solution of (2.2) is given by fixing
the seven parameters A+, A−, B+, κ, z0, g2, g3 (with B− given by (2.13) in terms
of B+, κ, g2, g3), corresponding to the fact that the initial value problem for (2.2) is
specified by a total of 7 = 5+2 parameters (five adjacent initial values, τ0, . . . , τ4 say,
plus the two coefficients α̃, β̃). Moreover, for generic initial values and coefficients,
the initial value problem can be solved explicitly by using the relations (2.11) and
(2.10) to obtain the curve (2.9) from the values of α̃, β̃ and the conserved quantity J̃
as in (2.4); thereafter κ and z0 are found by evaluating elliptic integrals, and A±, B±
can then be determined in terms of the initial values and values of the sigma function
involving these arguments. We carry this out in detail below for the sequences (1.14)
and (1.15).
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For what follows it is helpful to introduce another sequence (an) associated with
any solution (2.8) of Somos-5, referred to as the companion EDS (elliptic divisibility
sequence) in [29], which is defined by the analytic formula

an = σ(nκ)

σ (κ)n
2 . (2.14)

The sequence of terms an can be used to describe Somos relations of higher order
satisfied by τn , which are summarized in the following way.

Theorem 2.5 The terms of the companion EDS (2.14) satisfy the Somos-4 recurrence

an+4an = μ̃2 an+3an+1 − α̃ a2n+2, (2.15)

and they can be written as polynomials in μ̃, α̃, β̃ with integer coefficients, beginning
with

(an) : 0, 1, − μ̃, α̃, μ̃β̃, − α̃3 − μ̃4β̃, μ̃α̃(α̃3 + β̃2 + μ̃4β̃), − α̃6 − μ̃4β̃(α̃3 − β̃2),

− μ̃β̃
(
2α̃6 + α̃3β̃(β̃ + 3μ̃4) + μ̃8β̃2), . . . .

A general Somos-5 sequence satisfies infinitely many higher Somos relations of odd
order with coefficients determined by its companion EDS (2.14), namely

a2 τn+2 j+1τn = a ja j+1 τn+ j+2τn+ j−1 − a j−1a j+2 τn+ j+1τn+ j . (2.16)

Proof The description of the terms of the companion EDS as polynomials in μ̃, α̃, β̃

which are generated by a Somos-4 recurrence was given in [29]. A proof of the higher
Somos relations (2.16) was provided in [27] (see also [53]). ��
Remark 2.6 When μ̃, α̃, β̃ ∈ Z, the companion EDS is an integer sequence, so it is a
bona fide elliptic divisibility sequence in the sense of [55]. For j = 0, 1 the relation
(2.16) is just a tautology, while for j = 2 it is equivalent to (2.2) with coefficients
α̃ = a3 = σ(3κ)/σ (κ)9, β̃ = − a4/a2 = − σ(κ)−12σ(4κ)/σ (2κ).

Having described the general case, in the rest of this section the formula (2.8) and
the other results on Somos-5 sequences given abovewill be specialized to the particular
sequences (1.14) and (1.15).

Proposition 2.7 The terms of the sequence (1.14) are given by the formula

Sn =
{

σ(ω)−1B	n/2

+ μ	n/2
2σ(ω + nκ), for n even,

σ (ω + κ)−1B	n/2

− μ	n/2
2σ(ω + nκ), for n odd,

(2.17)

with parameters given by

μ̃ = 61/4 = ℘′(κ), λ̃ = 29

12
√
6

= ℘(κ), g2 = 121

72
, g3 = − 845

1296
√
6

, (2.18)
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and μ = −σ(κ)−4,

B+ = − σ(κ)4σ(ω)

σ(ω + 2κ)
, B− = − σ(ω − κ)

σ (κ)4σ(ω + κ)
, (2.19)

where the numerical value

κ ≈ − 1.052799817 (2.20)

determines the point P = (λ̃, μ̃) on the Weierstrass curve (2.9) with these values of
the invariants g2, g3, and the initial point P̂0 = (℘ (z0), ℘′(z0)) is 2-torsion, that is

z0 = ω, ℘(ω) = 5

12
√
6

, ℘′(ω) = 0, (2.21)

where ω is a half-period, which can be taken as the sum of real and imaginary half-
periods ω1, ω2:

ω = ω1 + ω2, ω1 ≈ 1.849876692, ω2 ≈ 1.524280920 i. (2.22)

Proof This sequence was presented as an example in [27]: the coefficients in (1.16) are
α̃ = β̃ = 1, while the values of the conserved quantities (2.3) and (2.4) are given by
Ĩ = J̃ = 5, leading to the parameter values (2.18). The formulae in [27, Theorem 2.7]
then show that z0 = ω corresponds to a 2-torsion point on the curve in this case, and
the numerical values of κ and ω are determined from (2.18) and (2.21) by evaluating
elliptic integrals. ��

From a purely algebraic point of view, it would seemmore natural to apply a homo-
thety so that everything is defined over Q, i.e. rescale all the coordinates, Weierstrass
functions and invariants by suitable powers of μ̃ = 61/4 in order to work with the
Weierstrass cubic

E : y2 = 4x3 − 121

12
x + 845

216
; (2.23)

the expressions corresponding to this form of the curve are presented in [27]. However,
the analytic calculations in the sequel are easier to carry out with the choice of scale
as in (2.18).

Remark 2.8 The relation (2.13) between the ratio of the quantities in (2.19) can be
verified by using the elliptic function identity

σ(z0 + 2κ)σ (z0 − κ)

σ (κ)4σ(z0)σ (z0 + κ)
= − ℘′(κ)

2

(
℘′(z0) − ℘′(κ)

℘ (z0) − ℘(κ)

)
+ ℘′′(κ)

2
, (2.24)
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which is valid for any z0, κ . Upon setting z0 = ω, the left-hand side of the above
identity is

σ(ω + 2κ)σ (ω − κ)

σ (κ)4σ(ω)σ(ω + κ)
= − μ−1 B−

B+
, (2.25)

while the right-hand side is

− ℘′(κ)

2

(
℘′(ω) − ℘′(κ)

℘ (ω) − ℘(κ)

)
+ ℘′′(κ)

2
= − 61/4

2

( − 61/4

5
12

√
6

− 29
12

√
6

)
+ 5

2
= 1,

where above we have substituted the values from (2.18) and (2.21), as well as J̃ =
℘′′(κ) = 5.

Proposition 2.9 The terms of the sequence of (1.15) can be written in the form

Tn =
{

σ(κ)−1 B̂	(n−1)/2

+ μ	(n−1)/2
2σ(nκ), for n odd,

− σ(2κ)−1 B̂	(n−1)/2

− μ	(n−1)/2
2σ(nκ), for n even,

(2.26)

where

B̂+ = μ, B̂− = − μ2, (2.27)

with μ = −σ(κ)−4 and the same value of κ as in Proposition 2.7.

Proof For the second sequence (1.15), again we have α̃ = β̃ = 1, while the conserved
quantity (2.3) takes the value Ĩ = 7, and (2.4) has the same value J̃ = 5. The fact
that the values of α̃, β̃, J̃ coincide with those for (1.14) means that the two sequences
are very closely related. Since T0 = 0, it is convenient to specify the initial value
problem with T1, . . . , T5, in order to apply the general formula (2.8); effectively this
corresponds to shifting the index by 1 and changing the parity. The result (2.26) then
follows. ��

Writing the terms of the sequence (Tn) in the analytic form (2.26) will be useful for
comparing it with the terms of (Sn) in the sequel, but disguises the fact that, up to a
rescaling of terms with even/odd index, (1.15) coincides with the companion EDS for
(1.14), as defined by (2.14) above. Indeed, a simpler way to write the terms of (1.15)
is as

Tn =
{
an = σ(nκ)/σ (κ)n

2
, for n odd,

μ̃−1an = μ̃−1σ(nκ)/σ (κ)n
2
, for n even.

(2.28)

By virtue of its being the companion EDS of (Sn), rescaled according to the parity of n,
the sequence (Tn) satisfies many identities that intertwine it with (1.14), as illustrated
by the following result.
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Proposition 2.10 The terms of the sequences (1.14) and (1.15) satisfy the determinan-
tal identities

∣∣∣∣∣∣

Sn−1T0 SnT1 Sn+ j−1Tj

Sn+ j−1T− j Sn+ j T− j+1 Sn+2 j−1T0
Sn+ j+1T− j−2 Sn+ j+2T− j−1 Sn+2 j+1T−2

∣∣∣∣∣∣
= 0

and
∣∣∣∣∣∣

Tn−1T0 TnT1 Tn+ j−1Tj

Tn+ j−1T− j Tn+ j T− j+1 Tn+2 j−1T0
Tn+ j+1T− j−2 Tn+ j+2T− j−1 Tn+2 j+1T−2

∣∣∣∣∣∣
= 0,

for all j, n ∈ Z. More generally, in each of the infinite matrices with entries
(Sn+2i+ j T−2i+ j ), (Tn+2i+ j T−2i+ j ) for (i, j) ∈ Z2, the determinant of any minor
of size 3×3 or above vanishes for all n ∈ Z.

Proof Expanding out each of the 3×3 determinants above, noting that T0 = 0, T1 = 1
and T−n = −Tn , and removing a common factor leads to Somos-type relations in n
(for fixed j), that is

T1T2Sn+2 j+1Sn = Tj Tj+1Sn+ j+2Sn+ j−1 − Tj−1Tj+2Sn+ j+1Sn+ j (2.29)

and

T1T2Tn+2 j+1Tn = Tj Tj+1Tn+ j+2Tn+ j−1 − Tj−1Tj+2Tn+ j+1Tn+ j .

The first identity follows directly from (2.16), upon replacing τi → Si and ai → Ti ,
since by (2.28) the sequence (Tn) is the companion EDS of (Sn) up to rescaling terms
of opposite parity, and only products of pairs of even/odd index appear. The second
identity follows in the same way, by replacing τi → Ti and ai → Ti in (2.16),
since up to parity the sequence (Tn) is its own companion EDS. The more general
statement about vanishing determinants of 3×3 minors follows by making the same
replacements in the infinite matrix with (i, j) entries (a−2i+ j τn+2i+ j ). For example,
when n = 0 the rows of (Sn+2i+ j T−2i+ j ) with i = 0, . . . , 4 include the entries

· · · −2 1 −1 0 1 −1 2 3 · · ·
· · · 7 −1 −1 1 −2 0 5 −11 · · ·
· · · 1 −8 14 −3 −5 11 −37 0 · · ·
· · · −782 171 5 −88 259 −83 −274 1217 · · ·
· · · 13645 5005 −14467 4731 274 −9736 43127 −22833 · · ·

and one of the vanishing minors that does not correspond to a quadratic (Somos-type)
relation, but rather is cubic in Tn , is

∣∣∣∣∣∣

−1 1 2
14 −5 −37

−14467 274 43127

∣∣∣∣∣∣
= 0.
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The determinant of any 3×3 minor of (a−2i+ j τn+2i+ j ) has the form

D =
∣∣∣∣∣∣

a−2i+ j τn+2i+ j a−2i+ j ′ τn+2i+ j ′ a−2i+ j ′′ τn+2i+ j ′′
a−2i ′+ j τn+2i ′+ j a−2i ′+ j ′ τn+2i ′+ j ′ a−2i ′+ j ′′ τn+2i ′+ j ′′
a−2i ′′+ j τn+2i ′′+ j a−2i ′′+ j ′ τn+2i ′′+ j ′ a−2i ′′+ j ′′ τn+2i ′′+ j ′′

∣∣∣∣∣∣
.

The τi terms appearing in each column have indices i with the same parity, so from
the formula (2.8) it follows that there is a common factor of A± that can be removed
from each column; then effectively we can ignore these prefactors (equivalently, by
a gauge transformation the even/odd index terms can always be rescaled separately
so that A± → 1). For convenience, we introduce the notation σζ = σ(ζκ) for any
ζ ∈ C, and let n̄ = n + z0/κ , so that upon substituting from (2.8) and (2.14) we find

D ∝

∣∣∣∣∣∣∣∣

B
Fi j
0 Ci j σ−2i+ j σn̄+2i+ j B

Fi j ′
1 Ci j ′ σ−2i+ j ′ σn̄+2i+ j ′ B

Fi j ′′
2 Ci j ′′ σ−2i+ j ′′ σn̄+2i+ j ′′

B
Fi ′ j
0 Ci ′ j σ−2i ′+ j σn̄+2i ′+ j B

Fi ′ j ′
1 Ci ′ j ′ σ−2i ′+ j ′ σn̄+2i ′+ j ′ B

Fi ′ j ′′
2 Ci ′ j ′′ σ−2i ′+ j ′′ σn̄+2i ′+ j ′′

B
Fi ′′ j
0 Ci ′′ j σ−2i ′′+ j σn̄+2i ′′+ j B

Fi ′′ j ′
1 Ci ′′ j ′ σ−2i ′′+ j ′ σn̄+2i ′′+ j ′ B

Fi ′′ j ′′
2 Ci ′′ j ′′ σ−2i ′′+ j ′′ σn̄+2i ′′+ j ′′

∣∣∣∣∣∣∣∣

,

where Ci j = (−1)F
2
i j σ

−Ei j
1 , Ei j = (−2i + j)2 + 4 	(n + 2i + j)/2
2, Fi j =

	(n + 2i + j)/2
, and B0 = B±, B1 = B±, B2 = B±, according to the parity of
n+2i + j , n+2i + j ′, n+2i + j ′′, respectively. Depending on the parities of the latter
quantities, a case by case analysis shows that the rows and columns can be rescaled
appropriately so that the terms depending on powers of B±, an overall sign, and the
powers of σ1 = σ(κ) can be removed. The analysis relies on various identities for the
exponents Ei j ; for instance, if n + 2i + j and n + 2i + j ′ have the same parity then
Ei j + Ei ′ j ′ = Ei ′ j + Ei j ′ , but if they have opposite parity this is not the case and it is
necessary to use (2.13) to balance the powers of σ1 that appear. This gives an overall

factor of Ci jCi ′ j ′Ci ′′ j ′′ B
Fi j
0 B

Fi ′ j ′
1 B

Fi ′′ j ′′
2 in front, and what remains is

D ∝
∣∣∣∣∣∣

σ−2i+ j σn̄+2i+ j σ−2i+ j ′ σn̄+2i+ j ′ σ−2i+ j ′′ σn̄+2i+ j ′′
σ−2i ′+ j σn̄+2i ′+ j σ−2i ′+ j ′ σn̄+2i ′+ j ′ σ−2i ′+ j ′′ σn̄+2i ′+ j ′′
σ−2i ′′+ j σn̄+2i ′′+ j σ−2i ′′+ j ′ σn̄+2i ′′+ j ′ σ−2i ′′+ j ′′ σn̄+2i ′′+ j ′′

∣∣∣∣∣∣

= 1

σ−2i ′+ j σn̄+2i ′+ j

∣∣∣∣
DNW DNE

DSW DSE

∣∣∣∣ ,

where in the last step we have used Dodgson condensation [11] to expand the 3×3
determinant in terms of its 2×2 connected minors. In particular, using the standard
three-term relation for the Weierstrass sigma function (see e.g. §20.53 in [56]) we
have

DNW =
∣∣∣∣

σ−2i+ j σn̄+2i+ j σ−2i+ j ′ σn̄+2i+ j ′
σ−2i ′+ j σn̄+2i ′+ j σ−2i ′+ j ′ σn̄+2i ′+ j ′

∣∣∣∣ = σn̄+2i+2i ′σ2i−2i ′σn̄+ j+ j ′σ j ′− j ,

and similar calculations for the NE , SW and SE minors, together with the fact that
σ is an odd function, yield
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D ∝ DNW DSE − DNE DSW

= σn̄+2i+2i ′σ2i−2i ′σn̄+ j+ j ′σ j ′− j ×σn̄+2i ′+2i ′′σ2i ′−2i ′′σn̄+ j ′+ j ′′σ j ′′− j ′

− σn̄+2i+2i ′σ2i ′−2iσn̄+ j ′+ j ′′σ j ′′− j ′ ×σn̄+2i ′+2i ′′σ2i ′′−2i ′σn̄+ j+ j ′σ j ′− j = 0,

as required. Since any of the larger minors can be expanded in terms of 3×3 minors,
these all vanish as well. ��
Remark 2.11 The vanishing of the analogous 3×3 determinants involving the original
Somos-5 sequence (1.14) is proved in [38].

