
Marr, Stefan, Torres Lopez, Carmen, Aumayr, Dominik, Gonzalez Boix,
Elisa and Mössenböck, Hanspeter (2017) ������: A Platform for Debugging
Complex Concurrent Applications. In: Companion to the First International
Conference on the Art, Science and Engineering of Programming, Programming
Demo'17. . 2:1-2:2. Association for Computing Machinery, New York, NY,
United States E-ISBN 978-1-4503-4836-2.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/87289/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3079368.3079378

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/87289/
https://doi.org/10.1145/3079368.3079378
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

—Demonstration—

Κόμπος: A Platform for Debugging Complex Concurrent Applications

Stefan Marr
Johannes Kepler University Linz

Austria

Carmen Torres Lopez
Vrije Universiteit Brussel

Belgium

Dominik Aumayr
Johannes Kepler University Linz

Austria

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Belgium

Hanspeter Mössenböck
Johannes Kepler University Linz

Austria

Keywords Concurrency Models, Debugging, Concept Reifi-
cation, Stepping, Replay

1. Introduction
With the omnipresence of multicore processors, develop-
ers are building more concurrent software. Much research
has focused on providing programming models and abstrac-
tions to ease the contruction of concurrent systems such as
actors, communicating sequential processes (CSP), or soft-
ware transactional memory (STM). To address specific ap-
plication requirements, developers start to cherry-pick the
abstractions that fit the problems at hand [4]. This means,
applications are built from a combination of concurrency ab-
stractions such as threads, actors, CSP, or even STM.

However, when it comes to debugging and tooling sup-
port, the same revolution has not happened. To date, there is
no software platform or ecosystem that provides tooling that
addresses the challenges of combining concurrency models.
Typically, applications are debugged on the level of the ba-
sic abstractions of a language. For Java or C#, this means
complex applications are debugged by inspecting threads,
reasoning about low-level memory accesses, or basic atomic
operations, even if an application uses modern concurrency
frameworks such as Akka for Scala, or the Task Parallel Li-
brary for .NET. This makes really difficult to get a good un-
derstanding of the different concurrent entities and to recre-
ate the conditions that lead a system to exhibit a bug.

In this demonstration, we present Kómpos, a debugging
platform for complex concurrent applications. Kómpos al-
lows developers to focus on the high-level interactions be-
tween different kinds of concurrent entities, e.g. actors, STM
and threads. It has been built into the SOMNS language im-

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

<Programming>’17 April 3-6, 2017, Brussels, Belgium
Copyright c© 2017 held by owner/author(s).

plementation [2] featuring actors, CSP, fork/join, and a basic
STM.

2. A Concurrent Debugger
The goal of concurrent debugger is to provide a dedicated
support for managing concurrent entities and their execu-
tion. Typically a concurrent debugger is crafted for the con-
currency model on which applications are built. Kómpos is
a concurrent debugger for complex concurrent systems en-
abling developers to identify specific subsystems or their in-
teractions to understand problematic program behavior bet-
ter. Thus, it is crucial to identify the concurrent entities that
communicate with each other. For example, when using ac-
tors, we want to see which actors exchange messages, and
for a program using CSP, we want to know which processes
are connected via channels, and which messages are ex-
changed.

This information should be easily accessible and allow
developers to selectively explore the dynamic behavior of
the system. This is in contrast to classic debuggers, which
put the program code and current state first. While this in-
formation is of high importance for us as well, we argue for
a system-centric view as a cornerstone of a concurrent de-
bugger to enable interaction with the program on a higher
level than on a per-entity basis, i.e., on the level of groups of
concurrent entities constituting subsystems.

Another relevant aspect of a system-centric approach is
that the options for interacting with a running system should
go beyond simple stepping through instruction streams or
line-based breakpoints as in classic online debuggers. In ad-
dition to classic stepping, the debugger should also enable
developers to follow the high-level interactions. For exam-
ple, a stepping debugger for actor and CSP programs should
enable stepping and breakpoints at message-level granular-
ity [1, 5].

http://creativecommons.org/licenses/by-nd/4.0/

3. Advanced Debugging Techniques
In addition to exploring a system-centric approach to de-
bugging concurrent systems with Kómpos, we also explore
advanced debugging techniques to help identify root cause
of concurrency bugs. More concretely, the demo will show:
(1) deterministic replay and (2) an assertion system for actor
message protocols in SOMNS.

