
Pascoe, Jason (2001) Context-aware software. Doctor of Philosophy (PhD)
thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/86276/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86276

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86276/
https://doi.org/10.22024/UniKent/01.02.86276
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

CONTEXT-AWARE SOFTWARE

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT AT CANTERBURY

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

By Jason Pascoe

August 2001

i

AAcckknnoowwlleeddggeemmeennttss

There are many people to thank for their invaluable help in completing this thesis, but

first I would like to acknowledge the financial help of the University of Kent at

Canterbury’s E.B.Spratt Award, without which this thesis would never have got started,

and the JTAP (JISC Technology Applications Programme) funding for the “Mobile

Computing in a Fieldwork Environment” project, under which much of the practical

work of this thesis was carried out. Additionally, the ideas for distribution described in

the final part of the thesis were largely developed under a six-week short-term research

fellowship at BT Labs. I am also grateful to the University of Kent’s Computing

Laboratory, which among many other things helped fund a number of trips.

My supervisor, Peter Brown, has been a great source of help, support, and humour

during the whole PhD process, and it was his original ideas that inspired the work

herein. I suspect the time required to complete this PhD was somewhat longer than

Peter had originally envisioned, as it has lasted well into his retirement years. So I must

particularly thank him for stubbornly sticking with this last PhD student of his during

an otherwise tranquil retirement in Devon. Of course, it would also not do to let this

opportunity pass without acknowledging Peter’s sense of humour which, although

often at my expense, made for a lively and fun PhD. A good example being the time he

convinced me to attend an otherwise suit-and-tie-clad conference in England’s House

of Commons whilst dressed up in my African safari regalia! I certainly made an

impression…

This brings me nicely on to thank my office partners Geraldina, Helena, and Vince who

helped convince Peter that I was profitably engaged on the seldom occasions I was

found absent from the office. Thanks for your tireless excuses! It was a pleasure to

share an office and become great friends with the three of you. Many good times were

had in and out of the office including trips to sci-fi movies (generally at my insistence!)

and Portuguese salty seafood experiences (generally at their insistence!), and some

completely odd experiences such as discovering in one corner of the office a box full of

Japanese Elvis-impersonator music tapes and, stranger still, a container full of labelled

rhinoceros faeces! (One can only wonder about the previous office occupants…). Fun

ii

times, and being the last of the four to graduate I would like to thank you all for your

advice and prodding that helped me finally finish this thesis.

During the second and third years of my thesis I worked as a research associate on a

project called “Mobile Computing in a Fieldwork Environment” which was set-up by

Nick Ryan and David Morse. I must thank them very much for offering me this

position. It has been the source of much interesting work and even more interesting

experiences and travels. I believe it was David, quickly supported by Nick, who first

suggested that I should travel out with our prototype equipment to Kenya. Thank you

very much for opening up the exciting times that followed in subsequent African trips,

and the most interesting work that was carried out there.

Of course, the work in Kenya would not have been possible without the collaboration

of some fieldworkers who were willing to put in to practise our new ideas of computing

in the field. Alan Fielding and Barry Stevens-Woods of Manchester Metropolitan

University were kind enough to invite me on a MSc ecology fieldwork trip in Mull,

Scotland. It was during this initial meeting of ecology and computing minds that I was

lucky enough to meet Kathy Pinkney, who became a long-term collaborator and friend.

Her eagerness to try out our latest tools in her giraffe observation work has been

invaluable. One couldn’t have hoped for a nicer person to work with and I hope I have

interested her half as much in computing as she has interested me in giraffes and

hartebeest!

One unexpected but very pleasing and fruitful development of our fieldwork research

was the adoption of our tools by Dr. Alan Birkett, who heads up an Earthwatch

ecology research programme in Sweetwaters Reserve, Kenya. The fieldwork tools

developed in the course of the PhD have now been used by some hundreds of

volunteers and students in their data collection work in this reserve. Many thanks to

Alan for embracing these tools in his project, allowing us to conduct usability studies

on his workforce of volunteers, offering suggestions for future developments, and to

just generally continue in supporting them in his work and to promote them in other

fieldwork projects in Kenya. It is very satisfying to see our tools be put to good use in

this very worthwhile cause. Thanks are also due to all the numerous volunteers and

students who have enjoyed using the tools, especially the early pioneers who were, to

some extent, our guinea pigs! And special thanks is due to all the staff of the

iii

Sweetwaters Reserve who made our stay there so memorable and enjoyable (and in

particular Kariuki and Daniel who protected us and our Palm Pilots from rampaging

elephants!).

I would like to thank all my friends for their support during my PhD. Thanks to Glenn,

a fellow Star Trek and gadget fan, for his ongoing friendship since my first-degree days

in Plymouth. And having mentioned Star Trek (it had to be done!) I would in passing

like to acknowledge a certain amount of inspiration derived from this TV series (always

a good source to renew one’s positive thinking and get some inspiration for new

gadgets!). Returning to friends, I would particularly like to thank Howie, my housemate

for a good portion of my time at Kent and whose lengthy write-up period I believe was

only exceeded by my own! Thanks for all those tennis matches and bike rides (some of

which we barely survived!) that broke up the academic routine. Nadia has also been a

constant friend since a chance encounter at the laundry on my first days at Canterbury,

and a particularly reliable source of prodding to finish the PhD. It was great to have

Dick, Eric, Meral and Adriana as good company during the first years at Canterbury

and likewise to have Paola, Marta and Louise for company in my concluding ones. And

many thanks to all my other colleagues in the Computing Lab (and a special thanks to

Justine, our secretary, for her kindness and helpfulness over the years) who provided

such a nice working environment, and to my numerous new friends from the

Portuguese and Latin American communities.

They say that the write-up is the most laborious part of the PhD. Well, it certainly

seemed to be the case whilst working in Germany at the same time. So thanks to my

new German and German-based friends during this time. In particular, thank you to

Lucia for being Lucia, and showing me the cool side of Berlin, the 70s, and life in

general (and sorry for having so little time left-over from work and the PhD to do

those things!). Thanks to Prakash, who I met during my first days in Frankfurt Oder,

for his friendship as a fellow stranger arriving in a stranger land. Also to Petra who has

been a very kind friend indeed, and who is just a great person in general! And, of

course, I cannot forget to thank my office-partner and good friend, Mr. Langer, who

has helped me on more occasions than I can remember and given an initially sceptical

Cornishman a great impression of the Germans. I hope his questioning on the

development of my German language skills will one day be as successful in its

conclusion as has been his questioning on the progress of my PhD!

iv

I would like to extend a huge “thankyou” to my family for their love and support

during this whole process. Thanks to my parents for trusting that it was the right

decision for me to do the PhD, supporting me throughout it in every sense, and urging

me on to the finish. I suspect that during the write-up you wondered if it would ever be

completed. Well, I’m happy to have successfully finished and to tell you that without

you it would never have even got started. Mum and Dad, thanks for everything!

Finally, I would like to especially thank my grandparents for simply being wonderful. I

was incredibly lucky to have started out with such good people, funny stories, and

lovely walks in the countryside. My sense of all that’s good in the world comes from

you. Gran and Grandad, you’re the best and are always in my heart.

To end the acknowledgements on a somewhat humorous note I should also thank

Morani, pictured with me below, whose somewhat surprising appearance (for a

computing project’s web page in any case) has undoubtedly been a great help in our

efforts to publicise and spread word of our work.

v

CCoonntteennttss

Table of Figures ... xi

 Table of Tables... xv

Chapter 1: Introduction ... 1

1.1 Motivation and Aims of this Thesis..2
1.2 Background ..4

1.2.1 Physical Technology...4
1.2.1.1 New Computing Devices ...4
1.2.1.2 New Sensors ..7
1.2.1.3 New Communications... 12

1.2.2 Applications.. 14
1.2.2.1 Electronics Guides... 15
1.2.2.2 Medical Applications ... 18
1.2.2.3 Augmented Reality ... 19
1.2.2.4 Memory Prostheses.. 22
1.2.2.5 Mediated Reality ... 24
1.2.2.6 Ubiquitous Computing.. 24
1.2.2.7 Specialist Applications ... 27

1.2.3 Software Infrastructure ... 28
1.3 Where this Thesis Makes a Contribution .. 33
1.4 Published Work .. 36

Chapter 2: Stick-e Notes: a Metaphor for Context-Aware Applications.........................37

2.1 Overview of the Stick-e Note Application Framework .. 38
2.1.1 Context Information ... 39
2.1.2 The Stick-e Note.. 45
2.1.3 Stick-e Note Processing.. 47
2.1.4 Framework Summary.. 48

2.2 Overview of the Electronic Post-It Note Application .. 50
2.3 Issues in Obtaining Context.. 53
2.4 Issues in Representing Context Information.. 54
2.5 Issues in Triggering .. 57
2.6 HCI Issues ... 64
2.7 Summary .. 70

Table of Contents

vi

Chapter 3: Ecology Fieldwork Tools ...71

3.1 Investigating the Ecologist’s Needs..72
3.1.1 Defining Context ...74
3.1.2 Creating A Stick-e Note ..77
3.1.3 Fieldwork Project #1: Knockvologan Bird Census ..78
3.1.4 Fieldwork Project #2: Bunessan Corvid & Eagle Census and Behavioural Study........81
3.1.5 Requirements of a Fieldwork Tool..83

3.1.5.1 To Automatically Capture as Much Context as Possible ..83
3.1.5.2 To Support Location and Time in Particular..84
3.1.5.3 To Support Multiple Views of Context ...85
3.1.5.4 To Make Context-Awareness Transparent to the User and Task..............................86
3.1.5.5 To Provide Dynamic Data Visualisations ...86
3.1.5.6 To Support Stick-e Note Prototyping..87
3.1.5.7 To Provide a Quick-to-Use Interface ..87
3.1.5.8 To Survive the Field ...87
3.1.5.9 To Provide Links with the Desktop...88
3.1.5.10 To Ensure Data Security ..89
3.1.5.11 To Offer a Field Guide Service ...89

3.1.6 Summary..89
3.2 Generic Fieldwork Tools for Data Collection ..90

3.2.1 The Changing Nature of a Stick-e Note ...90
3.2.2 Hardware Employed..92
3.2.3 A Suite of Three Programs ...92
3.2.4 Using the Fieldwork Tools ...99
3.2.5 A Giraffe Study Field Trial ...104

3.2.5.1 Scan Observations ..105
3.2.5.2 Focal Study ..106
3.2.5.3 Habitat and Faecal Study ...108
3.2.5.4 Giraffe Identification ...110
3.2.5.5 Securing the Data..110
3.2.5.6 Handing Over the Prototype ..111

3.2.6 Research and Design Issues..112
3.2.6.1 The Role of Databases, GISs and Stick-e Notes..112
3.2.6.2 From Pretend to Expected Contexts ...114
3.2.6.3 The Need for Extensible and Flexible Context Element Support...........................117
3.2.6.4 New Models of Triggering ..119

3.2.6.4.1 Passive Retrieval: Viewing Stick-e Notes in the Immediate Area119
3.2.6.4.2 Active Retrieval: Previewing, Searching and Filtering121
3.2.6.4.3 Alerts ..122
3.2.6.4.4 Re-triggering and De-triggering ..122

Table of Contents

vii

3.2.6.5 Location Issues ... 123
3.2.6.6 User Interface Issues.. 125
3.2.6.7 Hardware Issues ... 126
3.2.6.8 Grouping Stick-e Notes... 127

3.2.7 Summary ... 128
3.3 Esoteric Fieldwork Tools for Rhino Identification ... 129
3.4 Summary .. 136

Chapter 4: HCI in the Field...137

4.1 The Very Mobile Nature of Fieldwork.. 137
4.2 Four Characteristics of the Fieldworker User... 139
4.3 The Features of a Prototype Fieldwork Tool ... 141
4.4 Context-Awareness .. 144
4.5 The Minimal Attention User Interface (MAUI)... 146

4.5.1 General Guidelines for the Selection or Design of MAUIs .. 153
4.6 Summary .. 156

Chapter 5: Fieldwork Tools Usability Study ...159

5.1 The Ecology Project and Test Group ... 159
5.2 The Fieldwork Activities.. 160
5.3 Advantages of Using the Prototype for the Project Organisers... 161
5.4 The Usability Study .. 163

5.4.1 User Analysis .. 165
5.4.2 Acceptance Analysis .. 166
5.4.3 Before and After Impression Analysis.. 167
5.4.4 Ease of Use Analysis ... 169
5.4.5 Likes and Dislikes Analysis .. 171
5.4.6 Log Book Analysis... 173
5.4.7 Usability Study Summary.. 174

5.5 Summary .. 175

Chapter 6: Reconsidering Context and Frameworks...177

6.1 The Nature of Context .. 177
6.1.1 Context and Content May Not Be So Different ... 178
6.1.2 Context Can be Complex ... 178
6.1.3 Context is Much more than Location... 179
6.1.4 Context is an Attribute not an Entity ... 179
6.1.5 Virtual Entities can have More Complex Context .. 180

6.2 The Nature of Context-Aware Applications... 180
6.2.1 There are Many Classes of Context-Aware Applications... 181

Table of Contents

viii

6.2.2 Context-Aware Applications tend to be Resource Hungry..181
6.2.3 Context-Awareness has a High Development Cost..182
6.2.4 The Computing Environments are Diverse ...182
6.2.5 The Greater the Context the Greater the Application..183

6.3 The Need for a Context Information Service ...183
6.3.1 Layer 1: Sensor Support ..187
6.3.2 Layer 2: Context Data Extraction..188
6.3.3 Layer 3: Context Data Type Support ..191
6.3.4 Layer 4: Context Model...192
6.3.5 Layer 5: Client Interface..197
6.3.6 Distribution...200

6.4 Summary...202

Chapter 7: A Prototype CIS Design .. 203

7.1 CIS Component Overview ..203
7.2 CIS Component Design...207

7.2.1 Sensors...207
7.2.2 Synthesizers...209
7.2.3 States ..210
7.2.4 Artefacts ..217
7.2.5 Monitors ..220
7.2.6 Catalog Service ...221
7.2.7 Sensor Array Service..223
7.2.8 World Service ...225
7.2.9 World Archive Service...228

7.3 Evaluating the Prototype Design..230
7.3.1 The Nature of Context and Context-Aware Applications ...230
7.3.2 Five Layer CIS Support...232

7.4 Conclusion ...234

Chapter 8: Concepts for Distributing the CIS ... 237

8.1 General Distribution Issues...238
8.1.1 What to Distribute ...238
8.1.2 Communications Infrastructure ...239

8.2 The Federation Distribution Design Concept ..240
8.2.1 Discovering a CIS ..241
8.2.2 Choosing Distribution and Managing CIS Loading..243
8.2.3 The Structure and Formation of a Federation ...245
8.2.4 Security and Privacy...247
8.2.5 Managing Poor Connectivity with Windows and Mirrors..250

Table of Contents

ix

8.2.6 Federation Design Summary.. 255
8.3 The Logical World Distribution Design Concept.. 255

8.3.1 A Layered Model ... 257
8.3.2 Logical World Structure.. 258
8.3.3 Creating and Maintaining a Logical World... 259

8.3.3.1 Making a Local Logical World.. 259
8.3.3.2 Making a Distributed Logical World ... 261

8.3.4 Logical World Design Summary.. 261
8.4 The Self-Forming Distribution Design Concept ... 262

8.4.1 Finding Worlds .. 263
8.4.2 Incorporating Relevant Artifacts ... 265
8.4.3 An Agent Based Approach... 268

8.4.3.1 The Key Agent ... 268
8.4.3.2 The Interest Agent ... 269
8.4.3.3 The Cache Agent.. 270

8.4.4 Self-Forming Design Summary ... 270
8.5 Conclusion and Future Work ... 271

Chapter 9: Summary and Conclusion ..273

9.1 Overview of Contribution... 274
9.1.1 User Interfaces ... 274

9.1.1.1 Contribution ... 275
9.1.1.2 Future Work.. 275

9.1.2 Applications.. 276
9.1.2.1 Contribution ... 276
9.1.2.2 Future Work.. 277

9.1.3 Application Infrastructure .. 277
9.1.3.1 Contribution ... 278
9.1.3.2 Future Work.. 278

9.1.4 Context-Aware Infrastructure.. 279
9.1.4.1 Contribution ... 279
9.1.4.2 Future Work.. 280

9.2 Research Aims Revisited.. 280

Table of Contents

x

 Table of References .. 283

Appendix A: Stick-e Note Framework Design Diagrams... 295

Appendix B: Sticke-e Note Desktop Authoring Tool ... 303

Appendix C: Usability Survey Questionnaire... 307

Appendix D: Multiple-Choice Codified Response Sheet ... 315

Appendix E: Codification Scheme .. 323

Appendix F: Categorised Response Sheet .. 325

Appendix G: Narrative Responses .. 335

Appendix H: Equipment Fault Log... 341

Appendix I: Kenyan Fieldwork Activities .. 349

xi

TTaabbllee ooff FFiigguurreess

Figure 1. Illustration of the areas in which this thesis aims to contribute.. 34

Figure 2. Simplified context class hierarchy. .. 41

Figure 3. Simplified sensor device class hierarchy. .. 43

Figure 4. Example of the logical relationships within a trigger condition.. 46

Figure 5. SeManage interest lists. ... 48

Figure 6. Framework components and the flow of context data. ... 49

Figure 7. HP handheld computer linked to Garmin-45 GPS receiver. .. 51

Figure 8. The Pilot handheld computer. ... 73

Figure 9. Annotated screenshot of prototype’s main screen.. 74

Figure 10. Editing one of the context element fields included in a stick-e note. .. 75

Figure 11. Screen shots of (i) the new stick-e note form display, (ii) manually editing the distance field,

and (iii) manually editing the location field.. 77

Figure 12. A stick-e note created for an individual bird sighting... 81

Figure 13. U.S.Robotics PalmPilot linked to Garmin 45 XL GPS receiver. .. 92

Figure 14. Screenshot of the StickeMap program. .. 94

Figure 15. Screenshot of StickePad main screen. .. 95

Figure 16. A template called “Field Notes” defined in the StickePlates program... 96

Figure 17. Recording identifiable marks of a giraffe in the DinkyPad program.. 110

Figure 18. Kathy testing the tools before beginning a giraffe observation session..................................... 126

Figure 19. The 6 rhino footprint measurements.. 130

Figure 20. The RhinoIDer program finds Makora to be the best matching rhino, with Loita and Job a

poor second and third place. Robert and Kerkura have a zero score, and the remaining rhinos have

been filtered out due to a failed match on one or more critical fields. .. 133

Figure 21. Defining the source of the footprint context to be the most recently recorded footprint stick-e

note. .. 133

Figure 22. Defining the role of each context field in the RhinoIDer. .. 134

Figure 23. Editing a location field in the StickePad illustrates how context-awareness can be used to

Table of Figures

xii

expedite data collection; in this case by automatically entering the user's location (derived from an

attached GPS receiver) and allowing it to be easily updated via the 'Here' button.145

Figure 24. The ecologist observes the giraffe whilst simultaneously recording data on the PalmPilot using

the Minimal Attention User Interface. ...147

Figure 25. Most comfortable grip for one-handed operation. ...149

Figure 26. StickePad main screen in one-handed mode..150

Figure 27. The first three of a sequence of one-handed controls to enter a new note.151

Figure 28. Previous computing experience of volunteers. ..165

Figure 29. Previous fieldwork experience of volunteers. ..166

Figure 30. The reasons given by volunteers for preferring the prototype fieldwork tools over traditional

pen and paper methods of data collection. ..167

Figure 31. Volunteers feelings about the prototype before (left) and after (right) using it.169

Figure 32. Overall ease of use rated by the volunteers on a 5 point scale from 'very difficult' to 'very easy'.

...170

Figure 33. Types of data that were reported by volunteers as being particularly easy to enter..................171

Figure 34. Features of the prototype liked by the volunteers...172

Figure 35. Suggestions for improvements to prototype made by volunteers...173

Figure 36. Layers of a Context Information Service..185

Figure 37. Modelling components of the CIS. ...204

Figure 38. Service components of the CIS. ..205

Figure 39. The StateUnit branch of the State class hierarchy...211

Figure 40. The StateContainer branch of the State class hierarchy. ..214

Figure 41. Monitor component class hierarchy. ...220

Figure 42. CIS clients transparently access a unified distributed world. ...241

Figure 43. Example high-level CIS distribution and discovery model. ...242

Figure 44. Three levels of CIS replication...244

Figure 45. Conceptual diagram of security screening. ...248

Figure 46. Example window schemes..253

Figure 47. Conceptual view of a mirror array ...254

Figure 48. The logical world draws on the artifacts of federated and local worlds for its membership...257

Figure 49. Keys from a variety of sources are discovered and used as a pool of artifacts from which ones

Table of Figures

xiii

of interest are entered into the local world in the form of a reference.. 264

Figure 50. Contextual boundaries used in discovering, disusing, and disposing of CIS keys.................... 268

Figure 51. Illustration of the areas in which this thesis has contributed. ... 274

Figure 52. Top level class categories.. 295

Figure 53. Class diagram for generic classes category. .. 296

Figure 54. Class diagram for contextual representation category. ... 296

Figure 55. Class diagram for device interfacing category. .. 297

Figure 56. Class diagram for the family management category. .. 298

Figure 57. Class diagram for the stick-e note management category. ... 299

Figure 58. Object interaction diagram for the family management classes.. 300

Figure 59. Object interaction diagram for the stick-e management classes. .. 301

Figure 60. Direct control over the SeManage processing parameters (such as frequency and intensity of

processing) and a view into the internal status of SeManage.. 304

Figure 61. Environmental status panel through which the devices and pretend contexts that are present

within the SeEnvironment object can be viewed, created, updated, amended and deleted. 304

Figure 62. Facility for creating and editing stick-e notes, entering or referencing content for the note, and

attaching the stick-e note to a context(s). .. 305

Figure 63. Creation and maintenance of families (into which stick-e notes can be later added or

removed). ... 305

Figure 64. An implementation of a SeDisplay class is provided, which lets the user directly register

families for processing, or respond to open-family notification messages from the SeManage. Any

incoming triggered stick-e notes are made available for the user to view. Many SeDisplays can be

open at once to test the one to many relationship from controller to view(s). 305

Figure 65. Sampling quadrate. .. 360

xv

TTaabbllee ooff TTaabblleess
Table 1. Published Work... 36

Table 2. Sample of data recorded manually in the MemoPad application. .. 79

Table 3. The context element fields defined for a bird spotting stick-e note. ... 80

Table 4. The context element fields defined for a corvid/eagle observation stick-e note. 82

Table 5. A sequence of StickePlates screenshots that illustrates the creation of a stick-e note template. 100

Table 6. A sequence of StickePad screen-shots illustrating the creation of a new stick-e note from a

template. ... 101

Table 7. A selection of screenshots of various context element editing dialogs. .. 103

Table 8. The context element fields of a “Scan” stick-e note template. ... 106

Table 9. The context element fields of a “Focal” stick-e note template... 107

Table 10. Example behavioural observations recorded in the behaviour list field. 108

Table 11. The context element fields of a “Habitat” stick-e note template. .. 109

Table 12. The context element fields of a “Faeces” stick-e note template. ... 109

Table 13. A stick-e note template for a rhino footprint.. 131

Table 14. A stick-e note for storing rhino information (including historic footprint data). 131

Table 15. Two example uses of multiple taps. ... 152

Table 16. Interaction mode characteristics for the ecology fieldwork activity. ... 153

Table 17. Interaction mode characteristics of our MAUIs... 154

Table 18. Interaction mode characteristics for navigating for the blind... 155

Table 19. Interaction mode characteristics for a telecommunications field servicing. 156

Table 20. Summary of reference projects chosen to explore the CIS design space.................................... 186

Table 21. Sensor support. ... 187

Table 22. Context extraction support.. 189

Table 23. Context data type support. .. 191

Table 24. Context model support (1). ... 193

Table 25. Context model support (2). ... 196

Table 26. Client interface characteristics... 199

Table of Tables

xvi

Table 27. Distribution characteristics (P = permanent distribution, O = opportunistic distribution, ‘-’ =

no distribution supported). ..201

Table 28. Brown et al's requirements, and the CIS solutions. ..234

Table 29. Window opening and closure types. ...252

Table 30. Growth-Plot stick-e note template. ..349

Table 31. Growth-Trees stick-e note template. ..350

Table 32. Rhino Sighting stick-e note template..351

Table 33. Rhino Signs stick-e note template...351

Table 34. Rhino Footprint stick-e note template. ..352

Table 35. Dung stick-e note template..352

Table 36. Transect-Damage stick-e note template...353

Table 37. Damage-Plot stick-e note template...354

Table 38. Damage-Trees stick-e note template. ...354

Table 39. Vegetation-Plot stick-e note template. ...355

Table 40. Vegetation-Trees stick-e note template. ...356

Table 41. Rhino Behaviour stick-e note template. ...357

Table 42. Giraffe Behaviour stick-e note template. ...358

Table 43. Seedlings-Plot stick-e note template. ..359

Table 44. Seedlings stick-e note template..359

Table 45. Lion stick-e note template..361

Table 46. Giraffe Sighting stick-e note template. ...362

Table 47. Baboon stick-e note template. ...362

1

CChhaapptteerr 11::

IInnttrroodduuccttiioonn

Computers are moving ever closer to and becoming ever more entwined with us and

our everyday world. The first large mainframe computers were locked away in central

processing rooms, never to be seen by most users. Punched cards and printouts formed

the limited connection between human and computer. This connection has since been

greatly strengthened, firstly with dumb terminals, followed by more intelligent terminal

equipment, and culminating in today’s predominant manifestation of computing: the

desktop personal computer. Of course, the richness of human-computer-interaction

(HCI) has also greatly improved, with communication today most commonly

conducted at a very abstract level through sophisticated graphical user interfaces

(GUIs).

The desktop is by no means the final destination of the computer. Laptop computers

already permit users to bring their “desktop” with them anywhere. Perhaps more

interesting is the increasing proliferation of personal digital assistants (PDAs) or

palmtop computers (we use the two terms synonymously). These devices, most simply

stated, are electronic counterparts to paper-based agendas, diaries, notepads and day

planners. However, with increasing miniaturisation, component cost reduction, and

integration of wireless communications technology, they are being transforming into

more sophisticated devices that can offer services such as music, video and continuous

Internet access. Because they are small and light the computer is freed from the user’s

desktop or lap and is beginning to be used anywhere and at anytime, moving further

into our everyday world.

With this accelerating penetration of computers into everyday locations we will also

start to see an increased integration of these devices with their environment and users,

and not just in the palms of their hands. Wearable computing researchers [Starner,

Rhodes 1999 - #135] suggest that users will find their computers so indispensable in

Chapter 1: Introduction

2

their everyday lives that they will come to wear them, in a similar way as to how people

have come to wear time pieces on their wrists. Another area of research, that of

ubiquitous or pervasive computing [Weiser 1991 - #149], suggests that computing

technology will become so specialised and well-integrated into our physical world that

we will no longer be aware of it in itself, just as we would now not particularly think of

the pen or pencil technology that we use when writing some notes on a sheet of paper.

Simply building the physical palmtop, wearable, or ubiquitous computing devices is not

enough to ensure their success. New applications, and the enabling technologies to

support them, will be required in order to induce users to invest in this new form of

computing. For example, with the advent of desktop computers users had a relatively

high performance and fast feedback computer system. However, they did not invest in

these computers for technology’s own sake, but rather for the work they could do with

applications such as spreadsheets and word processors, which were supported with

enabling technologies such as graphical user interfaces, interaction devices, storage

media, etc.

We believe that context-awareness will be a key enabling technology in the world of

palmtop, wearable, and ubiquitous computing, and that most applications running on

these devices will be, to some degree, context-aware software. Rather than trying to

offer the same service irrespective of the user’s current context (e.g. location, time, task

at hand, etc.) we believe that software will try to understand that context and use it to

react and adapt in order to offer a better or more appropriate service to the user. This

need stems from the fact that the computer is no longer shackled to a single desktop

but is now part of the user’s ever-changing world. This also impacts the device’s user

interface, which cannot afford to follow the same uniform rules of desktop computing

but must instead employ new strategies that better mould it to the dynamic context of

use.

1.1 Motivation and Aims of this Thesis

Context-awareness is a new discipline, and we are still a long way from finding and

understanding the best approaches. This thesis aims to make a contribution by

proposing, and in most cases implementing and testing for usability, a set of new

Chapter 1: Introduction

3

techniques and approaches. More specifically we aim to further the state-of-the-art in

context-aware software on three levels:

Level 1: Infrastructure

Research Aim: to investigate if software infrastructure to support context-

awareness is required, and if so, to determine what services that infrastructure

should provide and how it should provide them.

Work Done: as a first step, in chapter 2 we present a framework for building

context-aware applications based on the application-level metaphor of

electronic Post-It notes. Some applications were built using this framework and

in chapter 6 we re-examine the framework, and other frameworks proposed by

other researchers, and assess what is and what is not genuinely useful in an

infrastructure to support context-awareness. As a result of this analysis in the

subsequent two chapters we propose a lower-level service that will support a

broader range of context-aware software.

Level 2: Applications

Research Aim: to further the understanding of context and context-awareness

through empirical experiments, to explore practical applications of context-

awareness, and to find out if context-awareness can be usefully employed in

practice.