2.2 Arithmetical properties of Somos-5 sequences

We now consider arithmetical properties of these Somos-5 sequences that will be
needed in the sequel. The following result concerning (1.14) iswell known; the original
proof is attributed to Bergman [22].

Lemma 2.12 Any five adjacent terms in the sequences (1.14) and (1.15) are pairwise
coprime, that is, gcd(Si , S j ) = 1 = gcd(Ti , Tj ) for |i − j | < 5.

Proof The proof is by induction. Each of the sequences is a solution of the recurrence

τn+5τn = τn+4τn+1 + τn+3τn+2, (2.30)

and in both cases the statement is clearly true for the first five terms, indexed by
n = 1, . . . , 5. So if we suppose the inductive hypothesis that τn, τn+1, . . . , τn+4 are
pairwise coprime, and assume that some prime p is a common factor of τn+5 and
τn+1, then we see from the recurrence that p | τn+3τn+2, which contradicts the fact
that gcd(τn+1, τn+2) = 1 = gcd(τn+1, τn+3), and similar contradictions arise from
assuming that p is a common factor of τn+5 and one of τn+2, τn+3, τn+4. ��
Remark 2.13 Pairwise coprimeness of adjacent terms is a feature of clusters of Lau-
rent polynomials in cluster algebras [18], and more generally in various birational
difference equations with the Laurent property [35], where essentially the same argu-
ment applies. For the original Somos-5 sequence (1.14), Robinson actually proved the
stronger statement that gcd(Si , S j ) = 1 for |i − j | � 5 [43], but this statement is not
quite true for the sequence (1.15), because 7 is a common factor of all the terms T5 j .

Robinson used elementarymethods to prove the periodicity of Somos-4 and Somos-
5 sequences modulo any positive integer, for the case of coefficients α̃ = β̃ = 1 with
all the rational initial data being units in the corresponding residue ring, and made
conjectures about the periods modulo a prime or a prime power. Using the connection
with elliptic curves, several of these conjectures were proved in the thesis of Swart
[47], who also considered the case of general coefficients in (2.2), and some of these
results were further strengthened by van der Kamp [51]. To begin with, we would
like to adapt Robinson’s arguments to a slightly more general class of initial data, and
consider periodicity modulo a prime, which is the case of most interest for us; the
extension to prime powers and more general moduli is quite straightforward.
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It is convenient to formulate conditions on the initial data in terms of the p-adic
norm | · |p. There is a wealth of literature on rational maps of the projective lineP1 over
Qp [45], and p-adic analysis is extremely useful for understanding suitable notions of
good/bad reduction modulo a prime for maps overQ. For nonlinear systems in higher
dimensions, results are rather more sparse, although the authors of [34] have proposed
a definition of (almost) good reduction for birational maps, and used local analysis
in Qp to probe the singularity structure of certain maps in the plane. Here we will
treat only the most relevant case of the recurrence (2.30), which is equivalent to the
birational map

(τ0, τ1, τ2, τ3, τ4) �→
(

τ1, τ2, τ3, τ4,
τ4τ1 + τ3τ2

τ0

)
(2.31)

in five dimensions; this avoids having to specify additional conditions on the coeffi-
cients, but essentially the same periodicity statements hold for (2.2) if we require that
both of α̃, β̃ ∈ Zp, with at least one of them being a p-adic unit. Since the choice of
where to start indexing the sequence is arbitrary, the initial value problem for (2.30)
will be specified either by the values (τ0, τ1, τ2, τ3, τ4) or (τ1, τ2, τ3, τ4, τ5).

Definition 2.14 For a prime p, an initial value problem for (2.30) over Q is
said to be well-balanced modp if it is specified by either (τ0, τ1, τ2, τ3, τ4) or
(τ1, τ2, τ3, τ4, τ5) ∈ Q5 such that four adjacent initial values are p-adic units, so
|τ1|p = |τ2|p = |τ3|p = |τ4|p = 1, and

|τ4τ1 + τ3τ2|p � |τ∗|p � 1, τ∗ �= 0, (2.32)

where τ∗ = τ0 or τ5 accordingly.

Theorem 2.15 For any prime p, if an initial value problem for (2.30) is well-balanced
mod p, then the rational Somos-5 sequence (τn) is defined for all n ∈ Z, as is the
reduced sequence (τn mod p), which is periodic in n.

Proof Starting from non-zero initial values, the birational map (2.31) can be iterated
both forwards, to obtain τn ∈ Q for n � 0, and backwards (using the inverse map) to
obtain the terms with negative indices, provided that a singularity does not appear, i.e.
unless a zero term appears in the sequence. However, it is still possible to continue the
sequence beyond a zero (in either direction) by making use of the Laurent property:
we will perform the analysis for iterating forwards, and then the result for the reverse
direction follows from the symmetry of the recurrence (2.30) under sending n → −n.
Suppose that, for some n, there are five non-zero terms τn, τn+1, τn+2, τn+3, τn+4,
followed by τn+5 = 0, which occurs when

τn+4τn+1

τn+3τn+2
= − 1. (2.33)

The main point is that, due to the Laurent phenomenon [19], all subsequent terms (and
also all previous terms) can be written as Laurent polynomials in these five non-zero
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terms, with integer coefficients—in fact, it has even been proved that the coefficients
are positive integers [25, 37], so we have τn+ j ∈ Z>0[τ±1

n , τ±1
n+1, τ

±1
n+2, τ

±1
n+3, τ

±1
n+4] for

all j ∈ Z.Hence the rational sequence is defined for alln ∈ Z, simply by evaluating this
sequence of Laurent polynomials at any five adjacent non-zero values—in particular,
evaluating them at the five well-balanced initial values.

For the reduction mod p, some further analysis is helpful. If all the initial val-
ues are p-adic units (the case considered by Robinson), then their reduction mod p
defines an initial value problem for (2.31) as a birational map F5

p → F5
p; a singu-

larity may be reached under iteration over Fp, if for some n the five non-zero terms
τn mod p, . . . , τn+4 mod p are followed by τn+5 mod p = 0, but nevertheless the
sequence is still defined for all n ∈ Z by evaluating the reduction mod p of the Lau-
rent polynomials, belonging to the ring Fp[τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ±1

4 ] (which can be
evaluated on any set of five adjacent non-zero values in F∗

p). Now if a zero term never

appears in the sequence (τn mod p), there are only (p − 1)5 possible quintuples in
(F∗

p)
5, so by the pigeonhole principle the sequence is periodic and this provides a crude

upper bound on the period. However, if a zero appears somewhere, which is certainly
the case for a rational initial value problem with either |τ0|p < 1 or |τ5|p < 1 appear-
ing before/after four adjacent units, then the continuation of the sequence needs a
more careful treatment. Note that, in either of these cases, the well-balanced condition
(2.32) implies

τ5τ0 = τ4τ1 + τ3τ2 with |τ5|p � 1 or |τ0|p � 1,

respectively, since in the first case the above relation defines τ5 that appears after the
five initial data, and in the second case it defines τ0 that precedes it; but it may happen
that both τ0 mod p = 0 and τ5 mod p = 0 (as in the example of the sequence (1.15)
for p = 7). So we consider a more general setting where we have four adjacent non-
zero values τn+1, . . . , τn+4 subject to the condition (2.33) holding in Fp, followed by
τn+5 = ε ≡ 0 mod p, and preceded by τn which is a p-adic integer, but may or may
not be a unit; this covers both the case of a zero appearing under iteration in Fp, and
(up to reversing the direction of iteration) the case where one of the initial values is a
non-unit. Thus, by iterating and then reducing mod p, we find

τn+6 = τ−1
n+1(τn+3τn+4 + τn+2 ε) ≡ τ−1

n+1τn+3τn+4;
τn+7 = (τn+1τn+2)

−1(τ 2n+3τn+4 + (τn+2τn+3 + τn+1τn+4) ε
)

= (τn+1τn+2)
−1(τ 2n+3τn+4 + τn ε2

) ≡ (τn+1τn+2)
−1τ 2n+3τn+4;

τn+8 = (τn+1τn+2)
−1τn+3τ

2
n+4 + τ−1

n+1τn+4 ε + O(ε2) ≡ (τn+1τn+2)
−1τn+3τ

2
n+4;

τn+9 = τ−2
n+1τ

−1
n+2τn+3

(
τ 2n+3τn+4 + (τn+4τn+1 + τn+3τn+2) ε

) + O(ε2)

= τ−2
n+1τ

−1
n+2τ

3
n+3τn+4 + O(ε2) ≡ τ−2

n+1τ
−1
n+2τ

3
n+3τn+4;

τn+10 = τ−3
n+1τ

−2
n+2τ

2
n+3τn+4

(
τn+3τn+4 ε−1 + τn+2

)
(τn+4τn+1 + τn+3τn+2) + O(ε)

= τ−3
n+1τ

−2
n+2τ

3
n+3τ

2
n+4τn + O(ε) ≡ τ−3

n+1τ
−2
n+2τ

3
n+3τ

2
n+4τn . (2.34)
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The cancellation of ε from the denominator appearing in τn+10 is precisely what
yields the Laurent property, and the reduction mod p gives four adjacent units τn+6,
τn+7, τn+8, τn+9, followed by τn+10 which is a p-adic integer (and is a unit whenever
τn is); indeed, we have

|τn+9τn+6 + τn+8τn+7|p = |τn+5|p|τn+10|p � |τn+10|p � max (|τn|p, |τn+5|p) � 1,

so this is well-balanced (and the first inequality is strict) unless it happens that τn+10 =
0 holds in Q. Nevertheless, by shifting indices up by 5, the above calculation shows
that one can write the next four terms τn+11, . . . , τn+14 as polynomials in τn+10 with
coefficients in Z[τ−1

n+6, τ
−1
n+7, τ

−1
n+8, τ

−1
n+9], so for instance τn+11 = τ−1

n+6τn+8τn+9 +
O(τn+10), while at the fifth step we find

τn+15 = τ−3
n+6τ

−2
n+7τ

3
n+8τ

2
n+9τn+5 + O(τn+10). (2.35)

Hence by induction any well-balanced initial value problem determines a rational
sequence (τn) consisting of p-adic integers, so the entire sequence (τn mod p)n∈Z is
well-defined in Fp, and by the pigeonhole principle it is periodic. ��
Remark 2.16 In the sequence (1.15), (T0, . . . , T4) = (0, 1,−1, 1, 1) does not provide
well-balanced initial data for any prime p, due to the initial zero, which leaves the value
of T5 undetermined. In contrast, (T1, . . . , T4) = (1,−1, 1, 1,−7) is well-balanced for
any p, in particular for p = 7, and comparing with (2.34) and (2.35) it is clear that
T5 j mod 7 = 0 for all j , as asserted in the previous remark (although the actual period
of the sequence mod7 is 20 [43]). As another example, the initial data (τ1, . . . , τ5) =
(1,−1, 1, 8, 49) is not well-balanced mod 2 because τ4 is not a unit, nor is it well-
balanced mod 7 because it fails the condition (2.32) on the norm; indeed, τ0 = 1/7,
and in fact the corresponding rational sequence does not admit reductionmodulo either
of these primes, as it has growing powers of 2 and 7 appearing as denominators. (The
growth of bothArchimedean and non-Archimedean valuations for Somos-4 sequences
is described in [50], and these results are relevant here because it is known that the
even/odd index terms in a Somos-5 sequence each define a Somos-4, as shown in
[27], where asymptotic results were obtained in the Archimedean case.) Yet one more
example is (τ1, . . . , τ5) = (1,−1, 1, 8,−7), which is well-balanced mod 7 and for
all other primes except mod 2; however, an interesting feature of the fact that the fifth
term is not a 7-adic unit is that, although the initial values satisfy τ j mod 7 = Tj mod 7
for j = 1, . . . , 5, the two sequences have a different reduction mod 7 because e.g.
τ0 = −1 �≡ 0 (mod 7), and this phenomenon does not arise in the case that all the
initial values are units.

For the proof of Theorem 1.2 in the next section, we will need the following result
about the particular sequences (1.14) and (1.15).

Proposition 2.17 For the Somos-5 sequences (1.14) and (1.15),

Sn mod 2 = 0 iff n ≡ 3 (mod 6), Tn mod 2 = 0 iff n ≡ 0 (mod 6),
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and both these reduced sequences mod 2 have period 6, while

Sn mod 3 = 0 iff n ≡ 4 (mod 8), Tn mod 3 = 0 iff n ≡ 0 (mod 8),

where both reduced sequences mod 2 have period 16. Furthermore, for every prime
p there are infinitely many n such that Tn mod p = 0.

Proof The initial values (S0, . . . , S4)give (S0 mod 2, . . . , S4 mod 2) = (1, 1, 1, 0, 1),
so these are not well-balanced mod 2. By shifting back one or two steps and starting
with S−1 or S−2 we can get something well-balanced, and use the method of reduction
of Laurent polynomials, as in the proof of Theorem 2.15. However, instead we will
apply Proposition 2.10, making use of the fact that the sequence (Sn) satisfies the
Somos-7 relation

Sn+7Sn = − Sn+5Sn+2 + 7Sn+4Sn+3,

given by the case j = 3 of (2.29), and (Tn) satisfies the same recurrence. So if we take
(1, 1, 1, 0, 1) as initial values in F2, we can iterate (1.16) three times to extend the
sequence to 1, 1, 1, 0, 1, 1, 1, 1, then use the Somos-7 recurrence, which taken mod 2
gives Sn+7Sn ≡ Sn+5Sn+2 + Sn+4Sn+3, and iterate it twice to extend the sequence
to 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, before finally applying the original Somos-5 relation once
more to append another 1 at the end of this, so that after a total of six steps we
have returned to the same initial values (1, 1, 1, 0, 1). Hence the period is 6, with a
zero appearing precisely when n ≡ 3 (mod 6), and the same pattern is repeated in
(Tn mod 2) except it is shifted back three steps. Taken mod 3, (S0, . . . , S4) provides
well-balanced initial data, but we can proceed in the same way as for p = 2. Working
in F3, starting from (1, 1, 1, 2, 0) we apply the Somos-5 recurrence three times to
append the terms 2, 2, 1, 2 to the sequence, then apply the Somos-7 relation taken
mod 3, which gives Sn+7Sn ≡ 2Sn+5Sn+2 + Sn+4Sn+3, joining a 1 to the end of the
sequence, and next we can apply Somos-5 sevenmore times before hitting the problem
of division by zero, which adds the terms 2, 2, 0, 2, 1, 1, 1, before another application
of Somos-7 yields an extra 1, so that finally using Somos-5 again three more times we
find that we have appended the 16 terms

2, 2, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 1, 1, 2, 0.

The last five terms above are the initial values we started with, so the period is 16, and
the zero terms appear when n ≡ 4 ( mod 8). For the sequence (Tn mod 3) the situation
is almost identical, but the repeating pattern is

1, 2, 1, 1, 2, 2, 2, 0, 1, 1, 1, 2, 2, 1, 2, 0,

with zero terms appearing when n ≡ 0 (mod 8). Now if we consider any prime p, we
have already noted that (1,−1, 1, 1,−7) provides well-balanced initial data for (Tn),
and since T0 = 0 and the sequence mod p is periodic by Theorem 2.15, it follows
that p is a divisor of infinitely many terms. ��
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Remark 2.18 From the point of viewofTheorem2.15, there is nothing special about the
primes 2 and 3. However, a fuller understanding of the periods in Somos-5 sequences
is reached from the connection with the underlying elliptic curve, and here it turns
out that 2 and 3 (along with 17) are primes of bad reduction, so in this sense they are
special. In particular, some additional explanation for the values of the periods will
be offered in the next section, in terms of the finite field dynamics of associated QRT
maps, which we now introduce.

