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Abstract: Multi-unit parallel production systems (MuPPSs) widely exist in many industries. A general 

requirement for a MuPPS is that each production system should continuously operate and its 

downtime should be as short as feasible. For such systems, optimising preventive maintenance (PM) 

policy is crucial so that resources such as the number of spare units and that of repairmen can be 

optimally used. On this basis, this paper develops an optimal model jointly optimising the PM policy 

and the number of repairmen and spare units, for which the genetic algorithm is used. A real case 

study of a train working line is presented to demonstrate the necessity of the proposed model. Finally, 

sensitivity analysis is conducted to assess the influence of some parameters on the optimal results. 

Key words: Joint optimisation; Maintenance policy; Maintenance resource; Multi-unit parallel 

production system; transportation system. 
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1.Introduction 

1.1Motivation 

Multi-unit parallel production systems (MuPPSs) widely exist in the continuous production 

industries, such as manufacturing, railway and civil aviation. A general requirement for a MuPPS is 

that each production line should continuously operate and its downtime should be minimised. To this 

end, one may consider two alternative solutions on maintenance: two types of maintenance approaches 

are performed:  

 The first type regards each production line as a multi-unit series system, where some units can 

be maintained on the line, and the production line can continuously operate by relying on the 

buffer storage. The upstream and downstream of the buffer storage for the unit is the focus for 

maintaining the operation. Many research were conducted to address this issue (Gan et al., 

2013; Wu & Do, 2017; Zhou et al., 2018).  

 The second type is that the production line is viewed as one unit, which can be replaced by a 

spare part and maintained off-line to keep the production operating. In this type, the allocation 

of the maintenance resource should jointly consider the PM policy and the number of spare 

units and repairmen/teams( Zhang et al., 2018).  

From an economic viewpoint, resource allocation is a crucial issue for some firms, especially in 

the case of large MUPPSs. On the one hand, a large number of spare units and repairmen/teams can 

result in the waste of resources. On the other hand, the availability of a production system can be 

affected because of a lack of sufficient maintenance. Consequently, with the enhancement of operating 

units in reliability and economy, a challenge for these production systems is that each production line 

or operating unit should avoid stoppages as much as possible; even one stoppage is disallowed in some 

normal operating systems. The joint consideration of PM policy and the numbers of operating units 

and repairmen/teams are a vital issue for some enterprises; these aspects are traditionally treated in 

isolation, while these aspects have been traditionally treated almost in isolation. Based on this 

consideration, this paper focuses on the second type and discusses its application in a continuous 

production system. Therefore, the purpose of this paper is to determine how to jointly optimise the PM 

policy and the number of spare units and repairmen/teams for MuPPSs with fixed production lines. 

1.2 Releated works 

Several studies were performed to establish optimal maintenance policies based on different point 

of views. Most of them focused on maintenance optimisation and devoted little attention towards the 

configuration of the maintenance resource for the manufacturing system. Several works suggested that 

the group maintenance for the multi-unit system can save maintenance cost(Chiu et al., 2018). 

However, a dilemma is present between maintenance and production for MuPPSs in the continuous 

production industry. To resolve this dilemma, maintenance, the number of operating units,, and the 

number of repairmen should be jointly considered in decision-making. Ni et al. (2015) emphasized 

that production is often interrupted by a prescheduled PM without considering the throughput target 

and PM tasks are not conducted in a cost-effective manner. They investigated the extra hidden 

opportunities for PMs during production time without violating the system throughput requirement. 

https://dict.cnki.net/dict_result.aspx?scw=%e4%b8%8a%e4%b8%8b%e6%b8%b8&tjType=sentence&style=&t=upstream+and+downstream
https://dict.cnki.net/dict_result.aspx?scw=%e8%b5%84%e6%ba%90%e9%85%8d%e7%bd%ae&tjType=sentence&style=&t=resource+allocation
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Zhou et al. (2016) studied the maintenance optimisation of a parallel-series system by considering the 

stochastic and economic dependences amongst the components, as well as a limited maintenance 

capacity. Wu (2019) proposed an exponential smoothing of intensity model and investigated its special 

case model, both of which model the failure process of a series system composed of multiple 

components. Kumar & Lad (2017) considered the interdependence of production and maintenance 

plan and the direct relationship between product quality and maintenance plan and proposed an 

integration method for the production and maintenance plans of a parallel production system. Their 

method aims to determine the best production and maintenance plans to minimise the overall operating 

cost. Yoo & Lee (2016) searched a coordinated scheduling scheme for the operations and maintenance 

activities of parallel machines to minimise the scheduling cost represented by the completion time, 

weighted sum of completion times, maximum completion delay and sum of completion delays. Wu & 

Scarf (2017) modeled the repair effect in multi-unit systems with a stochastic process, and proposed 

two models for the failure process of a series system that overcome the limitations of existing models 

that are either restrictive or require knowledge of the failure process for individual components. Zhao 

et al. (2019) developed a maintenance modeling and optimization framework for single-unit systems 

with atypical degradation path of which the pattern is influenced by inspections. The paper assumed 

that the system degradation is decreased to a random value instantaneously after each inspection and 

the degrading rate is elevated due to the inspection. Zahedi-Hosseini et al. (2018) established a model 

of joint inspection and spare part inventory policy for maintenance units in a parallel system, where 

simultaneous shutdowns seriously affect the production performance and incur losses. Pargar et al. 

