
Kettle, Neil (2008) Anytime algorithms for ROBDD symmetry detection and
approximation. Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/86395/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86395

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86395/
https://doi.org/10.22024/UniKent/01.02.86395
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

ANYTIME ALGORITHMS FOR ROBDD SYMMETRY
DETECTION AND APPROXIMATION

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of doctor of philosophy.

By
Neil J. Kettle

Contents

Abstract vii

Acknowledgements viii

1 Introduction 1
1.1 Research Statement and Motivation . 2

1.1.1 Motivating Example . 2
1.1.2 Computational Problems with ROBDDs 7
1.1.3 Further Motivation and Background 8

1.2 Thesis Structure . 10
1.2.1 Publications . 11

2 Background and Preliminaries 12
2.1 Boolean Functions . 12

2.1.1 Representations and Operations 13
2.1.2 Decompositions . 14

2.2 Binary Decision Diagrams . 14
2.2.1 Variable Order and Minimisation 16
2.2.2 The Complexity of ROBDD Operations 18

3 Symmetry Detection in ROBDDs 21
3.1 Introduction . 21
3.2 Applications . 22

3.2.1 ROBDD minimisation . 23
3.2.2 Permutation Independent Boolean Comparison 23

3.3 Problems with Existing Methods . 24
3.4 Contributions . 24
3.5 Related Work . 25
3.6 Anytime Symmetry Detection Algorithm 26
3.7 Optimised Anytime Symmetry Detection 31

3.7.1 Satisfy Counts . 32
3.7.2 Adjacent Symmetries . 33
3.7.3 Symmetry Closure . 33
3.7.4 Variable Choice Heuristics . 35

3.8 Experimental Results . 35
3.9 Conclusions . 38

ii

4 Generalised Symmetry Detection in ROBDDs 45
4.1 Introduction . 45
4.2 Applications . 46
4.3 Contributions . 46
4.4 Preliminaries . 47
4.5 Related Work . 48
4.6 Generalised Anytime Symmetry Detection Algorithm 48

4.6.1 Fast Symmetries . 49
4.6.2 Slow Symmetries . 54
4.6.3 Generalised Symmetry Propagation 58

4.7 Experimental Results . 61
4.8 Conclusions . 62

5 Widening ROBDDs with Prime Implicants 67
5.1 Introduction . 67
5.2 Applications . 68

5.2.1 Program Analysis and Large ROBDDs 68
5.2.2 Abstract Interpretation and Long Chains 69
5.2.3 Constraint Programming . 70
5.2.4 Reachability Analysis . 71

5.3 Contributions . 71
5.4 Related Work . 73

5.4.1 Widening . 73
5.4.2 Prime Implicants . 74

5.5 The Widening . 75
5.5.1 Widening for Space . 76
5.5.2 Widening for Time . 78

5.6 Implementation of the Widening . 80
5.6.1 The Algorithm . 80
5.6.2 Complexity Issues . 83

5.7 Experimental Results . 84
5.7.1 Our Method . 85
5.7.2 Comparison Against Existing Methods 88

5.8 Provably Polynomial Widening . 89
5.9 Conclusions . 95

6 Widening ROBDDs Randomly 96
6.1 Introduction . 96
6.2 Contributions . 98
6.3 The Widening . 99

6.3.1 Algorithmic Framework for Random Widening 100
6.3.2 Selecting an Implicant . 100
6.3.3 Computing and Removing a Prime Implicant 102

6.4 Experimental Results . 103
6.5 Conclusions . 105

iii

7 Conclusion 111
7.1 Summary of Contributions . 111

7.1.1 Contributions to Classical Symmetry Detection 112
7.1.2 Contributions to Generalised Symmetry Detection 112
7.1.3 Contributions to ROBDD Approximation 112

7.2 Directions for Future Work . 113
7.2.1 ROBDD Approximation . 113
7.2.2 Program Analysis . 113
7.2.3 Complexity Analysis . 114

Bibliography 115

A Proof of Generalised Symmetry Relations 127

iv

List of Tables

1 ROBDD operation complexities [Bry86,SW93] 20
2 T1-symmetry Experimental Results without Sifting 39
3 T1-symmetry Experimental Results with Sifting 40
4 Classical Symmetry Timing Experiments on an Intel 41
5 Generalised symmetry types . 46
6 Number of symmetries in MCNC benchmarks [ZCJMB04] 47
7 Transitivity results . 63
8 Generalised Symmetry Experimental Results without Sifting 64
9 Generalised Symmetry Experimental Results with Sifting 65
10 Generalised Symmetry Timing Experiments on an Intel 66
11 Benchmark formulae . 85
12 Comparison of approximation . 89
13 Minterm ratio with and without deletion after 16 and 32 seconds. 104

v

List of Figures

1 A fragment of xdr array.c taken from glibc version 2.1.2 4
2 A fragment of MENTLM.dll from MailEnable Professional v2.33 6
3 Access Violation in MENTLM.dll from MailEnable Professional v2.33 . 7
4 ROBDD of f = (x1 ∧ x2) . 16
5 ROBDD of f =

∨n
i=1(xi∧yi) where n = 4 with (a) optimal linear variable

order and (b) exponential variable order. 17
6 ROBDD of f = (x1 ∧ x2) ∨ x3 . 28
7 Symmetries against time . 42
7 Symmetries against time . 43
7 Symmetries against time . 44
8 Time against k . 86
9 Minterm ratio against k . 87
10 Density against k . 87
11 Algorithm 13 applied to f = x1 ∧ (x2 ∨x3)∧ (x2 ⇐⇒ x4)∧ (x4 ⇐⇒ ¬x5) 91
12 Random Selection with Deletion: Minterm ratio against time in millisec-

onds. 106
13 Derandomised Selection with Deletion: Minterm ratio against time in

milliseconds. 107
14 Random Selection without Deletion: Minterm ratio against time in mil-

liseconds. 108
15 Derandomised Selection without Deletion: Minterm ratio against time in

milliseconds. 109
16 Randomised widening comparison: Minterm ratio against time in mil-

liseconds. 110

vi

Abstract

Reduced Ordered Binary Decision Diagrams (ROBDDs) provide a dense and memory
efficient representation of Boolean functions. When ROBDDs are applied in logic syn-
thesis, the problem arises of detecting both classical and generalised symmetries. State-
of-the-art in symmetry detection is represented by Mishchenko’s algorithm. Mishchenko
showed how to detect symmetries in ROBDDs without the need for checking equiva-
lence of all co-factor pairs. This work resulted in a practical algorithm for detecting
all classical symmetries in an ROBDD in O(|G|3) set operations where |G| is the num-
ber of nodes in the ROBDD. Mishchenko and his colleagues subsequently extended the
algorithm to find generalised symmetries. The extended algorithm retains the same
asymptotic complexity for each type of generalised symmetry. Both the classical and
generalised symmetry detection algorithms are monolithic in the sense that they only
return a meaningful answer when they are left to run to completion. In this thesis we
present efficient anytime algorithms for detecting both classical and generalised symme-
tries, that output pairs of symmetric variables until a prescribed time bound is exceeded.
These anytime algorithms are complete in that given sufficient time they are guaranteed
to find all symmetric pairs. Theoretically these algorithms reside in O(n3 +n|G|+ |G|3)
and O(n3 + n2|G| + |G|3) respectively, where n is the number of variables, so that in
practice the advantage of anytime generality is not gained at the expense of efficiency.
In fact, the anytime approach requires only very modest data structure support and of-
fers unique opportunities for optimisation so the resulting algorithms are very efficient.
The thesis continues by considering another class of anytime algorithms for ROBDDs
that is motivated by the dearth of work on approximating ROBDDs. The need for ap-
proximation arises because many ROBDD operations result in an ROBDD whose size
is quadratic in the size of the inputs. Furthermore, if ROBDDs are used in abstract
interpretation, the running time of the analysis is related not only to the complexity
of the individual ROBDD operations but also the number of operations applied. The
number of operations is, in turn, constrained by the number of times a Boolean function
can be weakened before stability is achieved. This thesis proposes a widening that can
be used to both constrain the size of an ROBDD and also ensure that the number of
times that it is weakened is bounded by some given constant. The widening can be used
to either systematically approximate an ROBDD from above (i.e. derive a weaker func-
tion) or below (i.e. infer a stronger function). The thesis also considers how randomised
techniques may be deployed to improve the speed of computing an approximation by
avoiding potentially expensive ROBDD manipulation.

vii

Acknowledgements

I would like to thank Andy King, a very understanding, and not to mention entertaining
supervisor. I will miss our interesting and diverse conversation. Secondly, I would like
to thank my supervisory panel members David Shrimpton and Keith Hanna.

Further, I thank Tadeusz Strzemecki, Jacob Howe, Laurent Mauborgne, Axel Simon,
Peter Schachte, Harald Søndergaard and Jin Zhang for useful discussions throughout
my time working on this thesis.

The work presented herein was funded by EPSRC Grant EP/C015517, British Council
Grant PN 05.021 and the Royal Academy of Engineering Grant IJB/PS/ITG 05–1046.

viii

Chapter 1

Introduction

“A computer lets you make more mistakes faster
than any invention in human history - with the
possible exceptions of handguns and tequila.”
- M. Ratcliffe

The notion of an anytime algorithm is one borne of the acceptance of the intractabil-

ity of algorithms whose runtime is bounded even polynomially. In complexity theoretic

terms, an algorithm is deemed efficient (or tractable) if the time required to solve every

instance of the underlying problem is bounded polynomially in the size of the input.

This is a valid assumption from a complexity theoretic standpoint in the presence of the

Church-Turing thesis but has little practical importance when faced with a polynomial

time algorithm requiring O(n100) time! The problem is further compounded if the only

known algorithms are monolithic. For such an algorithm one has to assume that inputs

exist such that the worst-case behaviour of the algorithm will be exhibited (either in

terms of space or time). In such a scenario, we have no choice but to allow the algorithm

to run to completion before any meaningful, or correct results can be obtained. Conse-

quently, if the problem we wish to solve is computationally hard, we may be forced to

wait an unacceptable amount of time for an answer to appear.

The purpose of an anytime algorithm is to allow the user, or the algorithm itself, to

terminate early should the computation exhaust some predefined resource bound. The

seminal paper on the anytime approach defined an algorithm as being anytime if:

“it can be terminated at any time . . . and the answers returned improve in

some well-behaved manner as a function of time.” [DB88]

The key requirement of an anytime algorithm is that early termination should not com-

promise the correctness of the computed result. In this respect, an anytime algorithm

can be thought of as an approximation algorithm in that the result is guaranteed to be

“correct” (with absolute certainty) irrespective of the computational resources available.

1

CHAPTER 1. INTRODUCTION 2

However, the result may not be “complete” in the sense that it is the most accuracte

result obtainable.

Although anytime algorithms have not received much recognition in the academic

literature outside of the engineering community [FL97, RB04, KFM06], the anytime

concept occurs naturally in several common types of algorithm, most notably iterative

approximation algorithms [TW69], one-sided error randomised algorithms [GS05] and

approximation algorithms for some NP-hard optimisation problems [GCA95].

Zilberstein [Zil96] reviews various anytime algorithms and suggests that ideally an

anytime algorithm should possess the following desirable properties.

• the quality of an intermediary approximate answer can be determined whilst the

algorithm continues to execute – recognisability.

• the quality of the results increases monotonically with time – monotonicity.

• the improvement in intermediary result quality is larger in early stages of compu-

tation and diminishes over time – diminishability.

• the algorithm may be stopped at any time without compromising the correctness

of the answer – interruptibility.

This thesis reports novel anytime algorithms for Reduced Ordered Binary Decision

Diagram (ROBDD) manipulation that satisfy the above properties.

1.1 Research Statement and Motivation

One may think that the development of anytime algorithms for ROBDD manipulation

is merely an exercise in algorithmic aesthetics, however, in practise the advantages of

the anytime approach are often mandated by problems in engineering. This study

was no exception, indeed, it was motivated by the desire to develop program analysis

techniques for the automated detection of security vulnerabilities. Therefore in order to

motivate the body of the thesis and to put the work into the context, this section outlines

the construction, and subsequent implementation, of a program analysis technique to

discover integer overflow vulnerabilities. The anytime algorithms were motivated by

problems encountered during the development of the analysis. To summarise, this

section details the motivating factors that inspired the research presented herein.

1.1.1 Motivating Example

An integer is a variable capable of representing any number with no fractional part.

For efficiency, integers are normally the same size as the word-width of the underlying

system (i.e. 32 bits on a 32 bit Intel architecture, and 64 bits on an ALPHA/SPARC

microprocessor). Since any integer is of a fixed size (assume 32 bits), there is a fixed

CHAPTER 1. INTRODUCTION 3

maximum value it can store (232 − 1 for an unsigned integer of 32 bits in size). Any

computation whose result is larger than this maximum value is said to cause an integer

overflow. The effect integer overflows have is somewhat mitigated in languages providing

automated array bounds checking (Java and Pascal). However in languages such as

C, that do not provide any form of bounds checking, an integer overflow results in

“undefined behaviour” (ISO C99 standard [ISO99]). Hence, compilers conforming to

the [ISO C99] standard may do anything from ignoring the overflow to aborting the

program. However, most compilers ignore the overflow, resulting in an unexpected value

being stored. This is often due to the complexities involved in detecting integer overflows

in hardware, not to mention the efficiency implications of verifying the correctness of

the results of all computations.

There are several security implications associated with integer overflows. Primarily,

the problem is that integer overflows cannot be detected after they have occurred, so

there is no obvious way for an application to tell if the result of an earlier calculation

has indeed caused an overflow. Moreover, ISO C99 states “A computation involving

unsigned operands can never overflow, because a result that cannot be represented by the

resulting unsigned integer type is reduced modulo the number that is one greater than

the largest value that can be represented by the resulting type.” [ISO99]. Although this

interpretation of unsigned arithmetic is self-consistent, it is not necessarily consistent

with the model that a programmer has for arithmetic. This is because integer operations

are computed modulo 2n, hence there exists a possibility for a mismatch between the

value computed and what the programmer originally intended.

An integer overflow on its own is not a security vulnerability, indeed, it is perfectly

legitimate for any algorithm to utilise modular reduction. For example, many modern

symmetric block cryptographic algorithms utilise integer arithmetic and modular reduc-

tion to implement non-linear transforms [LM91]. However, an integer overflow can be

hazardous if the calculation involved is in some way associated with the size of a buffer

or an index for an array access as an overflow here may not be intended.

An example of an integer overflow can be found in Figure 1, which illustrates how

integer overflows occur in programs written in the C programming language [Meh02].

As we may observe, should the value of *sizep and elsize be such that the calculation

c ∗ elsize results in nodesize taking a value such that nodesize ≥ 232 at line #21,

then an integer overflow will occur resulting in an incorrect number of bytes being

allocated at line #28 since the program assumes that at least c ∗ elsize bytes have

been allocated. Furthermore, this condition will result in a buffer overflow vulnerability

when an attempt is made to write c ∗ elsize bytes to the newly allocated buffer.

In addition to the disclosed vulnerabilities that have been previously reported, the

ubiquity of unchecked arithmetic suggests that many vulnerabilities still reside in code

that has been subject to a code audit. One such denial of service (DoS) vulnerability that

CHAPTER 1. INTRODUCTION 4

[1] bool_t

[2] xdr_array (xdrs, addrp, sizep, maxsize, elsize, elproc)

[3] XDR *xdrs;

[4] caddr_t *addrp; /* array pointer */

[5] u_int *sizep; /* number of elements */

[6] u_int maxsize; /* max numberof elements */

[7] u_int elsize; /* size in bytes of each element */

...

[8] {

[9] caddr_t target = *addrp;

[10] u_int nodesize, c;

...

[11] /* like strings, arrays are really counted arrays */

[12] if (!xdr_u_int (xdrs, sizep))

[13] {

[14] return FALSE;

[15] }

[16] c = *sizep;

[17] if ((c > maxsize) && (xdrs->x_op != XDR_FREE))

[18] {

[19] return FALSE;

[20] }

[21] nodesize = c * elsize;

...

[22] if (target == NULL)

[23] switch (xdrs->x_op)

[24] {

[25] case XDR_DECODE:

[26] if (c == 0)

[27] return TRUE;

[28] *addrp = target = mem_alloc (nodesize);

[29] if (target == NULL)

[30] {

[31] (void) fprintf (stderr,

[32] "xdr_array: out of memory\n");

[33] return FALSE;

[34] }

[35] __bzero (target, nodesize);

...

[36] }

Figure 1: A fragment of xdr array.c taken from glibc version 2.1.2

CHAPTER 1. INTRODUCTION 5

stems from an integer overflow is outlined in Figure 2. The figure details a vulnerability

found in the MailEnable IMAPv4 service [MEL06] (MEIMAPS.exe). Since MailEnable

is a closed-source software product, only assembler output is given. The vulnerability

is located in the call to memcpy at line #10007FFD and is caused by an integer overflow

that occurs whilst calculating the starting point from which memory will be copied.

The integer overflow itself is located at line #10007FD2, the integer calculated in the

register ecx is assumed to be a signed integer and therefore has a maximum value of

231 − 1. Hence, if the result in the register ecx is greater than 7fffffffh = 231 − 1

the result will be negative, thus the comparison at line #10007FD4 will fail since it is

possible that ecx is negative and thus smaller than 4000h = 16384. The resultant call

to memcpy at line #10007FFD will thereby attempt to access non-existent memory and

thus cause the application to crash with an ‘Access Violation’ as shown in Figure 3.

Program analysis seems attractive for discovering these vulnerabilities because it

offers a way of systematically covering all paths and behaviours in a program. There

are two distinct ways we can do this, the first being to automatically prove the non-

existence of an overflow [CCF+05] and hence a modular reduction vulnerability.

The other approach is to prove the existence of at least one vulnerability by gener-

ating an input such that the program exhibits anomalous behaviour, that is generate a

counter example to the correctness of the program. This problem is simpler because we

do not have to prove correctness over all flows. Therein lies the power of the method:

the generation of an input that causes anomalous behaviour is extremely useful as it

provides a simple method to practically demonstrate the vulnerability to a third party.

We envisage that such an analysis for C programs be based upon several phases. The

first converts the program into a simply typed language permitting only single assign-

ments to be made to each variable along a control flow path. Further, the value of an

integer variable present in a program can be described by a collection of propositional

variables, one for each bit of the underlying representation. The semantics of a state-

ment can be modelled with propositional constraints, for instance a statement such as

x := y + z over 32-bit integers can be described as a system of constraints that relate

the values of each of the bits in x (after the assignment) to each of the input bits of y and

z. The semantics of sequences of statements can be computed by combining systems

of propositional constraints. It is likewise possible to derive a propositional formula in

terms of y and z thats expresses whether the value of x has become tainted, that is,

compromised by the presence of an overflow. Then the problem of locating modular

reduction vulnerabilities reduces to the problem of finding assignments to the proposi-

tional variables such that the variable that feeds into a memory allocation operation is

tainted.

A natural way of representing a set of propositional constraints is as an ROBDD,

however, this leads to a series of computational problems that motivated the work

CHAPTER 1. INTRODUCTION 6

.text:10007F78 public NTLM_UnPack_Type1

.text:10007F78

.text:10007F78 arg_0= dword ptr 8

.text:10007F78 arg_4= dword ptr 0Ch

.text:10007F78 push ebp

.text:10007F79 mov ebp, esp

.text:10007F7B push 20h

.text:10007F7D mov eax, [ebp+arg_0]

.text:10007F80 push eax

.text:10007F81 mov ecx, [ebp+arg_4]

.text:10007F84 add ecx, 2000h

.text:10007F8A push ecx

.text:10007F8B call _memcpy

.text:10007F90 add esp, 0Ch

.text:10007F93 mov edx, [ebp+arg_4]

.text:10007F96 movsx eax, word ptr [edx+2010h] ; 0x00000001

.text:10007F9D test eax, eax

.text:10007F9F jle short loc_10008005 ; branch not taken

.text:10007FA1 mov ecx, [ebp+arg_4]

.text:10007FA4 movsx edx, word ptr [ecx+2010h] ; 0x00000001

.text:10007FAB cmp edx, 400h

.text:10007FB1 jge short loc_10008005 ; branch not taken

.text:10007FB3 mov eax, [ebp+arg_4]

.text:10007FB6 cmp dword ptr [eax+2014h], 0 ; 0x7fffffff

.text:10007FBD jle short loc_10008005 ; branch not taken

.text:10007FBF mov ecx, [ebp+arg_4]

.text:10007FC2 movsx edx, word ptr [ecx+2010h] ; 0x00000001

.text:10007FC9 mov eax, [ebp+arg_4]

.text:10007FCC mov ecx, [eax+2014h] ; 0x7fffffff

.text:10007FD2 add ecx, edx ; integer overflow,

; 0x00000001+0x7fffffff

; = 0x80000000 = -2147483648

.text:10007FD4 cmp ecx, 4000h

.text:10007FDA jge short loc_10008005 ; branch not taken

; 0x80000000 = -2147483648

.text:10007FDC mov edx, [ebp+arg_4]

.text:10007FDF movsx eax, word ptr [edx+2010h]

.text:10007FE6 push eax ; argument 3: size

.text:10007FE7 mov ecx, [ebp+arg_4]

.text:10007FEA mov edx, [ebp+arg_0]

.text:10007FED add edx, [ecx+2014h] ; argument 2:

; source (invalid)

.text:10007FF3 push edx

.text:10007FF4 mov eax, [ebp+arg_4]

.text:10007FF7 add eax, 1400h

.text:10007FFC push eax ; argument 1:

; destination

.text:10007FFD call _memcpy

Figure 2: A fragment of MENTLM.dll from MailEnable Professional v2.33

CHAPTER 1. INTRODUCTION 7

Figure 3: Access Violation in MENTLM.dll from MailEnable Professional v2.33

presented in this thesis.

1.1.2 Computational Problems with ROBDDs

The size of an ROBDD critically depends on a number of factors, most notably: the

number of propositional variables over which the function is defined; the particulars of

the Boolean function that is represented; and the variable ordering used to construct

the ROBDD. The problems of ROBDD explosion are exacerbated by the requirement

to model a single integer variable by as many as 64 propositional variables. Computing

an optimal variable ordering, that is one that minimises the size of an ROBDD, can

be expensive [Weg00], but it has long been known that symmetry information can

be used to improve variable ordering [MMW93]. This motivated the application of

symmetry detection methods, however, the state-of-the-art method [Mis03] was found

to be prohibitively expensive on large ROBDDs [KK06]. This suggested the design of

an anytime symmetry detection algorithm that may be applied to large ROBDDs to

finesse the possibility of intractability.

The optimal variable ordering for many circuits is an interleaved variable ordering in

which the propositional variables that share the same offset within a word are grouped

contiguously [Bry92]. However, there are some circuits for which the interleaved vari-

able ordering is sub-optimal. Sub-optimality occurs, for instance, when the interleaved

variable ordering is used to model the equivalent statements x := y ≪ 1, x := y + y,

and x := 2*y. Although an optimal ordering can be found for these statements, the

resulting ROBDD cannot be efficiently combined with that of another statement that

requires the standard interleaved variable ordering. Bryant et al. [BCM+92] discussed

this phenomenon, concluding that a Decision Diagram will quickly become unmanage-

able if it needs to model shift-like behaviour. Unfortunately, shifts routinely occur in

C programs for efficiency purposes which suggests that ROBDD approximation is vital

when modelling programs at the bit level. Unfortunately, state-of-the-art approximation

techniques were found to be wanting, in that they are hard to control and frequently

returned draconian (grossly), inaccurate approximations [KKS06]. This motivated the

CHAPTER 1. INTRODUCTION 8

construction of an anytime approximation scheme whose accuracy can be throttled.

1.1.3 Further Motivation and Background

The new anytime algorithms presented in this thesis have application outside the arena

of integer overflow vulnerability detection. In particular, these algorithms find applica-

tion in abstract interpretation and logic synthesis. An overview of these applications is

given below.

Abstract Interpretation

Abstract interpretation is a theory of abstract semantics and approximation which is

used for the construction of semantics-based program analysis techniques [CC77,CC92a].

In abstract interpretation, the mathematical meaning of a program is derived in much

the same way as with a normal semantics. However, this is not necessarily the standard

meaning, but an approximation which can be used to extract information about the

dynamic or run-time behaviour of the program. In essence, abstract interpretation is

a mathematically justifiable approach that has the capability to statically analyse the

dynamic properties of software applications at compilation time without executing the

program itself. It is therefore clear that abstract interpretation attempts to fill-the-

gap between conventional static analysis, that is static inspection of program code;

and dynamic analyses, applying profiling over several possibly independent program

executions. Another useful capability of an abstract interpretation is its ability to

systematically analyse all possible paths of a program. It is because of these capabilities

that abstract interpretation has found applications in a vast array of areas [NNH05].

The popularity of abstract interpretation has lead to the creation of commercial tools

based on the analysis technique.

The natural ability of anytime computation in approximation algorithms lends it-

self to problems occurring in abstract interpretation in the presence of Rice’s theo-

rem [Ric53]. Rice’s theorem states that, for any non-trivial property of a partial func-

tion, the question of whether a given algorithm computes a partial function with this

property is formally undecidable. Rice’s theorem is often referenced to show the undecid-

ability of computing “interesting” properties of programs, and hence the undecidability

of program analysis techniques in general. The force of this result is evident in that

in order to even retain decidability, program analysis techniques are required to em-

ploy approximation techniques. Even the guarantee of decidability is often insufficient

since in general decidability does not imply tractability. Hence, even in the presence of

approximation techniques, a program analysis may still require considerable resources.

The anytime computational paradigm can be seen to be especially important in this

respect since anytime approximation algorithms allow for resource bounding. The po-

tential impact of resource bounding is even more interesting if the coarseness of the

CHAPTER 1. INTRODUCTION 9

approximation attained is directly linked to the computational resource available (i.e.

the algorithm is monotonic). If indeed the approximation algorithm utilised is mono-

tonic, the anytime computation paradigm affords users the ability to attach resource

limits to a program analysis directly affecting the accuracy of the analysis itself without

compromising correctness.

The natural approach to controlling the cost of program analysis is to apply widen-

ing [CC92b] and one major contribution of this thesis is in providing an anytime algo-

rithm for widening ROBDDs which were previously thought to be difficult to approxi-

mate [Mau98].

Logic Synthesis

In engineering, anytime algorithms are particularly useful as many interesting problems

are computationally hard [Qui52, Uma01]. Moreover, in practise, hard instances fre-

quently arise [Bry96] so that computing an optimal answer is often infeasible. In such

scenarios, an anytime algorithm is attractive and often matches the requirements of

the engineering development cycle. For instance, consider the task of designing a logic

circuit for future synthesis to silicon through some process. Assume the circuit itself

is large enough for it to be computationally infeasible to verify the correctness of the

entire circuit each time it is changed since this is likely to occur frequently. Thus it

is prudent to possess some means to verify (to some restricted degree) the integrity of

recent changes to the design. Such a technique permits us to reduce the possibility of

the design possessing a flaw before production. However, before the circuit is realised in

silicon, we may reapply the verification technique to further guarantee the integrity of

the overall design by granting the verification process greater computational resources.

The same requirements arise in software development, in particular software verification

and automated discovery of bugs and security vulnerabilities.

Within logic synthesis, the anytime approach is not limited to verification tasks, in

fact any algorithmic problem that frequently arises in the development cycle may bene-

fit from anytime generality. One such problem is that of symmetry detection, which has

applications in technology mapping [MD90,LSP92], combining technology-independent

and technology-dependant stages of logic synthesis [KS00a], detecting support-reducing

bound sets [ZCJMB05], ROBDD minimisation [PSP94, SMMD99], detecting equiva-

lence of Boolean functions for which input correspondence is unknown [MM93,CM93a,

ZCJMB04] and solving difficult instances of the Boolean satisfiability problem [ARMS02,

DLSM04]. Another major contribution of this thesis is in providing an anytime al-

gorithm for symmetry detection for Boolean formulae represented as ROBDDs. The

state-of-the-art algorithm was based on a divide-and-conquer approach and therefore

was inherently monolithic [Mis03].

CHAPTER 1. INTRODUCTION 10

1.2 Thesis Structure

Chapter 2: Preliminaries and Background In Chapter 2 we cover the required

background and preliminaries relating to material used throughout this thesis. The first

section covers the basics of Boolean formulae. We then proceed to introduce the concept

of Binary Decision Diagrams along with other related representations. We conclude the

chapter with a discussion of the complexity theoretic issues surrounding the use of the

Reduced Ordered Binary Decision Diagram data structure, a popular extension to the

Binary Decision Diagram where a variable order is enforced, and reduction rules apply.

Chapter 3: Symmetry Detection in ROBDDs In Chapter 3 we present an effi-

cient, incremental, anytime algorithm for first-order classical symmetry detection. We

explain how an incremental anytime approach offers special opportunities for optimi-

sation, in that classical asymmetry/symmetry sieves, or fast linear time procedures

to detect asymmetric variable pairs, can be applied before symmetry detection. Fur-

thermore, asymmetry/symmetry propagation techniques can be inserted into the main

loop of the algorithm. The practicality of our algorithm is then demonstrated through

extensive experimental results.

Chapter 4: Generalised Symmetry Detection in ROBDDs In Chapter 4 we

extend our anytime first-order classical symmetry detection algorithm for Boolean func-

tions represented as ROBDDs to the generalised symmetry types over two variables. The

extended algorithm infers all generalised two-variable symmetries, that is, all possible

two-variable co-factor equivalences. The generalised algorithm retains the important

attributes of the classical symmetry detection algorithm in that it is both anytime and

efficient. The algorithm is underpinned by new implicational relationships between

generalised symmetries, and these results are, in themselves, useful [ZMBCJ06].

Chapter 5: Widening ROBDDs with Prime Implicants In Chapter 5 we

present a novel widening technique for Boolean formulae represented as ROBDDs. The

chapter proposes a widening that can be used to both constrain the size of an ROBDD

and also ensure that the number of times that it is weakened is bounded by some given

constant. The widening can be used to either systematically approximate from above

(i.e. derive a weaker function) or below (i.e. infer a stronger function).

Chapter 6: Widening ROBDDs Randomly In Chapter 6 we investigate the

approximation of Boolean formulae represented as ROBDDs using randomisation tech-

niques. These new approximation methods are capable of building ROBDD approxima-

tions without significant ROBDD manipulation, which is key to efficiency. Moreover,

these algorithms remedy a deficiency in the widening based on prime implicants since

CHAPTER 1. INTRODUCTION 11

although the prime implicant widening is incremental, the increments themselves can

be prohibitively expensive to compute. This chapter shows how the prime implicant

approach can be refined to reduce the granularity of the increments and hence their

cost, and thereby improve their anytime nature.

1.2.1 Publications

The research presented in this thesis has been published in the following papers:

[Chapter 3] N. Kettle and A. King. An Anytime Symmetry Detection Algorithm for

ROBDDs. In Asia and South Pacific Design Automation Conference (ASPDAC), IEEE

Press, pages 243 − 248, 2006. Acceptance rate: 30%.

Contribution: N. Kettle provided the initial algorithms, benchmarks and proofs.

[Chapter 4] N. Kettle and A. King. An Anytime Algorithm for Generalised Symmetry

Detection in ROBDDs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), IEEE Press, April 2008.

Contribution: N. Kettle provided the initial algorithms, benchmarks and proofs.

[Chapter 5] N. Kettle, A. King and T. Strzemecki. Widening ROBDDs with Prime

Implicants. In Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), Springer, pages 105− 119, 2006. Acceptance rate: 22%.

Contribution: N. Kettle provided an ROBDD based algorithm for computing prime

implicants of a given length, benchmarks and proofs. T. Strzemecki provided a detailed

algorithm for computing prime implicants of a given length in Boolean functions for

whom a truth table is available.

Chapter 2

Background and Preliminaries

“Beginning is easy - continuing hard.”
- Japanese Proverb

Abstract. In this chapter we introduce the necessary preliminaries relating

to material used throughout this thesis. This chapter covers the basics of

Boolean formulae, and the concept of a binary decision diagram.

2.1 Boolean Functions

Boolean logic is named after Boole, an English mathematician who was first to define

an algebraic system of logic based on 0s and 1s. Shannon expanded upon the theories

of Boole by showing how electric circuits utilising relays were a model for Boolean logic.

This result was to prove enormously important with the emergence of the electronic

computer, and the development of computer science as we understand it today. For

brevity we shall refrain from giving a detailed discussion of the origins of Boolean logic,

since this is beyond the scope of this thesis, and instead proceed to define the necessary

foundations for the concepts used throughout this thesis.

Definition 2.1 (Boolean Function). A Boolean function on n variables is a function

f : B
n → B, where B is the set {0, 1}, n is a positive integer, and B

n denotes the n-fold

cartesian product of set B with itself.

A Boolean function f : B
n → B can be represented by a propositional formula over an

ordered set of variables X where |X| = n.

Example 2.1. The Boolean functions f, f ′ : B
2 → B where f = {〈0, 0〉 7→ 0, 〈0, 1〉 7→

1, 〈1, 0〉 7→ 1, 〈1, 1〉 7→ 1} and f ′ = {〈0, 0〉 7→ 0, 〈0, 1〉 7→ 0, 〈1, 0〉 7→ 0, 〈1, 1〉 7→ 1} can be

represented as f = (x1 ∨ x2) and f ′ = (x1 ∧ x2).

The set of Boolean formulae, or propositional formulae, over a finite set of variables X

is denoted BX and henceforth functions and formulae will be used interchangeably.

12

CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

2.1.1 Representations and Operations

One commonly used representation of a Boolean function f is its truth table, that is, to

give a complete list of all binary vectors b ∈ B
n under which the function evaluates to

true. Formally, we define the set of all binary vectors under which a Boolean function

evaluates to true to be its model set.

Definition 2.2 (Model Set). The set of models of a Boolean function f ∈ B
n → B over

a set of variables X is defined as modelX(f) = {〈b1, . . . , bn〉 | f(b1, . . . , bn) = 1}.

Example 2.2. Given X = {x1, x2, x3} and f = x1 ∧ (x2 → x3) then modelX(f) =

{〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉}.

Furthermore, we define the satisfy-count (minterms) of a Boolean function f as ‖f‖ =

|modelX(f)|.

Definition 2.3 (Entailment). A Boolean function f ∈ BX is said to entail another

f ′ ∈ BX , denoted f |= f ′ if modelX(f) ⊆ modelX(f ′).

Example 2.3. Given two Boolean functions f, f ′ ∈ BX such that f = x1 ∧ (x2 → x3)

and f ′ = (x1 ∧ ¬x2 ∧ ¬x3) where X = {x1, x2, x3} then f ′ entails f , that is, f ′ |= f

since modelX(f ′) = {〈1, 0, 0〉} ⊆ {〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉} = modelX(f).

Definition 2.4 (Equivalence). A Boolean function f ∈ BX is said to be equivalent to

another f ′ ∈ BX , denoted f ≡ f ′ if and only if modelX(f) = modelX(f ′), or equivalently

f |= f ′ ∧ f ′ |= f .

The set of all propositional formulae over a set of propositional variables X forms

a complete lattice 〈BX , |=, 0, 1,∨,∧,¬〉 where |= denotes entailment (Definition 2.3),

∧-logical and, ∨-logical or, ¬-negation and 0 (false), 1 (true) abbreviate the Boolean

functions λb.0 and λb.1 respectively for all binary vectors b ∈ B
n.

Definition 2.5 (Chains and Anti-Chains). We define a chain of Boolean functions C

to be a set C ⊆ BX such that either f |= f ′ or f ′ |= f for all f, f ′ ∈ C. Conversely,

we define an anti-chain of Boolean functions A to be a set A ⊆ BX such that f 6|= f ′ or

f = f ′ for all f, f ′ ∈ A.

Definition 2.6 (Shannon Co-Factor). The Shannon co-factor of a Boolean function

f ∈ BX w.r.t. a variable xi ∈ X and a Boolean constant b ∈ B is defined by,

f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn)

Multiple variable co-factors w.r.t. an ordered set of variables X ′ ⊆ X such that m = |X ′|

and a binary vector b ∈ B
m denoted f|x′

1
←b1,...,x′

m←bm
, are defined as f|x′

1
←b1,...,x′

m←bm
=

fm where f0 = f and fj = fj−1|x′

j←bj
.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

Definition 2.7 (Shannon Expansion). The Shannon expansion of a Boolean function

f ∈ BX w.r.t. a variable xi ∈ X is the identity,

f = (¬xi ∧ f|xi←0) ∨ (xi ∧ f|xi←1)

In this context, f|xi←1 and f|xi←0 are the positive and negative Shannon co-factors of

the Boolean function f .

The work of Shannon on circuit and communications theory, in particular the Shannon

expansion theorem, paved the way for the construction of many computational tech-

niques to tackle problems relevant to Boolean formulae. The importance of the Shannon

expansion theorem will become apparent in §2.2.

Definition 2.8 (Existential Quantification). The existential quantification of a Boolean

function f ∈ BX w.r.t. a variable xi ∈ X denoted ∃xi
(f) is defined as Schröder elimi-

nation, that is, ∃xi
(f) = f|xi←0 ∨ f|xi←1.

2.1.2 Decompositions

Definition 2.9 (Cube). A cube p is a Boolean function of the form (∧y∈Y y)∧(∧z∈Z¬z)

such that Y ∪Z ⊆ X and Y ∩Z = ∅ where Y,Z are disjoint sets of variables; moreover,

the length of p is denoted |p| and defined by |p| = |Y |+ |Z|.

Definition 2.10 (Prime Implicant). A prime implicant p of a Boolean function f ∈ BX

is a cube p such that p |= f , i.e. p is an implicant of f ; and there exists no other

implicant p′ of f such that p |= p′ and p′ 6= p.