2.3 QRTmaps from Somos-5 sequences

QRT maps, named after Quispel, Roberts and Thompson, are an 18-parameter family
of birational maps of the plane that were introduced in [41] in order to unify various
functional equations and maps appearing in statistical mechanics, dynamical systems
and discrete soliton theory [42]. They are integrable maps in the sense of [5, 39,
54], having an invariant symplectic form and a conserved quantity, and can be defined
intrinsically starting from families of plane biquadratic curves, with associated elliptic
fibrations of rational surfaces [12, 49]. The Somos-5 sequences (1.14) and (1.15) both
generate particular orbits of the same QRT map, which is obtained by considering the
ratios

un = Sn−2Sn+1

Sn−1Sn
, vn = Tn−2Tn+1

Tn−1Tn
. (2.36)

These two sets of rational numbers both satisfy the same rational recurrence relation
of order two, that is

un+1un−1 = 1 + 1

un
, vn+1vn−1 = 1 + 1

vn
, (2.37)

and the conserved quantity (2.4) for Somos-5 can be rewritten in terms of these ratios,
leading to a conserved quantity for the rational recurrence in the form

J̃ = un + un−1 + 1

un
+ 1

un−1
+ 1

unun−1
, (2.38)

with the initial conditions u0 = u1 = 1 giving J̃ = 5 in this case. (The other
conserved quantity (2.3) cannot be reduced to a function of these ratios.) In other
words, the sequence of points (U , V ) = (un, un+1) lies on the cubic plane curve

C : U 2V +UV 2 − 5UV +U + V + 1 = 0, (2.39)

and the same is true for the sequence of points (U , V ) = (vn, vn+1); see Fig. 2 for
a plot of the real curve in R2. The curve (2.39) is just (2.7) with the particular values
α̃ = β̃ = 1, J̃ = 5 for the coefficients: it is symmetric and biquadratic, so it admits
the simple involutions

ι : (U , V ) �→ (V ,U ), ιh : (U , V ) �→ (U †, V ), (2.40)
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Fig. 2 The Somos-5 curve (2.39)

Table 5 The first few rational numbers in the sequences (2.36) and (2.41)

n 0 1 2 3 4 5 6 7 8 9

un 1 1 2 3
2

5
6

22
15

111
55

415
407

3014
3071

45029
22742

vn ∞ ∞ 0 −1 7 − 8
7

1
56 − 399

8
3128
57 − 455

22287

fn ∞ 1 −1 2 3 − 5
7

11
8 −37 − 83

57
274
391

where the horizontal switch ιh is obtained by intersecting the curve with a horizontal
line and replacing eachpoint (U , V )with the other point of intersection (U †, V ),which
from Vieta’s formula for the product of the roots of a quadratic is given by UU † =
1 + 1/V . Thus we see that the rational recurrence (2.37) corresponds to a symmetric
QRT map, being given by the composition ϕ = ι◦ ιh of these two involutions, which
sends (un−1, un) �→ (un, un+1); and although so far it has been defined only on one
particular curve, it lifts to a birational map of the plane by taking the pencil of curves
obtained by replacing 5 → J̃ in (2.39). Moreover, by construction each orbit of ϕ

lies on one of these curves, which generically has genus one, and corresponds to a
sequence of points P̂0 + nP (where + denotes addition in the group law of the curve)
(Table 5).

In what follows, an important role will be played by the ratio

fn = Sn
Tn

, (2.41)

which turns out to lead to a QRTmap on a different biquadratic curve, related to (2.39)
by a 2-isogeny.
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Proposition 2.19 The ratio of the two Somos-5 sequences, given by (2.41), can be
written as

fn =
{

− �(nκ)/�(2κ), for n even,

�(nκ)/�(κ), for n odd,
(2.42)

where

�(z) = σ(z + ω)e−ηz

σ(ω)σ(z)
, (2.43)

with η = ζ(ω) being theWeierstrass zeta function evaluated at the half-periodω of the
curve (2.9)with invariants as in (2.18). The sequence of ratios satisfies the recurrence

fn+1 fn−1 =
{

(1 + f 2n )/(2 − f 2n ), for n even,

(1 + 2 f 2n )/(1 − f 2n ), for n odd,
(2.44)

and for all j ∈ Z the points (W , Z) = ( f2 j±1, f2 j ) lie on the biquadratic plane curve

(1 − W 2)Z2 + 3WZ + 2W 2 + 1 = 0, (2.45)

corresponding to an orbit of a QRT map associated with this curve.

Proof We begin by recalling some of the properties of the function �(z), which is
well known as a solution of the simplest case of Lamé’s equation, in the form of a
Schrödinger equation with an elliptic potential, i.e. it satisfies the differential equation
�′′(z) − 2℘(z)�(z) = ℘(ω)�(z). From the quasiperiodicity of the sigma function
it follows that �(z) is an odd function, and it is periodic with respect to the period 2ω
but acquires a minus sign when shifted by the real/imaginary periods 2ω1, 2ω2; we
record these properties, and its behaviour under a shift by ω, as follows:

�(−z) = − �(z), �(z + ω) = − eηω

σ (ω)2�(z)
,

�(z + 2ω) = �(z), �(z + 2ω j ) = − �(z), for j = 1, 2.
(2.46)

Using the fact that � is odd, together with the standard identity

σ(w + z)σ (w − z)

σ (w)2σ(z)2
= ℘(z) − ℘(w), (2.47)

valid for any z, w ∈ C (away from poles), it is apparent that

�(z)2 = ℘(z) − ℘(ω), (2.48)

and since g2, g3 and ℘(ω) as in (2.18) and (2.21) are all real, �(z) ∼ 1/z as z → 0,
and � has no real zeros, it follows that �(z) is real-valued for z ∈ R, with �(z) > 0
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for 0 < z < 2ω1 and �(z) < 0 for −2ω1 < z < 0. Then since, from (2.20), κ is
negative and −2ω1 < 2κ < 0, this allows us to compute

�(κ) = − √
℘(κ) − ℘(ω) = −

√
2

61/4
,

�(2κ) = − √
℘(2κ) − ℘(ω) = − 1

61/4
,

(2.49)

where we have used the values of the ℘ function in (2.18) and (2.21), as well as the
fact that

℘(2κ) = ℘(κ) − σ(3κ)

σ (2κ)2σ(κ)
= ℘(κ) − a3

a22
= λ̃ − α̃

μ̃2 = 17

12
√
6

,

which follows from (2.47) together with the appropriate expressions for the terms of
the companion EDS (an) defined by (2.14). Now for even n = 2k we can calculate
the ratio (2.41) using (2.17) and (2.26), to find

fn = − Bk+ μk2σ(nκ + ω)σ(2κ)

B̂k−1− μ(k−1)2σ(nκ)σ (ω)
= − �(nκ)

(
B+
B̂−

μ2e2ηκ

)k B̂−σ(2κ)

μ
,

and then note that from (2.19) we may write

B+ = − σ(κ)4e−2ηκ

σ (2κ)�(2κ)
= − e−2ηκ

a2�(2κ)
= e−2ηκ

μ̃�(2κ)
= − e−2ηκ ,

taking the value of �(2κ) as in (2.49), with μ̃ = 61/4, so by (2.27) the expression in
round brackets with exponent k above is B+μ2e2ηκ/B̂− = 1, while the ratio appearing
to the right of the round brackets is B̂−σ(2κ)/μ = − μ̃ = 1/�(2κ), thus indeed this
yields fn = − �(nκ)/�(2κ) for even n, as required. Similarly, for odd n = 2k + 1
we find

fn = Bk−σ(nκ + ω)σ(κ)

B̂k+σ(nκ)σ (κ + ω)
= �(nκ)

�(κ)

(
B−e2ηκ

B̂+

)k
,

but then by (2.13) and (2.27) we see that B−e2ηκ/B̂+ = − μB+e2ηκ/μ = 1, so this
reduces to the required formula in (2.42) when n is odd. Then to obtain the recur-
rence (2.44), let us write fn = C±�(nκ) for appropriate constants C± depending on
the parity of n, as in (2.42), so that the left-hand side of the recurrence is given by
fn+1 fn−1 = C2∓�(nκ + κ)�(nκ − κ) for even/odd n respectively. Hence, by substi-
tuting the appropriate ratios of sigma functions and applying (2.47) to the numerator
and denominator, this gives

fn+1 fn−1 = C2∓e−2ηnκ σ (nκ + ω)2 (℘ (κ) − ℘(nκ + ω))

σ (nκ)2 (℘ (κ) − ℘(nκ))
.
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1452 A.N.W. Hone

Fig. 3 The curve (2.45) in the (W , Z) plane intersecting the horizontal line Z = 3 in two points

The function ℘(z + ω) is an even elliptic function of order two with double poles
at z ≡ ω mod �, where � = 2ω1Z⊕2ω2Z is the period lattice of the curve (2.9)
with invariants g2, g3 as in (2.18), hence it can be written in the form ℘(z + ω) =
(A′℘(z)+B ′)/(℘ (z)−℘(ω)) for suitable constants A′, B ′, and the leading (constant)
term in the Taylor expansion at z = 0 gives A′ = ℘(ω); the value of B ′ can be fixed
from the O(z2) term in the expansion, or by using the addition formula for the ℘

function, but will not be needed here. Thus, for another constant B ′′, we may write

fn+1 fn−1 = C2∓�(nκ)2
(�(κ)2 + B ′′�(nκ)−2)

(�(κ)2 − �(nκ)2)
= C2∓

(�(κ)2C−2± f 2n + B ′′)
(�(κ)2 − C−2± f 2n )

.

Using the fact that C+ = − �(2κ)−1, C− = �(κ)−1 and the values f1 = − f2 = 1,
f3 = 2, we immediately find B ′′ = 1

2�(κ)4 from the n = 2 case of this relation,
and this fixes the recurrence in the form (2.44) for even/odd n respectively. If we start
from the pencil of biquadratic curves (1 − W 2)Z2 + ĴW Z + 2W 2 + 1 = 0, with
arbitrary parameter Ĵ , then the horizontal switch ῑh : (W , Z) �→ (W †, Z) corresponds
to the formula (2.44) for even n, which sends ( f2 j−1, f2 j ) �→ ( f2 j+1, f2 j ), and the
vertical switch ῑv : (W , Z) �→ (W , Z†) corresponds to the case of odd n, which sends
( f2 j+1, f2 j ) �→ ( f2 j+1, f2 j+2), while the composition of these two involutions is a
QRT map of general type, ϕQRT = ῑv ◦ ῑh . The initial values f1 = − f2 = 1 fix the
value Ĵ = 3, giving an orbit that lies on the curve (2.45), which is illustrated in Fig.
3, showing the horizontal line for the switch ῑh : (2, 3) �→ (− 5

7 , 3
)
corresponding to

n = 4 in (2.44). ��
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Proposition 2.20 There is a 2-isogeny relating the the curve (2.45) to (2.39).

Proof The 2-isogeny relating the curve (2.45) to (2.39), or equivalently to the corre-
sponding Weierstrass curve (2.9), can be seen in various ways. First of all, note that
the function �(z) is not an elliptic function with respect to the original period lattice
�, which is generated by the periods 2ω and 2ω2, but it is elliptic with respect to the
lattice generated by 2ω and 4ω2; so if we set τ = ω2/ω and start with the normalized
lattice with generators 1, τ , then the new lattice has generators 1, 2τ , and the overall
effect is the period doubling τ �→ 2τ , corresponding to what is known classically as
the Landen transformation (see [56, Chapter XXII], or [1] and references). At the level
of the curves, this can be seen by computing ρ, the cross-ratio of the three roots of the
cubic in (2.23) together with ∞, which allows the j-invariant to be calculated as

j = 256(ρ2 − ρ + 1)3

ρ2(ρ − 1)2
= 116

612
. (2.50)

Then for the new curve related by the Landen transformation, we have that

ρ∗ = 4
√

ρ

(1 + √
ρ)2

gives (an appropriate choice of) the value of the cross-ratio of the roots of the quartic
in the equation

ȳ2 = 8W 4 + 5W 2 − 4, (2.51)

which is birationally equivalent to (2.45) via the transformation

Z = − 3W + ȳ

2(1 − W 2)
,

from which one finds the j-invariant

j∗ = 256((ρ∗)2 − ρ∗ + 1)3

(ρ∗)2(ρ∗ − 1)2
= 16(ρ2 + 14ρ + 1)3

ρ(ρ − 1)4
= 46268279

46818
.

Another indirect check is provided by verifying that the corresponding Hauptmoduls
x = 1728/ j , y = 1728/ j∗ are the coordinates of a point on the modular curve

1953125x3y3 − 187500x2y2(x + y) + 375xy(16x2 − 4027xy + 16y2)

− 64(x + y)(x2 + 1487xy + y2) + 110592xy = 0.

These checks all confirm that there is a 2-isogeny over C, but to establish this over Q
we provide a direct transformation of coordinates, given by the formulae

x∗ = W 2, y∗ = (1 − W 2)WZ + 3

2
W 2, (2.52)
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1454 A.N.W. Hone

which transforms (2.45) to the cubic

4(y∗)2 = 8(x∗)3 + 5(x∗)2 − 4x∗,

and after shifting x∗ → x∗ − 5/24 and rescaling x∗ and y∗ by suitable powers of 2
this is seen to be equivalent to (2.23). ��
Remark 2.21 The primes appearing in the factorization of the denominator of (2.50),
612 = 22 ·32 ·17, are the primes of bad reduction, which we will return to at the end
of the next section.

3 Proof of main results

In order to prove ourmain theorem,wemust first show that there is an infinite sequence
of pairs of positive points (Ma, Pa, Xa), (Mb, Pb, Xb) lying on the Schubert surface
(1.5), so that

Ma − Ma
−1 = Pa − Pa

−1 + 2
(
Xa − Xa

−1), (3.1)

Mb − Mb
−1 = Pb − Pb

−1 + 2
(
Xb − Xb

−1), (3.2)

and these sets of Schubert parameters are compatible in the sense that

2(Xa + X−1
a )

Pa + P−1
a

= Pb + P−1
b

Mb + M−1
b

= a

c
, (3.3)

Ma + M−1
a

Pa + P−1
a

= 2(Xb + X−1
b )

Mb + M−1
b

= b

c
, (3.4)

which serves as the definition of the ratios a/c, b/c, and hence (up to scale) defines
the associated Heron triangle with two rational medians. As the main initial step, we
begin by giving a proof of the empirical observation of Buchholz and Rathbun in [7]
that there is an infinite sequence of Schubert parameters with signs, given in terms
of the two Somos-5 sequences by (1.12) and (1.13), or equivalently in terms of the
rational sequences (un), (vn) and ( fn) by

Ma,n = − fn+1 f 2n+2

fn
, Pa,n = − 1

un+2vn+2
, Xa,n = 2(−1)n+1 fn f 2n+2

fn+3
, (3.5)

Mb,n = un+3vn+3, Pb,n = − f 2n+2 fn+3

fn+4
, Xb,n = 2(−1)n fn+1

f 2n+2 fn+4
. (3.6)

Having proved that these formulae give points on the Schubert surface satisfying the
necessary constraints, we will then show that the pattern of signs varies coherently
with n in such a way that replacing any negative parameter by minus its reciprocal
will preserve the constraints and hence provide, for each n, two compatible sets of
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positive Schubert parameters. Then finally we will be able to verify the formulae for
a, b, c, k, � and � in Theorem 1.2.

Before tackling the Schubert parameters with signs, we introduce the sequence of
quantities

s̄n = − Sn+3S
2
n+4T

2
n Tn+1,

ān = − Sn+2Tn+1T
3
n+2Tn+3,

b̄n = Sn+1S
3
n+2Sn+3Tn+2,

c̄n = S2n Sn+1Tn+3T
2
n+4,

(3.7)

which we will refer to as the signed lengths. After taking absolute values, for each n
there is an equality of sets of positive numbers:

{ |s̄n|, |ān|, |b̄n|, |c̄n| } = { s, s − a, s − b, s − c }.