(2017) studied PM and renewal scheduling for multi-unit systems and developed an integrated 

optimization method to schedule PM and renewal projects by grouping them and simultaneously 

finding the optimal balance between them. Sun et al. (2020) quantified the benefit of incorporating the 

reallocation into the CBM framework on series systems, and the optimal control limits for reallocation 

and preventive replacement are investigated based on the periodic inspection framework. Dui et al. 

(2019) proposed an extended joint integrated importance measure (JIIM) to effectively guide the 

selection of PM components, aiming to maximize gains of the system performance. A multi-valued 

decision diagram based method is then developed to evaluate the proposed JIIM for general repairable 

systems. Zhao et al. (2020)presented a joint inspection and spare ordering policy for a single-unit 

system with two levels of defective states, and introduced a threshold level to decide whether to place 

an emergency order or wait for the normal order when the normal ordered spare hasn’t been delivered. 

Liu et al. (2017) developed a maintenance policy for a multi-unit system subject to hidden failures and 

the inspection intervals for each component was determined by minimizing the long-run cost rate. 

Cheng et al. (2017)presented a joint optimization model of production lot sizing and CBM for a multi-

unit production system which produces the products to meet the demand in a finite time horizon. Gao 

et al. (2020) investigated the joint optimization of lot sizing and maintenance policy for a multi-product 

production system subject to a soft or hard failure modes. de Jonge & Scarf (2019) reviewed 

maintenance optimisation models for multi-unit systems and pointed out that the joint optimization of 

spare units ordering and maintenance is mainly considered. 

From the above review, it is found that little research on jointly considering normal production, 

the number of repairmen and spare units to optimise PM policy has been devoted. Nevertheless, it is 

vital to determine some maintenance recourse configurations for enterprisers. Too many repairmen 

and spare units for a fixed production line can result in resource waste, whereas too few may lead to 

some stoppages due to needs of repairmen or spare units. Consequently, how to jointly consider normal 

production, the number of repairmen and spare units to optimise PM policy is a meaningful issue. 



4 
 

Based on this consideration, this paper mainly orients the MuPPS in continuous production systems 

and develops an optimisation model to obtain the optimal PM and the number of repairmen and spare 

units. Furthermore, it determines the optimal displacement sequence of spare units using the genetic 

algorithm (GA) according to the optimal PM policy and the number of repairmen and spare units. To 

illustrate the proposed model and method, a real case study of a train working line is exampled and 

sensitive analysis of some parameters are discussed in the last section. 

1.3Novelty and contributions 

The novelty and contributions of this work are: 1) it presents a modelling method that depicts the 

cycle operating process of the MuPPS in continuous production systems to be a single-periodic 

operating diagram; 2) it considers the joint optimisation of PM and the number of repairmen and spare 

units, whereas this problem is much applied; 3) it proposes an optimal method of the displacement 

sequence for spare units according to the optimal results of PM and the number of repairmen and spare 

units, this method can solve the operating order of spare units and repairmen. 

The remainder of this paper is organized as follows: Section 2 introduces maintenance and its 

assumptions; Section 3 details the modeling and optimization; Section 4 gives a real case study; and 

Section 4 concludes this paper. 

2 Maintenance and assumptions 

On the basis of the requirements of MuPPSs in continuous production systems, we investigate 

the joint optimisation of the PM policy and the number of spare units and repairmen/teams for 

MuPPSs with fixed production lines to introduce the operating and maintenance processes. The 

modelling assumptions are discussed in this section. 

2.1 Maintenance process 

A MuPPS in continuous production systems with M production lines requires M units to keep 

operating. To satisfy this requirement, one or more spare units and repairmen/teams are needed to 

maintain or replace operating units. For the convenience of analysis, this study regards   repairman 

as a repair team, and overhaul is an exchangeable term of replacement. PM is periodically executed 

on the operating units at kT (k=1, 2,…, N-1), and the spare units are preventively maintained at an 

accumulated operational time Tst. Preventive replacement for the operating units is performed at NT, 

followed by that for the spare ones. Minimal repair is conducted upon unit failures. If more than one 

unit in the system is under PM, the number of repairmen and spare units can be increased to prevent 

the production line from stopping operating. 