Work Done: in chapter 3 we explore one particular application of context-aware

software for palmtop computing, one with a particularly dynamic environment:

that of in-field data collection and observation in an African game reserve.

Level 3: HCI

Research Aim: to explore new methods of human-computer interaction for this

new area of computing, to determine their usability, and to establish some

general HCI design principles.

Work Done: in chapter 4 we present some issues to consider when designing

user interfaces for these new breeds of computing device, and provide a

Chapter 1: Introduction

4

method of mapping the design space for a specific environment, user, and

device/application set. Chapter 5 continues our HCI investigation with a

usability study conducted on the users of the fieldwork applications we

developed in chapter 3.

1.2 Background

We present here a background and survey of the other work related to our research on

context-aware software. This overview of research aims to set the scene for the broad

array of new emerging technologies in which context-awareness will play an important

factor. We divide the survey into three sections: physical technology, applications, and

software infrastructure.

1.2.1 Physical Technology

There are three pronounced trends in technology of most concern to us:

i. Increasingly small and fast computing devices, enabling computers

to be used where needed and not just on the desktop

ii. Better sensor technologies, enabling computers to find out more

about the new physical environments in which they find themselves.

iii. Better communications technologies, allowing computers to

maintain access to networked resources whilst away from the

desktop.

1.2.1.1 New Computing Devices

The ParcTAB project at Xerox Parc [Want, Shilit 1995 - #146], which used earlier

experience with the location technology of the active badge (see later), was one of the

first ventures into developing and deploying a new type of computing device. The work

aimed to develop a device employees would want to carry with them and use anywhere

within the XeroxPARC laboratories. Unlike a laptop this device would be really portable

and emphasise the importance of context and communications in the applications that

it offered. Communications in fact were critical as the device was little more than a

Chapter 1: Introduction

5

dumb graphic terminal, with its intelligence located in a network-side proxy called the

TAB agent. Communications were implemented via an Infrared network that was

comprised of room-sized cells, allowing a central server to use the communications

infrastructure to monitor the location of devices, and hence users, too.

The physical TAB device was a radical rethink of computer ergonomics and provided a

small, light and aesthetically pleasing device that encouraged user acceptance. The user

interface provided a touch screen, pen interface (using a combination of Goldberg’s

Uni-strokes [Want, Shilit 1995 - #146] and onscreen keyboard) and three physical push-

buttons.

Success was defined on an application-by-application basis, where some applications

proved more popular than others. Generally speaking though, the device was very

popular, although the need for a form of disconnected operation was highlighted,

useful in times when the user is out of range of the wireless network.

Although a dead-end in itself the TAB device can be seen as a precursor to many of the

commercially available PDAs and palmtop computers available on the market today.

The Apple Newton broke a lot of new ground in using similar ideas to the TAB and

turning them into a viable product concept. Many still regard it as superior in many

ways to its successors, but it was ultimately let down by its relatively large form factor,

sluggish responsiveness, and poor hand-writing recognition in its early models.

Fadel [Fadel 1995 - #38] argued that any truly useful PDA must be able to

communicate with LANs, WANs, peripherals, and other PDAs using wireless links.

The concept of directly interfacing a PDA to a kind of “mother ship” desktop

computer to share files was also proposed. Similarly Meth [Meth 1994 - #89] puts

forward connectivity and communications as key ingredients to a PDA, along with

good user interfaces and software applications.

Palm Computing [Palm 2001 - #96] took these lessons, along with its own insight that

the simplicity of the user interface and applications is key, and developed the Palm

range of PDA devices. The combination of simplicity, very small form factor, and

limited connectivity (via a serial cable to the PC, and via IrDA to other Palm devices)

Chapter 1: Introduction

6

proved a winning combination that now sees Palm as the dominant player in this

market.

Today’s market is by no means the end of the trail: quite the opposite in fact. A large

focus of interest today is in the convergence of mobile phone and PDA technology into

what has been termed by the industry as smart phones or personal communicators.

Smith [Smith 1995 - #133] writes of a Personal Intelligent Communicator (PIC) that

combines voice and data communications, and also combines intelligence in the device-

based application software and network-based service software. The philosophy of

these devices is more on communications with computing than computing with

communications. The technology to build these devices is essentially here, and

companies such as Symbian [Symbian 2001 - #139] are about to capitalise on this

market.

Personal communicators can be seen as the next logical progression from today’s PDAs

and mobile phones. However, on a somewhat different branch of computer evolution

are wearable and ubiquitous computers. Instead of a device that the user may choose to

take with them, wearable computers, such as those being developed at Carnegie Mellon

University [Smailagic and Siewiorek 1996 - #132] [Finger, Terk 1996 - #45], are more

intimately associated with the user, either embedded in clothing or worn similar in

fashion to a wrist-watch. The ultimate integration of a wearable computer could

physically link flesh and silicon. However, the more modest aim of wearables right now

is to continuously provide computing resources to the user wherever she is, and

whatever she is doing. An analogy is often drawn with clocks in order to demonstrate

how a technology can become so indispensable that we want wear it, i.e. the wrist-

watch. As Selker points out [Selker 1996 - #130], wearables are already starting to be

used in industry but there are many user interface issues to be resolved, and not just in

the direct interaction of human with machine but also in the larger social picture. To

continue the wrist-watch analogy, a number of social statements are inferred from one’s

watch, not least if looking at it whilst in a conversation one can assume the person is

bored or is eager to leave [Feiner 1999 - #40]. Many more situations similar to these are

likely to confront wearable users.

The final computing device technology we wish to address is that of ubiquitous

computing, a term coined by Mark Weiser [Weiser 1991 - #149, Weiser 1998 - #150].

Chapter 1: Introduction

7

The term pervasive computing is also often used synonymously. The ubiquitous

computing concept lies on the other end of the spectrum to wearable computing,

proposing that rather than users possessing their own personal devices they will find

the computing equipment they desire wherever they need it in their environment and in

all shapes and sizes to suit the task at hand. There is an implicit need for an advanced

wireless communications infrastructure so that the electronic resources the user wishes

to work with are accessible from the device they choose to use. Transparent ease of use

is also another essential requirement to ubiquitous computing: the devices themselves

should be transparent to the task at hand much like how a person drives a car to a

destination without thinking about the technology at hand or how it works. Perhaps the

most difficult requirement to satisfy in the immediate future is the need for almost

disposable pricing levels of computers in order for them to be freely distributed about

our environment. However, a creeping proliferation could already be conceived to have

started with computing equipment such as PCs, set-top boxes, PDAs, and new devices

such as web-enabled phones and microwaves, advancing into our homes and everyday

world.

1.2.1.2 New Sensors

Whether it be palmtop, communicator, wearable, or ubiquitous, new types of

computing device are becoming more and more present and integrated into our

everyday lives. In so doing these devices are exposed to dynamic ever-changing

environments of use, with completely different parameters than that of the world of the

desktop. No longer can the computers expect the user to work within its artificial

desktop world, the computer must now work within the user’s real world. And to do

this effectively they need to become context-aware, spurring the need for some ability

to sense the physical world around them, most notably their location.

One of the first and most well known forays into location sensing was the Active Badge

Network developed at AT&T Labs (formerly Olivetti Research Labs) [Bennet and

Harper 1993 - #8] [Want, Hopper 1992 - #145]. Primarily intended for indoor use, this

system required the installation of at least one Infrared transceiver per room, which was

physically connected to a networked “condenser” that forwarded location sightings to a

centralised server. People or equipment whose location should be monitored were

Chapter 1: Introduction

8

issued with a small badge that identified the person/equipment with a unique ID. This

ID would be transmitted over Infrared and detected by the nearest transceiver that in

turn reported it to a central server, allowing it to maintain a model of the current

whereabouts of people and equipment.

Although technically very successful the active badge network faced a number of

problems. Firstly, it required an initial non-trivial installation of transceivers that

required lots of physical wiring to the communications and power network. Secondly,

being a centralised system, user’s are justifiably concerned about the security and

privacy of their location information and what it is being used for. Thirdly, the room-

sized location granularity is fine for some applications, such as the automatic phone call

routing prototype developed, but higher granularity is needed for more sophisticated

applications. Fourthly, it requires users to attach an electronic badge to their clothing,

which would often be forgotten (sometimes deliberately) or the garment it was attached

to removed, etc.

The Active Floor [Addlesee 1997 - #3] attempted to resolve the latter problem through

specially equipped floor tiles that would recognise a user through nothing other than

their footsteps. Furthermore, the floor tiles could also try to gauge a user’s mood or the

items they were carrying through variations in the footstep pattern. Unfortunately,

although providing a better granularity of location data this system requires even more

infrastructure investment than with active badges, the privacy issue remains unresolved,

and there are huge technical challenges in developing the footstep recognition

algorithms.

The most recent reincarnation of Active Badges are Active BATs [Ward, Jones 1997 -

#147]. Similar in general principle, this system outfits the ceiling of a room with an

array of ultrasound transceivers that are used in collaboration to triangulate the position

of a user within the room, based on the travel time of a ping from her BAT to each of

the listening transceivers. This system greatly improves the location accuracy of active

badges to a level of centimetres, allowing for a much broader range of applications.

Furthermore, this level of location granularity permits two BATs per

person/equipment to be used in order to determine orientation in addition to location.

The level of accuracy of the system makes it quite appealing for indoor applications

despite the infrastructure costs, although the location privacy issue remains unresolved.

Chapter 1: Introduction

9

The Cricket [Priyantha, Chakraborty 2000 - #107] and Locust Swarm [Kirch, Starner

1997 - #72] systems developed at MIT overcome both infrastructure cost and privacy

concerns with a non-networked distributed solution. Small devices, called Locusts, are

suspended from below the lighting in rooms and take their energy from solar cells

mounted on the top of the device. A person’s PDA may communicate with a Locust in

its immediate vicinity through IrDA or radio signals (both communications mediums

have been tried in two different systems). The locust device is not very intelligent, only

allowing clients to set and query a limited number of name-value pairs that it maintains.

These name-value pairs can be used to store information about the environment, such

as the location, owner of the room, etc. Although the locusts are completely

disconnected to anything other than the clients that approach them, it has been

proposed that they could be used for relaying messages by piggybacking them onto

client devices that transfer them to the next locust, similarly in principle to how a virus

spreads.

One technical problem remains with the locust devices, and that is in how they

communicate with clients. If using IrDA then the effective communication range of

most PDA devices is only 2-3 feet, requiring either a high density of locusts or for the

user to closely approach them – neither option is particularly attractive. Using radio-

based communications solves this problem but this requires adding special radio

transceiver equipment to existing PDA devices – another unattractive prospect. Both

problems also face passive radio tag technology, which requires special detection

equipment (that sends out a pulse that is “reflected” and augmented by the tag to

include its unique ID) and close proximity of the detecting device in order to function.

IrDA beacons developed at lesswire AG [lesswire 2001 - #82] take their inspiration

from locusts but are more similar in operation to a lighthouse, in that they transmit a

pre-programmed beacon identifier at regular intervals (typically 1-2 seconds). The

beacons use high power Infrared LEDs allowing beacon transmissions of up to 8

metres with an angular spread of 45 degrees. As the beacons only broadcast

information (i.e. no return communication is required from the client) any of today’s

PDA devices may use the beacons, regardless of their return IrDA signal strength, and

many PDAs may receive the same beacon transmission simultaneously. The PDA may

Chapter 1: Introduction

10

contain a mapping table of beacon IDs to locations or it may choose to report its location

to a central server in a similar fashion to active badges.

One form of unique ID system that is already widely deployed today, though typically

for object rather than location identification, is the common barcode. However,

although barcodes are supremely inexpensive compared to IrDA beacons or any other

electronic form of tagging, a computing device must be equipped with a relatively

expensive laser scanner in order to detect them, and must typically be closer than one

metre to perform a scan successfully. Although suited to specialist applications, such as

inventory management, they do not make for a mass market and transparent location

sensing system. The CyberCode system developed by Rekimoto [Rekimoto and

Ayatsuka 2000 - #110] aims to address and improve upon some of these deficiencies

with more sophisticated forms of barcode that can be recognised by digital cameras and

successfully operated at much greater distances from the target barcode. Although

sharing the extremely low infrastructure cost of normal barcodes (CyberCodes can be

easily prepared, printed, and stuck to a wall, door, or any other object) they do require

the detecting computing device to be equipped with a digital camera. This requirement

may not be so excessive in future computing devices, especially wearables, which often

incorporate digital camera apparatus. In fact, some research in analysing the video

images from digital cameras [Janin, Zikan 1994 - #68] is exploring how to recognise the

environment in a similar fashion to the way we humans do. However, this is an

extremely difficult task and is not likely to be viable in the near future.

The sensor solutions discussed thus far are primarily intended for indoor areas as they

require the environment to be outfitted with special equipment. Some of these sensors

may also be used in outdoor environments although they are still limited, for obvious

practical reasons, to confined areas.

By far the most common location-finding technology in outdoor environments is the

Global Positioning System (GPS) [Texas-University 1999 - #141] [Herring 1996 - #59],

which is now in common use by everyday consumers for activities such as route finding

on holiday [Wright 1995 - #153]. Twenty-four satellites orbiting the earth ensure that a

ground-based receiver with a clear line of sight will be able to “see” at least four

satellites from which it may compute its own position (using the communication time

period, and hence calculable distance, to each satellite as the basis). Initially the accuracy

Chapter 1: Introduction

11

of the GPS signal was deliberately downgraded by the military of the USA (who own

the GPS satellite system) with an introduced error system, called selective availability. Only

military receivers were able to decode the GPS signal without error. However, except in

times and places of conflict, selective availability has now been removed and common

civilian receivers can obtain location accuracies within 2-10 metres. With planet-wide

coverage, relatively good accuracy, and no infrastructure or usage fee (just the cost of

the receiver), GPS has become the dominant outdoor positioning technology.

Unfortunately the signals used cannot penetrate buildings or even dense vegetation,

preventing their use indoors and causing some problems in urban canyons such as

skyscraper lined city streets.

Of course, sensor technology is not limited to the detection of location, although

location does tend to receive most attention in context-aware computing circles due to

the obvious relevance for computing devices that are increasingly mobile. Sensing

location is also considerably more complex when compared to sensing light levels,

temperature, movement, magnetism, time, etc. For the latter senses, standard

technologies exist which can be re-used and adapted from other industries, but location

sensing still poses many research issues.

Although well understood and in existence for some time, conventional sensors may

also be deployed in new and innovative ways. Harrison et al [Harrison, Fishkin 1998 -

#57] equipped standard PDA devices with various tilt and touch sensors that allowed

physical movements of the device to be used as a means of interaction. For example, a

list of items could be scrolled down by physically tilting the device downwards, and vice

versa to scroll the list up.

Radically new types of sensor may also have yet to be devised. Rudall [Rudall - #118]

describes a system comprised of a row of electronic sensors worn on a headband to

pick up minute changes in electrical activity in the forehead muscles and within the

brain. Currently such systems are only able to detect quite coarse changes in alpha and

beta states of the user’s brain, but future systems may conceivably allow mind control

of computer systems, for applications such as thought-to-text word processing.

Ultimately these computers may move beyond simply sensing their environment and

actually transform it in some fashion. Fletcher [Fletcher 1996 - #49] proposes a

Chapter 1: Introduction

12

universal force I/O panel that could form the shape of the Rosetta stone, a prehistoric

fossil, a keyboard, etc. as necessary for the task and data at hand.

1.2.1.3 New Communications

Many of today’s desktop computer applications are reliant on a connection to Intranet

or Internet based resources, and the same is likely to be the case for the new breeds of

computing device. Of course, for these new devices, which as a rule tend to be very

mobile, some form or wireless communications rather than a fixed cable connection is

required.

Early wireless communications technology was characterised by low bandwidth and low

reliability. Although this is now much better and is continuing to improve, the concepts

proposed to address these characteristics are still useful. For example, Dix [Dix - #34]

argues that it is PACE that is generally the most important characteristic in wireless

communications and not bandwidth, i.e. the importance of interaction speed and

response times, not the speed at which large quantities of data can be conveyed. Dix

also puts forward the notion of designing applications with the level of connectivity

exposed to the user so that they may adjust their expectations appropriately.

New wireless communications technologies are coming from two distinct development

efforts:

i. Those focused on improving wide area telecommunications networks that

were initially intended to support mobile voice telephony, but which are

now increasingly supporting data centric communications.

ii. Those focused on developing wireless successors or replacements of

traditional local area networks such as Ethernet.

The majority of today’s mobile telephone networks are second-generation systems;

digital rather than analog (i.e. first generation) but still circuit switched (i.e. calls to a

particular destination are routed and fixed for the duration of a call). GPRS (General

Packet Radio Service) is extending this system to what is know as “2.5G”, facilitating a

packet-based data communication system where there need be no fixed calls in order to

transmit data. As users only pay for the data they transmit, and not the duration of a

Chapter 1: Introduction

13

call, this enables an “always on” Internet connection. Combining this with the much

higher bandwidths expected from third generation systems (3G) makes for a very

comfortable communications link. See [Emmerson 1998 - #37] for a good overview of

1G to 4G telecommunications technology.

From the local area networks perspective, wired technologies such as Ethernet have

made the jump to wireless implementations with standards such as 802.11 (see

[Goldberg 1995 - #56] for a good review of 802.11). Wireless LAN systems differ from

the telecommunications based systems in that they offer much higher bandwidths over

a limited area (approximately 150 metres with most 802.11 implementations). Wireless

LANs enable the ad-hoc formation of networks, but are more typically used to provide

extensions to a core wired LAN (such as Ethernet) via wireless access points

(essentially a bridge between wireless and wired networks).

A new form of wireless network has emerged with the specific intention of addressing

the needs of small and mobile computing devices: Personal Area Networks (PANs).

PANs intend to enable the various devices that a user carries on his person to

seamlessly connect and communicate with each other. Bluetooth [Bluetooth-

Consortium 2001 - #11] has become the industry standard for this form of short-range

high-bandwidth networking (typically less than 10 metres range). Not only does

Bluetooth define the means for communication, it also provides a discovery protocol

that enables devices to query their physical environment and then discover and connect

to nearby resources that they would like to use. For example, a user’s mobile phone

may connect to their PDA’s address book in order to retrieve a phone number and

then connect to the user’s wireless earpiece to route the received audio channel.

Applications need not be restricted to devices present on a single user. For example,

consider an automatic check-in system at airports in which the user’s PDA

automatically discovers the check-in system and performs the necessary tasks for its

owner.

Wireless LANs and PANs tend to support local area “hot spots” with high bandwidth

and ad-hoc networking, whereas wireless telecommunications provides low bandwidth

connections but with much broader coverage over a large part of the urban world. The

technologies complement each other and will be used in conjunction. Mobile phones

and PDAs seemed destined to merge into hybrid devices such as personal

Chapter 1: Introduction

14

communicators, and the Bluetooth consortium aim to make Bluetooth chips so cheap

(around 5 dollars a piece) that there will be no obstacle to their goal of embedding them

in the vast majority of electronic devices and appliances. Due to the nature of its design

802.11 technology it is more expensive to manufacture and also consumes more power,

therefore it is likely to remain as an alternative to wired LANs for larger devices such as

laptops.

One final interesting aspect of wireless communications technology is the additional

ability to use it as a form of location sensor. A number of companies are working on

solutions to provide location information to an accuracy of approximately 70 metres via

triangulation of wireless telecommunication base [Duffet-Smith 1996 - #35]. This

research has been expedited by the legal ruling in the USA that mobile phones must be

able to report their location on emergency service calls (known locally as 911 calls)

from 2002 onward [FCC 1996 - #39]. Similar triangulation techniques may be

employed by wireless LANs and PANs, but the environmental effects on the signal

propagation make it rather difficult in most environments. However, in PANs such as

Bluetooth the cell size of the network may be so small, e.g. 10 metres, that the cell ID

may be useful location information in itself.

1.2.2 Applications

These new technologies are interesting in themselves, but it is really the compelling new

applications (or lack of them) that determine their success. One of the first application

areas to be investigated was bringing the WWW to connected PDA devices. Early

research in this application area concentrated on porting the same web browsing

application semantics to these new platforms, with a focus on the effective caching and

redistribution of client and server side processing to suit the new environment of use

(i.e. poor resource devices with low bandwidth and unreliable connections) [Bartlett

1995 - #7] [Gessler and Kotulla 1995 - #55] [Kaashoek, Pinckney 1994 - #69]. Work

by Voelker and Bershad [Voelker and Bershad 1994 - #144] actually sought to change

the web browsing semantics in order to offer browsing experiences more relevant to

mobile users. Their key inventions were the active document and dynamic URL

supported in their modified web browser, Mobisaic. Special dynamic environment

variables were made available to applications so that they could determine elements of

Chapter 1: Introduction

15

their context of use, such as location. References to these dynamic environment

variables could be placed in a URL to make a dynamic URL. When submitting the URL

request the web browser would substitute the references for the current environment

variable value, enabling the context-aware selection of a web page. In addition to

returning conventional web pages, the server may also return active documents. These

appear to the user as normal web pages but they contain subscriptions to dynamic

environment variables with associated actions to perform should the variable change,

e.g. to reload the current URL or to load another URL. The combination of active

documents and dynamic URLs allowed a context-aware browsing experience where

pages appropriate to the current context could be downloaded and autonomously

update their content with respect to further changes in context. Schilit et al also

proposed a form of context-aware extension to web browsers [Schilit, Douglis 1996 -

#126], but concentrated more on the context elements of cost and connectivity,

making them very visible to users to enable them to make time/money trade-offs given

their immediate information needs. Numerous scenarios for mobile web browsing have

been posed, ranging from accessing the library whilst sitting by the campus lake (in

Fosters’s “Library without a Roof” [Foster 1995 - #51]) to in-car Internet access (in

Jameel et al’s “Web on Wheels” [Jameel, Stuempfle 1998 - #67]).

Continuing the transport theme, researchers at BT Labs near Ipswich, UK, have

equipped busses on one of the town’s main bus routes with GPS receivers that

periodically transmit their location back to a central monitoring station [Thompson,

Sheat 1999 - #142]. Their aim is to overcome what has been described as the highest

barrier to the use of public transport: a lack of accurate, reliable and accessible

information. Using the location information collected in realtime from buses they

address this problem by providing ubiquitous access to a dynamic timetable. Through a

web page, mobile phone, or intelligent bus stop display, a potential bus user can quickly

find out which bus to take and when it will really be at their nearest bus stop. BT hopes

this system will increase the use of public transport by locals and visitors alike.

1.2.2.1 Electronics Guides

Addressing the same type of potential user, electronic guides for tourists and/or

residents are one of the most widely researched applications of new mobile technology.

Chapter 1: Introduction

16

They provide the means to research context-aware issues in an environment and

application that everyone can immediately understand and in which new benefits can be

clearly distinguished. Researchers at the University of Lancaster have been forerunners

in electronic tourist guide research and have developed a system called GUIDE, based

on a tablet computer that uses an 802.11 network for both wireless information access

(via a web browser) and in determining location (from the cell ID) [Davies, Cheverst

1999 - #24] [Cheverst, Davies 2000 - #21] [Cheverst, Davies 2000 - #22]. The system

aims to provide the user with maps for navigation, personal tours, online chat, online

service provision and, of most interest to us, context-aware information retrieval. By

clicking on a special information button on the GUIDE systems web browser interface

a list of information related to the current context is displayed. In this system context is

divided into environmental (time of day, opening times of attractions, etc.) and personal

(visitor’s current location, interests, language, food preferences, etc.). The context

information is used in many places, not just in the information button function but also

for tasks such as dynamically rearranging a tour itinerary when it becomes clear that a

user will not arrive at an attraction before it is closed for the day. In addition to

developing an object model to store contextual information, a major focus of the

research has been on user interface design and evaluating the application through a real

world implementation and user trial. Extending an existing application (i.e. the web

browser) for a new purpose gave rise to a number of interesting issues, such as the

semantics of the forward and back buttons (i.e. do they mean forward and backward in

terms of pages or locations?). Issues of connectivity were also explored within the user

interface, where it was found that exposing the connectivity level to the user greatly

helped their understanding of the functioning of the system.

The CyberGuide system developed at Georgia Tech [Abowd 1997 - #1] [Long, Aust

1996 - #84] shares GUIDE’s aim of reusing information that is already on the Web

rather than creating new information specifically for an electronic guide, although they

also see the need for active content with which the user can communicate or interact

with the environment. Rather than a generic guide for a large area, as developed at

Lancaster, the CyberGuide work has developed specialist guides for specific scenarios,

e.g. an indoor Apple Newton-based guide providing information and navigation

assistance to visitors at the university’s open days (using infrared beacons to determine

location), and an outdoor guide that helps the thirsty in finding the city’s bars (using

Chapter 1: Introduction

17

GPS to determine location). A major focus is the development of a generic application

structure comprised of modular map, information, positioning and communication

components, which correspond to the real world human roles of cartographer,

librarian, navigator, and messenger. The decoupling of these generic components

allows for specific guide applications to be rapidly developed. In particular, the authors

highlight the need to separate positioning and communication components (even if to

begin with an application may use the same underlying technology to achieve both

services) in order to enable the incorporation of different technologies in the future.

The TOI system (Travellers Online Information system) [Dias, Santos 1996 - #33]

attempts to tackle a much wider-ranging form of electronic guide that provides

countrywide travel assistance. They TOI authors describe their work as attempting to

bring ubiquitous computing to GIS (Geographic Information Systems). TOI seeks to

provide information about places, transport suggestions, digital maps with route

guidance, general sport and cultural info, and services and goods acquisition (theatre

tickets, cinemas, restaurants, car rental, cabs, etc.), where the provider knows the user's

location automatically. The research concentrates on the development of such services

and uses a relatively simple technical infrastructure where permanent information is

stored locally on the user’s device and volatile information (like event information) is

delivered over an intermittent GSM connection. Location information is obtained via

IR beacons, although it is intended that these may be substituted with other location

systems. A novel user interface control is also presented, hierarchic marking menus,

which effectively combine the two goals of ease of user interface navigation by new

users with fast navigation by experienced users.

The work of Not et al [Not, Petrelli 1997 - #94] [Not and Zancanaro 1998 - #95]

concentrates on the specific domain of museum guides, with the research focusing on

the presentation and structuring of information. Rather than displaying information on

a PDA screen, and therefore competing with the museum exhibits for the user’s visual

attention, the guide presents information audibly. The choice of this mode in itself

presents a whole new set of HCI challenges, which the authors attempt to address.

They examine how the “world” of information relating to exhibits may be structured,

segmented and automatically presented to the user in an appropriate manner,

suggesting an augmented world comprised of both physical and virtual elements.

Chapter 1: Introduction

18

Similarly, the Vuman series of wearable computers developed at Carnegie Mellon

[Smailagic and Siewiorek 1996 - #132] present campus map and navigation assistance

to users via a head-mounted see-through display at the same time they are viewing their

physical environment.

1.2.2.2 Medical Applications

Another relatively large area of applications research for new types of mobile

computing technology is in patient treatment. As with visitors in tourist guide systems it

is clear that the doctors and nurses involved in patient treatment are highly mobile

people and require access to information in a variety of places. One of the three

application areas that Bruegge explores [Bruegge and Bennington 1996 - #18] is in the

treatment of patients in their homes (the other two application areas are emergency

service location-based information assistance, and transport inspection and

maintenance). The simple ability to retrieve remote patient data (with no contextual

assistance) improved the visiting doctor’s productivity by twenty percent.

Within the confines of a hospital Freedman and Pollock [Freedman and Pollock 1996 -

#52] implemented a PDA based wireless information system that gave doctor’s access

to patient and reference data during their ward rounds, which resulted in an increase in

the quality of data collected. Similarly, Pentland et al [Pentland, Petrazzuoli 1997 -

#105] seek to provide the Doctor with continuous access to reference materials, and

also to offer the opportunity to communicate with other specialists. Where their

approach differs is in the method of delivery: a wearable computer rather than PDA.

This combination of computer and doctor they refer to as the “digital doctor”.

Medical applications tend to concentrate on the provision of appropriate patient

and/or reference information whenever and wherever it is needed via wireless

communications and new mobile computing devices. Unlike tourist guides these

applications tend to focus more on ubiquitous access to any information in any place

rather than access to particular information in particular places. However, although not

location oriented there are still many interesting contexts that context-aware software

may use in this field, such as the nearest patient, the vital statistics of this patient, their

treatment history, etc.