When n = 1 the choice of signs in (3.7) ensures that s̄1, ā1, b̄1 and c̄1 are all positive,
and coincide with s, s − a, s − b and s − c, respectively (see Table 6), but it turns
out that in general the signed lengths correspond to a permutation of the latter four
quantities with signs, in a pattern that repeats with period 14. Nevertheless, the pattern
of permutations and signs respects the linear relation

s = (s − a) + (s − b) + (s − c)

that holds between their associated positive counterparts.

Lemma 3.1 The signed lengths (3.7) satisfy

s̄n = ān + b̄n + c̄n (3.8)

for all n ∈ Z.

Proof The equation (3.8) is a degree 6 linear relation between products of terms of the
Somos sequences (Sn) and (Tn), but has a different form compared with the identities
for minors proved in Proposition 2.10. Upon rearranging and dividing both sides by
ān , it can be rewritten as

1 − fn+1 f
2
n+2 fn+3 = (vn+2vn+3)

2
(

f 2n fn+1 + fn+3 f 2n+4

fn+2

)
. (3.9)

The latter identity relates the rational sequences (vn) and ( fn) corresponding to par-
ticular orbits of the two different QRT maps (2.37) and (2.44); alternatively, it could
be written in terms of (un) and ( fn), since the ratio un/vn can be expressed in terms
of the fn . It is equivalent to an identity between elliptic functions, since fn is given
by the formula (2.42), and vn is given by a ratio of Somos-5 terms as in (2.36), which
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0
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24
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1
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5
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5
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are themselves given in analytic form by (2.26). Hence, in order to prove it, we set
z = (n + 2)κ , so that the left-hand side above can be written as

1 − �(z − κ)�(z + κ)(℘ (z) − ℘(ω))

�(κ)2�(2κ)2
, (3.10)

while the right-hand side is given by

μ̃4(℘ (z) − ℘(2κ))2 �(z + ω)

eηωσ (ω)−2�(κ)�(2κ)

· (
�(z − κ)(℘ (z − 2κ) − ℘(ω)) + �(z + κ)(℘ (z + 2κ) − ℘(ω))

)
,

(3.11)

where we have used (2.47) to simplify the ratio of sigma functions in vn+2vn+3,
together with (2.48) and the expression for the reciprocal of � in (2.46). Both (3.10)
and (3.11) are even elliptic functions of z, so to verify their equality it is sufficient
to check that they have poles in the same places with the same singular part of the
Laurent expansion around each pole, and agree at one finite value, since their difference
is then an elliptic function without poles and therefore constant, and if they take the
same finite value somewhere then this constant must be 0. The left-hand side has
double poles for z ≡ 0 mod �, and for z → 0 we have �(z − κ)�(z + κ) =
− �(κ)2 + O(z2) and ℘(z) = 1/z2 + O(z2), so its Laurent expansion around the
origin is �(2κ)−2/z2 + O(1). On the right-hand side, note that

�(z ± κ)(℘ (z ± 2κ) − ℘(ω)) = ± �(κ)(℘ (2κ) − ℘(ω)) + C ′z + O(z2),

where C ′ = (�′(κ)(℘ (2κ) − ℘(ω)) + �(κ)℘′(2κ)), so the sum of these two terms
gives an odd function with Taylor expansion 2C ′z+O(z3) at the origin, while�(ω) =
0 and we have �(z + ω) = �′(ω)z + O(z3). Hence to leading order, the expansion
of the right-hand side around z = 0 is C/z2 + O(1), where

C = 2e−ηωσ (ω)2μ̃4(�′(κ)(℘ (2κ) − ℘(ω)) + �(κ)℘′(2κ))�′(ω)

�(κ)�(2κ)
.

Now from (2.48) it follows that 2��′ = ℘′, so �′(κ) = 1
2℘

′(κ)/�(κ), while putting
�(z) = 1/z + O(z) as z → 0 into the identity �(z)�(z + ω) = −eηωσ (ω)−2 gives
�′(ω) = − eηωσ (ω)−2. Thus we have

C�(2κ)2 = − 2�(2κ)μ̃4
(
1

2
�(κ)−2℘′(κ)(℘ (2κ) − ℘(ω)) + ℘′(2κ)

)

= μ̃3(μ̃�(2κ)2�(κ)−2 − 2μ̃−3),

using (2.48) to replace the (℘ (2κ) − ℘(ω)) term inside the large brackets, together
with ℘′(κ) = μ̃ and ℘′(2κ) = σ(4κ)/σ (2κ)4 = a4/a42 = − β̃/μ̃3 = − μ̃−3 from
the formulae for the companion EDS, with β̃ = 1 in this case. Then substituting in
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μ̃ = 61/4 and the values of � in (2.49) gives

C�(2κ)2 = 6

(
1/

√
6

2/
√
6

)
− 2 = 1,

so the singular parts of the Laurent expansions as z → 0 are the same on each side
of (3.9). Then (3.10) has poles at precisely two other places, namely simple poles for
z ≡ ±κ mod � with residues

∓�(2κ)(℘ (κ) − ℘(ω))

�(κ)2�(2κ)2
= ∓�(2κ)−1,

respectively, while in (3.11) we see simple poles at the same places, with the residues
being

e−ηωμ̃4(℘ (κ) − ℘(2κ))2 �(±κ + ω) (℘ (κ) − ℘(ω))

�(κ)�(2κ)

= ∓ μ̃4(℘ (κ) − ℘(2κ))2�(κ)2

�(κ)2�(2κ)
= ∓

6
( 29
12

√
6

− 17
12

√
6

)2

�(2κ)
,

i.e. equal to = ∓�(2κ)−1, the same as for (3.10). The expression (3.11) also contains
the terms ℘(z∓2κ) with double poles at z ≡ ±2κ mod �, but these poles are
cancelled by the prefactor (℘ (z) − ℘(2κ))2 which has double zeros at these points;
and there is also the term �(z + ω) which gives a simple pole for z ≡ ω mod �, but
the factor that appears after it, evaluated at z = ω, yields

�(ω − κ)(℘ (ω − 2κ) − ℘(ω)) + �(ω + κ)(℘ (ω + 2κ) − ℘(ω))

= (�(κ + ω) − �(κ − ω))(℘ (2κ + ω) − ℘(ω)) = 0,

from the periodicity of� and℘ under shifts by 2ω and the fact that these are odd/even
functions, respectively, so this simple pole is cancelled by a zero. The values n =
−4,−3,−2,−1, 0 are all singular cases of (3.9), due to the presence of the term
f0 = ∞: these give the values of z corresponding to the poles, together with the
removable singularities at z = ±2κ; but it is easy to check directly that (3.8) is
satisfied for these values of n. The first nonsingular value is n = 1, which corresponds
to setting z = 3κ , and from the values in Table 5 it is straightforward to check that the
left-hand side and the right-hand side of (3.9) are both equal to 13 in this case. Hence
the functions (3.10) and (3.11) coincide, and the result follows. ��

It appears that we have to prove four identities for the two sets of Schubert parame-
ters with signs: two copies of the equation for the Schubert surface, and two constraints
between the two sets of parameters. Moreover, (3.3) and (3.4) each contain two equal-
ities, so upon replacing the ratios a/c and b/c by appropriate combinations of signed
lengths, this gives a further two identities that must be verified. However, there is a
symmetry to the problem which cuts the amount of work down by half.
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Lemma 3.2 Under the involution n → − n − 4, the Schubert parameters with signs
transform as

Ma,−n−4 = Pb,n, Pa,−n−4 = − 1/Mb,n, Xa,−n−4 = 1/Xb,n, (3.12)

and the signed lengths transform as

s̄−n−4 = c̄n, ā−n−4 = − ān, b̄−n−4 = − b̄n, c̄−n−4 = s̄n . (3.13)

Proof As already noted previously, the sequences (1.14) and (1.15) extend to all n ∈ Z

in a way that is respectively symmetric/antisymmetric about n = 0, so that

S−n = Sn, T−n = − Tn .

For the corresponding rational sequences defined by (2.36) and (2.41), this implies
immediately that

u1−n = un, v1−n = vn, f−n = − fn,

and then for n → −n − 4 it follows from (3.5) and (3.6) that the Schubert parameters
transform according to (3.12). For the signed lengths, we have

s̄−n−4 = − S−n−1S
2−nT

2−n−4T−n−3 = − Sn+1S
2
n (−Tn+4)

2(−Tn+3) = c̄n,

and similarly for the other three. ��

Now starting from the Schubert equation (3.1) for (Ma, Pa, Xa) and replacing
Ma → Pb, Pa → −M−1

b , Xa → X−1
b gives Pb−P−1

b = −M−1
b +Mb+2(X−1

b −Xb),
which is just a rearrangement of (3.2), and if at the same time we replace Pb → Ma ,
Mb → −P−1

a , Xb → X−1
a then it is clear that these two copies of Schubert’s equation

are switched. Similarly, applying this involution to the first equality in (3.3) gives the
first equality in (3.4), up to an overall minus sign, and vice versa. Furthermore, we can
apply this symmetry to the second equality in (3.3) by interpreting the right-hand side
suitably in terms of the signed lengths, so that (omitting the index n) we may write

Pb + P−1
b

Mb + M−1
b

= s̄ − ā

s̄ − c̄
, (3.14)

and then applying the involution to the Schubert parameters on the left, as well as
s̄ → c̄, ā → −ā, c̄ → s̄ on the right, this becomes

− Ma + M−1
a

Pa + P−1
a

= c̄ + ā

c̄ − s̄
,
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but then applying the first equality in (3.4) together with Lemma 3.1, this implies

2(Xb + X−1
b )

Mb + M−1
b

= s̄ − b̄

s̄ − c̄
, (3.15)

which is just the second equality in (3.4), with the right-hand side written in terms
of the signed lengths. Hence we see that for the the Schubert parameters with signs
and the signed lengths, the involution n → − n − 4 interchanges the two copies of
Schubert’s equation, and the two pairs of equalities given by the constraints (3.3) and
(3.4), so it is equivalent to switching a ↔ b in each triangle. Thus it is sufficient to
prove (3.1) and the two equalities in (3.3) for all integer values of n, and the other
relations follow by symmetry.

Theorem 3.3 The two sets of Schubert parameterswith signs, that is (Ma,n, Pa,n, Xa,n),
(Mb,n, Pb,n, Xb,n) given by (3.5) and (3.6), satisfy the relations (3.1), (3.2), (3.3) and
(3.4) for all n ∈ Z, where the quantities on the right-hand sides of (3.3) and (3.4)
should be interpreted in terms of the signed lengths as

s̄n − ān
s̄n − c̄n

and
s̄n − b̄n
s̄n − c̄n

,

respectively.

Proof From (3.5) we may set z = (n + 2)κ and write

Ma,n = − C+C−γ̃ �(z − κ)�(z)2�(z − 2κ + ω),

Pa,n = − μ−2σ(z − κ + ω)σ(z + ω)σ(z − κ)σ (z)

σ (z − 2κ + ω)σ(z + κ + ω)σ(z − 2κ)σ (z + κ)
,

Xa,n = 2∓1C3±C−1∓ γ̃ �(z − 2κ)�(z)2�(z + κ + ω),

(3.16)

for even/odd n, respectively, where we have used (2.46) with the same notation as in
the proof of Proposition (2.19), and for convenience we have written the residue of
�(z)−1 at z = −ω as

γ̃ = − e−ηωσ (ω)2 = lim
z→−ω

(z + ω)

�(z)
, (3.17)

namely the multiplier that appears when the reciprocal of � is replaced by the same
function shifted by ω. The above formula for Pa,n is a consequence of (2.17) and
(2.26), which imply that

un =
(
B∓
B±

)
μ1∓1 σ(z − 2κ + ω)σ(z + κ + ω)

σ(z − κ + ω)σ(z + ω)
,

vn =
(
B̂±
B̂∓

)
μ1±1 σ(z − 2κ)σ (z + κ)

σ (z − κ)σ (z)
,
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for even/odd n, and the prefactors in brackets cancel in the product unvn , due to (2.13)
and (2.27). From these expressions, we see that Ma,n has poles at z ≡ 0, κ, 2κ + ω

modulo the period lattice �, while M−1
a,n has poles at z ≡ ω, κ +ω, 2κ , Pa,n has poles

at z ≡ −κ,−κ + ω, 2κ, 2κ + ω, while P−1
a,n has poles at z ≡ 0, ω, κ, κ + ω, and Xa,n

has poles at z ≡ 0, 2κ, 2,−κ + ω, while X−1
a,n has poles at z ≡ ω, 2κ + ω,−κ . Then

to verify that (Ma,n, Pa,n, Xa,n) satisfies (3.1) for all n, it is sufficient to check that the
two sides of the equation define the same elliptic functions of z, by checking that they
agree in the singular parts of their Laurent expansions around the poles at all these
places, and at one finite value. This is equivalent to saying that the formulae (3.16)
define an analytic embedding of the elliptic curve in the Schubert surface, and this does
not depend on the parity of n because the expressions for Ma,n and Pa,n are manifestly
the same for even/odd n, while for the coefficient in front of the z-dependent part of
the formula for Xa,n we find the identity 1

2C
3+C−1− = 2C3−C−1+ , that is equivalent to

(C+/C−)4 = (�(κ)/�(2κ))4 = 4, which follows from (2.49). To show that these
parameter triples satisfy (3.1), it is convenient to rewrite the equation, collecting the
terms as

(Ma,n − 2Xa,n) + (2X−1
a,n − M−1

a,n) = Pa,n − P−1
a,n . (3.18)

The first bracketed expression on the left-hand side above is given as a function of z
by

F(z) = �(κ)−1�(2κ)−1�(z)2G(z),

where

G(z) = γ̃
(
�(z − κ)�(z − 2κ + ω) + 2�(z − 2κ)�(z + κ + ω)

)

= �(z − κ)

�(z − 2κ)
+ 2

�(z − 2κ)

�(z + κ)
,

and around z = 0 we have �(z)2 = 1/z2 + O(1) and

G(z) =
(

�(−κ)

�(−2κ)
+ 2

�(−2κ)

�(κ)

)

+
(

�′(−κ)

�(−2κ)
− �(−κ)�′(−2κ)

�(−2κ)2
+ 2

�′(−2κ)

�(κ)
− 2

�(−2κ)�′(κ)

�(κ)2

)
z

+ O(z2),

so from (2.49) we see that G(0) = 0, and as z → 0, G(z) = C∗z + O(z2), with

C∗ = �′(κ)
(− �(2κ)−1 + 2�(2κ)�(κ)−2) + �′(2κ)

(
2�(κ)−1 + �(κ)�(2κ)−2)

= − √
2μ̃−1,

using�′(2κ) = 1
2℘

′(2κ)/�(2κ) and the values of�(κ),�(2κ) and℘′(2κ) as before.
Hence F(z) has a simple pole at z = 0 with residue −�(κ)−1�(2κ)−1

√
2μ̃−1 =
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− μ̃ = − 61/4, while on the right-hand side of (3.18), −P−1
a,n also has a simple pole

there with residue

μ2 σ(−2κ + ω)σ(κ + ω)σ(−2κ)σ (κ)

σ (−κ + ω)σ(ω)σ(−κ)
,

but using the oddness of the sigma function and its quasiperiodicity, e.g. σ(κ + ω) =
−e2ηκσ (κ − ω), we may rewrite this residue as μ2σ(2κ)2�(2κ) = −μ̃ by (2.12),
so these two residues agree. Now a calculation of the effect of shifting the argument
in the Schubert parameters by ω shows that, because the expressions for Ma and Xa

are both quartic in � with prefactors ∓C+C−γ̃ , respectively, they satisfy Ma,n(z +
ω) = (C+C−γ̃ )2γ̃ −4Ma,n(z)−1 = �(κ)−2�(2κ)−2γ̃ −2Ma,n(z)−1, and similarly
Xa,n(z + ω) = �(κ)−2�(2κ)−2γ̃ −2Xa,n(z)−1. However, by (2.48) we see that

γ̃ 2 = lim
z→−ω

(z + ω)2

℘(z) − ℘(ω)
= 2

℘′′(ω)
= 2

6℘(ω)2 − 1
2g2

= − 1

2
μ̃4 = − 3,

and the quasiperiodicity of the sigma function implies that Pa is unchanged under
shifting by this half-period. So overall, using (2.49) once more, we find

Ma,n(z)
−1 = − Ma,n(z + ω),

Pa,n(z) = Pa,n(z + ω),

Xa,n(z)
−1 = − Xa,n(z + ω).