Railway transportation is a typical MuPPS in continuous production systems. To understand the 

maintenance mechanism, we take the transportation of locomotives in a firm in China as an example 

to illustrate the relevant operating and maintenance processes. A typical example of a one-way train 

working diagram is shown in Fig. 1, which includes the cyclic graph of the diagram (Fig. 1(a)) and 

the expanded graph (Fig. 1(b)). The four operation lines are marked with different colours, and letters 

A–I denote the nine stations, respectively. The 𝑋-axis is the calendar time. Herein, locomotives are 

viewed as units of a MuPPS. For instance, at 18 PM, locomotive 1 starts operation at line 1, 

locomotive 2 operates from station C to station B, locomotive 3 operates from station H to station G 

and locomotive 4 is waiting at station F. The cycle iterates. The four lines are typical MuPPSs with 

four operating units, in which each production line must continue operating as much as possible. The 

production tasks are performed by different locomotives, which include operating and spare units. 
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The operating unit is replaced by the spare unit when the former requires PM, and one or more 

repairmen are hired to perform the maintenance. 
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(a) Cyclic graph of train working 

diagram 
(b) Expended graph of train working diagram 

Fig. 1 Train working diagram 

The operating cycle of the transportation of the locomotives is displayed in Fig. 2(a). The 

expanded graph presented in Fig. 2(b) illustrates a typical MuPPS in a continuous production system 

that includes four operating lines and can therefore be viewed as a four-unit MuPPS. This MuPPS is 

assumed to comprise one repairman, one spare unit, one PM activity, and one preventive replacement. 

The PM interval, PM time, and preventive replacement time are denoted by T, Tp and Tr, respectively, 

and Tp=Tr. One belt denotes one production line, and the three different rectangles represent the 

operating, PM and preventive replacement time, respectively. Spare units can replace the operating 

units if the latter is being preventively maintained. The operating process of the four-unit parallel 

system can be regarded as an infinite loop from the beginning of the operation to system replacement 

if the system maintains a long-term operation. 

  

(a) Cycle graph of four-unit 

production system 

(b) Expanded graph of four-unit 

production system 

 Operating time    PM time    Preventive replace time 

Fig. 2 Operation process graph of MuPPS 

2.2 Assumptions 

Based on the above-described operating and maintenance process, we make the following 

assumptions. 

(1) The MuPPS includes M production lines and operating units, Ms spare units and Mr repairmen. 

The operating and spare units are identical. The spare units are only used to replace the operating 

units when the latter requires PM, and a repairman can only repair one unit at a time point. 

(2) The failure of each unit can be immediately detected and undergo minimal repair, and time 
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on minimal repair can be neglected. 

(3) For a new unit, the failure intensity function h(t) monotonically increases in the operating 

time. A PM not only brings hi(t) to 0, but also alters hi(t): hi(t)=aih(t) before the ith PM (i=1, 2, …, 

N), where 1=a1<a2<…<aN (Nakagawa, 1988). 

(4) A PM interval for spare units Ts and that for operating units T are different and are a fixed 

values, where α1T≤Ts≤α2T (1<α1, α2>1). Let n denote the mean PM times for a spare unit within each 

PM interval of operating units. Therefore, n relates to N and M. The value of n is an 

array{
1

𝑁
,

1

𝑁−1
, ⋯ ,1,

𝑀

𝑀−1
,

𝑀

𝑀−2
, ⋯ , 𝑀}. The mean Ts is 𝑇𝑠𝑡 = 𝑀𝑇𝑝 𝑛⁄ , where Tp is the PM time and is 

constant. 

(5) The costs of the minimal repair, PM and replacement are denoted by Cf, Cp, and Cr, 

respectively. They are constant and Cr>Cf>Cp. The cost rate Cd , incurred due to the waiting time for 

the spare units and Cw on repairmen are also constant. 

In practice, time on minimal repair is normally shorter than time on PM to avoid stopping 

operating. It depends onengineers’ experience and the availability of spare parts, while time on PM 

is relatively constant. For instance, minimal repair on an engine of one diesel locomotive may take 

several hours (usually less than 3 hours), while time on PM may typically take 3 days. As such, the 

minimal repair time is neglected in this study. 

3 Modeling and optimization 

This section provides the details of the joint optimisation modelling of the PM policy, the number 

of spare units, and the number of repairmen. An example is presented to elaborate the modelling 

process of the MuPPS, and the specific steps of the optimisation are discussed. 

3.1 Modeling 

For the MuPPS in continuous production systems, its modelling process based on the expanded 

graph is illustrated as follows. According to the analysis of the maintenance process, both the numbers 

of spare units Ms and repairmen Mr relate to the length of the PM interval T, the number of operating 

units M, PM time Tp, and the mean PM interval for spare units Tst. T is a main factor for the 

determination of other parameters, and thus the modelling is discussed based on the situations of 

different ranges T and values of n. 