For brevity, we let primes(f) denote the set of all prime implicants of the Boolean

function f . Finally, observe primes(true) = {true} and primes(false) = ∅.

Example 2.4. Let X = {x1, x2, x3, x4} and f = (¬x1∨¬x2)∧ (¬x1∨¬x3)∧ (¬x3 ∨x4)

and p = (¬x1 ∧ ¬x3). Observe that p |= f and therefore p is a implicant of f . Further,

suppose p |= p′ and p 6= p′. Then p′ = ¬x1 or p′ = ¬x3 and, in either case, p′ 6|= f .

Hence p is a prime implicant of f . In fact, primes(f) = {¬x1∧¬x3,¬x2∧¬x3,¬x1∧x4}.

2.2 Binary Decision Diagrams

The Binary Decision Diagram (BDD) is a widely-known, efficient tree-based data struc-

ture for the representation of Boolean logic functions [Ake78, Bry86, Bry92] (in fact

Bryant’s paper [Bry86] is one of the most highly cited papers in computer science). The

BDD is most well-known for its broad applications in model checking [CGP00], a method

for algorithmically verifying a formal system by checking if a model, often constructed

from a hardware or software design, satisfies a given formal specification. The ability of

CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

BDDs to compactly represent large state-spaces in sub-exponential space has allowed

massive improvements in the efficiency of such model checkers [BCM+92]. BDDs have

also seen many applications in test generation [ABA95], fault simulation [MWBSV88,

Bry96], checking Boolean satisfiability [ADG91], program analysis [WL04], constraint

solving [HLS04,HLS05] and abstract interpretation [Fec97,BS99,LS04].

Definition 2.11 (BDD). A BDD is a rooted directed acyclic graph where each internal

node is labeled with a Boolean variable xi. Each internal node has one successor node

connected via an edge labeled 0, and another successor connected via an edge labeled 1.

Each leaf node is either the Boolean constant 0 or 1.

The Boolean function represented by a BDD can be evaluated for a given variable

assignment, that is, a binary vector b ∈ Bn; by traversing the graph from the root,

taking the 1 edge at a node when the variable is assigned to 1 and the 0 edge when

the variable is assigned to 0. The leaf node reached in this traversal indicates the value

of the Boolean function for the variable assignment. Observe that each sub-BDD of a

BDD also itself represents a Boolean function. For brevity, we let |g| denote the number

of internal nodes in the BDD g, the function index(g) the variable with which the BDD

node g is labelled and the function var(g) the variable set over which the ROBDD g is

defined.

The concept of the BDD is enriched with an ordering so as to improve the efficiency

of BDD operations [Bry86]. This BDD variant is known as the Ordered-Binary Decision

Diagram (OBDD).

Definition 2.12 (OBDD). An OBDD is obtained from a BDD by imposing a total

ordering on the variables over which the BDD is defined and applying the restriction

that the label of a node is always less than the label of any internal node in its two

successors.

The concept of a Reduced-Ordered Binary Decision Diagram (ROBDD) [Bry86] is

derived from an OBDD so as to obtain a canonical representation, in which equivalent

Boolean functions are represented by the same graph.

Definition 2.13 (ROBDD). An ROBDD is an OBDD obeying the following restric-

tions to obtain an efficient reduced representation:

• There can exist no sub-ROBDD that is rooted at a node labelled with a variable

xi that represents a function f such that f|xi←0 = f|xi←1.

• There are no two nodes labelled with the same variable that have identical successor

nodes.

An example ROBDD for the function f = (x1 ∧ x2) can be found in Figure 4.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

��

GFED@ABCx1

0

��

1

!!
CC

CC
CC

C

GFED@ABCx2

1
��

0

}}{{
{{

{{

0 1

Figure 4: ROBDD of f = (x1 ∧ x2)

2.2.1 Variable Order and Minimisation

ROBDDs represent Boolean functions by placing a total order on their variables. Any

reordering of these variables may yield differing ROBDDs for the same Boolean func-

tion of differing size. An inappropriate variable ordering may result in the construc-

tion of an ROBDD of exponential size, even if the represented function is relatively

simple. Hence, the variable ordering problem — the problem of computing a vari-

able ordering that results in a reduction in ROBDD size — is considered fundamen-

tal to the efficient manipulation of ROBDDs. To illustrate the importance of vari-

able ordering, consider the Boolean function f =
∨n

i=1(xi ∧ yi), which is the so-

called Achilles heel function [Sas99, BSM05]. The resultant ROBDD can be shown

to grow linearly in the number of variables n for the interleaved variable ordering

x1 ≺ y1 ≺ x2 ≺ y2 ≺ · · · ≺ xn ≺ yn, but has size O(2
n
2
+1 − 2) [Sas99] for the dis-

joint variable ordering x1 ≺ x2 ≺ · · · ≺ xn ≺ y1 ≺ y2 ≺ · · · ≺ yn. The ROBDDs for

the Achilles heal function under each of these variable orderings is given in Figure 5; in

Figure 5, labels associated with nodes correspond to unique identifiers whilst dashed-

edges correspond to complement edges [BRB90], that is, edges that have the effect of

negating the eventual result of a variable assignment.

Given the ability of ROBDDs to concisely represent a large number of Boolean

functions, the study of ROBDD space complexity for various types of Boolean formulae

has attracted much interest. Results of Bryant [Bry91] provide exponential lower bounds

on the space complexity on several functions such as the middle bit of the ROBDD

representation of an n-bit multiplier [Bry91]. The complexity orders of integer addition

and multiplication when represented with an ROBDD have respectively Ω(n), O(2n)

and Ω(2n), O(2n) best and worst-case complexities [Bry91, Min96]. Interestingly, as

Wegener observed, the choice of a good variable ordering for some functions, i.e. those

of addition and bitwise equality test, is essential since their ROBDD representation is of

exponential size under almost all variable order permutations [Weg00]. Hence efficient

algorithms to obtain a suitable variable ordering are essential in many applications.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 17

 x1

 y1

 x2

 y2

 x3

 y3

 x4

 y4

 f

b5

b4

b3

1

b2

b1

b0

af

a5

 x1

 x2

 x3

 x4

 y1

 y2

 y3

 y4

 f

ca

c9 c3

c8 c6 bd c2

b9bc c7b5 c4c5 c1bf

a2c0b8 adbba8

acb7a3 ba

a4b6

a5

1

afbe

(a) (b)

Figure 5: ROBDD of f =
∨n

i=1(xi ∧ yi) where n = 4 with (a) optimal linear variable
order and (b) exponential variable order.

Optimal Variable Reordering

Currently, the best known algorithm to compute the optimal variable ordering of a

Boolean function represented as an ROBDD is the dynamic programming approach of

Friedman and Supowit [FS90]. The algorithm resides in O(n2 3n) where n is the num-

ber of variables in the ROBDD. The algorithm requires the truth-table of the Boolean

function to be enumerated and is therefore considered to be impractical for anything

but small n since the space complexity is in Ω(2n). (However, their result is a signifi-

cant improvement over the previous best known algorithm of Nair and Brand [NB86]

which required O(n! 2n) time.) The inability of researchers to find better algorithms

for the optimal variable ordering problem led to the assumption that the problem is

computationally hard [BW96].

Heuristic Variable Reordering

For lack of an optimal deterministic polynomial time algorithm to solve the optimal

variable ordering problem, a large number of heuristic approaches have been suggested.

These heuristics are based upon either local [Rud93,FYBSV93] (switching of adjacent

variables) or global [NB86,FS90] changes (switching of arbitrary variables, or the con-

struction of an entirely new variable ordering). The most popular of these heuristics

is based upon so-called sifting introduced by Rudell [Rud93]. Sifting is based on the

CHAPTER 2. BACKGROUND AND PRELIMINARIES 18

observation that two variables adjacent in the order can be switched efficiently. In

fact the cost of such a swap is merely linear in the number of nodes labelled with the

swapped variables. A variable is then selected, and shifted through the variable ordering,

searching for a propitious position for the variable. Although swapping two adjacent

variables is inexpensive, the total time for sifting grows rapidly with the number of

variables [MS97].

Computing a propitious variable ordering is not only useful for the minimisation

of ROBDDs. The efficiency of an ROBDD representation of a Boolean function may

also be measured in terms of the Average Path Length (APL) of the ROBDD [BSM05],

that is, the mean number of decisions required to evaluate an assignment of the vari-

ables [EGD04]. Possessing a low APL is particularly important for applications in logic

synthesis which require repeated and extensive ROBDD evaluation. Interestingly, the

variable ordering required to minimise the APL does not correspond to the variable

ordering required to minimise the number of nodes [NMSB03]. Thus minimisation of

the APL of an ROBDD does not constitute a useful heuristic for ROBDD minimisation.

Complexity of Variable Reordering

Bollig and Wegener [BW96] later settled the complexity question of the optimal variable

ordering problem by proving the following problem NP-complete. Given an ROBDD g

of a Boolean function f , decide if there exists an ROBDD g′ representing f with at

most s nodes [BW96]. Hence, the problem of computing an optimal variable ordering

is NP-hard [Weg00]. Furthermore, to make matters worse, not only is the optimal

variable ordering problem NP-complete, but Sieling [Sie02] recently proved the problem

inapproximable within a constant factor. That is, if for every given ǫ > 0, there exists a

polynomial-time algorithm for reordering variables so as to obtain an ROBDD whose size

is not larger than 1+ǫ times that of the minimal size, then it follows that P = NP. Hence,

it is impossible to devise a polynomial time approximation algorithm to approximate

the optimal variable ordering unless P = NP. Thus, research has continued with the

development of further heuristic based approaches, however, the results of Sieling [Sie02]

severely limit the effectiveness of such algorithms as they cannot guarantee any useful

improvement whilst retaining polynomial run time.

2.2.2 The Complexity of ROBDD Operations

The ability of ROBDDs to canonically and concisely represent Boolean formulae, implies

many interesting complexity theoretic properties. Table 1 summarises the complexities

of common ROBDD operations as defined by Bryant [Bry86]. The purpose of each of

these is detailed below.

• Reduce - derive the canonical ROBDD representation of an OBDD G.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 19

• Apply - this can be instantiated two ways, to either compute the logical-and, or

the logical-or of two Boolean functions f1, f2 ∈ BX represented as ROBDDs G1

and G2 respectively. Specifically an OBDD G is computed that represents the

Boolean function f1 · f2 for some operation · ∈ {∧,∨}. Note, this operation is

traditionally followed by a Reduce step.

• Restrict - for some f ∈ BX represented as an ROBDD G, compute an OBDD G′

that represents the Shannon Co-Factor f|xi←b of f w.r.t. the variable xi ∈ X and

Boolean constant b ∈ B. Note again that this operation is followed by a Reduce

step.

• Negate - for some f ∈ BX compute the function ¬f . The complexity for Negate in

Table 1 is O(1) for BDD packages supporting complement-edges, and is O(|G|) for

packages that do not implement this refinement. Note that Reduce is not needed

in either case after the Negate step.

• Satisfy-one - this is a fundamental operation that must be supported by any

representation of a Boolean function. Specifically, for some f ∈ BX , compute

b ∈ B
n such that b ∈ modelX(f), that is, compute a binary vector b under which

the Boolean function f evaluates to true. This operation is trivial for an ROBDD

representation.

• Satisfy-all - this too is another fundamental Boolean function operation. The

operation computes the truth-table of a Boolean function f . Specifically, for some

f ∈ BX , compute every b ∈ B
n such that b ∈ modelX(f). Again, this operation

is straightforward for an ROBDD representation though not necessarily tractable.

• Satisfy-count - Intuitively, this operation computes the number of truth assign-

ments for a Boolean function f . To be precise, for some f ∈ BX , this operation

computes |modelX(f)|, that is, the satisfy-count of the Boolean function f .

Finally, the remainder problems SAT, TAUT and EQUIV correspond to the classic problems

of Boolean satisfiability [Coo71], tautology [Wei] and Boolean function equivalence re-

spectively. The table gives the best known complexities for the operations above rather

than the complexities originally reported by Bryant [Bry86]. The complexity given for

the Reduce operation is that reported by Sieling and Wegener [SW93] who showed that

bucket sort may be used to reduce the complexity bound from O(|G| log |G|) to O(|G|).

This refinement has no impact on the complexities of the other operations, however,

Reduce is reapplied after the Apply and Restrict operations.

The complexity of many ROBDD operations is polynomial in the size of the in-

put. The exception to this is the Satisfy-all operation, that outputs all satisfying

assignments for a given ROBDD. Note that the Satisfy-count problem, that is, the

CHAPTER 2. BACKGROUND AND PRELIMINARIES 20

Operation Complexity

Reduce O(|G|)
Apply O(|G1| · |G2|)
Restrict O(|G| · log |G|)
Negate O(1)
Satisfy-one O(n)
Satisfy-all O(n · |modelX(f)|)
Satisfy-count O(|G|)

SAT O(1)
TAUT O(1)
EQUIV O(1)

Table 1: ROBDD operation complexities [Bry86,SW93]

problem of computing the total number of satisfying assignments, resides in O(|G|) for

an ROBDD G. Interestingly, the problem of computing the number of satisfying as-

signments for a Boolean function is believed to be harder than even NP itself when the

function is presented in CNF [GJ79].

Chapter 3

Symmetry Detection in ROBDDs

“Symmetry is a complexity-reducing concept;
seek it everywhere.”
- A. Perlis

Abstract. In this chapter we present an anytime algorithm for classical

symmetry detection for Boolean functions represented as ROBDDs. The

algorithm seeks to address some of the drawbacks associated with existing

symmetry detection methods that have been proposed for ROBDDs.

3.1 Introduction

Symmetry detection has been important since the days of Shannon [Sha38] who ob-

served that symmetric functions have particularly efficient switch network implementa-

tions. Symmetry detection is no less important these days and knowledge of symmet-

ric variables has found many applications in logic synthesis [KD91,EH78], technology

mapping [MD90,LSP92], combining technology-independent and technology-dependant

stages of logic synthesis [KS00a], detecting support-reducing bound sets [ZCJMB05],

ROBDD minimisation [PSP94, SMMD99], detecting equivalence of Boolean functions

for which input correspondence is unknown [MM93,CM93a,ZCJMB04] and solving dif-

ficult instances of the Boolean satisfiability problem [ARMS02,DLSM04].

The challenge in classical symmetry detection is to find efficient algorithms for de-

tecting all classically symmetric variables pairs (xi, xj) of a given Boolean function

f ∈ BX over a set of variables X. A Boolean function f ∈ BX is classically sym-

metric in a pair of variables (xi, xj) ∈ X2 if and only if f(x0, . . . , xi, . . . , xj , . . . , xn) =

f(x0, . . . , xj, . . . , xi, . . . , xn). This notion of symmetry implies that f remains unchanged

under the switching of the variables xi and xj. This symmetry property can be restated

as a co-factor equivalence by using the following observation: if f is classically symmet-

ric in (xi, xj) then it follows that f(x0, . . . , 0, . . . , 1, . . . , xn) = f(x0, . . . , 1, . . . , 0, . . . , xn)

21

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 22

hence f|xi←0,xj←1 = f|xi←1,xj←0. Furthermore, if f|xi←0,xj←1 = f|xi←1,xj←0 then

f(x0, . . . , 0, . . . , 1, . . . , xn) = f(x0, . . . , 1, . . . , 0, . . . , xn). Moreover, it vacuously fol-

lows that f(x0, . . . , xi, . . . , xj , . . . , xn) = f(x0, . . . , xj , . . . , xi, . . . , xn) whenever xi = xj .

Hence (xi, xj) is classically symmetric if and only if f|xi←0,xj←1 = f|xi←1,xj←0 [HS96].

To differentiate classically symmetric variable pairs (xi, xj) from the generalised symme-

try types introduced later in this thesis, we say a pair of variables (xi, xj) is T1-symmetric

in a Boolean function f ∈ BX whenever the pair is classically symmetric in the Boolean

function f . This symmetry is formally known as the first-order classical symmetry, or

the non-skew non-equivalence symmetry [KS00b].

The algorithms used to compute the symmetries of a Boolean function critically

depend on the representation of the Boolean function. The most well-known of these

representations, CNF, is used primarily because of the straightforwardness of deriving

CNF [Tse68], furthermore, it is the standard input representation for a SAT solver. Algo-

rithms for computing symmetries in Boolean formulae represented as CNF [DLSM04,ZM-

BCJ06] utilise a mapping between the CNF instance of a Boolean function f and a graph

G such that a symmetry in f corresponds to a non-trivial graph automorphism in G,

that is a non-trivial mapping of the vertices of G to G such that the resulting graph

is isomorphic with G. Since the presence of a symmetry implies that the graph has a

non-trivial automorphism, it follows that the problem of finding a symmetry is at least

as hard as graph automorphism (GA) [KST93]. Although the GA problem is considered

to be outside of P (GA 6∈ P), it is believed to not be NP-complete and hence resides

in a complexity class k between P and NP [KST93] (P ⊆ k ⊆ NP). Contrary to what

one would expect, finding CNF symmetries by such means has been shown, albeit ex-

perimentally, to be easier than solving SAT [ARMS02]. Furthermore, excellent graph

automorphism algorithms are known and are typically capable of returning a small set

of irredundant automorphism generators [McK81]. However, the complexity of GA re-

mains unknown, and thus so too is the complexity of symmetry finding (at least in the

case of CNF representations).

3.2 Applications

ROBDDs revolutionised logic synthesis [Bry86], and model checking [BCM+92] since

they offer a compact representation for many Boolean functions, and hence there has

been much interest in extracting symmetries from an ROBDD representation. Even

when a Boolean function can be represented efficiently as an ROBDD, state-of-the-

art symmetry computation algorithms can take an exorbitant amount of time [KK06].

In an effort to eleviate this computational problem, this chapter presents an efficient

anytime algorithm for classical symmetry detection for Boolean functions represented

as ROBDDs.

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 23

Symmetry detection has many applications in problems contained within the pro-

cess of logic synthesis [KD91,EH78,MD90,LSP92,KS00a,ZCJMB05,PSP94,SMMD99,

MM93,CM93a,ZCJMB04,ARMS02,DLSM04]. Notable examples include ROBDD min-

imisation and Permutation independent Boolean comparison, these are discussed in the

following sections followed by a discussion of current algorithms.

3.2.1 ROBDD minimisation

Several ROBDD minimisation techniques have been proposed that utilise symmetry

information pertaining to the underlying Boolean function [PSP94, SMMD99]. These

techniques are justified by the observation that symmetric variables tend to be adjacent

in optimal variable orderings [SMMD99,HLM00]. This has been shown experimentally

for all Boolean functions with up to five variables [HLM00]. Further, it can be shown

that the size of an ROBDD representing a totally symmetric Boolean function, that is,

a Boolean function which remains invariant under all variable permutations, is bounded

by O(|X|2) [SMMD99]. More refined bounds have been derived for ROBDDs that pos-

sess only a small number of symmetries [HLM00]. These bounds limit the size of an

ROBDD that is obtained under the variable ordering which places symmetric variables

contiguously. The bounds substantiate the practise of placing symmetric variables ad-

jacent in the variable ordering.

3.2.2 Permutation Independent Boolean Comparison

Verifying the equivalence of two Boolean functions f, f ′ ∈ BX is a constant time oper-

ation (or linear, in the worst-case) when the ROBDD representations of the functions

f and f ′ are given. However, simply comparing the canonical forms of f and f ′ is not

sufficient to verify equivalence if the correspondence between the variables over which f

and f ′ operate is unknown [MM93,CM93a]. For instance, consider verifying the equiv-

alence of two Boolean functions f ∈ BX and f ′ ∈ BX′ such that X ∩X ′ = ∅. A solution

to this problem constitutes a mapping ρ : X → X ′ such that,

f ≡ ∃ρ(x1) . . . ∃ρ(xn)

f ′ ∧
∧

xi∈X

(xi ⇐⇒ ρ(xi))

The application of classical symmetries in permutation independent Boolean comparison

is then clear, that is, if the functions f and f ′ are indeed equal, then both functions

must possess an isomorphic set of symmetry pairs. That is, if (xi, xj) is a symmetry

pair of function f then (ρ(xi), ρ(xj)) is a symmetry pair of f ′ and vice versa. The force

of this observation is that it places structural constraints on ρ, that is, ρ(xi) 6= x′j if the

number of variables that are symmetric with xi in f differs from the number of variables

symmetric with x′j in f ′ [ZCJMB04].

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 24

3.3 Problems with Existing Methods

In problems relating to logic synthesis it is often more attractive to find an acceptable

answer in a reasonable amount of time rather than the optimal answer in an exorbitant

amount of time. For instance, in [ZCJMB05] it is remarked that a heuristic approach

to support reducing bound set computation can detect over 80% of all support-reducing

bound sets, while achieving a 40 fold runtime reduction compared to the exhaustive

method [ZCJMB05]. Such heuristic methods are acceptable in such a scenario, however,

the solution obtained is not guaranteed to be complete. In classical symmetry detection,

the requirements of an algorithm are much the same, however experimental results have

indicated that the running time of state-of-the-art algorithms [Mis03, ZCJMB04] can

exceed 12 hours on some ROBDDs of less than a million nodes (the problem is further

exacerbated since ROBDDs of a million nodes, or greater, in size is an increasingly

common occurrence [FGH+05]).

Variable reordering can reduce the size of an ROBDD and thereby reduce the cost

of symmetry detection by current state-of-the-art methods. However, it is imprudent to

rely on variable reordering alone to make classical symmetry detection tractable since

variable reordering techniques can themselves be prohibitively expensive and of course,

even after reordering, there is no guarantee that the size of the ROBDD will actually be

smaller. In fact, as we remarked in §2.2.1, even merely improving the variable ordering is

NP-complete [BW96], and is also inapproximable within a constant factor [Sie02]. From

the perspective of algorithm design, there are at least two ways forward: develop a faster

symmetry detection algorithm; recast symmetry detection so that it can be solved with

an anytime algorithm. Anytime algorithms arise in engineering tasks when it is more

attractive to find an acceptable answer in a reasonable amount of time rather than the

optimal answer in an exorbitant amount of time. In the context of classical symmetry

detection the challenge is therefore to devise an efficient algorithm that incrementally

detects pairs of T1-symmetric variables until some given time bound is exceeded. Thus

far, the only incremental algorithms that have been proposed for symmetry detection

are those based on näıve co-factor computation [MMW93, SMMD99], but alas, this

approach is inefficient. The algorithm of Panda et al. [PSP94] can be considered to

be incremental and it does not require co-factor computation, but the algorithm is

incomplete for the purposes of symmetry detection, that is, the algorithm cannot be

relied upon to compute all T1-symmetric variable pairs of a given Boolean function.

3.4 Contributions

In this chapter we present an efficient anytime algorithm for classical symmetry detec-

tion. For clarity, we summarise our contributions as follows:

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 25

• We present an incremental, anytime algorithm for first-order classical symme-

try detection for Boolean functions represented as ROBDDs. Even considering

the complexity of all the underlying set operations, the algorithm is in O(n3 +

n|G| + |G|3) where n is the number of variables and |G| the number of nodes in

the ROBDD. Since n ≪ |G|, it follows that the algorithm is competitive with

Mishchenko’s algorithm.

• We explain how an incremental anytime approach offers special opportunities for

optimisation, in that classical assymetry/symmetry sieves can precede the algo-

rithm and assymetry/symmetry propagation techniques can be inserted into the

main loop of the algorithm.

• Further, we propose a computationally lightweight technique that often improves

the proportion of symmetries found early on in the operation of the algorithm and

hence further increases the diminishment of intermediary results.

The remainder of this chapter is structured thus, Section 3.5 surveys the related work.

Section 3.6 presents an anytime symmetry detection algorithm for classical symmetries.

Due to the way the anytime algorithm decomposes symmetry detection into a series

of passes, one for each variable, we are free to exploit transitivity relations in order

to propogate asymmetry/symmetry information before each of these passes to reduce

the expected cost of each pass. Furthermore, before the first pass, it is possible to

use preprocessing algorithms — sieves — that detect pairs of asymmetric variables and

thereby further reduce the number of variable pairs that need to be considered and hence

decrease the cost of symmetry detection. Section 3.7 and 3.8 explain and quantify the

value of these refinements. Finally, Section 3.9 presents the concluding discussion.

3.5 Related Work

Early work on detecting symmetric variables in Boolean functions has focussed on the

computation of co-factor pairs, that is all n2−n possible co-factors, where n is the num-

ber of variables. Symmetry is detected by checking their equivalence [MMW93]. The use

of ROBDDs to represent Boolean functions enables not only the efficient computation

of co-factors, but also equivalence to be checked in constant time. However, repeated

co-factoring involves the creation and deletion of many intermediate ROBDD nodes and

for very large ROBDDs this overhead can be prohibitive. This method is often referred

to as the näıve method [MMW93]. Möller, Mohnke and Weber [MMW93] thus advocate

the use of preprocessing algorithms — sieves — that detect pairs of asymmetric vari-

ables. These linear-time sieves significantly reduce the number of co-factor pairs that

need to be computed. In general, however, methods built upon such sieves still require

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 26

näıve co-factor computation, that is, calls to the standard co-factoring algorithm the

complexity of which is in O(|G| log |G|) [Bry86].

Because of the cost of repeated co-factoring, many symmetry detection methods

endeavour to avoid näıve co-factor computation. Möller et al. [MMW93] and Panda et

al. [PSP94] detect all symmetries between variables adjacent in the variable order with

an algorithm in O(|G|). Panda et al. [PSP94] modify Rudell’s dynamic variable reorder-

ing algorithm [Rud93] to detect symmetries between variables that become adjacent

when one of the variables is repositioned in the ROBDD variable ordering. Symmetric

variables are then grouped, and any subsequent reordering that is applied is required to

preserve a contiguous variable ordering within each group. This approach to symmetry

detection does not require näıve co-factor computation, but there is no guarantee that

all symmetries will be found.

Current state-of-the-art in classical symmetry detection is represented by the algo-

rithm of Mishchenko [Mis03] that detects all symmetric variable pairs in a ROBDD

with O(|G|3) set operations. Symmetric pairs are represented as sets which are stored

as zero suppressed binary decision diagrams (ZBDDs [Min93]) which offer a compact

representation of a collection of sets, in this case a collection of symmetric variable pairs.

Since each set can potentially contain O(n2) elements one would expect Mishchenko’s

algorithm to at least reside in O(n2|G|3) and possibly even a higher complexity class

when all set operations are considered. Furthermore, these algorithms are monolithic

in that they provide no opportunity for early termination, and can be shown to require

prohibitive run time.

3.6 Anytime Symmetry Detection Algorithm

In this section we describe our anytime approach to classical symmetry detection. For

pedagogical purposes we first present Algorithm 1 which is our simplest algorithm for

anytime symmetry detection. In the section that follows, we build on Algorithm 1

by incorporating optimisations that exploit its anytime nature. Algorithm 1 takes

as input an ROBDD f and returns a set of index pairs S = {(i, j) | T1
xi,xj(f)}

where the predicate T1
xi,xj(f) indicates that f is classically symmetric in the variable

pair (xi, xj). The algorithm is composed of two separate procedures: FindAsymmetry

and RemoveAsymmetry. FindAsymmetry(f) performs two depth-first traversals over the

ROBDD f to detect pairs of variables (xi, xj) that are provably asymmetric with re-

spect to T1. RemoveAsymmetry(f, i, C) filters a set of variable indices C whose symmetry

relationship with variable xi is unknown to return the set C ′ ⊆ C that represents those

variables xj that are T1-symmetric with xi.

The call to FindAsymmetry initialises the set of T1-asymmetric variable pairs A

such that A ⊆ {(i, j) | ¬T1
xi,xj(f)} after which the set S of T1-symmetric variable

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 27

Algorithm 1 SymmetricPairs(f)

Require: f ∈ ROBDDX

1: A← FindAsymmetry(f)
2: S ← ∅
3: for i = 1 to n− 1 do
4: C ← { j | (i, j) 6∈ (A ∪ S) ∧ i < j}
5: D ← RemoveAsymmetry(f, i, C)
6: A← A ∪ {(i, l), (l, i) | l ∈ C \D}
7: S ← S ∪ {(i, l), (l, i) | l ∈ D}
8: end for
9: return S

pairs is initialised. The set C is constructed of indices for those variables whose T1-

symmetry relation with xi is as yet undetermined. The set of T1-symmetric variables D

returned from RemoveAsymmetry and its complement C \D are used to extend S and

A respectively. The main loop only requires n− 1 iterations because C = ∅ when i = n.

The algorithm that initialises A is justified by lemmas that detail how T1-symmetric

variables place structural constraints on ROBDDs [MMW93]. We state these lemmas

below for completeness:

Lemma 3.1 (Theorem 3.1 [MMW93]). If an ROBDD f over a set of variables {x1, . . . , xn}

is T1-symmetric in the pair (xi, xj) and i < j, then every ROBDD rooted at a node la-

belled xi must contain a node labelled xj.

Lemma 3.2 (Theorem 3.1 [MMW93]). If an ROBDD f over a set of variables {x1, . . . , xn}

is T1-symmetric in the pair (xi, xj) and i < j, then every path from the root of f to a

node labelled xj must visit a node labelled xi.

Lemmas 3.1 and 3.2 provide two conditions under which asymmetry can be observed.

For any given node labelled xi we can compute the set of all variables xj that appear

in a ROBDD that is rooted at that node, and any variable not appearing in this set is

necessarily T1-asymmetric with xi. Furthermore, for any given node labelled xj, we can

compute the set of all variables xi that appear on all paths from the root of the ROBDD

to the node, and any variable not appearing in this set is T1-asymmetric with xj . These

asymmetry conditions can be checked together in just two depth-first traversals of the

ROBDD, each traversal taking O(n|G|) time since each node is visited singly and at

most n variables need be considered.

The symmetry relations between the variables are computed in a series of passes.

The validity of this decomposition is justified by the proposition:

Proposition 3.1. An ROBDD f over a set of variables {x1, . . . , xn} is T1-symmetric

in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labelled xi is T1-symmetric in (xi, xj) and,

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 28

f

��

GFED@ABCx1
1

}}{{
{{

{{
{

0

��

GFED@ABCx2

1

��

0

!!
CC

CC
CC

C

GFED@ABCx3
1

}}{{
{{

{{

0
ww

1

Figure 6: ROBDD of f = (x1 ∧ x2) ∨ x3

• every path from the root of f to a node labelled xj passes through a node labelled

xi.

Proof.

⇐ Consider the if direction.

– Since f is T1-symmetric in the variable pair (xi, xj), f(b1, 1,b2, 0,b3) =

f(b1, 0,b2, 1,b3) for all b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j. Let g =

f(b1, xi, . . . , xn) hence g|xi←1,xj←0 = g|xi←0,xj←1.

– Suppose for the sake of a contradiction that there exists a path from the root

to a node labelled xj that does not pass through a node labelled xi. Thus,

let g = f(b1, 0,b2, xj, . . . , xn) = f(b1, 1,b2, xj , . . . , xn) for some b1 ∈ B
i−1

and b2 ∈ B
j−i−1. Thus g|xj←0(b3) = g|xj←1(b3) for all b3 ∈ B

n−j. Hence

g|xj←0 = g|xj←1 which is a contradiction since g is reduced.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 0,b2, 1,b3) = 0. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1. Hence g is labelled xi. Thus there exists some b2

and b3 such that g|xi←1(b2, 0,b3) = 1 and g|xi←0(b2, 1,b3) = 0 as required.

– Suppose g|xi←0 = g|xi←1. Hence g is not labelled xi. Furthermore, let h =

g(0,b2, xj, . . . , xn) = g(1,b2, xj , . . . , xn). Observe h|xj←0 6= h|xj←1 since

h|xj←0(b3) 6= h|xj←1(b3) as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 0,b2, 1,b3) = 1 case follows analogously.

One may wonder if the second condition in the proposition is actually necessary. Figure 6

illustrates that the second condition cannot be relaxed. Observe that the variable

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 29

pair (x2, x3) is T1-symmetric in the ROBDD rooted at x2, moreover the pair (x2, x3)

is T1-symmetric for every ROBDD rooted at a node labelled x2. However, the pair

(x2, x3) is T1-asymmetric in the ROBDD f , and indeed there exists a path from the

root of f to the node x3 that does not visit a node labelled x2. In fact, disabling

the preprocessing gives the following asymmetry and symmetry sets Ai and Si after i

iterations of the loop: A0 = S0 = ∅, A1 = {(x1, x3), (x3, x1)}, S1 = {(x1, x2), (x2, x1)},

A2 = A1, S2 = S1 ∪ {(x2, x3), (x3, x2)}. Observe the erroneous pair (x2, x3) contained

within S2.

The proposition allows exhaustive checking to be decomposed into a series of passes;

one pass for each variable xi. Observe that when the loop is entered in Algorithm 1,

FindAsymmetry has already added all the pairs (i, j) to A such that there exists a path

from the root to a node labelled xj which does not pass through a node labelled xi. An

index j for such a pair cannot arise in C. Hence it remains to remove those indices j ∈ C

which violate the first condition of the proposition, that is, those j ∈ C for which f is

T1-asymmetric in the pair (xi, xj). This is precisely the rôle of RemoveAsymmetry(f, i, C)

in Algorithm 2 where the parameter i delineates the variable under consideration in the

pass. The algorithm uses the function index(f) which merely returns the index of the

root of an ROBDD f , that is, i if the root of f is labelled xi.

Algorithm 2 RemoveAsymmetry(f, i, C)

Require: f ∈ ROBDDX , i ∈ N ∪ {0} and C ⊂ X
1: if C = ∅ ∨ f = true ∨ f = false then
2: return C
3: end if
4: j ← index(f)
5: if j > i then
6: return C
7: else if j = i then
8: return RemoveAsymmetryVar(f|xi←0, f|xi←1, C)
9: else

10: C ← RemoveAsymmetry(f|xj←0, i, C)
11: return RemoveAsymmetry(f|xj←1, i, C)
12: end if

An index j should be removed from C whenever f|xi←0,xj←1 6= f|xi←1,xj←0. This

T1-asymmetry check is satisfied if there exists b1 ∈ B
i−1 and b2 ∈ B

j−i−1 such that,

f(b1, 0,b2, 1, xj+1, . . . , xn) 6= f(b1, 1,b2, 0, xj+1, . . . , xn)

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 30

If f0 = f|xj←0 and f1 = f|xj←1 this amounts to showing one of the following,

f0(b1, 0,b2, 1, xj+1, . . . , xn) 6= f0(b1, 1,b2, 0, xj+1, . . . , xn)

f1(b1, 0,b2, 1, xj+1, . . . , xn) 6= f1(b1, 1,b2, 0, xj+1, . . . , xn)

for some (smaller) b1 ∈ B
i−2. This recursive reduction explains the recursive nature of

RemoveAsymmetry. The test j > i implements a form of early termination since if j > i

there is no opportunity for removing any index from C. The leaf nodes true and false

also trigger early termination.

Algorithm 3 RemoveAsymmetryVar(g0, g1, C)

Require: g0 ∈ ROBDDX , g1 ∈ ROBDDX and C ⊂ X
1: if g0 = true ∨ g0 = false then
2: j ←∞
3: else
4: j ← index(g0)
5: end if
6: if g1 = true ∨ g1 = false then
7: k ←∞
8: else
9: k ← index(g1)

10: end if
11: if C = ∅ ∨ j = k =∞ then
12: return C
13: else if j = k then
14: (l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1|xk←0, g1|xk←1)
15: else if j < k then
16: (l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1, g1)
17: else
18: (l, g00, g01, g10, g11)← (k, g0, g0, g1|xk←0, g1|xk←1)
19: end if
20: if g01 6= g10 then
21: C ← C \ {l}
22: end if
23: C ← RemoveAsymmetryVar(g00, g10, C)
24: return RemoveAsymmetryVar(g01, g11, C)

At the heart of RemoveAsymmetry is a call to RemoveAsymmetryVar(f|xi←0, f|xi←1, C)

which is applied to an ROBDD whose root is labelled with the variable xi. When a

call to RemoveAsymmetryVar is initially encountered, its first and second parameters are

g0 = g|xi←0 and g1 = g|xi←1. At this point, it remains to search for some b ∈ B
j−i−1 such

that g0(b, 1, xj+1, . . . , xn) 6= g1(b, 0, xj+1, . . . , xn). This is in turn realised by showing

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 31

either one of the following,

g00(b, 1, xj+1, . . . , xn) 6= g10(b, 0, xj+1, . . . , xn)

g01(b, 1, xj+1, . . . , xn) 6= g11(b, 0, xj+1, . . . , xn)

for some (smaller) b ∈ B
j−i−2 where g00 = g0|xi+1←0, g10 = g1|xi+1←0, g01 = g0|xi+1←1

and g11 = g1|xi+1←1. A recursive formulation of RemoveAsymmetryVar can be obtained

from this recursive reduction. When both g0 and g1 are leaf nodes, no further reduction

can be applied and RemoveAsymmetryVar terminates. The three cases in Algorithm 3

are required to accommodate the reduction inherent in ROBDDs. The j = k condition

selects the case when g0 and g1 are labelled with the same variable xj. In this case we

compute g0|xj←1 and g1|xj←0 and check that g0|xj←1 6= g1|xj←0. If the check is satisfied

j is removed from C. When j < k the co-factor g1|xj←1 = g1 hence the asymmetry

check g0|xj←1 6= g1|xj←0 reduces to g0|xj←1 6= g1. If this check is satisfied j is removed

from C. The k < j case is analogous except that k is removed.