(3.19)

In particular, if we consider simple poles at z = −ω, this implies that the residue of the
second set of bracketed terms on the left-hand side of (3.18) is also equal to −μ̃, and
is the same as the residue of the term −P−1

a,n on the right-hand side. Next we consider
z = κ , and verify that both Ma,n on the left-hand side and −P−1

a,n on the right-hand
side of (3.18) have the same residue μ̃ there. Also, at z = −κ − ω, we see that the
residue at the simple pole in −2Xa,n is given by

− 2C+C−γ̃ �(−3κ − ω)�(−κ − ω)2 = − 2γ̃ −2�(κ)−3�(2κ)−1�(3κ)−1

= 4

f3
μ̃−4�(κ)−4�(2κ)−1 = − μ̃

2
,

and this is balanced by res Pa,n|z=−κ−ω, for which we find the same value

μ−2 σ(κ)σ (2κ)σ (κ + ω)σ(2κ + ω)

σ(3κ)σ (ω)σ(3κ + ω)
= μ−2 σ(κ)2σ(2κ)2�(κ)�(2κ)

σ (3κ)2�(3κ)

= a22�(2κ)

a23 f3
= − μ̃

2
.
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Using (3.19), we see that the total residue at the simple pole at z = 2κ on the left-hand
side of (3.18) comes from the combination − M−1

a,n − 2Xa,n , being given by

− C+C−γ̃ �(κ + ω)�(2κ + ω)2 − 2C+C−γ̃ �(2κ)2�(3κ + ω)

= γ̃ −2�(κ)−2�(2κ)−3 + 2�(κ)−2�(2κ) f −1
3 = μ̃

2
,

and we find the same value for res Pa,n|z=2κ on the right-hand side. The fact that the
residues balance at the other poles at places congruent to z = κ + ω,−κ, 2κ + ω

modulo � then follows immediately from the symmetry (3.19), and it is easy to see
that the set of finite Schubert parameters

(
4, 2

3 ,
8
3

)
for n = 1, corresponding to the

value z = 3κ , is a point on the Schubert surface, so this completes the verification
that (3.18) holds as an identity between elliptic functions of z, and in particular shows
that (3.1) is satisfied for all n, and thus by the preceding lemma the second sequence
of Schubert parameters satisfies (3.2) as well.

Now to prove the first of the equalities in (3.3), we rewrite it as

2
(
Xa,n + X−1

a,n

)(
Mb,n + M−1

b,n

) = (
Pa,n + P−1

a,n

)(
Pb,n + P−1

b,n

)
, (3.20)

where by Lemma 3.2 we see that the analytic expressions for Mb,n, Pb,n, Xb,n are
obtained by replacing z → −z in the formulae for −P−1

a,n , Ma,n, X−1
a,n , respectively,

so from (3.16) we find

Mb,n = μ2 σ(z − κ + ω)σ(z + 2κ + ω)σ(z + 2κ)σ (z − κ)

σ (z + κ + ω)σ(z + ω)σ(z)σ (z + κ)
,

Pb,n = − C+C−γ̃ �(z + κ)�(z)2�(z + 2κ + ω),

Xb,n = − C+C−γ̃ �(z + κ)�(z + ω)2�(z − 2κ + ω).

(3.21)

On each side of the relation (3.20), there are poles at all the same values of z that
were considered in the case of (3.1), as well as at points congruent to z = − 2κ and
z = − 2κ − ω modulo �. At z = 0, there are poles of order 3 on each side, so that
we should have 2XaMb ∼ PbP−1

a , so we need to show that

2
(
Xa,n + O(z2)

)(
Mb,n + M−1

b,n

) = (
Pb,n + O(z2)

)(
P−1
a,n + Pa,n

)
,

where the terms M−1
b,n, Pa,n are corrections of O(z), giving a term with a simple pole

when they aremultiplied by the triple pole in the first bracket on the left/right-hand side,
respectively. The expansion around the triple pole is rather arduous, but the problem
of showing that the two sides balance can be simplified by noting that, from (3.1) we
have (omitting index n) P−1

a = 2Xa − Ma + O(z), which we can use to replace the
first term in the second bracket on the right above, and similarly in the second bracket
on the left we can use Mb = Pb − 2X−1

b + O(z) from (3.2), so that at leading order,
the balancing of the two sides is equivalent to 2Xa(Pb − 2X−1

b ) ∼ Pb(2Xa − Ma),
and we can cancel the term 2Xa Pb from each side. This may look like the problem
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has become more difficult, because we are left with a leading order pole of order 4 on
each side, but in fact the singular terms that remain require that, as z → 0,

2Xa,n
(− 2X−1

b,n + 2M−1
b,n

) ∼ Pb,n
(− Ma,n + 2Pa,n

)
, (3.22)

where all omitted terms are O(1), and the corrections inside each bracket above,
namely 2M−1

b,n and 2Pa,n , are both O(z). It turns out that, due to (3.21), the leading
term on the left-hand side of (3.22) is an even function, namely

− 4Xa,n X
−1
b,n = − 4Xa,n(z) Xa,n(−z) = − 4(C+C−)2�(z)4 F̂(z),

where, using the standard result that any even elliptic function is given by a rational
function of ℘(z) [56], we have

F̂(z) = �(z + 2κ)�(z − 2κ)

�(z + κ)�(z − κ)

=
(

�(2κ)

�(κ)

)2
(℘ (z) − ℘(κ))(℘ (z) − ℘(2κ + ω))

(℘ (z) − ℘(2κ))(℘ (z) − ℘(κ + ω))
= 1

2
(1 + Ĉz2 + O(z4)).

Then, using ℘(z) = 1/z2 + O(z2) as z → 0 and the addition formula for the Weier-
strass ℘ function, the coefficient Ĉ is found to be

Ĉ = ℘(2κ) − ℘(κ) + ℘(κ + ω) − ℘(2κ + ω)

= 2(℘ (2κ) − ℘(κ)) + 1

4
℘′(κ)2/(℘ (κ) − ℘(ω))2 − 1

4
℘′(2κ)2/(℘ (2κ) − ℘(ω))2

= 2μ̃−2
(
17

12
− 29

12

)
+ 1

4
μ̃2/

(
μ̃−4

(
29

12
− 5

12

)2)
− 1

4
μ̃−6/

(
μ̃−4

(
17

12
− 5

12

)2)

= 0,

so that the leading order part on the left is

− 4(C+C−)2�(z)4 F̂(z) = − 4(C+C−)2(℘ (z) − ℘(ω))2 F̂(z)

= − 2(C+C−)2
(
1/z4 − 2℘(ω)/z2 + O(1)

)
(1 + O(z)4),

while on the right the leading term is another even function, that is

− Ma,n Pb,n = − Ma,n(z)Ma,n(−z)

= − (C+C−)2
�(z)4

F̂(z)
= − (C+C−)2

(℘ (z) − ℘(ω))2

1
2 (1 + O(z4))

,

which gives the same even order singular terms as appear on the left. Thus, for the
poles at z = 0, it remains to check that the residues balance on each side, i.e. for the
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remaining correction terms in (3.22) we must have 4Xa,nM
−1
b,n ∼ 2Pb,n Pa,n , which is

a consequence of

lim
z→0

M−1
b,n(z)/z = lim

z→0
Pa,n(z)/z and lim

z→0
4Xa,n(z) z

2 = lim
z→0

2Pb,n(z) z
2;

thefirst limit follows from(3.21), and the second is the identity 4C+C−�(−2κ)/�(κ) =
−2C+C−�(κ)/�(2κ). Having verified z = 0, there is an analogous balance of order
3 poles at z = ω, which follows immediately by applying the symmetry (3.19) to
(3.20). For the balance at z = κ , note that Xa and Pb are both regular there, and we
find Xa,n(κ) = 2 = Pb,n(κ)−1, so to balance the simple poles on each side of (3.20)
requires 2M−1

b ∼ P−1
a , and similar calculations to those done previously show that

there is the same residue −μ̃ on each side of this relation. At z = −κ there are simple
poles in X−1

a , Mb, Pa, Pb, so their reciprocals have simple zeros, and we must verify
2X−1

a,nMb,n = Pa,n Pb,n + O(1) by checking that the double poles balance and the
residues are the same on each side. Both �(z + κ) and 1/σ(z + κ) have leading order
expansions of the form (z + κ)−1 + O((z + κ)) in the neighbourhood of z = −κ , so
we can write

2X−1
a,n = F̃(z)

z + κ
+ O

(
(z + κ)

) = F̃(−κ)

(
1

z + κ
+ d

dz
log F̃(z)|z=−κ

)
+ O((z + κ)),

where F̃(z) = − 2C+C−γ̃ −2�(z − 2κ)−1�(z)−2 is regular as z → −κ , and write
leading order expansions of Mb,n, Pa,n, Pb,n of exactly the same form but with F̃
replaced by appropriate regular functions in each case. So at leading order (the coeffi-
cient of the double pole) we have to verify that the product of the two regular functions
on the left equals the product of the two regular functions on the right, evaluated at
z = −κ , and once this is done the residues are verified by checking that the sum of
the logarithmic derivatives of the two regular functions on each side takes the same
value on each side. Now at leading order a short calculation shows that

lim
z→−κ

2X−1
a,n

Pb,n
= 1

2
= lim

z→−κ

Pa,n

Mb,n
,

while by calculating the logarithmic derivative terms on each side, we require that

lim
z→−κ

d

dz
log

(
2X−1

a,n

Pb,n

)
= lim

z→−κ

d

dz
log

(
Pa,n

Mb,n

)
,

leading to a relation involving the Weierstrass zeta function, namely

�′(3κ)

�(3κ)
+ 5

�′(κ)

�(κ)
= ζ(3κ − ω) + ζ(3κ) − 2ζ(κ − ω) − ζ(κ + ω) − 3ζ(κ).

Then using the fact that d
dz log�(z) = ζ(z+ω)−ζ(z)−ζ(ω) and the quasiperiodicity

relation ζ(z+2ω) = ζ(z)+2ζ(ω), this rearranges to yield the identity ζ(3κ)+ζ(κ)+
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4ζ(ω) − 4ζ(κ + ω) = 0, which is verified by rewriting it as

(ζ(3κ) − ζ(2κ) − ζ(κ)) + (ζ(2κ) − 2ζ(κ)) − 4(ζ(κ + ω) − ζ(κ) − ζ(ω))

= 1

2

(
℘′(2κ) − ℘′(κ)

℘ (2κ) − ℘(κ)

)
+ 1

2

(
℘′′(κ)

℘′(κ)

)
− 2

(
℘′(κ) − ℘′(ω)

℘ (κ) − ℘(ω)

)

= 1

2

( − μ̃−3 − μ̃

μ̃−2(17/12 − 29/12)

)
+ 1

2

(
6μ̃−4(29/12)2 − 121/144

μ̃−1

)

− 2

(
μ̃

μ̃−2(29/12 − 5/12)

)
= 0,

as required, wherewe used a standard identity for the zeta function, as well as℘′′(κ) =
6℘(κ)2 − 1

2g2. At z = 2κ there are simple poles on each side of (3.20), coming from
the terms Xa, Pa , and we have to verify 2Xa,n(Mb,n + M−1

b,n) ∼ Pa,n(Pb,n + P−1
b,n );

but 2Xa and Pa both have residue μ̃/2 at this point, and for the regular part we find
the same factor of−13/6 on each side, as z = 2κ corresponds to setting n = 0, giving
Mb,0 = u3v3 = −3/2, which is the reciprocal of Pb,0 = − f 22 f3/ f4 = −2/3, so
overall the residues are the same. Similarly, at z = −2κ there is a balance of simple
poles with 2M−1

b,n(Xa,n+X−1
a,n) ∼ P−1

b,n (Pa,n+P−1
a,n ), where both 2M

−1
b and P−1

b have

residue μ̃, and for the corresponding value n = −4, we have Xa,−4 = 3/2 = P−1
a,−4,

giving the same overall multiplier 13/6 on each side. The balances of poles at the
other points congruent to ±κ + ω,±2κ + ω follow from the symmetry (3.19), and it
is easy to check that (3.20) is satisfied for n = 1, so this verifies that it holds as an
identity of elliptic functions for all z, hence in particular is true for all n ∈ Z; the first
equality in (3.4) is then given for free, due to Lemma 3.2.

Finally, to verify the second equality in (3.3), we can use Lemma 3.1 to rewrite it
in the form

(
b̄n
ān

+ 1

)(
Pb,n + P−1

b,n

) =
(
s̄n
ān

− 1

)(
Mb,n + M−1

b,n

)
, (3.23)

and then we can substitute in

b̄n
ān

= − fn+1 f
2
n+2 fn+3,

s̄n
ān

= fn+3 f 2n+4v
2
n+2v

2
n+3

fn+2
, (3.24)

and express it as yet another identity between elliptic functions of z = (n + 2)κ . On
each side, we find there are poles at places congruent to the points z = 0, ω,±κ,±κ +
ω,−2κ,−2κ + ω modulo �. Moreover, under a shift by the half-period ω it follows
from (3.19) and (3.21) thatMb,n → Mb,n and Pb,n → −P−1

b,n , while a short calculation

using (3.24) shows that b̄n/ān → ān/b̄n and s̄n/ān → −c̄n/b̄n , hence overall the
relation (3.23) is invariant under this transformation, and therefore it is sufficient to
verify the balance of poles at the real values z = 0,±κ,−2κ , and also check that
the identity holds at one other point where it is finite-valued, conveniently chosen as
z = 2κ . So the proof can be completed in the same way as for the other identities,
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by checking expansions in z, but we now prefer to use a slightly different method
which, though formally equivalent, is more arithmetical in nature and easier to apply.
Note that the values of z to be checked correspond to taking n = −4,−3,−2,−1, 0,
and each place where there is a pole indicates the presence of T0 = 0 appearing as
a denominator; so at leading order we set T0 = ε, replace all the other quantities
with their finite values determined by ratios of non-zero terms from the sequences
(Sn), (Tn), and consider Laurent expansions in ε, recovering the appropriate singular
behaviour when ε → 0. In particular, we need to replace f0 = S0/T0 → 1/ε, v−1 =
T−3T0/(T−2T−1) → ε, v0 = T−2T1/(T−1T0) → −1/ε, v1 = T−1T2/(T0T1) → 1/ε,
v2 = T0T3/(T1T2) → −ε, while all other occurrences of fn , un and vn that arise,
determining the terms that appear in the identity (3.23), correspond to finite and non-
zero values, which can be substituted directly. For n = 0, using the values of Mb,0
and Pb,0 as before, we see that both sides of the identity are finite and take the value
13/6. When n = −1 we find simple poles on each side of (3.23), with the balance

− f0 f
2
1 f2

(
Pb,−1 + P−1

b,−1

) ∼
(

f2 f 23 (v1v2)
2

f1
− 1

)
M−1

b,−1

in the limit ε → 0, where we replace f0 → ε−1, M−1
b,−1 = (u2v2)−1 → − 1

2ε
−1

and v1v2 → −1, so substituting in Pb,−1 = 1/2 and the other finite values of f1 =
1, f2 = −1, f3 = 2 yields the same residue −5/2 as the coefficient of ε−1 on
each side. The balance for n = −4 is similar, with simple poles on each side, since
s̄−4/ā−4 = f−1v

2−2( f0v−1)
2/ f−2 → −1, M−1

b,−4 = 1/(u−1v−1) → 1
2ε

−1, P−1
b,−4 =

− f0/( f−1 f 2−2) → ε−1, so from b̄−4/ā−4 = −2 we find the same residue −1 on

each side of the balance (b̄−4/ā−4 + 1)P−1
b,−4 ∼ (s̄−4/ā−4 − 1)M−1

b,−4. For the cases
of n = −3,−2, where each side of (3.23) has double poles, and poles of order 4,
respectively, this simple analysis of leading order terms is only sufficient to balance
the two leading terms in each case. To balance the poles of lower order (i.e. the residues
on each side when n = −3, and the remaining singular terms at order ε−3, ε−2, ε−1

when n = −2) it is necessary to calculate higher corrections. If we treat ε as a local
parameter around the point (∞, 1) on the curve (2.45), and fix f0 = ε−1, then from
the equation of the curve we find the points ( f±1, f0) with expansions

f±1 = ± 1 + 3

2
ε ± 21

8
ε2 + 3ε3 + · · · ,

and subsequently we obtain

f±2 = ∓1 + 1

2
ε∓13

8
ε2 + 1

2
ε3 + · · · ,

either by using the curve or from the map (2.44). Similarly we can obtain v−1 =
ε − 7

2ε
2 + · · · , v0 = ε−1 + 5

2 + · · · , v1 = − ε−1 + 5
2 + · · · , u0 = 1 + ε + · · · ,

u1 = 1 − ε + · · · , and further higher corrections to these other terms that appear
in (3.23) when n = −3,−2, using the equation for the curve (2.39) and/or the map
(2.37), and in this way the remaining balances of poles on each side of (3.23) are
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checked. Once again, there is no need to verify the second equality in (3.4), because
of Lemma 3.2. ��

In order to understand how the signs of the quantities (3.5) and (3.6) change with
n, we need the following result.