For illustration purposes, a MuPPS with parameters M=12 and N=5 is presented as an example 

to introduce the modelling process. According to the definition of n, n={1/5, 1/4 ,1/3, 1/2, 1, 12/11, 

12/10,…, 12}. The operating processes of n=12/5 at three different ranges of T is illustrated in Fig. 3, 

as an example to illustrate the model process. 

All units of the MuPPS illustrated in Fig. 3 are new at the beginning. The expression n=12/5 

means that the spare unit is preventively maintained for n=2.4 times in each PM interval, and 

Tst=12×Tp×5/12=5Tp. Selection of Mr with different range of T is shown in Table 1. One spare unit is 

infeasible under the condition, thus two spare units and one repairman are considered in subplot (a). 

Two spare units and repairmen are considered in subplot (b), and three spare units and repairmen are 

considered in subplot (c) of Fig.3. 
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(a) 𝑇 > (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝 

 

                   

 
(b) (

𝑀+⌈𝑛⌉

2
− 1) 𝑇𝑝  ≤ 𝑇 < (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝 

 

(c) (
𝑀+⌈𝑛⌉

3
− 1) 𝑇𝑝 ≤ 𝑇 < (

𝑀+⌈𝑛⌉

2
− 1) 𝑇𝑝 

repairman 1 repairman 2 repairman 3 spare unit 1 spare unit 2 spare unit 3 

Fig.3 Operating process of MuPPS (n=12/5) 

In the first PM interval (Fig. 3[a]), the operating units start to run, while the spare units are in 

the cold standby state, and the repairman is available. Suppose that the operating units have been 

operated for some time, and then units 1~5 are preventively maintained in sequence. Spare unit 1 

replaces operating units 1~5 when each of them undergoes PM. Further, spare unit 1 is preventively 

maintained and takes the places of operating units 6~10 when each of them is in PM. Subsequently, 

spare unit 1 is preventively maintained again and then replaces operating units 11 and 12 when each 

unit undergoes PM. The following PM intervals are the same as the first one. In the last PM interval, 

preventive replacement is performed for all operating and spare units, and a new cycle continues. In 

Figs. 3(b) and 3(c), the operating and maintenance processes are the same as those illustrated in 

subplot (a) of Fig.3. 

The numbers of the repairmen and spare units are the key to the effective allocation of 

maintenance resources and control of the maintenance cost, so is the waiting time of the repairmen. 

Therefore, the maintenance model is closely related to these parameters. The method for determining 

these parameters are explained as follows. 

(1) Mr and Tr 

The number of repairmen Mr increases if two or more units are at the PM state at the same time. 

As shown in Figs. 3 and 4, Mr is related to the length of T, which is affected by M, N, n and Tp., 

respectively. For a long T, the PM tasks can be dispersed within the PM interval, whereas repairmen 

need increase to implement the PM tasks for a short T. Additionally, a small M means less Mr, a small 

n denotes less PM times for spare units, and a short Tp can arrange more PM tasks. Consequently, Mr 

is closely related to T. The relationship between T and Mr is expressed in Table.1. 
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Table.1 Relationship between T and Mr 

T 𝑀𝑟 

[(𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝 , +∞] 1 

[(
𝑀 + ⌈𝑛⌉

2
− 1) 𝑇𝑝  , (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝] 2 

[(
𝑀 + ⌈𝑛⌉

3
− 1) 𝑇𝑝  , (

𝑀 + ⌈𝑛⌉

2
− 1) 𝑇𝑝] 3 

⋮ ⋮ 

[0 , (
𝑀 + ⌈𝑛⌉

𝑘 − 1
− 1) 𝑇𝑝] k 

The total waiting time of the repairmen Tr is related to the starting time and completion time of 

the system replacement, as well as to the work time of the repairman. Therefore, Tr can be expressed 

as 

𝑇𝑟 = 𝑀𝑟(𝑁(𝑇 + 𝑇𝑝) + (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝) − (𝑀𝑁 + ⌈𝑁𝑛⌉)𝑇𝑝 

(2) Ms and Ts 

The number of spare units Ms is related to the values of M and n, and their relationship is 

explained as follows. 

i) If n is an integer and n<1, Ms=Mr. 

ii) If n is not an integer and n>1, a shortage of repairmen occurs at the end of a PM cycle, as 

shown at the end of the third PM interval in Fig. 3(b). Therefore, 𝐼 = 𝑀\ (
𝑀

𝑛
), where ‘\’ indicates 

taking the remainder. The number of spare units is 2 if the PM interval is sufficiently large. Ms is 

determined as follows. 