Caching can be applied to ensure that the function RemoveAsymmetryVar is not

called twice on the same pair of ROBDDs g0 and g1. Moreover, the complexity of a

call to RemoveAsymmetryVar is O(|G|2). This follows since C can be represented as an

array of n Booleans. Then computing C \ {l} is in O(1), as is the test C = ∅ when

C is augmented with a counter to record |C|. Overall, RemoveAsymmetryVar can only

be invoked a total of |G| times from within Algorithm 1, thus RemoveAsymmetryVar

contributes O(|G|3) to the overall running time. The n − 1 calls to RemoveAsymmetry

cumulatively cost O(n|G|). Returning to the main loop of Algorithm 1, observe that

the sets A and S can be augmented in O(n) time when D is also represented as an array

of n Booleans and A and S are represented as n×n adjacency matrices. Algorithm 1 is

therefore in O(n2 +n|G|+ |G|3). Interestingly, although this improves on the algorithm

of Mishchenko when set operations are considered, it does not improve on the näıve

co-factor computation method [MMW93,SMMD99] which resides in O(n2|G| log(|G|)).

3.7 Optimised Anytime Symmetry Detection

In this section we propose a series of optimisations for Algorithm 1. The resulting refined

algorithm retains the incremental nature of the original algorithm, and shows how incre-

mentality can be exploited by several optimisations. These optimisations seek to reduce

the size of the set C, and hence the running time of the call RemoveAsymmetry(f, i, C),

by enriching the sets A and S on-the-fly before, and between, iterations of the main

loop. The symmetry sieve algorithms proposed by [MMW93,MM93,SMMD99] suggest

a way to refine the sets A and S before the loop is entered. Furthermore, it is possible

to take advantage of the transitivity of the T1-symmetry relation to add further pairs

to A and S between iterations. The optimised algorithm listed in Algorithm 4 takes an

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 32

ROBDD f and returns the set S of T1-symmetric variable pairs.

Algorithm 4 OptimizedSymmetricPairs(f)

Require: f ∈ ROBDDX

1: A′ ← FindAsymmetry(f)
2: M ← SatisfyCounts(f)
3: for i = 1 to n do
4: for j = i + 1 to n do
5: if M(i) 6= M(j) then
6: A′ ← A′ ∪ {(i, j), (j, i)}
7: end if
8: end for
9: end for

10: (A,S)← FindAdjSymmetry(f)
11: (A,S)← (A ∪A′, S \A′)
12: for i = 1 to n− 2 do
13: (A,S)← SymmetryClosure(A,S)
14: C ← { j | (i, j) 6∈ (A ∪ S) ∧ i + 1 < j}
15: D ← RemoveAsymmetry(f, i, C)
16: A← A ∪ {(i, l), (l, i) | l ∈ C \D}
17: S ← S ∪ {(i, l), (l, i) | l ∈ D}
18: end for
19: return S

SatisfyCounts(f) returns a mapping M from variable indices to a natural number

that can be used to distinguish pairs of T1-asymmetric variables, that is, if M(i) 6= M(j)

then (xi, xj) are T1-asymmetric. FindAdjSymmetry(f) returns two sets of index pairs

A and S where {(i, j) | ¬T1
xi,xj(f) ∧ j = i + 1} ⊆ A ⊆ {(i, j) | ¬T1

xi,xj(f)} and

S = {(i, j) | T1
xi,xj(f) ∧ j = i + 1}. Since the procedure FindAdjSymmetry finds all

adjacent T1-symmetric and T1-asymmetric pairs, the number of loop iterations can be

relaxed from n−1 to n−2. SymmetryClosure(A1, S1) takes as input two sets A1 and S1

of variable pairs known to be T1-asymmetric and T1-symmetric respectively. Then, by

reasoning about transitivity, a pair of sets (A2, S2) is computed which are T1-symmetric

and T1-asymmetric such that A2 ⊇ A1 and S2 ⊇ S1. The procedures SatisfyCounts,

FindAdjSymmetry and SymmetryClosure are detailed in Sections 3.7.1, 3.7.2 and 3.7.3

respectively. Section 3.7.4 presents some heuristics which endeavour to increase the

proportion of T1-symmetric variable pairs that are discovered early on in the execution

of the main loop of Algorithm 4.

3.7.1 Satisfy Counts

A consequence of T1-symmetry, which can also be used to detect T1-asymmetry [MM93],

relates the satisfy count of one positive co-factor of a variable to the satisfy count of

another:

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 33

Lemma 3.3. If a Boolean function f over a set of variables {x1, . . . , xn} is T1-symmetric

in the pair (xi, xj), then ‖f|xi←1‖ = ‖f|xj←1‖.

Computing the satisfy counts of all co-factors can be realised using a single depth-first

traversal of the ROBDD in O(n|G|) time [MM93]. Finding the resultant asymmetries

additionally requires n2 comparisons in Algorithm 4, and thus the overall complexity of

this sieve is O(n2 + n|G|).

3.7.2 Adjacent Symmetries

The following result follows immediately from Proposition 3.1 and details a special case

of symmetry which relates to variables that are adjacent in the ROBDD ordering:

Corollary 3.1. An ROBDD f over a set of variables {x1, . . . , xn} is T1-symmetric in

the pair (xi, xi+1) iff,

• every ROBDD rooted at a node labelled xi is T1-symmetric in (xi, xi+1) and,

• every path from the root to a node labelled xi+1 passes through a node labelled xi.

Although the result follows from Proposition 3.1, it was in fact inspired by a tactic of

Möller et al. [MMW93, SMMD99]. They state that an ROBDD f is T1-symmetric in

a pair (xi, xi+1) iff ‖f|xi←1‖ = ‖f|xi+1←1‖ and each ROBDD within f that is rooted

at a node labelled xi is also T1-symmetric in the pair. The force of this result is that

the equivalence f|xi←0,xi+1←1 = f|xi←1,xi+1←0 can be checked in O(|G|) time for all

adjacent variable pairs [MMW93]. Since no argument is given for the correctness of

this procedure, we replace this tactic with another that is justified by Corollary 3.1. In

fact Proposition 3.1 leads to an additional result that can detect T1-asymmetric variable

pairs that are not necessarily adjacent in the variable ordering:

Corollary 3.2. An ROBDD f over a set of variables {x1, . . . , xn} is T1-asymmetric in

the pair (xi, xk) if there exists a node g in f labelled xi with successor nodes labelled xk

and xl where i + 1 < k ≤ l and g|xi←0,xk←1 6= g|xi←1,xk←0.

These non-consecutive T1-asymmetric pairs can be detected in O(|G|) time. Of course,

the first O(|G|) tactic for enriching A and S can only be deployed in conjunction with

FindAsymmetry; the second tactic is independent of FindAsymmetry.

3.7.3 Symmetry Closure

The following lemma can be obtained by recalling that a function f remains unchanged

under the switching of any pair of T1-symmetric variables:

Lemma 3.4. If a Boolean function f over a set of variables {x1, . . . , xn} is T1-symmetric

in the pairs (xi, xj) and (xj , xk) then f is also T1-symmetric in the pair (xi, xk).

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 34

This transitivity result provides a way of enriching the set S, that is, if (xi, xj), (xj , xk) ∈

S then it follows that (xi, xk) is also a T1-symmetric pair, hence S can be enriched with

(xi, xk). Further, if (xi, xj) ∈ S, (xi, xk) ∈ A then it follows that the pair (xj, xk) is

T1-asymmetric, that is, A can be enriched with (xj , xk). This follows since if (xj , xk)

is T1-symmetric then by the lemma it follows that (xi, xk) is T1-symmetric, which is a

contradiction. Adding those variable pairs to A and S which can be inferred through

transitivity is not dissimilar to computing the transitive closure of a binary relation. This

motivates adapting the Floyd-Warshall [Flo62,War62] all-pairs-shortest-path algorithm

to this task which, in turn, leads to Algorithm 5. The complexity of Algorithm 5 is in

O(n3) when A and S are represented as n×n adjacency matrices since membership check

and single element insertion can be performed in O(1) time for an adjacency matrix

representation. Each iteration of the main loop of Algorithm 4 incurs an additional

call to SymmetryClosure which itself resides in O(n3) and hence pushes the overall

complexity into O(n4 +n|G|+ |G|3). Recall that SatisfyCounts and FindAdjSymmetry

are in O(n|G|) and O(|G|) respectively which have no impact on the overall asymptotic

complexity. However, although the Floyd-Warshall algorithm is attractive because of

its simplicity, the overall complexity can be reduced to O(n3 + n|G| + |G|3), or even

lower, by substituting Floyd-Warshall with an incremental (online) transitive closure

algorithm [IK83]. It should be noted that the algorithm resides in O(n3 + n|G|+ |G|3)

irrespective of the size and structure of the set S = {(i, j) | T1
xi,xj(f)}. However, the

larger the set S, the greater the opportunity for applying transitivity which, in turn,

reduces the time spent in RemoveAsymmetry and the main loop.

Algorithm 5 SymmetryClosure(A,S)

Require: S,A ∈ X2

1: for i = 1 to n do
2: for j = i + 1 to n do
3: for k = 1 to n do
4: if (k, i) ∈ S ∧ (k, j) ∈ S then
5: S ← S ∪ {(j, i), (i, j)}
6: else if (k, i) ∈ A ∧ (k, j) ∈ S then
7: A← A ∪ {(j, i), (i, j)}
8: else if (k, i) ∈ S ∧ (k, j) ∈ A then
9: A← A ∪ {(j, i), (i, j)}

10: end if
11: end for
12: end for
13: end for
14: return (A,S)

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 35

3.7.4 Variable Choice Heuristics

The astute reader may have noticed that the correctness of Algorithm 4 is not compro-

mised by the order in which variables are considered in the main loop. One may wonder

therefore if considering variables in a different order can speed up the algorithm. One

natural approach is to choose a variable xi that maximises |{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|.

The rationale behind this greedy heuristic is to ensure that the call to RemoveAsymmetry

resolves the maximal number of variable pairs whose T1-symmetry relation is unknown.

The dual of this heuristic is to choose a variable xi for which |{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|

is minimal. Motivation for this heuristic comes from literature [MMM02] on computing

signatures for Boolean functions so as to determine input correspondence. This is the

problem of determining whether the variables of one ROBDD can be reordered so that

the resulting ROBDD is equivalent to another. It has been observed that if the cur-

rently known asymmetry sieves [MM93,MMW93] leave only a handful of pairs for which

a symmetry is unknown, then these variables are likely to be involved in some symme-

try relationship [MMM02]. Therefore, focussing RemoveAsymmetry on the variable with

the least unknowns is likely to discover T1-symmetries. We call these two heuristics

max and min respectively. It should be pointed out that for both these heuristics, a

variable can be chosen in O(n) time by maintaining a counter for each variable xi that

records the number of unknowns, that is, |{(xi, xj) 6∈ (A ∪ S) ∧ i < j}|. The counter

for xi is decremented each time a pair (xi, xj) is added to A or S. The cumulative

overhead of running the heuristic over the loop body is in O(n2) which is absorbed into

the asymptotic running time of the algorithm.

3.8 Experimental Results

To assess the efficiency of the anytime approach, the algorithm and all its refine-

ments, were implemented using the Colorado University Decision Diagram (CUDD)

package [Som05]. The rationale for this choice of library was that the Extra DD li-

brary [Mis08], which implements Mishchenko’s algorithm, also uses CUDD. All Exper-

iments were performed on an UltraSPARC IIIi 900MHz based system, equipped with

16GB RAM, running the Solaris 9 Operating System, using getrusage to gauge CPU

usage in seconds. All programs — the CUDD package, the Extra library, and our algo-

rithm — were compiled with the GNU C Compiler version 3.3.0 with -O3 enabled. The

algorithms were run against a range of MCNC and ISCAS benchmark circuits of varying

size [BEN08], as well as several other benchmarks derived from the SAT literature. All

timings are given in seconds and averaged over four runs.

Tables 2 and 3 present the results of these tests. Table 2 presents results where

ROBDD construction was performed under a static variable order, i.e. without dy-

namic variable ordering. By way of contrast, Table 3 presents results where ROBDD

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 36

construction was performed in conjunction with the dynamic variable ordering algorithm

of Rudell [Rud93]. Hence Table 3 illustrates the impact of dynamic variable ordering in

the reading and construction of the ROBDDs and the time required to compute classical

symmetries. In both tables, the first four columns give, respectively, the circuit name,

number of input variables, number of defined functions (outputs) and the total number

of internal ROBDD nodes required to represent all outputs. Column five indicates the

total number of all T1-symmetric pairs found over all the outputs. Column six gives

the time in seconds to read in the benchmark circuit and construct the ROBDD. The

remaining seven columns give the run times required to compute all T1-symmetric and

T1-asymmetric pairs. The first of these is the näıve method for computing all co-factor

pairs. The second applies the sieves of §3.7.1 and §3.7.2 to reduce the number of co-

factors that need to be computed. The third and fourth columns are Mishchenko’s

implementation of his own algorithm [Mis08] without and with garbage collection en-

abled. The fifth column is the unoptimised anytime algorithm presented in Section 3.6.

The remaining three columns relate to the refinements presented in Section 3.7, that

is, with the optimisations of Sections 3.7.1, 3.7.2 and 3.7.3 cumulatively enabled. The

rationale for implementing the näıve method was to verify the implementation of our al-

gorithm and Mishchenko’s; the performance numbers are included to quantify the value

of Mishchenko’s algorithm. It is interesting to observe that the differences between

running with garbage collection turned on and off are considerable and unpredictable.

This slow down is not an anomaly due to garbage generated in an earlier experiment

since each experiment is run as a separate process. The garbage stems from the way

Mishchenko’s implementation makes extensive use of ZBDDs [Min93] to represent sets.

Enabling garbage collection has no perceivable impact on our algorithm.

The columns labelled Sat, Adj and Close suggest that all the optimisations to the

basic anytime algorithm are worthwhile, though not essential. Interestingly, computing

transitive closure is not prohibitively expensive even when implemented using the sub-

optimal Floyd-Warshall algorithm. This is because this algorithm can be implemented

efficiently and straightforwardly with three nested loops. The simplicity of this optimisa-

tion suggests that it should be applied in conjunction with the näıve method [MMW93].

Tables 2 and 3 can only be meaningfully interpreted in conjunction with asymptotic

complexity results. Complexity results, such as the assertion that the basic anytime

algorithm resides in O(|G|3) assuming n ≤ |G|, are ultimately statements about scala-

bility; such results predict how the running time of an algorithm will grow with the size

of the input ROBDD. These statements have particular weight when combined with

the experimental results of Tables 2 and 3 that gauge the asymptotic constants. For

instance, if the basic anytime algorithm terminates within an acceptable time for very

large ROBDDs then (no matter whether the ROBDD has been created with or without

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 37

sifting, and irrespective of the number of symmetries inferred), the algorithm will termi-

nate within an acceptable time for smaller ROBDDs. This is because the total number

of atomic operations is O(|G|). Interestingly, the algorithm of Mishchenko is O(|G|3)

in the number of set operations, where each set operation will have variable complex-

ity depending, for instance, on the number of represented symmetry pairs. Moreover,

when sets are realised as ZBDDs, the cost of each set operation will also vary due

to memoisation (caching) effects and the overheads induced by memory management.

This variability is evident in the columns Mish-GC and Mish+GC. This key difference

in the asymptotic complexity explains why, although the running time of the anytime

algorithms are consistently below 200 secs, and certainly never exceeds 2 hours, that

these algorithms are not uniformly faster than the algorithm of Mishchenko because of

the variability of its ZBDD operations.

One may wonder how the performance of the classical anytime algorithm is affected

by the underlying architecture. Table 4 thus summarises the results of some timing

experiments performed with an Intel Core2 Duo 2.33GHZ PC (using just one core),

equipped with 2GB of RAM, running MacOSX. The Intel is faster than the Ultra-

SPARC, but the memory limit of 2GB prevents some circuits (including all those for

the larger SAT benchmarks) from being constructed. As before, the running times of

the ZBDDs based algorithms are more variable than those of the anytime algorithms.

It should be noted the relative timings of the algorithms may change even between Intel

machines, due to different memory speeds and caching behaviour.

Figure 7 summarises the outcome of some experiments that investigate the relation-

ship between the variable choice heuristics and the proportion of symmetries found early

in the execution of the algorithm. The graphs display the number of symmetries found

against various timeouts for the min and max heuristics using the original algorithm as

a control. Apart from the circuits cnt08, homer08, rope 0006, urquhart4 25 (graphs 6,

16, 18 and 20) the min heuristic increases the proportion of symmetries found early in

the execution of the algorithm. In the case of dp02s02 (graph 9), gripper12 (graph 14)

and homer06 (graph 15) the difference between min and both the control and max is

stark. This suggests that the min heuristic should always be applied since it never gives

a significant slowdown when the algorithm is run to completion and is beneficial in the

case of early termination. In approximately half of the circuits the number of symme-

tries grows consistently with time. However, for the remainder, growth is either more

sporadic or biased towards the latter passes of the symmetry detection algorithm. For

these circuits, only a fraction of symmetry pairs could be recovered if these algorithms

were terminated prematurely. This is why it is important that anytime generality should

not be achieved at the expense of efficiency.

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 38

3.9 Conclusions

In this chapter we have presented a novel anytime classical symmetry detection al-

gorithm, that is capable of detecting all T1-symmetric variable pairs. The startling

speed-ups over Mishchenko’s algorithm stem from our use of a single static adjacency

matrix rather than sets of pairs that are repeatedly generated. It is important to ap-

preciate that there is no obvious way to re-engineer Mishchenko’s algorithm to use a

static adjacency matrix. This is because Mishchenko’s algorithm is a bottom-up, divide

and conquer algorithm that derives the solution to a problem by obtaining, and combin-

ing, the solutions to several sub-problems. Mishchenko [Mis03, p 1590] points out that

caching of the answers to these sub-problems is required to reduce the computational

complexity from exponential to polynomial yet this requires multiple data structures to

be maintained. By contrast, the anytime approach merely has to mark nodes as visited

in any of the ROBDD traversals. Moreover, the only set operations that the anytime

algorithm require are atomic O(1) insertions and deletions, which finesses the otherwise

O(n2) overhead of set intersection and union. This partly explains the speed of the

anytime approach.

C
H

A
P

T
E

R
3
.

S
Y

M
M

E
T

R
Y

D
E

T
E

C
T

IO
N

IN
R

O
B

D
D

S
39

Circuit # In # Out Σ|G| |S| Read Näıve Muller Mish-GC Mish+GC Any Sat Adj Close

pair 173 137 118066 1910 0.20 132.46 4.45 6.62 35.50 2.37 2.18 2.16 2.08
C3540 50 22 4618194 81 21.80 >7200 122.09 132.72 5488.75 71.64 68.23 66.08 65.04
C880 60 26 600998 262 8.29 704.54 10.23 13.90 2242.11 7.75 6.84 5.63 5.20
s4863 153 104 126988 547 2.63 20.60 1.45 5.30 5.71 1.41 1.08 1.01 0.82
s9234.1 247 250 4434504 3454 20.14 >7200 1415.88 1407.20 >7200 183.84 158.36 145.94 141.26
s38584.1 1464 1730 150554 15629 3.70 337.59 23.01 16.70 132.16 3.12 3.04 3.01 2.80

simp10 105 1 722074 19 58.45 >7200 186.05 661.70 >7200 65.28 47.53 43.90 40.88
simp12 117 1 758330 23 76.23 >7200 139.45 >7200 >7200 105.67 61.94 59.87 57.59
simp14 120 1 562326 36 70.38 >7200 >7200 1114.29 >7200 75.75 38.48 36.17 30.63
hom06 104 1 1176845 20 65.22 >7200 443.67 274.90 >7200 115.66 91.70 88.31 81.50
hom08 95 1 893312 16 56.48 >7200 466.21 135.79 >7200 67.79 54.99 50.89 49.00
hom10 130 1 309221 29 29.98 >7200 446.56 1510.32 >7200 35.85 33.39 31.61 31.21
ca004 53 1 782640 2 5.40 >7200 15.01 147.97 >7200 31.35 12.33 12.33 12.10
ca008 96 1 682617 16 20.40 >7200 250.16 326.92 >7200 53.54 44.69 43.05 42.78
ca016 107 1 861209 26 60.10 >7200 744.55 305.11 >7200 72.68 59.96 50.90 50.80
urquhart2 25 48 1 722657 5 3.06 >7200 42.95 70.50 >7200 26.22 20.23 20.21 17.95
urquhart3 25 62 1 1771025 24 6.22 >7200 560.18 >7200 >7200 82.98 81.14 76.97 72.80
urquhart4 25 68 1 1736705 27 5.96 >7200 974.83 >7200 >7200 83.44 81.84 76.48 72.02
rope 0002 54 1 634914 3 3.06 >7200 19.08 192.77 >7200 22.48 18.53 18.47 18.50
rope 0004 62 1 1052214 10 4.73 >7200 253.82 487.26 >7200 41.71 39.70 37.90 37.82
rope 0006 61 1 759039 13 3.14 >7200 225.23 657.74 >7200 35.78 30.76 30.64 30.68
ferry8 111 1 290127 30 78.35 >7200 605.96 95.15 >7200 30.10 29.56 23.21 22.99
ferry10 116 1 539419 38 88.08 >7200 2177.43 1866.62 >7200 70.34 69.84 54.19 53.42
ferry12 123 1 277291 36 47.96 >7200 988.06 142.10 >7200 37.63 37.50 30.98 30.95
gripper10 125 1 393485 28 69.08 >7200 1641.05 261.32 >7200 52.97 50.53 45.38 44.74
gripper12 129 1 667877 43 50.95 >7200 2604.07 368.50 >7200 106.32 102.87 85.43 84.90
gripper14 118 1 767735 40 47.29 >7200 >7200 415.57 >7200 111.49 110.40 73.48 71.34

Table 2: T1-symmetry Experimental Results without Sifting

C
H

A
P

T
E

R
3
.

S
Y

M
M

E
T

R
Y

D
E

T
E

C
T

IO
N

IN
R

O
B

D
D

S
40

Circuit # In # Out Σ|G| |S| Read Näıve Muller Mish-GC Mish+GC Any Sat Adj Close

pair 173 137 8599 1910 0.60 2.71 0.50 0.18 0.62 0.48 0.36 0.32 0.28
C3540 50 22 43334 81 14.00 38.37 0.99 0.94 6.84 3.45 2.89 2.35 1.99
C880 60 26 8753 262 0.44 5.20 0.13 0.22 1.01 0.24 0.16 0.12 0.10
s4863 153 104 75549 547 87.58 14.78 0.80 0.09 1.28 0.50 0.32 0.29 0.16
s9234.1 247 250 9376 3454 2.16 6.76 0.76 0.39 1.46 0.87 0.74 0.68 0.42
s38584.1 1464 1730 34833 15629 13.10 18.36 1.72 2.89 4.11 4.83 3.26 2.96 2.80

simp10 105 1 222431 19 205.11 >7200 11.22 4.72 57.17 32.53 11.65 11.13 11.12
simp12 117 1 292811 23 230.61 >7200 22.19 12.61 61.96 55.55 22.22 21.81 21.96
simp14 120 1 86267 36 111.84 >7200 7.49 16.24 121.69 11.98 7.16 7.14 7.10
hom06 104 1 60357 20 170.76 >7200 3.81 8.98 9.65 6.56 3.70 3.77 3.85
hom08 95 1 110160 16 128.91 >7200 4.39 4.18 134.31 17.48 4.70 4.74 4.50
hom10 130 1 142827 29 283.80 >7200 33.49 106.28 106.38 56.00 33.51 33.68 33.74
ca004 53 1 9119 2 1.86 16.47 9.91 0.27 1.94 0.31 0.22 0.18 0.08
ca008 96 1 19945 16 3.80 384.18 147.98 9.86 1235.98 1.97 1.68 1.30 1.14
ca016 107 1 90033 26 33.45 6444.37 2544.87 19.54 >7200 20.19 17.01 16.36 14.10
urquhart2 25 48 1 41098 5 6.86 168.03 137.65 0.16 0.70 1.76 1.21 0.65 0.32
urquhart3 25 62 1 43599 24 3.03 1290.93 527.77 10.66 >7200 4.36 3.68 3.12 2.78
urquhart4 25 68 1 45008 27 23.21 3330.31 1070.31 4.57 3330.31 6.94 6.37 6.31 6.23
rope 0002 54 1 1038 3 0.15 2.08 0.51 0.04 0.14 0.04 0.03 0.03 0.02
rope 0004 62 1 11874 10 2.29 186.84 62.16 0.74 37.30 1.22 0.66 0.64 0.52
rope 0006 61 1 11066 13 5.01 564.39 216.53 0.40 28.17 1.28 1.03 0.99 0.98
ferry8 111 1 5998 30 22.10 1890.72 791.87 4.70 >7200 3.53 3.54 3.55 3.56
ferry10 116 1 3141 38 6.18 140.32 64.45 0.34 >7200 0.44 0.42 0.46 0.48
ferry12 123 1 3758 36 21.18 785.37 331.28 0.72 386.18 1.45 1.45 1.44 1.43
gripper10 125 1 17525 28 183.67 >7200 >7200 8.42 4348.16 39.69 37.79 37.63 39.20
gripper12 129 1 17035 43 165.65 >7200 >7200 7.05 5365.41 35.35 34.89 34.80 36.32
gripper14 118 1 9742 40 160.23 >7200 >7200 5.97 >7200 29.53 27.10 27.23 29.68

Table 3: T1-symmetry Experimental Results with Sifting

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 41

with reordering without reordering

Circuit Näıve Möller Mish Close Näıve Möller Mish Close

alu2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
alu4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
C1908 2.53 0.73 0.04 0.16 6.69 2.10 0.12 1.12
C2670 35.71 5.57 0.12 0.17 – – – –
C3540 13.34 0.29 0.35 0.24 – – – –
C432 0.23 0.01 0.01 0.01 10.08 0.14 1.89 0.13
C499 41.80 35.14 0.04 0.98 62.04 30.10 0.10 1.12
C5315 3.12 0.17 0.07 0.11 – – – –
C880 2.35 0.05 0.62 0.03 273.30 3.55 76.41 1.93
dalu 0.40 0.04 0.01 0.01 0.63 0.10 0.05 0.07
des 0.17 0.07 0.03 0.04 0.35 0.15 0.06 0.06
frg2 0.10 0.02 0.01 0.01 0.24 0.03 0.04 0.02
i10 42.85 1.43 1.36 0.56 410.74 21.13 77.45 1.96
k2 0.37 0.01 0.03 0.01 0.36 0.02 0.04 0.01
pair 1.05 0.18 0.12 0.08 46.22 1.47 5.01 0.51
rot 1.05 0.03 0.03 0.03 6.68 0.13 0.12 0.07
s635 0.03 0.02 0.04 0.01 0.04 0.02 0.05 0.01
s838.1 0.07 0.02 0.04 0.01 0.08 0.02 0.05 0.01
s1196 0.05 0.01 0.02 0.01 0.11 0.01 0.02 0.01
s1269 0.27 0.02 0.02 0.01 0.45 0.03 0.03 0.01
s1423 1.26 0.10 0.07 0.08 6.86 0.58 0.15 0.13
s3271 0.03 0.01 0.01 0.01 0.59 0.12 0.05 0.03
s4863 5.50 0.35 0.02 0.07 9.84 0.48 0.04 0.21
s9234.1 1.51 0.20 0.10 0.08 – – – –
too large 0.38 0.01 0.02 0.01 0.47 0.01 0.02 0.01

Table 4: Classical Symmetry Timing Experiments on an Intel

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 42

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

simp10-max
simp10

simp10-min

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

simp12-max
simp12

simp12-min

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

ca016-max
ca016

ca016-min

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

ca032-max
ca032

ca032-min

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

cnt06-max
cnt06

cnt06-min

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

cnt08-max
cnt08

cnt08-min

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

comb1-max
comb1

comb1-min

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

comb2-max
comb2

comb2-min

Figure 7: Symmetries against time

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 43

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

dp02s02-max
dp02s02

dp02s02-min

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

dp04s04-max
dp04s04

dp04s04-min

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

ferry8-max
ferry8

ferry8-min

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

ferry10-max
ferry10

ferry10-min

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

gripper10-max
gripper10

gripper10-min

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

gripper12-max
gripper12

gripper12-min

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

homer06-max
homer06

homer06-min

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

homer08-max
homer08

homer08-min

Figure 7: Symmetries against time

CHAPTER 3. SYMMETRY DETECTION IN ROBDDS 44

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

rope_0004-max
rope_0004

rope_0004-min

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

rope_0006-max
rope_0006

rope_0006-min

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

urquhart3_25-max
urquhart3_25

urquhart3_25-min

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80

S

ym
m

et
ric

 P
ai

rs

Time (seconds)

urquhart4_25-max
urquhart4_25

urquhart4_25-min

Figure 7: Symmetries against time

Chapter 4

Generalised Symmetry Detection

in ROBDDs

Abstract. In this section we present an anytime algorithm for generalised

symmetry detection for Boolean functions represented as ROBDDs. The al-

gorithm builds upon the techniques used in the anytime algorithm presented

in Chapter 3.

4.1 Introduction

In recent years, the notion of classical symmetry has been extended to so-called gen-

eralised symmetries that cover all possible two co-factor equivalences [KS00b, CJ01,

ZCJMB04,ZMBCJ06]. Kravets and Sakallah [KS00b] define so-called higher-order sym-

metries in which the switching of variable pairs are extended to interchanging groups

(or sets) of ordered variables. The concept of generalised symmetry coined by Kravets

and Sakallah encompasses all variable permutations under which the function remains

unchanged. However, the concept of generalised symmetries considered in this chapter

is restricted to those symmetries expressible as a co-factor equivalence on at most two

variables: this terminology coincides with that adopted within the majority of the sym-

metry detection literature [TM97, ZCJMB04, ZMBCJ06]. The generalised symmetry

types are listed in Table 5 where f|a,b abbreviates f|xi←a,xj←b. These symmetries can

be categorised into two types depending on whether or not a negated co-factor occurs

in the relationship: T1, . . . , T6 coincide with those of Zhang et al. [ZCJMB04] whereas

T7, . . . , T12 correspond to the ¬T1, . . . ,¬T6 types in the notation of Zhang et al.

45

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 46

Positive Co-factor relations Negative Co-factor relations

T1
xi,xj(f) ⇐⇒ f|1,0 = f|0,1 T7

xi,xj(f) ⇐⇒ f|1,0 = ¬f|0,1

T2
xi,xj(f) ⇐⇒ f|0,0 = f|1,1 T8

xi,xj(f) ⇐⇒ f|0,0 = ¬f|1,1

T3
xi,xj(f) ⇐⇒ f|0,0 = f|0,1 T9

xi,xj(f) ⇐⇒ f|0,0 = ¬f|0,1

T4
xi,xj(f) ⇐⇒ f|1,0 = f|1,1 T10

xi,xj(f) ⇐⇒ f|1,0 = ¬f|1,1

T5
xi,xj(f) ⇐⇒ f|0,0 = f|1,0 T11

xi,xj(f) ⇐⇒ f|0,0 = ¬f|1,0

T6
xi,xj(f) ⇐⇒ f|0,1 = f|1,1 T12

xi,xj(f) ⇐⇒ f|0,1 = ¬f|1,1

Table 5: Generalised symmetry types

4.2 Applications

There exist numerous algorithms designed to detect the classical T1-symmetry type in

Boolean functions represented as ROBDDs (see §3.2 and §3.5 for an overview). How-

ever, as noted in [ZCJMB04], the often used classical symmetry is actually the least

common form of symmetry found in circuits. For example, Table 6 [ZCJMB04] illus-

trates the distribution of the differing symmetry types for several MCNC benchmark

circuits. Overall, the symmetry types T1 and T2 account for only 12.6% of all symme-

tries found in the benchmarks (indicating only a small number of classical symmetries),

while only 0.9% are one of the negated symmetries T7 and T8. However, the symmetry

types T3, T4, T5 and T6 account for a significant 84.8% of two variable symmetries in the

benchmarks, 1.7% are one of the negated symmetries T9, T10, T11 and T12-symmetries.

The prevalence of generalised symmetries in MCNC benchmarks over classical symme-

tries motivates the requirement for efficient algorithms to detect them, however, the

number of algorithms designed to detect the generalised symmetries is still relatively

small. Besides this vacuum that currently exists, the applications of generalised sym-

metries are much akin to those of classical symmetries (a detailed discussion of these

applications can be found in §3.2).

4.3 Contributions

In this chapter we present an efficient anytime algorithm for generalised symmetry

detection. For clarity, we summarise our contributions as follows:

• We show how to refine the anytime algorithm so as to detect generalised sym-

metries. An algorithm for simultaneously detecting all T1, . . . , T12-symmetries is

presented which resides in O(n3 + n2|G|+ |G|3).

• The algorithm is underpinned by new symmetry relationships which take the form,

that if Tp
xi,xj(f) and Tq

xj ,xk(f) hold then Tr
xi,xj(f) holds where Tp, Tq and Tr

denote one of the 12 generalised symmetry types. Only a few of these transitivity

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 47

Name Classical Single Variable
(T1, T2/T7, T8) (T3, T4, T5, T6/

T9, T10, T11, T12)

9symml 36/0 0/0
alu2 7/1 15/6
alu4 11/1 31/6
apex6 408/16 2540/29
term1 470/2 510/0
b1 5/3 0/4
b9 81/8 464/9
f51m 5/8 3/67
x1 300/6 1696/7
c8 114/16 343/25
i1 103/14 268/18
z4ml 22/5 0/52
too large 20/0 482/0
t481 8/0 16/0
cc 44/3 166/6
k2 559/0 4191/0
frg1 7/3 101/4
rot 540/93 5216/99
pm1 85/1 255/2

Total 2425/180 16297/334
Ratio 12.6%/0.9% 84.8%/1.7%

Table 6: Number of symmetries in MCNC benchmarks [ZCJMB04]

results have been previously reported [TM97] and these results could well find

application in other symmetry detection problems [ZMBCJ06].

• We show that generalised symmetry detection does not require the creation of

intermediate ROBDDs or even ZBDDs and that anytime generality does not com-

promise efficiency.

The remainder of this chapter is structured thusly, Section 4.4 presents the necessary

preliminaries, §4.5 surveys the related work. Section 4.6 presents an anytime symmetry

detection algorithm for generalised symmetries. Sections 4.7 and 4.8 present experimen-

tal results and a concluding discussion respectively.

4.4 Preliminaries

Each of the 12 predicates Ti
xj ,xk(f) of Table 5 asserts a symmetry property of a Boolean

function f where the predicate Ti
xj ,xk(f) is interpreted as stating that the Boolean

function f is Ti-symmetric in the variable pair (xj , xk). Strictly, an ROBDD g is not

a Boolean function but rather a representation of one. Therefore to assert symmetry

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 48

properties of the function f that underlies a given ROBDD g, we define Ti
xj ,xk(g) to

hold whenever Ti
xj ,xk(f) holds. Moreover, we shall say that a ROBDD g is Ti-symmetric

in the variable pair (xj , xk) iff Ti
xj ,xk(g) holds, and dually g is Ti-asymmetric in the

variable pair (xj , xk) iff Ti
xj ,xk(g) does not hold.

4.5 Related Work

The generalisation of symmetries is a recent development and has received much atten-

tion [KS00b,CJ01,WKSV03,ZCJMB04]. This move to generalised symmetries has in-

evitably brought with it the requirement for efficient algorithms to compute them [WKSV03,

ZCJMB04]. It is straightforward to extend the näıve approach of symmetry detection

to all generalised symmetries in Table 5 with only a worst-case twofold increase in

the amount of work required. This is because classical symmetry detection requires

calculating the co-factors f|xi←1,xj←0 and f|xi←0,xj←1 whereas generalised symmetries

over two variables only require the co-factors f|xi←0,xj←0 and f|xi←1,xj←1 to be addi-

tionally computed. (The amount of work required to compute an equivalence check,

such as f|xi←0,xj←0 = f|xi←1,xj←1, is negligible and a check that involves negation,

such as f|xi←0,xj←0 = ¬f|xi←1,xj←1, is also in O(1) for ROBDD packages supporting

complement edges [BRB90].) This twofold increase in work is disproportionate to the

twelvefold increase in the number of symmetries that can be detected, however, the

overhead of repeated co-factoring is still prohibitive. Consequently, symmetry detection

methods for generalised symmetries have progressed along the same lines as those for

classical symmetries. State-of-the-art in generalised symmetry computation is repre-

sented by the algorithm of Zhang et al. [ZCJMB04]. The algorithm mirrors the design

of Mishchenko [Mis03], but is altered to perform multiple passes for each of the differ-

ent symmetry types. Hence, the algorithm of Zhang et al. has the same worst-case

complexity of that of Mishchenko, disregarding constant factors.

4.6 Generalised Anytime Symmetry Detection Algorithm

In this section we show how to extend the anytime algorithm presented in the previous

chapter to also detect the generalised symmetry types given in Table 5. Algorithm 6

takes as input an ROBDD f and returns the set of triples S = {(i, j, k) | Tk
xi,xj(f)}.

The algorithm is composed of three distinct procedures. FindFastSymmetry(f) returns

a pair (A,S) such that,

A = {(i, j, k) | ¬Tk
xi,xj(f) ∧ k ∈ K} and

S = {(i, j, k) | Tk
xi,xj(f) ∧ k ∈ K} where K = {3, 4, 9, 10}

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 49

FindSlowAsymmetry(f) returns a set A′ ⊆ {(i, j, k) | ¬Tk
xi,xj(f) ∧ k ∈ K ′} such that

K ′ = {1, . . . , 12}\K. In an analogous fashion, GeneralRemoveAsymmetry(f, i, C) filters

a set of pairs C to return a subset C ′ ⊆ C. If the Tk-symmetry relationship between

the variables xi and xj is presently unknown then (j, k) ∈ C. The returned set C ′ ⊆ C

is precisely those pairs C ′ = {(j, k) ∈ C | Tk
xi,xj(f) ∧ k ∈ K ′}.