Lemma 3.4 For n � 1 the signs of the terms in the Somos-5 sequence (Tn), as in
(1.15), repeat in the pattern

+ − + + − + − − + − − + − + (3.25)

with period 14.

Proof The periodic sign pattern for the integer sequence (1.15), as above, consists of a
block of 7 followed by the same block of 7 but with all the signs reversed, and can be
deduced by induction from the signs of the associated sequence of rational numbers
vn defined by the right-hand relation in (2.36), which for n � 3 repeat the pattern

− + − + − +− (3.26)

with period 7 (cf. Table 5). Indeed, given T1 = −T2 = T3 = 1, the pattern (3.25)
follows from (3.26) by writing Tn+1 = vnTnTn−1/Tn−2. So it remains to prove the
period 7 sign pattern of the rational sequence (vn), which is achieved by considering
the corresponding orbit in R2 of the QRT map defined by (2.37), that is

ϕ : (U , V ) �→ (
V ,U−1(1 + V−1)

)
. (3.27)

As described above, the orbit lies on the (real) curve (2.39) in the (U , V ) plane, shown
in Fig. 3. The real curve has four connected components, of which only the part in
the positive quadrant is compact, but this particular orbit lies outside the positive
quadrant, being restricted to the three unbounded components; in contrast, the orbit
corresponding to the sequence (un) is given by ratios of the terms of the Somos-
5 sequence (1.14), which are all positive, and hence lies on the compact oval. The
relevant properties of the orbit corresponding to (vn) are not so easy to see from Fig.
3, which is drawn to scale, so in Fig. 4 we have produced a more schematic drawing
of the real curve (2.39) which highlights the essential features. From

dV

dU
= − 2UV + V 2 − 5V + 1

U 2 + 2UV − 5U + 1
,

by taking the resultant of the numerator of the above with the equation of the curve
we see that the points with horizontal slope haveU values given by the four real roots
of the quartic U 4 + 2U 3 − 7U 2 − 2U + 7. In particular, there is a local maximum at
the point P0 with coordinates

(
− 1

2

(√
2 + 1 +

√
15 + 6

√
2
)
,− 1

2

(
2
√
2 − 5 +

√
21 − 12

√
2
)) ≈ (−3.63019, 0.08211)
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Fig. 4 Qualitative sketch of the Somos-5 curve (2.39)

and a local minimum at the point Q0 with coordinates

(
1
2

(√
2 − 1 −

√
15 − 6

√
2
)
, 1
2

(
2
√
2 + 5 +

√
21 + 12

√
2
)) ≈ (−1.06909, 6.99523);

the other two stationary points lie on the compact oval. Thenwe consider the orbit of the
map (3.27) starting from the point P∗

3 = (v3, v4) = (−1, 7), and it will be convenient
to introduce the notation P∗

n = (vn, vn+1), Pn = ϕn(P0) and Qn = ϕn(Q0) for n ∈ Z,
as well as letting Q jPk denote the segment of the real curve (2.39) connecting the
points Q j and Pk , and taking APk to mean the part of the curve with asymptote A

starting from the point Pk , where we may have A = U (the U axis), V (the V axis)
or L (the line U + V = 5). The asymptotes as well as the points P0, Q0 and some of
their images/preimages under the QRT map are shown in Fig. 4. With this notation,
for the first 7 iterates we have P∗

3 ∈ Q0P−2, P∗
4 ∈ Q1P−1, P∗

5 ∈ Q2P0, P∗
6 ∈ VP1,

P∗
7 ∈ LP2, P∗

8 ∈ UP3, P∗
9 ∈ P∗

2P4, where P∗
2 = (0,−1). Under the action of the

QRT map ϕ, which is given by the composition of the two involutions ιh and ι as in
(2.40), we have that ϕ(P∗

2P4) ⊂ ι(Q1P3) = Q0P−2, while ϕ(Q0P−2) = Q1P−1 and
ϕ(Q1P−1) = Q2P0. Also, ϕ(Q2P0) ⊂ VP1, ϕ(VP1) = LP2, ϕ(LP2) = UP3, and
ϕ(UP3) = P∗

2P4. Thus it follows by induction that P∗
n+3 ∈ Q0P−2, P∗

n+4 ∈ Q1P−1,

P∗
n+5 ∈ Q2P0, P∗

n+6 ∈ VP1, P∗
n+7 ∈ LP2, P∗

n+8 ∈ UP3, P∗
n+9 ∈ P∗

2P4 holds for all
n � 0. The pattern of signs of the coordinates in these seven consecutive regions is
(−,+), (+,−), (−,+), (+,−), (−,+), (+,−), (−,−), which gives the sign pattern
(3.26) for the rational sequence (vn), as required. ��

Since Sn > 0 for all n, the sign pattern of the sequence ( fn) is clearly the same as
(3.25), consisting of two blocks of 7 that differ by an overall sign, so sgn( fn+7) =
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− sgn( fn) (where sgn denotes the sign function). Four of the Schubert parameters
with signs are given by monomials in the fn with a homogeneous degree that is even
(2 or −2), hence their sign pattern repeats with period 7, and the other two have a
sign that is determined by the sequence (vn), also varying with period 7. As for the
signed lengths, their signs are determined by (Tn), so they each have a pattern that
varies with period 14, also made up of two blocks of 7 related by a sign flip. This can
be summarized by the following statement.

Corollary 3.5 TheSchubert parameterswith signs (Ma,n, Pa,n, Xa,n), (Mb,n, Pb,n, Xb,n)

display five distinct combinations of signs, which for n � 1 repeat in a sequence with
period 7, beginning with

n = 1 : (+,+,+), (+,+,+),

n = 2 : (+,−,+), (−,+,+),

n = 3 : (−,+,+), (+,+,−),

n = 4 : (+,−,−), (−,−,+),

n = 5 : (+,+,+), (+,+,+),

n = 6 : (+,−,+), (−,+,+),

n = 7 : (−,+,+), (−,−,+).

(3.28)

The signed lengths repeat the following sign patterns for n � 1:

s̄n : + − − + − + + − + + − + −−,

ān : + + + − − − − − − − + + ++,

b̄n : + + − + − − + − − + − + +−,

c̄n : + − + − − + − − + − + + − + .

(3.29)

We are now ready to prove most of the statements in Theorem 1.2. For the cases
n ≡ 1 or 5 (mod 7), both triples of Schubert parameters given by (3.5) and (3.6) are
positive and satisfy the constraints, so they produce a Heron triangle with two rational
medians and integer sides (a, b, c) whose ratios are given by

a

c
= s̄n − ān

s̄n − c̄n
= b̄n + c̄n

ān + b̄n
,

b

c
= s̄n − b̄n

s̄n − c̄n
= c̄n + ān

ān + b̄n
,

and by (3.29) the signed lengths are either all positive (when n ≡ 1, 12 (mod 14)) or
all negative (when n ≡ 5, 8 ( mod 14)), sowe can set a = ±(b̄n+c̄n), b = ±(c̄n+ān),
c = ±(ān + b̄n) accordingly, which verifies the formulae (1.19) for the side lengths.
Moreover, it follows that the semiperimeter is s = ±(ān + b̄n + c̄n) = ±s̄n , and the
reduced lengths are s−a = ±ān , s−b = ±b̄n , s−c = ±c̄n , so the expression (1.21)
for the area follows immediately from Heron’s formula. When n ≡ 2 or 6 (mod 7),
we need to replace Pa → −P−1

a and Mb → −M−1
b in order to have two triples

of positive coordinates of points on the Schubert surface, but this change of signs is
compatible with the two constraints, in the sense that it introduces an overall minus
sign on both sides of the first equality in each of (3.3) and (3.4), so that the side ratios
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of the corresponding Heron triangle with two rational medians are given by

a

c
= − s̄n − ān

s̄n − c̄n
= − b̄n + c̄n

ān + b̄n
,

b

c
= − s̄n − b̄n

s̄n − c̄n
= − c̄n + ān

ān + b̄n
.

For these values of n, from (3.29) we see that ān and b̄n are both positive, and s̄n and c̄n
are both negative, or vice versa, so we can take integer side lengths a = ∓(b̄n + c̄n),
b = ∓(c̄n + ān), c = ±(ān + b̄n), which verifies (1.19), while in this case the
semiperimeter and reduced lengths are permutations (up to sign) of the signed lengths,
as (depending on the value of n mod 14) we have s = ∓c̄n , s−a = ±b̄n , s−b = ±ān ,
s − c = ∓s̄n , which confirms the area formula (1.21). The analysis of the other three
combinations of signs in (3.28) proceeds similarly. For the case of n ≡ 3 (mod 7)
only the second constraint (3.4) acquires an overall minus sign when the negative
Schubert parameters Ma, Xb are replaced by −M−1

a ,−X−1
b , and we find s = ∓b̄n ,

s−a = ±c̄n , s−b = ∓s̄n , s−c = ±ān (according towhether n ≡ 3 or 10 ( mod 14)).
When n ≡ 4 (mod 7), the replacements Pa → −P−1

a , Xa → −X−1
a , Mb → −M−1

b ,
Pb → −P−1

b result in an overall change of sign in the second constraint only, as the
signs in (3.28) and (3.29) are the exact opposite of those in the previous case, so we
have s = ±b̄n , s−a = ∓c̄n , s−b = ±s̄n , s−c = ∓ān . Finally, when n ≡ 0 ( mod 7),
replacing Ma → −M−1

a , Mb → −M−1
b , Pb → −P−1

b again only introduces a minus
sign in the second constraint, and we also find s = ±b̄n , s − a = ∓c̄n , s − b = ±s̄n ,
s−c = ∓ān in this case. Thus in each casewe have a pair of positive triples of Schubert
parameters satisfying the necessary constraints. If we further require that these should
correspond to the half-angle cotangents of appropriate angles in the triangle (cf. Fig.
1), then it may be necessary to apply one or both of the transformations

(Ma, Pa, Xa) → (
M−1

a , P−1
a , X−1

a

)
, (Mb, Pb, Xb) → (

M−1
b , P−1

b , X−1
b

)
,

(3.30)

in order to satisfy the conditions (1.9).
Having shown that the Schubert parameters with signs in the main sequence for

n � 1 can be consistently transformed to a set of positive Schubert parameters, thus
providing a sequence of Heron triangles with two rational medians k, �, whose integer
sides (a, b, c) and area � are given by the formulae in Theorem 1.2, it remains to
verify the expressions (1.20) for the medians, and also show that gcd(a, b, c) = 1,
which requires a bit more work. We begin by defining signed median lengths, given
by

k̄n = 1

2
Sn+4Tn+4

(
TnT

2
n+1Tn+2 − SnS

2
n+1Sn+2

)
,

�̄n = 1

2
SnTn

(
Sn+2S

2
n+3Sn+4 − Tn+2T

2
n+3Tn+4

)
,

(3.31)

where the overall signs have been chosen so that these initially coincide with the
positive median lengths, i.e. when n = 1 we have k = k̄1 = 35/2, � = �̄1 = 97/2.
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In order to show that these quantities agree with the median lengths up to a sign, we
need to prove that k̄n satisfies a signed version of one of the identities in (1.6), and
that �̄n satisfies a signed version of one of the analogous identities for �, obtained by
replacing a → b, b → c, c → a and k → � on the right-hand side of each formula.
We start by picking the middle identity for P = Pa , which becomes

Pa,n = 4�n

4(s̄n − c̄n) k̄n + (s̄n − ān)2 − (s̄n − b̄n)2 − 3(s̄n − c̄n)2
, (3.32)

obtained by setting Pa → Pa,n on the left-hand side, and replacing a, b, c and k by
their signed versions on the right-hand side, as well as inserting the signed area

�n = SnSn+1S
2
n+2Sn+3Sn+4TnTn+1T

2
n+2Tn+3Tn+4

in the numerator. As for �, the direct analogue of the first identity in (1.6) is

Mb = 4�

4c� + b2 − 3c2 − a2
,

but instead, for reasons that will shortly become clear, we would like to use another
expression for Mb, namely

Mb = 4c� − b2 + 3c2 + a2

4�
,

where the latter is seen to be equivalent to the former due to the relation 16�2 =
16c2�2 − (b2 − 3c2 − a2)2, which follows from Heron’s formula and the expression
for �2 in (1.3). So as the signed analogue of the latter identity for Mb, we take

Mb,n = 4(s̄n − c̄n)�̄n − (s̄n − b̄n)2 + 3(s̄n − c̄n)2 + (s̄n − ān)2

4�n
. (3.33)

Lemma 3.6 The signed median lengths k̄n, �̄n given by (3.31) satisfy the relations
(3.32) and (3.33) for all n ∈ Z.

Proof To begin with, we rewrite (3.32) as

P−1
a,n = 4(s̄n − c̄n)k̄n + (s̄n − ān)2 − (s̄n − b̄n)2 − 3(s̄n − c̄n)2

4�n
, (3.34)

and consider the symmetry n → −n − 4, as in Lemma 3.2. On the left-hand side we
have P−1

a,−n−4 = −Mb,n , while on the right we use the transformations (3.13) together

with the linear relation (3.8), as well as k̄−n−4 = �̄n and �−n−4 = �n , to see that (up
to an overall minus sign on both sides), the relation (3.34) is transformed to (3.33).
Therefore it will be sufficient to prove the above relation involving k̄n alone, and we
can proceed as in the proofs of Lemma 3.1 and Theorem 3.3, by substituting in the
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analytic formulae for each of the terms and regarding it as an identity between elliptic
functions of z = (n + 2)κ , so that the left-hand side has simple poles at the places
z ≡ 0, ω, κ, κ +ω mod �. However, we also wish to exploit the additional symmetry
under shifting by the half-period ω, as we have Pa,n → Pa,n under this symmetry,
and using the results of our previous calculations we see that overall the right-hand
side of (3.34) is also left invariant by this transformation. Thus it is sufficient to check
only the poles at z = 0, κ as well as one other value where the relation is finite, and
the case n = 1 (corresponding to z = 3κ) where Pa,1 = 2/3 is readily verified. Then
since we only have residues at two simple poles to check, corresponding to the values
n = −2,−1, we can use the simplified method with a local parameter ε, as at the end
of the proof of Theorem 3.3. Using (3.5) and (3.8) we can rewrite (3.34) as

− un+2vn+2 =
4

(
1 + b̄n

ān

)
k̄n
ān

+
(
s̄n
ān

− 1
)2 −

(
1 + c̄n

ān

)2 − 3
(
1 + b̄n

ān

)2

4�n/ā2n
.

(3.35)

On the right-hand side above we can make use of the expressions (3.24), as well as

c̄n/ān = − f 2n fn+1v
2
n+2v

2
n+3/ fn+2

and

k̄n
ān

= − fn+4vn+2v
2
n+3(1 − fn f 2n+1 fn+2)

2 fn+2
,

�n

ā2n
= fn fn+1 fn+3 fn+4v

2
n+2v

2
n+3.