Chapter 1: Introduction

19

1.2.2.3 Augmented Reality

Some of the latter tourist guide application research we presented spoke of combining

virtual data with the real world. This has become an area of application development in

its own right, called augmented reality. Feiner et al [Feiner, MacIntyre 1993 - #41]

helped pioneer augmented reality research with their work on merging X windows with

reality via see-through head-mounted displays. The system monitored the location and

direction of the user’s head and enabled them to position windows so that they

appeared attached to the display, attached to the direction of view (providing a virtual

cylindrical workspace around the user’s head), or attached to physical objects. The

concept of merging the physical and virtual world was also implemented in a much

more literal sense by Feiner et al in the KARMA project [Feiner, MacIntyre 1993 -

#43]. This work explored how to merge virtual 3D models and diagrams with their real

world counterparts in order to aid and instruct maintenance workers in their repair

work. A main research theme in this literal form of augmented reality is in the precise

tracking of the user’s position and point of view, and in convincingly overlaying the

computer generated imagery onto the user’s view of the world. Webster et al [Webster,

Feiner 1996 - #148] have also used the same technology to reveal more about the real

world rather than to superimpose virtual data onto it. In a system designed to aid

methods for construction, inspection, and renovation of architectural structures, they

provide in effect a form of x-ray vision that enables inspectors to see features and

structures that lie behind the surface layer of concrete, e.g. imagine being able to see the

electrical wiring and piping behind a wall before beginning commencing reconstruction

work there. Butz et al [Butz, Hollerer 1999 - #19] have sought to combine augmented

reality with conventional computing devices such as laptops and PDAs in the context

of collaborative working. The augmented reality view of a workspace allows users to

work together on shared data, but it also allows them to maintain their own private

view of the workspace for data they do not wish to reveal. Data may also be dragged

and dropped to and from conventional computer displays so that the most convenient

interface for manipulating this data may be utilised. Feiner et al [Feiner, MacIntyre 1997

- #42] also utilise handheld computers in their augmented reality tourist guide,

overlaying indicators of interest onto the visitor’s field of vision but using the PDA’s

screen to present the information content if an indicator is selected. This work is also

Chapter 1: Introduction

20

extended into a full multimedia “situated documentary” system in [Hollerer and Pavlik

1999 - #62].

Fitzmaurice et al [Fitzmaurice, Zhai 1993 - #48] concentrate on handheld displays that

are tracked in order to provide a portable virtual reality workspace. These virtual 3D

workspaces, described as fish tanks or 3D spreadsheets, are viewed and manipulated

through a handheld display that when moved or tilted gives the effect of moving a

window onto the virtual world. In further work on “Situated Information Spaces”

Fitzmaurice et al [Fitzmaurice 1993 - #46] [Fitzmaurice and Buxton 1994 - #47]

propose that these virtual workspaces can be situated in particular places within the

user’s physical environment whereby physical objects act as anchors for virtual

information. One of the main aims of this research is to overcome information

overload. Anchoring data to physical locations provides a logical means of partitioning

and organising information, where the physical objects also serve as a retrieval cue to

users. Although it is suggested that some physical indication of embedded information

be provided, much like the flashing light of an answering machine, for the most part

this research attempts to extend and complement existing physical infrastructure with

virtual information. A simple example is given in which paper-based resources, such as

a map, may be enhanced with more detailed information as the user’s palmtop display is

moved closer to the paper.

Rekimoto and Nagao [Rekimoto and Nagao 1995 - #112] effectively address many of

the practical issues needed for widespread implementation of such systems with their

work on identifying real world objects through the use of an enhanced form of paper

barcode. These barcodes can be attached to physical places and/or objects and

identified by some image recognition software running on the user’s camera-equipped

computing device. They propose application scenarios such as exhibitions of paintings

where the information about a painting can be tailored to each user depending on their

knowledge level, age, and preferred language. In [Rekimoto, Ayatsuka 1998 - #111] the

authors propose the term augmentable reality to reinforce their research into

augmented reality systems where the emphasis is on the user creating information

rather than discovering and accessing existing data. In this work they concentrate on

interfaces that allow users to tag data and voice annotations to location and time

Chapter 1: Introduction

21

contexts in an effective manner, not just through their portable devices but also

through desktop email and web-based applications.

Such dynamic content is also the focus of Gellersen’s research [Gellersen, Beigl 1999 -

#54], in which the concept of environment-mediated communication (EMC) is

developed. EMC enables person-to-person communication using the environment as a

form of intermediary. The authors avoid particular implementation methods and

concentrate on developing the semantics of how the physical environment could

mediate communication. For example, a note attached to a door could be addressed to

a particular person or a group of people, be relevant only during a particular time

period, have one-time or many-time delivery semantics, be from an anonymous source,

etc. They also expound upon potential storage and communication models from source

to sink.

Brown [Brown, Bovey 1995 - #16] [Brown 1996 - #15] uses the Post-It note as a

generic metaphor for augmented reality applications. Instead of writing notes on a piece

of paper and attaching them to a physical object or surface, electronic Post-Its, called

stick-e notes, can potentially contain any sort of digital data and be attached to a variety

of contexts. A common structure for marking-up data with context information using

SGML is proposed, and triggering (the automatic invocation of a stick-e note in a

matching current context) is considered as the focus of application processing. The

research concentrates on these generic data-structuring and context-matching issues of

augmented reality systems, irrespective of devices, sensors or infrastructure used in

particular implementations, and aims to satisfy a broad range of applications that

require the ability to discover and present information in context. This research forms

the foundation of our work on exploring context-aware application frameworks in

chapter two, and also provides the basis for some of the fieldwork applications

discussed in subsequent chapters.

As with the EMC work, stick-e notes are primarily a method of linking conventional

digital data to the physical environment rather than offering new types of content or

attempting to integrate the content with the physical world as in the more literal types

of augmented reality systems. In a thorough overview of the role and applications of

wearable augmented reality systems, Starner et al [Starner, Mann 1997 - #134]

Chapter 1: Introduction

22

accurately refer to this type of application as physically-based hypertext. The authors

also describe another type of augmentation, that of extending a person’s memory.

1.2.2.4 Memory Prostheses

With a belief in a future of “intimate computers” (i.e. wearables or PDAs that are worn

or carried everywhere) Lamming and Flynn [Lamming and Flynn 1994 - #77] first

explored the idea of using such devices as aids to human memory. They developed a

system called Forget-Me-Not, based on the ParcTAB devices. This system observed the

context of the user with respect to the documents that they worked with on their

devices, automatically recording contextual biographies for each electronic object,

which could be later used to help the user recall the information. Based on the

observation that users rarely file or categorise short notes effectively, their contextual

history, in terms of location, encounters with others, work station activities, file

exchange, printing, and telephone calls, could all be used to help the user find a

document, e.g. to help me find the note I made after receiving an SMS message from

Petra.

This type of application is unusual from a context-awareness point of view as it is a

historical context rather than a current context that is of primary importance. However,

in other work on developing a “human memory prosthesis” the current context is of

more concern [Lamming, Brown 1994 - #76]. In this work the authors separate

memory problems into three categories: retrospective (remembering things about the

past), prospective (remembering to remember things in the future), and action slips

(forgetting to do things). The second two problems require the memory prosthesis to

continually examine the user’s current context and present information that should be

remembered in the appropriate situation, e.g. the right time, place, encounter, etc.

Rhodes’ [Rhodes 1997 - #116] work on a remembrance agent cites the key wearable

computer characteristics of being portable while operational, hands free use, equipped

with sensors, proactive, and always on, as a good match to the needs of memory

prostheses. The remembrance agent continuously runs on the user’s wearable and

“watches over their shoulder” at what they are doing in order to present them with

previously recorded notes, emails, papers, and other textual documents that may be of

use to the user in their present activities. The agent uses seven contextual cues to gauge

Chapter 1: Introduction

23

the relevance of a document: the information itself, the wearer's physical location, the

people around, a subject field, a date-stamp, a time-stamp, and the day of week. New

types of context can be added, can be extracted from the documents themselves, or can

be manually entered by the user as well as being automatically captured from sensors.

An interesting and somewhat ironic observation is that the importance of different

context elements changes depending on the current context. To cope with this

observation Rhodes permits the weighting of context elements, and enables these

weightings to differ for different types of activity and different types of document being

recalled. The author also addresses how best to display the recalled information,

balancing the amount of information available with the possibility of overwhelming the

user. An interesting possibility posed by this research is the ability to use someone else’s

memory, accessing a different pool of information from another memory prosthesis

[Rhodes and Starnar 1996 - #117].

Desktop-based memory prostheses such as Margin Notes (a program that tries to

establish interesting links between the web page a person is reading and their various

stored documents, notes, emails, etc.) [Rhodes 2000 - #115] show how context-

awareness is not just useful in the domain of mobile devices. In these systems context is

considered to be the current topics of the information being viewed, and the interests

of the user, rather than the current physical location.

The CyberMinder system [Dey and Abowd 2000 - #32] concentrates on supporting the

action slips or to-do items type of memory. Current to-do list programs help the user

record to-dos so that they will not be forgotten, but they do not assist the user in

remembering them in the situation in which they should be done. Some physical

systems, such as Post-It notes, attempt to address this by placing the note in a particular

location, but the authors argue that a much richer range of context is required to

effectively support to-do reminders, e.g. location, time, share price conditions, weather,

activity level, number of people present, etc. They also incorporate a degree of

ubiquitous computing philosophy to the system with the ability to create and deliver to-

dos from a number of different devices, and to allow third parties to also submit

reminders to an individual.

Chapter 1: Introduction

24

1.2.2.5 Mediated Reality

Much of the work we have addressed thus far has dealt with accessing information in

new ways, and in situating that information in the physical world. Another body of

research lies in mediating reality, that is, in some way changing or adjusting it. Mann

[Mann 1996 - #87] has worked on wearable computer devices over a number of years

including much work in the area of augmented reality. He suggests the term “mediated

reality” to emphasise that these devices can also alter and remove from the user’s view

of reality as well as adding to it [Mann 1997 - #88]. Rather than a see-through head-

mounted display, one of Mann’s devices uses opaque glasses that present the images

from a head-mounted video camera (situated so as to record the view that the user

would see without the glasses) but passes this through some sophisticated image

processing software that may alter parts of the image first. For example, Mann poses

the possibility of removing his ex-girlfriend from the scene whilst passing her by in the

street!

The concept of synthetic synesthesia proposed by Mann is also explored by Foner

[Foner 1997 - #50] in work on artificial synesthesia via sonficiation. The idea is to

extend a person’s senses by remapping those senses that are normally undetectable by

humans onto senses that are detectable. Foner has remapped the different wavelengths

of the invisible spectrum onto different wavelengths of the audio spectrum, enabling

users to hear what they cannot see. Some interesting applications are proffered such as

hearing if the grass is sick today, or “seeing” an army jeep in the jungle (because the

jeep is camouflaged, and not really jungle, it only looks like the jungle in the visible

range of the spectrum).

1.2.2.6 Ubiquitous Computing

Although some applications try to incorporate aspects of the ubiquitous computing

philosophy, the majority discussed thus far are centred around wearable computers or

PDA devices rather than ubiquitous computing’s true vision of hundreds of devices

transparently embedded in our everyday world. This is more for the practical and cost

reasons of installing computing devices throughout the environment rather than a

disbelief in the vision itself. However, there is work being carried out on real ubiquitous

computing devices, primarily with the “Things That Think” research at MIT [MIT 2001

Chapter 1: Introduction

25

- #90]. Resnick [Resnick 1996 - #113] introduces this research in where he argues the

case for providing computing intelligence in everyday objects with the view that if we

are given new tools and media, not only can we accomplish new tasks, but we begin to

view the world in new way. Borovoy et al [Borovoy, McDonald 1996 - #12] give an

illustrative example with their work on examining how social dynamics could be

facilitated or otherwise affected through an electronic badge that understands

something about its wearer. When two people meet their badges communicate and a

series of LED lights give each person an indicator as to how much they do and do not

share in common.

Rather than equipping people with transparent computing capabilities, Paradiso [Paradiso

1996 - #97] explored how interaction and intelligence could be added to commonplace

inanimate objects in our environment. As a simple but illustrative example, a number of

party balloons were developed with the ability to interact conversationally. Upon

detecting a sound a balloon would “arm” itself and then begin “talking” after the noise

level had dropped below a certain threshold. A number of amusing demonstrations are

described where the balloons interact not only with people but also with each other,

such as two balloons playing each other excerpts from “duelling bango” and others

reciting random quotes of Marvin Minski. Sound is the important context for this

application, but for toys and tools Verplaetese [Verplaetese 1996 - #143] explores how

location can be used. Rather than concentrating solely on externally referenced forms

of location, where position is measured relative to the surrounding environment,

Verplaetese examines how internally referenced location detection may be employed

through sensors that detect acceleration, rotation, translation, etc. Resnick [Resnick,

Martin 1996 - #114] also explores ubiquitous computing in toys but emphasises that

these devices can be used to control the environment as well as sensing it and simply

being used themselves. Through a practical implementation of programmable Lego-like

bricks, the author aims to make children think of themselves as designers and inventors

and perhaps change the way children think about and relate to computers and

computational ideas. In summary, the focus of ubiquitous computing can be as much

about making people rethink themselves and their place in their environment as it is

about the new technology itself.

Chapter 1: Introduction

26

Elrod et al [Elrod, Hall 1993 - #36] explore how to make the buildings that we inhabit

more intelligent, with the focus on cost reduction through efficient use of resources. In

a testbed implementation a set of offices was equipped with temperature, light,

occupancy, and active badge sensors, in addition to computer controlled ventilation,

lighting, and heating outlets. Utilising the sensors a building management system may

customize the user’s physical environment to their particular environmental

preferences, and cost savings can be made through user selectable strategies for

switching off the lights, computer displays, and other appliances, and for turning down

the air conditioning or heating when offices are unoccupied.

Lewis [Lewis 1998 - #83] proposes that ubiquitous computing will first infiltrate our

homes through information appliances. Rather than the complex and difficult-to-use

desktop computer, “information appliances” will offer easy-to-use access to computing

resources to sophisticated but computer illiterate users. The author suggests that these

information appliances will take the form of Web enabled phones, televisions, and

other consumer appliances.

In addition to providing the physical computer resources scattered around a user’s

environment, another important aspect of ubiquitous computing is in the provision of

“soft” resources (i.e. data and applications) that the user likes to work with at any of

those computing devices. Bennett et al [Bennett, Richardson 1994 - #9] describe their

teleporting concept, where a user’s X-Windows application can follow them to the

nearest computer terminal. The concept utilizes an active badge network and a database

that stores the location of the terminals, so that when a user presses a button on her

active badge a server can destroy the old client window, find the nearest terminal, build

the new X client, and connect it to the appropriate server. This technique makes use of

a proxy server that sits between application client and server, which retains the state of

the application so that when a client is destroyed and new one connected, it appears to

the user exactly as they left it. Wood et al [Wood, Richardson 1997 - #152] extended

teleporting to form Virtual Network Computing (VNC) in which they enabled access of

the user’s “home” computing resources from any Java-enabled Web browser. The

client side is very thin; it simply transmits mouse and keyboard input and then draws

the resulting screen changes sent from the remote computer. In VNC the proxy server

sits between the Web browser’s Java applet client and the server’s operating system,

Chapter 1: Introduction

27

therefore allowing the user to access any software or data on the home machine. The

client-proxy protocols are generic so that any Java-enabled client may connect to any

platform on which a VNC server is running.

Rather than have the same applications follow the user from place to place as in

teleporting, Fickas et al [Fickas, Kortuem 1997 - #44] are interested in specialist data

and applications being made available in different places. In their NetMan system

[Kortuem, Segall 1998 - #73] the user’s wearable computer discovers information and

small applications within the environment, so that the wearable computer’s software

tools and data are customized to enable the user to work within their current

environment. Imielinski et al [Imielinski and Badrinath 1994 - #65] expound on a

similar concept which, based on increasingly ubiquitous wireless network coverage and

increasingly small cell sizes, allows the whole environment surrounding the user to be

treated as large in-place database.

1.2.2.7 Specialist Applications

There are many specialist applications that are being developed to take advantage of

new mobile computing and context-aware technologies. Asthana [Asthana, Cravatts

1994 - #5] has developed a personal shopping assistant that aims to help direct (or

perhaps, if the shop is involved, misdirect) the user to the goods they are interested in

and to allow them to make inquiries about certain items. Brody and Gottsman [Brody

and Gottsman 1999 - #14] have also produced an Internet enabled prototype device

that enables shoppers to scan the barcodes of goods to find out more about them. The

interesting spin on this application is that can also perform a search of Internet retailers

to try and find the same goods for cheaper prices. A further interesting development in

the same field is the Shopping Jacket [Randell and Muller 2000 - #108], which

combines beaconing from shops with location-sensing of shoppers.

Dey et al [Dey, Salber 1999 - #30] provide conference attendees with a personal

assistant that helps in a broad range of activities from receiving the slides of the current

presentation to monitoring the interest of their colleagues who are situated in parallel

tracks. In addition to location some less commonly used forms of context are also

employed, such as interest levels of other people, the logical place in the current

presentation, and the user’s personal interest profile. Stilp [Stilp 1995 - #136], however,

Chapter 1: Introduction

28

concentrates solely on location information determined via mobile phone networks to

support a number of tracking oriented services such as automatic locating of emergency

calls, location sensitive billing, vehicle fleet management, and package delivery

monitoring.

In chapter three we explore our own specialist application area: archaeology and

ecology fieldwork, where the very nature of the work calls for very mobile, context-

aware and easy-to-use technology. Usability and the correct choice of interface forms

part of much of the application-based research that we have presented thus far. It is of

particular importance in the case of our fieldwork applications, which must cause as

little distraction from the task at hand as possible. We have devoted chapters four and

five to the development of some user interface guidelines and a usability study

respectively. Hindus et al [Hindus, Arons 1995 - #61] illustrate the importance of

selecting the right user interface for new types of computing devices by posing the

humorous scenario of a Doctor who, standing in front of a terrified patient, uses her

PDA’s voice interface to record how bad the patient’s condition appears to be and that

amputation is probably the only option.

In the ParcTAB research a number of applications were provided that let users access

and control information, computation and their physical and electronic environments.

An important realisation of the ParcTAB team was that user acceptance depended on

many factors: size, appearance, convenience, peer pressure, application types, and

critical mass of applications. They found that in general people had established work

habits that are a barrier to learning a new system. For example, a calendar application

on the TAB was not as successful as expected as people already have traditional

solutions to this problem, and new solutions that are as good or only marginally better

(such as access to the online calendar) are not easily adopted. Other applications that

solved a real problem, however, were compelling to users. We believe our fieldwork

applications provide good solutions for such real problems.

1.2.3 Software Infrastructure

To realize these new applications for new computing technologies there is a need for

supporting software infrastructure to support their development and operation. Initial

research in software infrastructure for PDAs, wearables and other forms of mobile

Chapter 1: Introduction

29

computer focused largely on the accessibility and consistency of remote resources.

Honeyman and Huston [Honeyman and B 1995 - #63] proposed a number of caching

and replication strategies for accessing a remote file system from a mobile device that

suffers from some degree of disconnection. Saldana and Cohn [Saldana and Cohn 1994

- #121] reverse the problem so that the user’s most important files are hoarded on the

mobile device. In this case it is only when the user is near a desktop computer (where

there is probably better communications coverage anyway) that the files need to be

remotely accessed (i.e. from the desktop PC). Mukherjee [Mukherjee and Siewiorek

1994 - #91] examine the restrictions in the communication and computing resources of

mobile computers from the perspective of applications rather than files. Similarly to the

teleporting work earlier mentioned in the overview of applications, they recommend

the use of thin clients with only commands sent between the two in order to minimize

the need for communication and local computation.

Much of the earliest work focused on location transparency, i.e. seamlessly providing the

same communications, computation, and resources that the user is offered on their

desktop computing environments. Noble et al [Noble, Price 1995 - #93] suggest a

more realistic proposal, called application-aware adaptation, and a concrete

implementation of their ideas in the Odyssey API, an extension to the UNIX operating

system. The aim of this work is still to minimise the need for user intervention due to

poor communications or computing resources, but to reveal the available resources to

the applications so that they may adapt appropriately. They cite data fidelity as the most

suitable axis of adaptation where different data types offer different fidelity attributes

that can be adjusted to suit the available resources. For example, a video player

application may adjust the frame rate, image size, number of colors, etc. of the video

stream to make the best use of the available computing and communication resources.

In later work they reveal other applications that must still try and operate in an

application transparent way (such as their Coda file system), but suggest that

application-aware adaptation is appropriate for applications that can negotiate their

resource requirements with the operating system [Satyanarayanan 1996 - #123].

This leads us neatly on to software infrastructure for context-awareness, where it is this

very adaptation and reaction to the environment of use that is the centre of interest.

Schilit et al [Schilit, Adams 1994 - #125] pioneered research in this field, producing a

Chapter 1: Introduction

30

framework on which many new applications were built, such as a location-centric

yellow pages (where, using a technique called proximate selection, a list of entries is

ordered by proximity) and a location-based file browser (which let users store files in

particular physical locations). Many issues associated with context-awareness were

raised, such as how to continuously present this information to the user without

disturbing them, and predicting user’s actions by their historical context. Schilit’s thesis

[Schilit 1995 - #127] describes a software framework primarily oriented at supporting

location-aware services and applications but also dealing with the contexts of present

people and resources. Schilit provided an initial classification of different types of

context-aware computing activity, such as proximate selection, automatic contextual

reconfiguration (where the software adapts itself to the environment), contextual

commands (where context can parameterize commands such as “print” with the user’s

context, i.e. “print here”), and context triggered actions (essentially “if-then” rules

based on contextual conditions).

Other researchers have since tried to better define what is meant by context itself.

However, although researchers agree on a common intuitive understanding of context,

there has been little common agreement on a formal definition or classification. For

example, Bowskill et al [Bowskill, Morphett 1997 - #13] divide contexts into spectral,

spatial, temporal, and emotional, whilst Chevurst et al [Cheverst, Davies 2000 - #21]

suggest personal and environmental classes, Schmidt et al [Schmidt, Beigl 1998 - #128]

make two broad categories of human factors and physical environment which are

further subdivided, and Dey et al [Dey and Abowd 1997 - #31] propose physical,

action-based, and emotional categories. Rather ironically it seems that one’s perception

of context is rather dependent upon one’s context! The most successful definitions are

deliberately all-encompassing such as “any information that can be used to characterize

the situation of an entity, where an entity can be a person, place, or physical or

computational object” [Dey and Abowd 2000 - #28]. It seems that the context in

context-awareness can be just about any characteristic; real, virtual or imagined.

Harter et al [Harter, Hopper 1999 - #58] focus on location-oriented contexts such as

presence, proximity, and direction. In their work examining the anatomy of a context-

aware application, they build instances of every level of technology required from the

physical ultrasound sensor system to applications like teleporting. Supporting the

Chapter 1: Introduction

31

application software they have developed a highly optimised and robust service that

provides an object oriented model of the world via an underlying relational database

and the means for fast execution of location-based queries and events. They suggest

location relationships (e.g. next to, in front of, nearby, etc.) are more useful than

absolute locations (e.g. latitude and longitude, room name, etc.) and offer a

sophisticated concept of auras for modelling the directional aspects of location (e.g. a

monitor facing my direction can be used from a relatively long way away but a monitor

facing away from me is completely useless). This infrastructure has been built with the

active BAT sensor system specifically in mind, but there are many challenges in being

able to accommodate the plethora of other location sensor systems in the same

supporting software infrastructure. Leonhardt et al [Leonhardt and Magee 1996 - #80]

[Leonhardt, Magee 1996 - #81] address just this problem in their work on integrating

location sensor systems. Their approach maps location data from different sensor

systems onto system-specific cell spaces that are in turn mapped onto a common

sensor-independent cell space, called the zone space, which may also be split up into

manageable domains. The authors also make a good contribution to security and

privacy concerns in [Leonhardt and Magee 1997 - #79], issues that have otherwise yet

to be addressed in much depth in this new field. Demers [Demers 1994 - #27] suggests

that even seemingly innocuous data can infringe on privacy if enough is collected.

Herzberg et al [Herzberg, Krawczyk 1994 - #60] examine ways in which a user will be

able to “travel incognito” whilst Pftitzmann et al [Pfitzmann, Pfitzmann 1997 - #106]

look at security from a different angle, examining measures to protect user’s privacy if

their personal device (and data therein) is lost.

Leonhardt provides a fine platform for gathering, presenting, and managing location-

aware applications but, as Schmidt et al state [Schmidt, Beigl 1998 - #128], there is

more to context than location. In their work exploring other types of context they

consider elements of the physical environment, centred around infrastructure and

conditions, and also examine the more human-centric areas of context such as identity,

social environment, and task. As a simple practical example of a non-location context

they show an extended Apple Newton PDA that is able to automatically switch

between portrait and landscape modes depending on its physical orientation.

Chapter 1: Introduction

32

Another more peculiar example of context is used in the AROMA infrastructure,

developed by Pedersen and Sokoler [Pedersen and Sokolar 1997 - #104]. This system

aims to support a peripheral awareness of colleagues at a remote location. Sensors such

as microphones and video cameras are linked to capture objects which in turn are

routed through abstractor objects that transform the data into abstract representations

such as bustle factors. These abstract contexts are sent over the network and yet again

transformed at the remote end by synthesizer objects, which send the data to some

abstract physical means of representation such as a model merry-go-around whose

speed is in part dependent on the bustle factor. In the work of Chavez et al [Chavez,

Ide 1998 - #20] it is the user’s task and their location that take primary importance in a

supporting framework developed to enable devices to help users manage their complex

work patterns in which they may actively switch between many different activities.

Abstraction is a key ingredient of Hull et al’s [Hull, Neaves 1997 - #64] situated

computing service which, while citing the need to exploit many different types of

context, in its initial implementation is primarily location based. The main aim of the

service is to abstract applications from sensors by interpreting the raw sensor data

(possibly converting and combining data in the process) in order to provide a reliable,

stable and abstract view of the status of the current situation.

Other work has concentrated on providing generic application-level functionality in

software infrastructure. Kalakota et al [Kalakota, Stallaert 1996 - #70] suggest that

intelligent agents that may move from computer to computer will help the user in a

variety of tasks, and provide services that are similar to roles of human jobs such as a

librarian, investment advisor, and online shopping assistant. Long et al [Long, Kooper

1996 - #85] also offer an infrastructure based on human roles. Their software supports

guide type applications with four components based on librarian, navigator,

cartographer and messenger roles. However, in later research by the same group at

Georgia Tech the need for a more fundamental form of context-aware software

infrastructure has been examined [Dey, Abowd 1999 - #29]. In the most broad-ranging

research of context-aware infrastructure, in terms of the variety of contexts examined

and supported, they present a system based on the concept of widgets. They hope their

development of context widgets will share the same desirable characteristics as the

widgets developed for graphical user interfaces, i.e. separation of concerns, reuse, easy

Chapter 1: Introduction

33

access to context data through polling and notification mechanisms and a common

interface. Their component-based infrastructure consists of context widgets, which

collect and present sensor data, interpreters, which transform data into more

understandable forms, and context servers, which aggregate data into logically related

groupings (e.g. all context data relating to a particular person). These components may

be plugged together in different configurations and distributed over a network.

Our own work on context-aware infrastructure starts with an application-level

framework designed to support programs that act on changes in context in some way,

e.g. presenting a document to a user when she arrives at a particular location. In the

final three chapters of the thesis we examine the related work on software

infrastructure in much more detail than in this introductory overview, and propose our

own solution for providing an application-unspecific “context information service”.

This work proposes that each computing device will maintain a model of the world, or

more accurately, the subset of the world whose context is of interest to its human user

or client software. The world model contains objects, representing physical or virtual

entities, and their attributes, which represent the context of those entities. A number of

software components are presented, and these plug the model into the real world and

allow the conversion, manipulation, and management of context information, and its

access by client software or users.

1.3 Where this Thesis Makes a Contribution

Although new forms of computing and sensor hardware motivate this thesis to a large

extent, we are only interested in using them and exploring the new possibilities that

they create rather than in developing new hardware technology ourselves. Our area of

interest is in exploring a vertical slice of context-aware software spanning context-aware

infrastructure, application-specific infrastructure, applications, and user interfaces, as

illustrated in the following figure.

Chapter 1: Introduction

34

new hardware: computing devices, sensors, and communications

context-aware infrastructure

application-specific infrastructure

applications

user interfaces
Chapter 5

Chapter 4

Chapter 3

Chapter 2

Chapter 6

Chapter 7

Chapter 8

Figure 1. Illustration of the areas in which this thesis aims to contribute.

As can be seen from this diagram, rather than attempt to address all aspects of context-

aware software we have focused our research in specific areas of each layer. The figure

also shows which chapters address which layer. Chapter two starts at the application-

specific infrastructure layer where we extend Brown’s electronic Post-It note concept

[Brown, Bovey 1995 - #16] [Brown 1996 - #15] in order to provide a framework to

support applications that wish to react and adapt to changes in context. As suggested

by the figure, this framework addresses a sizeable portion of context-aware applications

but by no means does it span them all. Chapter three builds on this work by presenting

a very specific application area, ecology and archaeology fieldwork, for which we have

developed some context-aware PDA-based tools. This work in turn enabled our

broader research into user interfaces, which we present in two parts: in chapter four we

offer some HCI guidelines in building interfaces for such applications, and in chapter

five we describe the results of a usability study conducted on the users of the fieldwork

applications.

Chapter 1: Introduction

35

Having reached the top of our context-aware software stack we re-examined the role of

the context-aware software infrastructure and, after analysing other research in this

field, realised the need for a more general lower-level infrastructure to support context-

aware applications. This work is presented in chapter six, followed by a description of a

prototype implementation in chapter seven. Chapter eight concludes our work with an

examination of how such a context information service might be distributed across a

number of devices; unlike the rest of the thesis this is a paper design that has not been

implemented.