Algorithm 6 GeneralizedSymmetricPairs(f)

Require: f ∈ ROBDDX

1: (A,S)← FindFastSymmetry(f)
2: A← A ∪ FindSlowAsymmetry(f)
3: for i = 1 to n− 1 do
4: C ← { (j, k) | (i, j, k) 6∈ (A ∪ S) ∧ i < j}
5: D ← GeneralRemoveAsymmetry(f, i, C)
6: A← A ∪ {(i, l, k), (l, i, k) | (l, k) ∈ C \D}
7: S ← S ∪ {(i, l, k), (l, i, k) | (l, k) ∈ D}
8: end for
9: return S

4.6.1 Fast Symmetries

Interestingly, some types of generalised symmetry are easier to compute than others.

In fact, T3 and T4-symmetries and T9 and T10-symmetries can be computed in O(n|G|)

and O(n2|G|) respectively, utilising the following propositions.

Proposition 4.1. An ROBDD f over a set of variables {x1, . . . , xn} is T3-symmetric

in the pair (xi, xj) and i < j iff

• if whenever an ROBDD g occurs in f at a node labelled xi then g|xi←0 does not

contain a node labelled xj and,

• every path from the root of f to a node labelled xj passes through a node labelled

xi.

Proof.

⇐ Consider the if direction.

– Since f is T3-symmetric in the variable pair (xi, xj), f(b1, 0,b2, 0,b3) =

f(b1, 0,b2, 1,b3) for all b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j. Let g =

f(b1, xi, . . . , xn) and h = g(0,b2, xj, . . . , xn) thus h|xj←0(b3) = h|xj←1(b3).

Hence h|xj←0 = h|xj←1, and thus it follows that the ROBDD h cannot be

labelled with a variable xj because h is reduced.

– Suppose for the sake of a contradiction that there exists a path from the root

of f to a node g labelled xj that does not pass through a node labelled xi.

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 50

Since the path does not pass through xi, let g = f(b1, xj , . . . , xn) for some

b1 ∈ B
j−1. Since f|xi←0,xj←0 = f|xi←0,xj←1 it follows that g|xj←0(b2) =

g|xj←1(b2) for all b2 ∈ B
n−j. Hence g|xj←0 = g|xj←1, it follows that the

ROBDD g cannot be labelled with a variable xj because g is reduced, hence

a contradiction follows.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 0,b2, 0,b3) = 1 and

f(b1, 0,b2, 1,b3) = 0. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled xi. Let h = g(0,b2, xj , . . . , xn). Observe h|xj←0 6= h|xj←1

since h|xj←0(b3) = 1 and h|xj←1(b3) = 0. Hence g|xi←0 contains a node h

labelled xj as required.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

Observe h|xj←0 6= h|xj←1 since h|xj←0(b3) = 1 and h|xj←1(b3) = 0. Hence g

contains a node labelled xj and g is not labelled xi as required.

The f(b1, 0,b2, 0,b3) = 0 and f(b1, 0,b2, 1,b3) = 1 case follows analogously.

Proposition 4.2. An ROBDD f over a set of variables {x1, . . . , xn} is T4-symmetric

in the pair (xi, xj) and i < j iff

• if whenever an ROBDD g occurs in f at a node labelled xi then g|xi←1 does not

contain a node labelled xj and,

• every path from the root of f to a node labelled xj passes through a node labelled

xi.

Proof.

⇐ Consider the if direction.

– Since f is T4-symmetric in the variable pair (xi, xj), f(b1, 1,b2, 0,b3) =

f(b1, 1,b2, 1,b3) for all b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j. Let g =

f(b1, xi, . . . , xn) and h = g(1,b2, xj, . . . , xn) thus h|xj←0(b3) = h|xj←1(b3).

Hence h|xj←0 = h|xj←1, and thus it follows that the ROBDD h cannot be

labelled with a variable xj because h is reduced.

– Suppose for the sake of a contradiction that there exists a path from the root

of f to a node g labelled xj that does not pass through a node labelled xi.

Since the path does not pass through xi, let g = f(b1, xj , . . . , xn) for some

b1 ∈ B
j−1. Since f|xi←1,xj←0 = f|xi←1,xj←1 it follows that g|xj←0(b2) =

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 51

g|xj←1(b2) for all b2 ∈ B
n−j. Hence g|xj←0 = g|xj←1, it follows that the

ROBDD g cannot be labelled with a variable xj because g is reduced, hence

a contradiction follows.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 1,b2, 1,b3) = 0. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled xi. Let h = g(1,b2, xj , . . . , xn). Observe h|xj←0 6= h|xj←1

since h|xj←0(b3) = 1 and h|xj←1(b3) = 0. Hence g|xi←0 contains a node h

labelled xj as required.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

Observe h|xj←0 6= h|xj←1 since h|xj←0(b3) = 1 and h|xj←1(b3) = 0. Hence g

contains a node labelled xj and g is not labelled xi as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 1,b2, 1,b3) = 1 case follows analogously.

Proposition 4.3. An ROBDD f over a set of variables {x1, . . . , xn} is T9-symmetric

in the pair (xi, xj) and i < j iff

• if whenever an ROBDD g occurs in f at a node labelled xi then every path through

g|xi←0 visits a node h labelled xj such that h|xj←0 = ¬h|xj←1 and,

• every path from the root of f that does not visit a node labelled xi, visits a node h

labelled xj which satisfies the property that h|xj←0 = ¬h|xj←1.

Note how the wording of the second condition prevents a pair (xi, xj) from being

T9-symmetric when there does not exist a node labelled xi nor xj in the ROBDD f . 1

Proof.

⇐ Consider the if direction.

– Let g = f(b1, xi, . . . , xn) for some b1 ∈ B
i−1. Let h = g(0,b2, xj , . . . , xn) for

some b2 ∈ B
j−i−1. Let b3 ∈ B

n−j. Since f is T9-symmetric in the variable

pair (xi, xj), f(b1, 0,b2, 0,b3) = ¬f(b1, 0,b2, 1,b3). Thus h|xj←0(b3) =

¬h|xj←1(b3) hence h|xj←0 = ¬h|xj←1 and it follows that the node h labelled

xj much be visited since an ROBDD is reduced.

– Arguing by the contrapositive, there are two cases to consider.

1We thank Laurent Mauborgne for alerting us to this oversight.

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 52

∗ Suppose there exists a path from the root of f that does not visit a node

labelled xi and does not visit a node labelled xj . Thus f(b1, 0,b2, 0,b3) =

f(b1, 0,b2, 1,b3) for some b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j thus

f(b1, 0,b2, 0,b3) 6= ¬f(b1, 0,b2, 1,b3) hence f is not T9-symmetric in

the variable pair (xi, xj).

∗ Suppose there exists a path from the root of f that does not visit a node

labelled xi but visits a node h labelled xj and h|xj←0 6= ¬h|xj←1. Thus

h|xj←0(b3) 6= ¬h|xj←1(b3) for some b3 ∈ B
n−j. There exists b1 ∈ B

i−1,

b2 ∈ B
j−i−1 and b ∈ B such that h = f(b1, b,b2, xj , . . . , xn). Therefore,

f(b1, b,b2, 0,b3) 6= ¬f(b1, b,b2, 1,b3). Since the path does not visit xi,

f(b1, 0,b2, 0,b3) 6= ¬f(b1, 0,b2, 1,b3) hence f is not T9-symmetric in

the variable pair (xi, xj).

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 0,b2, 0,b3) = 1 and

f(b1, 0,b2, 1,b3) = 1. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled xi. Let h = g(0,b2, xj, . . . , xn). Then h|xj←0(b3) =

h|xj←1(b3) thus h|xj←0 6= ¬h|xj←1, hence condition 1 is violated irrespective

of whether h is visited.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

Observe h|xj←0(b3) = h|xj←1(b3) thus h|xj←0 6= ¬h|xj←1, hence condition 2

is violated irrespective of whether h is visited.

The f(b1, 0,b2, 0,b3) = 0 and f(b1, 0,b2, 1,b3) = 0 case follows analogously.

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 53

Proposition 4.4. An ROBDD f over a set of variables {x1, . . . , xn} is T10-symmetric

in the pair (xi, xj) and i < j iff

• if whenever an ROBDD g occurs in f at a node labelled xi then every path through

g|xi←1 visits a node h labelled xj such that h|xj←0 = ¬h|xj←1 and,

• every path from the root of f that does not visit a node labelled xi, visits a node h

labelled xj which satisfies the property that h|xj←0 = ¬h|xj←1.

Proof.

⇐ Consider the if direction.

– Let g = f(b1, xi, . . . , xn) for some b1 ∈ B
i−1. Let h = g(1,b2, xj , . . . , xn) for

some b2 ∈ B
j−i−1. Let b3 ∈ B

n−j. Since f is T10-symmetric in the variable

pair (xi, xj), f(b1, 1,b2, 0,b3) = ¬f(b1, 1,b2, 1,b3). Thus h|xj←0(b3) =

¬h|xj←1(b3) hence h|xj←0 = ¬h|xj←1 and it follows that the node h labelled

xj much be visited since an ROBDD is reduced.

– Arguing by the contrapositive, there are two cases to consider.

∗ Suppose there exists a path from the root of f that does not visit a node

labelled xi and does not visit a node labelled xj . Thus f(b1, 1,b2, 0,b3) =

f(b1, 1,b2, 1,b3) for some b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j thus

f(b1, 1,b2, 0,b3) 6= ¬f(b1, 1,b2, 1,b3) hence f is not T10-symmetric in

the variable pair (xi, xj).

∗ Suppose there exists a path from the root of f that does not visit a node

labelled xi but visits a node h labelled xj and h|xj←0 6= ¬h|xj←1. Thus

h|xj←0(b3) 6= ¬h|xj←1(b3) for some b3 ∈ B
n−j. There exists b1 ∈ B

i−1,

b2 ∈ B
j−i−1 and b ∈ B such that h = f(b1, b,b2, xj , . . . , xn). Therefore,

f(b1, b,b2, 0,b3) 6= ¬f(b1, b,b2, 1,b3). Since the path does not visit xi,

f(b1, 1,b2, 0,b3) 6= ¬f(b1, 1,b2, 1,b3) hence f is not T10-symmetric in

the variable pair (xi, xj).

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 1,b2, 1,b3) = 1. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled xi. Let h = g(1,b2, xj, . . . , xn). Then h|xj←0(b3) =

h|xj←1(b3) thus h|xj←0 6= ¬h|xj←1, hence condition 1 is violated irrespective

of whether h is visited.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 54

Observe h|xj←0(b3) = h|xj←1(b3) thus h|xj←0 6= ¬h|xj←1, hence condition 2

is violated irrespective of whether h is visited.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 1,b2, 1,b3) = 0 case follows analogously.

The first and second conditions of Propositions 4.1 and 4.2 can be checked in two depth-

first traversals both requiring O(n|G|) time and thus all T3 and T4-symmetries can be

detected in O(n|G|) time overall. Detecting T9 and T10-symmetries resides in O(n2|G|)

since Propositions 4.3 and 4.4 imply that T9 and T10-asymmetries can be found by

systematically searching through all pairs of variables (xi, xj), checking that f includes

a path that neither contains xi nor xj . These propositions assert that T3, T4, T9 and

T10-symmetries are surprisingly tractable, and therefore suggest that these symmetries

are particularly interesting for those applications where it is not necessary to compute

all types of generalised symmetry [MM93,CM93a,ZCJMB04].

4.6.2 Slow Symmetries

Computing the remaining generalised symmetries, namely T2, T5, T6, T7, T8, T11 and T12,

requires more effort. The following four propositions explain how each of these symme-

try relations can be computed in a series of passes where each pass computes all the

symmetry types for each variable xi.

Proposition 4.5. An ROBDD f over a set of variables {x1, . . . , xn} is T2-symmetric

in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labelled xi is T2-symmetric in (xi, xj) and,

• every path from the root to a node labelled xj passes through a node labelled xi.

Proof.

⇐ Consider the if direction.

– Since f is T2-symmetric in the variable pair (xi, xj), f(b1, 0,b2, 0,b3) =

f(b1, 1,b2, 1,b3) for all b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j. Let g =

f(b1, xi, . . . , xn) hence g|xi←0,xj←0 = g|xi←1,xj←1.

– Suppose for the sake of a contradiction that there exists a path from the root

to a node labelled xj that does not pass through a node labelled xi. Thus,

let g = f(b1, 0,b2, xj, . . . , xn) = f(b1, 1,b2, xj , . . . , xn) for some b1 ∈ B
i−1

and b2 ∈ B
j−i−1. Thus g|xj←0(b3) = g|xj←1(b3) for all b3 ∈ B

n−j. Hence

g|xj←0 = g|xj←1 which is a contradiction since g is reduced.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 0,b2, 0,b3) = 1 and

f(b1, 1,b2, 1,b3) = 0. Let g = f(b1, xi, . . . , xn).

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 55

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled xi, thus there must exist some b2 and b3 such that

g|xi←0(b2, 0,b3) = 1 and g|xi←1(b2, 1,b3) = 0 as required.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

Observe h|xj←0 6= h|xj←1 since h|xj←0(b3) 6= h|xj←1(b3) as required.

The f(b1, 0,b2, 0,b3) = 0 and f(b1, 1,b2, 1,b3) = 1 case follows analogously.

As before, Proposition 4.5 asserts that all T2-symmetries can be found in two stages.

The first stage, a lightweight preprocessing step, marks a pair (xi, xj) as T2-asymmetric

if f contains a path to a node labelled xj that does not pass through a node labelled

xi. The second stage, which amounts to exhaustive search, searches for and exam-

ines each node labelled xi and checks whether the ROBDD rooted at that node is

T2-asymmetric in (xi, xj). The first check is one of a number of checks carried out by

the call to GeneralRemoveAsymmetry in the main loop of Algorithm 6. The second

check is realised in the function FindSlowAsymmetry which precedes the main loop.

GeneralRemoveAsymmetry and FindSlowAsymmetry also carry out checks to verify the

first and second conditions of both Propositions 4.7 and 4.8. Note the simple structure

of Proposition 4.6 permits T5 and T6 symmetries to be detected without a preprocess-

ing step; these symmetries are solely detected within the GeneralRemoveAsymmetry

procedure.

Proposition 4.6. An ROBDD f over a set of variables {x1, . . . , xn} is T5-symmetric

(resp. T6-symmetric) in the pair (xi, xj) and i < j iff every ROBDD rooted at a node

labelled xi is T5-symmetric (resp. T6-symmetric) in (xi, xj).

Proof. For brevity, only the proof for the T5 case is given.

⇐ Consider the if direction. Suppose g is an ROBDD rooted at a node labelled

xi. Then g = f(b1, xi, . . . , xn) for some b1 ∈ B
i−1. Since f is T5-symmetric in

the variable pair (xi, xj), f(b1, 1,b2, 0,b3) = f(b1, 0,b2, 0,b3) for all b1 ∈ B
i−1,

b2 ∈ B
j−i−1 and b3 ∈ B

n−j, thus g|xi←1,xj←0 = g|xi←0,xj←0.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there ex-

ists b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 0,b2, 0,b3) = 0. Let g = f(b1, xi, . . . , xn). Suppose for the sake of a contra-

diction that g|xi←0 = g|xi←1. Observe g(0,b2, xj , . . . , xn) = g(1,b2, xj , . . . , xn)

and hence g(0,b2, 0,b3) = g(1,b2, 0,b3) which is a contradiction. Therefore

g|xi←0 6= g|xi←1 and g is labelled by xi. Hence there exists some b2 and b3

such that g|xi←1(b2, 0,b3) = 1 and g|xi←0(b2, 0,b3) = 0 as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 0,b2, 0,b3) = 1 case follows analogously.

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 56

Proposition 4.7. An ROBDD f over a set of variables {x1, . . . , xn} is T7-symmetric

(resp. T8-symmetric) in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labelled xi is T7-symmetric (resp. T8-symmetric)

in (xi, xj) and,

• every path from the root of f that does not visit a node labelled xi visits a node h

labelled xj which satisfies the property that h|xj←0 = ¬h|xj←1.

Proof. For brevity, only the proof for the T7 case is given.

⇐ Consider the if direction.

– Suppose g is an ROBDD rooted at a node labelled xi. Then g = f(b1, xi, . . . , xn)

for some b1 ∈ B
i−1. Since f is T7-symmetric in the variable pair (xi, xj),

f(b1, 1,b2, 0,b3) = ¬f(b1, 0,b2, 1,b3) for all b2 ∈ B
j−i−1 and b3 ∈ B

n−j,

hence g|xi←1,xj←0 = ¬g|xi←0,xj←1.

– Arguing by the contrapositive, suppose there exists a path from the root

of f to a node h labelled xj which does not visit a node labelled xi and

h|xj←0 6= ¬h|xj←1. Thus h|xj←0(b3) 6= ¬h|xj←1(b3) for some b3 ∈ B
n−j. Let

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and a ∈ B such that h = f(b1, a,b2, xj, . . . , xn).

Therefore, f(b1, a,b2, 0,b3) 6= ¬f(b1, a,b2, 1,b3). Since the path does not

visit xi, f(b1, 1,b2, 0,b3) 6= ¬f(b1, 0,b2, 1,b3) as required.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 0,b2, 1,b3) = 1. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled by xi. Thus there exists some b2 ∈ B
j−i−1 and b3 ∈ B

n−j

such that g|xi←1(b2, 0,b3) = 1 and g|xi←0(b2, 1,b3) = 1 as required.

– Suppose g|xi←0 = g|xi←1.

Hence g is not labelled xi. Let h = g(0,b2, xj , . . . , xn) = g(1,b2, xj, . . . , xn).

Observe h|xj←0 6= ¬h|xj←1 since h|xj←0(b3) = h|xj←1(b3) as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 0,b2, 1,b3) = 0 case follows analogously.

Proposition 4.8. An ROBDD f over a set of variables {x1, . . . , xn} is T11-symmetric

(resp. T12-symmetric) in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labelled xi is T11-symmetric (resp. T12-symmetric)

in (xi, xj) and,

• every path from the root of f passes through a node labelled xi.

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 57

Proof. For brevity, only the proof for the T11 case is given.

⇐ Consider the if direction.

– Suppose g is an ROBDD rooted at a node labelled xi. Then g = f(b1, xi, . . . , xn)

for some b1 ∈ B
i−1. Since f is T11-symmetric in the variable pair (xi, xj),

f(b1, 1,b2, 0,b3) = ¬f(b1, 0,b2, 0,b3) for all b2 ∈ B
j−i−1 and b3 ∈ B

n−j,

hence g|xi←1,xj←0 = ¬g|xi←0,xj←0.

– Suppose for the sake of a contradiction that there exists a path from the root

of f to a node labelled xj which does not pass through a node labelled xi. Let

g = f(b1, xj , . . . , xn) for some b1 ∈ B
j−1. Since f|xi←1,xj←0 = ¬f|xi←0,xj←0

it follows that g|xj←0(b2) = ¬g|xj←0(b2) for all b2 ∈ B
n−j. Hence g|xj←0 =

¬g|xj←0 which is a contradiction.

⇒ Consider the only-if direction, arguing by the contrapositive. Suppose there exists

b1 ∈ B
i−1, b2 ∈ B

j−i−1 and b3 ∈ B
n−j such that f(b1, 1,b2, 0,b3) = 1 and

f(b1, 0,b2, 0,b3) = 1. Let g = f(b1, xi, . . . , xn).

– Suppose g|xi←0 6= g|xi←1.

Hence g is labelled by xi. Thus there exists some b2 and b3 such that

g|xi←1(b2, 0,b3) = 1 and g|xi←0(b2, 0,b3) = 1 as required.

– Suppose g|xi←0 = g|xi←1. Hence g is not labelled xi as required.

The f(b1, 1,b2, 0,b3) = 0 and f(b1, 0,b2, 0,b3) = 0 case follows analogously.

To increase the number of asymmetries discovered early in the execution of the algorithm

and thus limit the cost of each call to GeneralRemoveAsymmetry, we first apply a number

of lightweight sieves for the generalised symmetries. The following two lemmas detail

structural properties of ROBDDs that hold in the presence of T5, T6, T7, T8, T11 and

T12-symmetries. The absence of these properties imply that these symmetries cannot

hold. In the case of Lemma 4.1, an algorithm in O(n|G|) can be applied to ascertain

whether every ROBDD rooted at a node labelled xi contains a node labelled xj . This

result therefore provides a sieve for T5 and T6-symmetries that can be incorporated into

FindSlowAsymmetry. A sieve for T7, T8, T11 and T12-symmetries follows from Lemma 4.2

since the two cases of the lemma can both be checked in O(n|G|) time. This is also

implemented within FindSlowAsymmetry.

Lemma 4.1. If an ROBDD f over a set of variables {x1, . . . , xn} is T5-symmetric

(resp. T6-symmetric) in the pair (xi, xj) and i < j then every ROBDD rooted at a node

labelled xi contains a node labelled xj .

Proof. For brevity, only the proof for the T5 case is given. Suppose for the sake of

a contradiction that there exists a node g labelled xi that does not contain a node

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 58

labelled xj. Let g = f(b1, xi, . . . , xn) such that g does not contain a node labelled

xj. Now g|xi←1(b2, 0,b3) = g|xi←0(b2, 0,b3) and since g does not include xj it follows

that g|xi←1(b2, 0,b3) = g|xi←0(b2, 1,b3) and g|xi←1(b2, 1,b3) = g|xi←0(b2, 0,b3). Thus

g|xi←1(b2) = g|xi←0(b2) for all b2 ∈ B
n−i. Hence g|xi←1 = g|xi←0, it follows that

the ROBDD g cannot be labelled with a variable xi because g is reduced, hence a

contradiction follows.

Lemma 4.2. If an ROBDD f over a set of variables {x1, . . . , xn} is T7-symmetric

(resp. T8-symmetric, T11-symmetric and T12-symmetric) in the pair (xi, xj) and i < j

then every ROBDD g rooted at a node labelled xi satisfies the property that

• g contains a node labelled xj , or,

• g|xi←0 = ¬g|xi←1.

Proof. For brevity, only the proof for the T7 case is given. To argue by contrapositive,

suppose there exists a node g labelled xi such that g does not contain a node labelled

xj and g|xi←0 6= ¬g|xi←1. Therefore g|xi←0(b1, a,b2) = g|xi←1(b1, a,b2) for some b1 ∈

B
j−i−1, b2 ∈ B

n−j and a ∈ B. Since g does not contain a node labelled xj it follows

that g|xi←1(b1, 0,b2) = g|xi←0(b1, 1,b2). Thus f is T7-asymmetric in the pair (xi, xj)

as required.

The recursive structure of GeneralRemoveAsymmetry follows that of RemoveAsymmetry

except that the call GeneralRemoveAsymmetryVar(f|xi←0, f|xi←1, C) lies at its heart.

GeneralRemoveAsymmetryVar in turn mimics the structure of RemoveAsymmetryVar ex-

cept that it performs co-factor checks for T1, T2, T5, T6, T7, T8, T11 and T12-symmetries.

Note that the T3, T4, T9 and T10-symmetries are already completely determined by

FindFastSymmetry and hence need not be reconsidered. The complexity of a single

call to GeneralRemoveAsymmetryVar is O(|G|2) and since this function can only be

invoked a total of |G| times from within Algorithm 6 it follows that the overall com-

plexity of this procedure is O(|G|3). The preprocessing checks implemented within

FindSlowAsymmetry for Propositions 4.1, 4.2, 4.5 and 4.8 all require O(n|G|) time

whereas the preprocessing required for Propositions 4.3, 4.4 and 4.7 take O(n2|G|).

Algorithm 6 thus resides in O(n2|G|+ |G|3) overall.

4.6.3 Generalised Symmetry Propagation

To reduce the cost of each iteration of the main loop of Algorithm 6, one can apply

asymmetry/symmetry propagation in the spirit of that employed in Algorithm 4. Tsai et

al. [TM97] have reported transitivity results for some generalised symmetries, but to

fully exploit asymmetry/symmetry propagation these results need to be extended to all

12 generalised symmetries. One such extension that involves T1 and T3-symmetries is

presented in the following lemma:

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 59

Algorithm 7 GeneralRemoveAsymmetry(f, i, C)

Require: f ∈ ROBDDX , i ∈ N ∪ {0} and C ⊂ X
1: if C = ∅ ∨ f = true ∨ f = false then
2: return C
3: end if
4: j ← index(f)
5: if j > i then
6: return C
7: else if j = i then
8: return GeneralRemoveAsymmetryVar(f|xi←0, f|xi←1, C)
9: else

10: C ← GeneralRemoveAsymmetry(f|xj←0, i, C)
11: return GeneralRemoveAsymmetry(f|xj←1, i, C)
12: end if

Lemma 4.3. If a Boolean function f over a set of variables {x1, . . . , xn} is T1-symmetric

in the pair (xi, xj) and T3-symmetric in the pair (xj, xk), then f is T3-symmetric in the

pair (xi, xk).

Proof. Suppose T1
xi,xj(f) and T3

xj ,xk(f) hold. Thus f|xi←1,xj←0 = f|xi←0,xj←1, hence

f|xi←1,xj←0,xk←0 = f|xi←0,xj←1,xk←0 and f|xi←1,xj←0,xk←1 = f|xi←0,xj←1,xk←1. However

f|xj←0,xk←0 = f|xj←0,xk←1, hence we obtain f|xi←0,xj←0,xk←0 = f|xi←0,xj←0,xk←1 and

f|xi←1,xj←0,xk←0 = f|xi←1,xj←0,xk←1. Therefore, f|xi←0,xj←0,xk←0 = f|xi←0,xj←0,xk←1

and f|xi←0,xj←1,xk←0 = f|xi←1,xj←0,xk←0 = f|xi←1,xj←0,xk←1 = f|xi←0,xj←1,xk←1. Hence

f|xi←0,xk←0 = f|xi←0,xk←1 and T3
xi,xk(f) holds.

Table 7 summarises a collection of results that state implicational relationships between

various generalised symmetries. For example, if T3
xi,xj(f) and T4

xj ,xk(f) hold for some

ROBDD f then T3
xi,xk(f) also holds. Implicational relationships that have been pre-

viously reported [TM97] are marked with a †. Proofs for all the other implicational

relationships of Table 7 can be found in the Appendix. Many of these results are estab-

lished with proofs whose structure mirrors that used to substantiate lemma 4.3. The

correctness of the remaining results flows from multiple applications of the following

lemma that states equivalences between the generalised symmetries of the form Ti
x,y(f)

and Tj
y,x(f) for any ROBDD f for various i, j ∈ {1, . . . , 12}.

Lemma 4.4.

• T1
x,y(f) ⇐⇒ T1

y,x(f) and T7
x,y(f) ⇐⇒ T7

y,x(f)

• T2
x,y(f) ⇐⇒ T2

y,x(f) and T8
x,y(f) ⇐⇒ T8

y,x(f)

• T3
x,y(f) ⇐⇒ T5

y,x(f) and T9
x,y(f) ⇐⇒ T11

y,x(f)

• T4
x,y(f) ⇐⇒ T6

y,x(f) and T10
x,y(f) ⇐⇒ T12

y,x(f)

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 60

Algorithm 8 GeneralRemoveAsymmetryVar(g0 , g1, C)

Require: g0 ∈ ROBDDX , g1 ∈ BX and C ⊂ X
1: if g0 = true ∨ g0 = false then
2: j ←∞
3: else
4: j ← index(g0)
5: end if
6: if g1 = true ∨ g1 = false then
7: r ←∞
8: else
9: r ← index(g1)

10: end if
11: if C = ∅ ∨ j = r =∞ then
12: return C
13: else if j = r then
14: (l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1|xr←0, g1|xr←1)
15: else if j < r then
16: (l, g00, g01, g10, g11)← (j, g0|xj←0, g0|xj←1, g1, g1)
17: else
18: (l, g00, g01, g10, g11)← (r, g0, g0, g1|xr←0, g1|xr←1)
19: end if
20: if g10 6= g01 then
21: C ← C \ {(l, 1)}
22: end if
23: if g00 6= g11 then
24: C ← C \ {(l, 2)}
25: end if
26: if g00 6= g10 then
27: C ← C \ {(l, 5)}
28: end if
29: if g01 6= g11 then
30: C ← C \ {(l, 6)}
31: end if
32: if g10 6= ¬g01 then
33: C ← C \ {(l, 7)}
34: end if
35: if g00 6= ¬g11 then
36: C ← C \ {(l, 8)}
37: end if
38: if g00 6= ¬g10 then
39: C ← C \ {(l, 11)}
40: end if
41: if g01 6= ¬g11 then
42: C ← C \ {(l, 12)}
43: end if
44: C ← GeneralRemoveAsymmetryVar(g00, g10, C)
45: return GeneralRemoveAsymmetryVar(g01, g11, C)

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 61

Proof. For brevity only consider the positive cases.

• T1
x,y(f)⇐⇒ f|x←1,y←0 = f|x←0,y←1 ⇐⇒ f|y←1,x←0 = f|y←0,x←1 ⇐⇒ T1

y,x(f)

• T2
x,y(f)⇐⇒ f|x←0,y←0 = f|x←1,y←1 ⇐⇒ f|y←0,x←0 = f|y←1,x←1 ⇐⇒ T2

y,x(f)

• T3
x,y(f)⇐⇒ f|x←0,y←0 = f|x←0,y←1 ⇐⇒ f|y←0,x←0 = f|y←1,x←0 ⇐⇒ T5

y,x(f)

• T4
x,y(f)⇐⇒ f|x←1,y←0 = f|x←1,y←1 ⇐⇒ f|y←0,x←1 = f|y←1,x←1 ⇐⇒ T6

y,x(f)

The value of the above lemma is that it can be applied to show, for example, that

the T3
x,y/T7

y,z entry of Table II is a consequence of the T7
x,y/T5

y,z entry. In fact three

applications of the above lemma are needed to establish the correctness of the T3
x,y/T7

y,z

entry, as formalised in the following lemma.

Lemma 4.5. If a Boolean function f over a set of variables {x1, . . . , xn} is T3-symmetric

in the pair (x, y) and T7-symmetric in the pair (y, z), then f is T9-symmetric in the pair

(x, z).

Proof. Suppose T3
x,y(f) and T7

y,z(f) hold. By two applications of Lemma 4.4 it follows

that T5
y,x(f) and T7

z,y(f) hold. Hence T7
z,y(f) and T5

y,x(f) hold. By Table 7 it follows

that T11
z,x(f) holds and by another application of Lemma 4.4 it follows that T9

x,z(f)

holds as required.

We conjecture that no implicational symmetry relationships hold for the combina-

tions of symmetry that lead to a blank entry in the table.

With the results of Table 7 in place, it is straightforward to construct an analogue

of SymmetryClosure(A,S) for generalised symmetries. The complexity of the gen-

eralised closure algorithm remains O(n3), assuming that an incremental algorithm is

applied. Thus the overall running time of generalised symmetry detection with asym-

metry/symmetry propagation is O(n3 + n2|G|+ |G|3).

4.7 Experimental Results

Tables 8 and 9 presents a comparison between the generalised symmetry algorithm of

Zhang et al. [ZCJMB04] and the generalised anytime approach with variable sifting

enabled and variable sifting disabled, respectively. Mishchenko’s implementation of his

own algorithm was modified to detect T1, T2, T7 and T8-symmetries following the ideas

prescribed by Zhang et al. The timings given for the anytime algorithm presented in

this chapter reflect the time required to compute all 12 generalised symmetry types.

Note therefore, that the anytime algorithm is inferring 8 generalised symmetries which

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 62

are not computed by Zhang et al. This algorithm applies asymmetry/symmetry prop-

agation between iterations of the main loop and uses all sieves described thus far. As

before, enabling garbage collection has no discernible impact on the running time of

the anytime algorithm. Although the generalised algorithm is not consistently faster

than that of Zhang et al, it is nevertheless attractive because the runtime never exceeds

7200 seconds for any benchmarks, and for many benchmarks, it is significantly faster.

For completeness, Table 10 summarises the results of timing experiments performed

with an Intel Core2 Duo 2.33GHZ PC (using just one core), equipped with 2GB of

RAM, running MacOSX.

4.8 Conclusions

This chapter demonstrates that anytime symmetry detection techniques extend nat-

urally from classical to generalised symmetries. The generalised algorithm retains a

multipass structure thereby permitting sieves and transitivity to be exploited in order

to accelerate symmetry detection. The sieves not only speedup symmetry detection but

also allow symmetry detection to be decomposed into series of passes without compro-

mising correctness. The sieves are interesting within themselves since the T3, T4, T9 and

T10 symmetries can be completely discovered without employing search; the tractabil-

ity of these symmetries makes them particularly suitable for permutation independent

Boolean comparison. Furthermore, the transitivity results also have applications out-

side ROBDD manipulation. In terms of generality, the anytime generalised symmetry

detection algorithm presented in this chapter is capable of detecting all 12 symmetry

types. In terms of efficiency, the performance of the algorithm compares very favourably

with that of Zhang for time whilst requiring negligible space.

With a view to the future, the iterative nature of the anytime algorithms make

them good candidates for parallel evaluation on the 8 and 16 core processors that are

predicated to emerge over the next 5 years. Although the speedups achieved by paral-

lel evaluation of BDD operations have often been modest [MJH98], the weak coupling

between the iterations of the main loop of the symmetry detection algorithms – the

property that yields to anytime execution – also leads to weakly coupled parallel exe-

cution.

C
H

A
P

T
E

R
4
.

G
E

N
E

R
A

L
IS

E
D

S
Y

M
M

E
T

R
Y

D
E

T
E

C
T

IO
N

IN
R

O
B

D
D

S
63

T1
y,z T7

y,z T2
y,z T8

y,z T3
y,z T9

y,z T4
y,z T10

y,z T5
y,z T11

y,z T6
y,z T12

y,z

T1
x,y T1

x,z † T7
x,z † T2

x,z † T8
x,z † T3

x,z T9
x,z T4

x,z T10
x,z T5

x,z T11
x,z T6

x,z T12
x,z

T7
x,y T7

x,z † T1
x,z † T8

x,z † T2
x,z † T3

x,z T9
x,z T4

x,z T10
x,z T11

x,z T5
x,z T12

x,z T6
x,z

T2
x,y T2

x,z † T8
x,z † T1

x,z † T7
x,z † T4

x,z T10
x,z T3

x,z T9
x,z T5

x,z T11
x,z T6

x,z T12
x,z

T8
x,y T8

x,z † T2
x,z † T7

x,z † T1
x,z † T4

x,z T10
x,z T3

x,z T9
x,z T11

x,z T5
x,z T12

x,z T6
x,z

T3
x,y T3

x,z T9
x,z T3

x,z T9
x,z T3

x,z T9
x,z T3

x,z T9
x,z

T9
x,y T9

x,z T3
x,z T9

x,z T3
x,z T3

x,z T9
x,z T3

x,z T9
x,z

T4
x,y T4

x,z T10
x,z T4

x,z T10
x,z T4

x,z T10
x,z T4

x,z T10
x,z

T10
x,y T10

x,z T4
x,z T10

x,z T4
x,z T4

x,z T10
x,z T4

x,z T10
x,z

T5
x,y T5

x,z T5
x,z T6

x,z T6
x,z T5

x,z T5
x,z T6

x,z T6
x,z

T11
x,y T11

x,z T11
x,z T12

x,z T12
x,z T11

x,z T11
x,z T12

x,z T12
x,z

T6
x,y T6

x,z T6
x,z T5

x,z T5
x,z T5

x,z T5
x,z T6

x,z T6
x,z

T12
x,y T12

x,z T12
x,z T11

x,z T11
x,z T11

x,z T11
x,z T12

x,z T12
x,z

Table 7: Transitivity results

C
H

A
P

T
E

R
4
.

G
E

N
E

R
A

L
IS

E
D

S
Y

M
M

E
T

R
Y

D
E

T
E

C
T

IO
N

IN
R

O
B

D
D

S
64

Circuit # In # Out Σ|G| |S| Read Näıve Zhang-GC Generalised

pair 173 137 118066 15949 0.20 219.76 64.27 9.10
C3540 50 22 4618194 1892 21.80 >7200 162.91 186.32
C880 60 26 600998 1759 8.29 1309.88 42.39 44.52
s4863 153 104 126988 3825 2.63 33.10 15.20 5.42
s9234.1 247 250 4434504 22410 20.14 >7200 >7200 287.62
s38584.1 1464 1730 150554 136537 3.70 501.34 576.39 10.30

simp10 105 1 722074 133 58.45 >7200 685.70 233.45
simp12 117 1 758330 135 76.23 >7200 >7200 304.21
simp14 120 1 562326 137 70.38 >7200 1114.29 75.75
hom06 104 1 1176845 236 65.22 >7200 445.78 367.89
hom08 95 1 893312 108 56.48 >7200 482.30 281.57
hom10 130 1 309221 180 29.98 >7200 1510.32 35.85
ca004 53 1 782640 27 5.40 >7200 234.12 73.10
ca008 96 1 682617 110 20.40 >7200 439.59 235.86
ca016 107 1 861209 147 60.10 >7200 305.11 72.68
urquhart2 25 48 1 722657 34 3.06 >7200 125.36 91.80
urquhart3 25 62 1 1771025 162 6.22 >7200 >7200 293.45
urquhart4 25 68 1 1736705 184 5.96 >7200 >7200 83.44
rope 0002 54 1 634914 52 3.06 >7200 482.34 81.68
rope 0004 62 1 1052214 76 4.73 >7200 1087.19 186.29
rope 0006 61 1 759039 76 3.14 >7200 657.74 35.78
ferry8 111 1 290127 158 78.35 >7200 174.12 176.22
ferry10 116 1 539419 174 88.08 >7200 3146.64 365.93
ferry12 123 1 277291 217 47.96 >7200 142.10 37.63
gripper10 125 1 393485 188 69.08 >7200 528.66 295.67
gripper12 129 1 667877 220 50.95 >7200 673.09 587.28
gripper14 118 1 767735 173 47.29 >7200 804.21 621.99

Table 8: Generalised Symmetry Experimental Results without Sifting

C
H

A
P

T
E

R
4
.