iii) If (
𝑀

𝑛
) \𝐼 = 0, 

𝑀𝑠 = {
2  
𝑀𝑟

                
𝑇 ≥ (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                           (1) 

iv) If (
𝑀

𝑛
) \𝐼 ≠ 0, 

𝑀𝑠 = {
2         
𝑀𝑟        
𝑀𝑟 + 1    

        

𝑇 ≥ (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝

𝑁 < ⌈(𝑀 𝑛⁄ ) 𝐼⁄ ⌉ 𝑎𝑛𝑑 𝑇 < (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝

𝑁 ≥ ⌈(𝑀 𝑛⁄ ) 𝐼⁄ ⌉ 𝑎𝑛𝑑 𝑇 < (𝑀 + ⌈𝑛⌉ − 1)𝑇𝑝

         (2) 

The waiting time of the spare unit Ts is related to the starting time of the system and the 

completion time of the spare unit replacement, as well as to the work time of the spare units. Therefore, 

Ts is determined as 

𝑇𝑠 = 𝑀𝑠𝑁(𝑇 + 𝑇𝑝) − (𝑀𝑁 + ⌈𝑁𝑛⌉)𝑇𝑝                          (3) 

After the determination of the parameters, the long-term operating cost rate of the system can be 

established. The renewal cycle of the MuPPS is a loop between the starting and completion times of 

the replacement for every unit. Y denotes the length of the renewal cycle. The cost of the minimal 

repairs, PM, preventive replacement, waiting time of spare units, and waiting of repairmen will be 
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incurred during the renewal cycle. Denote the total cost as C. Hence, C and Y form a renewal reward 

process. According to the renewal reward theorem, the long-term operating cost rate of the system is 

expressed as 

𝑔(𝑇, 𝑛, 𝑁, 𝑀𝑠, 𝑀𝑟) =
𝐸[𝐶]

𝐸[𝑌]
. (4) 

The cost of minimal repairs includes the costs of the operating and spare units (CF1 and CF2, 

respectively) when both units are operating. 

𝐶𝐹1 = 𝐶𝑓𝑀 ∑ 𝐻𝑖(𝑇)𝑁
𝑖=1 ,                           (6) 

and 

𝐶𝐹2 = 𝐶𝑓𝑀𝑠 {∑ 𝐻𝑖(𝑇𝑠𝑡) + 𝐻⌈𝑁𝑀𝑇𝑝 (𝑀𝑠𝑇𝑠𝑡)⁄ ⌉(𝑁𝑀𝑇𝑝 𝑀𝑠⁄ − 𝑇𝑠𝑡 𝑁𝑀𝑇𝑝 (𝑀𝑠𝑇𝑠𝑡)⁄ )
⌊𝑁𝑀𝑇𝑝 (𝑀𝑠𝑇𝑠𝑡)⁄ ⌋

𝑖=1
},    (7) 

where 𝐻𝑖(𝑇) = ∫ ℎ𝑖(𝑡)
𝑇

0
𝑑𝑡. 

The cost of PM CP is determined by the PM times for the operating and spare units, that is, 

𝐶𝑃(𝑛) = 𝐶𝑝(𝑀(𝑁 − 1) + 𝑁𝑝),                          (8) 

where Np is the number of PM for spare units during a renewal cycle, which can be determined as 

 

𝑁𝑝 = {
0                            𝑁𝑛 ≤ 𝑀𝑠

⌈𝑁𝑛⌉ − 𝑀𝑠                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (9) 

 

The replacement cost CR is related to the number of operating and spare units and can be defined 

by 

𝐶𝑅 = 𝐶𝑟(𝑀 + 𝑀𝑠)                          (10) 

 

Lastly, the cost incurred due to the waiting time includes the cost of the repairmen CW and the 

cost of spare units CD, which can be expressed as 

𝐶𝑊 = 𝐶𝑤𝑇𝑟  

𝐶𝐷 = 𝐶𝑑𝑇𝑠                                 (11) 

 

The specific expression of the long-term operating cost rate of the system 𝑔(𝑇, 𝑛, 𝑁, 𝑀𝑠, 𝑀𝑟) is 

written as 

𝑔(𝑇, 𝑛, 𝑁, 𝑀𝑠, 𝑀𝑟) =
𝐶𝐹1 + 𝐶𝐹2 + 𝐶𝑊 + 𝐶𝐷 + 𝐶𝑃(𝑛) + 𝐶𝑅

𝑁𝑀(𝑇 + 𝑇𝑝)
 (12) 