We hope that our work on applications will demonstrate the exciting opportunities for

new fields of computing – literally! We also use them as a basis to determine how useful

the concept of context-awareness is in practical applications. Our usability study aims

to show if such applications and technologies are readily accepted and useful to the

everyday user for which they are intended. And from the good and bad HCI design

lessons that we have learnt in developing the applications we also present some general

guidelines to help designers and developers to build better user interfaces for the

various new types of mobile computer.

Our work on infrastructure seeks to address the difficulty in adding context-awareness

to applications, which we believe is the primary obstacle to its more widespread

adoption. We propose two frameworks which we hope will enable developers to easily

build rich context-awareness into their applications just as they may now easily build

rich user interfaces into their applications via a common user interface framework.

Note that our research is presented in a chronological order. Although this means that

a few ideas presented in early chapters are superseded in later ones, we feel that it will

give the reader a better understanding of how the need for the different work has arisen

and how and why the various layers of context-aware software have been distilled.

In summary, we hope that our work will demonstrate the new application possibilities

which context-awareness presents and that by providing the necessary supporting

architecture, user interface guidelines, and better understanding of context itself, will

encourage, enhance and support the creation of context-aware software.

Chapter 1: Introduction

36

1.4 Published Work

Much of the work presented in this thesis has been published in conferences and

journals. These publications are listed bellow against the chapter that they correspond

to.

Published Work Corresponding
Chapter(s)

Pascoe, J. (1997). The Stick-e Note Architecture: Extending the Interface Beyond the User.
International Conference on Intelligent User Interfaces 1997, Orlando, Florida, USA, 1997,
ACM.

2

Pascoe, J., D. R. Morse, et al. (1998). “Developing Personal Technology for the Field.”
Personal Technologies 2(1): 28-36.

3

Pascoe, J., N. Ryan, et al. (1998). “Context Aware: the Dawn of Sentient Computing?” GPS
World 9(9): 22-30.

3

Pascoe, J., N. S. Ryan, et al. (1998). Human Computer Giraffe Interaction: HCI in the Field.
Workshop on Human Computer Interaction with Mobile Devices, University of Glasgow, UK,
1998.

4

Pascoe, J. (1998). Adding Generic Contextual Capabilities to Wearable Computers. The
Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 1998,
IEEE.

3, 6, 7

Pascoe, J., N. Ryan, et al. (1999). Issues in Developing Context-Aware Computing
Applications. HUC '99, Karlsruhe, Germany, 1999.

6, 7

Pascoe, J., N. Ryan, et al. (2000). “Using While Moving: HCI Issues in Fieldwork
Environments.” ACM Transactions on Computer-Human Interaction 7(3): 417-437.

4, 5

Table 1. Published Work.

37

CChhaapptteerr 22::

SSttiicckk--ee NNootteess:: aa MMeettaapphhoorr ffoorr

CCoonntteexxtt--AAwwaarree AApppplliiccaattiioonnss

Our work on developing context-aware software was initially inspired by Peter Brown’s

concept of stick-e notes, originally conceived as an electronic equivalent of a Post-It note

[Brown 1996 - #15]. Instead of writing on a yellow piece of paper that one can

subsequently attach to a desk, door, or some other object, the electronic stick-e note is

written on a handheld computer (aware of its current whereabouts) that automatically

‘attaches’ the note to the user’s current location. The flip side of this authoring of notes

is their retrieval at a later date. With a paper Post-It note one cannot help but see the

note when approaching the object that it is attached to (providing one’s attention is

focused on or nearby the object in question). With stick-e notes the user’s handheld

computer will automatically pop-up the note on the display or provide some other cue

of the note’s presence to the user as they approach the location in which it was

recorded. This process of automatically retrieving pre-recorded notes associated with

the current location is called triggering.

Unlike paper Post-It notes, the stick-e note metaphor is easily generalised. One can

consider creating all sorts of digital information besides textual notes (e.g. audio notes,

pictures, even computer programs, etc.) that could be attached to all sorts of context

elements besides location (e.g. attached to a person, time of day, temperature range,

etc.). Essentially, the stick-e note metaphor can be thought of as a general model that

facilitates (i) the association of digital data with a physical context and (ii) its automatic

retrieval through a knowledge of the user’s current context.

This metaphor seems to fit many types of context-aware application. For example, an

electronic tourist guide that presents the tourist with information on various attractions

as they are approached, or a reminder application that prompts the user about a

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

38

question they wish to ask when they next meet a particular person, or an office

environmental control system that invokes heating, air conditioning and lighting

systems in response to changing levels of temperature and lighting, etc.

A core theme of our research is to explore how the development of context-awareness,

which is currently prohibitively complex and time-consuming for many applications,

can be supported through underlying infrastructure. The diverse applicability of the

stick-e note metaphor made it an ideal candidate for such an infrastructure and the

resulting stick-e note application framework was our first endeavour in providing

generic context-aware support.

Another core theme of our research is to explore how context-awareness can be

usefully applied. To this end we developed an ‘electronic Post-It note’ program based

on the stick-e note application framework, serving to both evaluate the framework’s

ability to provide useful services and also to explore a novel application of context-

awareness.

This chapter describes the issues in context-awareness that we have investigated

through the development of both the stick-e note application framework and the

electronic Post-it note program. Firstly, an overview of the design and operation of the

framework and application is given. This is followed by a discussion of the issues that

they have evoked, distilled into three categories: obtaining and representing context

information, authoring content-dependent information, and triggering information in

context.

2.1 Overview of the Stick-e Note Application Framework

The general capabilities required of the stick-e note application framework centre on

two key activities: authoring and triggering of stick-e notes. From the perspective of

developing the framework we are not interested in application-specific functionality,

content authoring tools, user interfaces, etc. Rather, we are interested in providing the

core stick-e note model and services to support applications, which will provide their

own esoteric behaviour based on the general stick-e note metaphor.

The authoring and triggering of stick-e notes is a composition of three main processes:

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

39

 Attaching: connecting a piece of digital data to a context.

 Matching: checking if any stored stick-e notes are associated with the current

context.

 Dispatching: sending matching notes to any interested parties.

Most of the research issues lie in the attaching and matching of stick-e notes, where we

need to explore how to represent and process context information. The dispatching

process deals with more conventional client maintenance tasks.

For all of these processes the stick-e note is the primary unit of information. It contains

two general types of data:

 Content: the digital data of interest to the client.

 Context: the situation to which it is attached.

The content of a stick-e note is not of interest to us in designing the framework, we

leave the client applications deal with matters of content as they see fit. The framework

simply supports its storage in a stick-e note via a URL that the client can use to specify

a particular digital resource. The context of a stick-e note, however, is of interest to us.

It is the currency with which the framework operates. The framework should be

responsible for the capture, structuring, comparison, conversion and manipulation of context

elements in as transparent a way as possible to the client applications which, for the

majority of the time, will only be interested in dealing with the stick-e note content

rather than the context to which it is attached. There is a clear division of responsibility

between client applications, which deal with all things content-related, and the

framework, which deals with all things context-related.

2.1.1 Context Information

Let us consider more precisely what context functions will be needed in the framework

to support the authoring and triggering of stick-e notes. Capturing context will involve

communicating with external sensor devices (be they hardware or software) in order to

establish the current values of different context elements. For example, the framework

may communicate with a GPS (Global Positioning System [Texas-University 1999 -

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

40

#141] [Herring 1996 - #59]) receiver attached to a handheld computer to obtain the

current location of the user. Of course, a user may supply the value of a context

element manually (e.g. “I am at the library”) but generally it is automatically captured

context data that is of most value. Either way, the captured context element values need

to be modelled in some form of structure within the framework, such as a latitude and

longitude data structure to hold the location data generated from a GPS receiver. There

may also be a need for higher level structuring of this data such as representing points,

rectangles and polygons in the case of a location context element, and different formats

in which it may occur, e.g. latitude and longitude, ordnance survey grid reference

(within the U.K.), post codes, etc. To facilitate the matching of stick-e notes with the

current context, mechanisms should be provided to compare, convert and manipulate

these structures. Considering location data, we may want to check if two points match,

to check whether a point is within a rectangle, to convert from latitude and longitude to

ordnance survey grid reference units, to calculate the distance between two points, to

move a point west by 100 metres, etc. Although we have only used the location context

element as an example, the same general facilities described are required for all types of

context element to enable the attaching and matching of stick-e notes with the current

context.

There are potentially hundreds of useful context elements ranging from physical

conditions, such as a temperature reading, to more conceptual conditions, such as the

mood of the user. It is clearly beyond the scope of this research to develop support for

all conceivable context elements, instead we concentrate on a few of the most useful

ones: location, with, and time. This allows stick-e notes to be attached to places, people (or

other objects such as equipment), and times of day respectively. Although we concentrate on

these context elements it is our aim is to develop a generic framework that will support

the addition of many other types of context element at a later date. That is, we are more

interested in designing the general representation scheme in which different context elements reside rather

than developing the individual esoteric context elements themselves.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

41

Point Rectangle

Location

Context
Element

With …

Figure 2. Simplified context class hierarchy.

We have considered context from an object oriented perspective and have formulated a

class hierarchy headed by a generic context element class from which various types of

more specific context element are derived, as is shown in simplified form in Figure 2.

The top-level ContextElement class is essentially just a grouping class under which all

the different types of context element reside. The second-level classes represent a

particular type of context element, such as a location, and define the common interface

that all the more specialised derived classes have to implement. Derived from these

classes there may be several layers of specialisation of context element before reaching

an instanciable class (the hierarchy maybe arbitrarily deep), but for the sake of simplicity

we have derived the instanciable classes of Point and Rectangle directly from the

Location class.

We can view the hierarchy as having four types of classes:

 Base Class: acts as an ‘umbrella’ class from which all context elements are derived.

 Type Classes: define the interface for particular types of context element.

 Specialisation Classes: define more esoteric versions of a general type.

 Instanciable Classes: the classes that can be instantiated and used to model the

value of a context element. Note that in many cases there will probably be some

blurring of the boundaries between specialisation and instanciable classes.

This hierarchy of different classes facilitates the incremental development of context

support, where new types of context element and new implementations of existing

types may be added by the application developer as and when needed. For the moment

our hierarchy simply consists of location, with, and time related classes. The

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

42

hierarchical structure also makes it possible to deal with context elements at various

levels of abstraction. For example, an underlying location polygon could be presented

and manipulated directly as a location polygon class, or in the more abstract form of a

general location class, or even in the completely generic form of the context element

base class. This allows the framework and clients to work at high levels of abstraction

and hence be able to seamlessly accommodate future additions to the context hierarchy

that are added beneath their operating level of abstraction. Extensibility is desirable in

many applications but absolutely critical in a context-aware framework because it is

simply an impossible task to even conceive of all the different types of context element

that may be useful let alone to provide support for them all.

In our framework we have separated the facilities for structuring, working with, and

generally representing context information from those facilities responsible for the

automated capture of context through communication with external hardware or

software sensor devices. The aim of this separation is to disconnect context data from

specific sensors, allowing for a more general-purpose context representation that can

more readily support the addition of new sensor devices.

Similarly to the context elements, there is a plethora of sensor devices (in the form of

both software and hardware) that can supply data about the current context. These

sensors can be grouped into categories in much the same way as the context element

hierarchy, i.e. by the type of context element data that they supply. This results in a

sensor class hierarchy that somewhat mirrors the context element hierarchy.

Note that sensor classes should not be mistaken for the physical sensor devices

themselves. They are merely pieces of software that provide a standard communication

medium for obtaining the context element data provided by a particular type of sensor

device. In fact, it is quite possible that we could have more than one sensor class

representing the same physical sensor device if it can provide multiple types of data, e.g.

a GPS receiver that supplies location, orientation and time context elements. In such a

case the physical sensor device will be represented logically within the sensor hierarchy

as three separate sensor classes, one for extracting location information, one for

extracting orientation information, and one for extracting temporal information.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

43

GPS
Sensor

A-Badge
Sensor

Location
Sensor

Sensor

With
Sensor

…

Figure 3. Simplified sensor device class hierarchy.

The construction of the sensor hierarchy is illustrated in Figure 3. As with the context

hierarchy, there are four different types of class:

 Base Class: acts as an ‘umbrella’ class from which all sensor devices are derived

and records the general state of the sensor device (if it has been checked, if it is not

working, etc.).

 Type Classes: define the sensor interface for sensor devices that provide a

particular type of context element. For example, a location sensor class could define

a GetLocation() method that all derived location sensor classes would

subsequently have to implement.

 Specialisation Classes: define more esoteric versions of a general type of sensor,

i.e. they may provide additional interface methods specific to that class of sensor

device.

 Instanciable Classes: the classes that can be instantiated and used to extract data

from a particular sensor device. As with the context hierarchy, in many cases there

may be a blurring of the boundaries between specialisation and instanciable classes.

Organising sensor devices by the type of context element they supply makes for a

flexible hierarchy that can readily accommodate new sensors beneath a standard

interface. The standard interface for each context element sensor, specified in the type

and specialisation classes, allows sensors to be accessed in a generic fashion so that no

extra programming effort is required to incorporate a new sensor device into a client

program. For example, the location sensor class may define a GetLocation() method

that can be invoked on any of the instanciable location sensor classes. The method will

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

44

return a location context element that may be a reference to any class of location

objects. That is, the returned location may be in any of the possible forms, such as a

Point or Rectangle, whichever is most appropriate for that particular sensor device.

The clients of the framework will often not be interested in communicating with

specific sensors, they will simply want to retrieve the current value of a particular

context element. For example, a client may enquire as to what their current location is;

from the client’s perspective the type of sensor device used to retrieve that location is

immaterial. That is, clients often want to work at the level of acquiring the current value

of a context element rather than at the level of finding, instantiating, and

communicating with sensor devices.

In order to achieve this level of generality we created a SeEnvironment object that

provides access to the current value of context elements such as location, and which

utilises all the available sensor devices to provide the best data transparently to the

client. It is a centralised framework resource that any client may access through generic

context element accessor methods, e.g. GetLocation(), GetWith(), GetTime(), etc.

The client is also able to specify the specific type of context element that the returned

value should be compatible with if need be.

 In addition to accessing context elements automatically captured from sensors, the

SeEnvironment object also manages pretend contexts that allow the user to simulate the

value of a context element, e.g. to pretend to be in a particular location. This is useful

not only for supplying values of context elements that cannot be easily automatically

obtained (e.g. capturing the user’s emotional state) but also in enabling the user to

preview or review stick-e notes that will trigger in a specified context by pretending to

be there now. There are differences in representing pretend contexts as opposed to real

ones due to the fact that they need not necessarily obey the same laws of physics. In the

case of location context elements there is no reason why a user could not pretend to be

in two or more discrete places at once, indeed, this ability can be most useful. For

example, pretending to stand outside of the fish and chip shop in Trewoon and the

Cornish pasty shop in Truro in order to peruse and compare the information presented

by an electronic culinary guide of Cornwall.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

45

2.1.2 The Stick-e Note

We have described how the framework represents context information, how it captures

it, and how it makes it accessible. Now we describe how context and content are

brought together to form a stick-e note via the StickeNote class. This class consists

of only a single text field with which to specify the content because, as was mentioned

earlier, content can be represented as a URL, which the client application is responsible

for interpreting. The context part of the class is a more complicated matter. It is

defined by what we call a trigger condition, i.e. the context under which the stick-e note

should be invoked. The trigger condition consists of a number of trigger contexts that can

contain any number of context elements of the same general type. A stick-e note’s

trigger condition may consist of many such trigger contexts, allowing stick-e notes to be

attached to more than one type of context element. For example, in creating a ‘go

home’ message that should be triggered if the location is the computing laboratory, the

date is December 24th, and it is after 11pm.

The automatic delivery of stick-e notes through triggering is the main interest of our

research. However, other work by Brown [Brown and Jones 2001 - #17] investigates

other methods of retrieving information via context.

A stick-e note is triggered when at least one context element in all of the trigger

contexts is met, i.e. the context elements within a trigger context are logically ORed

together, and the trigger contexts within a trigger condition are logically ANDed

together. Figure 4 illustrates these logical relationships between trigger contexts and

their context elements. The horizontal groupings in the figure represent the separate

trigger contexts that comprise the trigger condition, and its individual context elements.

Using the example supplied in the figure, the stick-e note will trigger if any of the

location conditions are met at the same time as any of the with conditions.

If a particular trigger context contains no context elements, such as Temperature in the

figure, then it will not be used in determining the success of a triggering condition as

the stick-e note is considered as having not been attached to any temperature. Should a

stick-e note have no context elements or trigger contexts at all within its trigger

condition then it will simply not trigger because it has not been attached to anything

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

46

(perhaps the stick-e note’s content has been defined but it has not been attached to a

context yet).

Office S109a Coffee Lounge Canteen

David Peter

or or

or

Temperature
Trigger
Context

With
Trigger
Context

Location
Trigger
Context

and

and

Figure 4. Example of the logical relationships within a trigger condition.

It is likely that sets of stick-e notes will be developed that relate to a similar subject, e.g.

a set of stick-e notes developed on the archaeology of Zanzibar. A facility for

representing these groupings of stick-e notes, known as families, is provided in the

framework, thus allowing the user to organise a collection of stick-e notes into a more

meaningful form than one huge pool of disparate notes. However, the concept of

families is not convenient in all cases, especially for transient stick-e notes that are not

stored for long, e.g. electronic post-it notes. Support for these transient stick-e notes is

provided by a universal family into which all stick-e notes without pre-assigned families

can be placed. Stick-e notes may also belong to more than one family – the families can

be thought of as indices onto a global set of stick-e notes.

In effect families (implemented by a class called SeStore) act as a form of index onto a

group of logically related stick-e notes. The references to the stick-e notes that a family

contains can also be annotated with a trigger-check-ready status attribute which can be set

to yes if the stick-e note should be considered by the triggering process and no if it

should be ignored by the triggering process. The latter case is useful, for example, when

developing a set of stick-e notes; during which time the developer may wish to

deactivate stick-e notes that are currently in production. The assignation of the status

attributes and sequence to references within the family rather than within individual

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

47

stick-e notes is a logical choice if re-use of stick-e notes within different families is

considered. That is, a stick-e note may be used in more than one family and may appear

in different sequences and have a different status in each one; modelling the status or

sequence as part of the stick-e note would prevent such re-use.

To ascertain whether a particular stick-e note should trigger in the current context, a

client can invoke the Trigger() method of the StickeNote object. The stick-e note

will then compare its various trigger contexts with the current context elements

retrieved from the SeEnvironment object. If they match within given parameters then

the stick-e note will indicate that it should trigger. Note that some other party must

invoke the trigger checking of a stick-e note: it is not an autonomous process.

2.1.3 Stick-e Note Processing

The stick-e note framework subscribes to the model-view-controller design pattern

[Gamma, Helm 1995 - #53]. This design pattern separates the design and

implementation of the user interface, i.e. the view, from the internal representation of

what is being displayed, i.e. the model. A third entity in the pattern, the controller, acts

an intermediary that ‘drives’ the model, i.e. initiating and controlling any processing

activities. For example, a clock program could be separated into the display that draws

the hands on the screen (the view), the internal representation of the clock’s operations

and current state (the model), and finally, the controller that starts the clock and keeps

it ticking.

In the case of our stick-e note framework, the families of stick-e notes can be

considered the model but there is no tangible view as such. Instead, an interface for a

view is provided in a class called SeDisplay, which defines the interface mechanism

for delivering triggered stick-e notes to clients. It is by inheriting the SeDisplay class

that the clients of the framework may receive triggered stick-e notes. The manager, or

SeManage object, which we now introduce, can be considered the controller. This

manager is a centralised resource whose main duties are to supervise requests for the

opening and closure of families and to regulate the invocation of the trigger checking

process on the stick-e notes in each of the open families. Although individual

StickeNotes provide a method to determine if the stick-e note can trigger it is

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

48

SeManage that must schedule and invoke it on all of the stick-e notes to be considered

for triggering. SeManage also notifies the views of any relevant triggerings.

1 2 3 4

2

4

4

2

2

1

F3F2F1

Views

Families

Family Views F3F2F1

Figure 5. SeManage interest lists.

In order to manage the interconnections of interests between different registered views

and open families of stick-e notes SeManage maintains three lists of information as

shown in Figure 5. The list of views maintains information about the set of registered

clients and the list of families maintains information about the sets of open stick-e

notes. The final family-view list maintains information about what clients are interested

in which families.

2.1.4 Framework Summary

Context elements and sensor devices are modelled in two independent but similar

hierarchies that are organised into branches according to context element, enabling

generic interfaces to be constructed for particular categories of sensor or context

element. A SeEnvironment object presents some simple accessor methods to retrieve

the current value of a general context element without the client needing to know the

specific representation or sensors used to obtain it. The SeEnvironment object also

has the ability to model pretend contexts, which may be used to simulate the current

values of any context element.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

49

The attachment of some digital information to a particular context is represented by the

StickeNote class that specifies the content in the form of a URL and that defines the

context in the form of a trigger condition. This condition is comprised of a number of

trigger contexts, one for each general type of context element (e.g. location, time,

temperature, with, etc.). If a trigger context is not empty then at least one of the values

that it contains must match the current context in order for the trigger condition to

evaluate to true, and hence to cause the stick-e note to trigger. Stick-e notes are

individual objects but may be logically grouped into one or more families for

management and organisation purposes. However, the stick-e notes remain separate

entities in themselves in order to promote their reuse (e.g. a stick-e note describing the

Cathedral could be included in several different Canterbury tour route families) and

facilitate the dynamic creation and distribution of sets of notes (e.g. downloading a set

of stick-e notes from a server which dynamically constructs a family group based on the

contextual area of interest specified by the client).

SeManage

SeEnvironment

Client 1 Client 2 Client x

Family 1 Family 2

StickeNote

StickeNote

StickeNote

StickeNote

StickeNote

Trigger
Condition
(Context)

URL
(Content)

Sensor 1

Sensor 2

Sensor x

Family x

Device 1

Device x

Flow of ‘live’ context data.

Flow of stored context data.

Flow of triggered stick-e notes.

Key

Figure 6. Framework components and the flow of context data.

The framework is based on a model-view-controller design pattern that de-couples the

representation, display, and operation of a system. StickeNote and SeStore classes

form the model, a SeDisplay class provides an interface for the delivery of triggered

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

50

stick-e notes to external views/clients, and a SeManage object takes the role of

controller. The SeManage object manages the set of open families and the clients that

are interested in them. It is also responsible for supervising the trigger-checking

process, though it is the individual StickeNotes that perform the evaluation of their

own trigger condition.

Figure 6 illustrates how the framework components are connected in terms of the flow

of context data. ‘Live’ context data flows from physical devices into one or more sensor

classes whose output is consolidated in the SeEnvironment before being dispatched,

upon request, to the SeManage. The SeManage compares this live data with the context

elements stored in the trigger condition of stick-e notes contained in any open families.

Copies of any stick-e notes that trigger as a result of the comparison of live and stored

context data are dispatched to any interested clients. More detailed objected oriented

design diagrams for the stick-e note application framework can be found in appendix

A.

To test out the viability of this framework, and also to explore the application of

context-awareness in real applications, we developed an electronic post-it note program

based on this framework. In the remainder of this chapter we present this application

and the context-aware issues that arose as a result of this practical experiment in

context-awareness.

2.2 Overview of the Electronic Post-It Note Application

The ‘Electronic Post-It Note’ program was developed as an experimental context-aware

application that utilised the stick-e note framework. Our hardware platform for

experimentation was a Hewlett Packard 200LX handheld computer linked to a Silva

Compass GPS receiver (later replaced by a Garmin 45 GPS receiver). The handheld

computer is essentially a miniaturised version of a desktop MS-DOS based computer,

with very limited processor, storage, and screen-space resources.

The electronic Post-It note program we developed (similar in principal to the situated

information spaces concept [Fitzmaurice 1993 - #46]) for the platform allows the user

to write brief textual messages that are attached to their current context. At a later date

these messages may be automatically re-displayed when re-entering that same context.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

51

Essentially the aim of the application was to provide an electronic equivalent to the

conventional paper-based Post-It note. This work allows us to not only to evaluate the

stick-e note framework but also to explore some of the issues involved in developing a

specific context-aware application.

Creating an electronic Post-It note is a simple matter: the user simply types in the

textual message on the handheld computer and the program automatically retrieves the

current context to which the note duly is attached. The electronic Post-It note is stored

via a framework StickeNote object with the text message forming the content.

Figure 7. HP handheld computer linked to Garmin-45 GPS receiver.

To view Post-It notes that are attached to the current context takes no effort at all by

the user. On start-up the program automatically configures the framework SeManage
object to perform trigger-checking at appropriate intervals and proceeds to register

itself as an interested party in receiving triggered notes. When the triggering process

produces a triggered note SeManage sends a copy to the electronic Post-It program

which reacts by sounding a brief beep to indicate to the user that a triggering has

occurred. The note name is also momentarily displayed on the screen providing a

notification to the user without disrupting their current work too much (equivalent to

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

52

someone sticking a Post-it note on your desk). This is what can be seen on the screen

in Figure 7. It is then up to the user to decide their course of action in response, but

presumably they will eventually wish to see the triggered notes, if only to be able to

discard them. To this end they can either view a list of triggered notes or access a short

cut in order to quickly display the last stick-e note to trigger. Similarities can be drawn

with the design of email delivery systems. However, stick-e note delivery tends to have

more urgency as it is of immediate and specific relevance to the user’s current

circumstances whereas arriving emails can normally be safely ignored until a later date.

It is tempting to equip the software with all sorts of features that would add useful

function to the application. However, in doing so we would end up with a more

complex interface that would not be so immediately accessible. Considering its paper-

based counterpart, it is the simplicity and immediate usability of the paper Post-It notes

that make them so attractive. It is just a simple matter of jotting down a note, tearing it

off the pad, and sticking it on the desk.

We have tried to retain this simplicity within the electronic Post-It note program by

providing a minimalist, yet functional, solution. There are only four menus, the longest

of which has only three items, and most options (such as creating and attaching a new

stick-e note) can be selected directly from the function key strip. The menus

correspond to facilities provided for attaching and viewing notes (as described earlier),

for controlling the trigger checking parameters (on/off, periods between trigger

checking cycles, etc.), for monitoring the environment (adding pretend contexts and

viewing the status of attached sensor devices), and for organising notes into families.

The program attempts to provide these facilities through a simple interface that doesn’t

overwhelm the user, offering features in an intuitive and easily accessible manner.

The development of this electronic Post-It note application and the stick-e note

application framework has posed many interesting issues in the design of context-aware

systems. The remaining sections of the chapter discuss those issues, ranging from

capturing context via hardware sensor devices, which is where we start, to aspects of

user-interface design for context-aware systems, which is where we conclude.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

53

2.3 Issues in Obtaining Context

A basic need of any context-aware program is to obtain and represent values for a

context element. Our framework provides the building blocks to achieve this in two

hierarchies, one for context elements and one for sensor devices. Although values for

the majority of context elements are likely to be derived from sensor devices, in our

framework we have been careful to keep representation and capture of context

separate. This avoids polluting the context representation model with functionality that

ties context elements to particular sensor devices, which would limit the flexibility and

extensibility of both context representation and capturing infrastructure. Many of the

sensor devices are also likely to be platform dependent, so it is best to isolate such

dependencies as much as possible in the capturing infrastructure. Additionally, some

clients do not require the use of sensor devices at all (e.g. on a desktop PC where

pretend locations are being used to simulate a tour of Zanzibar) in which case we only

require facilities to represent context and not to capture it.

Using these context element and sensor hierarchies a central framework resource, called

SeEnvironment, provides an abstract interface between clients (which seek the current

value of a type of context element) and the capturing infrastructure (which can provide

the current value). It is easy to tell which context element the client seeks as they make

it explicit in a request to the SeEnvironment. However, the SeEnvironment faces a

harder task in working out which sensor classes it can use and/or communicate with.

Currently it tries to instantiate every type of sensor class that it can find (using a default

configuration) to supply the type of context element it is seeking. This is clearly not a

very efficient model as there may be many sensor classes and perhaps, for example,

only one which can be currently used with the single sensor connected to the computer.

Additionally if the default configuration is incorrect (e.g. the GPS receiver was plugged

into port 2 instead of port 1) then the device will be overlooked.

The problem is essentially that the SeEnvironment is not able to determine what

sensors are physically present or available. This is a fundamental problem faced by any

context-aware system that tries to be flexible in its approach to sensor support, i.e. how

to find out what sensors are available and how to talk to them. We propose to solve

this problem by making the user partially responsible for telling the framework what

sensors it can use, as it is only the user who possesses such knowledge. This would be a

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

54

once-only operation performed when a sensor is first connected to the system, and

would involve the user specifying the various configuration parameters of the sensor

device. We also propose to make the device infrastructure more autonomous with

devices modelled as independent programs that monitor a physical sensor device and

inform the SeEnvironment of the context elements that they can provide. In this way

the SeEnvironment can simply subscribe to the services offered to it by these

autonomous sensor monitors. (This concept is explored more in the work described in

chapter 4.) The role of the SeEnvironment is narrowed to that of providing a

centralised access mechanism to the best current value for each type of context

element. The need for the device hierarchy is thus reduced and may in fact be made

redundant altogether. In the new model perhaps the autonomous sensor monitors will

be written completely independently of each other with only an interface for publishing,

subscribing, and elementary control in common.