G
E

N
E

R
A

L
IS

E
D

S
Y

M
M

E
T

R
Y

D
E

T
E

C
T

IO
N

IN
R

O
B

D
D

S
65

Circuit # In # Out Σ|G| |S| Read Näıve Zhang-GC Generalised

pair 173 137 8599 15949 0.60 4.56 1.53 1.21
C3540 50 22 43334 1892 14.00 72.74 5.47 5.43
C880 60 26 8753 1759 0.44 9.67 0.62 1.13
s4863 153 104 75549 3825 87.58 25.25 14.20 4.36
s9234.1 247 250 9376 22410 2.16 13.53 3.78 1.12
s38584.1 1464 1730 34833 136537 13.10 30.44 246.37 2.59

simp10 105 1 222431 133 205.11 >7200 72.62 140.11
simp12 117 1 292811 135 230.61 >7200 70.33 202.89
simp14 120 1 86267 137 111.84 >7200 163.74 63.42
hom06 104 1 60357 236 170.76 >7200 71.94 58.78
hom08 95 1 110160 108 128.91 >7200 71.44 113.58
hom10 130 1 142827 180 283.80 >7200 315.23 138.62
ca004 53 1 9119 27 1.86 26.92 3.46 1.75
ca008 96 1 19945 110 3.80 569.14 207.31 12.50
ca016 107 1 90033 147 33.45 >7200 198.45 10.78
urquhart2 25 48 1 41098 34 6.86 227.51 0.96 14.02
urquhart3 25 62 1 43599 162 3.03 1832.21 >7200 32.61
urquhart4 25 68 1 45008 184 23.21 >7200 >7200 67.70
rope 0002 54 1 1038 52 0.15 2.82 0.34 0.17
rope 0004 62 1 11874 76 2.29 246.93 64.10 9.30
rope 0006 61 1 11066 76 5.01 781.21 17.20 14.93
ferry8 111 1 5998 158 22.10 >7200 156.76 30.65
ferry10 116 1 3141 174 6.18 210.82 3050.82 3.91
ferry12 123 1 3758 217 21.18 1145.56 191.93 14.26
gripper10 125 1 17525 188 183.67 >7200 68.67 224.31
gripper12 129 1 17035 220 165.65 >7200 59.98 247.64
gripper14 118 1 9742 173 160.23 >7200 63.40 185.57

Table 9: Generalised Symmetry Experimental Results with Sifting

CHAPTER 4. GENERALISED SYMMETRY DETECTION IN ROBDDS 66

with reordering without reordering

Circuit Näıve Zhang Close Näıve Zhang Close

alu2 0.01 0.01 0.01 0.01 0.01 0.01
alu4 0.01 0.01 0.01 0.01 0.01 0.01
C1908 3.75 0.17 1.23 5.50 0.29 1.16
C2670 53.46 2.58 2.62 – – –
C3540 24.37 3.29 1.59 – – –
C432 0.35 0.01 0.02 10.23 15.70 0.88
C499 32.18 0.08 1.02 40.80 0.33 3.23
C5315 4.71 0.40 0.62 – – –
C880 2.52 0.35 0.34 392.50 628.10 19.35
dalu 0.58 0.05 0.06 0.77 0.14 0.32
des 0.24 0.19 0.15 0.44 0.60 0.25
frg2 0.13 0.08 0.07 0.27 0.19 0.11
i10 58.68 115.71 6.96 >7200 4556.79 20.81
k2 0.50 0.08 0.05 0.50 0.08 0.05
pair 1.67 0.38 0.40 73.58 15.54 2.96
rot 1.70 0.18 0.23 9.02 2.40 0.86
s635 0.05 0.04 0.04 0.05 0.04 0.04
s838.1 0.10 0.04 0.05 0.12 0.04 0.05
s1196 0.07 0.03 0.02 0.15 0.04 0.03
s1269 0.39 0.07 0.06 0.60 0.10 0.10
s1423 1.60 0.21 0.30 8.96 0.80 0.81
s3271 0.06 0.05 0.04 0.82 0.18 0.13
s4863 8.45 0.41 0.96 17.48 1.23 1.75
s9234.1 1.89 0.50 0.51 – – –
too large 0.58 0.10 0.06 0.56 0.09 0.03

Table 10: Generalised Symmetry Timing Experiments on an Intel

Chapter 5

Widening ROBDDs with Prime

Implicants

“The optimist thinks this is the best of all possible worlds.
The pessimist fears it is true.”
- J. R. Oppenheimer

Abstract. In this chapter we present an anytime algorithm for ROBDD

approximation. The need for approximation arises because many ROBDD

operations result in an ROBDD whose size is quadratic in the number of

nodes in the inputs. When ROBDDs are applied in abstract interpreta-

tion, the additional problem arises that monotonically increasing chains of

ROBDDs can be computed whose length is exponential in the number of

variables. This chapter proposes an approximation technique, a widening,

that can be used to both constrain the size of an ROBDD and also bound

chain length by some given constant. The widening can be used to either

systematically approximate from above (i.e. derive an ROBDD of a weaker

Boolean function) or below (i.e. infer a stronger Boolean function).

5.1 Introduction

The popularity of ROBDDs in model checking [BCM+92], program analysis [WL04]

and abstract interpretation [BS99] stems from their apparent memory-efficient encod-

ing of Boolean functions and a canonical representation that supports the memoisation

of ROBDD operations. However, the inherent intractability of Boolean function manip-

ulation inevitably manifests itself; even though ROBDDs are reduced, that is, ROBDDs

are constructed so as to factor out all isomorphic sub-ROBDDs. Since the problem of

testing satisfiability is NP-complete [Coo71] and a satisfiability check can be performed

67

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 68

in constant time for an ROBDD it follows that the computational effort required to con-

struct an ROBDD representing an arbitrary Boolean function is worst-case exponential

in the number of variables, unless P = NP. Furthermore, Boolean functions exist whose

ROBDD representation requires a number of nodes that is exponential in the number

of variables irrespective of the variable ordering employed [Bry91].

To combat these insurmountable complexity results, we have one of two choices.

One option is to rely upon ROBDD minimisation techniques to obtain a suitably small

ROBDD representation. However, the results of Wegener [Weg00] and Sieling [Sie02]

provide strong indications as to the limitations of minimisation: Wegener [Weg00] proves

that computing an optimal variable ordering is itself NP-complete; Sieling [Sie02] pro-

vides the accompanying result that it is not possible in polynomial time to compute

a variable ordering that results in an ROBDD whose size is within a given constant

factor ǫ of the optimal size. Furthermore, minimisation techniques often need to be

repeatedly applied in applications such as model checking and abstract interpretation

since they are themselves repetitive, iterative processes. In fact ROBDD packages such

as CUDD [Som05] can apply minimisation many times whilst computing the result of

even a single ROBDD operation.

An alternative to minimisation is to apply approximation techniques, which in some

applications, provides a way to improve the space and time behaviour of an analysis

without compromising correctness [RS95,Shi96,Fec97,Mau98,RMSS98]. In the context

of ROBDDs, the approximation problem is that of formulating an algorithm which

takes, as input, an ROBDD g of a Boolean function f and computes, as output, an

ROBDD g′ of a Boolean function f ′ such that f |= f ′ and |g′| ≤ |g|. This problem

statement stipulates the correctness criterion for ROBDD approximation. However, the

statement is somewhat incomplete in that it permits the trivial solution true and g to be

generated for a given ROBDD g since the former can be represented in exactly 1 node

and the latter in |g| nodes. In the context of a particular application, an approximation

g′ such that |g′| ≈ |g|
2 is likely to be far more useful than the vacuous approximations

true and g. The challenge therefore, is to derive a principled way for computing an

ROBDD approximation which achieves a suitable reduction in ROBDD size.

5.2 Applications

5.2.1 Program Analysis and Large ROBDDs

Although Cook’s iconic theorem [Coo71] is usually interpreted as a statement about

Boolean satisfiability, the proof of the result is an interesting comment on the expressive

power of Boolean functions. The proof shows how the behaviour of any Turing machine

can be modelled by a Boolean formulae. As a consequence, it is evident that Boolean

formulae constitute a computational domain that can, at least in theory, be used to

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 69

reason about any program without any loss of precision.

More usually, Boolean formulae arise in program analysis through the use of ab-

straction. Such analyses typically manipulate propositional formulae defined over a

given finite set of propositional variables x1, . . . , xn. Each propositional variable is used

to indicate whether the state possesses a property of interest. A formula such as x1 → x3

is then interpreted as stating that whenever the property for x1 holds then it follows

that x3 holds also. This approach has been applied in suspension analysis [GK08],

pair-sharing analysis [LS02], groundness analysis [AMSS98], strictness analysis [SR95],

finiteness analysis [BGHZ04] and set-sharing analysis [CSS99].

Due to the intractability of modelling programs with propositional formulae con-

taining loops and recursion, the usual tactic is to unroll each loop to a predetermined

depth k [JV00]. If no fault can be found in the program, then the analysis is reapplied

to depth k + 1, k + 2, etc. until the analysis exhausts the available resources. The

value of this technique is that it provides a way to manage the size of formulae. Even

when abstraction is applied, Boolean functions can [Cod99] and do [Fec97] arise whose

ROBDD representation is intractably large. Furthermore, it is well-known that the do-

main of Positive Boolean functions [AMSS98] (Pos) contains formulae whose ROBDD

representation requires exponential space [Cod99]. For instance, when an analysis as-

sociates a program variable with n attributes and m such program variables appear

in scope, then an ROBDD over m⌈log(n)⌉ propositional variables is required to en-

code the dependencies between the attributes of the program variables [GHB05]. Even

when tree-automata techniques are used to improve the encoding, problematically large

ROBDDs can arise [GHB05].

5.2.2 Abstract Interpretation and Long Chains

In iterative fixed-point based analyses, such as those formulated with abstract interpre-

tation, the tractability problems are further compounded by the fact that ROBDDs are

not only problematic in terms of space, but also in terms of time. This is not only due to

the complexity of individual ROBDD operations, but because the number of ROBDD

operations is itself potentially exponential. Suppose, for example, that the result of an

analysis is conceived as the least fixed-point of a series of Boolean equations:

f1 = F1(f1, . . . , fk)
...

...
...

fk = Fk(f1, . . . , fk)

where each fi ∈ B
X is a Boolean function over a set of variables X = {x1, . . . , xn} and

each Fi is an operation on f1, . . . , fk obtained by, say, composing monotonic Boolean

operations such as disjunction fi ∨ fj, conjunction fi ∧ fj and existential quantification

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 70

∃xi
(fj). The least fixed-point of the series of k Boolean equations f1, . . . , fk can be

computed by setting fi = false and then reapplying the k equations until stability is

achieved. In the worst-case, each application of k equations might weaken exactly one

function fi by adding a single model. Since each fi can possess a maximum of 2n models,

a chain of k · 2n iterates are required in the worst-case which is clearly exponential of

order n and thus violates the requirement for a polynomial analysis which is usually

considered necessary for tractability. (The reader is referred to [Cod99] for examples

that manifest this behaviour.)

With the advent of Quantum computers it may well be possible to perform an

exponential number of iterations in only a polynomial number of operations. Without

access to such machines, it is usually considered better to compute an approximate

answer to a fixed-point calculation in an acceptable time than an exact answer in an

exorbitant time. To this end, widening operators have been proposed [CC77, CC92b]

that accelerate convergence on domains that possess either infinite or very long chains.

In the context of ROBDDs a widening is a function ∇ ∈ BX × BX → BX such that,

• x |= x∇y holds for all x, y ∈ BX and,

• y |= x∇y holds for all x, y ∈ BX and,

• for all increasing chains x0 |= x1 |= . . ., the increasing chain defined by y0 =

x0, . . . , yi+1 = yi∇xi+1, . . . is not strictly increasing.

Although the above formulation of a widening is sufficient to guarantee termination [CC77,

CC92b], more aggressive approximation may be necessary to compute a fixed-point in

an acceptable amount of time. Rather surprisingly, despite extensive literature on re-

ducing the size of an ROBDD by selecting a propitious variable ordering, the problem

of accurately widening ROBDDs for time has received relatively scant attention.

5.2.3 Constraint Programming

The fundamental idea in constraint programming is that constraints can be used to

represent a problem, solve it, and represent the solution [Apt03]. Constraint Satisfac-

tion Problems (CSPs) represent one of the most widely occurring classes of constraint

problems. An instance of the CSP problem consists of a set of variables X, each of

which corresponds to a single element of a discrete and finite set D, and a finite set

of constraints Σ between the variables that specify which combinations of values are

permissible and which are not. Formally, a CSP instance is a triple 〈X,D,Σ〉 where X

is a set of n variables, D is a finite domain of values, and Σ is a finite set of constraints.

Every constraint σ ∈ Σ is in turn a pair 〈x, R〉 where x ∈ X∗ is a vector of variables

and R ⊆ Dm where |x| = m ≤ n. An evaluation of the variables satisfies a constraint

〈〈x1, . . . , xn〉, R〉 iff 〈v(x1), . . . , v(xn)〉 ∈ R for some function v : X → D. A solution

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 71

to the CSP is an evaluation that satisfies all constraints. Solving a CSP instance is NP-

complete [Coo71] and if D is relaxed to be infinite, the satisfaction problem becomes

undecidable [Dav82].

The problem of widening ROBDDs is pertinent to CSP due to an encoding proposed

by Lagoon et al. [LS04, HLS04, HLS05]. The encoding explains how an arbitrary CSP

〈X,D,Σ〉 may be translated into a binary CSP 〈X ′, B,Σ′〉. Formally, the encoding e is

a bijective map with signature e : (X → D) → (X ′ → B) such that v is a solution of

〈X,D,Σ〉 if and only if e(v) is a solution of the binary CSP 〈X ′, B,Σ′〉. The value of

this encoding is that groups of constraints, for instance, σ1, σ2, σ3 ∈ Σ, can be encoded

as a single ROBDD which improves the propagation between these three constraints

and thereby speeds up the constraint solving process [LS04,HLS04,HLS05]. However,

the value of this approach is compromised by the size of the resulting ROBDDs. This

suggests approximating an ROBDD with another of smaller size so as to maintain the

computational advantage of this approach even when a system of constraints results

in an infeasibly large ROBDD. If the ROBDD were over-approximated, then it would

be necessary to use the ROBDD in conjunction with the original constraints; if the

ROBDD were under-approximated, then the original constraints can be removed though

the possibility arises that some solutions to the original CSP may be discarded.

5.2.4 Reachability Analysis

ROBDD approximation arises in reachability analysis [RS95] in which ROBDDs are

used to represent finite, albeit, very large sets of states. To illustrate the basic ideas,

let Σ denote a finite set of states, and t ⊆ Σ × Σ denote a transition system. The

transition system can be lifted to sets of states by T (S) = {s′ | s′ ∈ S ∧ t(s, s′)} where

S ⊆ Σ. The set of states reachable from an initial set of states S0 is
⋃∞

i=1 Si where

Si+1 = T (Si). Since the set of states S is finite, it is possible to represent the set of

states Si as an ROBDD fi and T as an operation on ROBDDs. The problem of set

reachability then amounts to computing
∨

i=1 fi [CGP00]. Even then the ROBDDs fi

can become unmanageably large, which motivates over-approximating the intermediary

ROBDDs fi and thus the result
∨

i=1 fi. Reachability questions can still be answered

in the negative, that is, it is possible to infer that a state s′ cannot be reached from S0.

5.3 Contributions

In this chapter we propose a new widening for Boolean functions represented as ROBDDs

based upon the enumeration of prime implicants [CM92a] that has a number of attrac-

tive properties:

• The widening can be used to accelerate fixed-point computation by ensuring that

a Boolean function f can be weakened no more than a prescribed number of times.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 72

This makes the widening particularly useful in abstract interpretation based itera-

tive program analysis and model checking applications requiring fixed-point com-

putations. Previous attempts at bounding the number of iterations have resorted

to confining the application to a fixed sub-domain of Boolean formulae [HACK00].

The widening presented in this chapter can support far richer classes of depen-

dencies without sacrificing scalability.

• The widening can compute dense approximations of an ROBDD. The density of an

ROBDD g is defined as the ratio of the number of minterms, |modelX(f)|, in the

represented function f , to the number of nodes, |g|, in the representing ROBDD.

Moreover, by constructing the new ROBDD in terms of the progressively longer

implicants, the widening can be tuned to achieve the desired tradeoff between

precision and density in an anytime fashion.

• The widening is not dependent on the variable ordering, that is, the approxima-

tions obtained are invariant with respect to the variable ordering employed. State-

of-the-art in ROBDD approximation is represented by heuristic algorithms [Shi96,

RMSS98] that prune branches from an ROBDD by checking whether each branch

is subsumed by its sibling. These algorithms are syntactic in that they are in-

formed only by the structure of the ROBDD to be approximated. The widening

presented herein is formulated in terms of the prime implicants of the underlying

Boolean function, a property which is invariant with respect to representation.

The advantage of this semantic approach is that the widening is not sensitive to

the variable ordering, hence improving the predictability of an application utilising

the widening.

• The widening can be realised in a surprisingly straightforward manner by intro-

ducing a cardinality constraint into the algorithm of Coudert and Madre [CM92a]

that removes all prime implicants of excessive length. Experimental work sug-

gests that although this widening produces accurate approximations, the running

time of the implementation is not significantly worse than state-of-the-art meth-

ods [Shi96,RMSS98].

The remainder of this chapter is structured as follows: Section 5.4 surveys the related

work. Section 5.5 specifies a widening for ROBDDs and §5.6 details algorithms for

realising it. Section 5.7 presents the experimental results. Section 5.8 presents a widen-

ing based on anti-unification [Plo70] that is provably polynomial both in space and

time that offers a compromise between efficiency and generality that may suit some

analyses [HACK00]. Finally, §5.9 concludes.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 73

5.4 Related Work

5.4.1 Widening

The use of widening operators [CC77, CC92b] is prevalent in abstract interpretation.

Despite a lack of work on widening the domain of Boolean formulae represented as

ROBDDs, many widenings have been proposed for a multitude of computational do-

mains such as intervals [CC92b] and polyhedra [BHRZ05, GH06]. However, several

algorithms have been proposed for approximating ROBDDs [RS95,Shi96,RMSS98], al-

though they are ad hoc in their approach, and their results are somewhat unpredictable.

Nevertheless, the approximations they deliver, provide a useful basis for comparison.

The ROBDD approximation algorithms of Ravi and Somenzi [RS95], Shiple [Shi96]

and Ravi et al [RMSS98] seek to compute an over-approximation of an ROBDD such

that the resultant approximation possesses a significant improvement in density which

henceforth will be denoted by δ(g) for an ROBDD g [RS95].

The simplest of these heuristic algorithms are the Heavy-branch sub-setting (HB)

and Short-path sub-setting (SP) algorithms of Ravi and Somenzi [RS95], both of which

deliver under-approximations rather than over-approximations. Both algorithms com-

prise a two-pass procedure. The HB algorithm computes in the first pass, the number of

minterms in the sub-ROBDD rooted at each node in the input ROBDD and the number

of nodes that would be eliminated by replacing the sub-ROBDD with the Boolean con-

stant false. The second pass proceeds from the root of the ROBDD replacing the join

edge of the so-called lightest branch [RS95], that is, the child with fewest minterms,

with the Boolean constant false. The process continues until the size of the remain-

der ROBDD satisfies a predefined threshold. The resultant ROBDD then contains a

set of nodes upper-most in the variable order, each with one child as the constant

false [RMSS98]. Hence the algorithm has the effect of biasing the approximation to the

variables that are upper-most in the variable ordering.

The SP algorithm is based on the idea that short paths in an ROBDD correspond

to implicants that are defined over a small number of variables yet contribute a large

number of truth assignments. The algorithm proceeds in its first pass, by determining

the length of the shortest paths through each node. In the second pass, a sub-ROBDD

is replaced with the Boolean constant false whenever the length of the shortest path

through the node that roots the sub-ROBDD exceeds a prescribed threshold. Both the

HB and SP algorithms reside in O(|G|) which as Ravi at al. concede, “permits only a

limited study of the ROBDD under consideration” [RMSS98].

Shiple [Shi96] and Ravi et al. [RMSS98] attempt to refine the HB and SP algorithms

by applying further heuristics. These two works propose the algorithms that are referred

to as bddOverApprox and remapOverApprox respectively in the Colorado University

Decision Diagram (CUDD) package [Som05]. These algorithms employ a more thorough

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 74

inspection of the ROBDD, and hence both reside in O(|G|2). The bddOverApprox

procedure computes for each node a lower bound on the increase in density that would

follow from its replacement [RMSS98] where nodes are then replaced using either the HB

or SP strategies. The remapOverApprox algorithm additionally permits the remapping

of a node g to another node g′ of the ROBDD by redirecting an edge that leads to

g to g′. Replacing nodes in this manner increases sharing producing a more dense

ROBDD representation whilst attaining greater accuracy. In both algorithms heuristics

are applied that select the replacement strategy.

Besides the heuristic algorithms discussed above. Mauborgne [Mau98] applies ap-

proximation in the context of his work on Typed Decision Graphs (TDGs) which are

a BDD variant. Mauborgne advocates widening TDGs for space, using an operator

∇(l, f) that takes, as input, a TDG that encodes a Boolean function f and returns, as

output, a TDG g with at most l nodes such that f |= g. The first widening he proposes

is in O(|G|4) where |G| is the number of nodes in the TDG. The cost of this algorithm

is potentially prohibitive for TDGs possessing greater than ≈ 1000 nodes, hence to im-

prove efficiency, Mauborgne suggests a second widening that resembles those of Shiple

and Ravi et al. This widening computes the TDGs f1, . . . , fn obtained by replacing

each node g with true. The fi are then filtered to remove those TDGs whose size exceed

|G|/2. Of the remaining fi, an fmax is selected which “gives best results” [Mau98] and

the widening is reapplied to fmax if its TDG contains more than l nodes.

An interesting development in the widening of Boolean formulae for ROBDD rep-

resentation has been that of Schachte and Søndergaard [SS06]. Their work considers

the problem of computing the strongest Boolean function in a given class that over-

approximates a given Boolean function. The classes of function considered include

those of definite [AMSS98] and monotone [Pos41] Boolean functions. The paper also

addresses the decision problem of whether a given formula resides in a given class. The

authors provide constructive answers, by means of several elegant ROBDD algorithms

to the above problems for a number of classes of Boolean formulae. The algorithms

they propose define functions which possess rich algebraic properties and actually cor-

respond to closure operators on the domain of Boolean formulae. Although complexity

theoretic issues still remain, these algorithms are potentially useful as widenings though

no quantitive measurements are presented in the work.

5.4.2 Prime Implicants

The problem of computing the set of all prime implicants of a Boolean function was first

mentioned by Shannon [Sha48]. However, the problem did not come to prominence until

it was realised that prime implicants play a crucial role in computing the minimal DNF

representation of a Boolean circuit – the problem addressed by the Quine McCluskey

procedure [Qui52]. The complexity of the Quine McCluskey procedure was long believed

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 75

to be in NPNP since the problem was thought to be a two stage process. The first stage

requiring the computation of all prime implicants, and the second stage computing a

minimal cover over the implicants. The second stage is known to be NP-complete [Kar72]

whereas until the result of Strzemecki [Str92], the generation of all prime implicants was

assumed to be NP-complete. As Strzemecki showed, the complexity of computing all

prime implicants of a Boolean function f is in fact pseudo-polynomial in the number of

truth assignments of the Boolean function [Str92]. The algorithm requires the generation

of the truth table of the input Boolean function and although the algorithm is polynomial

in the number of truth assignments, the number of truth assignments can in turn be

exponential in the number of variables. Hence, the algorithm is not practical for large

Boolean formulae.

Since ROBDDs are an efficient representation of Boolean formulae, the design of

algorithms for efficient prime implicant generation for ROBDDs has attracted much

interest. The number of prime implicants for a Boolean function over n variables is

bounded by 3n√
n

(and this bound is tight) [CM78] implying that any efficient prime

enumeration algorithm has to address the problem of how to compactly represent the

set of implicants. Coudert and Madre [CM92a] gave an elegant solution to this problem

by representing the prime implicants themselves as an ROBDD. Then the complexity

of prime enumeration is not necessarily reliant on the number of implicants themselves,

but the number of nodes of the ROBDD required to express them. Alas, a detailed

analysis of the complexity of their algorithm has not been forthcoming and it is unknown

whether the algorithm is polynomial in the size of the input ROBDD [Cou] (although

it is conjectured that it is not [Hay95]). Further afield algorithms have been proposed

to compute the shortest prime implicant of a Boolean function using techniques such as

Integer Linear Programming (ILP) [Piz96] and SAT-based branch-and-bound [MOS98].

Quite independent of the observation of using prime implicants of progressively

larger length to iteratively widen ROBDDs, Lahiri et al. [LNO06] employ cubes of

increasing length to compute over-approximations of logical formulae over propositional

atoms drawn from a parameterised theory T . The authors show how to adapt a decision

procedure based on the DPLL(T) framework for SAT Modulo Theories (SMT) [NOT06]

to compute abstractions over cubes of increasing size k, and demonstrate that this

process is efficient for small k. This approach applies the same fundamental idea as

widening with prime implicants, albeit working with arbitrary predicates rather than

merely propositional variables.

5.5 The Widening

To decouple the specification of the widening from implementation concerns, we first

specify how to widen Boolean functions for both space and time using prime implicants.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 76

5.5.1 Widening for Space

As stated in the related work survey in §5.4, the ROBDD approximation algorithms

of Shiple [Shi96] and Ravi et al [RMSS98] seek to improve the density of an ROBDD

defined as the ratio of minterms in the represented function to the number of nodes in

the representing ROBDD. Both algorithms identify the non-dense sub-ROBDDs within

an ROBDD and substitute them with other sub-ROBDDs which are denser but possess

more models. Ultimately this culminates in a dense over-approximation. Although this

approach is well-intended, it has the following distinct disadvantages:

• density comparisons and ROBDD restructuring is limited to those sub-ROBDDs

that actually arise in the ROBDD. The structure of the ROBDD to be approx-

imated is heavily dependant upon the variable ordering employed (§2.2.1) hence

differing approximations will be obtained for different variable orderings,

• although density is a natural measure of the efficiency of an ROBDD represen-

tation of a Boolean function, an approximation algorithm that endeavours to

increase density alone may produce inaccurate approximations. For instance,

suppose that a Boolean function over 8 variables has 27 minterms and is rep-

resented by 16 nodes, thus its density is 27

16 = 8. The trivial approximation true

can be represented as a single node, and therefore has density 28

1 = 256, yet this

over-approximation conveys no information at all. Thus it is not prudent to base

widening on density alone.

The observation is that prime implicants are natural variable order independent candi-

dates for reasoning about density whilst retaining accuracy. To illustrate this, consider

a Boolean function f ∈ BX and the set of implicants S = {p | p |= f} of f . Observe

that any S′ ⊆ S is a sound under-approximation of f in the sense that ∨S′ |= f where

∨S′ =
∨

p∈S′ p. However, different S′, even of the same size, can yield better approx-

imations. For instance, consider an implicant p ∈ S and a prime implicant p′ strictly

contained within it, that is, p |= p′ and p 6= p′. Then |p′| < |p|. Hence p′ contributes

2n−|p′| minterms to f whereas p contributes only 2n−|p|. Thus p′ is a better candidate

for inclusion in S′ than p. Moreover, since p′ is shorter than p, it is likely to contribute

a shorter path in an ROBDD that represents ∨S′. The following family of widening op-

erators draw together these ideas to compute a sound over-approximation by combining

negation with systematic under-approximation.

Definition 5.1. The family of operators ∇k : BX → BX where k ∈ N ∪ {0} are defined

by ∇k(f) =
∧

{¬p | p ∈ primes(¬f) ∧ |p| ≤ k}

We now proceed to prove the properties of the widening ∇k. The proposition asserts

that ∇k is anti-monotonic in its parameter k and hence ∇k is uniformly more precise

than ∇k−1. Furthermore, in the limit, ∇k(f) converges onto f from above. We show

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 77

that the widening is also monotonic in its argument f , that is, for f, f ′ ∈ BX such that

f |= f ′ then ∇k(f) |= ∇k(f
′).

Proposition 5.1. Suppose |X| = n. Then

• Given f ∈ BX then f = ∇n(f) |= ∇n−1(f) |= . . . |= ∇0(f) = true.

• Given f, f ′ ∈ BX such that f |= f ′ and 0 ≤ k ≤ n then ∇k(f) |= ∇k(f
′).

• Given f, f ′ ∈ BX such that f |= f ′ and 0 ≤ ℓ < k ≤ n then ∇k(f) |= ∇ℓ(f
′).

Proof.

• It is well-known that f =
∨

primes(f) [CH09], hence in the limit f = ∇n(f). To

prove for 0 ≤ k < n. Observe,

{¬p | p ∈ primes(¬f) ∧ |p| ≤ k} ⊆ {¬p | p ∈ primes(¬f) ∧ |p| ≤ k + 1}

hence it follows that,

∧

{¬p | p ∈ primes(¬f) ∧ |p| ≤ k + 1} |=
∧

{¬p | p ∈ primes(¬f) ∧ |p| ≤ k}

and thus ∇k+1(f) |= ∇k(f). Finally observe ∇0(f) = ∧∅ = true as required.

• Let 0 ≤ k ≤ n, p′ ∈ primes(¬f ′) and |p′| ≤ k. Since p′ |= ¬f ′ by definition, further

by assumption we have f |= f ′ then ¬f ′ |= ¬f hence p′ |= ¬f ′ |= ¬f . Furthermore,

there exists some p ∈ primes(¬f) such that p′ |= p thus |p| ≤ |p′| ≤ k. Since

p′ |= p, ¬p |= ¬p′, hence,

∇k(f) =
∧

{¬p | p ∈ primes(¬f) ∧ |p| ≤ k} |= ¬p′

Therefore ∇k(f) |= ∇k(f
′) as required.

• Holds trivially by combining the above two cases.

From the above proposition we now proceed to show that the widening ∇k constitutes

an upper closure operator on the complete lattice of Boolean formulae, and therefore

the widening may be used as the basis for defining a Galois connection [CC79]. This is

ironic since widening is often deployed when a Galois connection does not exist.

Definition 5.2 (Upper Closure Operator). An upper closure operator (uco) is a func-

tion ρ : L→ L on a complete lattice 〈L,⊑,⊥,⊤,⊓,⊔〉 such that ρ is,

• monotonic: if x ⊑ y then ρ(x) ⊑ ρ(y) for all x, y ∈ L and,

• extensive: x ⊑ ρ(x) for all x ∈ L and,

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 78

• idempotent: ρ(x) = ρ(ρ(x)) for all x ∈ L.

Corollary 5.1. The widening ∇k is an upper closure operator on the complete lattice

〈BX , |=, 0, 1,∨,∧,¬〉.

Proof. The first two requirements follow as a consequence of Proposition 5.1. Suppose

f ′ = ∇k(f) for some f ∈ BX and k ∈ N ∪ {0}. Furthermore, let f ′′ = ∇k(f
′) then

f |= f ′ and f ′ |= f ′′ thus ¬f ′′ |= ¬f ′ |= ¬f . Observe, by De Morgans,

¬f ′ = ∨{p | p ∈ primes(¬f) ∧ |p| ≤ k}

¬f ′′ = ∨{p | p ∈ primes(¬f ′) ∧ |p| ≤ k}

since f ′ |= f ′′ it is sufficient to show f ′′ |= f ′, or equivalently, ¬f ′ |= ¬f ′′. By Blake

canonical form [CH09], this sufficient condition can be reduced to the requirement

primes(¬f ′) ⊆ primes(¬f ′′). Let p ∈ primes(¬f ′). Since ¬f ′ = ∨{p | p ∈ primes(¬f)∧

|p| ≤ k} it follows that |p| ≤ k. Since ¬f ′′ = ∨{p | p ∈ primes(¬f ′) ∧ |p| ≤ k} it follows

that p |= ¬f ′′. Suppose for the sake of a contradiction that p 6∈ primes(¬f ′′). Thus

there exists some p′ |= ¬f ′′ such that p |= p′ and p 6= p′. Hence |p′| ≤ k, and p′ |= ¬f ′

since ¬f ′′ |= ¬f ′. Thus p 6∈ primes(¬f ′) and p ∈ primes(¬f ′′) as required.

5.5.2 Widening for Time

To demonstrate the rôle of prime implications in widening for time, consider a chain of

Boolean functions {f1, f2, . . .} ⊆ BX such that fi+1 = F (fi) for some F : BX → BX

where F is a monotonic operator. The problem is to extract an invariant from that chain,

that is, find a function g such that fi |= g for all fi, hence g is a sound over-approximation

of all fi. Such an invariant can be found, whilst applying F only a bounded number of

times, by constructing a set of m Boolean functions S1 = {g1, . . . , gm} such that f1 |= gi

for all gi. This set is then iteratively pruned until stability is reached. This is realised

by constructing the chain of sets Si+1 = {g ∈ Si | F (∧Si) |= g}. By construction

f1 |= ∧S1 since f1 |= g for all g ∈ S1. Moreover, since F is monotonic, it follows that

fi+1 = F (fi) |= F (∧Si) |= ∧Si+1. Hence, for all i ≥ 1, fi |= ∧Si.

If Sl denotes the limit, that is Sl = Sl+1, then fi |= ∧Sl for all fi, hence ∧Sl is

an invariant. The key point about this construction is that F is applied at most m

iterations rather than possibly 2|X| times. This gives a performance guarantee and a

parameter m that can be increased (if necessary) to improve precision. This merely

leaves the problem of constructing the initial set S1.

An uninformed approach to computing S1 is to extract m arbitrary implicants of ¬f1,

that is, p |= ¬f1. Then each ¬p is a clause of f1. However, consider a prime implicant

p′ of ¬f1 such that p |= p′. Then ¬p′ |= ¬p, therefore substituting a prime implicant p′

for p we obtain a more accurate initial ∧S1, without increasing its size. This motivates

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 79

constructing S1 from prime implicants. Furthermore, consider two prime implicants p

and p′ such that |p′| < |p|. Then p′ is a more propitious candidate for inclusion in

S1 since the clause ¬p′ possesses fewer minterms than ¬p which motivates a greedy

approach to constructing S1 in terms of prime implicants of minimal length.

One may wonder whether a bound k on the length of prime implicants, induces a

bound on the number m of primes, and hence a bound on the number of iterates. A

straightforward relationship between k and m follows from the observation that there are
(

n
1

)

21,
(

n
2

)

22, . . . ,
(

n
k

)

2k different cubes of length 1, 2, . . . , k respectively where
(

i
j

)

denotes

the binomial coefficient
(

i
j

)

= i!
(i−j)!j! . Hence a bound on m is min({2n,

∑k
i=1

(

n
k

)

2k})

where n = |X|. The 2n component of the bound follows from the observation that

there are 2n possible truth assignments hence the maximum number of times a Boolean

formula can be weakened is 2n. However, by adapting an argument relating to anti-

chains of implicants [CM78, proof of Theorem 2.2], the following tighter bound can be

obtained on the number of primes whose length does not exceed k:

Proposition 5.2. |{p ∈ primes(f) | |p| ≤ k}| ≤ max({
(

n
1

)

21, . . . ,
(

n
k

)

2k})

Proof. Let f ∈ BX , X = {x1, . . . , xn}, the set C denote the set of cubes over X and

P = {p ∈ primes(f) | |p| ≤ k}. P is anti-chain of BX and also C. It has been

shown [KEL71] that in a poset such as 〈C, |=〉, there exists a maximal anti-chain which

is invariant under any isomorphism of C. Let A be such an anti-chain. Now let c, c′ ∈ A

such that |c| = |c′| and consider a mapping F : Y → Y where Y = {x1,¬x1, . . . , xn,¬xn}

such that F (xi) = ¬F (¬xi). Suppose that F (c) = c′ where F is extended from Y

to C in the natural way. Since F is an automorphism and c′ ∈ A, it follows that

{c′′ ∈ C | |c| = |c′′|} ⊆ A. Since A is an anti-chain, then if p ∈ C and |p| < |c| then

there exists c′′ ∈ A such that p |= c′′ and p 6= c′′. Hence p 6∈ A. Similarly, if |p| > |c|

then p 6∈ A. Therefore |A| =
(

n
|c|

)

2|c| and, since |P | ≤ |A|, the result follows.

Whenever 3k ≤ 2(n + 1) the above bound on m collapses to
(

n
k

)

2k. This follows since,

(

n

1

)

21 ≤ . . . ≤

(

n

k − 1

)

2k−1 ≤

(

n

k

)

2k ⇐⇒
1

(n− k + 1)
≤

2

k
⇐⇒ 3k ≤ 2(n + 1)

Observe that the complexity bound in Proposition 5.2 implies that the maximum chain

length permitted is fixed parameter tractable (FPT [FG06]) with respect to k since the

chain length becomes polynomial when k is fixed. However, because this bound is so

conservative, a more pragmatic tactic is needed for generating the shortest m prime

implicants. One such tactic is to compute all prime implicants of length 1 for f1, then

all primes whose length does not exceed 2, then all primes whose length does not exceed

3 etc, until m prime implicants are discovered or some computational resource bound

is exceeded.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 80

In the following section we present a new algorithm for solving this specific form of

the prime implicant enumeration problem.