3.2 Optimization 

In Eq.(11), g(•) has five variables, among which only T is a continuously variable and the rest is 

discrete variable. According to Eq.(12), given an initial value for N=1, Mr=1, Ms=1 and n, one can 

use the function fminbnd(•) in Matlab to find the minimal value of 𝑔(𝑇, 𝑛, 𝑁, 𝑀𝑠, 𝑀𝑟): gmin. One can 

then increase each discrete variable and search gmin. A set of gmin’s can be sought and a minimum gmin 

can be determined. A brief optimisation process is introduced by the N-S flowchart shown in Fig. 4. 
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Input parameters

2 N

1 Mr

1 Ms

Compute n={n1,…,nmax}

Solve Eq[11]

 Gmin=[gmin]

 n1=nmaxY N

Ms+1 Ms

 n1=nmax

Ms=MsmaxN Y

MrMr+1

 n1=nmax

Mr=MrmaxN Y

NN+1

 Mr=Mrmax

N=NmaxY N

gmin=min[Gmin]

 N=Nmax

Output optimal results  
Fig.4 Optimisation process 

3.3 Determination of displacement sequence 

PM time is a fixed interval and n* usually is fraction. It is therefore difficult to determine the 

sequence of spare units to displace operating units when they are in the PM state. Based on the PM 

plan for each operating unit, there are two situations on the displacing process of spare units: One is 

without an overlapping area and the other is with an overlapping area, which are illustrated in Fig. 5 

and Fig. 7, respectively. The system has one repairman and spare unit in Fig. 5, and two spare units 

and repairmen, as shown in Fig. 7. For a system without an overlapping area, one spare unit is 

arranged to displace the operating unit, whereas two are needed in an overlapping area. Meanwhile, 

PM is limited by the number, Mr, of repairmen, which makes PM units less than or equal to Mr and 

Ms. With this character, we discrete the displacing time of spare units with a mean length Tst, and then 

use the optimization algorithms to determine the displacement sequence of spare units operating time. 

Herein, the genetic algorithm (GA) is used since it is widely used to seek the global optima 

(Sriskandarajah et al., 1998). 

Displacement length

Without overlapping area Without overlapping area Without overlapping area
Without PM 

area
Without PM 

area

 

0 0 p 0 1111 1 p 1 1 1 1 1 11 1 1 1 1 p 0 0 0 p 11pp 0 0 0 0 0 0 0 0

R

S1

Without overlapping area Without PM area Without overlapping area Without overlapping areaWithout PM area

…… ……

…… ……

……

…… ……

……

……

……

D1 D2 Di Di+1 Dj Dj+1 Dk

Displacement length

 
Fig. 5 No overlapping area 
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To explain the optimisation of the displacement sequence of spare units, we present some 

definitions: Displacement length is a period from operating of the first spare unit to the replacement 

of the last one, and which includes of some bytes di. The value of di is {0, 1, p}, 0 standing for no PM, 

1 for displacement for one operating unit and p for PM for one spare unit. The length of one byte 

equals to Tp. Displacing length includes some Di’s, which is the total operating length of a spare unit 

after a PM and displayed in Fig.6. The total PM and replacement times for spare units is K, as defined 

in Eq.(12). 

1 1 1 1 1 p1

Di

p 1 1

d1 d2   d3   d4  d5  d6  d7  d8

……

di

 
Fig. 6 Plot of Di 

Si denotes the ith spare unit, the total length of Si is the displacement length. For two spare units 

shown as Fog.7, the value of each byte in S2 is determined according to S1. The value di in no 

overlapping area of S2 is 0 or p if it is 1 at corresponding byte of S1, otherwise di is 1 in S2 if 

corresponding byte of S1 is 0 or p. In overlapping area, dis are all 1 in S1 and S2 because the system 

has two repairmen and spare units. 

Without overlapping area
Without 

overlapping 
area

Without overlapping area
Overlappin

g area
Overlapp
ing area

Displacement length

 

1 1 1 1 1111 1 p 1 1 1 1 1 11 1 1 1 1 p 1 1 1 1 11pp 0 0 0 0 0 0 0 0

1 1 1 1 pp11 0 1 0 0 0 0 0 00 0 0 0 0 1 1 1 1 1 pp11 1 1 1 1 1 1 1 1

R

S1
S2
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…… ……

……

……

……

……

……

…… ……
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……

……

……

……

D1 D2 Di Di+1 Dj Dj+1 Dk Dk+1

Displacement length

 

Fig.7 Overlapping area>0 

According to the definition of n*, D0 is defined in Eq.(14). There are many combinations of Di 

under the limitation of Tst, and the optimal displacement sequence is close to D0 because it is limited 

by the spare units and repairmen. Thus, we define the objective function Pmin as bellow. Then, use 

GA to obtain the optimal displacement sequence of spare units. 