Now when n = −2, at leading order on the left-hand side we have −u0v0 ∼ ε−1,
while on the right-hand side the leading order in the denominator is 4�−2/ā2−2 ∼
4ε−4. In the numerator, b̄−2/ā−2 ∼ ε2 and k̄−2/ā−2 ∼ 1

2ε
−3, hence the first term

gives the leading order contribution 4(1 + b̄−2/ā−2)k̄−2/ā−2 ∼ 2ε−5, but for the
difference of squares that follows we need a correction at next-to-leading order, so
that from s̄−2/ā−2 = ε−3 + 1

2ε
−2 + · · · , c̄−2/ā−2 = ε−3 − 1

2ε
−2 + · · · we find

(s̄−2/ā−2 − 1)2 − (c̄−2/ā−2 + 1)2 ∼ 2ε−5, and the final term −3(1 + b̄−2/ā−2)
2

gives a lower order contribution at O(ε−4); thus overall at leading order the right-hand
side gives (2ε−5 + 2ε−5)/(4ε−4) = ε−1, as required. When n = −2, the left-hand
side is −u1v1 ∼ −ε−1, while the denominator of the right-hand side is �−1/ā2−1 ∼
8ε−1, and the numerator contains the terms b̄−1/ā−1 ∼ ε−1, k̄−1/ā−1 ∼ −ε−1,
s̄−1/ā−1 ∼ −4, c̄−1/ā−1 ∼ −ε−1, so that overall these combine to give (−4ε−2 −
ε−2 − 3ε−2)/(8ε−1) = − ε−1 at leading order, in agreement with the left-hand side.
Note also that for the values n = −4,−3 and 0, the left-hand side is finite while the
other side has removable singularities: someof the terms in the numerator/denominator
on the right-hand side of (3.35) are singular, but overall these cancel to give a finite
value in the limit ε → 0; so the relation holds as an identity between elliptic functions
of z = (n + 2)κ , and in particular for all n ∈ Z. ��
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Given that k̄n satisfies (3.32), for each nwe can compare this with the corresponding
positive Schubert parameter Pa > 0, given by

Pa = 4�

4ck + a2 − b2 − 3c2
= 4ck − a2 + b2 + 3c2

4�
,

wherewe use either the first or the second rational expression above involving a, b, c, k
and �, according to whether Pa,n = ±P±1

a , determined by n mod 7 as in Corollary
3.5. Now sgn(�n) = sgn(TnTn+1Tn+3Tn+4), which repeats the pattern

�n : + + − − + ++

with period 7, while our previous analysis also showed that, for each n, s̄n − c̄n =
sgn(s̄n − c̄n) c, where the sign pattern is

s̄n − c̄n : + + − + − − + − − + − + + −

with period 14. For the cases n ≡ 1, 2, 5, 6, 0 (mod 7) we see that �n = �, and then
according towhether Pa,n > 0 (when n ≡ 1, 5, 0) or Pa,n < 0 (when n ≡ 2, 6) we can
directly compare the right-hand side of (3.32)with either the first formula for Pa above,
or compare−P−1

a,n with the second formula above, respectively; then since the squared
terms can always be identified, that is a2 = (s̄n − ān)2 etc., we have ck = (s̄n − c̄n)k̄n
in the first case, giving k̄n = sgn(s̄n − c̄n) k, but ck = −(s̄n − c̄n)k̄n in the second case,
giving k̄n = −sgn(s̄n − c̄n) k. However, the cases n ≡ 3, 4 (mod 7), when�n = −�,
are different because in those cases we need to apply the first of the transformations
in (3.30) to ensure that (1.9) holds. So for n ≡ 3 (mod7) that means comparing
P−1
a,n with the second formula for Pa above, yielding k̄n = −sgn(s̄n − c̄n) k, and for

n ≡ 4 (mod 7) it requires that −Pa,n should be compared with the first formula for
Pa , hence k̄n = sgn(s̄n − c̄n) k. Thus overall we see that k̄n is related to the median
length k by an overall sign, which varies with period 14 in the following pattern:

k̄n : + − + + − + + − + − − + − −. (3.36)

Similarly, �̄n is equal to the median length � up to a sign with pattern

�̄n : + − + + − + − − + − − + − +, (3.37)

and this verifies that the formulae (1.20) hold.
Based on computer experiments, it was observed in [7] that for the triangles in the

main sequence, the pairs (θ, φ) corresponding to the parametrization (1.10), given by
(1.11) with + signs in both equations, cycle through one of five isomorphic plane
curves in a pattern that repeats with period 7. Applying the symmetry a ↔ b, k ↔ �,
one obtains an alternative pair of parameters

θ̃ = c − b + 2k

2s
, φ̃ = a − c + 2�

2s
, (3.38)
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and Buchholz and Rathbun noted that these pairs cycle with period 7 through the
same set of curves but in a different order, namely C1,C2,C3,C4,C1,C2,C5. A more
detailed study of the allowed discrete symmetries in [9] showed that by applying
appropriate permutations of a, b, c, k, � and changes of sign, one could also obtain
pairs of coordinates on threemore (isomorphic) curves C6,C7,C8. However, until now
there was no explanation for the period 7 behaviour with respect to the index n in the
main sequence, which we provide here.

Theorem 3.7 For n � 1, the rational parameters

θ = c − a + 2�

a + b + c
, φ = b − c + 2k

a + b + c

corresponding to themain sequence ofHeron triangleswith sides (a, b, c)andmedians
k, � lie on one of five birationally equivalent plane curves of genus one, which repeat
in a pattern with period 7. The same is true for any such sequence of parameters
obtained from these by the action of the discrete symmetry group that leaves the
equations 4k2 = 2b2 + 2c2 − a2, 4�2 = 2c2 + 2a2 − b2 invariant.

Proof We begin by considering the pair of quantities

θn = ān − c̄n + 2�̄n
2s̄n

, φn = c̄n − b̄n + 2k̄n
2s̄n

,

obtained by replacing a, b, c, k, � by their signed counterparts s̄n − ān, s̄n − b̄n, . . .
etc. For n = 1 this coincides with θ, φ. Moreover, from the analytic parametrization
of the two Somos-5 sequences, this gives a pair of independent elliptic functions of
z = (n + 2)κ . Then by a standard result in the theory of elliptic functions, the pairs
(θn, φn) lie on a plane curve C of genus one, which is birationally equivalent to the
original elliptic curve (this follows from the Riemann–Roch theorem, but there is also
an explicit classicalmethod for constructing the equation ofC, based on the expressions
for θn, φn in terms of ℘,℘′ [2]). Under the change n → n+ 1, the original pair (θ, φ)

corresponds to a different pair of elliptic functions, because each term a, b, . . . that
appears is related to s̄n − ān, s̄n − b̄n, . . . by a sign which changes with n; so the
pair of coordinates for the next value of n will lie on a different curve, C∗ say. Now
all of these signs repeat with period 14, but in each block of 7 the signs are flipped
with respect to the previous block, and only the ratio of terms appears in θ, φ, so their
overall pattern of signs repeats with period 7, hence there are at most 7 different curves
repeating with this period. However, a closer examination of (3.29), (3.36) and (3.37)
reveals that there are really only 5 different pairs of functions appearing in each block
of 7, because all the signs for n ≡ 1 (mod 7) and n ≡ 5 (mod 7) are the opposite of
each other, and similarly for n ≡ 2 (mod 7) and n ≡ 6 (mod 7). The same argument
applies to any pair (θ, φ) obtained from this one by the action of the discrete symmetry
group. ��

In order to show that the side lengths given by (1.19) have greatest common divisor
1 for all n � 1, it is necessary to reconsider the orbits of the QRT map ϕ defined by
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(3.27), associated with the rational sequences (un), (vn), and examine their reduction
modulo a prime p, which corresponds to considering the map over the finite field Fp.
(For a detailed treatment of QRTmaps over finite fields, see [33].) A general QRTmap
(over any field) is a birational map ϕ : P1×P1 → P1×P1 given by a composition of
two involutions, and as already mentioned, each orbit lies on a curve belonging to a
pencil of biquadratic curves in the plane; generic curves C have genus one, and the
orbit gives a sequence of points P̂0 + nP ∈ C, with each iteration of ϕ corresponding
to addition of the point P in the group law of the curve. For the particular case at hand,
the curve is given by (2.39), which has identity element O = (∞,∞), and ι in (2.40)
is the elliptic involution that sends any point P̂ → −P̂. Under the QRTmap ϕ = ι◦ ιh ,
P = (∞, 0) is the point being added at each step, and the orbit corresponding to the
Somos-5 sequence (1.14) via (2.36) is

ϕn(u0, u1) = (un, un+1) = (1, 1) + nP, (3.39)

where the initial point P̂0 = (u0, u1) = (1, 1) ∈ C is 2-torsion, while the orbit
associated with the other sequence (1.15) is

ϕn(v0, v1) = (vn, vn+1) = nP, (3.40)

with initial point O = (v0, v1) = (∞,∞).
The above description is valid over C or any subfield where the orbit is defined, in

particular over Q, in which case P is an infinite order element in the Mordell–Weil
group of the curve C(Q), which is generated by P and the 2-torsion point P̂0 = (1, 1).
Under reduction mod p the same description holds provided that p is a prime of
good reduction, so that the curve C(Fp) is non-singular, with the main difference
being that now the curve has finitely many points satisfying the Hasse–Weil bound
|p + 1 − #C(Fp)| � 2

√
p, so P has some finite order which we denote by ordp(P).

Hence it follows that both orbits (3.39) and (3.40) over Fp are periodic with the same
period ordp(P).

For primes of bad reduction, which in this case are 2,3 and 17, the situation is
slightly more complicated. For the primes p = 2, 3, we find that the singular curve
C(Fp) is reducible, since − 5 mod 2 = − 5 mod 3 = 1, so in both cases we can
factorize (2.39) as

(UV + 1)(U + V + 1) = 0. (3.41)

When p = 2, the two orbits (un, un+1) and (vn, vn+1) are the same up to a shift of
starting point, repeating the sequence

(∞,∞), (∞, 0), (0, 1), (1, 1), (1, 0), (0,∞)

with period 6 = 2×(2+1), corresponding to the fact that each (genus zero) irreducible
component of (3.41) is isomorphic to P1(F2), so contains 3 points, and the orbit
alternates betweenpoints on each component, i.e. (∞, 0), (1, 1), (0,∞) ∈ {UV+1 =
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0 } and (∞,∞), (0, 1), (1, 0) ∈ {U +V +1 = 0 }. Similarly, when p = 3 both orbits
have period 8 = 2×(3 + 1), repeating the sequence

(∞,∞), (∞, 0), (0, 2), (2, 1), (1, 1), (1, 2), (2, 0), (0,∞),

which again alternates between the two irreducible components of the curve (3.41).
For p = 17, the curve (2.39) is irreducible and singular: this is a case of non-split
multiplicative reduction [48], so it has genus zero and contains #C(F17) = p+2 = 19
points, and after removing the singular point (5, 5), C(F17)\{ (5, 5) } has the structure
of an abelian group of order 18. The two orbits both have period 9, corresponding to
the two cosets of the cyclic subgroup of order 9 generated by P; the coordinates of the
points in these two orbits can be read off from Table 7, which also includes part of the
associated periodic sequence ( fn mod 17) (of period 18).

Although it is not essential to our main argument, we can now offer a brief expla-
nation for how the periods modulo a prime arise for the corresponding Somos-5
sequences. Setting t = ordp(P) and working mod p, from the relation un+t = un
we have

Sn−2+t Sn+1+t

Sn−1+t Sn+t
= Sn−2Sn+1

Sn−1Sn

for all n, and clearly the period of the Somos-5 sequence must be a multiple of t .
(We will write everything for the sequence (Sn), but the same treatment applies to
(Tn) or any other Somos-5 sequence.) Somos-5 sequences have a 3-parameter group
of gauge transformations which leave the ratios un , and hence the recurrence (1.16),
unchanged: one can replace Sn → A∗±(B∗)n Sn , i.e. rescale all even/odd index terms
by an arbitrary non-zero scalar A∗±, and rescale each term by the powers of another
arbitrary quantity B∗ �= 0; this symmetry group has a natural interpretation in terms
of the quiver that defines the associated cluster algebra [21]. Hence we see that Sn and
Sn+t should be related by a gauge transformation of this kind.

Proposition 3.8 Under shifting by t = per(un mod p), the period of the associated
QRT map, the Somos-5 sequence reduced mod p satisfies

Sn+t = A∗±(B∗)n Sn, A∗+, A∗−B∗, (B∗)2 ∈ F∗
p (3.42)

for even/odd n, respectively, where A∗+, A∗−, B∗ are constants independent of n.

Proof To prove this gauge transformation formula directly, define the ratio rn =
Sn+t/Sn , and observe that un+t = un for all n implies that rn+2/rn = rn+3/rn+1 =
rn+4/rn+2 = rn+5/rn+3 = (B∗)2 say, a constant in F∗

p independent of n, and this
can be solved separately for even/odd n to give rn = A∗±(B∗)n , where A∗+ = r0,
A∗−B∗ = r1 ∈ F∗

p (assuming none of the terms in these ratios is zero). ��
Corollary 3.9 Let t be the order of the pointP ∈ C(Fp) if p is a prime of good reduction
(or equivalently, the period of (un mod p), appropriately reinterpreted in the case of
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bad reduction). Then the period of the Somos-5 sequence mod p is a multiple of t ,
given by

per(Sn mod p) = �∗ t � 2(p − 1) t, (3.43)

where (up to a possible factor of 2) �∗ denotes the lowest common multiple of
ordp((B∗)2) and/or the orders in F∗

p of one or two other combinations of A
∗+, A∗−, B∗,

depending on the parity of t .

Proof Iterating the quasiperiodicity relation (3.42) j times when t is even yields

Sn+ j t = (A∗±) j (B∗)nj+t j( j−1)/2 Sn,

for even/odd n, so requiring Sn+ j t = Sn for all n imposes the conditions

(B∗)2 j = 1, (A∗+) j = (A∗−B∗) j = (B∗)−t j( j−1)/2 = ±1, (3.44)

where the choice of j satisfying the first condition for a given B∗ fixes the sign on the
right. Then �∗ is the smallest positive value of j that satisfies all these conditions. An
odd value of �∗ is only possible in the case that (B∗)2, A∗+ and A∗−B∗ are all quadratic
non-residues in F∗

p, in which case only the plus sign can occur on the right-hand side
above, and

�∗ = lcm
(
ordp(A

∗+), ordp(A
∗−B∗), ordp((B

∗)2)
)
,

but otherwise there must be an even �∗ | lcm (
ordp(A∗+), ordp(A∗−B∗), ordp((B∗)2)

)
,

where it may be possible to divide out some factors of 2 from the first two terms,
depending on the orders of these elements. For odd t , iterating (3.42) j times produces

Sn+ j t = (A∗±)

⌊
j+1
2

⌋

(A∗∓)

⌊
j
2

⌋

(B∗)nj+t j( j−1)/2 Sn,

and then by requiring Sn+ j t = Sn for all n, in the case of odd j (exploiting the freedom
to replace B∗ → −B∗ and A∗− → −A∗− simultaneously) this leads to

A∗+ = A∗−, (B∗) j = (A∗+) j = 1 �⇒ �∗ = lcm
(
ordp(A

∗+), ordp(B
∗)

)
,

corresponding to a situation where K̃0 = K̃1 and all the terms satisfy the same Somos-
4 recurrence (cf. equation (2.5) and [53]). For an even value of j with t odd, we find
instead

(B∗) j = 1, (A∗+A∗−B∗) j/2 = (B∗)(1−t( j−1)) j/2 = 1,

so now, given the values of (B∗)2 and A∗+A∗−B∗, the smallest possible value of j/2
can be found, yielding

�∗ = 2 lcm
(
ordp(A

∗+A∗−B∗), ordp((B
∗)2)

)
. (3.45)

123



Heron triangles with two rational medians and Somos-5… 1479

The upper bound on the period comes from Fermat’s little theorem. ��
An advantage of the relation (3.42) is that it allows the period of the Somos-5 sequence
to be computed from (3.43)without calculating somany terms: in general it is sufficient
to find the minimum t such that (u0, u1) = (ut , ut+1), giving t = ordp(P), which
requires the t + 5 adjacent terms S−2, . . . , St+2, and then A∗±, B∗ can be obtained
from the ratios St/S0, St+1/S1 and St+2/S2 (provided S0S1S2 �= 0, otherwise one
of the ratios St−1/S−1, St−2/S−2 can be used instead). For example, in the case
of the sequence (1.14) taken mod 23, we find that (un mod 23) repeats the pattern
1, 1, 2, 13, 20, 3, 20, 13, 2 with period 9, so t = ord23(P) = 9 which is odd, while
A∗+ ≡ S9/S0 mod 23 = S10/S1 mod 23 = 21 and S11/S2 mod 23 = 20, thus we
find (B∗)2 = 20/21 = 13 = 62 in F23, and taking B∗ = 6 gives A∗− = 21/6 = 15 �=
A∗+; then ord23(13) = 11 and ord23(21×15×6) = ord23(212) = 11, so �∗ = 22 by
(3.45), hence per(Sn mod 23) = 9×22 = 198, in agreement with the value found
by Robinson in [43]. As another example, for the sequence (1.15) taken mod 61, the
corresponding terms (vn mod 61) have a repeating pattern

∞,∞, 0, 60, 7, 25, 12, 34, 11, 32, 2, 1, 1, 2, 32, 11, 34, 12, 25, 7, 60, 0

with even period t = 22, and from the terms 1, 1 in the middle it is apparent that
this is the same as the orbit (un mod 61) but shifted; thus from T21/T−1 mod 61 =
14 ≡ A∗−(B∗)−1, T23/T1 mod 61 = 60 ≡ A∗−B∗, T24/T2 mod 61 = 14 ≡ A∗+(B∗)2
we find A∗− = 13 = 142, A∗+ = 48 = 14−1, B∗ = 14 in F61, and ord61(14) = 6,
so �∗ divides lcm

(
ord61(14−1), ord61(143), ord61(142)

) = 6, the smallest value of j
satisfying all the requirements in (3.44), hence the period of the sequence (Tn mod 61)
is 22×6 = 132, and this is the same as the period of the original Somos-5 sequence
(Sn mod 61) as found in [43].

