
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kaleba, Sophie, Marr, Stefan and Jones, Richard E. (2021) Avoiding Monomorphisation Bottlenecks
with Phase-based Splitting. In: 16th ACM International Workshop on Implementation, Compilation,
Optimization of OO Languages, Programs and Systems. (Unpublished)

DOI

Link to record in KAR

https://kar.kent.ac.uk/89179/

Document Version

Author's Accepted Manuscript

Avoiding Monomorphisation Bottlenecks
with Phase-based Splitting

Sophie Kaleba
University of Kent

Canterbury, United Kingdom
S.Kaleba@kent.ac.uk

Stefan Marr
University of Kent

Canterbury, United Kingdom
S.Marr@kent.ac.uk

Richard Jones
University of Kent

Canterbury, United Kingdom
R.E.Jones@kent.ac.uk

Programming languages, such as JavaScript, Ruby or Python, rely
on a managed runtime to reach state-of-the-art performance (see
respectively V8 [2], JRuby [4], PyPy [7]). Such runtime systems
apply aggressive optimisations based on speculative assumptions:
one common assumption is that the behaviour of a program remains
mostly homogeneous at run time. However, literature [5, 6] on
the run-time behaviour of programs shows that programs contain
several distinct phases (i.e. intervals of time exhibiting a distinct
and relatively homogeneous behaviour) and that these phases may
also repeat. For instance, the backend of a scientific computation
web server can be viewed as such a program: first it analyses the
user request, then computes statistics on received data and lastly
outputs a plot.

In this talk, we discuss how programming language implemen-
tations overlook phases in program behaviour, and we investigate
how they could benefit from recognising and adapting to behaviour
changes between phases.

We focus on the performance of polymorphic calls and more
concretely on two optimisations: lookup caches and call-site met-
hod splitting. Lookup caches [3] are built upon the assumption
that a program has low variability: this kind of cache is stored at
call-sites to amortise the cost of method lookup and assumes that
only a limited number of call targets will be needed at run time.
Splitting, first implemented in SELF [3], aims at monomorphising
polymorphic call-sites. It copies methods such that their lookup
caches are more likely to contain only a single call target. This
optimisation helps reduce the dispatch cost, as well as further guide
inlining decisions. However, splitting has a memory overhead and
may increase compilation time.

Often during the initialisation of a program, lookup caches are
filled with call targets that will not be needed in the later phases
of the program. This hampers the dispatch performance [1], and
possibly prevents inlining. We explored this problem with two
micro-benchmarks and test them on TruffleSOM on top of GraalVM
and JavaScript on top of NodeJS/V8. In these benchmarks, some
call-sites can experience two types of phases: a polymorphic phase
or a monomorphic phase. A call-site is considered phase-sensitive if
its lookup cache is likely to contain non-needed targets during one
of these phases, e.g. typically if a polymorphic phase is followed by
a monomorphic phase. We measure the impact of phase-sensitivity
for both method call-sites and closure application sites.

Preliminary results show that lookup caches are indeed impacted
by phased behaviour. On TruffleSOM, a program having a method
call-site lookup cache containing non-needed entries is 31% slower
than the same program having this call-site being purely monomor-
phic. Same applies for closure application sites, where having a
lookup cache containing several non-needed entries leads to a 14.3%

slowdown. On NodeJS, we obtained respectively a 40% and a 19%
slowdown. These results suggest that phase-based monomorphisa-
tion based on splitting can increase performance.

We argue that using data on the high-level behaviour of a pro-
gram, especially phases, could guide splitting heuristics to improve
performance. We introduce a proof-of-concept prototype in Truf-
fleSOM that provides a minimal set of source code annotations to
identify phase-sensitive call-sites candidates for splitting and to
identify phase switches. Concretely, the first time a phase switch
occurs, the phase-sensitive call-site is split so that two versions of
the method(s) co-exist: one for the polymorphic phase and one for
the monomorphic phase.

We apply this prototype to our two micro-benchmarks to re-
spectively split a call-site and a closure application site that are
both phase-sensitive. The results are promising: splitting the phase-
sensitive call-site leads to an average 18.5% speedup compared to
baseline, i.e. a version of the program without annotation. Fur-
thermore, if we focus on the performance at the phase granularity,
we reach speedups ranging from 37% to 47.6% during monomor-
phic phases where the call-site lookup cache used to be filled with
non-needed targets. Likewise, splitting the phase-sensitive closure
application site leads to a speedup: 10% on average compared to
baseline, with speedups ranging from 21% to 23.2% when looked at
phase granularity. In addition, this particular use-case highlights an
interesting splitting issue: in this benchmark, a function parameter
takes a closure, which is later activated. This code structure is com-
mon in modern frameworks, causing closure application sites to be
polymorphic, without splitting heuristics as in GraalVM being able
to resolve it.

These experiments are a starting point to show that phased
behaviour is still overlooked, but suggest that a phase-aware light-
weight system guiding dynamic optimisations could offer signifi-
cant performance improvements. For instance, this approach could
help reduce the overhead of frameworks and the indirection they
introduce by monomorphising performance-critical code. In the
last part of this talk, we will describe what could be the future
of this project in terms of implementation choices. We will also
discuss other dynamic optimisations that could benefit from phase
awareness.

REFERENCES
[1] Guido Chari, Diego Garbervetsky, and Stefan Marr. 2017. A metaobject proto-

col for optimizing application-specific run-time variability. In Proceedings of the
12th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems. 1–5.

[2] Google. 2008. Google V8 code source repository. https://github.com/v8/v8

https://github.com/v8/v8

Sophie Kaleba, Stefan Marr, and Richard Jones

[3] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In European
Conference on Object-Oriented Programming. Springer, 21–38.

[4] JRuby. 2006. JRuby: The Ruby programming language on the JVM. http://jruby.
org/

[5] Priya Nagpurkar. 2007. Analysis, Detection, and Exploitation of Phase Behavior
in Java Programs. (2007), 217.

[6] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong. 2006.
Detecting phases in parallel applications on shared memory architectures. In

Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
IEEE, Rhodes Island, Greece, 10 pp. https://doi.org/10.1109/IPDPS.2006.1639325

[7] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual machine
construction. InCompanion to the 21st ACM SIGPLAN symposium onObject-oriented
programming systems, languages, and applications (OOPSLA ’06). Association for
Computing Machinery, Portland, Oregon, USA, 944–953. https://doi.org/10.1145/
1176617.1176753

http://jruby.org/
http://jruby.org/
https://doi.org/10.1109/IPDPS.2006.1639325
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/1176617.1176753