Objective function: 𝑃𝑚𝑖𝑛 = √∑ (𝐷𝑖 − 𝐷0)2𝐾
𝑖=1                                        (13) 

where 𝐾 = ⌈𝑛𝑁⌉, 𝐷0 = {
𝑀(𝑁 − 𝑖)    if 𝑛 = {

1

𝑁
,

1

𝑁−1
, ⋯ ,

1

𝑁−𝑖
, ⋯ 1}

𝑀 − 𝑖    if 𝑛 = {
𝑀

𝑀−1
,

𝑀

𝑀−2
, ⋯ ,

𝑀

𝑀−𝑖
, ⋯ , 𝑀}

 and 𝐷𝑖 = ∑ 𝑑𝑖
𝑚
𝑖=1        

(14) 

4 Application in transportation systems 

This section presents a real case study of the railway transportation line in area district in 

Northwest China to illustrate the application of the proposed model. Sensitivity analysis is also 

conducted to determine the influence of the parameters on the optimal results. 
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4.1 Introduction of railway production line 

The roundtrip transportation task of a railway line in one area is fulfilled by several fixed 

locomotives, and thus it is a typical MuPPS. To illustrate the application of the proposed model, Fig. 

8 displays the working diagram of a passenger train in a district in Northwest China. In this working 

diagram, six carriages of a passenger train travel back and forth between stations A and D. That is, 12 

locomotives serve as the operating unit roles to drive the passenger trains. For example, assume that 

the locomotive driving passenger train T9534 is L, starts from station A at 13:45 and arrives in station 

D at 6:20. Then, it drives train K9786 from station D at 18:30 and arrives in station A at 13:40 the 

next day. The six pairs of locomotives are arranged to repeatedly drive the six carriages of passenger 

trains until one of them requires PM. The locomotive that needs PM is overhauled by a spare one. 

The distance between each two stations is 500 km, and the round trip for one locomotive is 3000km. 

To ensure normal operation, the system needs several spare locomotives and repairmen. Spare 

locomotives remain at the standby state, and the repairmen are free when the operating locomotives 

do not require PM. Determining the PM policy and the required number of spare locomotives and 

repairmen is therefore important for the firm. 
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Fig. 8 Train working diagram in one Chinese area 

The distance between each two stations is 500km, and the round trip for one locomotive is 

3000km, marked as T0=3000km. Thus, the operating time is an integer multiple of T0, and the Eq.(12) 

can be adjusted as Eq.(15). 

𝑔(𝑘, 𝑛, 𝑁, 𝑀𝑠, 𝑀𝑟) =
𝐶𝐹1+𝐶𝐹2+𝐶𝑊+𝐶𝐷+𝐶𝑃(𝑛)+𝐶𝑅

𝑁𝑀(𝑘𝑇0+𝑇𝑝)
                  (15) 

where k=1,2,… 

According to (Z. Zhang et al., 2012), the failure intensity h(t) of the diesel locomotive in this 

area follows the two-fold Weibull competing risk model. The expression is stated as below and it is 

used in the following optimisation modelling. 

Commented [SW1]: Is this correct? 
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ℎ(𝑡) = 2.84 × 10−5 (
𝑡

30239
)

−0.14

+ 1.17 × 10−4 (
𝑡

26519
)

2.1032

 

 

4.2 Optimization 

To optimise the PM policy and the number of spare units and repairmen, the following additional 

assumptions are made. 

1) The spare locomotives serve as replacements when the operating locomotives need to be 

preventively maintained or overhauled. 

2) The result of the overhaul is the same as that of replacement, and the former can render the 

locomotive to a ‘good as new’ state. After the ith PM, ai=4i/(3i+1), where i=1, 2, …, N. 

The other assumptions remain the same as those enumerated in Section 2. The corresponding 

parameters in this case are listed in Table 2. 

Table 2 Parameters 

Items Parameters Items Parameters 

M 12 Cd 10¥/km 

Tp 3000km Cw 50¥/km 

Cp 70,000¥ Cr 90,000¥ 

Cf 80,000¥   

 

The optimal results after minimising Eq.(12) through the proposed optimisation method are 

summarised in Table 3. 

Table 3 Optimal results 

Items Value Items Value 

gmin 9.331 Mr
* 2 

N* 6 Ms
* 2 

k* 7 n* 12/8 

Table 3 shows that the long-term operating cost rate of the system is 9.331¥/km, and the railway 

transportation system from station A to station D requires 12 operating locomotives, two repairmen 

and two spare locomotives. The operating locomotives are preventively maintained in sequence with 

a PM interval of seven round trips (21,000 km), and overhauls are performed on the operating and 

spare locomotives at the fourth PM. The PM for spare locomotives is implemented with a mean 

interval of 𝑇𝑠𝑡 = 𝑀𝑇𝑝 𝑛⁄ = 24,000 km. PM and preventive replacement times for spare units is 

nN=12/8×6=9, thus one spare unit is 4 and another is 5. 