2.4 Issues in Representing Context Information

Having captured the context information there are a number of factors to consider in

representing it. With many sources of context there is a degree of error involved, such

as the potential +/-100 metre inaccuracy in uncorrected GPS location data (prior to the

removal of “selective availability” in 2000; the error is now much improved at +/- 10

metres, but mobile phone system positioning technology is still only accurate to

approximately +/-100 metres). In our prototype framework we have provided a simple

penumbra model that defines the area around a captured value in which the actual value

may lie. However, depending on the application and level of inaccuracy awareness

needed, more complex models of error may be required. Taking this to the extreme, the

current value for a context element may be described in terms of a probability graph

where there is a whole continuous range of likely and not so likely current values.

In addition to considering the error of the context element, a way of representing it

needs to be chosen, too. For example, with location we need to decide if it is a

name/cell based system or a co-ordinate based system, and if its the latter then the

number of dimensions (x, y or x, y, z), the shape (point, rectangle, polygon, cube, mass,

etc.), the units of measurement (latitude and longitude, metres, etc.), etc. In the

framework we experimented with using latitude and longitude as a universal form of

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

55

measurement, a common denominator of location types. However, this was not terribly

successful as it ignores the fact that different types of location are suited to different

situations. For example, a latitude, longitude, and altitude may well accurately define the

location of my office but this information is practically useless for most purposes as

there is no convenient method of finding out one’s location within a building in such a

form. An active badge cell-based system would be much more appropriate in such

circumstances. However, for specifying the location of a giraffe in the middle of an

African wilderness expanse a latitude and longitude measure would clearly be more

useful, allowing us to locate the giraffe with a GPS receiver. Another aspect to this

problem is that some location systems may be relative to a particular object rather than

to a fixed point of origin on the planet. For example, if an active badge system were to

be deployed on a cruise ship there would be no static mapping possible between the

location cells and the latitude and longitude co-ordinates. Indeed, for most internal

cruise ship applications there probably would not be the need for such a mapping as

they would most likely require a ship-relative form of location system. Therefore, rather

than trying to enforce a universal location format we believe it is better to use the one

that is best for the task at hand and provide support for converting between different

formats as and when necessary. This “convert-on-demand” approach can also be

applied to the subtle differences in data formats, e.g. converting between the different

datums or precisions of a location.

Leonhardt et al’s location service [Leonhardt, Magee 1996 - #81] [Leonhardt and

Magee 1996 - #80] attempts to integrate all forms of location through a series of cell-

spaces. However, although co-ordinate data such as latitude and longitude from a GPS

receiver can be integrated in his model, it does so by transforming an inherently

unstable form of location (i.e. precise latitude and longitude measurements of moving

objects) into an inherently stable cell-space model, resulting in a high processing

overhead in updating/reconfiguring the cell space. It faces the flip side of the problem

that we encountered in trying to establish a common-denominator location system

using latitude and longitude (although there are more goals that Leonhardt’s location

service is trying to achieve than simply providing a universal location format).

Location is a particularly complex context element to represent, with many different

forms and units of measurement. However, at least some of the issues faced with

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

56

location data formats are likely to be encountered in developing support for other

context elements as well.

The issues in representing context that we have considered thus far are low-level ones

concerned with the extraction and representation of individual values. Yet more issues

are raised when considering higher-level modelling of composite forms of context. For

example, the trigger condition of a stick-e note may consist of a number of different

context elements. It contains a separate trigger context for each general context element

type, with the individual context elements of each list ORed together and the resulting

Boolean values for the general context element types ANDed together (except for

trigger contexts with no context elements, which are simply discarded). Refer back to

Figure 4 for a visual representation of an example trigger condition. Location context

elements are particularly suited to this form of logical representation as the relationship

between location context elements to which a note is attached must inherently be OR.

It is pointless to have a trigger condition that specifies a location trigger context as two

different places simultaneously – the stick-e note will simply never trigger as the current

location of the user can obviously not be more than one value at a time. It is possible to

have such scenarios when using pretend context elements where, as discussed earlier,

the normal laws of physics need not apply. However, the ‘impossible contexts’ that

pretend context elements present are only used in simulations of current context and

are not permitted in the trigger condition of a stick-e note. That is, any combination of

contexts can be used as the current pretend context, but the stick-e note must be

attached to a real physically possible context. Another possibility for the same-place-at-

once scenario could be if we consider the possibility of a composite object whose

components can be dispersed. We sacrifice support for attaching stick-e notes to

impossible contexts and for modelling composite current context (both of which we do

not expect to be widely required in the majority of context-aware applications) in return

for a simpler model.

With context elements have different semantics than that of location context elements.

Most notably, it is possible to have two context elements match the current context at

the same time. For example, to be with Helena and with Geraldina and with Vince.

Therefore modelling the With trigger contexts as a simple OR relationship between

context elements is not satisfactory as we may also want to represent an AND

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

57

relationship between these context elements. One solution is to extend the context

hierarchy to include a With-Group context element, but this would really be only a work-

around solution for an inadequate method of expressing the logical relationships. In

addition to the AND operator, a NOT operator may also be useful. For example, a

With trigger context that defines: with Vince AND with Helena AND NOT with

Geraldina.

In summary, the trigger condition model works well for the simple location-based

sample applications we have developed but it does limit the flexibility of the context

that a stick-e note can be attached to. There is a trade-off between providing a simple

model that is easily understood and a more sophisticated one that can represent more

complex contexts but at the cost of being less immediately understandable. The current

model places the emphasis on ease of understandability, which it does this very well:

there is little or no ambiguity in what the context specification can mean. However, it

does limit the complexity of contexts that can be expressed and is probably too

simplistic for many applications. For example, it cannot represent “with Peter in his

office or with David in his office”, as a single context. However, providing a full

Boolean context logic that can permit any logical combination of context elements will

probably be an off-putting interface for the novice user. Perhaps the best way to

address this problem in future work would be to provide two independent methods of

specifying the context of a stick-e note, the current simple list arrangement by default

or, for more sophisticated applications/users, the ability to specify the context in terms

of a full Boolean logic.

2.5 Issues in Triggering

Many context-aware applications will utilise the available context information in a

reactive manner. That is, they will adapt or enhance some aspect of their behaviour

based on changes in their current context. The stick-e note framework enables such

behaviour with its triggering model, where stored stick-e notes whose context matches

that of the current environment will be triggered and delivered to clients who are

interested in them. In effect it facilitates a contextual form of event driven

programming where the context of the stick-e note determines when the event should

occur and the content of the stick-e note determines the type of event or reaction. It is

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

58

entirely up to the client to create and utilise the latter, in the case of the electronic Post-

It note the content was a textual note that was displayed on the screen when it was

triggered. However, it could just as easily be some executable content that is run when

triggered, e.g. an environmental control system that turns off the lights when a room

becomes vacant.

Although useful in many applications, triggering is not the only way of utilising context.

Some applications may be more interested in a continual monitoring of context, such as

continuously showing the current value of a context element, e.g. the current time,

temperature, or location. Triggering, and the stick-e note framework in general, also

attempt to hide or abstract context information from the client and/or user. This is an

incentive for many applications/users as they wish to concentrate on their application-

specific functionality and data, with contextualisation provided transparently via the

triggering mechanism. However, there are some tasks in which the application or user

desire to be actually immersed in the context information, where triggering and stick-e

notes in general may not be so helpful, e.g. an interactive electronic mapping program.

In developing the stick-e note framework we have deliberately focused our efforts on

supporting the reactive/adaptive type of applications, exploring how a triggering service

can be operated and provided.

The trigger process that we developed for the framework prototype operates as

anticipated but has highlighted a number of inefficiencies that could be addressed in the

future. One of the main concerns is that a trigger checking cycle is quite slow in

execution, especially on the resource-starved handheld computer. It is the extraction of

context data from the physical sensor devices, in particular from a GPS receiver with

the electronic Post-It note program, which is the primary cause of delay. Every time the

framework needs to check if a stick-e note’s location matches the current location, the

attached GPS receiver is consulted. This is performed by the GPS sensor device class

that listens in to the communications port that it believes the GPS receiver is attached

to, watching out for the location information in the NMEA data [Bennett 2000 - #10]

[NMEA 2001 - #92] that is intermittently broadcast by the GPS receiver. The time

delay lies in the intermittent nature of data broadcast, where a period of one or two

seconds can pass by before the next set of data is transmitted. Often the delay is much

smaller than this, but, for example, with one or more location context elements in each

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

59

of a group of twenty or more stick-e notes, the delays can soon mount up.

Unfortunately this delay is out of our control: it is a predetermined setting of the GPS

hardware that will be incurred irrespective of whether we model sensor devices in a

hierarchy or as autonomous sensor monitors (as we proposed in the previous section).

However, what can be enhanced is the framework’s method and frequency of

interaction with a sensor device. At present, the current location is retrieved every time

a location context element is checked, ensuring that the most up-to-date location data

as possible is used. However, the amount of time between the individual checks of

stick-e notes in a matching process is very small (if we exclude the GPS data extraction

time) and hence the location is unlikely to change by any significant amount in that

short space of time. Therefore we could simply retrieve the location data once per

triggering cycle and cache the value so that the checks could be performed using this

cached location instead of extracting the location direct from the physical GPS receiver

each time.

This caching method could be further enhanced using the proposed autonomous

sensor monitors. Each monitor could keep a cache of the most recent location data (or

whichever context element is being captured) and could pass this cached value to the

SeEnvironment on demand. However, unlike a SeEnvironment based cache that

would be updated each time the matching process was performed, the monitor’s cache

could be kept for an indefinite period without requiring an update. The monitor could

employ a more advanced cache refresh strategy so that it is only updated when

necessary, not at arbitrary periods defined by the trigger checking frequency. Clients

may have a quality-of-service arrangement whereby the monitor will examine the GPS

receiver just enough times to keep within the specified location granularity, e.g. to keep

the location updated so that it is always within 50 metres of the actual GPS receiver’s

current reading. The monitors could also adjust their sampling rate so that if, for

instance, they detect the speed of movement is increasing then they can increase their

sampling rate of the GPS receiver in order to keep within the quality of service

threshold, and vice versa. As the autonomous sensor monitors are constantly running

in the background as independent processes, they could also schedule their access of

physical sensor devices for times of low processor load to further reduce the bottleneck

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

60

surrounding the matching process. Caching can also help in estimating the current

value of a sensor that is temporarily not working, e.g. a GPS receiver in a tunnel.

Through autonomous sensor monitors the process of capturing current context for use

in trigger checking can be made much more efficient, but we also need to consider the

broader perspective of how the to improve the trigger checking cycle as a whole.

Currently a manager component in the framework is configured to perform a trigger

checking cycle of a specified number of stick-e notes at specified intervals, i.e. it is a

static timer driven process. If the current context or stick-e notes have not changed

since the last trigger cycle then this is a redundant activity as we already know what

stick-e notes will and will not trigger in such circumstances. More subtly it is also a

redundant activity if the current context or stick-e notes have not changed enough, i.e.

not enough to cause any differences in triggering. This redundancy is as a result of the

trigger checking process being designed around a polling mechanism rather than an

event driven one.

The trigger checker could be converted an event driven mechanism with the

introduction of the autonomous sensor monitors. The SeManage could register an

interest threshold in a context element, causing any autonomous sensor monitor

producing such a context element to send a notification message if the threshold were

exceeded. For example, consider a wildlife guide family of stick-e notes on an African

game park visitor’s GPS-enabled handheld computer. The SeManage may deduce that

none of the stick-e notes is going to trigger until the user has reached the park gate.

Therefore it could tell the GPS sensor monitor to not inform it of the location until

within a certain distance of the entrance gate, and only then need it start trigger

checking. Of course, the same general method could be applied on a much finer scale

too, e.g. information on hippopotami does not need to be triggered until near the river.

An alternative strategy would be to calculate a “super-context” that is the union of all

contexts that the user is likely to have in the next hour (or some other defined time

period). The system could then trigger all the notes that match this super-context and

use the resulting group of notes as a cache until the user strays out of the super-context,

thus reducing the processing overhead for each trigger-checking cycle.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

61

Having addressed the way in which changes in context are obtained and the manner in

which the trigger checking is invoked, we now need to address the remaining aspect of

trigger checking: the method in which a collection of stick-e notes is checked. The

prototype framework simply cycles through the collection in the order in which they

were opened. However, by applying some ordering to the stick-e notes, it should be

possible to perform the process in a more efficient manner. For example, if the context

element of primary importance is location (which is likely to indeed be the case for

many applications that we envision) then the stick-e notes could be ordered by

proximity to the current position. This can be visualised as lifting up a fishing net by a

single knot in the centre and having the other knots (representing stick-e notes) cascade

down from this central point. Given such an ordering we need only continue checking

through the set of notes until reaching the first one that does not match the current

context, as all notes after that are inherently more distant and hence not going to match

either. Further work needs to be carried out to investigate whether the overhead

involved in the sorting of stick-e notes necessary for this type of matching will be small

enough to make it worthwhile doing, especially in large collections of notes. Further

thought is also required on how ordering could be applied to many context elements

simultaneously; perhaps by having several orderings of stick-e notes for each type of

context element and then only checking the stick-e notes that are within range in every

context element. Some context elements may not be sortable into any form useful for

processing, e.g. names of animals can be sorted into alphabetical order but it doesn’t

really help in determining which is closest to matching the current with context element.

Other more conventional techniques to improve triggering performance also need to be

considered. For example, making use of database technology to extract a set of active

stick-e notes by applying a query, which reflects the current context, to a relational

database table, which represents the set of open stick-e notes. Further investigation is

required into such possibilities to see if they are feasible, e.g. in the case of employing

database technology to see if the varied, dynamic, and complex forms of context

element data could be successfully represented and manipulated within a relational

database. Essentially, these are all general problems of structuring and ordering in order

to improve search speed.

Thus far we have considered triggering as a series of unconnected trigger-checking

cycles. However, each trigger-checking cycle may need to know a little about the

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

62

previous cycles in order to determine what stick-e notes should trigger. For example,

using the electronic Post-It note program I could create a stick-e note attached to

Geraldina so that the next time I see her the Post-It program pops up the reminder I

recorded to “Don’t forget to ask Geraldina out for lunch”. Whilst I am in the presence

of Geraldina the stick-e note’s trigger condition will continue to evaluate to true and

each subsequent trigger checking cycle will result in the triggering of the note.

However, it would clearly be inappropriate to display a new copy of the note each time

it was triggered as I would soon end up swamped with hundreds of identical stick-e

notes. We prevent such circumstances from occurring in the prototype framework

through a selection of temporal restriction mechanisms that the author can apply to a

stick-e note:

 Re-trigger Timeout. This is the simplest form of restriction, where a minimum

duration between the triggering and re-triggering is specified. For example, a 20-

minute re-trigger timeout would mean that, once triggered, the note could not be

re-triggered until at least 20 minutes have elapsed. In the meantime the current

context may have changed, preventing a re-triggering occurring directly after the re-

inclusion of that stick-e note in the triggering process.

 Specific Interval Restriction. Prevents a stick-e note from triggering more than

once in a given interval. The interval is expressed in terms of two bounding time

and/or date stamps, e.g. 9:00 to 13:00 (which would prevent the stick-e note from

triggering more than once during that period). The granularity of the interval can be

extended to days, months or even years. Note, however, that a year interval will not

be re-entered, unlike a time of day or day of week interval, e.g. a 9-12 interval could

be re-used each day but a 1999-2000 interval will only be entered and exited once.

Unlike the other two restriction mechanisms, it may be useful to specify multiple

specific interval restrictions.

 Generic Interval Restriction. Similar to the previous type of restriction but

instead of specifying the trigger restriction interval as two bounding time/date

stamps it is defined as the current minute, hour, day, week, month or year. For

example, specifying the restriction interval as the current day would prevent a

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

63

triggered stick-e note from re-triggering until tomorrow; specifying the specific day

is not required.

In addition to restricting re-triggering there are some circumstances we have

encountered in which the explicit de-triggering of stick-e notes is useful, which is

currently not supported in our framework. To illustrate the need for de-triggering we

can extend the previous example so that the invitation to lunch reminder is attached to

the context of Geraldina’s presence and also Helena’s absence, i.e. to remind me to ask

Geraldina out to lunch but only if Helena isn’t around. In our current model if I was in

the presence of Geraldina and not Helena then the reminder would, of course, be

displayed. But if Helena were to enter the room a couple of seconds later the reminder

would still be displayed even though I now do not wish it to be visible, i.e. it should be

de-triggered and removed to prevent Helena from seeing it.

To support de-triggering the framework could maintain a list of active stick-e notes to

which it could add any notes that are triggered. During each trigger checking cycle it

could then remove any stick-e notes that no longer trigger and inform the clients who

had received a copy of the note when it originally triggered that it now has been de-

triggered. Depending on the application the client may chose to react to or ignore the

message.

When employing triggering and de-triggering an interesting effect we call ‘boundary

hovering’ can be encountered. For example, if I am on the boundary of what is deemed

to be ‘in the presence of Geraldina’, and I start shuffling back and forth, then the stick-

e note will be rapidly triggered and de-triggered as I appear to move in and out of that

context. The problem is heightened if a temporal restriction on re-triggering is in place,

in which case the reminder will be removed from my screen on my first shuffle and

then not replaced until the temporal restriction has expired, which is clearly not what I

want to happen. To avoid such problems a de-trigger suspension period could be enforced

by the framework so that the stick-e note has to be consistently in a non-triggering state

for a specified time period in order for it to de-trigger. This compensates for the border

hovering effect as the elapsed time in a consistent non-triggering state will continually

be reset if I am shuffling in and out of the context.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

64

Although the temporal methods of restricting de-triggering and re-triggering are

effective they require a good degree of judgement from the stick-e note author in order

to define an appropriate amount of time. For example, exactly how long do I have to

be out of Geraldina’s presence before the stick-e note is de-triggered? It is not

immediately obvious. Having the success of the framework’s re-triggering/de-triggering

strategy so dependent upon the author’s sensible choice of restrictions and time periods

is not entirely satisfactory. A preferable mechanism that we have proposed in later work

is to define separate contextual zones for triggering and de-triggering, based on the user

entering and leaving the context rather than on different timer mechanisms. We present

this concept in chapter eight.

One final aspect of the triggering to consider is its distribution. Given the very limited

processor resources of many platforms that will wish to utilise the stick-e note

framework, offloading the bulk of the processing onto another computer may be

desirable. The model-view-controller structure of the framework makes this a relatively

easy task as the client device can simply implement a view interface and receive

triggered stick-e notes from the remote controller and model components (though of

course the communications medium used to connect them will differ). Distribution

issues are the focus of the work presented in chapter eight.

2.6 HCI Issues

Obtaining context, representing context, and triggering by context are all issues focused

around the stick-e note application framework design. However, when developing

context-aware software there are a whole host of issues centred around the user

interface design too. Good HCI design is important to any software that is to be

exposed to the end-user, but even more so in context-aware software. Unlike desktop

computers that can afford to expect the devoted attention of the user, context-aware

software is most often found on handheld, wearable, or ubiquitous computers where

such expectations would be unrealistic. To be successful such computing devices must

fit in with the user’s place and task rather than vice versa, so user-interface design is a

paramount concern. HCI issues are an important part of the ecology tools work

described in the next chapter, so we will limit our discussion of HCI issues here to ones

of direct concern to the stick-e note framework and Post-It note program.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

65

Unlike more conventional software such as word processors or spreadsheets, in which

the program is explicitly driven through commands invoked by the user, stick-e note

applications such as the electronic Post-It note have a certain degree of autonomy. This

is apparent to the user in the form of processes that start on their own (e.g. the trigger-

checking process) and user-interactions that are initiated by the computer rather than

the user (e.g. informing the user of stick-e note that has triggered). This autonomy

raises the need to keep the user informed of the processes being run on their behalf (as

they may noticeably affect the operation of the computer, e.g. to impede its

performance) and the need to interrupt the user’s task in a non-obtrusive fashion when

requesting a dialogue. These issues are faced particularly in the feedback of sensor

device status and in the triggering of stick-e notes.

When using the electronic Post-It note program there are many potential errors that

could arise from the attached sensor devices. For example, the sensor’s batteries may

run out, the umbilical cable linking them to the computer may become loose or

detached, the sensor device may automatically turn itself off, there may be difficulty in

obtaining a reading (e.g. the GPS receiver may not be able to detect enough satellites in

view to obtain a location fix, or the active-badge wearer may have wandered into an

area with no active badge sensors), etc. The user needs to be aware when such errors

occur; otherwise the notes they create will not be attached to the correct context.

Although a facility is provided in the Post-It program to view the status of the sensor

devices, it currently has to be explicitly invoked from a menu option. That is, the user is

currently unaware of a sensor device’s status, including any failures, until a direct

inquiry is made about that sensor device. A preferable solution would be some form of

monitoring function carried out as a continuous background activity that alerts the user

to any failures as they arise. Perhaps this could be conveyed in the form of a peripheral

on-screen status indicator which, although normally only in the periphery of the user’s

attention, is made attention grabbing in critical error conditions.

When an electronic Post-It note is triggered the user is informed via a message that is

briefly flashed on the screen in conjunction with the sounding of an audible beep. This

works well in informing the user of the immediate actions of the computer, i.e. in

triggering the note. However, there is little feedback before or after the event to alert

the user that a note may be about to trigger or why a note did trigger. Presenting stick-e

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

66

notes only as they trigger strictly limits the user’s view of the stick-e note ‘landscape’.

For instance, consider stick-e notes of a primarily location-oriented nature. They will

pop-up on the screen as the user wanders through the areas that have notes attached to

them; however, the user is never sure when or where the next stick-e note is going to

appear. This could result in an activity rather reminiscent of minesweeping, where the

user wanders around trying to find out where the stick-e notes are.

A much better approach would be to provide some means of forewarning the user of

notes that are in close proximity of triggering. In the location-based example one can

easily envision the usefulness of a user-centred map with the surrounding stick-e notes

projected onto it. Similar schemes for other context elements could also be devised, e.g.

for temperature we could plot stick-e notes on different levels of a thermometer that

also shows the current temperature.

Providing such ‘early warning systems’ allows the user to anticipate when notes are

going to trigger and to better visualise the surrounding stick-e note landscape. In

addition they could be used to enable the user to preview notes, e.g. previewing a stick-

e note by selecting one of the note icons that are projected onto the map view. Given

this extra knowledge about the stick-e note landscape combined with the previewing

facility, the user would be able to adapt their behaviour in order to move into, or away

from, a stick-e note’s particular context.

The other aspect of keeping users informed about triggering stick-e notes is the

feedback given after a triggering has occurred. Currently, the user is simply informed

that the note has been triggered and is provided with a means to view it. However, it

would often be helpful to the user if a brief explanation of why the stick-e note was

triggered is made available. For example, to help stick-e note authors verify that they

have attached the stick-e note to the right context and also to help user’s understand

what current context resulted in the triggering of the stick-e note.

In summary, a combination of feedback before and after triggering allows the user to

see what stick-e notes are likely to trigger soon and, after a stick-e note has triggered, to

see why that triggering occurred.

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

67

In addition to receiving triggered electronic Post-It notes, we expect the user to be

actively involved in creating them too. This involves the user typing in the textual

message, a trivial task, and also specifying the context to attach the message to, a not so

trivial task. The Post-It note program helps in the latter task by providing current

values for all context elements that it is able to, but the user still has to select which

ones they want to use in attaching the note (and to specify any pretend contexts). This

could be further improved through context profiles which could be created for

different tasks, e.g. a ‘ask-x’ reminder profile may just consist of the With context

element. Then when authoring a stick-e note the user need only select the context

profile rather than manually configure the list of context elements provided.

The authoring process may very well only involve using current context values, e.g.

attaching an electronic Post-It to my current location. However, it may also use non-

current values, e.g. attaching a reminder note to Geraldina whilst she is not present, or

attaching a shopping list note to the local corner shop from home. In the latter cases

the user must enter the context information manually. Considering the location context

element, the Post-It program specifies it in units of latitude and longitude; units that are

difficult for people to correlate with their physical environment. By automatically

extracting the location from a GPS receiver the Post-It note program shields the user

from this underlying representation when attaching an electronic Post-It note to the

current context. However, when specifying a non-current context, or defining a pretend

context element, or viewing an explanation of triggering, the user will be forced into the

unattractive prospect of working directly with latitude and longitude data. However,

there are ways to avoid this.

Firstly, we could present latitude and longitude transparently in the form of a map

display. A map provides an immediately understandable medium for expressing

location, assuming that the design of the map is appropriate for the user, e.g. a tourist

map would not be appropriate for a water mains engineer. To indicate a location to the

computer the user could simply point at a position on the map, and similarly the

computer can position a cursor on the map to indicate a location to the user. Maps also

extend the possibilities for more easily expressing complex forms of location. These

complex forms may take the shape of areas drawn around the perimeter of a location.

For example, a user could trace around the perimeter of the Cathedral grounds to

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

68

define a Cathedral location context element. This tracing could be performed on the

map or with the aid of a GPS receiver to specify key points that make up the

surrounding polygonal area.

Secondly, considering the way in which people give directions to one another, the

importance of place names becomes apparent, especially for landmarks and well-known

locations. For example, it is easier to specify the Cathedral by name rather than point to

it, delimit its area on a map, or to specify a series of latitude and longitudes. To deal

with place names in the stick-e note framework a location name server would need to

be developed that stored a set of names, each associated with a geographic point or

area. This database of names could be built up gradually by assigning a name to each

location element that is created. In the current implementation of the framework a

naming facility has been provided so that context elements can be tagged with names,

and we intend to utilise this facility in developing a name server in future versions. One

potential problem with names lies in conflicts or misunderstandings, e.g. I meant Braga

Cathedral not Canterbury Cathedral. However, perhaps some of these conflicts could

be resolved through a use of the user’s context. In the aforementioned example if the

user was located in the city of Braga then it is most likely (and it is a matter of

probabilities rather than absolutes) they were referring to Braga’s cathedral. Generally it

would be suitable to have an abstract naming mechanism that is context dependent, e.g.

when referring to the cathedral the user’s current location is used to determine the most

appropriate choice.

The methods of identification by map and by name are complementary. The former

allows the initial association of a name with a defined area on a map (hiding the internal

low-level representation of geographic points). The name can then be used to quickly

identify a location and conversely the user can point to an area on the map and have its

name is extracted. Naming is useful to most types of context element, not just location

context elements. For example, specifying ‘afternoon’ instead of the time range,

specifying ‘hot’ instead of the temperature range, etc. Location context elements

happen to be especially suited to naming because the underlying units of data (such as

latitude and longitude) are often more difficult for the user to map onto their world

than place names and maps are.

Thus far we have discussed HCI issues that are primarily software related. However,

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

69

the ergonomics of the hardware platform are also crucial to the success of the system as

a whole. A problem that immediately arose with the Post-It note implementation was

the amount of equipment that the user was required to carry around. For a simple

location-oriented device they required the handheld computer with a cable linking it to

a separate GPS receiver. Holding the computer in one hand and the GPS unit in the

other makes it difficult to carry out any tasks on the computer other than passively

observing stick-e notes being triggered. Built-in GPS receivers could remedy this

problem or perhaps more realistically, at least in the short term, it is sufficient to have

some form of wearable GPS antenna that allows the actual receiver unit to be stowed in

a pocket leaving two hands free for operation of the handheld computer. Besides the

sheer bulk of equipment and cables, another problem with adding additional sensor

devices is the typical lack of many communication ports on handheld computers.

However, technologies such as blue-tooth [Bluetooth-Consortium 2001 - #11] are

beginning to make wireless communications possible with a number of nearby devices

simultaneously.

With the electronic Post-It note application, the design of the physical handheld

computer itself was also cause for concern. A clam-shell screen and keyboard design

may be more suitable in circumstances where mobility is thought of in terms of being

easily transportable to other stationary locations rather than in being used whilst on the

move. The notepad-like design of other handheld computers, such as the PalmPilot

(which was not on the market when the first prototype was designed and built), with

pen-based ready-to-use interfaces, better facilitate immediate access to the computer

whilst on the move. The pen interface also provides distinct advantages over keyboard-

based input. Firstly, it is a form of input that the computer-novice user is naturally

familiar with, also overcoming the problem of trying to use a condensed keyboard on a

small device. Secondly, the pen provides a more effective way of interacting with a

graphical user-interface, enabling a point-and-click mode of operation. This is especially

useful in stick-e notes where, for example, an area may need to be defined on a map

displayed on the screen - it is much easier to draw an area with the pen rather than

using the cursor keys of a small keyboard. But however good the handheld computer

design, its small size, which makes it so convenient in a mobile environment, also

makes it unattractive for prolonged periods of stick-e note authoring due to those very

same attributes. Therefore it would seem sensible to shift tasks that do not need to be

Chapter 2: Stick-e Notes - a Metaphor for Context-Aware Applications

70

performed whilst mobile onto a ‘companion’ desktop computer, e.g. activities like

organising notes into families, authoring note content, etc. The advantages of this

strategy are two-fold. Firstly, the functionality of the handheld computer programs can

be reduced so that only the mobile-dependent tasks are offered, allowing for a

simplified and more intuitive user interface. Secondly, by shifting work that does not

need to be completed whilst mobile onto a companion desktop computer we can

provide a more comfortable environment in which to perform those tasks, both in

terms of physical ergonomic comfort and the computing facilities available (e.g. bigger

screen, faster processor, etc.). To this end we developed a desktop PC stick-e note

management and test system, details of which are given in appendix B.