5.6 Implementation of the Widening

In this section we present an algorithm with which to implement the widening, the algo-

rithm appears to be practical in the general case despite complexity theoretic questions

remaining unanswered.

5.6.1 The Algorithm

In [CM92a], Coudert and Madre gave an elegant algorithm for computing all the prime

implicants of a Boolean function presented as an ROBDD. The advantage of their

approach is that the primes themselves are, in turn, represented in an ROBDD. Hence,

the complexity of prime implicant enumeration is not necessarily reliant on the number

of implicants (which can grow to 3n√
n

for a function over n variables) but the size of the

intermediary ROBDDs.

The Meta-Product Representation

To represent the prime implicants uniquely whilst canonicity is retained, an encoding

known as the Meta-Product is used. The Meta-Product representation was first defined

in [CM92a], the purpose of which is to have a canonical representation of sets of cubes

that can be efficiently represented and manipulated using ROBDDs. Hence as noted

in [CM93b], theoretically, ⌈log2 3n⌉ Boolean variables are sufficient to represent any

prime implicant thus an ROBDD over ⌈log2 3n⌉ variables is sufficient to represent any

set of prime implicants. The Meta-Product representation defines a simple encoding over

2n variables. The first n variables, denoted O = {o1, . . . , on}, the occurrence variables;

the second n, denoted S = {s1, . . . , sn}, the sign variables. Formally, we encode a prime

implicant p by σ(p) =
∧

{oi ∧ si | p |= xi} ∧
∧

{oi ∧ ¬si | p |= ¬xi}. This mapping lifts

to a Boolean function by σ(f) =
∨

{σ(p) | p ∈ primes(f)}.

Example 5.1. Consider f = x1 → x2 then σ(f) =
∨

{σ(p) | p ∈ primes(x1 → x2)} =
∨

{σ(¬x1), σ(x1 ∧ x2)} = (o1 ∧ ¬s1) ∨ (o1 ∧ s1 ∧ o2 ∧ s2).

Prime Implicant Computation

The essence of the Coudert and Madre [CM92a,CM92b,CM93b] scheme is a transforma-

tion mapping an ROBDD representing f over the variables X to another representing a

function f ′ in the Meta-Product representation. Coudert and Madre’s algorithm recur-

sively builds f ′ from f utilising the observation that the prime implicants of a Boolean

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 81

function f where,

f = (¬xi ∧ f|xi←0) ∨ (xi ∧ f|xi←1)

where xi = index(f) can be constructed from the combination of the primes of the

functions f|xi←0 and f|xi←1. This process gives a way to compute the primes of f

without explicitly computing all its implicants [CM92a]. Algorithm 9 gives the pseudo-

code of Coudert and Madre’s algorithm [CM92a]. This algorithm computes the Meta-

Product σ(f) for any given Boolean function f .

Algorithm 9 PRIMES(f)

Require: f ∈ ROBDDX

1: xi ← index(f)
2: g ← PRIMES(f|xi←0 ∧ f|xi←1)
3: g′ ← PRIMES(f|xi←1) ∧ ¬g
4: g′′ ← PRIMES(f|xi←0) ∧ ¬g
5: return ((¬oi ∧ g) ∨ (oi ∧ si ∧ g′) ∨ (oi ∧ ¬si ∧ g′′))

Refined Prime Implicant Computation

In this section we propose a refinement to the algorithm of Coudert and Madre [CM92a,

CM92b,CM93b]. The refinement specialises Coudert and Madre’s algorithm to enumer-

ate only those prime implicants whose length does not exceed some predefined constant

k ∈ N ∪ {0} such that k ≤ n where n = |X|. The new insight is that it is possible to

build f ′ from f whilst enforcing the cardinality constraint
∑n

i=1 oi ≤ k without explic-

itly enumerating the implicants of f . Hence the complexity of the refined algorithm is

not necessarily reliant on the number of implicants of length less or equal to k, but as

before, the size of the intermediary ROBDDs. Moreover, it is hoped that by removing

primes of excessive length on each recursive step, the size of intermediary ROBDDs

will be significantly reduced thus providing a speed up (since ROBDD operations are

predominantly quadratic in the size of their inputs). The following algorithm builds

toward the refined algorithm by generating an ROBDD which expresses the cardinality

constraint. The constraint is realised as a cascade of n full-adders that together output

the sum expressed in ⌈log2 n⌉ bits. The bits are then constrained so as to not exceed k.

In Algorithm 10, the bound k is represented as an array of ⌈log2 n⌉ bits k[i], that is

the binary representation of k. The first loop (lines #1 −#3) initialises the elements

of the temporary array sum[i] to false. The second loop (lines #4 −#11) iteratively

calculates o1 + . . . + on and stores the result in the temporary array sum. The ith

iteration of the loop initialises the carry c to be oi and then proceeds to add the carry

into the sum that has accumulated thus far. The formula sum[j]⊕ c merely denotes the

exclusive-or of the jth bit of sum with the carry c. The third loop (lines #13 −#15)

constrains the array sum to not exceed the k vector. Algorithm 11 details how this

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 82

Algorithm 10 CONSTRAIN(k)

Require: k ∈ ROBDDlog2 n

1: for i← 1 to ⌈log2 n⌉ do
2: sum[i]← false
3: end for
4: for i← 1 to n do
5: c← oi

6: for j ← 1 to ⌈log2 n⌉ do
7: c′ ← c ∧ sum[j]
8: sum[j]← sum[j]⊕ c
9: c← c′

10: end for
11: end for
12: f ← false
13: for i← 1 to n do
14: f ← (¬sum[i] ∧ k[i]) ∨ ((sum[i]↔ k[i]) ∧ f)
15: end for
16: return f

Algorithm 11 PRIMESLEQ(f, k)

Require: f ∈ ROBDDX , k ∈ B
log2 n

1: xi ← index(f)
2: g ←PRIMESLEQ(f|xi←0 ∧ f|xi←1, k)
3: g′ ←PRIMESLEQ(f|xi←1, k) ∧ ¬g
4: g′′ ←PRIMESLEQ(f|xi←0, k) ∧ ¬g
5: return ((¬oi ∧ g) ∨ (oi ∧ si ∧ g′) ∨ (oi ∧ ¬si ∧ g′′)) ∧ CONSTRAIN(k)

constraint can be integrated in the algorithm of Coudert and Madre [CM92a].

Computing CONSTRAIN(k) is not prohibitively expensive, in fact, Bartzis and Bul-

tan [BB03] show that the constraint
∑n

i=1 oi ≤ k can be constructed in O(n2) time and

space. Recently, this bound was reduced to O(k(n − k)) [HLS05].

Algorithm 11 repeatedly imposes the cardinality constraint on each recursive step,

which is hoped will trim the size of all intermediate ROBDDs. The astute reader will

notice that each call to PRIMESLEQ operates on a sub-ROBDD that is only defined over

the variable set {xj , . . . , xn} for i < j. However, CONSTRAIN(k) imposes a constraint

over the variable set {x1, . . . , xn}. This is no error since
∑n

i=1 oi ≤ k entails
∑n

i=j oi ≤ k

and therefore it is not necessary to manufacture a different cardinality constraint for

each level in the ROBDD.

When widening for time, it is necessary to extract m prime implicants from the

transformed ROBDD f ′. This can be accomplished by a partial, depth-first traversal

that sweeps the ROBDD until m prime implicants of minimal length have been re-

trieved. When widening for space, an ROBDD representation of the over-approximation

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 83

is required. The following algorithm details how this can be constructed by applying

existential quantification:

Algorithm 12 PRIMES2BDD(f)

Require: f ∈ ROBDDX

1: for i← 0 to n do
2: f ′ ← ∃si

(∃oi
(f ∧ (oi → (xi ↔ si))))

3: f ← f ′

4: end for
5: return f

5.6.2 Complexity Issues

As we stated in §5.4.2, a detailed analysis of the complexity of Coudert and Madre’s

algorithm has not been forthcoming and it is unknown whether the algorithm is poly-

nomial in the size of the input ROBDD [Cou]. Instead of providing an argument that

the algorithm is polynomial we provide a reduction which suggests that both Coud-

ert and Madre’s algorithm and the algorithmic refinement proposed in this chapter

are unlikely to be polynomial. The reduction asserts that the problem of finding the

shortest implicant of a Boolean function presented as an ROBDD is at least as hard

as a problem pertaining to variable ordering. Specifically, we formulate the SHORTEST

IMPLICANT problem and show this to be reducible to the VARIABLE ORDER SHORTEST

PATH problem.

Definition 5.3. SHORTEST IMPLICANT[ROBDD]

Instance: Given an ROBDD f and an integer k.

Problem: Is there an implicant of f that contains k or fewer literals?

Notice that this problem is formulated in terms of the existence of a shortest impli-

cant rather than a shortest prime implicant. It is sufficient to focus on this simplified

problem because if there exists an implicant of size at most k then there immediately

exists a prime implicant of length at most k contained within it.

Consider the following problem:

Definition 5.4. VARIABLE ORDER SHORTEST PATH

Instance: Given an ROBDD f over the set of variables X = {x1, x2, . . . , xn} and an

integer k.

Problem: Is there a reordering of the elements of X such that the resultant ROBDD

f ′ has a path to true of length at most k?

Proposition 5.3. VARIABLE ORDER SHORTEST PATH≤T SHORTEST IMPLICANT[ROBDD]

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 84

Proof. Given an instance of the SHORTEST IMPLICANT[ROBDD] problem. Suppose there

exists an implicant p such that |p| ≤ k. Let π : X → N ∪ {0} be any injective function

such that π(xi) < π(xj) for all xi ∈ var(p)∧xj ∈ X \ var(p). Reordering f w.r.t. order

π yields an ROBDD f ′ which contains a path to true of length at most k.

Therefore VARIABLE ORDER SHORTEST PATH≤T SHORTEST IMPLICANT[ROBDD] as required.

This reduction suggests that the complexity of PRIMES(f) is not polynomial. To

see this, observe that if f ′ can be computed in polynomial time, then it is possible to

compute the shortest prime implicant in polynomial time. This follows because it is

possible to identify the shortest prime implicant in polynomial time as demonstrated

by the following function.

occ(f) =

occ(f|oj←1) + 1, if index(f) = oj ∧ f|oj←0 = false

occ(f|oj←0), else if index(f) = oj ∧ f|oj←1 = false

min(occ(f|oj←0), occ(f|oj←1) + 1), else if index(f) = oj

min(occ(f|sj←0), occ(f|sj←1)), else if index(f) = sj

0, otherwise.

The function annotates each node in f ′ with a count of the minimum number of positive

oi variables occurring along any path emanating from the node. At the root of f ′, this

count corresponds to the length of the shortest prime implicant of the function f . The

shortest implicant can then be found in O(n) time by traversing f ′ from the root,

selecting the child whose root is labelled with the smallest count.

5.7 Experimental Results

To assess the precision of the widening along with the practicality of the proposed

implementation, we implemented the algorithms of §5.6.1 within CUDD [Som05]. The

package contains implementations of both the algorithms of Shiple [Shi96] and Ravi et

al. [RMSS98] which, following the CUDD naming scheme, will henceforth be referred

to as bddOverApprox and remapOverApprox respectively. Table 11 presents details of

the Boolean functions, drawn from the MCNC and ISCAS benchmark circuits, used

to assess the widening. For ease of reference, all Boolean functions are labelled with

a numeric identifier. The second and third columns give the circuit name and specific

output number taken from the circuits; outputs were selected so as to evaluate the

widening on ROBDDs with varying size. The fourth, fifth, sixth and seventh columns

respectively give the number of variables, number of ROBDD nodes, the number of

truth assignments of the Boolean function represented by the ROBDD and the density

of the ROBDD. All experiments were performed on an UltraSPARC IIIi 900MHz based

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 85

ID Circuit # |X| size minterms density

1. pair 177 51 26253 1.86× 1014 7.08× 109

2. 182 53 33190 8.12× 1014 2.45× 1010

3. mm9b 420 31 94328 1.61× 109 1.71× 104

4. 421 31 96875 1.62× 109 1.67× 104

5. s9234 288 76 655192 3.59× 1022 5.48× 1016

6. 488 75 1304371 1.95× 1022 1.49× 1016

7. rot 149 53 1315 5.18× 1015 3.94× 1012

8. 172 55 1700 1.08× 1016 6.35× 1012

Table 11: Benchmark formulae

system, equipped with 16GB RAM, running the Solaris 9 Operating System, and using

getrusage to calibrate CPU usage in seconds.

5.7.1 Our Method

Figure 8 presents the time required to apply Algorithm 11 and then Algorithm 12 to

the benchmarks in Tables 11 for various k. (Note that this time is dominated by the

cost of applying Algorithm 11 and therefore the times reported in the table closely tally

with the times required to apply Algorithm 11 and then walk the ROBDD to extract a

bounded number of primes).

Interestingly, Coudert and Madre [CM92a] suggest that “[their] procedures have

costs that are independent of the sizes of [the prime] sets”, “since there is no relation

between the size of a set and the size of the [ROBDD] that denotes it”. However, this

does not square with the results which suggest that the size of the ROBDDs depends,

at least to some extent, on the number of primes that it represents providing empirical

evidence as to the complexity of the problem at hand. This is witnessed by the sharp

increase in run time that occurs for some circuits as k increases. However, the crucial

point to observe is not that the run time spikes, but the degree of precision achieved

before the escalation in complexity. To this end, Figure 9 plots the ratio of truth

assignments of the original Boolean function against that of the approximation for

increasing values of k. Observe that the quality of the approximation rapidly converges

onto true as k increases, hence the approximation exhibits the diminishing property

that is considered to be desirable in an anytime algorithm. The diminishing property

suggests the tactic of incrementally increasing k until either the precision is acceptable

or a timeout is reached. Applying this tactic achieves precision rates of 70, 80, and

90% yielding run times of less than 5, 20 and 60 seconds respectively. On the other

hand, repeatedly incrementing k until the accumulated run time exceeds 30 seconds,

achieves precision rates for benchmarks 1−8 of 99, 99, 99, 99, 99, 92, 96, 95% respectively.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 86

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

Figure 8: Time against k

This realises an anytime approach to prime generation and ROBDD approximation in

which the quality of the result is limited only by the quantity of resource available.

Incrementing k until at least 1024 prime implicants are found (which if anything is

rather high for the purposes of program analysis), requires the following values of k :

5, 5, 7, 7, 5, 6, 7, 7 for the 8 benchmark circuits. It should be noted that these figures

are, if anything, rather pessimistic for many types of program analysis. For example,

in the context of groundness analysis that is widely used in logic programming, it has

been observed that the vast majority of clauses that arise during analysis are very small

in length [HACK00]. This implies that widening with small k is unlikely to have any

discernible impact on the overall precision.

The value of an approximation algorithm has traditionally been reported in terms

of density [Shi96, RMSS98] which gives an indication as to the compactness of the

approximating ROBDD. Figure 10 thus reports how the density varies with k. By

comparing the densities reported in Table 11 against those presented in the graph, it

can be seen that the widening can significantly improve on the density of the original

ROBDD resulting in a much more compact approximation.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

M
in

te
rm

 R
at

io

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

Figure 9: Minterm ratio against k

 1

 100000

 1e+010

 1e+015

 1e+020

 1e+025

 2 4 6 8 10 12 14 16

D
en

si
ty

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

Figure 10: Density against k

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 88

5.7.2 Comparison Against Existing Methods

Table 12 summaries the results obtained by the bddOverApprox and remapOverApprox

algorithms on the circuits in the benchmark suite. The table is partitioned horizon-

tally, into three groups of rows according to whether the bddOverApprox algorithm,

remapOverApprox algorithm, or the widening algorithm proposed in this work was ap-

plied. The second and third columns give the size of the approximating ROBDD and the

number of minterms in its underlying Boolean function. The fourth and fifth columns

detail the ratio of these values with respect to the size and number of minterms in the

original ROBDD (as given in Table 11). The bddOverApprox and remapOverApprox

algorithms are parameterised by a quality parameter q ∈ [0, 1], that specifies the min-

imal acceptable density improvement. That is, these algorithms ensure that the new

density d′ satisfies q ≥ d/d′ where d is the density of the original ROBDD. As Shiple

himself says [Shi96], “The bddUnderApprox method is highly sensitive to the [quality]

parameter”. Added to this, there is no clear way to choose q so as to obtain a desired

reduction in ROBDD size.

For purposes of comparison, we chose to reduce the size of an ROBDD by at

least 50%, but ideally not significantly more than 50% (it was the desire to solve

this particular analysis problem that motivated this study). Both bddOverApprox and

remapOverApprox were called repeatedly under the bisection algorithm to search for a

quality value that yielded an acceptable reduction in size. The algorithm terminated

when the difference between the high and lower quality bounds was less than 0.01.

The notes column gives the particular quality values that achieved the best ROBDD

approximation and the time column presents the total time required to call bisection

which, of course, was dominated by the time to approximate the ROBDDs. Despite the

systematic use of bisection, the reduction in ROBDD size was often significantly more

than 50%. This was due to the ROBDD collapsing at certain quality thresholds.

The lower rows of the Table 12 summarise the results of incrementing k until a space

reduction of at least 50% was obtained. The notes column gives the required values of

k and the cumulative execution time. Observe that the minterm ratios thus obtained

compare favourably with those derived using bddOverApprox and remapOverApprox

whilst the overall execution time is also reduced. Note that other variable orderings

may give different results for the bddOverApprox and remapOverApprox whereas the

approximation derived from our widening is constant for all variable orderings. As a

sanity check, the widening was tested to verify that it delivered the same approximations

under different variable orderings.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 89

ID Approximation Ratios Time Notes
size minterms size minterms

[RMSS98] 1. 8382 3.40 × 1014 0.32 1.83 4.61 q: 0.94
2. 9711 1.47 × 1015 0.29 1.81 6.32 q: 0.84
3. 933 1.88 × 109 0.01 1.16 10.85 q: 0.75
4. 722 1.88 × 109 0.01 1.16 11.96 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1086.12 q: 0.88
6. 11 2.89 × 1022 0.01 1.49 2321.68 q: 0.92
7. 91 7.30 × 1015 0.07 1.41 1.13 q: 0.96
8. 838 2.96 × 1016 0.49 2.75 1.50 q: 0.98

[Shi96] 1. 8385 1.72 × 1015 0.32 10.85 4.86 q: 0.92
2. 9714 8.06 × 1015 0.29 9.93 6.35 q: 0.81
3. 933 1.88 × 109 0.01 1.16 12.39 q: 0.75
4. 722 1.88 × 109 0.01 1.16 13.10 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1057.62 q: 0.87
6. 11 2.89 × 1022 0.01 1.49 2562.30 q: 0.92
7. 168 8.10 × 1015 0.13 1.56 1.25 q: 0.92
8. 837 1.73 × 1016 0.49 1.60 1.67 q: 0.94

§5.6 1. 11027 2.06 × 1014 0.42 1.11 0.58 k: 5
2. 7301 8.32 × 1014 0.22 1.03 0.85 k: 6
3. 44334 1.68 × 109 0.47 1.02 6.38 k: 12
4. 39718 1.69 × 109 0.41 1.05 8.19 k: 11
5. 75 3.64 × 1022 0.01 1.01 20.36 k: 7
6. 103 1.96 × 1022 0.01 1.01 47.53 k: 6
7. 289 6.29 × 1015 0.22 1.21 0.88 k: 7
8. 527 1.09 × 1016 0.31 1.01 1.66 k: 7

Table 12: Comparison of approximation

5.8 Provably Polynomial Widening

The widening presented in §5.5 relies upon the generation of prime implicants. This

problem was first addressed by Quine [Qui52] and, since then, there has been much in-

terest in developing efficient prime implicant enumeration algorithms (interested readers

should consult [Str92] for a detailed history of the problem and known algorithms).

Interestingly, the ROBDD literature already suggests an approach to widening ROB-

DDs that is based on prime implicants (albeit of a restricted form). Bagnara and

Schachte [BS99] propose an algorithm for finding all pairs x, y ∈ X such that f |= x,

f |= ¬x or f |= (x ⇐⇒ y) for some f ∈ BX . Their algorithm, which was actually de-

vised to factorise ROBDDs, resides in O(n2|G|) where n = |X|. The formula (x ⇐⇒ y),

can be decomposed into two so-called quadratic prime implicants [CH09] which hints

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 90

Algorithm 13 WidenNPOS(f)

Require: f ∈ ROBDDX

1: xi ← index(f)
2: if f|xi←0 = true ∧ f|xi←1 = false then
3: return 〈i, 0, 1〉 :: ǫ
4: else if f|xi←0 = false ∧ f|xi←1 = true then
5: return 〈i, 1, 0〉 :: ǫ
6: else if f|xi←0 = true then
7: return ǫ
8: else if f|xi←1 = true then
9: return ǫ

10: else if f|xi←0 = false then
11: return 〈i, 1, 0〉 :: WidenNPOS(f|xi←1)
12: else if f|xi←1 = false then
13: return 〈i, 0, 1〉 :: WidenNPOS(f|xi←0)
14: end if
15: v1 ← 〈i, 0, 1〉 :: WidenNPOS(f|xi←0)
16: v2 ← 〈i, 1, 0〉 :: WidenNPOS(f|xi←1)
17: return anti unify(v1, v2)

at the existence of an ROBDD widening. In this section we present an improved algo-

rithm based on Plotkin’s anti-unification algorithm [Plo70] for finding all pairs x, y ∈ X

such that f |= x, f |= ¬x, f |= (x ⇐⇒ y) or f |= (x ⇐⇒ ¬y) for some f ∈ BX .

Although this technique is more general than the algorithm prescribed by Bagnara and

Schachte [BS99], its complexity resides in O(|G|n log n) and is therefore more efficient.

We denote the class of Boolean formulae expressible by such relations as NPOSX .

The widening algorithm, whose pseudo-code is given in Algorithm 13, takes as input

an ROBDD f and returns as output a set of tuples v over an ordered set of variables

X = {x1, . . . , xn} representing the Boolean function
∧

{f ′ ∈ NPOSX | f |= f ′}. The

algorithm manipulates lists of tuples which are combined by applying anti-unification.

The Boolean function decodeX(v) explains how a list of tuples v over an ordered set of

variables X = {x1, . . . , xn} is interpreted as a Boolean function drawn from NPOSX .

decodeX(v) =

true, if v = ǫ

xi ∧ decodeX(v′), if v = 〈i, 1, 0〉 :: v′

¬xi ∧ decodeX(v′), if v = 〈i, 0, 1〉 :: v′

decodeX((〈i, A,B〉 :: v′)[A 7→ 0, B 7→ 1])∨

decodeX((〈i, A,B〉 :: v′)[A 7→ 1, B 7→ 0]), if v = 〈i, A,B〉 :: v′

Example 5.2. If X = {x1, . . . , x3} and v = 〈1, A,B〉 :: 〈2, A,B〉 :: 〈3, 0, 1〉 then

decodeX(v) = decodeX(〈1, 0, 1〉 :: 〈2, 0, 1〉 :: 〈3, 0, 1〉) ∨ decodeX(〈1, 1, 0〉 :: 〈2, 1, 0〉 ::

〈3, 0, 1〉) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ ¬x3) = (x1 ⇐⇒ x2) ∧ ¬x3.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 91

f

〈1,1,0〉::〈2,A,B〉::〈4,A,B〉::〈5,B,A〉
��

GFED@ABCx1
1

〈2,A,B〉::〈4,A,B〉::〈5,B,A〉
〈1,1,0〉::〈2,A,B〉::〈4,A,B〉::〈5,B,A〉

}}{{
{{

{{
{

0

((PPPPPPPPPPPPP

GFED@ABCx21

〈4,1,0〉::〈5,0,1〉

〈2,1,0〉::〈4,1,0〉::〈5,0,1〉

yyssssssssssssssssssssssssssssss 0

〈3,1,0〉::〈4,0,1〉::〈5,1,0〉

〈2,0,1〉::〈3,1,0〉::〈4,0,1〉::〈5,1,0〉

##
HHHHHHHHHHHHHHH 0

GFED@ABCx3
1〈4,0,1〉::〈5,1,0〉

}}{{
{{

{{
{ 0

@@

@@
@@

GFED@ABCx4
0

~~~~
~~

~~
1 〈5,0,1〉

!!
BB

BB
BB

B
GFED@ABCx4

0〈5,1,0〉

}}||
||

||
| 1

!!
BB

BB
BB

B 0

0 GFED@ABCx5
1

}}||
||

||
| 0

  
@@

@@
@@

GFED@ABCx5
1

~~~~
~~

~~
0

!!
BB

BB
BB

B 0

0 1 1 0

Figure 11: Algorithm 13 applied to f = x1 ∧ (x2 ∨ x3) ∧ (x2 ⇐⇒ x4) ∧ (x4 ⇐⇒ ¬x5)

The rationale for encoding formulae as lists of tuples is illustrated by considering two

formulae f1, f2 ∈ NPOSX . Suppose f1 and f2 are represented by v1 and v2, that is,

decodeX(vi) = fi. Suppose too that the tuples are ordered lexigraphically and v′1 and v′2
are obtained from v1 and v2 by removing the tuple for any variable index which arises in

one list. The anti-unification of v′1 and v′2 is a list of tuples v such that decodeX(v) = f

where f is the strongest formula in NPOSX such that f1 ∨ f2 |= f . In Algorithm 13,

anti unify(v1, v2) denotes the combined filtering and anti-unification algorithm.

Example 5.3. Suppose f1 = x2 ∧ x4 ∧ ¬x5 and f2 = ¬x2 ∧ x3 ∧ ¬x4 ∧ x5. Then

decodeX(v1) = f1 and decodeX(v2) = f2 where v1 = 〈2, 1, 0〉 :: 〈4, 1, 0〉 :: 〈5, 0, 1〉 and

v2 = 〈2, 0, 1〉 :: 〈3, 1, 0〉 :: 〈4, 0, 1〉 :: 〈5, 1, 0〉. Moreover, anti unify(v1, v2) = 〈2, A,B〉 ::

〈4, A,B〉 :: 〈5, B,A〉 and decodeX(〈2, A,B〉 :: 〈4, A,B〉 :: 〈5, B,A〉) = (x2 ⇐⇒ x4) ∧

(x4 ⇐⇒ ¬x5) as required.

The following example illustrates the execution of the widening algorithm for an ROBDD

representing the Boolean function f = (x1 ∧ (x2 ∨x3))∧ (x2 ⇐⇒ x4)∧ (x4 ⇐⇒ ¬x5).

Example 5.4. A run of Algorithm 13 is illustrated for the function f in Figure 11, for

simplicity, complement edges are omitted and constant nodes not reduced. The algorithm

proceeds bottom-up, computing formulae for the nodes in the ROBDD in the following

order:

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 92

leftmost x5 ¬x5

leftmost x4 x4 ∧ ¬x5

rightmost x5 x5

rightmost x4 ¬x4 ∧ x5

x3 x3 ∧ ¬x4 ∧ x5

x2 (x2 ⇐⇒ x4) ∧ (x4 ⇐⇒ ¬x5)

x1 x1 ∧ (x2 ⇐⇒ x4) ∧ (x4 ⇐⇒ ¬x5)

The following lemmas build towards the proof of correctness for Algorithm 13 given in

Proposition 5.4.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 93

Lemma 5.1. Given an ROBDD f labelled with a variable xi ∈ X then f |= g for some

g ∈ BX iff (¬xi ∧ f|xi←0) |= g and (xi ∧ f|xi←1) |= g.

Proof. f |= g iff, (¬xi ∧ f|xi←0) ∨ (xi ∧ f|xi←1) |= g iff ¬xi ∧ f|xi←0 |= g and xi ∧

f|xi←1 |= g.

Lemma 5.2. Given an ROBDD f then f |= xi (resp. f |= ¬xi) for some xi ∈ X iff

every path from the root of f to true visits a node g labelled xi such that g|xi←0 = false

(resp. g|xi←1 = false).

Proof. For brevity we only consider the f |= xi case; the f |= ¬xi case is analogous.

⇐ We first prove the if direction by contrapositive. Hence, assume there exists a

path from the root of f to true that does not visit a node g labelled xi such that

g|xi←0 = false. Observe, we have two cases:

– firstly, the path does not visit a node labelled xi. Thus there exists some

b1 ∈ B
i−1 and b2 ∈ B

n−i−1 such that f(b1, 0,b2) = f(b1, 1,b2) = 1. Hence

f 6|= xi, a contradiction.

– secondly, the path does visit a node g labelled xi, however, g|xi←0 6= false.

Therefore there exists b1 ∈ B
i−1 and b2 ∈ B

n−i−1 such that f(b1, 0,b2) = 1.

Hence f 6|= xi, a contradiction.

⇒ To prove the only-if direction. By assumption, all paths from the root of f to

true visit a node g labelled xi such that g|xi←0 = false. Therefore, there does not

exist any b1 ∈ B
i−1 and b2 ∈ B

n−i−1 such that f(b1, 0,b2) = 1. Thus f |= xi.

Lemma 5.3. Given an ROBDD f then f |= (xi ⇐⇒ xj) (resp. f |= (xi ⇐⇒ ¬xj))

for some xi, xj ∈ X iff every path from the root of f to true visits a node g labelled xi

such that g|xi←0 |= ¬xj and g|xi←1 |= xj (resp. g|xi←0 |= xj and g|xi←1 |= ¬xj).

Proof. For brevity we only consider the f |= (xi ⇐⇒ xj) case;

⇐ We first prove the if direction by contrapositive. Hence, assume there exists a

path from the root of f to true that does not visit a node g labelled xi such that

g|xi←0 |= ¬xj and g|xi←1 |= xj. Observe, we have two cases:

– firstly, the path does not visit a node labelled xi. Thus, there exists some

b1 ∈ B
i−1 and b2 ∈ B

n−i−1 such that f(b1, 0,b2) = f(b1, 1,b2) = 1. Let

g = f(b1), then g|xi←0 = g|xi←1. Since g 6= 0 it follows that g|xi←0 |= ¬xj

and g|xi←1 |= xj cannot hold together.

– secondly, the path does visit a node g labelled xi and g|xi←0 6|= ¬xj or

g|xi←1 6|= xj . Assume for instance, g|xi←0 6|= ¬xj. But g|xi←0 6= false hence

by Lemma 5.2 either:

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 94

∗ the path does not visit a node h labelled xj. Thus there exists b1 ∈ B
j−i

and b2 ∈ B
n−j−1 such that g|xi←0(b1, 0,b2) = g|xi←0(b1, 1,b2) = 1.

Specifically, g(0,b1, 1,b2) = 1, hence f 6|= (xi ⇐⇒ xj), a contradiction.

∗ the path visits a node h labelled xj but h|xj←1 6= false. Therefore there

exists b1 ∈ B
j−i and b2 ∈ B

n−j−1 such that g|xi←0(b1, 1,b2) = 1. Specif-

ically, g(0,b1, 1,b2) = 1, hence f 6|= (xi ⇐⇒ xj), a contradiction.

The g|xi←1 6|= xj case follows analogously.

⇒ To prove the only-if direction. By assumption, all paths from the root of f

to true visit a node g labelled xi such that g|xi←0 |= ¬xj and g|xi←1 |= xj .

Therefore by two applications of Lemma 5.2 it follows that there does not exist

any b1 ∈ B
i−1,b2 ∈ B

j−i and b3 ∈ B
n−j−1 such that f(b1, 0,b2, 1,b3) = 1 or

f(b1, 1,b2, 0,b3) = 1. Thus f |= (xi ⇐⇒ xj).

Proposition 5.4. Given an ROBDD f then Algorithm 13 computes a list of tuples v

such that decodeX(v) = f ′ where f ′ ∈ NPOSX and f |= f ′.

Proof. We proceed by induction on the input ROBDD f . We consider the following five

cases in order:

• f|xi←0 = true and f|xi←1 = false: By Lemma 5.2 there can exist no xj ∈ X

such that f |= xj (or f |= ¬xj analogously) for all j > i. Furthermore, by

Lemma 5.3 there can exist no xj , xk ∈ X such that f |= (xj ⇐⇒ xk) (or

f |= (xj ⇐⇒ ¬xk) analogously) for all k > j > i. Hence, ǫ denotes true.

However, observe f |= ¬xi, hence let 〈i, 0, 1〉 :: ǫ denote variable xi = false for all

b ∈ B
n such that b ∈ modelX(f).

• f|xi←0 = false and f|xi←1 = true: analogous to the above case.

• f|xi←0 = true or f|xi←1 = true: By Lemma 5.2 there can exist no xj ∈ X such

that f |= xj (or f |= ¬xj analogously) for all j > i. Furthermore, by Lemma 5.3

there can exist no xj , xk ∈ X such that f |= (xj ⇐⇒ xk) (or f |= (xj ⇐⇒ ¬xk)

analogously) for all k > j > i. Hence, ǫ denotes true.

• f|xi←0 = false or f|xi←1 = false: By Lemma 5.2, if f|xi←0 = false then f |= xi

in the node f further if f|xi←1 = false then f |= ¬xi in the node f . Hence, if

f|xi←0 = false then let 〈i, 1, 0〉 denote variable xi = true for all b ∈ B
n such

that b ∈ modelX(f). Further, if f|xi←1 = false then let 〈i, 0, 1〉 denote variable

xi = false for all b ∈ B
n such that b ∈ modelX(f).

• otherwise: Lemma 5.3, f |= (xi ⇐⇒ xj) for some xi, xj ∈ X then f|xi←0 |= ¬xj

and f|xi←1 |= xj. Assume f |= (xi ⇐⇒ xj) then v1 = 〈i, 0, 1〉 :: . . . :: 〈j, 0, 1〉 and

v2 = 〈i, 1, 0〉 :: . . . :: 〈j, 1, 0〉 hence anti unify(v1, v2) = 〈i, A,B〉 :: . . . :: 〈j,A,B〉.

CHAPTER 5. WIDENING ROBDDS WITH PRIME IMPLICANTS 95

Let 〈i, A,B〉 :: . . . :: 〈j,A,B〉 denote xi = true∧xj = true or xi = false∧xj = false

for all b ∈ B
n such that b ∈ modelX(f). Further, let f |= (xi ⇐⇒ ¬xj) then v1 =

〈i, 0, 1〉 :: . . . :: 〈j, 1, 0〉 and v2 = 〈i, 1, 0〉 :: . . . :: 〈j, 0, 1〉 hence anti unify(v1, v2) =

〈i, A,B〉 :: 〈j,B,A〉. Let 〈i, A,B〉 :: . . . :: 〈j,B,A〉 denote xi = true ∧ xj = false

or xi = false ∧ xj = true for all b ∈ B
n such that b ∈ modelX(f). Finally, let

v1 = 〈i, A,B〉 and v2 = 〈i, A,B〉 then anti unify(v1, v2) = 〈i, A,B〉.

By applying Lemma 5.1 inductively to each node in the ROBDD f where all nodes are

one of the above cases, the result follows.

The overall complexity of the algorithm is in O(|G|n log n), since with the exception

of anti unify(v1, v2), all steps in Algorithm 13 require constant time. The anti unify

operation requires O(n log n) time for lists possessing at most n tuples when Plotkin’s

anti-unification algorithm [Plo70] is implemented using an AVL tree. Since each node

is visited at most once, the overall complexity of Algorithm 13 is in O(|G|n log n).

The value of this widening, is not only its tractability, but that it can only admit

chains of linear length. This follows from the observation that the number of truth

assignments for any f ∈ NPOSX is a power of 2. The strongest element of NPOSX

is the Boolean function ∧X which has precisely 1 truth assignment. Conversely, the

weakest element is the Boolean function true which possesses 2n models. It follows that

chain length cannot exceed n+1. This widening therefore offers a compromise between

efficiency (i.e. provably polynomial complexity) and expressiveness, that suits analyses

which only require the manipulation of Boolean dependencies [HACK00].

5.9 Conclusions

In this chapter we have proposed a new widening for Boolean formulae represented as

ROBDDs and an algorithm for realising it. The widening can be used to either bound

the number of times that an ROBDD is updated in an iterative abstract interpretation

based program analysis, or approximate an ROBDD with another that has a more space-

efficient representation. Empirical evidence suggests that the widening is both useful and

surprisingly tractable. Furthermore, the widening exhibits the diminishing property in

that approximations rapidly converge on to the optimal solution as the length of prime

implicants is relaxed. Moreover, unlike previous proposed approximation techniques,

the widening is not dependant on the underlying variable ordering. In addition to this

widening, the chapter has presented a provably polynomial widening technique that

only admits chains of length linear in the number of propositional variables.

Chapter 6

Widening ROBDDs Randomly

“Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.”
- J. V. Neumann

Abstract. In this chapter we investigate the approximation of Boolean for-

mulae represented as ROBDDs using randomised techniques. The key idea

is to forfeit the guarantee of finding all prime implicants of minimal length,

in order to obtain a tractable widening. In particular, random selection is

applied in order to find a short prime implicant with high probability. By

iterating this tactic, a collection of short primes can be quickly found which

leads to surprisingly accurate approximation. The experimental results sug-

gest that randomisation can achieve approximations which compare with

those generated by systematic prime enumeration. Moreover, the iterative

nature of the randomised approach makes it naturally anytime.

6.1 Introduction

A randomised (or probabilistic) algorithm is an algorithm which employs a degree of

randomness as part of its logic. Theoretically, randomised algorithms are formulated

by augmenting a machine with some randomisation device, for instance, a Turing ma-

chine would be augmented with an auxiliary tape of random values. Practically, ran-

domised algorithms are normally implemented with an efficient pseudo random number

generator. A randomised algorithm typically utilises the pseudo random number gen-

erator in one of two ways: to randomly generate prospective solutions; or to guide

non-deterministic choices in the otherwise deterministic computation of a solution.