One key challenge of concurrency is the non-determinism
introduced by scheduling of concurrent execution. To help
developers reason about the execution of a concurrent pro-
gram, SOMNS comes with support for recording execution
traces which enables deterministic replay and debugging of
recorded executions.

SOMNS also features support for defining protocols for
actor interactions. It allows developers to specify constraints
over the communication between actors to describe the in-
tended order message, and e.g. delivery expectations about
senders. Message protocol violations and incorrect assump-
tions about the systems’ behavior can be then explored de-
terministically in the debugger.

4. Open Research Question
To realize and complete the vision behind Kómpos, much
work remains to make the approach practical.

A Metalevel Interface for Concurrency Models. A de-
bugger cannot support all possible concurrency models or
libraries directly, because there are to many variations of
them. Instead, we work on devising a metalevel interface that
is generic enough to support various concurrency models,
and provides mechanisms so that specific libraries or mod-
els can explicitly communicate to the debugger, how infor-
mation or interactions should be made available. However,
there are many open questions, including what the common
elements are, and which elements are useful to identify con-
currency issues. The goal is to avoid an additive or enumera-
tive approach in supporting concurrency models, instead we
require a generalized but customizable approach.

A Scalable Approach to a System-Centric View. A live
graphical representation of the system implies many chal-
lenges for scalability to larger programs. For example, how
can we group similar concurrent entities so that a developer
can selectively explore different subsystems without being
overwhelmed by the large number of entities belonging to
unrelated subsystems. With techniques like low-overhead
tracing, we believe that the debugging platform can then
dynamically identify entities that behave homogeneously. A
simple but likely useful approximation would be to take the
lexical program location into account where a concurrent en-
tity was created. Depending on the concurrency model, other
high-level aspects could be taken into account. This could
include for instance information about exchanged messages,
communication partners, or common call stacks.

Another question is how to visualize relevant informa-
tion. Especially in large systems, we need ways to zoom
into specific subsystems, or even change abstraction lev-
els. When tracking problematic interactions between con-
currency abstractions, we might actually need to look at the
underlying Java-level operations instead of focusing on the
high-level exchange of actor messages or the interactions of
transactions.

5. Related Work
Debuggers for high-level concurrency models have been in-
vestigated before. This includes for example debuggers for
actor systems [1, 3] including the ScalaIDE.1 There has also
been work on debuggers for transaction systems [6]. How-
ever, to the best of our knowledge, there is currently no sys-
tem that provides support for debugging of multiple high-
level concurrency models.

6. Conclusion
This demonstration introduces Kómpos, a system-centric de-
bugger for complex concurrent applications. Kómpos sup-
port focuses on the interactions between high-level concur-
rent entities. As a result, it supports developers not only by
visualizing these interactions but also by enabling them to
interact with the running program on the level of the concur-
rency abstractions, i.e., message sends, fork/join operations,
or transactions.

Acknowledgments
This research is funded by a collaboration grant of the Aus-
trian Science Fund (FWF) with the project I2491-N31 and
the Research Foundation Flanders (FWO Belgium).

References
[1] E. Gonzalez Boix, C. Noguera, and W. De Meuter. Distributed

debugging for mobile networks. Journal of Systems and Soft-
ware, 90:76–90, April 2014.

[2] S. Marr and H. Mössenböck. Optimizing Communicating
Event-Loop Languages with Truffle, 2015. Presented at
AGERE!’15.

[3] T. Stanley, T. Close, and M. Miller. Causeway: A message-
oriented distributed debugger. Technical report, HP Labs, 2009.

[4] S. Tasharofi, P. Dinges, and R. E. Johnson. Why Do Scala De-
velopers Mix the Actor Model with other Concurrency Models?
In Proc. of ECOOP, volume 7920 of LNCS, pages 302–326.
Springer, 2013.

[5] C. Torres Lopez, S. Marr, H. Mössenböck, and E. Gonza-
lez Boix. Towards Advanced Debugging Support for Actor
Languages: Studying Concurrency Bugs in Actor-based Pro-
grams, October 2016. Presented at AGERE!’16.

[6] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and M. Valero.
Debugging Programs That Use Atomic Blocks and Transac-
tional Memory. In Proc of PPoPP, pages 57–66. ACM, 2010.

1 http://scala-ide.org/docs/current-user-doc/features.html