2.7 Summary

This chapter has both investigated and demonstrated the feasibility of employing

context-awareness in software and supporting its development through an underlying

application framework. The framework is based on a Post-It metaphor whereby digital

resources can be placed in context and triggered when the user enters or approaches

that context. In the creation of the framework and a trial context-ware application, a

number of issues have been explored. Strategies for obtaining context information

from sensor devices were investigated in addition to methods of representing the

resulting data collected (and the need to keep these two areas separate). We proposed

different methods of improving the performance of trigger checking and examined the

phenomenon of border-hovering and techniques to compensate for it. Finally, we

explored the HCI issues that arise as a result of the unconventional types of

environment, hardware, software, and data that both user and computer are exposed to.

The work on context-aware tools for ecology fieldwork that is presented in the next

chapter continues our exploration of context-aware applications where the electronic

Post-It note left off. The fieldwork tools are more sophisticated and designed for ‘real

world’ use in the field with a large user base that helped us to evaluate their usability.

Although triggering was not to have such a prominent role in the work, the nature and

use of context and HCI issues are very much at the forefront.

71

CChhaapptteerr 33::

EEccoollooggyy FFiieellddwwoorrkk TToooollss

Whereas the previous chapter described our context-aware work at the supporting

framework level, this chapter describes our work on developing context-aware tools at

the end-user application level. The aim of this work is to explore some novel

applications of context-awareness and to ascertain how useful and feasible stick-e notes,

and, more importantly, context-aware tools in general, would be in assisting in some

real-world activities.

We chose ecology fieldwork as our application domain with the aim of providing

ecologists with some form of context-aware computer that could support their various

fieldwork activities. This domain seemed well suited to our research for two reasons in

particular:

 Mobility within their environment, and the observation of that environment, is

inherent in the ecologist’s fieldwork activities, i.e. a changing context is central to

their work and hence an ideal place in which to deploy context-aware tools.

 Although GISs (Geographical Information Systems) and other supporting software

packages abound in the desktop computing environment there is currently little

practical computing support for ecologists whilst in the field.

The tools that we present in this chapter aim to rectify this situation by providing

ecology fieldworkers, and also fieldworkers from other disciplines (e.g. geologists,

maintenance workers, etc.), with context-aware computing support in the field. A large

part of this work was carried out under the “Mobile Computing in a Fieldwork

Environment” project [Pascoe and Ryan 2000 - #100], the aim of which has been to

promote the use of existing mobile computing hardware in higher education fieldwork

settings through the development of new software tools. The development of these

fieldwork tools and our close collaboration with the ecologists has allowed us to

Chapter 3: Ecology Fieldwork Tools

72

explore some interesting issues of context-aware applications and also to develop a

computing solution that has enabled us to judge the usefulness and practicality of

context-aware technology in a “real world” setting. This is especially valuable, as

context-aware applications all too often are confined to the research laboratory rather

than the real world.

In this chapter we first present our assessment of the general application needs of

ecology fieldworkers, worked out in collaboration with some ecology researchers and

students in the Isle of Mull, followed by a description of the tools that were developed.

We describe the extensive use of these tools in a giraffe behavioural study in Kenya,

and the issues provoked by this usage, before concluding with the exploration of a

novel context-aware application for identifying individual rhinoceroses.

3.1 Investigating the Ecologist’s Needs

A group of ecologists from Manchester Metropolitan University agreed to collaborate

with us in the development of the fieldwork tools and invited us to attend a number of

fieldwork expeditions. These expeditions enabled us to gain a better understanding of

their work, to ascertain their requirements, to test out early prototypes, and to gather

feedback and suggestions. Before our first such venture into the field we developed an

initial prototype of what we envisioned a fieldwork tool to be. This first prototype

allowed us to demonstrate to the ecologists the possibilities of such tools, which in turn

helped in gathering more concrete feedback and suggestions from them as to what

functionality they would need and/or like to have.

Based on our previous experiences in developing the electronic Post-It note program

we switched development platforms from the MS-DOS based HP-200LX to the U.S.

Robotics Pilot handheld computer (in subsequent incarnations called PalmPilot and

Palm). The platform change was made because, compared to the HP-200LX, all aspects

of the Pilot’s ergonomics, operating system, and user interface seemed more suited to

being used in the field (see Figure 8 for a photo of the physical device).

The only disadvantages of the platform were the strictly limited memory and processor

resources. These disadvantages will probably always hold in the immediate future: it has

been said that small portable devices will always have a tenth the power and memory of

Chapter 3: Ecology Fieldwork Tools

73

a desktop computer. It was due to these constraints that we decided that rather than

porting the generic stick-e note framework to the Pilot and using that as the

application’s foundation, we would instead develop the prototype fieldwork tool from

scratch without any supporting framework. We would still use the stick-e note concept

but would build the necessary features directly into the software, the desire for

increased performance being the driving factor. The previously developed electronic

Post-It note program, as described in chapter two, could afford to sacrifice

performance as it was only intended as a proof of concept rather than as a fully usable

tool. However, with the ecology fieldwork tools we wanted to create a practical tool

that could be given to ecologists to use in order to evaluate the effectiveness of a

context-aware computer; so optimum performance was essential.

Figure 8. The Pilot handheld computer.

We understood from the ecologists that the majority of their fieldwork consisted of

observation and data collection activities. The main role of the fieldwork tool, then,

would be to assist the user in recording observations of various aspects of their

environment. In essence, capturing and recording different context elements: a pursuit

that a context-aware computer is obviously well adapted to. We therefore envisioned

the fieldwork tool as a kind of current context monitoring device that could record

snapshots of the current context for later perusal. Given this emphasis on monitoring,

the main screen of the prototype was designed from the perspective of providing a

viewing mechanism onto the current context, as shown in the screenshot in Figure 9.

Chapter 3: Ecology Fieldwork Tools

74

The selected
context element to

be shown on this
main display.

Pretend values of
the selected

context element.

The current value of
the selected context
element.

Stored stick-e notes
ordered by the
selected context
element.

Short-cut to the
most recently
triggered stick-e
notes.

Figure 9. Annotated screenshot of prototype’s main screen.

The main screen (Figure 9) displays a view onto a particular context element, which can

be selected by the user from a list of all the possible context elements. In addition to

the current value of the context element and any simulated values (also referred to as

pretend values) added by the user, the display also shows a list of note icons that

represent stored stick-e notes. These icons are ordered by proximity to the current

value of the selected context element, the closest note being displayed leftmost and the

more distant ones being displayed rightmost. In effect, the line of icons acts as an index

onto the set of pre-recorded notes, ordered by the selected context element. Triggered

stick-e notes are also accessible from this screen by either selecting the “Triggered”

button to invoke a triggered note list, or through the short-cut icons to the right of this

button, which represent the most recently triggered stick-e notes. The triggered notes

portion of the display is independent of the selected context element; it will remain the

same whichever element is selected because triggering is caused by the whole context

rather than individual context elements.

3.1.1 Defining Context

Considering some hypothetical contexts that an ecologist may be interested in we began

to think of context elements as being divided into two categories. Firstly, commonly

used context elements that could be built into a data collection program (e.g. the

current location) and secondly, activity specific context elements (e.g. the species of

bird currently being observed) which, due to the sheer diversity of possibilities, would

have to be defined at runtime. Values of the former type of context element may be

automatically obtainable by communicating with a sensor device (e.g. communicating

Chapter 3: Ecology Fieldwork Tools

75

with a GPS receiver to obtain the current location). However, the latter type of context

element would have to be supplied by the user (e.g. the user may enter “Chough” to

specify the type of bird currently being observed). In the prototype we initially built in

support for location, time and temperature common context elements (although only

location and time values could be automatically obtained) and provided a facility to

represent application specific context elements in a general manner using simple

numeric and textual data types.

Figure 10. Editing one of the context element fields included in a stick-e note.

Specifying the sub-set of context (including common and application specific elements)

of interest in a particular fieldwork activity is carried out by defining the set of context

element fields to be recorded in a stick-e note, as illustrated in Figure 10.

A user-defined context element field is created for each unit of data that the ecologist is

interested in collecting. These fields are created by specifying a name and a context

element or simple data type to represent the value (currently limited to location,

temperature, and time for common context elements, and number, line of text, and

notepad for simple data types). The user can tailor the field further by indicating if it

should be used in the trigger checking process and if it should be displayed when

reviewing the note. This is useful as some context element fields may be used more for

triggering and be of less interest when reviewing a note, whereas others may not be

useful for triggering but do contain data of interest when reviewing a note. These are

not mutually exclusive attributes, i.e. a context element field can be used for both

triggering and reviewing. The attributes make the functioning of the program more

efficient as they remove the need to check certain context elements in the triggering

process and remove unwanted data from the screen when reviewing a note. In the user

interface we represent these attributes with ‘situation’ and ‘display’ checkboxes. The

Chapter 3: Ecology Fieldwork Tools

76

situation checkbox determines if the field forms part of the situation that the stick-e

note is recording, i.e. if it is a field that the note can trigger on. The display checkbox

specifies if the field value should be displayed if the stick-e note is triggered. Using a

combination of these two attributes, fields can be defined that are:

 Both situation and display. Where the field forms part of the situation that is

being recorded and is also displayed as part of the triggered stick-e note.

 Just display. Where the field is used to store information to display when the note

triggers, in effect augmenting the situation.

 Just situation. Where the field forms part of the situation (so it is used in the

trigger-checking process) but is not displayed in the triggered note.

 Neither. Where the data is recorded for later reference in a different program and

perhaps on a different computer. Such fields, in our experience, are uncommon.

The field definitions can be added, removed or changed without affecting any of the

previously recorded stick-e notes because each note keeps a copy of its field definitions.

The main display constructs its list of available context elements by combining the set

of built in common context elements, which are always available, with the set specified

in the context element field list that defines the structure of a stick-e note. Selecting one

of the available context elements causes the main display to show that context

element’s current value, simulated values, and notes nearest the current value. The

program maintains this information for each context element irrespective of whether it

is an application specific one modelled by a simple data type or a common one

represented by a real context element.

We originally intended to add a graphical view mode for the common context elements

to support the visualisation of the current and simulated context element values and the

distribution of stick-e notes around those values. This was not done, but we still believe

it to be a useful feature. For example, for the location context element a graphical map

view could be displayed showing the current value, simulated values, and location of

recorded stick-e notes, all plotted onto the map display. Such visualisations would be

limited to the built-in common context elements as the user-defined context elements

Chapter 3: Ecology Fieldwork Tools

77

are represented by general-purpose numeric and textual data types that would be

difficult to make a sensible visualisation of without more knowledge of the application

specific data that they represent.

3.1.2 Creating A Stick-e Note

The user creates a new stick-e note by selecting the “New” button on the main display.

This invokes a screen that presents the new stick-e note as an electronic form, where

each field of the form represents a context element of the stick-e note. If available, the

current value of each context element is inserted into the appropriate stick-e note field

by default, although the user can manually edit each field, as shown in Figure 11. Note

that we deliberately freeze the values for the fields after the note is created, i.e. changes

to the current context are not reflected in the stick-e note after its creation. This is

because the stick-e notes are being used to capture the current context at a particular

point in time and not to continually monitor the context.

Only the current value of a context element is used to set the default value of a stick-e

note field. Simulated values are not used because we view them primarily as a

mechanism to retrieve and preview stick-e notes by pretending to be in a another

context, i.e. they are only considered by the triggering process and not the note

authoring process. Simulated values are more suited for use in triggering rather than

authoring as there could be a number of simulated values for one context element,

unlike the singular current value. Multiple values can be happily used in triggering (in

effect the simulated values act as a retrieval query) but only a single value can be used as

a default value for a stick-e note field.

Figure 11. Screen shots of (i) the new stick-e note form display, (ii) manually editing the distance field, and
(iii) manually editing the location field.

Chapter 3: Ecology Fieldwork Tools

78

In this first prototype the same form display is invoked to show a recorded stick-e note

when clicking one of the nearest stick-e note icons from the main screen. However, we

intended to replace that with a simple view screen that only shows the stick-e note

fields that have been defined to be displayable. Extracting information from a GPS

receiver and performing a triggering process was not implemented, and was merely

simulated in the user interface (location data had to be transcribed manually where

required). A large part of this first prototype was a user interface simulation of our

initial vision of a fieldwork tool, with just enough functionality to test out its feasibility

and usefulness to the fieldworker (i.e. the ability to record simple field observations)

and to stimulate discussion of the ecologist’s needs.

We tested out this early prototype on a MSc ecology course’s two-week field trip to the

Isle of Mull, Scotland. The aim was to get a better understanding of the ecology

fieldworker’s requirements and to see how well the prototype would perform the

activities the fieldworkers were carrying out. We achieved this by shadowing the work

of a selection of different students, trying to duplicate their paper-based in-field

recordings on our prototype fieldwork tool. We describe two of the fieldwork projects

we shadowed in the following sections.

3.1.3 Fieldwork Project #1: Knockvologan Bird Census

The aim of this student project was to re-sample the bird population of an area called

Knockvologan, a remote moorland habitat that was censused two years ago. Since that

original census the area had been fenced off and any farm animals removed, so the

students were interested in evaluating the resulting regeneration of the natural

environment from the perspective of differences in bird species density and diversity.

The new census was performed by revisiting the original census transect (a fieldwork

term used to describe a well-defined path along which the ecologist walks to conduct

their observations) and making new bird observations at the previous recording points.

These observations commenced after a set period of arriving at the recording point in

order to allow the wildlife to settle down after our arrival. During this calm down

period the location, time, distance along the transect, and habitat description were

recorded. Then for a duration of 5 minutes any bird heard or sighted was recorded,

noting its species, if it was heard/seen/both, and its distance from the observation

Chapter 3: Ecology Fieldwork Tools

79

point. Approximately twenty different bird observations would be recorded in a typical

sampling period. These census points were revisited at different times of day

throughout the two-week project period to ensure that birds which were active at

different times of day were recorded.

The two ecology MSc students working on this project, Tim and Richard, conducted

these fieldwork activities as per normal whilst we shadowed their activities, trying to

duplicate their observation recording on the prototype fieldwork tool.

1. N 56° 17.577’ W 6° 19.851’
Time: 11:13-11:18 (all 5 minute durations)
Location: edge of estate
Distance: 0m
Habitat: open moorland

2. N 56° 17.638’ W 6° 19.888’
11:58
Near to ruined village
200m
Birch scrub on edge of moorland

3. N 56° 17.556’ W 6° 19.644’
13:00
200m
same as previous habitat

4. N 56° 17.528’ W 6° 19.528’
13:26
600m
same as previous habitat

5. N 56° 17.468’ W 6° 19.170’
14:00
Just over fence
1000m
bog + gorse scrub in front of birch wood.

Table 2. Sample of data recorded manually in the MemoPad application.

The information they recorded can be divided into two classes: the individual

observations themselves (i.e. bird species, sighting/heard/both, and distance from

observer) and also information common for one set of observations (i.e. location, time,

distance along a transect, and habitat description). That is, information about an

individual bird sighting and information about a whole session of sightings. When

defining the stick-e note context element fields we only specified the ones relating to

the individual bird sightings; otherwise the general session information would be

Chapter 3: Ecology Fieldwork Tools

80

duplicated for each individual observation. The general session information was

recorded separately in a memo of the Pilot’s built-in MemoPad application, a sample of

which is given in Table 2.

Note that in addition to the GPS derived position (which was manually entered into the

Palm Pilot), a textual description of the location was also recorded in order to pinpoint

it more accurately when trying to find the spot again in the future. The precise spot may

be hard to find without this description due to the +/-100 metre error in an

uncorrected GPS location fix.

To record the observation data a set of context element fields were created to define

the stick-e note, see Table 3.

Name Context Element / Simple Data
Type

Situation (i.e.
used when
triggering)

Display (i.e. used
when displaying)

Species Line of text

Distance Number

Call or Sighting Line of text (using the letters ‘c’, ‘s’,
or ‘b’ to indicate call, sighting or
both)

Location Ref. Number (referencing the common
location information entered into the
MemoPad)

Misc Notes (recording any other
miscellaneous information for the
observation, e.g. “not sure if it was
a buzzard or an eagle”)

Table 3. The context element fields defined for a bird spotting stick-e note.

To initially set the system up as described took only a couple of minutes in which to

define the stick-e note fields and to create a new MemoPad memo. This was easily

carried out just before taking the first observations at the start of the first transect, i.e. it

was a quick and simple process. In carrying out the fieldwork itself, the first activity on

arriving at a new point along a transect was to record the general location information

in a MemoPad memo. After the calm down period a new stick-e note would be created

and completed for each individual bird sighting, as illustrated in Figure 12.

Chapter 3: Ecology Fieldwork Tools

81

Figure 12. A stick-e note created for an individual bird sighting.

The stick-e note consisted solely of application specific context element fields; hence

the current value of each element had to be manually entered as there are no automatic

context element extraction mechanisms for application specific context elements.

3.1.4 Fieldwork Project #2: Bunessan Corvid & Eagle Census and
Behavioural Study

Unlike the previous project, in which populations of all bird species were monitored to

gauge environmental regeneration in an area, this project concentrated on ascertaining

the populations of corvids (crows, rooks, jackdaws, etc.) and eagles only. The goal was

to identify the distribution and population of these species and to observe their

behaviour and interactions in different areas.

The census was carried out by walking a transect and performing observations of five

minutes duration every 400 metres. As the area was already disturbed (we were walking

along a populated, if sparsely so, road rather than the wilderness of the first project’s

census) the samples were taken immediately on arrival at the site rather than allowing a

calm-down period first. The observations during the five minutes were more detailed,

recording the bird species and timed behaviour and were accompanied by the weather,

time, location and habitat data common to that 5 minute session. In addition to these

five-minute observation sessions, any corvids or eagles spotted between observation

points were also recorded but their behaviour was not monitored. The work was

divided between two students, Sarah, who maintained a log of census-point

observations, and Kathy, who maintained a log of the sightings made whilst walking the

transect.

Chapter 3: Ecology Fieldwork Tools

82

As with the first fieldwork project, the two ecology students conducted their work as

per normal whilst we shadowed their activities trying to duplicate the data collection

work on the Pilot.

What became immediately apparent was that there were two tasks to be completed: the

stationary census-point observations and the observations noted whilst walking the

transect. The data recorded varied slightly between the two: most notably a lot of

textual notes about behaviour of the birds was recorded at a census point. In one

instance two or three paper notebook pages (A5 size) of data were recorded whilst

observing a kestrel for 20 minutes. Unfortunately the design of the prototype was such

that only one of these tasks could be carried out because only one set of fields could be

defined for a stick-e note. We chose to shadow the observations made whilst walking

between observation points as this task seemed most different from the previous

project.

Name Context Element / Simple Data
Type

Situation (i.e.
used when
triggering)

Display (i.e. used
when displaying)

Species Line of text

Location Ordnance Survey Grid Reference
(manually derived from GPS
receiver)

Grid Reference Ordnance Survey Grid Reference
(manually derived from map)

Distance Number

Flight Line of Text

Bearing Line of Text

Time Line of Text

Misc Notes (recording any other
miscellaneous information for this
particular case, e.g. “not sure if it
was a buzzard or an eagle”)

Table 4. The context element fields defined for a corvid/eagle observation stick-e note.

The observations recorded in the walking census were each distinct sessions in

themselves, so there was no common session information to be recorded into the

MemoPad as was the case in the first fieldwork project. All the data for an observation

Chapter 3: Ecology Fieldwork Tools

83

could captured in a single stick-e note; the fields for which are presented in Table 4 and

illustrated in action in the screenshots of Figure 11.

Note that the Grid Reference field is one of the rare cases in which a context element

field is neither used in the triggering process nor in the display of the triggered note.

This is because the field was used as a verification mechanism whereby after

downloading the data to a desktop computer the locations derived from the GPS could

be compared with the locations derived using conventional map-reading techniques.

That is, after being recorded the field was only of further interest when downloaded to

a desktop computer, not in the fieldwork tool itself.

3.1.5 Requirements of a Fieldwork Tool

As a result of the use of the prototype system in these two fieldwork projects, and after

discussion with the ecologists, a number of general requirements were raised. We

present them in this section.

3.1.5.1 To Automatically Capture as Much Context as Possible

The more context elements that can be gathered automatically the less data the

ecologist has to manually enter. This is especially relevant to the location context

element as the current value is already derived from a GPS receiver in the paper-based

system but is subject to transcription errors when recording the current latitude and

longitude from the GPS receiver’s display. A simple connection between Pilot and GPS

receiver (as we intended to provide in future prototypes) would both speed up the data

collection process and eliminate transcription errors in recording the location

information. A time context element would also be a useful (and simple to implement)

addition for the ecology fieldwork activities as temporal data comprises a lot of their

behavioural observation work (as was the case with the bird behavioural observations

of the second project’s 5 minute census points). Built-in support for capturing the time

would eliminate the need to carry a stopwatch and to manually monitor and transcribe

start and stop times of different behaviours.

A GPS receiver is now considered an essential piece of equipment in most ecology

fieldwork. It is an extremely useful tool because the precise location is often difficult to

Chapter 3: Ecology Fieldwork Tools

84

establish by manual methods due to homogenous terrain or lack of maps for an area.

The location accuracy required is dependent upon the particular study. For some

fieldwork the uncorrected GPS signal is satisfactory, for others post-processing to

correct the signal is adequate, for others still, some form of real-time correction (e.g.

differential GPS) is required.

In general, the ecology fieldworker would benefit greatly from a richer range of context

element support. The same is also true of the simple data types that are used to

represent application specific context elements that are not built-in to the software.

Especially useful would be an enumerated type and some form of set type. The former

would assist in modelling application specific context elements like bird species, colour,

weather, etc. The latter would allow multiple values to be stored in a single field, e.g. a

list of bird behaviours recorded in a single bird observation note. There is a list attribute

provided in the prototype when defining a context element field, but currently it is not

used.

3.1.5.2 To Support Location and Time in Particular

Both fieldwork projects were primarily data collection based activities, as are most

ecology fieldwork projects. However, there is a lot of variation from project to project

in what type of data is collected and the method in which it is collected. The two most

common methods of collecting data are transect walking, and behavioural observations.

The former records sightings of a species of interest whilst traversing a fixed path or at

specified points along that path, perhaps with additional data such as a more detailed

description of the species, its distance from the transect, its bearing, its current state,

etc. The latter records changes in a species’ activity over time, with the view to building

up a time budget of the species’ different behaviours. Both methods are inherently

associated with a location and a time, although in the course of an observation it is

generally the case that location is of primary importance to the transect method

whereas time is of primary importance to the behavioural observation method.

Other methods of data collection, which we were not directly involved with in the first

field trial, include quadrate sampling and mapping. In quadrate sampling an area is

divided into quadrates in which various species are counted, giving a total for each

quadrate and allowing a distribution of species to be calculated. Mapping is concerned

Chapter 3: Ecology Fieldwork Tools

85

with identifying the location and boundaries of objects and areas, e.g. mapping a river,

defining the area of a fire, etc. Location is important in both of the methods but in

quadrate sampling the location is most likely an abstract quadrate number rather than a

form of geographic measurement such as latitude and longitude that would typically be

used in mapping. Utilising the fieldwork tools’ location-awareness, new and improved

sampling methods could also be more easily developed, e.g. random sampling, and

complex multi-point/dynamic transect lines.

What all these data collection methods have in common is that they are heavily reliant

on context information. All of the data collected can be considered part of the context,

but location and time are especially important as they are often used as a form of index

onto all the other context information. For example, the ecologist may record all the

bird species along a transect and then later on may wish to find out what species are

present in a particular location; as another example, an ecologist may record the activity

of a crow and later on wish to see how much time it spent exhibiting a particular

behaviour. Although each element of data recorded is considered a context element,

some of them, like location and time, are of critical importance in order to make sense

of the rest. Conveniently, time and location context elements are among the easiest to

obtain automatically (through GPS receivers or internal system clocks) and could

greatly enhance the usefulness of a context-aware fieldwork tool.

3.1.5.3 To Support Multiple Views of Context

The major problem we encountered with the prototype was its singular view of what

context is. In designing the prototype we envisioned the ecologists collecting data by

taking snap-shots of the current context, and provided a way to define what subset of

the current context was currently of interest to them by allowing the addition and

removal of context element fields from the stick-e note structure. When the ecologist

had configured the stick-e note with the appropriate context element fields to match

their interest, a snap-shot could be taken in the form of a stored stick-e note. However,

what we had not considered is that the ecologist may have several different concurrent

threads of interest. For example, in the bird census there was an interest in information

about the context elements related to individual observations (e.g. species, distance, call

or sighting, etc.) and those related to the observation session as a whole (e.g. habitat

Chapter 3: Ecology Fieldwork Tools

86

type, location, time, etc.). It is difficult to model these distinct interests in the prototype

as only one set of context element fields may be defined for the stick-e note. Changing

all the fields each time the ecologist switches her interest is simply infeasible so in the

trial we recorded the session data in the Pilot’s MemoPad and just recorded the

individual observations with our software. What is needed is the ability to define

different types of stick-e note to capture different types of interest in the current

context, and to be able to relate these stick-e notes with each other.

3.1.5.4 To Make Context-Awareness Transparent to the User and Task

Our inherent interest in context-awareness had also somewhat distorted our view of

what would be relevant to display on the main screen. We had envisioned current

context as being the most important piece of data and so had designed the main display

primarily as a means to view the different context elements of the current context. A

secondary role was to present the notes nearest to the currently displayed context

element and those that had triggered. However, the ecologists were not particularly

interested in viewing the current values of various context elements: they simply wanted

to capture this information at intervals and be able to occasionally review the recorded

notes. That is, what they really required is an interface oriented around the recording

and retrieval of stick-e notes rather than the interface provided, which is oriented

around displaying different elements of the current context.

In the fieldwork application it is more appropriate to have the context-awareness

actively supporting the task at hand in a manner that is transparent to the user;

otherwise it becomes a distraction or, worse, an interference, to their activities.

Although it is easy to create stick-e notes, the current method of retrieving or reviewing

them is cumbersome. The nearest note’s or triggered note’s icon list is intricate and

time consuming to use at best, and provides no cue as to a note’s content before it is

opened. It is this stored note view that needs most improvement and enlargement as, in

addition to creating stick-e notes, it is the centre of interest for the ecology fieldworker.

3.1.5.5 To Provide Dynamic Data Visualisations

The fieldwork computer is able to organise the collected data in a much more

sophisticated and dynamic way than compared to a paper notebook. Facilities could be

Chapter 3: Ecology Fieldwork Tools

87

provided that make further use of this ability in order to aid in the in-field management

and review of stick-e notes, such as graphical views of different types of context

element with stick-e notes plotted according to proximity. For example, in addition to

the main screen’s nearest note list we could also add a GIS-type view (in a slimmed

down form) to display the current location of the user and the locations of the recorded

stick-e notes on a geographic map.

3.1.5.6 To Support Stick-e Note Prototyping

The prototype’s method of defining a stick-e note proved to be a good match for how

the ecologists’ data collection strategies are developed. When formulating their data

collection strategy, although they have an approximate idea of what types of data they

would like to record, it is only when out in the field that what is, and is not, possible to

record becomes apparent. The data collected from observations therefore evolves out

of a growing understanding of the subject over the initial period of their study. The

prototype tool suits this evolutionary approach to establishing the data collection

strategy by allowing context element fields to be added and removed from the stick-e

note as required without affecting previously recorded stick-e notes in any way.

3.1.5.7 To Provide a Quick-to-Use Interface

It soon became apparent that the speed of operation of the prototype was critical.

Observations in both fieldwork projects would often occur simultaneously, resulting in

periods of intensive data recording. The software ‘engine’ was able to cope with these

peaks of activity satisfactorily but the user interface became a bottleneck where it was

quite difficult to enter the data sufficiently quickly. Some of the suggestions made for

future prototypes, such as automatic context capturing, should help to ease the data

input burden. However, the design of the user interface itself should also be

investigated to see how high-volume rapid data entry could be better supported.

3.1.5.8 To Survive the Field

One general observation about the practicality of a context-aware field computer is the

harsh environment to which it is subjected. Unlike the clean and relatively safe office

environment typical of handheld computer use, we were using these devices in the

Chapter 3: Ecology Fieldwork Tools

88

wilderness, where knocks, drops, mud, rain, sun and dust, all play their part in making

the conditions rather inhospitable for such a device. Although our work concentrates

on developing context-aware software, a rugged platform is still required on which to

deliver it. The Pilot construction proved to be robust enough to survive the elements,

for this first field trial at least.

Surviving the fieldwork environment is one thing, but actually being suited to it is

another. The ecologists need a tool that is as unobtrusive as possible and that assists

with the task at hand rather than distracting from it. For example, one could design a

laptop to survive the harsh environment but it would be too big and bulky to be of

much use to the ecologist. Again, out of all the available solutions we tried (including

the Apple Newton, HP 200 LX, and Psion Series 3) the Pilot provided the most

ergonomic solution for the field. Its compact and convenient notepad-like design and

pen-driven interface made it easy to retrieve quickly from a pocket and immediately

start recording notes. It was even possible to use it whilst simultaneously walking and

talking.