Randomised algorithms are necessarily multipass, where a single pass produces a

solution to a problem with a probability of correctness 0 < ǫ < 1. Thus after n inde-

pendent passes of the algorithm, a correct solution will be computed with probability

96

CHAPTER 6. WIDENING ROBDDS RANDOMLY 97

1 − (1 − ǫ)n. For example, consider a problem involving search, for which a random

selection has ǫ = 1/2 probability of finding the best solution according to some optimi-

sation criteria. Then, after n = 10 independent random selections, the probability of

obtaining the optimal solution is 1− 1/1024 ≈ 0.999.

Randomised algorithms have proven useful in solving problems for which a com-

putationally feasible algorithm is unknown. Randomisation has proven particularly

powerful when solving number theoretic problems such as primality testing and prime

factoring as exemplified by the Rabin-Miller [Rab80] and Pollard-ρ [Pol75] algorithms.

These algorithms are attractive because for both of these problems no efficient deter-

ministic algorithms are known. In algorithm design, randomisation is considered a

last resort [Pre88] and is usually only applied when there is little chance of devising a

polynomial time solution. Furthermore, randomisation is only practical when there is

sufficient structure or bias in the problem so that random selection is likely to gravitate

towards a solution, rather than a non-solution. Randomisation is worthy of considera-

tion for widening ROBDDs because of the negative result that suggests that computing

a shortest prime implicant of an ROBDD is very unlikely to be polynomial. Moreover,

selecting a random path from an ROBDD and then extracting the prime implicant

contained within it is more likely to find an implicant that is short than long. The in-

teresting research question, is whether this bias can be exploited to obtain accurate and

efficient approximation. Randomised algorithms often inspire so-called derandomised

algorithms which are deterministic algorithms that attempt to retain the conceptual

simplicity of their randomised counterpart. A related research question is therefore

whether a derandomised variant retains the bias necessary for efficiency.

The overall running time of a randomised algorithm is the product of the cost of

a single pass and the total number of passes required. However, a single pass that is

computationally lightweight might only generate an answer that has a small probability

of being a solution. Thus although each pass is cheap, the number of passes would be

large and hence their product would become unacceptable. In this chapter, we explore

how different branch selection tactics, with different costs, effect the quality of the prime

implicants found and hence the precision of the ensuing ROBDD approximation.

Although one would think that a widening based on randomisation would be funda-

mentally different from that presented previously, it turns out that the two widenings

share much commonality in that they are both based on finding prime implicants. How-

ever, a key difference between the widening of the previous chapter and those proposed

in this, is the granularity at which they operate. When each pass of a widening generates

primes of successively longer length, each iteration may well contribute many primes to

the approximation generated on the previous iterate. This means that the difference in

precision between the approximation generated for length k and k + 1 primes is often

large. Thus, the increments in precision in this approach to prime enumeration are

CHAPTER 6. WIDENING ROBDDS RANDOMLY 98

potentially coarse-grained. For instance, it may well be feasible to generate all primes

up to length k = 10, say, but practically impossible to generate all primes up to length

k = 11. This behaviour is manifested in the rot-#149 example, as illustrated in Figure 8.

Such explosive behaviour often occurs because the number of primes whose length does

not exceed k do not increase linearly with k, at least in the average case [MP64]. By

way of contrast, the widening techniques proposed in this chapter add only a single

prime to a monotonically increasing approximation, and therefore these widenings are

potentially more attractive because the precision increment is more fine-grained.

6.2 Contributions

In this chapter we propose a new widening technique for Boolean functions represented

as ROBDDs based upon the random generation of prime implicants. This technique

leads to two widenings: one is truly random and the other is a deterministic deran-

domised algorithm. We summarise our contributions as follows:

• The widenings presented herein enable finer control of the computational resources

required to construct the approximation. This is because the algorithms add

new implicants one-by-one to the approximation rather than all the implicants

of a given length in one monolithic step. A consequence of this is that little

computational resource is expended between the generation of one implicant and

the next which means the algorithm is truly interruptible, which is considered to

be a particularly desirable feature of an anytime algorithm.

• The step of finding a single implicant is provably polynomial, though adding an

implicant of maximal length n to the approximation can potentially produce

an ROBDD of size O(n|G|) where |G| is the initial size of the approximation.

The problem of generating an exorbitantly large resultant approximation can be

avoided merely by stopping the algorithm when |G| exceeds a prescribed bound.

• Finding a single implicant does not create any intermediate ROBDDs or require

the input ROBDD itself to be altered. This is important because an ROBDD

needs approximation when it is already intractably large. As a consequence of the

reduced number of ROBDD operations, the widening can achieve high precision

with only modest computational effort. Experimental results are presented which

demonstrate the tractability of randomised widening.

Despite these merits, the widenings presented in this chapter are sensitive to the vari-

able ordering, that is, they may return different approximations for the same Boolean

function if variable reordering is applied. This chapter is structured as follows: Sec-

tion 6.3 outlines how randomisation can be applied in widening. Sections 6.4 and 6.5

present the experimental results and the conclusions respectively.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 99

6.3 The Widening

Given a Boolean function f ∈ BX the problem of computing a widening (an over-

approximation) is essentially that of selecting a function from F = {f ′ ∈ BX | f |= f ′}.

The computational issue is that |F | =
∑2n−m

k=0

(2n−m
k

)

where m = |modelX(f)| and

moreover,
∑2n−m

k=0

(2n−m
k

)

= 22n−m by the binomial identity [AS72, p 10]. Thus it is not

practical to compute F directly. Furthermore, as the size of F increases, the chance

of randomly selecting a good approximation from F , that is, an approximation with

relatively few extra models, becomes increasingly small.

One would think then, that randomisation has little hope of finding accurate ap-

proximations of Boolean formulae. However, it turns out, that randomisation can be

deployed to discover primes whose length are typically small. As shown in the previous

chapter, given two primes p, p′ ∈ primes(¬f) such that |p′| < |p| then p′ is a better can-

didate for forming an approximation. This follows because p′ contributes 2n−|p′| truth

assignments to ¬f whereas p contributes only 2n−|p|. Thus p′ produces a more accurate

under approximation of ¬f than p and hence a more accurate over approximation of f .

The force of this observation is that short prime implicants contribute short paths in the

ROBDD that constitutes the approximation. The converse to this result, is that short

paths in the original ROBDD can be used to find a collection of short primes which

provide the basis for constructing an accurate approximation. The following proposition

builds towards this tactic by showing that each path to true in an ROBDD contains

a unique prime implicant. The force of this result is that to find k short primes, it is

sufficient to examine just k short paths.

Proposition 6.1. Suppose a path to true in an ROBDD f defines an implicant p. Then

if p1, p2 ∈ primes(f) and p |= p1 and p |= p2 it follows that p1 = p2.

Proof. Suppose f is defined over the set of variables X = {x1, . . . , xn}. We proceed by

induction on n.

• Suppose n = 1. Then

– Suppose f = false. Then primes(f) = ∅ and there are no successful paths

and also no primes.

– Suppose f = x1. Then primes(f) = {x1} and the unique successful path

contains the unique prime.

– Suppose f = ¬x1. Then primes(f) = {¬x1} and the unique successful path

contains the unique prime.

– Suppose f = true. Then primes(f) = {true} and the unique successful path

contains the unique prime.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 100

• Suppose that the inductive hypothesis holds for all ROBDDs f defined over n

variables. To extend the result to n + 1 variables let p1, p2 ∈ primes(f) such

that p1 6= p2. We have to show that p1 and p2 arise in different paths of f .

Now pj = (∧Xj) ∧ ¬(∨Yj) for some X1,X2, Y1, Y2 ⊆ {x1, . . . , xn, xn+1}. Let

nj = max{i | xi ∈ Xj ∪ Yj} for 1 ≤ j ≤ 2.

– Suppose n1 < n2. There is a unique path for p1 through the ROBDD that

ends in true. This path does not visit xn2
hence p2 cannot occur in this path.

– Suppose n1 > n2. Like the previous case.

– Suppose n1 = n2. For brevity let m = n1.

∗ Suppose p1 |= xm and p2 |= ¬xm. Then any path that contains p1 cannot

contain p2.

∗ Suppose p1 |= ¬xm and p2 |= xm. Like the previous case.

∗ Suppose p1 |= xm and p2 |= xm. Put p′j = ∃xm(pj) and f ′ = f|xm←1.

Then p′1 6= p′2 and p′1, p
′
2 ∈ primes(f ′). But f ′ is defined over no more

than n variables and thus by induction p′1 and p′2 arise in different paths

of f ′. It follows that p1 and p2 arise in different paths of f .

∗ Suppose p1 |= ¬xm and p2 |= ¬xm symmetric to the previous case.

6.3.1 Algorithmic Framework for Random Widening

Rather than propose a single widening, we present an algorithmic framework which can

be instantiated with various randomisation techniques. The resulting algorithms are

distinguished by the degree to which they are informed by random input. Each of the

algorithms perform the following steps: (i) initialise g ← true and put f ′ ← ¬f . Recall

that negation can be computed in O(1) time with ROBDDs supporting complement

edges [BRB90]. (ii) select a short prime implicant p of f ′. This step is discussed in §6.3.2.

(iii) add ¬p to the accruing approximation, that is, assign g ← g ∧ ¬p. (iv) possibly

remove p from f ′, that is, compute the function f ′ ← f ′ ∧ ¬p. This step is discussed in

§6.3.3. Finally, repeat from step (ii) unless g has reached some predefined size threshold

or a timeout has expired. This algorithmic scheme results in an approximation g such

that f |= g.

6.3.2 Selecting an Implicant

Algorithm 14 shows how randomisation can be employed to find a short prime. The

algorithm merely returns a random path to true, which by virtue of Proposition 6.1,

must contain a single prime. Interestingly, the path is more likely to contain a short

prime than a longer one. This is because the probability of randomly selecting a truth

assignment is biased towards the primes of short length rather than the primes of longer

CHAPTER 6. WIDENING ROBDDS RANDOMLY 101

length. This follows as a consequence of a short prime possessing more models than the

longer one. In fact the ratio between the number of assignments is exponential in the

length difference of the two primes.

Algorithm 14 computes a random path to true within the ROBDD given in the

parameter f in O(n) time. When the function is called again, a different path is likely

to be chosen, hence there is no need to include control structures which ensure that the

same path is not generated repeatedly.

Algorithm 14 SelectImplicantRandom(f)

Require: f ∈ ROBDDX

1: xi ← index(f)
2: if f = true then
3: return true
4: else if f|xi←0 = false then
5: return xi ∧ SelectImplicantRandom(f|xi←1)
6: else if f|xi←1 = false then
7: return ¬xi ∧ SelectImplicantRandom(f|xi←0)
8: end if
9: if rand(0, 1) = 0 then

10: return ¬xi ∧ SelectImplicantRandom(f|xi←0)
11: else
12: return xi ∧ SelectImplicantRandom(f|xi←1)
13: end if

Since a path to true must contain a prime then, as Umans [Uma99] points out,

one might expect a short path to contain a shorter prime than a longer path. This

motivates derandomising the random selection of paths to generate paths in increasing

order of size. Derandomisation attempts to trade simplicity for determinacy, that is

recover determinacy at the sake of complicating the underlying data structures. In this

case, derandomisation amounts to enumerating paths in increasing size by employing

a priority queue data structure which supports a form of A* search [HNR68]. This

motivates Algorithm 15 thats finds a path from a given initial node to a given goal

node. The initial node is the root node of the ROBDD f and goal the true node (the

true node does not occur repeatedly in any ROBDD).

The A* algorithm computes an optimal path by maintaining a set of partial paths

in a priority queue. The priority of each partial path is the sum of the length of the

partial path and the shortest distance from the end of the path to the goal node. In

Algorithm 15 the priorities d + d0 and d + d1 estimate the distance along the partial

path p through the negative and positive co-factors to the goal node. When computing

these priorities, the values d0 and d1 can be precomputed prior to invoking the search

algorithm. This preprocessing can be performed in time linear in the size of the ROBDD

f and the result cached for every sub-ROBDD of f . Actually, CUDD [Som05] provides

CHAPTER 6. WIDENING ROBDDS RANDOMLY 102

the functionality to compute the shortest implicant of an ROBDD as part of its ma-

chinery to compute small DNF covers, but lacks the capability to enumerate implicants

of successively larger length. A* provides a mechanism for such enumeration.

Algorithm 15 SelectImplicantA*(f, pq)

Require: f ∈ ROBDDX

1: loop
2: 〈f, p, d〉 ← pq.remove()
3: if f = true ∨ f = false then
4: if f = true then
5: return 〈p, pq〉
6: end if
7: else
8: xi ← index(f)
9: d0 ← true distance(f|xi←0)

10: d1 ← true distance(f|xi←1)
11: pq.insert(d + d0, f|xi←0, (p ∧ ¬xi), d + 1)
12: pq.insert(d + d1, f|xi←1, (p ∧ xi), d + 1)
13: end if
14: end loop

The first time SelectImplicantA*(f, pq) is called, the priority queue pq is initialised

to contain the single vacuous path true that is assigned the priority of 0. Note that this

value is inconsequential, since there are no other paths in the priority queue. The

function true distance(f) merely looks up the precomputed distance from a node f to

the goal node true. As well as returning a path, the function also returns the updated

priority queue, which is passed to the next call to the function.

6.3.3 Computing and Removing a Prime Implicant

Once a path p is found in the ROBDD f ′, then it is necessary to extract a prime implicant

p′ such that p |= p′ |= f ′. To compute the prime implicant p′ from the implicant p, we

attempt to remove variables from p by using existential quantification to obtain p′ whilst

retaining the entailment relationship p′ |= f ′. An interesting refinement of this scheme

is that the variable with the highest index in the implicant p must occur in the prime

implicant p′ contained within it. This is formally stated in the following lemma.

Lemma 6.1. Given an ROBDD f and a path p of f such that p |= p′ |= f , then p′

contains the variable of p with the highest index.

Proof. Let the variable with highest index in p be xi. Further, let g be the node labelled

xi on the path p. However, since either g|xi←0 = true or g|xi←1 = true, but not both, it

follows that ∃xi
(p) 6|= f since if ∃xi

(p) = p then the node g would be reduced.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 103

The algorithm listed below, extracts a prime from an implicant p by considering each

variable in p with the exception of xim which, by Lemma 6.1, is essential.

Algorithm 16 ImplicantToPrime(f, p)

Require: f, p ∈ ROBDDX

1: {xi1 , . . . , xim} ← var(p)
2: for each 1 ≤ j < m do
3: p′ ← ∃xij

(p)

4: if p′ |= f then
5: p← p′

6: end if
7: end for
8: return p

Once a prime has been extracted from the ROBDD f ′, we may choose to employ

deletion, that is to remove, p′ from f ′ by replacing f ′ with f ′∧¬p′. This avoids p′ being

generated repeatedly and ensures that g strictly increases in precision when a prime

is inserted. However, there is a computational overhead associated with the approach,

since f ′ is no longer static.

6.4 Experimental Results

In order to investigate the applicability of randomisation techniques in ROBDD ap-

proximation, both the randomised and derandomised widenings proposed in this chap-

ter have been implemented using the Colorado University Decision Diagram (CUDD)

package [Som05]. In the spirit of the previous chapter, and to provide a basis for com-

parison, the Boolean formulae used to assess the widenings coincide with those used in

Chapter 5, and can be found in Table 11.

To compare the randomised and derandomised variants of the widenings, the effect

of deletion, and the rate of convergence against time, we present a series of four figures

each containing eight graphs, one graph for each Boolean function. These graphs are

given in Figures 12, 13, 14 and 15. The graphs plot the rate of convergence of the

approximation, showing the precision of the approximation against the cumulative time

spent widening. The precision of the approximation is measured as the ratio of the num-

ber of truth assignments in the input ROBDD against the number of truth assignments

in the approximation constructed from the prime implicants: the so-called minterm ra-

tio. One desirable property of a randomised algorithm is predictability, which in this

case, requires the converge rate to be comparable over multiple independent runs. Thus,

experiments utilising randomised prime implicant generation were performed a total of

64 times using different seed values for the random number generators.

Table 13 summarises the data presented in the graphs at the time points of 16 and

CHAPTER 6. WIDENING ROBDDS RANDOMLY 104

with deletion without deletion
ID Randomised Derandomised Randomised Derandomised

16 32 16 32 16 32 16 32

1. 1.0327 1.0270 1.0558 1.0449 1.0259 1.0213 1.0255 1.0224
2. 1.0504 1.0439 1.0673 1.0552 1.0347 1.0292 1.0318 1.0299
3. 1.0313 1.0226 1.1654 1.1304 1.0582 1.0541 1.0576 1.0500
4. 1.0758 1.0587 1.1872 1.1694 1.1029 1.0930 1.0772 1.0770
5. 1.0059 1.0046 1.2814 1.1978 1.0049 1.0030 1.0060 1.0060
6. 1.0059 1.0044 1.2795 1.0953 1.0053 1.0048 1.0066 1.0066
7. 1.0071 1.0034 1.0023 1.0017 1.0254 1.0184 1.0308 1.0308
8. 1.0040 1.0019 1.0010 1.0009 1.0076 1.0053 1.0185 1.0185

Table 13: Minterm ratio with and without deletion after 16 and 32 seconds.

32 seconds. The ID column identifies the benchmark circuit from Table 11 given in

the previous chapter. The remainder of the table is separated into two sections for

experiments performed with deletion and without deletion. Each entry in the table

gives the minterm ratio, that is, the precision of the approximation obtained, at the two

time points for both the randomised and derandomised algorithms.

Observe that the effect of deletion is small which suggests that its complexity is

not repaid in terms of approximation accuracy. There is also little difference between

the approximations obtained by the randomised and derandomised widenings when

deletion is not applied. Thus, if the primary desire was simplicity of implementation,

then the randomised algorithm is more attractive. Conversely, if the requirement was

predictability, then the derandomised version of the widening would be more desirable.

One might expect an unprincipled randomised approach to produce erratic and

unpredictable results. However, the empirical evidence presented in Figures 12, and 14

show this is not that case. In fact, there is a surprising degree of correlation between

the 64 runs of the randomised algorithm, with the exception of the fifth and sixth

graphs of Figure 14. Interestingly, these circuits possess just two implicants of length 3

with the vast majority of the primes exceeding 5 in length. This unusual distribution

of primes may explain the variance in the convergence rates. Quite apart from being

naturally anytime, both the randomised and derandomised approaches both possess the

diminishing property in that the approximations they deliver converge rapidly.

It is interesting to see that the profiles of many of the graphs in Figures 14 and 15

are almost identical. (This can be seen by holding copies of the figures back-to-back.)

The differences in the remaining graphs stem from the start-up overheads of the A* al-

gorithm. For the very large circuits, the time required to compute the shortest distances

to true is not insignificant. As a consequence, the randomised widening produces bet-

ter approximations early in the search, but the derandomised widening achieves better

CHAPTER 6. WIDENING ROBDDS RANDOMLY 105

convergence over the long term.

In order to provide a meaningful comparison of the randomised and derandomised

variants of the widening presented in this chapter with the widening presented in Chap-

ter 5 we present a series of graphs, one graph for each Boolean function; these are given

in Figure 16. In keeping with graphs given earlier in this section, the graphs plot the

rate of convergence of the approximation, showing the precision of the approximation

against the cumulative time spent widening for each of the widenings presented in this

chapter and the ∇k widening presented in Chapter 5. In each of the graphs, the deran-

domised widenings are denoted DS - Derandomised Selection with (DS-D) and without

(DS-ND) Deletion, the randomised widenings are denoted RS-D and RS-ND likewise.

Finally, the widening presented in Chapter 5 is denoted widen-k.

As can be seen from the graphs of Figure 16, the ∇k widening is competitive with

both the derandomised and randomised variants. In the case of both the pair (graphs

1, 2) and mm9b (graphs 3, 4) circuits, the ∇k widening achieves convergence faster than

all the derandomised and randomised widening variants. However, the∇k widening does

not achieve convergence faster across all benchmark circuits, indeed, for both of the rot-

#149 (graph 7) and rot-#172 (graph 8) circuits the ∇k widening fails to converge upon

the solution at a rate comparable to all the derandomised and randomised widening

variants.

6.5 Conclusions

In this chapter we have presented a widening for Boolean functions represented as

ROBDDs based on the random enumeration of prime implicants. The widening ran-

domly selects a path through an ROBDD and then deterministically extracts the prime

implicant contained within it. The prime implicant is then added to the accruing ap-

proximation. The simplicity of the widening makes it attractive for implementation,

and yet it is still capable of generating accurate approximations efficiently. The widen-

ing is naturally anytime, and is truly interruptible in the sense that the time divisions

between the generation of one prime and the next are small.

The desire to discover short primes led to a derandomised variant of the algorithm

based on A* search. This variant incrementally searches short paths in the ROBDD

as a tactic for discovering short primes. The resulting widening is more predictable

than that based on randomisation but the widening does have a non-trivial startup cost

which is significant when widening very large ROBDDs.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 106

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#177

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000

M
in

te
rm

 R
at

io

Time (msec)

pair-#182

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#420

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#421

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 50000 100000 150000 200000 250000 300000 350000 400000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#288

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 100000 200000 300000 400000 500000 600000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#488

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000

M
in

te
rm

 R
at

io

Time (msec)

rot-#149

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 500 1000 1500 2000

M
in

te
rm

 R
at

io

Time (msec)

rot-#172

Figure 12: Random Selection with Deletion: Minterm ratio against time in milliseconds.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 107

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#177

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000

M
in

te
rm

 R
at

io

Time (msec)

pair-#182

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#420

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#421

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 50000 100000 150000 200000 250000 300000 350000 400000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#288

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 100000 200000 300000 400000 500000 600000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#488

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000

M
in

te
rm

 R
at

io

Time (msec)

rot-#149

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 500 1000 1500 2000

M
in

te
rm

 R
at

io

Time (msec)

rot-#172

Figure 13: Derandomised Selection with Deletion: Minterm ratio against time in mil-
liseconds.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 108

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#177

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000

M
in

te
rm

 R
at

io

Time (msec)

pair-#182

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#420

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#421

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 500 1000 1500 2000 2500 3000 3500 4000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#288

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 1000 2000 3000 4000 5000 6000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#488

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000

M
in

te
rm

 R
at

io

Time (msec)

rot-#149

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 500 1000 1500 2000

M
in

te
rm

 R
at

io

Time (msec)

rot-#172

Figure 14: Random Selection without Deletion: Minterm ratio against time in millisec-
onds.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 109

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#177

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 5000 10000 15000 20000

M
in

te
rm

 R
at

io

Time (msec)

pair-#182

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#420

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2000 4000 6000 8000 10000 12000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#421

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 500 1000 1500 2000 2500 3000 3500 4000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#288

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 1000 2000 3000 4000 5000 6000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#488

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000

M
in

te
rm

 R
at

io

Time (msec)

rot-#149

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 500 1000 1500 2000

M
in

te
rm

 R
at

io

Time (msec)

rot-#172

Figure 15: Derandomised Selection without Deletion: Minterm ratio against time in
milliseconds.

CHAPTER 6. WIDENING ROBDDS RANDOMLY 110

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#177 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

pair-#182 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#420 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

mm9b-#421 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10000 20000 30000 40000 50000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#288 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10000 20000 30000 40000 50000

M
in

te
rm

 R
at

io

Time (msec)

s9234-#488 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

rot-#149 DS-D
DS-ND

RS-D
RS-ND

widen-k

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000

M
in

te
rm

 R
at

io

Time (msec)

rot-#172 DS-D
DS-ND

RS-D
RS-ND

widen-k

Figure 16: Randomised widening comparison: Minterm ratio against time in millisec-
onds.

Chapter 7

Conclusion

“When small men begin to cast big shadows,
it means that the sun is about to set.”
- L. Yutang

7.1 Summary of Contributions

In this thesis we have proposed a family of algorithms for solving the symmetry de-

tection and approximation problems with application to the ROBDD data structure.

We have shown how the anytime concept is useful in the context of ROBDD manip-

ulation. Surprisingly, despite the generality of anytime computation, the overhead in-

volved appears to be minimal in the case of symmetry detection and approximation.

Further, since symmetry computation and approximation can both be applied to re-

duce the size of an ROBDD, both techniques find application in the context of logic

synthesis, program analysis and indeed any application requiring the manipulation of

sufficiently small ROBDDs. With a view to the future, the iterative nature of the any-

time symmetry detection algorithms make them good candidates for parallel evaluation

on the 8 and 16 core processors that are predicted to emerge over the next 5 years.

Although the speedups achieved by parallel evaluation of BDD operations have often

been modest [MJH98], the weak coupling between the iterations of the main loop of the

symmetry detection algorithms – the property that yields to anytime execution – also

leads to weakly coupled parallel execution.

Specifically, this thesis makes original contributions to the understanding and ma-

nipulation of Boolean functions represented as ROBDDs. In terms of novelty, the thesis

contributes original algorithms for classical symmetry detection, generalised symmetry

detection and ROBDD approximation. All these algorithms share the unique property

that they are anytime, tractable and amenable to an efficient implementation. The

validity of these theoretically inspired algorithms has been extensively evaluated and

111

CHAPTER 7. CONCLUSION 112

demonstrated for a variety of benchmarks across different architectures. Because the

contributions made in the thesis to both symmetry detection and ROBDD approxima-

tion are themselves multifaceted, we summarise the contributions to classical symmetry

detection, generalised symmetry detection and ROBDD approximation as follows.

7.1.1 Contributions to Classical Symmetry Detection

We present a novel anytime algorithm for first-order classical symmetry detection for

Boolean functions represented as ROBDDs. Unlike previous schemes that seek to di-

rectly discover pairs of variables that are symmetric, the algorithm systematically elimi-

nates pairs of variables which are found to be asymmetric. The remaining variable pairs

are deemed symmetric. This iterative formulation leads to an incremental anytime al-

gorithm that opens up new opportunities for optimisation, such as applying transitivity

and linear time asymmetry sieves. The overall complexity of this new algorithm is

O(n3 + n|G| + |G|3) where n is the number of variables and |G| the number of nodes

in the ROBDD, hence the algorithm is asymptotically superior to the state-of-the-art

technique [Mis03]. This improvement is significant when computing the symmetries of

a Boolean function represented by a large ROBDD.

7.1.2 Contributions to Generalised Symmetry Detection

We show how the anytime approach may be refined so as to detect all T1, . . . , T12-

generalised symmetry types with only a marginal increase in complexity. To take ad-

vantage of the iterative nature of the generalised algorithm, new transitivity result have

been derived which take the form, that if Tp
xi,xj(f) and Tq

xj ,xk(f) hold then Tr
xi,xj(f)

holds where Tp, Tq and Tr denote one of the 12 generalised symmetry types. To the best

of our knowledge, only a few of these transitivity results were previously known [TM97].

The resulting generalised symmetry detection algorithm resides in O(n3 +n2|G|+ |G|3)

and performs favourably against the state-of-the-art method [ZMBCJ06] on a wide range

of benchmarks.

7.1.3 Contributions to ROBDD Approximation

We present a novel technique for widening Boolean functions represented as ROBDDs

which is based upon prime implicants. The widening can be used to widen for both time

and space. Widening for time amounts to bounding the number of times an iterative

fixed-point calculation is reapplied whilst widening for space reduces to deriving a dense

approximation of an ROBDD. The method can be used to widen from above or below.

The widening is incremental, generating approximations whose accuracy is monotoni-

cally increasing as progressively longer implicants are considered. As a consequence, the

widening is naturally anytime and can be tuned to achieve the desired tradeoff between

CHAPTER 7. CONCLUSION 113

precision and density. In contrast to previous approximation techniques, the widening

is independent of variable ordering, that is, the approximations obtained are invariant

with respect to the underlying variable ordering. Furthermore, the widening can be

realised by combining prime enumeration methods with cardinality constraints.

This widening naturally leads to the idea of randomly selecting prime implicants from

which to construct the approximation, this leads to a new class of widening algorithm

which can achieve accurate approximation without excessive ROBDD manipulation.

Experimental work demonstrates the viability of this approach and the original prime

enumeration method.

7.2 Directions for Future Work

7.2.1 ROBDD Approximation

The success of the randomised approach for discovering prime implicants suggests that

there exists some underlying probabilistic or combinatoric reason as to why small im-

plicants are likely to be selected first. This warrants an analysis of the likelihood of

finding a prime implicant of minimal size in a given number of random selections. An

answer to this question would provide insight into the approximability of the SHORTEST

IMPLICANT[ROBDD] problem.

7.2.2 Program Analysis

This thesis on ROBDDs was motivated by the need to apply ROBDDs in program anal-

ysis. During the course of this research an example implementation was constructed. It

was the intractability of the analysis and the unpredictability of existing approximation

methods which led to the work reported in this dissertation. Furthermore, symmetry

detection methods, which can be used to inform the variable reordering process, were

also found to have poor scalability. This in turn led to the desire to build an anytime

symmetry detection method with which to improve variable reordering. This inspired

the second main theme of the thesis. Now the approximation and symmetry detection

problems have been addressed, it would be interesting to return to the analysis problem

itself. Quite apart from solving the original analysis problem, this would constitute a

useful strength test for the techniques devised in this thesis.

The analysis which motivated this thesis attempted to encode primitive operations,

such as binary arithmetic, with Boolean functions in order to locate security vulnera-

bilities in programs written in C. Rather unusually, this encoding permits syntactically

different, but semantically equivalent, program fragments to be detected (at least for

straight line code). This problem is at the heart of compiler optimisations such as

common sub-expression elimination, and code compression techniques [BFG+03]. In

fact, an ROBDD encoding enables two procedures to be checked for equivalence up to

CHAPTER 7. CONCLUSION 114

variable reordering by reducing this problem to the so-called unknown input correspon-

dence problem [CM93a]. As far as we are aware, this connection is not known within

the compiler community and since symmetry detection is key to solving the unknown

input correspondence problem, the techniques developed in this thesis could well prove

useful in compiling.

7.2.3 Complexity Analysis

Although Mishchenko argues that his algorithm is cubic in the number of nodes, as has

been pointed out in this thesis, the algorithm actually requires a cubic number of set

operations each of which has variable complexity. It would be interesting therefore to

derive a tight upper bound in terms of the total number of atomic operations. Allied

with this, it would also be instructive to compute a lower bound on the complexity of the

classical symmetry detection problem for ROBDDs. Deriving a lower bound complexity

on the classical co-factor symmetry computation problem would be insightful since it

would not only allow us to gauge the efficiency of currently known algorithms, but also

motivate the discovery of faster algorithms, should the complexity bound be lower than

that already achieved.

Bibliography

[ABA95] P. Agrawal, D. Bhattacharya, and V. D. Agrawal. Test Generation for

Path Delay Faults Using Binary Decision Diagrams. IEEE Transactions

on Computers, 44(3):434–447, 1995.

[ADG91] P. Ashar, S. Devadas, and A. Ghosh. Boolean Satisfiability and Equiva-

lence Checking using General Binary Decision Diagrams. In International

Conference on Computer Design, pages 259–264. IEEE Computer Society,

1991.

[Ake78] S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers,

C-27(6):506–516, 1978.

[AMSS98] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes

of Boolean Functions for Dependency Analysis. Science of Computer Pro-

gramming, 31(1):3–45, 1998.

[Apt03] K. R. Apt. Principles of Constraint Programming. Cambridge University

Press, 2003.

[ARMS02] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving Difficult SAT

Instances in the Presence of Symmetry. In Design Automation Conference,

pages 731–736. ACM Press, 2002.

[AS72] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover, 1972.

[BB03] C. Bartzis and T. Bultan. Construction of Efficient BDDs for Bounded

Arithmetic Constraints. In International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, volume 2619 of

Lecture Notes in Computer Science, pages 294–408. Springer, 2003.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. Information and

Compututation, 98(2):142–170, 1992.

115

BIBLIOGRAPHY 116

[BEN08] Lgsynth93 Benchmark Set, 2008. http://www.bdd-

portal.org/benchmarks/.

[BFG+03] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. Karsisto. Survey

of Code-Size Reduction Methods. ACM Computing Surveys, 35(3):223–

267, 2003.

[BGHZ04] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-Tree Analysis

for Constraint Logic-Based Languages. Information and Computation,

193(2):84–116, 2004.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise Widening Op-

erators for Convex Polyhedra. Science of Computer Programming, 58(1-

2):28–56, 2005.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of

a BDD Package. In Design Automation Conference, pages 40–45. ACM

Press, 1990.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-

tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[Bry91] R. E. Bryant. On the Complexity of VLSI Implementations and Graph

Representations of Boolean Functions with Application to Integer Multi-

plication. IEEE Transactions on Computers, 40(2):205–213, 1991.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[Bry96] R. E. Bryant. Bit-Level Analysis of an SRT Divider Circuit. In Design

Automation Conference, pages 661–665. ACM Press, 1996.

[BS99] R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in

ROBDD-Based Implementations of Pos. In Algebraic Methodology and

Software Technology, volume 1548 of Lecture Notes in Computer Science,

pages 471–485. Springer, 1999.

[BSM05] J. T. Butler, T. Sasao, and M. Matsuura. Average Path Length of Binary

Decision Diagrams. IEEE Transactions on Computers, 54(9):1041–1053,

2005.

[BW96] B. Bollig and I. Wegener. Improving the Variable Ordering of OBDDs is

NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

BIBLIOGRAPHY 117

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice

Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In Symposium on Principles of Programming Languages,

pages 238–252. ACM Press, 1977.

[CC79] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frame-

works. In Symposium on Principles of Programming Languages, pages

269–282. ACM Press, 1979.

[CC92a] P. Cousot and R. Cousot. Abstract Interpretation and Application to

Logic Programs. Journal of Logic Programming, 13(2–3):103–179, 1992.

[CC92b] P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-

ing/Narrowing Approaches to Abstract Interpretation. In M. Bruynooghe

and M. Wirsing, editors, International Symposium on Programming Lan-

guage Implementation and Logic Programming, Lecture Notes in Com-

puter Science, pages 269–295. Springer, 1992.

[CCF+05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. The ASTRÉE Analyser. In S. Sagiv, editor, European

Symposium on Programming, volume 3444 of Lecture Notes in Computer

Science, pages 21–30. Springer, 2005.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,

2000.

[CH09] Y. Crama and P. L. Hammer. Boolean Func-

tions: Theory, Algorithms and Applications, 2009.

http://www.rogp.hec.ulg.ac.be/Crama/Publications/BookPage.html.

[CJ01] M. Chrzanowska-Jeske. Generalized Symmetric Variables. In Interna-

tional Conference on Electronics, Circuits, and Systems, volume 3, pages

1147–1150. IEEE Computer Society, 2001.

[CM78] A. K. Chandra and G. Markowsky. On The Number of Prime Implicants.

Discrete Mathematics, 24(1):7–11, 1978.

[CM92a] O. Coudert and J. C. Madre. Implicit and Incremental Computation of

Primes and Essential Primes of Boolean Functions. In Design Automation

Conference, pages 36–39. IEEE Computer Society, 1992.

[CM92b] O. Coudert and J. C. Madre. A New Method to Compute Prime and

Essential Prime Implicants of Boolean Functions. In MIT Conference

on Advanced Research in VLSI and Parallel Systems. IEEE Computer

Society, 1992.

BIBLIOGRAPHY 118

[CM93a] D. I. Cheng and M. Marek Sadowska. Verifying Equivalence of Functions

with Unknown Input Correspondence. In Design Automation Conference,

pages 272–277. ACM Press, 1993.

[CM93b] O. Coudert and J. C. Madre. A New Graph Based Prime Computation

Technique. In Logic Synthesis and Optimization. Kluwer Academic Pub-

lishers, 1993.

[Cod99] M. Codish. Worst-Case Groundness Analysis using Positive Boolean Func-

tions. Journal of Logic Programming, 41(1):125–128, 1999.

[Coo71] S. A. Cook. On the Complexity of Theorem-proving Procedures. In M. A.

Harrison, R. B. Banerji, and J. D. Ullman, editors, Symposium on the

Theory of Computing, pages 151–158. ACM Press, 1971.

[Cou] O. Coudert. Two Open Questions On ROBDDs and Prime Implicants.

http://www.informatik.uni-trier.de/Design and Test/abstract30.html

(November, 2005).

[CSS99] M. Codish, H. Søndergaard, and P. J. Stuckey. Sharing and Groundness

Dependencies in Logic Programs. ACM Transactions on Programming

Languages and Systems, 21(5):948–976, 1999.

[Dav82] M. Davis. Hilbert’s Tenth Problem is Unsolvable. American Mathematical

Montly, 80:233–269, 1982.

[DB88] T. Dean and M. Boddy. An Analysis of Time-Dependent Planning. In

H. Shrobe, editor, Proceedings of the 7th National Conference on Artificial

Intelligence, pages 49–54. AAAI Press, 1988.

[DLSM04] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting

Structure in Symmetry Detection for CNF. In S. Malik, L. Fix, and

A. B. Kahng, editors, Design Automation Conference, pages 530–534.

ACM Press, 2004.

[EGD04] R. Ebendt, W. Günther, and R. Drechsler. Minimization of the Expected

Path Length in BDDs Based on Local Changes. In M. Imai, editor, Asia

and South Pacific Design Automation Conference, pages 865–870. IEEE

Press, 2004.

[EH78] C. R. Edward and S. L. Hurst. A Digital Synthesis Procedure Under Func-

tion Symmetries and Mapping Methods. IEEE Transactions on Comput-

ers, C-27(11):985–997, 1978.

BIBLIOGRAPHY 119

[Fec97] C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Imple-

mentierung, Generierung. PhD thesis, Universität des Saarlandes, 1997.