We are now ready to finish off the proof of the main theorem.

Lemma 3.10 For all n ∈ Z, the terms of the sequences (1.14) and (1.15)with the same
index are coprime, that is

gcd(Sn, Tn) = 1.

Proof Suppose that for some n the terms Sn and Tn have a common divisor. Then for
the reduced sequences in Fp it follows that Sn ≡ 0 ≡ Tn , and so un = un+1 = ∞ =
vn = vn+1. If p is a prime of good reduction for the curve C given by (2.39), then in the
group law of C(Fp) this implies that (1, 1)+ nP = O = nP, which is a contradiction.
If p is a prime of bad reduction, then we have p = 2, 3 or 17, and p = 2 or p = 3 are
impossible by Proposition 2.17, while Table 7 shows that 17 is never a divisor of Sn ,
since the sequence (un mod 17) has period 9 and remains finite. ��

Proposition 3.11 For all n ∈ Z, the signed lengths satisfy gcd(ān, b̄n, c̄n) = 1.

Proof First of all, note that from Lemma 3.1 we have gcd(s̄n, ān, b̄n, c̄n) =
gcd(ān, b̄n, c̄n). Up to an overall sign, each of the signed lengths is a degree six
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Table 7 The analogue of Table 5 in the finite field F17

n 0 1 2 3 4 5 6 7 8 9

un 1 1 2 10 15 6 15 10 2 1

vn ∞ ∞ 0 16 7 11 7 16 0 ∞
fn ∞ 1 16 2 3 9 12 14 6 ∞

monomial in the two sets of five adjacent values Sn, . . . , Sn+4 and Tn, . . . , Tn+4. Now
suppose that a prime p is a divisor of c̄n . If p | Sn , then by Lemma 2.12 it cannot divide
Sn+1, Sn+2 or Sn+3, so if it divides b̄n then it must divide Tn+2, thus (by Lemma 2.12
again) it is coprime to Sn+3, Sn+4, Tn and Tn+1, hence it cannot divide s̄n . Similarly, if
p | Tn+4 and it is a divisor of ān then, by the same lemma, it is coprime to Tn+1, Tn+2
and Tn+3, so it must divide Sn+2, but in that case again it is coprime to s̄n . Applying
the same lemma once more, we see that if p | Sn+1 then p | b̄n , so if p | s̄n as well
then it must divide either Tn or Tn+1, but the first case is impossible because p must
also divide ān by (3.8), yet it has to be coprime to Sn+2, Tn+1, Tn+2, Tn+3; so this
leaves the second case, which requires p | gcd(Sn+1, Tn+1), contradicting Lemma
3.10. Finally, if p | Tn+3 then an analogous argument leads to p | gcd(Sn+3, Tn+3),
another contradiction. ��

The formulae (1.19) imply that gcd(a, b, c) = gcd(b̄n + c̄n, c̄n + ān, ān + b̄n), and
any prime divisor of the latter three linear combinations of the signed lengths must
be a divisor of 2ān = (c̄n + ān) + (ān + b̄n) − (b̄n + c̄n), and similarly of 2b̄n and
2c̄n , so by the above proposition the only possible common divisor of (a, b, c) is 2,
but Proposition 2.17 shows that precisely one of b̄n + c̄n, c̄n + ān, ān + b̄n is even (cf.
Table 6), so gcd(a, b, c) = 1 and this completes the proof of Theorem 1.2.

4 Brahmagupta angles and geometrical identities

By virtue of the fact that there is a 2-isogeny relating the curves (2.39) and (2.45),
there are infinitely many identities between elements of the associated function fields,
which correspond to relations between terms of the sequences ( fn) and (vn), or equiv-
alently (un), since un = vn fn−2 fn+1/( fn−1 fn). Here we present some identities that
arise naturally from the geometry of Heron triangles, which in particular leads to an
appealing way to represent and visualize the triangles in the main sequence.

We begin by considering Brahmagupta’s construction of rational Heron triangles,
which is based on concatenating two rational Pythagorean right triangles with a com-
mon height of length 2r , where a, b are the hypotenuses of the two triangles. So if
d, e are the bases of the two triangles, then we have

4r2 + d2 = a2, 4r2 + e2 = b2, ± (d ± e) = c, (4.1)
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where the choice of sign inside the bracket above depends on whether the two triangles
are joined back-to-back along their height, or are overlapping, and in the latter case
there is an overall sign outside depending on which of d or e is the larger.

The case of two overlapping right triangles with d > e is the situation relevant to
the triangle for n = 1 in the main sequence, and we denote the acute angles at the
base of each triangle by ψa, ψb, respectively. These two angles completely determine
the Heron triangle, up to scale, and we will refer to them as the Brahmagupta angles.
Then upon comparing with Fig. 1 it is clear that

ψa = π − β − γ, ψb = π − γ ′ + α′,

with Pa = cot(β/2), Xa = cot(γ /2) as before, and Mb = cot(α′/2), Xb =
cot(γ ′/2). So from 2r = a sinψa = b sinψb and trigonometric identities we can
write

r = a
(Pa + Xa)(PaXa − 1)

(P2
a + 1)(X2

a + 1)
= b

(Mb − Xb)(MbXb + 1)

(M2
b + 1)(X2

b + 1)
, (4.2)

while we have c = d − e with d = a cosψa , e = b cosψb, and then we reproduce
Brahmagupta’s formulae (1.2) by taking

p = a cos2
(

β + γ

2

)
, q = b sin2

(
γ ′ − α′

2

)
.

Once again we can rewrite the trigonometric functions in terms of the appropriate
Schubert parameters, to obtain

p

a
= (PaXa − 1)2

(P2
a + 1)(X2

a + 1)
,

q

b
= (Mb − Xb)

2

(M2
b + 1)(X2

b + 1)
. (4.3)

The above formulae have been written with the appropriate sign choices for the
(73, 51, 26) triangle, which has Brahmagupta parameters p = 49/13, q = 588/13,
r = 210/13.However, each of the lengths and Schubert parameters in the two different
expressions for r in (4.3) can now be replaced by their signed counterparts, imme-
diately yielding another relation, which is equivalent to an identity between elliptic
functions.

Theorem 4.1 For all n ∈ Z the identity

(s̄n − ān) sinψa,n = (s̄n − b̄n) sinψb,n
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Fig. 5 500 points on the orbit of the Brahmagupta angles for the main sequence

holds for the signed Brahmagupta angles ψa,n,ψb,n, which are defined in terms of the
Schubert parameters with signs by

sinψa,n = (Pa,n + Xa,n)(Pa,n Xa,n − 1)

(P2
a,n + 1)(X2

a,n + 1)
,

sinψb,n = (Mb,n − Xb,n)(Mb,n Xb,n + 1)

(M2
b,n + 1)(X2

b,n + 1)
.

(4.4)

The advantage of using these angles (which are allowed to be negative) instead of
the actual positive acute angles is that their sines are given by fixed rational functions
of the Schubert parameters, hence they define the same functions on the curve for
all n. By the same argument as in the proof of Theorem 3.7, this means that the
pairs (sinψa,n, sinψb,n) lie on an algebraic curve that is birationally equivalent to C.
The sequence of pairs of sines of (signed) Brahmagupta angles for n = 1, . . . , 500
is plotted in Fig. 5a, which shows that this plane curve has self-intersections, while
in Fig. 5b this is lifted to 3D by plotting the corresponding value of un as a third
component, showing a space curve without self-intersections.

As one more example of using elementary geometry to derive identities between
elliptic functions, we start from a formula for the tangent of the bisected angle opposite
side a, which is given on the first page of Schubert’s monograph [44], and in our
notation reads

tan

(
α + β

2

)
= (s − b)(s − c)

�
.

Theorem 4.2 The squares of the coordinates of the points on the orbit of the QRT map
ϕ associated with the sequence (1.15) are given as rational functions of five adjacent
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Table 8 Prime factors of the Schubert parameters in the sporadic cases

n Ma Pa Xa Mb Pb Xb

* 23 ·7 ·13
3 ·17 17 24 ·3

7 ·13 3 ·7 ·11
22 ·5 ·13

11 ·13 ·17
22 ·3 ·5 ·7

17
5 ·11

** 32 ·5 ·31
22 ·7 ·17

22 ·5 ·31
32 ·17

32 ·7
5 ·17

3 ·7 ·17
5 ·19

3 ·5 ·17 ·19
23 ·7 ·31

3 ·19 ·31
24 ·5 ·17

*** 23 ·19 ·47
32 ·11 ·23

32 ·11 ·17 ·47
23 ·7 ·19 ·23

2 ·7 ·11 ·47
17 ·19 ·23 24 ·32 ·7 ·17 ·23

5 ·11 ·19 ·97
2 ·7 ·11 ·17 ·19

5 ·23 ·97
5 ·11 ·19 ·23
25 ·32 ·97

**** 22 ·3 ·17 ·43 ·59
5 ·11 ·13 ·19 ·23

23 ·3 ·5 ·13 ·23 ·43
11 ·19 ·41 ·59

19 ·23 ·41 ·43
5 ·11 ·13 ·17 ·59

19 ·23 ·41 ·43
24 ·3 ·7 ·11 ·59

11 ·19 ·41 ·59
7 ·17 ·23 ·43 7 ·19 ·43 ·59

25 ·3 ·11 ·17 ·23

Table 9 Prime factors of the semiperimeter, reduced side lengths and area in the sporadic cases

n s s − a s − b s − c �

* 3 ·7 ·13 ·17 23 ·52 ·17 3 ·7 ·13 23 ·112 23 ·3 ·5 ·7 ·11 ·13 ·17
** 23 ·7 ·192 23 ·36 52 ·7 ·31 172 ·31 23 ·33 ·5 ·7 ·17 ·19 ·31
*** 23 ·32 ·112 ·192 25 ·32 ·52 ·7 ·17 232 ·472 7 ·17 ·972 24 ·32 ·5 ·7 ·11 ·17 ·19 ·23 ·47 ·97
**** 17 ·232 ·592 52 ·72 ·132 ·41 24 ·3 ·112 ·432 24 ·3 ·17 ·192 ·41 24 ·3 ·5 ·7 ·11 ·13 ·17 ·19 ·23 ·41 ·43 ·59

quantities fn by

v2n+2 = f 2n+1 f
3
n+2 + fn+4

fn+3( f 2n − fn+2 fn+4)
, v2n+3 = f 3n+2 f

2
n+3 − fn

fn+1( f 2n+4 + fn fn+2)
. (4.5)

Proof In terms of the Schubert parameters, the tangent of the bisected angle for the
nth triangle is (Pa,n +Ma,n)/(Pa,nMa,n −1), while the right-hand side can be written
in terms of ratios of Sn and Tn terms, and ultimately as fn fn+1 fn+2/ fn+4, so that
this becomes an identity for signed quantities. Then substituting for the Schubert
parameters from (3.5) and writing everything in terms of fn and vn , this produces the
formula

1

fn+4
= fn+2 fn+3 v2n+2 + 1

f 2n fn+3 v2n+2 − f 2n+1 f
3
n+2

;

the right-hand side above is a Möbius transformation of v2n+2, which is inverted to
obtain the first expression in (4.5). An analogous calculation starting from the corre-
sponding formula for the tangent of the bisected angle opposite side b produces the
second expression for v2n+3. ��

Remark 4.3 In principle one can use repeated application of the recurrence (2.44)
in (4.5) to eliminate fn+4, fn+3, fn+2 and write vn+2, vn+3 as rational functions of
fn, fn+1 only, then use (2.45) to simplify the resulting formulae; this would be a
rather tedious way to verify the 2-isogeny given by (2.52) in terms of these pairs of
coordinates. Since it involves the product (vn+2vn+3)

2, substituting for the latter with
(4.5) and applying the same method provides an alternative proof of the identity (3.9),
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which is equivalent to the linear relation (3.8) for the signed lengths, although from
the point of view of the logical progression of the paper this is a somewhat circular
argument, since Lemma 3.1 was one of the key steps in showing that the quantities fn
describe the geometry of the main sequence of Heron triangles as claimed.

5 Conclusions

We have proved all the empirical observations on the infinite sequence of Heron
triangles with two rational medians found by Buchholz and Rathbun in [7], and this
led us to explicit formulae for the side lengths, rational medians and the area in terms
of the Somos-5 sequences (1.14) and (1.15). The crux of our proof was to view the
underlying elliptic curve as a complex torus, and construct an analytic embedding of
this torus in the Schubert surface, such that the required algebraic identities for the two
sets of Schubert parameters are valid for all complex values of the argument, and in
particular at an infinite discrete set of points corresponding to the indices n ∈ Z. The
indices n � 1 provide infinitely many distinct triangles, while under the involution
n → −n − 4 the indices n � 0 correspond to the same set of triangles repeated with
reversed orientation via the symmetry a ↔ b, together with a finite number of singular
values.

It would also be possible to prove Theorem 3.3 by purely algebraic means, using
(2.44) and the 2-isogeny (2.52), but this would require extensive amounts of computer
algebra, without providing much insight into the problem. Our hope was that the
analytical approach would give a better understanding of the structure of the triangles
in the main sequence, and suggest whether this might allow the sporadic solutions to
be extended to other infinite families, perhaps by writing them in terms of different
Somos sequences, as well as possibly shedding some light on the harder problem of
showing why no perfect triangle exists. However, the detailed features of the solutions
in the main sequence appear to rely on specific arithmetical properties of the group
of rational points on the curve C, and even the particular numerical values of the
coordinates of the two generators, and we have been unable to generalize this to
produce one or more other infinite families. Nevertheless, the prime factors of the
Schubert parameters and reduced lengths for the sporadic triangles (see Tables 8 and
9) give tantalizing hints that there might be other families that these solutions could
belong to, only with a different structure compared with the main sequence. A more
extensive computer search, and the discovery of more new solutions, would provide
further evidence in this direction, or otherwise suggest that these four solutions are
truly sporadic.
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