3.1.5.9 To Provide Links with the Desktop

Capturing the observations on the fieldwork computer or paper notebook is just the

start of the ecology project as a whole. To use the data to answer ecological questions it

will be analysed by entering it into a statistical software package, mathematical model,

or GIS (Geographical Information System), etc. Therefore an essential part of the

fieldwork tool is to be able to download the collected stick-e notes to a desktop

computer and be able to export it in a format suitable for such packages. A desktop

computer could also act as a central repository for a group of ecologists where each

person could contribute to a shared database of information on the desktop computer

by downloading the stick-e notes from their fieldwork computer each day. For example,

each ecologist could contribute some bird observation stick-e notes made during the

day to a database of bird sightings on the desktop computer. This would enable

ecologists to efficiently and effortlessly collate data gathered in a joint project and to

allow the distribution of data to the appropriate people with shared interests. Being able

to review the data almost immediately after collection would also allow the ecologists to

adapt their fieldwork strategy in quick response to any deficiencies found.

Chapter 3: Ecology Fieldwork Tools

89

3.1.5.10 To Ensure Data Security

Most ecology fieldwork projects are underpinned by data collected in fieldwork

expeditions. Therefore the security of the data collected is paramount: it would not do

to lose it all on the last day of the expedition. We believe that the fieldwork computer

will be more secure than the current paper based system, as the data can be

downloaded to a base computer each day and a back-up strategy for that base computer

devised. Hence, the most data that could possibly be lost at any one time would be only

one day’s worth (due to some failure in the fieldwork computer before downloading).

With a paper notebook system the data is much less secure (there are numerous

ecologist “horror stories” of dropping notebooks in rivers, etc.).

3.1.5.11 To Offer a Field Guide Service

In addition to collecting data, the fieldwork tool could also perhaps be used as a

context-aware field guide that works in a similar fashion to the electronic Post-It note:

automatically displaying information of interest in context. The first two or three days

of the student’s fieldwork projects were spent introducing them to the environment

and its various geological and ecological features of interest. If the fieldwork tool stored

this information as a set of stick-e notes then they could be triggered and displayed to

the user when approaching the associated sights. Perhaps stick-e notes collected by

ecologists in earlier studies could also be brought out into the field by an ecologist

updating the study or just interested in reviewing the area in which it was conducted.

Other more general stick-e notes could contain ecology information that members of

the public may be interested in when walking through an area. In addition to stick-e

notes attached to locations they may also be attached to a specific animal if, for

example, radio-tracking equipment was connected to the Pilot so that any radio-tagged

animals in the vicinity could be automatically detected. In summary, a stick-e note field

guide would be similar to having a number of ecology experts offering information

appropriate to the current situation.

3.1.6 Summary

Our first prototype gave us the opportunity to test out our initial ideas of the form and

function of a fieldwork tool, and to gain a better understanding of the ecology

fieldworker’s needs. We worked with a group of MSc ecology students from the

Chapter 3: Ecology Fieldwork Tools

90

Manchester Metropolitan University who were conducting various fieldwork projects,

ranging from observational studies of deer to assessing populations of snails, during a

one week field trip to the Isle of Mull. They had a variety of support for processing

their collected data when back at the base-camp (for example, using a laptop computer

with GIS or database packages) but had no practical computing support in the field; the

prototype was a pioneering effort to provide them with such facilities.

We shadowed the data collection work of two groups of students with our initial

fieldwork tool prototype and it quickly became apparent that the common ground of all

fieldwork projects lay in data collection. Recording observations in the field with the

prototype highlighted many requirements that we would address in future prototypes in

our continuing efforts to assist the ecologist’s fieldwork activities. The only requirement

that we did not subsequently explore is the concept of a field guide service, which is a

full-blown project in its own right.

3.2 Generic Fieldwork Tools for Data Collection

Informed by the ecologist’s requirements derived from our experiments and

experiences with the first prototype, we created a suite of fieldwork tools to assist in

their data collection activities. We developed these tools in close collaboration with

Kathy Pinkney, an ecologist who had kindly agreed to trial them in her two-month

behavioural study of giraffe in Kenya (though, of course, the aim was to develop a

general stick-e note application that could be widely used in many fieldwork activities,

i.e. not one specifically designed for giraffe behavioural studies!). This enabled an

assessment to be made of how useful the fully-functional fieldwork tools were in a real

fieldwork project, under real fieldwork condition, and over an extended period of time.

This second prototype (for the Kenyan giraffe study) contrasted with the first

prototype (used with the ecology students on the Isle of Mull), where the ecologists still

used their paper notebooks, and an additional observer (me) duplicated their activities

on a computer.

3.2.1 The Changing Nature of a Stick-e Note

Our original concept of stick-e notes was as an electronic version of a Post-It note,

albeit with more sophisticated content and context possibilities. These could aid in

Chapter 3: Ecology Fieldwork Tools

91

fieldworkers’ activities by allowing data to be recorded in the form of a note attached to

a particular context, e.g. attaching a “saw rare orchid here” note to the orchid’s

location. In addition to automatically tagging a note to a context for reference purposes,

the program could automatically ‘pop-up’ the note on the screen the next time the

user’s current context matched the one that the note is attached to. The notion of

context (e.g. location) and content (e.g. orchid) being distinct and discrete entities is

firmly entrenched in such an ‘electronic tagging’ model. However, is this distinction a

valid one? Historically this differentiation was due to the attempt to create an electronic

parallel of the Post-It note where there is obviously a separation of the notes written on

the Post-It and the physical object to which it is attached. However, with the increased

richness of context expressed in ecology fieldwork (e.g. times, temperatures, etc.) the

distinction between context and content begins to blur and break down. For example, if

taking a series of temperature readings at various locations around a volcano, is the

temperature a context or is it content? It could in fact be considered as either or even

both. Therefore modelling stick-e notes in terms of separate content and context seems

to be increasingly unsatisfactory.

Our first prototype had addressed this concern by allowing a stick-e note to be

specified in terms of a number of context element fields, each of which could be

defined as part of the context to trigger on and/or part of the content to be displayed.

The role of a stick-e note then, has changed from one of tagging to one of modelling a

snapshot of the current context. There are an infinite number of possibilities of what

context elements could be represented in a stick-e note, e.g. soil type, weather

conditions, colour, heart rate of user, variety of apple, etc. In this new context-snapshot

model of stick-e notes each of these are treated as equals, and the typical dominance of

location as the context element to which other values are attached is eliminated, leaving

a rich array of potential context elements to form a stick-e note.

Although a significant change in the structure of a stick-e note, it does not make the

concept any less general purpose. A general context-aware framework based on this

new notion of stick-e notes could be applied in just as many different application areas

as the original concept, i.e. it is not specifically designed for ecological fieldwork.

Considering a tourist guide application, it can still be implemented as a set of stick-e

notes where each note will contain a set of context element fields. Some of those fields

Chapter 3: Ecology Fieldwork Tools

92

will define the physically detectable parts of the context (i.e. the ones that will be

considered as the context of the stick-e note for triggering purposes) and others will

define information to supplement the physically detectable parts (i.e. the information

that will be displayed to the user). For example, a simple guided tour could be

constructed from a stick-e note of two context element fields: one for specifying the

location and one for specifying a URL.

3.2.2 Hardware Employed

In the second prototype the U.S.Robotics PalmPilot (the successor to the Pilot used in

the first prototype) linked to a Garmin 45 XL GPS receiver was used as the hardware

platform (see Figure 13) and a laptop PC was used to backup the PalmPilot’s stick-e

notes.

Figure 13. U.S.Robotics PalmPilot linked to Garmin 45 XL GPS receiver.

3.2.3 A Suite of Three Programs

The software for the PalmPilot was designed and developed as three separate

applications: the StickePad to create new stick-e notes, StickePlates to create new stick-e

note templates, and the StickeMap to visualise stick-e notes containing location context

elements via a map display. Although separate, the three programs work in harmony by

operating on the same database of stick-e notes and by communicating with each other

through a common area of storage. The reasons for the division are discussed in this

section.

Chapter 3: Ecology Fieldwork Tools

93

The user interface of the first prototype centred around one main screen where both

current context and stick-e note information could be accessed. The central feature of

the interface was the view-by control that allowed the user to select which context

element was used to orient the view of the main screen. The current and simulated

values of the selected context element were displayed and also a series of icons

representing the stored stick-e notes, ordered according to their proximity with the

current value of the context element.

Two of the main information elements of the screen, the current context value and the

list of stick-e notes, were typically used independently of each other. For example, the

user may want to find or check their current position, in which case the current context

value element would be used, or to search for a pre-recorded stick-e note, in which case

the nearest stick-e notes element would be used. Although convenient to have all these

facilities in one place, this further reduces the already limited screen size for each

information element. This results in a somewhat cramped display where the

information is displayed in a small form to suit the screen rather than in the most

accessible form to suit the user. For example, instead of the small textual readout of

location (or other context element) it would be preferable to visualise this in the form

of a map (or another context element visualisation) to make navigating easier. The

nearest notes could also be plotted onto such a map display giving the user more

information about where they are and the proximity of notes to their current location.

The main reason that the display of the first prototype took the form it did was that the

nearest notes list was designed to serve two purposes: (1) to order stick-e notes by

proximity and (2) to allow editing access to a list of pre-recorded notes. The result was

a compromise that served neither task particularly well. To remedy this situation we

decided to separate ordering by proximity and editing access into two separate displays.

In fact, we went further and partitioned the displays into two different programs, so

creating the StickePad and StickeMap.

The StickeMap provides a grid-based map onto which the user’s current position is

plotted along with that of any nearby stick-e notes. It provides information on current

context and nearby stick-e notes in one display. Although these two pieces of

information tend to be sought independently of each other (the user tends to seek the

Chapter 3: Ecology Fieldwork Tools

94

current location or the nearest stick-e notes at different times) combining the two gives

a better sense of the context of either by illustrating them in relation to one another.

Some simple map functionality is provided such as zooming and scaling. Also by

clicking on a stick-e note icon the user is transported to an editing screen for that note,

though for the most part the user will edit notes directly through the StickePad. Note

that we could have supported a background image on the StickeMap to allow scanned

paper maps to be utilised. However, as all of our field trials were to be carried out in

areas with no available maps we chose not to implement this feature for the time being.

Shows the number of stick-e notes
displayed out of the total number
that have a location field.

A stick-e note icon. Clicking on it
launches the StickePad with that

particular note automatically
opened for editing.

Indicates the current position of
the user. Note: the icon appears
bolder if the GPS is attached and
functioning.

Buttons to update the cursor
position from a GPS reading, re-

center the map on the user’s
current position, and also to

zoom in or out.

Figure 14. Screenshot of the StickeMap program.

The StickePad is used for creating new stick-e notes and viewing and editing stored

ones. Unlike the first prototype, where searching for a pre-recorded note was literally a

hit and miss affair (clicking randomly through the line of nearest note icons), in the

second prototype a little more information is given to the author to enable them to

better hone in on the note that they desire. This information is presented in the form of

a scrollable list of stick-e notes represented by their associated sequential number, time

and date of creation, and, optionally, a summary of the note’s context element fields.

A separate StickeMap application for visualising and manipulating the location context

element could be perceived as going against the general philosophy of the updated

stick-e note concept in which each context element field is considered equal to all the

others, with no special treatment of one over the other. However, the principle of

uniform treatment across all context element fields applies to their processing rather

than their representation in the interface. Different types of context elements inherently

have different display requirements, e.g. there are a lot of visualisation possibilities that

Chapter 3: Ecology Fieldwork Tools

95

can help the user manipulate location data, but there is little that can be usefully done to

visualise the number of giraffe except displaying the numeric value. The first

prototype’s view-by control was conceived out of the idea of treating context elements

equally, which should indeed be the case for trigger-checking and other processes, but

for viewing data the different context elements inherently require different approaches

to visualisation.

List of recorded
stick-e notes.

Button to create a
new stick-e note.

Figure 15. Screenshot of StickePad main screen.

When creating and editing stick-e notes, the StickeMap program is not required. The

plain location data, in the form of latitude and longitude, can be worked with directly.

The StickeMap is intended as a supplemental program to provide some useful context-

aware features that focus on one particular context element, i.e. a map display for

showing the location of the user and stick-e notes. We view the StickeMap as being

similar to helper applications in Web browsers, providing a display service for a

particular type of data, or, in the case of the fieldwork tool, a particular type of context

element. In future work we hope to develop (and encourage others to develop) more

helper applications for the fieldwork tool in order to support the visualisation and

manipulation of other types contextual element.

In the first prototype we found that we required a more sophisticated method of

defining the context element fields of a stick-e note. In particular the ecologists had

interests in several distinct sets of context elements rather than in one single universal

set. This was addressed in the second prototype by introducing the concept of stick-e

note templates. A template enables the definition of a common set of context element

fields from which stick-e notes can be constructed. This added a great deal more

complexity to the StickePad user interface than the simple “define fields” menu item in

the previous version. The creation of the templates is also a logically independent task

Chapter 3: Ecology Fieldwork Tools

96

from that of creating stick-e notes. We therefore separated all the template creation and

maintenance functionality into the third and final program, called StickePlates. This

program allows the user to create a set of stick-e note templates and to define the set of

context element fields that constitute each one, as illustrated in Figure 16.

Buttons to create new
templates and add

context element fields.

The stick-e note
template’s context

element fields. The selected stick-e
note template.

Figure 16. A template called “Field Notes” defined in the StickePlates program.

This separation left the user with a much simpler interface to the StickePad program

where the infrequently-used template functions were removed, so avoiding any

cluttering of the interface. In fact, the StickePlates program could even be removed

from the PalmPilot altogether in some circumstances. This could be done to save space

on the PalmPilot when using a standard or tried and tested set of templates that need

no in-field modification. It can also be useful to remove the StickePlates program when

equipping a group of people with a standard set of data collection templates: in this way

they are prevented from modifying the templates in any way.

The rationale for separating the stick-e note software into the three separate programs,

StickePad, StickePlates, and StickeMap, can be distilled into four main points:

 It reduces the apparent complexity of the small display by segmenting the program

into functionally disparate areas, i.e. functions for defining a stick-e note template,

creating and editing a new stick-e note, and visualising the collection of recorded

stick-e notes (corresponding to the function of the StickePlates, StickePad, and

StickeMap programs respectively).

 Separating the template definition into an independent program allows a data

collection manager to define a standard set of templates which are given to the

fieldworkers with the StickePad and StickeMap but, importantly, without the

Chapter 3: Ecology Fieldwork Tools

97

StickePlates program. In this way the fieldworker is prevented from altering the

template definitions.

 The spirit of stick-e note technology is to treat all context elements as equal and as

such there should be the potential to visualise the stick-e note data by a variety of

different context element views, not just a map for location context elements. By

separating the location visualisation function from the main program a precedent is

set whereby ‘helper’ visualisation programs based around other context elements

may be developed and added to the system.

 The resource limitations of the PalmPilot on which the prototype was developed

(and, indeed, other handheld hardware) favour a model whereby a selected group of

small programs can be uploaded to perform a specific task rather than one

monolithic program that is likely to include features which are redundant in some

tasks.

In addition to improving the definition, editing, and visualisation of stick-e notes as a

whole, the support for individual context elements and simple data types were also

extended to include the following:

 Bearing. Specifies a direction in degrees 0 - 360. A range option is provided to

allow a bearing range to be specified, e.g. from 67 to 92 degrees or even 350 to 10.

 Boolean. Provides an on/off, yes/no, or true/false checkbox.

 Date. A date or date-range, whose precision (e.g. dd+mm+yy, mm+yy, mm+dd,

etc.) and format (e.g. USA or UK) can be specified.

 List. Facilitates the recording of any of the other supported types in a list (except

for another list type). Provides the option of recording timing information with

individual entries. The properties of the list element type may be adjusted just as if

dealing with a single type.

 Location. Records location (currently only in the form of latitude and longitude).

 Notepad. Gives the user a display like the PalmPilot’s built-in MemoPad

application to record textual information.

Chapter 3: Ecology Fieldwork Tools

98

 Number. An integer or real number, or number range, for which an upper and

lower valid limit can be specified and a step increment defined, e.g. an integer that

lies between 5 and 78 and which increments in steps of 4.

 Time. To record an actual time, a single duration of time, or a range of time, with a

specified accuracy (hours, minutes, seconds).

Location, date, time and bearing provide context element support, whereas boolean,

number, and notepad provide simple data type support enabling the representation of

application specific context elements through generic types (similarly to the way a

programming language allows data to be represented with generic types – though the

range of base types required is larger). The remaining list type facilitates the storage of

an undefined number of values for one context element, e.g. a list of people present in

a room.

Simulated values and triggered notes were mostly omitted from the second prototype.

Simulations were only implemented in the form of being able to simulate the current

location in the StickeMap program in order to preview stick-e notes in an area different

to the current one. The simulated location value was not used in the StickePad in

creating stick-e notes, etc. (though the user could override the sensor input and enter a

value manually; useful for sensor failure conditions), nor were simulations of other

types of context element supported. The simulations feature was scaled back as it

seemed likely that it would not be widely used by the ecologists in the field (though it

may have uses later on in the desktop-based data analysis software). The trial of the first

prototype indicated that most of the context element fields would be constantly

changing from note to note rather than retaining a stable value (stable values are needed

in order for simulated contexts to be useful in the automatic entry of data; otherwise

there is no advantage over typing the new value directly into a new stick-e note’s field).

The triggering mechanism was also omitted from the second prototype design. As with

simulated values, the feature did not seem to be particularly useful to the majority of

ecology fieldwork as the activities were based around the creation of stick-e notes

rather than in their automatic retrieval (even in long running projects, whilst in the field

the work generally focuses on recording new data and not inspecting previously

recorded data). The concept of stick-e notes popping up on screen whilst roaming

Chapter 3: Ecology Fieldwork Tools

99

through different contexts would be more attractive to tour guide applications that

concentrate on retrieving data appropriate to the user’s current context rather than in

fieldwork data collection that concentrates on storing context information appropriate to

the user’s current task. A more suitable feature for the fieldwork environment is a

means of gaining a new and perhaps broader perspective on the data that is being

recorded, e.g. viewing the distribution of stick-e notes recorded around the user’s

current location via the StickeMap.

The emphasis of the second prototype is on exploiting context-awareness to capture,

manipulate and visualise data (e.g. extracting GPS location data that can be used to fill

in a stick-e note field or to view the user’s current location on a map) rather than to use

it as a way of automatically recalling information associated with the current context

(i.e. triggering). This reflects the data collection nature of the work. However, rather

than discarding the notions of triggering and simulations, the trial of the second

prototype provided a good opportunity to consider how they could be exploited in

such a setting, and how these concepts could be incorporated in future prototypes.

3.2.4 Using the Fieldwork Tools

Working with stick-e notes in the prototype is split into two distinct areas: definition

and creation. This reflects the split of the software into the StickePlates program for

defining and editing the stick-e note template, and the StickePad program for creating

new notes based on a specific template and then allowing the user to edit them. The

series of screen shots from the StickePlates program (see Table 5) demonstrates the

process of defining a very simple stick-e note template.

Chapter 3: Ecology Fieldwork Tools

100

1. The StickePlates template
constructor. Note that the picklist in
the upper right corner indicates
that there are no templates defined
yet.

2. Clicking New invokes the new
template dialog.

3. After ‘Oking’ the previous dialog
the picklist now shows the current
template we’re working on as
‘giraffe’.

4. Clicking Add invokes a dialog to
define a new field, where the type
and name/label of the field can be
entered.

5. Some field types have properties
that can be edited by clicking the
Details button.

6. After ‘Oking’ the field definition
dialogs, the new field is added to
the template.

Table 5. A sequence of StickePlates screenshots that illustrates the creation of a stick-e note template.

A number of stick-e note templates can be created and edited; the template picklist is

used to select the current one. Having created a suitable stick-e note template, or set of

them, the StickePad can then be used to create new stick-e notes. A very simple

example to illustrate this process given in Table 6.

Chapter 3: Ecology Fieldwork Tools

101

1. The StickePad; empty in the
beginning.

2. Clicking the New button creates
a new stick-e note that, by default,
is generated from the last used or
modified template. The template
can be changed by selecting a
different one from the picklist.
Note: screen space is optimised in
favour of the data boxes; the labels
are never allowed to stretch
beyond half the width of the
screen.

3. Clicking on a data box (No. of
giraffe in this example) invokes a
dialog to edit the value of that stick-
e note field. The + or - buttons in
the Edit Number dialog increment
or decrement the number by a step
amount predefined in the stick-e
note template.

4. After editing a field, the
respective value in the stick-e note
is updated.

5. Clicking Done saves the
changes to the stick-e note and it is
added to the list of notes in the
StickePad, annotated with the time
and date of creation.

6. Clicking on the stick-e note entry
to edit it invokes the same editing
window as was used to create it.
However, the template picklist is
replaced with the sequence of the
stick-e note within the collection -
as changing the template is
pointless at this stage because it
would wipe out the recorded data
and create a completely new stick-
e note.

Table 6. A sequence of StickePad screen-shots illustrating the creation of a new stick-e note from a
template.

Having created some stick-e notes the user can either view them by scrolling through

the list in the StickePad’s main screen or by viewing the ones in the surrounding area

on the StickeMap (see Figure 14).

The StickePad is where the focus of activity will be whilst the user is in the field, e.g.

the ecologist recording their observations. The need to enter data into the StickePad in

Chapter 3: Ecology Fieldwork Tools

102

a very rapid manner was highlighted in the fieldwork experiences of the first-generation

prototype. Therefore, we have attempted to streamline its user interface and provide

some time saving features.

Stick-e notes naturally exploit an awareness of context. The particular context elements

available to the StickePad software are the location, from an attached GPS receiver, and

the time and date, from the internal Pilot clock (although a more accurate time could

potentially be extracted from the GPS receiver). Therefore, any fields of a location,

date, or time type could automatically be filled in by the StickePad when a new stick-e

note is created. It is likely that these will be the values that the user really wants to enter,

as they will typically be collecting real-time and real-location data. However, any of the

fields can be manually adjusted should the need arise.

For stick-e note fields that record application specific context elements through simple

data types, the current value of the field cannot be automatically obtained by the

StickePad. The best that can be achieved is to provide a helpful user interface to enter,

view, and adjust this data. Indeed, such a philosophy is also usefully applicable to

contexts whose values are automatically accessible. Some of the data entry interfaces are

illustrated in Table 7.

The Stick-e Note

A stick-e note template called
Fields was created to demonstrate
the use of the various field types.
The default values of the various
types in a new form are shown
here. Date, Location & Time are
set to current values.

Bearing

The bearing type allows the user to
express a heading that lies
between 0 and 359 degrees. To
edit the figure one of the digits is
clicked on and can be ‘scrolled’ up
or down using the arrows. The
dialog prevents an invalid value
from ever being entered (as
opposed to displaying a warning
message when an incorrect value
is entered).

Boolean

The true or false values can be
toggled using the check-boxes.

Chapter 3: Ecology Fieldwork Tools

103

Date

The date dialog is re-used from the
PalmPilot’s built-in Date Book
application, so its operation will be
familiar with Pilot users.

Location

Much like the bearing type, this
dialog allows the user to adjust the
latitude & longitude (which would
normally be obtained from a GPS
receiver) and prevents the user
from entering any erroneous
values. The Here button is
provided to allow the user to
refresh the value from a connected
GPS receiver.

NotePad

Textual notes can be entered in a
dialog similar to the one used
within the PalmPilot’s built-in
NotePad application.

Number

A number can be typed in directly
or adjusted using the + or -
buttons. These buttons increment
or decrement the number
respectively by the step value that
is specified in the stick-e note
template. Also, the two hardware
scroll buttons of the PalmPilot have
been overloaded to act in the same
manner as the + or – buttons. As
the user can easily locate and
operate these buttons without
looking at the device, this provides
a useful counting mechanism that
minimises the attention the user
needs to devote to the screen.

Time

The time dialog follows in the
tradition of the bearing and location
dialogs by providing scrolling
number boxes that enforce the
entry of correct values. A Now
button is provided to update the
value with the current time.

List

The list dialog utilises the other
type dialogs to create and edit
values for each list element.
Buttons are provided to add, delete
or edit these elements. Optionally,
elements can also be time-
stamped upon their creation, as is
shown here.

Table 7. A selection of screenshots of various context element editing dialogs.

For bearing, date, number, and time fields, a range option can be specified when

defining the form template. When editing such a field the user is then presented with a

Chapter 3: Ecology Fieldwork Tools

104

control in the bottom right-hand corner of the editing dialog to facilitate switching

between the two values of the range.

3.2.5 A Giraffe Study Field Trial

As mentioned earlier, we were fortunate in having a willing volunteer to test out the

second generation prototype: Kathy Pinkney, an MSc ecology student conducting a

giraffe behavioural study at an ecology research centre in Sweetwaters Game Reserve

near Nanyuki, Kenya. The main role of the reserve is to provide a sanctuary for black

rhino and an environment that is conducive to an increasing population of these

endangered animals. A number of studies, including the giraffe behavioural study, are

being conducted to investigate how various elements of the reserve’s ecosystem interact

with and affect the rhino population, with the aim of using this data to aid in the

management of an optimal environment for the rhino.

We have deployed the prototype tools in a number of other fieldwork projects

including an archaeology expedition in southern Spain [Ryan, Pascoe 1997 - #119], a

project assessing elephant impact on riverine areas, a study of zebra and gazelle

behavioural interaction, and numerous other ecology projects. In this chapter we

concentrate on the giraffe study in particular as it offered the most wide-ranging and

intensive use of the prototype.

The ecological focus of the giraffe behavioural study was to gain a better understanding

of the daily behaviour of giraffe and, in particular, their feeding habits and the resultant

impact they have on the vegetation within the reserve. As anticipated, the majority of

the work to be carried out in the field would be of a data-collection nature; the analysis

of the data would be carried out when back in England. The computing research focus

was to see how effectively out context-aware tools could be employed in a practical

application and to identify future research issues from the needs and problems

expressed in these practical experiences.

This trial was the first time that we put the prototype in the hands of the ecologists, and

the first time that it would be used in collecting large amounts of non-trivial data over

prolonged periods of time. The first few days in the reserve were spent seeing what

would be possible to achieve in the giraffe study, both in terms of the giraffe study

Chapter 3: Ecology Fieldwork Tools

105

itself and also how the prototype could be best employed. Kathy had an overall plan of

what she would like to accomplish and the type of data she would like to collect.

However, some first-hand knowledge and experience of the environment there was

vital to establish the practical feasibility and constraints of the study. For example,

through a process of trial and error we established the best way to observe giraffe and

gauged the nearest distances at which they would tolerate us. In a similar experimental

process, we investigated the best ways in which the data could be recorded in the

prototype.

The process of designing a set of stick-e note templates was very much an evolutionary

one. The initial templates were enhanced each day, based on our experiences of using

them, in order to make the data entry process as easy as possible and to give the

recorded data an understandable structure. Subtle innovations in the template design

were made whilst out working in the field and more fundamental revisions made during

the evenings back at the research centre. Three main criteria guided this template

development process:

 Ease and speed of data entry.

 Understandable template structures so that recorded data could be easily retrieved and

viewed.

 Space optimisation giving consideration to the limited memory of the Pilot.

Although minor modifications were still being made, a basic set of templates had been

established at the end of the second week to service the four main data collection tasks:

giraffe scan, focal, faecal and habitat observations. Each of these tasks is discussed in

turn in the following.

3.2.5.1 Scan Observations

Giraffe were initially found by walking through the reserve until a group was

encountered, at which point a scan survey would be conducted to identify various

characteristics of the group. To record this information on the prototype a scan stick-e

note template was defined with the fields illustrated in Table 8.

Chapter 3: Ecology Fieldwork Tools

106

When creating a new scan stick-e note the Date, Time and GPS fields are all

automatically completed by the StickePad program, which supplies the appropriate

current values. Therefore, after creating the new stick-e note the ecologist could

immediately begin observing the giraffes and counting their numbers rather than having

to worry about establishing and recording the location or time of the observation.

Name Context Element / Simple Data Type

Date Date

Time Time

GPS Location

Total no. Number

No. of males Number

No. of females Number

No. of sub-adults Number

No. of juveniles Number

Weather NotePad

Misc. notes NotePad

Table 8. The context element fields of a “Scan” stick-e note template.

3.2.5.2 Focal Study

Having completed the scan survey an individual giraffe would be singled out on which

to conduct a more detailed focal study, observing all aspects of its behaviour but with

particular attention paid to its feeding behaviour. This is where the vast majority of the

data was collected. A focal template was constructed with the fields illustrated in Table 9

to record this information.

The first four fields describe the general characteristics about a specific giraffe. The

behavioural observations are then all recorded in the Behaviour field, where for each

individual unit of behaviour observed a new list element (in this case a NotePad type) is

created to record it. The individual units of behaviour are composed of six main types:

walking, walking and ruminating, standing, standing and ruminating, feeding, and out of

sight. For all activities except feeding, only the activity type is recorded in the new

NotePad list element, along with the time it occurred. The list type for the Behaviour

Chapter 3: Ecology Fieldwork Tools

107

context element field was defined in the StickePlates program such that this timing data

was automatically recorded, so only the activity type had to be entered manually. Even

this had a degree of automation where instead of writing the full names of the

behaviours each time, the PalmPilot’s built-in shortcut mechanism was utilised. This

allowed an abbreviation for a word or phrase to be entered that is automatically

substituted by the PalmPilot for the full phrase, e.g. instead of typing ‘walking and

ruminating’ only ‘^wr’ need be input to generate the same text (where ^ represents the

special PalmPilot shortcut symbol). Another time-saving feature employed was to

reassign the four hardware application buttons on the Pilot (normally used to access the

built-in Date Book, Address Book, To Do, and Memo applications) to provide a way of

quickly swapping between the StickePlates, StickePad, and StickeMap programs.