[FG06] J. Flum and M. Grohe. Parameterized Complexity. Springer, 2006.

[FGH+05] L. Fix, O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Verify-

ing Very Large Industrial Circuits Using 100 Processes and Beyond. In

D. Peled and Yih-K. Tsay, editors, Automated Technology for Verification

and Analysis, volume 3707 of Lecture Notes in Computer Science, pages

11–25. Springer, 2005.

[FL97] W. Feng and J. W. S. Liu. Algorithms for Scheduling Real-Time Tasks

with Input Error and End-to-End Deadlines. IEEE Transactions on Soft-

ware Engineering, 23(2):93–106, 1997.

[Flo62] R. W. Floyd. Algorithm 97: Shortest Path. Communications of the ACM,

5(6):345, 1962.

[FS90] S. J. Friedman and K. J. Supowit. Finding the Optimal Variable Or-

dering for Binary Decision Diagrams. IEEE Transactions on Computers,

39(5):710–713, 1990.

[FYBSV93] E. Felt, G. York, R. Brayton, and A. Sangiovanni-Vincentelli. Dynamic

Variable Reoredering for BDD Minimization. In Design Automation Con-

ference, pages 130–135. ACM Press, 1993.

[GCA95] J. M. Gallone, F. Charpillet, and F. Alexandre. Anytime Scheduling with

Neural Networks. In Emerging Technologies and Factory Automation,

volume 1, pages 509–520. IEEE Press, 1995.

[GH06] L. Gonnord and N. Halbwachs. Combining Widening and Acceleration in

Linear Relation Analysis. In K. Yi, editor, The Static Analysis Symposium

(SAS), volume 4134 of Lecture Notes in Computer Science, pages 144–160.

Springer, 2006.

[GHB05] J. P. Gallagher, K. S. Henriksen, and G. Banda. Techniques for Scaling

Up Analyses Based on Pre-interpretations. In International Conference on

Logic Programming, volume 3668 of Lecture Notes in Computer Science,

pages 280–296. Springer, 2005.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability a Guide to

the Theory of NP-Completeness. Freeman and Company, 1979.

[GK08] S. Genaim and A. King. Inferring Non-Suspension Conditions for Logic

Programs with Dynamic Scheduling. ACM Transactions on Computa-

tional Logic, 2008. to appear.

BIBLIOGRAPHY 120

[GS05] R. Grosu and S. A. Smolka. Monte Carlo Model Checking. In N. Halb-

wachs and L. D. Zuck, editors, International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Lecture Notes

in Computer Science, pages 271–286. Springer, 2005.

[HACK00] A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial

Groundness Analysis for Logic Programs. Journal of Logic Programming,

45:143–156, 2000.

[Hay95] K. Hayase. On Relationship between Boolean Functions and Their Prime

Implicants in OBDD Size. In 6th BDD Workshop, 1995. http://www-

imai.is.s.u-tokyo.ac.jp/publist/BDD.html.

[HLM00] L. Heinrich-Litan and P. Molitor. Least Upper Bounds for the Size of

OBDDs Using Symmetry Properties. IEEE Transactions on Computers,

49:360–368, 2000.

[HLS04] P. Hawkins, V. Lagoon, and P. J. Stuckey. Set Bounds and (Split) Set Do-

main Propagation Using ROBDDs. In Proceedings of the 17th Australian

Joint Conference in Artificial Intelligence, volume 3339 of Lecture Notes

in Computer Science, pages 706–717. Springer, 2004.

[HLS05] P. Hawkins, V. Lagoon, and P. J. Stuckey. Solving Set Constraint Satisfac-

tion Problems using ROBDDs. Journal of Artificial Intelligence Research,

24:109–156, 2005.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths in Graphs. IEEE Transactions on

Systems Science and Cybernetics, SSC-4(2):100–107, 1968.

[HS96] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algo-

rithms. Kluwer Academic Publishers, 1996.

[IK83] T. Ibaraki and N. Katoh. On-line Computation of Transitive Closure of

Graphs. Information Processing Letters, 16:95–97, 1983.

[ISO99] International Organization for Standardization. ISO/IEC 9899:1999 - pro-

gramming Languages – C, 1999.

[JV00] D. Jackson and M. Vaziri. Finding Bugs with a Constraint Solver. In

International Symposium on Software Testing and Analysis, pages 14–25.

ACM Press, 2000.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E.

Miller and J. W. Thatcher, editors, Complexity of Computer Computa-

tions, pages 85–103. Plenum Press, 1972.

BIBLIOGRAPHY 121

[KD91] B. G. Kim and D. L. Dietmeyer. Multilevel Logic Synthesis of Symmet-

ric Switching Functions. IEEE Transactions on Computer-Aided Design,

10(4):436–446, 1991.

[KEL71] D. J. Kleitman, M. Edelberg, and D. Lubell. Maximal Sized Antichains

in Partial Orders. Discrete Mathematics, 1(1):47–53, 1971.

[KFM06] W. W. Kywe, D. Fujiwara, and K. Murakami. Scheduling of Image Pro-

cessing Using Anytime Algorithm for Real-time System. In International

Conference on Pattern Recognition, pages 1095–1098. IEEE Computer

Society, 2006.

[KK06] N. Kettle and A. King. An Anytime Symmetry Detection Algorithm for

ROBDDs. In F. Hirose, editor, Asia and South Pacific Design Automation

Conference, pages 243–248. IEEE Press, 2006.

[KKS06] N. Kettle, A. King, and T. Strzemecki. Widening ROBDDs with Prime

Implicants. In Tools and Algorithms for the Construction and Analysis

of Systems, volume 3920 of Lecture Notes in Computer Science, pages

105–119. Springer, 2006.

[KS00a] V. N. Kravets and K. A. Sakallah. Constructive Library-Aware Synthesis

using Symmetries. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe, pages 208–215. IEEE Computer Society, 2000.

[KS00b] V. N. Kravets and K. A. Sakallah. Generalized Symmetries in Boolean

Functions. In E. Sentovich, editor, International Conference on Computer-

Aided Design, pages 526–532. IEEE Computer Society, 2000.

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:

Its Structural Complexity. Birkhäuser, 1993.

[LM91] X. Lai and J. L. Massey. A Proposal for a New Block Encryption Stan-

dard. In I. Damg̊ard, editor, Advances in Cryptology - Proceedings of the

Workshop on the Theory and Application of Cryptographic Techniques,

Lecture Notes in Computer Science, pages 389–404. Springer, 1991.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast

Predicate Abstraction. In T. Ball and R. B. Jones, editors, Computer

Aided Verification, volume 4144 of Lecture Notes in Computer Science,

pages 424–437. Springer, 2006.

[LS02] V. Lagoon and P. J. Stuckey. Precise Pair-Sharing Analysis of Logic

Programs. In Proceedings of the International Conference on Principles

and Practice of Declarative Programming, pages 99–108. ACM Press, 2002.

BIBLIOGRAPHY 122

[LS04] V. Lagoon and P. J. Stuckey. Set Domain Propagation Using ROBDDs.

In International Conference on Principles and Practice of Constraint Pro-

gramming, volume 3258 of Lecture Notes in Computer Science, pages 347–

361. Springer, 2004.

[LSP92] Y. T. Lai, S. Sastry, and M. Pedram. Boolean Matching Using Binary

Decision Diagrams with Applications to Logic Synthesis and Verification.

In International Conference on Computer-Aided Design, pages 452–458.

IEEE Computer Society, 1992.

[Mau98] L. Mauborgne. Abstract Interpretation Using Typed Decision Graphs.

Science of Computer Programming, 31(1):91–112, 1998.

[McK81] B. D. McKay. Practical Graph Isomorphism. Congeressus Numerantium,

30:45–87, 1981.

[MD90] F. Mailhot and G. De Micheli. Technology Mapping Using Boolean Match-

ing and Don’t Care Sets. In Design Automation Conference, pages 212–

216. ACM Press, 1990.

[Meh02] N. Mehta. Remote Buffer Overflow Vulnerability in Sun RPC, July 2002.

http://xforce.iss.net/xforce/alerts/id/advise126.

[MEL06] Mailenable ltd. Mailenable v2.33, 2006. http://www.mailenable.com/.

[Min93] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial

Problems. In Design Automation Conference, pages 272–277. ACM Press,

1993.

[Min96] S. Minato. Graph-based Representations of Discrete Functions. In

T. Sasao and M. Fujita, editors, Representations of Discrete Functions.

Kluwer Academic Publishers, 1996. Chapter 1.

[Mis03] A. Mishchenko. Fast Computation of Symmetries in Boolean Functions.

IEEE Transactions on Computer-Aided Design, 22(11):1588–1593, 2003.

[Mis08] A. Mishchenko. Extra Library of DD Procedures, 2008.

http://www.ee.pdx.edu/∼alanmi/research/extra.htm.

[MJH98] K. Milvang-Jensen and A. J. Hu. BDDNOW: A Parallel BDD Package. In

G. Gopalakrishnan and P. J. Windley, editors, International Conference

on Formal Methods in Computer-Aided Design, volume 1522 of Lecture

Notes in Computer Science, pages 501–507. Springer, 1998.

[MM93] J. Mohnke and S. Malik. Permutation and Phase Independent Boolean

Comparison. INTEGRATION, The VLSI Journal, 16:109–129, 1993.

BIBLIOGRAPHY 123

[MMM02] J. Mohnke, P. Molitor, and S. Malik. Limits of Using Signatures for Per-

mutation Independent Boolean Comparison. Formal Methods in System

Design, 21(2):167–191, 2002.

[MMW93] D. Möller, J. Mohnke, and M. Weber. Detection of Symmetry of Boolean

functions Represented by ROBDDs. In M. R. Lightner and J. A. G. Jess,

editors, International Conference on Computer-Aided Design, pages 680–

684. IEEE Computer Society, 1993.

[MOS98] V. M. Manquinho, A. L. Oliveira, and J. P.Marques Silva. Models and Al-

gorithms for Computing Minimum-Size Prime Implicants. In Proceedings

of the International Workshop on Boolean Problems, 1998.

[MP64] F. Mileto and G. Putzolu. Average Values of Quantities Appearing in

Boolean Function Minimization. IEEE Transactions on Electronic Com-

puters, EC-13(2):87–92, 1964.

[MS97] C. Meinel and A. Slobodova. Speeding up Variable Reordering of OBDDs.

In International Conference on Computer Design, pages 338–343. IEEE

Computer Society, 1997.

[MWBSV88] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic

Verification using Binary Decision Diagrams in a Logic Synthesis Envi-

ronment. In International Conference on Computer-Aided Design, pages

6–9. IEEE Computer Society, 1988.

[NB86] R. Nair and D. Brand. Construction of Optimal DCVS Trees. Technical

Report RC-11863, IBM Research Report, Thomas J. Watson Research

Center, 1986.

[NMSB03] S. Nagayama, A. Mishchenko, T. Sasao, and J. Butler. Minimization of

Average Path Length in BDDs by Variable Reordering. In D. Marculescu,

editor, International Workshop on Logic Synthesis, pages 207–213, 2003.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.

Springer-Verlag, 2005.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo

Theories: From an abstract Davis–Putman–Logemann–Loveland Proce-

dure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[Piz96] C. Pizzuti. Computing Prime Implicants by Integer Programming. In

International Conference on Tools with Artificial Intelligence. IEEE Com-

puter Society, 1996.

BIBLIOGRAPHY 124

[Plo70] G. Plotkin. A Note on Inductive Generalisation. In Machine Intelligence,

volume 5, pages 153–163. Edinburgh University Press, 1970.

[Pol75] J. M. Pollard. A Monte Carlo Method for Factorization. BIT Numerical

Mathematics, 15(3):331–334, 1975.

[Pos41] E. L. Post. The Two-Valued Iterative Systems of Mathemtical Logic.

Annals of Mathematical Studies, 5:1–122, 1941.

[Pre88] B. R. Preiss. Data Structures and Algorithms with Object-Oriented Design

Patterns in C++. Wiley, 1988.

[PSP94] S. Panda, F. Somenzi, and B. F. Plessier. Symmetry Detection and Dy-

namic Variable Ordering of Decision Diagrams. In J. A. G. Jess and

R. L. Rudell, editors, International Conference on Computer-Aided De-

sign, pages 628–631. IEEE Computer Society, 1994.

[Qui52] W. V. Quine. The Problem of Simplifying Truth Functions. American

Mathematical Monthly, (52):521–531, 1952.

[Rab80] M. O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of

Number Theory, 12(1):128–138, 1980.

[RB04] S. S. Ramani and S. Bhanja. Any-time Probabilistic Switching Model

using Bayesian Networks. In Rajiv V. Joshi, K. Choi, V. Tiwari, and

K. Roy, editors, International Symposium on Low Power Electronics and

Design, pages 86–89. ACM Press, 2004.

[Ric53] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision

Problems. Transactions of the American Mathematical Society, 74(2):358–

366, 1953.

[RMSS98] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation

and Decomposition of Binary Decision Diagrams. In Proceedings of the

Design Automation Conference, pages 445–450. IEEE Computer Society,

1998.

[RS95] K. Ravi and F. Somenzi. High-density Reachability Analysis. In

R. L. Rudell, editor, International Conference on Computer-Aided De-

sign, pages 154–158. IEEE Computer Society, 1995.

[Rud93] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Dia-

grams. In M. R. Lightner and J. A. G. Jess, editors, International Confer-

ence on Computer-Aided Design, pages 42–47. IEEE Computer Society,

1993.

BIBLIOGRAPHY 125

[Sas99] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Pub-

lishing, 1999.

[Sha38] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits.

AIEE Transactions, 57:713–723, 1938.

[Sha48] C. E. Shannon. The Synthesis of Two-Terminal Switching Function. Bell

System Technical Journal, 1948.

[Shi96] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, Uni-

versity of California at Berkeley, Electronics Research Laboratory, 1996.

[Sie02] Detlef Sieling. The Nonapproximability of OBDD Minimization. Infor-

mation and Computation, 172(2):103–138, 2002.

[SMMD99] C. Scholl, D. Möller, P. Molitor, and R. Drechsler. BDD Minimiza-

tion Using Symmetries. IEEE Transactions on Computer-Aided Design,

18(2):81–100, 1999.

[Som05] F. Somenzi. CUDD Package, Release 2.4.1, 2005.

http://vlsi.colorado.edu/∼fabio/CUDD/.

[SR95] R. C. Sekar and I. V. Ramakrishnan. Fast Strictness Analysis Based on

Demand Propagation. ACM Transactions on Programming Languages

and Systems, 17(6):896–937, 1995.

[SS06] P. Schachte and H. Søndergaard. Closure Operators for ROBDDs. In

International Conference on Verification, Model Checking and Abstract

Interpretation, volume 3855 of Lecture Notes in Computer Science, pages

1–16. Springer, 2006.

[Str92] T. Strzemecki. Polynomial-Time Algorithms for Generation of Prime Im-

plicants. Journal of Complexity, 8(1):37–63, 1992.

[SW93] D. Sieling and I. Wegener. Reduction of OBDDs in Linear Time. Infor-

mation Processing Letters, 48:139–144, 1993.

[TM97] C. C. Tsai and M. Marek-Sadowska. Boolean Functions Classification via

Fixed Polarity Reed-Muller Forms. IEEE Transactions on Computers,

46(2):173–186, 1997.

[Tse68] G. Tseitin. On the Complexity of Derivation in Propositional Calculus.

Studies in Constructive Mathematics and Mathematical Logic, 2:115–125,

1968.

BIBLIOGRAPHY 126

[TW69] C. B. Tompkins and W. L. Wilson. Elementary Numerical Analysis.

Prentice-Hall, 1969.

[Uma99] C. Umans. On the Complexity and Inapproximability of Shortest Impli-

cant Problems. In International Colloqium on Automata, Languages and

Programming, volume 1644 of Lecture Notes in Computer Science, pages

687–696. Springer, 1999.

[Uma01] C. Umans. The Minimum Equivalent DNF Problem and Shortest Impli-

cants. Journal of Computer and System Sciences, 63(4):597–611, 2001.

[War62] S. Warshall. A Theorem on Boolean Matrices. Journal of the ACM,

9(1):11–12, 1962.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams: Theory

and Applications. Society for Industrial Mathematics, 2000.

[Wei] E. W. Weisstein. Tautology. http://mathworld.wolfram.com/Tautology.html.

[WKSV03] G. Wang, A. Kuehlmann, and A. L. Sangiovanni-Vincentelli. Structural

Detection of Symmetries in Boolean Functions. In International Confer-

ence on Computer Design, pages 498–503. IEEE Computer Society, 2003.

[WL04] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Pointer Alias

Analysis Using Binary Decision Diagrams. In W. Pugh and C. Chambers,

editors, Programming Language Design and Implementation, pages 131–

144. ACM Press, 2004.

[ZCJMB04] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch.

Generalized Symmetries in Boolean Functions: Fast Computation and

Application to Boolean Matching. In D. Marculescu, editor, International

Workshop on Logic Synthesis, pages 424–430, 2004.

[ZCJMB05] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch. De-

tecting Support-Reducing Bound Sets using Two-Cofactor Symmetries. In

T-A. Tang, editor, Asia and South Pacific Design Automation Conference,

pages 266–271. ACM Press, 2005.

[Zil96] S. Zilberstein. Using Anytime Algorithms in Intelligent Systems. AI

Magazine, 17:73–83, 1996.

[ZMBCJ06] J. S. Zhang, A. Mishchenko, R. Brayton, and M. Chrzanowska-Jeske.

Symmetry Detection for Large Boolean Functions using Circuit Repre-

sentation, Simulation, and Satisfiability. In E. Sentovich, editor, Design

Automation Conference, pages 510–515. ACM Press, 2006.

Appendix A

Proof of Generalised Symmetry

Relations

Proposition A.1. Table 7 of Chapter 4 summarises a collection of results that state

implicational relationships between various generalised symmetries. For example, if

T3
xi,xj(f) and T4

xj ,xk(f) hold for some ROBDD f then T3
xi,xk(f) also holds.

Proof.

• Suppose T1
x,y and T3

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = f|y←0,z←1,

thus f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = f|x←1,y←0,z←0 =

f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z holds.

• Suppose T1
x,y and T9

y,z hold. Thus f|x←1,y←0f|x←0,y←1, hence f|x←1,y←0,z←=0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = f|x←1,y←0,z←0 =

¬f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T1
x,y and T4

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←1,y←0,z←0 = f|x←0,y←1,z←0 = f|x←0,y←1,z←1 = f|x←1,y←0,z←1 and moreover

f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Hence f|x←1,z←0 = f|x←1,z←1 and T4
x,z holds.

• Suppose T1
x,y and T10

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

127

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 128

f|x←1,y←0,z←0 = f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 = ¬f|x←1,y←0,z←1 and more-

over f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z

holds.

• Suppose T1
x,y and T5

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = f|y←1,z←0,

thus f|x←0,y←0,z←0 = f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←0,y←1,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

• Suppose T1
x,y and T11

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 = ¬f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Hence f|x←0,z←0 = ¬f|x←1,z←0 and T11
x,z holds.

• Suppose T1
x,y and T6

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←0,y←1,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T1
x,y and T12

y,z hold. Thus f|x←1,y←0 = f|x←0,y←1, hence f|x←1,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z holds.

• Suppose T7
x,y and T3

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, hence f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←0 = f|y←0,z←1,

thus f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = ¬f|x←1,y←0,z←0 =

¬f|x←1,y←0,z←1 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z holds.

• Suppose T7
x,y and T9

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, hence f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = ¬f|x←1,y←0,z←0 =

f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z holds.

• Suppose T7
x,y and T4

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, hence f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 129

f|x←1,y←0,z←0 = ¬f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 = f|x←1,y←0,z←1 and more-

over f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Hence f|x←1,z←0 = f|x←1,z←1 and T4
x,z

holds.

• Suppose T7
x,y and T10

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, thus f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←1,y←0,z←0 = ¬f|x←0,y←1,z←0 = f|x←0,y←1,z←1 = ¬f|x←1,y←0,z←1 and more-

over f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z

holds.

• Suppose T1
x,y and T5

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, thus f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←0 = f|y←1,z←0,

thus f|x←0,y←0,z←0 = f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←0,y←1,z←0 = ¬f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

¬f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Hence f|x←0,z←0 = ¬f|x←1,z←0 and T11
x,z

holds.

• Suppose T7
x,y and T11

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, thus f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

¬f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

• Suppose T7
x,y and T6

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, thus f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←0,y←1,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

¬f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z

holds.

• Suppose T7
x,y and T12

y,z hold. Thus f|x←1,y←0 = ¬f|x←0,y←1, thus f|x←1,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

¬f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1f|x←1,z←1 and symm6x,z holds.

• Suppose T2
x,y and T3

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←0 = f|y←0,z←1,

thus f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = f|x←1,y←0,z←1. Thus

f|x←1,y←0,z←0 = f|x←1,y←0,z←1 and moreover f|x←1,y←1,z←0 = f|x←0,y←0,z←0 =

f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←1,z←0 = f|x←1,z←1 and T4
x,z holds.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 130

• Suppose T2
x,y and T9

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1 and moreover f|x←1,y←1,z←0 = f|x←0,y←0,z←0 =

¬f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z

holds.

• Suppose T2
x,y and T4

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = f|x←1,y←1,z←0 = f|x←1,y←1,z←1 = f|x←0,y←0,z←1 and moreover

f|x←0,y←1,z←0 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z holds.

• Suppose T2
x,y and T10

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1 = ¬f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T2
x,y and T5

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←0 = f|y←1,z←0,

thus f|x←0,y←0,z←0 = f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←1,y←1,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

f|x←0,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

• Suppose T2
x,y and T11

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←1,y←1,z←0 = ¬f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

¬f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0. Hence f|x←0,z←0 = ¬f|x←1,z←0 and T11
x,z

holds.

• Suppose T2
x,y and T6

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←1,y←1,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T2
x,y and T12

y,z hold. Thus f|x←0,y←0 = f|x←1,y←1, hence f|x←0,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 131

f|x←0,y←0,z←1 = f|x←1,y←1,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

¬f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z

holds.

• Suppose T8
x,y and T3

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←0 = f|y←0,z←1,

thus f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = f|x←1,y←0,z←1. Thus

f|x←1,y←0,z←0 = f|x←1,y←0,z←1 and moreover f|x←1,y←1,z←0 = ¬f|x←0,y←0,z←0 =

¬f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←1,z←0 = f|x←1,z←1 and T4
x,z holds.

• Suppose T8
x,y and T9

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1 and moreover f|x←1,y←1,z←0 = ¬f|x←0,y←0,z←0 =

f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z holds.

• Suppose T8
x,y and T4

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1 = f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z

holds.

• Suppose T8
x,y and T10

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0 = f|x←1,y←1,z←1 = ¬f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T8
x,y and T5

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←0 = f|y←1,z←0,

thus f|x←0,y←0,z←0 = f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0 = ¬f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0. Hence f|x←0,z←0 = ¬f|x←1,z←0 and T11
x,z holds.

• Suppose T8
x,y and T11

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = ¬f|x←1,y←1,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 =

¬f|x←0,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 132

• Suppose T8
x,y and T6

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, hence f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z holds.

• Suppose T8
x,y and T12

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←1, thus f|x←0,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←1,y←1,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 =

¬f|x←0,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T3
x,y and T3

y,z hold. Thus f|x←0,y←0 = f|x←0,y←1, hence f|x←0,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = f|y←0,z←1,

thus f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = f|x←0,y←0,z←0 =

f|x←0,y←0,z←1 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z holds.

• Suppose T3
x,y and T9

y,z hold. Thus f|x←0,y←0 = f|x←0,y←1, hence f|x←0,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = f|x←0,y←0,z←0 =

¬f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T3
x,y and T4

y,z hold. Thus f|x←0,y←0 = f|x←0,y←1, hence f|x←0,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = f|x←0,y←1,z←0 = f|x←0,y←1,z←1 = f|x←0,y←0,z←1 and moreover

f|x←0,y←1,z←0 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z holds.

• Suppose T3
x,y and T10

y,z hold. Thus f|x←0,y←0 = f|x←0,y←1, hence f|x←0,y←0,z←0 =

f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = f|x←0,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 = ¬f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T9
x,y and T9

y,z hold. Thus f|x←0,y←0 = ¬f|x←0,y←1, hence f|x←0,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←0,z←0 = ¬f|y←0,z←1,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and f|x←1,y←0,z←0 = ¬f|x←1,y←0,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←0,z←1 and moreover f|x←0,y←1,z←0 = ¬f|x←0,y←0,z←0 =

f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z holds.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 133

• Suppose T9
x,y and T4

y,z hold. Thus f|x←0,y←0 = ¬f|x←0,y←1, thus f|x←0,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 = f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = f|x←0,y←1,z←1. Hence f|x←0,z←0 = f|x←0,z←1 and T3
x,z

holds.

• Suppose T9
x,y and T10

y,z hold. Thus f|x←0,y←0 = ¬f|x←0,y←1, thus f|x←0,y←0,z←0 =

¬f|x←0,y←1,z←0 and f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 = f|x←0,y←1,z←1 = ¬f|x←0,y←0,z←1 and more-

over f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1. Hence f|x←0,z←0 = ¬f|x←0,z←1 and T9
x,z

holds.

• Suppose T4
x,y and T4

y,z hold. Thus f|x←1,y←0 = f|x←1,y←1, hence f|x←1,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←1,z←0 = f|y←1,z←1,

thus f|x←0,y←1,z←0 = f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Thus

f|x←1,y←0,z←0 = f|x←1,y←1,z←0 = f|x←1,y←1,z←1 = f|x←1,y←0,z←1 and moreover

f|x←1,y←1,z←0 = f|x←1,y←1,z←1. Hence f|x←1,z←0 = f|x←1,z←1 and T4
x,z holds.

• Suppose T4
x,y and T10

y,z hold. Thus f|x←1,y←0 = f|x←1,y←1, hence f|x←1,y←0,z←0 =

f|x←1,y←1,z←0 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←1,y←0,z←0 = f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1 = ¬f|x←1,y←0,z←1 and more-

over f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z

holds.

• Suppose T10
x,y and T4

y,z hold. Thus f|x←1,y←0 = ¬f|x←1,y←1, thus f|x←1,y←0,z←0 =

¬f|x←1,y←1,z←0 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Also f|y←1,z←0 = ¬f|y←1,z←1,

thus f|x←0,y←1,z←0 = ¬f|x←0,y←1,z←1 and f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Thus

f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0 = f|x←1,y←1,z←1 = ¬f|x←1,y←0,z←1 and more-

over f|x←1,y←1,z←0 = ¬f|x←1,y←1,z←1. Hence f|x←1,z←0 = ¬f|x←1,z←1 and T10
x,z

holds.

• Suppose T5
x,y and T5

y,z hold. Thus f|x←0,y←0 = f|x←1,y←0, hence f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = f|x←1,y←0,z←1. Also f|y←0,z←0 = f|y←1,z←0,

thus f|x←0,y←0,z←0 = f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 = f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

• Suppose T5
x,y and T11

y,z hold. Thus f|x←0,y←0 = f|x←1,y←0, hence f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = f|x←1,y←0,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 134

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 = ¬f|x←0,y←0,z←0 =

¬f|x←1,y←0,z←0 = f|x←1,y←1,z←0. Hence f|x←0,z←0 = f|x←1,z←0 and T5
x,z holds.

• Suppose T5
x,y and T6

y,z hold. Thus f|x←0,y←0 = f|x←1,y←0, hence f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = f|x←1,y←0,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 = f|x←0,y←0,z←1 =

f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T5
x,y and T12

y,z hold. Thus f|x←0,y←0 = f|x←1,y←0, hence f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = f|x←1,y←0,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 = ¬f|x←0,y←0,z←1 =

¬f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T11
x,y and T11

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←0, thus f|x←0,y←0,z←0 =

¬f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←0,z←1. Also f|y←0,z←0 = ¬f|y←1,z←0,

thus f|x←0,y←0,z←0 = ¬f|x←0,y←1,z←0 and f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Thus

f|x←0,y←0,z←0 = ¬f|x←1,y←0,z←0 and moreover f|x←0,y←1,z←0 = ¬f|x←0,y←0,z←0 =

f|x←1,y←0,z←0 = ¬f|x←1,y←1,z←0. Hence f|x←0,z←0 = ¬f|x←1,z←0 and T11
x,z holds.

• Suppose T11
x,y and T6

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←0, thus f|x←0,y←0,z←0 =

¬f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←0,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 = f|x←0,y←0,z←1 =

¬f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z

holds.

• Suppose T11
x,y and T12

y,z hold. Thus f|x←0,y←0 = ¬f|x←1,y←0, thus f|x←0,y←0,z←0 =

¬f|x←1,y←0,z←0 and f|x←0,y←0,z←1 = ¬f|x←1,y←0,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←1,y←0,z←1 and moreover f|x←0,y←1,z←1 = ¬f|x←0,y←0,z←1 =

f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z holds.

• Suppose T6
x,y and T6

y,z hold. Thus f|x←0,y←1 = f|x←1,y←1, hence f|x←0,y←1,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←1,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←1 = f|y←1,z←1,

thus f|x←0,y←0,z←1 = f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = f|x←0,y←1,z←1 = f|x←1,y←1,z←1 = f|x←1,y←0,z←1 and moreover

f|x←0,y←1,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z holds.

• Suppose T6
x,y and T12

y,z hold. Thus f|x←0,y←1 = f|x←1,y←1, hence f|x←0,y←1,z←0 =

f|x←1,y←1,z←0 and f|x←0,y←1,z←1 = f|x←1,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 135

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 = ¬f|x←1,y←1,z←1 = f|x←1,y←0,z←1 and more-

over f|x←0,y←1,z←1 = f|x←1,y←1,z←1. Hence f|x←0,z←1 = f|x←1,z←1 and T6
x,z

holds.

• Suppose T12
x,y and T12

y,z hold. Thus f|x←0,y←1 = ¬f|x←1,y←1, thus f|x←0,y←1,z←0 =

¬f|x←1,y←1,z←0 and f|x←0,y←1,z←1 = ¬f|x←1,y←1,z←1. Also f|y←0,z←1 = ¬f|y←1,z←1,

thus f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 and f|x←1,y←0,z←1 = ¬f|x←1,y←1,z←1. Thus

f|x←0,y←0,z←1 = ¬f|x←0,y←1,z←1 = f|x←1,y←1,z←1 = ¬f|x←1,y←0,z←1 and more-

over f|x←0,y←1,z←1 = ¬f|x←1,y←1,z←1. Hence f|x←0,z←1 = ¬f|x←1,z←1 and T12
x,z

holds.

• Suppose T2
x,y and T1

y,z hold. Therefore T2
y,x and T1

z,y hold, hence T1
z,y and

T2
y,x hold, whence T2

z,x and T2
x,z.

• Suppose T3
x,y and T1

y,z hold. Therefore T5
y,x and T1

z,y hold, hence T1
z,y and

T5
y,x hold, whence T5

z,x and T3
x,z.

• Suppose T3
x,y and T7

y,z hold. Therefore T5
y,x and T7

z,y hold, hence T7
z,y and

T5
y,x hold, whence T11

z,x and T9
x,z.

• Suppose T3
x,y and T2

y,z hold. Therefore T5
y,x and T2

z,y hold, hence T2
z,y and

T5
y,x hold, whence T5

z,x and T3
x,z.

• Suppose T3
x,y and T8

y,z hold. Therefore T5
y,x and T8

z,y hold, hence T8
z,y and

T5
y,x hold, whence T11

z,x and T9
x,z.

• Suppose T9
x,y and T1

y,z hold. Therefore T11
y,x and T1

z,y hold, hence T1
z,y and

T11
y,x hold, whence T11

z,x and T9
x,z.

• Suppose T9
x,y and T7

y,z hold. Therefore T11
y,x and T7

z,y hold, hence T7
z,y and

T11
y,x hold, whence T5

z,x and T3
x,z.

• Suppose T9
x,y and T2

y,z hold. Therefore T11
y,x and T2

z,y hold, hence T2
z,y and

T11
y,x hold, whence T11

z,x and T9
x,z.

• Suppose T9
x,y and T8

y,z hold. Therefore T11
y,x and T8

z,y hold, hence T8
z,y and

T11
y,x hold, whence T5

z,x and T3
x,z.

• Suppose T9
x,y and T3

y,z hold. Therefore T11
y,x and T5

z,y hold, hence T5
z,y and

T11
y,x hold, whence T5

z,x and T3
x,z.

• Suppose T4
x,y and T1

y,z hold. Therefore T6
y,x and T1

z,y hold, hence T1
z,y and

T6
y,x hold, whence T6

z,x and T4
x,z.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 136

• Suppose T4
x,y and T7

y,z hold. Therefore T6
y,x and T7

z,y hold, hence T7
z,y and

T6
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T4
x,y and T2

y,z hold. Therefore T6
y,x and T2

z,y hold, hence T2
z,y and

T6
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T4
x,y and T8

y,z hold. Therefore T6
y,x and T8

z,y hold, hence T8
z,y and

T6
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T4
x,y and T3

y,z hold. Therefore T6
y,x and T5

z,y hold, hence T5
z,y and

T6
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T4
x,y and T9

y,z hold. Therefore T6
y,x and T11

z,y hold, hence T11
z,y and

T6
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T10
x,y and T1

y,z hold. Therefore T12
y,x and T1

z,y hold, hence T1
z,y and

T12
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T10
x,y and T7

y,z hold. Therefore T12
y,x and T7

z,y hold, hence T7
z,y and

T12
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T10
x,y and T2

y,z hold. Therefore T12
y,x and T2

z,y hold, hence T2
z,y and

T12
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T10
x,y and T8

y,z hold. Therefore T12
y,x and T8

z,y hold, hence T8
z,y and

T12
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T10
x,y and T3

y,z hold. Therefore T12
y,x and T5

z,y hold, hence T5
z,y and

T12
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T10
x,y and T9

y,z hold. Therefore T12
y,x and T11

z,y hold, hence T11
z,y and

T12
y,x hold, whence T12

z,x and T10
x,z.

• Suppose T10
x,y and T4

y,z hold. Therefore T12
y,x and T6

z,y hold, hence T6
z,y and

T12
y,x hold, whence T6

z,x and T4
x,z.

• Suppose T5
x,y and T1

y,z hold. Therefore T3
y,x and T1

z,y hold, hence T1
z,y and

T3
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T5
x,y and T7

y,z hold. Therefore T3
y,x and T7

z,y hold, hence T7
z,y and

T3
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T5
x,y and T2

y,z hold. Therefore T3
y,x and T2

z,y hold, hence T2
z,y and

T3
y,x hold, whence T4

z,x and T6
x,z.

• Suppose T5
x,y and T8

y,z hold. Therefore T3
y,x and T8

z,y hold, hence T8
z,y and

T3
y,x hold, whence T4

z,x and T6
x,z.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 137

• Suppose T11
x,y and T1

y,z hold. Therefore T9
y,x and T1

z,y hold, hence T1
z,y and

T9
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T11
x,y and T7

y,z hold. Therefore T9
y,x and T7

z,y hold, hence T7
z,y and

T9
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T11
x,y and T2

y,z hold. Therefore T9
y,x and T2

z,y hold, hence T2
z,y and

T9
y,x hold, whence T10

z,x and T12
x,z.

• Suppose T11
x,y and T8

y,z hold. Therefore T9
y,x and T8

z,y hold, hence T8
z,y and

T9
y,x hold, whence T10

z,x and T12
x,z.

• Suppose T11
x,y and T5

y,z hold. Therefore T9
y,x and T3

z,y hold, hence T3
z,y and

T9
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T6
x,y and T1

y,z hold. Therefore T4
y,x and T1

z,y hold, hence T1
z,y and

T4
y,x hold, whence T4

z,x and T6
x,z.

• Suppose T6
x,y and T7

y,z hold. Therefore T4
y,x and T7

z,y hold, hence T7
z,y and

T4
y,x hold, whence T4

z,x and T6
x,z.

• Suppose T6
x,y and T2

y,z hold. Therefore T4
y,x and T2

z,y hold, hence T2
z,y and

T4
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T6
x,y and T8

y,z hold. Therefore T4
y,x and T8

z,y hold, hence T8
z,y and

T4
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T6
x,y and T5

y,z hold. Therefore T4
y,x and T3

z,y hold, hence T3
z,y and

T4
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T6
x,y and T11

y,z hold. Therefore T4
y,x and T9

z,y hold, hence T9
z,y and

T4
y,x hold, whence T3

z,x and T5
x,z.

• Suppose T12
x,y and T1

y,z hold. Therefore T10
y,x and T1

z,y hold, hence T1
z,y and

T10
y,x hold, whence T10

z,x and T12
x,z.

• Suppose T12
x,y and T7

y,z hold. Therefore T10
y,x and T7

z,y hold, hence T7
z,y and

T10
y,x hold, whence T10

z,x and T12
x,z.

• Suppose T12
x,y and T2

y,z hold. Therefore T10
y,x and T2

z,y hold, hence T2
z,y and

T10
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T12
x,y and T8

y,z hold. Therefore T10
y,x and T8

z,y hold, hence T8
z,y and

T10
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T12
x,y and T5

y,z hold. Therefore T10
y,x and T3

z,y hold, hence T3
z,y and

T10
y,x hold, whence T9

z,x and T11
x,z.

APPENDIX A. PROOF OF GENERALISED SYMMETRY RELATIONS 138

• Suppose T12
x,y and T11

y,z hold. Therefore T10
y,x and T9

z,y hold, hence T9
z,y and

T10
y,x hold, whence T9

z,x and T11
x,z.

• Suppose T12
x,y and T6

y,z hold. Therefore T10
y,x and T4

z,y hold, hence T4
z,y and

T10
y,x hold, whence T10

z,x and T12
x,z.