According to the optimal results, n*=12/8 and N*=6, which means K=9 and D0=8. 𝑃𝑚𝑖𝑛 = √8 

can be obtained using GA. For the first spare unit, D1=(1111111), D2=(111100011111), 

D3=(000111100011111) and D4=(1111111110000). For another spare unit, D1=(000000011111111), 

D2=(1111111), D3=(1111111) and D4=(1111111), D5=(11110011111). Based on these results, the 

detailed workflow flowchart is shown as Fig.9. 
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Operating unit Spare unit 1 PM ReplacementSpare unit 2  

Fig.9 Workflow flowchart 

According to the above works, the optimal configuration for the train transportation system can 

be determined. This work can inspire a new idea for PM and maintenance recourse configuration of 

train transportation and some similar MuPPSs. 

4.3 Sensitive analysis 

M, Tp and ai are significant parameters of the MuPPS because they affect the number and waiting 

time of repairmen and spare units. Therefore, the influences of these factors should be analysed. 

a) Influence of M on the optimal results 

The number of operating units M characterises the scale of the MuPPS. Fig.10 presents the 

optimal results with different M values. The minimum values of gmin as M increases are illustrated in 

Fig. 10(a). The value of gmin steadily changes with the increase in M. Under these circumstances, the 

optimal Mr* and Ms* maintain a stepwise growth.  Zhang et al. (2018) found that an optimal M exists 

for one repairman and spare unit. Figs. 10(b), 10(c) and 10(e) exhibit the optimal values of N*, k* and 

n* with the increase in M. These figures show the unclear tendency of the change of M and therefore 

suggest that the optimal number of repairmen and spare units and the optimal PM policy are closely 

related to M. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 10 Sensitive analysis of M 

b) Influence of Tp on optimal results 
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Table.4 The optimal results with different Tp 

Tp 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 

gmin 9.376 9.353 9.313 9.313 9.297 9.331 9.313 9.292 9.273 9.254 9.495 

N* 6 6 6 6 6 6 6 6 7 7 5 

k* 6 6 6 6 6 7 7 7 7 7 8 

Mr* 2 2 2 2 2 2 2 2 2 2 2 

Ms* 2 2 2 2 2 2 2 2 2 2 2 

n* 12/8 12/8 12/8 12/8 12/8 12/8 12/6 12/6 12/6 12/6 12/6 

Table 4 indicates that Tp influences k* and n* and causes them to demonstrate stepwise increase. 

By contrast, the former has no effect on Mr* or Ms*. In addition, the influence of Tp on gmin, k* and N* 

is the same, and the regularity is unclear. 

c) Influence of ai on optimal results 

Table 5 Optimal results for different ai 

ai(β,η) (2.02,1.8) 4i/(3i+1) (1.5,1.2) 

gmin 3.738 9.331 4.374 

N* 1 6 2 

k* 16 7 13 

Mr* 1 2 1 

Ms* 1 2 1 

n 12/24 12/8 12/12 

The value of ai describes the effect of PM. In general, ai increases with the increase in i, and 

a1=1 for a new system. The relationship of ai and i is expressed as: 

𝑎𝑖 =
𝛽

𝜂
(

𝑖

𝜂
)𝛽−1  (η>0, β>0) 

The following three cases are considered. 

1) ai is a rigid, monotonically increasing and convex function with respect to i. 

2) ai is a rigid, monotonically increasing and concave function with respect to i. 

3) ai is a linearly increasing function with respect to i. This case is the same as the above 

assumptions. 

The other parameters are the same as those in the case study. Three groups of optimal results are 

presented in Table 5. The first case shows the lowest gmin, whereas the last one displays the highest 

value. N* demonstrates the same tendency as n*, whereas k* exhibits the opposite trend. Moreover, 

Mr* and Ms* remain constant. Therefore, improving the PM effect from the viewpoint of gmin is 

beneficial for the users. 

5. Conclusions 

This study analysed the mechanisms of MuPPSs in continuous production systems with multiple 

repairmen and spare units. It investigated the joint optimisation of the PM policy, the number of 

repairmen, and the number of spare units. The optimal model of the long-term operating cost rate was 

established, and the optimal PM policy and number of repairmen and spare units were obtained by 

minimising the system cost rate. The genetic algorithm is used to determine the optimal displacement 
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sequence of spare units. A real case study of a train working diagram was analysed. The sensitivity 

analysis of several parameters was conducted to expound the modelling and optimisation processes, 

which demonstrated that the number of operating units and the PM time of the operating unit have a 

noticeable effect on the optimal results. The number of repairmen is directly proportional to the 

number of operating units and the length of PM time, respectively. The findings could guide 

practitioners in determining the optimal number of repairmen and spare units and establishing a 

reasonable PM policy for different production scales and maintenance capabilities. 
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