Name Context Element / Simple Data Type

Distance Number

Direction Bearing

Sex NotePad

Age Number

Behaviour List of NotePads

Misc. Notes NotePad

Table 9. The context element fields of a “Focal” stick-e note template.

The feeding activity is of particular interest to the giraffe study and consequently

requires more detailed observation and data collection. A new feeding NotePad is

created every time the giraffe starts browsing a different tree or moves to a new height

on the same tree (measured to an accuracy of the nearest metre). When a giraffe starts

feeding on a new tree a new NotePad list-element is created and the following details

entered into it:

 The time the giraffe starts feeding (stamped automatically by the StickePad).

 A ‘Feeding’ activity type.

 Tree Species, e.g. Acacia, Uclea, etc.

 Height of browsing, e.g. 1, 2, 3, 4, 5 or 6 metres.

Chapter 3: Ecology Fieldwork Tools

108

 Number of bites eaten at that height.

For subsequent recordings on the same tree (i.e. when the giraffe changes height) only

the new height and number of bites are recorded in the new list element (the other

values are assumed to be the same as the previous ones). This results in a list of NotePad

elements such as those illustrated in Table 10.

The focal observations would typically last for ten to thirty minutes, very rarely lasting

for longer than an hour. In a typical observation bout approximately 100 individual

behaviour observations would be recorded. Recording this data was an intensive task

where the giraffe could change feeding levels, etc., very quickly, requiring a lot of

observation data to be entered in rapid succession. This data entry tended to come in

spurts, where the giraffe would typically stand or walk for some time and then engage

in a few minute’s feeding activity again.

12:33:03 Feeding Acacia 2m 3

12:33:08 4m 12

12:33:25 Feeding Acacia 3m 2

12:33:31 Feeding Acacia 3m 5

12:33:32 2m 18

12:34:04 3m 4

12:34:15 Walking & Ruminating

12:35:34 Feeding Acacia 4m 10

12:35:59 Standing

… …

12:56:43 Walking

12:57:23 Out of sight

Table 10. Example behavioural observations recorded in the behaviour list field.

3.2.5.3 Habitat and Faecal Study

Of all the data collection tasks involved in this study the focal observation of giraffe

took top priority, as one has to make the most of the limited opportunities of observing

the animals when they present themselves. However, once the giraffes have moved off

Chapter 3: Ecology Fieldwork Tools

109

into the bush the relatively static data about the area in which they were present can be

collected. This data consists of the diversity and density of vegetation in the area,

recorded in a stick-e note derived from the template illustrated in Table 11.

Name Context Element / Simple Data Type

Vegetation cover Number

% Acacia Number

% Uclea Number

% Other Number

Misc. notes NotePad

Table 11. The context element fields of a “Habitat” stick-e note template.

The vegetation cover field expresses as a percentage the amount of the area that is covered

with bushes or trees. Specific values are given for the Acacia and Uclea trees as these

are the two main types of vegetation that are browsed by the giraffe. The ability to

define an upper and lower range for a number in the template definition allows these

fields to be checked for proper percentages, i.e. between 0 and 100. Also, defining a

step amount of five allows the figures to be quickly toggled up and down using the +

and – buttons or the overloaded hardware scroll buttons.

Name Context Element / Simple Data Type

Sample no. Number

GPS Location

Date Date

Condition NotePad

Misc. notes NotePad

Table 12. The context element fields of a “Faeces” stick-e note template.

In addition to studying the densities of particular plant species in the areas that giraffe

have been observed feeding in, another method of determining their diet is by

collecting faeces samples. This is a case where data is partly captured in the field, and

partly as the result of later analysis. It is important to provide an easy way for the

ecologist to link the two parts. These samples can then be later examined to try and

identify the plants that the giraffe has consumed and subsequently excreted. The

Chapter 3: Ecology Fieldwork Tools

110

following template provides a means of virtually tagging the samples to the location in

which they were collected.

The giraffe faeces are placed in an envelope that is marked with a reference number

that is used to associate the sample with the stick-e note (in which the number is also

recorded). The date and location of the sample is recorded so that later on an attempt

can be made to correlate giraffe sighted in the area with the faeces collected there. The

condition of the faeces is also noted, being a useful indicator as to how long the sample

has been lying there.

3.2.5.4 Giraffe Identification

Graphical facilities can also be useful in the collection of data. The final area that the

prototype was used for was in helping identify individual giraffes, where the patterns of

spots of some giraffe provide a distinctive marking with which to recognise them in the

future.

Figure 17. Recording identifiable marks of a giraffe in the DinkyPad program.

To record the pattern for such future reference, a drawing application (called

‘DinkyPad’) was used on PalmPilot to make a sketch of the marking and to assign a

name to the giraffe (see Figure 17). When conducting a focal study one of these

sketches can be made and then referenced from the focal stick-e note by adding the

name of the giraffe to it.

3.2.5.5 Securing the Data

The prototype fieldwork tool was used by the ecologists from the very start of the

study. The only time paper was used was in sketching out a few ideas for the design of

Chapter 3: Ecology Fieldwork Tools

111

the stick-e note templates and not at all in the data collection itself. Therefore, ensuring

the safety of the electronic data collected was essential as it underpinned the whole

project, and if lost or corrupted the whole time-consuming observational study would

have to be carried out again. To ensure that such a situation did not arise, a backup

strategy was devised that would keep three independent copies of the data secured in

different locals:

 Laptop. Firstly, a copy of the data collected each day would be downloaded from

the PalmPilot to a laptop computer at the research centre.

 Disk. Secondly, copies of all the stick-e note files were saved to disk each night just

in case any problems arose with the laptop.

 Email. The final safety net was provided by the doctor’s surgery in the nearest

town that offered an email facility whereby we could send a ZIPed set of stick-e

note backup files to a computer account back in England each week.

Even in a worst case scenario, where the PalmPilot is irreparably damaged in the field,

only the current day’s work would be lost, the rest being safely backed-up. As regards

the data collection for the rest of the day, the ecologist would then simply have to

resort back to a pen and paper approach.

3.2.5.6 Handing Over the Prototype

Kathy’s proficiency in using the stick-e note software rapidly increased during first two

weeks of use, and our role in offering help and advice was increasingly diminished. By

the middle of the third week she had more than enough competence to operate the

equipment and resolve any problems herself. This encompassed not only an

understanding of the functions of the software but also a familiarity with the general

principles of the equipment too, e.g. being able to identify a faulty cable as the reason

why a location field was not being automatically filled in with the current location. After

my departure Kathy continued to use the equipment with success until the end of the

study some two to three months later. During that time, in addition to recording over

6000 observations using the initial set of templates, she also constructed some new

templates and refined the existing ones.

Chapter 3: Ecology Fieldwork Tools

112

3.2.6 Research and Design Issues

The second prototype successfully addressed all of the requirements established from

our first fieldwork experiences at Mull, except for the field guide proposal. It also raised

many new issues that are addressed in this section.

3.2.6.1 The Role of Databases, GISs and Stick-e Notes

Database, GIS or stick-e note technologies could all be usefully employed in fieldwork

activities. However, does the new stick-e note technology provide any useful new

concepts or facilities that are not already incorporated in present GIS or database

technologies? A definition of the aims of the three technologies would be helpful in

answering this:

 Database: a mechanism that stores data in a structured form and facilitates the

updating and querying of that data.

 GIS: A tool for analysing and visualising data associated with geographical location.

Typically, statistical analysis will be performed on different layers of data that

represent different features (e.g. vegetation, roads, rivers, etc.).

 Stick-e Notes: a tool that exploits context-awareness for capturing, recalling, and

viewing information about the user’s current environment.

The domain of the database is that of developing optimum storage models and retrieval

mechanisms. A database could actually work in harmony with a stick-e note system,

providing the underlying model in which the data is stored. Alternatively, the stick-e

note could be stored in the form of an HTML page with a location tag specified in the

page’s meta-data section. That is to say, the underlying storage model, whatever it may

be, is not what defines the essence of a stick-e note; it is merely a foundation with

which to support it.

The role of stick-e note technology is to provide a uniform way of working with, or

viewing, the subset of data associated with the user’s current environment. In effect,

stick-e notes could provide a means to operate on the “here & now” subset of data in a

database (or other underlying storage model) of the world (or part of it). The stick-e

note system automatically retrieves data relevant to the user’s present context, aids the

Chapter 3: Ecology Fieldwork Tools

113

user in automatically capturing data about the current context, and provides methods of

visualising the data in the current context.

Geographical Information Systems are oriented towards analysing and visualising data

that has already been collected. This visualisation and analysis is achieved by relating

data to geographical locations. Stick-e note technology works over a much broader

range of tasks and context elements. It spans the whole range of activities from data

collection to visualisation, and uses a broad range of data about the user’s current

environment. On the other hand GIS uses solely location (and perhaps location over

time) as a means of plotting and analysing data, stick-e notes can operate with any

context element of the user’s environment such as temperature, time, animals present,

etc. It is unlikely that stick-e notes will provide better geographic analysis than a GIS,

due to this diversity of context elements, but they will be applicable to a much broader

range of application areas. A GIS could in fact be used to help visualise stick-e note

data through a location-oriented perspective.

When working with primarily location-oriented tasks, GIS and stick-e notes could work

in harmony. The GIS could provide the static base system whilst the companion

handheld device (equipped with the stick-e note system) could let the user collect and

view data in the field, exploiting the system’s knowledge of current context (in this case,

most likely location data automatically extracted from a GPS receiver). An important

task of a GIS is to analyse correlations between data, e.g. correlating animal densities

with vegetation damage over a particular area. It is likely that correlating data would be

useful both in the field and back at the base GIS system. The GIS derived correlations

would probably be of a more complex nature that underpin strategic decisions, e.g. if

vegetation damage is too high due to increased animal densities around a dam in the

river then a decision may be made to build another dam to relieve the pressure on this

area. The stick-e note correlations out in the field would probably be of a simpler

nature and used in immediate decisions, e.g. if all the samples of elephant dung taken

thus far can be seen to be concentrated in one particular area then the sampling method

may be adjusted.

Stick-e notes provide a general-purpose concept that can be applied in a diverse range

of programs that potentially work with an even broader range of context elements. It is

the stick-e note technology that provides the means with which these programs can

Chapter 3: Ecology Fieldwork Tools

114

gain access and utilise information about the user’s current environment. Inherently,

the applications and tasks likely to benefit most from stick-e note technology are those

whose operation could exploit some interaction with the user’s environment. For

example, a tourist guide could greatly benefit from exploiting location data, whereas a

word-processor probably would not.

Exactly what is meant by the user’s environment varies. For example, in a tourist guide

application the main elements of interest in the environment are location and perhaps

time of day; the location context can be used to inform the user of sites of interest that

are nearby, and the time can be used to ascertain if an attraction is currently open.

However, in an ecological data collection task perhaps the weather conditions,

vegetation type, and, again, location may be of interest. The current environment, then,

is not merely a predefined set of physical attributes such as location, but is a task-

dependent set of context elements. With stick-e note technology, applications can be

created to capture, recall, view or manipulate data about, or related to, the task-related

subset of the user’s current environment, e.g. creating a template for a data collection

task that contains the appropriate fields to record relevant context elements of the

user’s environment.

In essence, the novelty of stick-e note systems lies in the concept of context-aware data

capture, retrieval, and visualisation. Databases and GIS systems can be used as engines

or assistants to stick-e note systems, but the focus on context-aware capture, retrieval,

and visualisation is what defines a stick-e note system.

3.2.6.2 From Pretend to Expected Contexts

Although simple data types can be used to model application specific context elements

that have no explicit representation in the prototype, the software obviously cannot

automatically ascertain the current value of this element. A feature that was present in

the first prototype, pretend context elements, was intended to provide a substitute for this

auto-capturing facility. Pretend context elements allowed the user to manually enter a

current value for a context element that was then used as a simulated current value.

These pretend values could also be used for context elements that were normally

established automatically, e.g. for pretending a current location when no GPS device

was attached.

Chapter 3: Ecology Fieldwork Tools

115

The feature was removed from the second prototype because the effort to adjust the

values of different fields through a pretend context dialog every time they changed

outweighed the utility that was gained (note that the user effort lies in a combination of

the interface design and the nature of the task itself). In many of the example

applications considered, very few pretend contexts remained at a constant value; most

changed rapidly, e.g. for each giraffe observation completed the location and many

other fields would differ. Even for the few values that did stay constant for longer than

one stick-e note authoring cycle, having to flip to the pretend context elements’ screen

in order to change the values resulted in little or no time saving over simply typing the

value directly into each individual stick-e note (though perhaps there are better ways to

construct this user interface in this regard). However, experience working with the

system in the Kenyan trial led to another concept of how pretend contexts could be

implemented that could lessen the burden of their definition and maintenance whilst

enhancing the utility that they offer. Rather than simply specifying a single pretend

value for a context element, the proposed system is based on the concept of having a

selection of methods that can establish an expected value for a context element. Each

context element field of a stick-e note is assigned one of these methods for predicting

the next value. Some proposed methods for establishing the expected value

(encompassing the pretend value and automatic extraction methods currently employed

by the prototype) are listed here:

 By Static Value. This is the original pretend context method of operation,

whereby the user manually enters the current value of a context element. This value

is automatically inserted into any appropriate new stick-e note field. By default this

will be the selected method for establishing an expected value.

 By Adjusted Value. This is an enhanced version of the static value method where,

should the user change the value that was automatically inserted into the stick-e

note field, then the pretend value is replaced with this newly adjusted value. This

eliminates the main problem of taking too much time to adjust pretend context

elements. The user would no longer need to flip to another dialog to adjust the

pretend value; it is updated as part of the process the user has to carry out anyway.

Chapter 3: Ecology Fieldwork Tools

116

 By Most Used Value. This method works by treating the most commonly entered

value as the current pretend context value. For example if I have an ‘Animal

Spotted’ field, and the most commonly observed animals have been giraffe, then

‘Giraffe’ will automatically be entered into the next note created.

 By Predicted Value. Some context elements are likely to have identifiable trends

that can be extrapolated in order to predict what the next current value will be. For

example, when walking a transect and taking samples every 100 metres, a detectable

sequence of values for location will occur.

 By Sequence. Certain fields may be known at the outset to have a particular

sequence to them, and these sequences could be specified in advance by the

template designer. For example, if recording stick-e notes to tag photographs to a

location, the photo number field could be assigned an increment sequence pattern so it

is automatically incremented for each new photograph.

 By Average Value. For numerical based data, this attempts to estimate the new

current context value by calculating the average of those collected so far.

 Automatic. This is used for fields where the handheld computer can automatically

establish the current context element’s value, e.g. by consulting the GPS receiver to

establish the current location.

 Blank. In some cases having values that automatically appear can actually waste

time instead of saving it, e.g. if the user has to erase the current value before

entering the new one. Therefore, if there is no pattern to establishing the expected

value automatically the field can be left blank when the stick-e note is created.

The emphasis of this new concept is in providing a variety of methods to establish the

expected value rather than simply providing two polarised options based on automatic

extraction from a sensor or manually defining a static pretend value. Some of the

suggested new methods exploit a knowledge of the history of the context values that

have been recorded in previously created stick-e notes in order to calculate an expected

value. Unlike the previous pretend context system, which was appended to the main

program, the expected values system should be an integral part of specifying a template.

Chapter 3: Ecology Fieldwork Tools

117

An expected value method would always be chosen for a field, even if it is the blank

option.

The application of the expected values is focused on providing current values for

different context elements with as much automation as possible. This is a much

narrower focus than the original pretend values that were also used as a mechanism for

previewing notes by allowing the user to pretend they were in a certain situation. Such a

use led to the need to support multiple values of pretend contexts, e.g. to show stick-e

notes for both Canterbury and Nanyuki. Separating the provision of current pretend

values from the previewing of notes (new methods for which are discussed later) allows

for a simplification (i.e. no multiple values) that makes possible the more powerful

concept of expected values.

3.2.6.3 The Need for Extensible and Flexible Context Element Support

The more that the stick-e note system understands about a particular context element,

the greater utility it can offer to the user in terms of manipulation and simulation of

that element. For example, treating location as a context element type, rather than as a

simple type such as a set of numbers, allows specialist mechanisms to be developed,

such as a map-based visualisation/manipulation tool. It also offers the potential of

predicting future values of the context element with more accuracy, e.g. rather than

looking for a sequence in a group of arbitrary numbers, we can look for a pattern in

direction and speed. However, developing special type support for all context elements

is simply not possible or practical both in terms of the sheer development effort

required and the monolithic proportions that the stick-e note system would reach in

trying to incorporate context elements ranging from giraffe behaviour to lava flow rate.

Currently, the stick-e note system provides support for a core set of types, which

includes some specialist context element types and some general purpose simple data

types. A specialist context element, such as location, date, or time, can incorporate

tailor made element-specific abilities and features, e.g. location data can be extracted

direct from a GPS receiver and plotted onto a map display. The general set of simple

data types have no context-specific nature and hence can be used to represent a variety

of different context elements, e.g. using the number type to represent temperature,

Chapter 3: Ecology Fieldwork Tools

118

rainfall in millimetres, giraffe height, etc. However, these general types have no higher

level features for capture, visualisation, etc.

Given the fact that different applications will have widely differing context element

requirements that cannot be met with a single solution, what is required is some form

of customisability in the stick-e note system beyond what is currently offered with

simple data types. One way of providing this would be through an open interface to the

stick-e note system into which context element modules could be slotted. These

context element modules would offer various context-specific services to the stick-e

note system in manipulating, capturing, viewing, and simulating a context element.

They would also be physically separate code/programs/DLLs/applets/etc. from the

main stick-e note system and could therefore be developed and distributed

independently, akin to the development of plug-in modules for Web browsers. Using

such a customisable model the stick-e note system could be tailored to the needs of an

application so that only the modules needed for the task at hand are supplied, also

having the beneficial side-effect of providing a solution that does not waste any

valuable resources. It would also provide the ability to create very specialised

applications that embedded more logic into the context element module, e.g. a

Rhinoceros module that supplied the location of the nearest rhinoceros. There may be a

requirement to support inter-module communication for cases such as the last example

where services could be re-used, e.g. the Rhinoceros module could use the location module

to ascertain the current location and then use this to calculate the nearest rhinoceros.

The current simple data types supported could be bundled into a general types module

(as the number, notepad, etc. types are commonly used and don’t take up much space)

and then individual context element modules provided for each of the specialist context

element types such as location, time, date, etc. If a particular application demanded the

use of a specialist context element that was not included as standard then a new context

element module could be developed and slotted into the stick-e note system.

The combination of the expected value and context element module concepts re-

emphasises the role of stick-e notes as a tool for exploiting a knowledge of the user’s

current environment, providing support for working with the various context elements

therein.

Chapter 3: Ecology Fieldwork Tools

119

3.2.6.4 New Models of Triggering

The original stick-e note model employed triggering as a means to provide an automatic

method of retrieving data that is related to the user’s current environment. Triggering

was conceived as a simple matching process where any stick-e notes that matched the

user’s current context were triggered, informing the user, by some undefined means, of

the stick-e notes’ active state. For example, in the electronic Post-It note prototype,

when a user approached the Häagen-Dazs ice-cream shop a “You are near the ice-

cream shop” note may be displayed on the user’s handheld computer. This ‘match and

display’ triggering model was conceived in the context of a stick-e note model that was

primarily designed for tagging information to location context elements. Since that time

the needs and concepts of the stick-e notes have changed, and the triggering model

needs to be updated and extended to accommodate these changes.

Compared with the original location-tagged model of stick-e notes the fieldwork tools

have a much larger array of context elements that can potentially act as triggers to

information, as all fields of the stick-e note are now considered to be context elements.

However, it is likely that a user may wish to select only a subset of context elements to

act as triggers for stick-e notes. For example, the user may wish to just use the location

context element so that all stick-e notes near their current location will trigger despite

various other context elements in the stick-e notes not matching the current

environment. In addition, rather than triggering stick-e notes that exactly match the

user’s current conditions it is likely that there will be an area around the user’s current

environment that is of interest, e.g. a temperature range of 30-60 degrees.

Although triggering was not developed further in the prototype, we carefully

considered how it could be usefully employed in the Kenyan ecology work. We found

that, rather than a single triggering mechanism, there are several potential methods of

retrieving stick-e notes in context. Each of these methods are examined in the

following sub-sections.

3.2.6.4.1 Passive Retrieval: Viewing Stick-e Notes in the Immediate Area

The first use of triggering that we consider is passive retrieval. This utilises the user’s

current context as a key with which to retrieve the set of stick-e notes that is most likely

to be of immediate interest based on their contextual proximity. We call this “passive

Chapter 3: Ecology Fieldwork Tools

120

retrieval” as it is a process that can be continually performed in the background without

any participation required from the user, i.e. the user’s role is a passive one, simply

receiving triggered stick-e notes.

Perhaps the triggering model could be modified so that instead of dispatching a copy of

a triggered stick-e note to interested clients, the state of a stick-e note could be stored

within the note itself, which clients could then query or be informed of when it

changes. In such a model it would be possible to make the nature of triggering more

subtle and sophisticated by introducing different levels of trigger-state. Rather than a

simple Boolean active/inactive value, perhaps there could be a ‘Hot’, ‘Warm’, ‘Cool’,

and ‘Cold’ state indicating the nearness of the note to the user. Different context

element fields of the stick-e note could be at different trigger-states, and parameters for

each type of context element could be set to specify the threshold levels for these

states. For example, the hot state of a location context could be a value within five

metres of the current location, whereas the hot state of temperature maybe a value

within two degrees of the current temperature. Some context elements would still have

a simple active/inactive state if they had no continuous range of values (e.g. the type of

animal), and some context elements may abstain from a trigger-state altogether.

Allowing a context element to have no trigger-state effectively eliminates it from being

used as a means to establish if the stick-e note it belongs to should trigger, which is

useful when the user wants to define a stick-e note’s ‘triggerability’ in terms of a

particular subset of context element fields within the note. An average of the trigger-

states of all the context element fields of a stick-e note could provide the overall trigger-

state for the note.

Rather than popping up a message to display the triggered stick-e notes on screen, a

more unobtrusive method of indicating triggering is required to match the subtler

model of trigger-state levels. In this regard the current context element visualisations

(such as the location context element’s map display) can be enhanced so as to integrate

indicators of the stick-e note’s trigger-state. For example, the stick-e note icons

displayed in the StickeMap could be changed or animated to indicate the different

trigger-states. A discrete indicator bar could be included on some screens to provide

quick access to the ‘hottest’ notes. Plotting the notes onto a map or other context

element view also lets the user perceive the distribution of stick-e notes across a

Chapter 3: Ecology Fieldwork Tools

121

particular context element, e.g. showing the spread, concentrations, etc., of notes on a

map. This is most useful as it is often the case that the user is more interested in what

lies ahead and around them than what is in the current spot. The potential disadvantage

of this method if other tasks are being worked on on the PDA in the meantime is that

the context visualisations take up much more space on the screen of the device.

3.2.6.4.2 Active Retrieval: Previewing, Searching and Filtering

As opposed to passive retrieval, active retrieval is a form of triggering in which the user

does actively participate in order to preview, search for, or filter stick-e notes based on

an explicitly specified interest rather than the current context. In the original stick-e

note framework this took the form of pretend context elements that were used in

trigger processing so that users could preview stick-e notes in a particular area by

entering a number of pretend context element values. The triggering engine would treat

the set of pretend context elements as current context element values and hence cause

the triggering of any stick-e notes that matched these values, e.g. by pretending to be in

Canterbury and Nanyuki stick-e notes with location context elements that described

either town would be triggered.

Rather than ‘accidentally’ discovering stick-e notes through a passive retrieval

mechanism, active retrieval calls for a more comprehensive search mechanism. This is

probably more suited to a query mechanism rather than a pretend context model, as the

user may wish to specify a set of stick-e notes described by matching multiple context

elements, values, and ranges of values. For example, an ecologist may wish to find all

the stick-e notes for giraffe observations where the weather has been sunny, the user

has been within a two-mile radius of Pelican Dam or Elephant Bridge, and the

observation was between 14:00 and 16:00. The resulting set of stick-e notes could then

be listed or plotted onto any of the context element visualisations.

In addition to providing a method for searching the collection of stick-e notes, these

database-like queries could also be used as a filter mechanism. For example, if the user

were only interested in giraffe observation notes a simple query such as “animal =

giraffe” could be used as a filter so that only the giraffe notes are active and displayed;

notes about other animal observations are restricted by the filter, remain inactive, and

are not displayed. As well as constraining the set of active stick-e notes on the handheld

Chapter 3: Ecology Fieldwork Tools

122

computer, filtering will also be very useful on the desktop computer to allow the user to

specify what subset of stick-e notes they wish to take out into the field.

These methods are essentially employing conventional database / information retrieval

techniques to the collection of stick-e notes.

Thus far we have talked about previewing and searching as mechanisms to find stick-e

notes from their context. Another important aspect of searching is to find the actual

physical context from the stick-e note that is attached to it. Some form of navigation

screen would be desirable that would help the user locate the stick-e note within their

current environment, e.g. by informing the user how far away the note is and in what

direction, or informing them of the temperature difference, etc. For example, an

ecologist may want to re-examine and update information about some elephant dung

by finding the location of a stick-e note that was previously created to describe it.

3.2.6.4.3 Alerts

The previous methods of passive and active retrieval work well for stick-e notes that

the user knows about or for ones that the user wants to find out about. However, there

are some stick-e notes that the user may not know of but which they should be actively

alerted of. Some of these messages may be ‘disposable’ (e.g. a pager message that can be

discarded once read) whereas others are permanently associated with certain conditions

(e.g. a warning that you are approaching the firing range which is in use today).

3.2.6.4.4 Re-triggering and De-triggering

These were important issues in the original stick-e note framework discussed in chapter

two because hovering around the boundary of a context element value could cause the

same note to repeatedly pop-up, e.g. walking near the Cathedral perimeter may cause

the “You are at the Cathedral” stick-e note to pop-up continually. The new triggering

methods proposed reduce the impact of this boundary-hovering because instead of

simply popping up stick-e notes that meet a set of conditions, the trigger-state of the

stick-e notes are changed as the user approaches them and this gradually changing state

is non-obtrusively made apparent to the user. However, this is only the case if the

Chapter 3: Ecology Fieldwork Tools

123

context element values are relatively continuous and do not jump from one coarse

value to another without warning, e.g. a hot to cold transition.

Re-triggering and de-triggering are still issues that need to be explored but the negative

effects that they address are reduced in the proposed new model of triggering.

3.2.6.5 Location Issues

During the Kenyan fieldwork the current value of the location context element was

extracted from a Garmin 45 XL GPS receiver, and the work has done before selective

availability was removed from GPS. The value had no real-time or post-processed

corrections applied in order to try and improve its accuracy, so the real value would, for

most of the time, lie within a one hundred metre error radius of the supplied value.

This proved to be more than adequate for the needs of the giraffe behavioural study,

which took place over approximately a one hundred square kilometre area. The location

data recorded was for use in either virtually tagging stick-e notes to a location or to aid

in finding an observation site at a later date. The uncorrected GPS location proved

satisfactory for both of these tasks.

The maps of the reserve that were used by the ecologists had one kilometre grid

squares scaled to approximately two by two centimetres, which made plotting anything

more accurate than one hundred metres impractical anyway. In addition, much of the

map data had been collected through uncorrected GPS track logs, so the maps

themselves were only accurate to within one hundred metres. These maps were based

on the ARC 1960 datum with a UTM grid (zone 37N/37M). The prototype software

supported only latitude and longitude but fortunately the UTM format was only

required after downloading the data to a desktop computer (for plotting it onto one of

the maps in a GIS) so it could therefore be converted after downloading.

Support for the plethora of potential location formats could certainly be improved, but

how should this be accomplished? Resources in terms of processing and storage on the

PalmPilot are limited and perhaps not well suited to the rigours of converting the

latitude and longitude values transmitted by the GPS receiver into other formats.

Providing this functionality on the desktop computer may be a better solution as it is

free of such resource constraints. Perhaps when transferring the stick-e notes from the

Chapter 3: Ecology Fieldwork Tools

124

PalmPilot to the desktop computer the location fields could be automatically translated

into the format that the user desires. The majority of use of this transformed location

data will occur on the desktop computer anyway so it seems logical to perform the

conversions there also.

In the field it is useful to be able to locate your current position and the points of

previous observations. The StickeMap allows the user to do this very easily, although

currently the program does not display any additional information besides the grid,

user’s location, and stick-e notes’ locations. This could be improved by providing a

background map facility where the StickeMap program could overlay its current screen

onto a bitmap image of a local map. The map image could be tagged with a latitude and

longitude marker on the desktop computer before being transferred to the PalmPilot,

enabling the StickeMap to appropriately scale it to the correct latitude and longitude

grid. A selection of different maps could be provided on the desktop computer (e.g. for

vegetation, roads, pathways, watersheds, aerial photos, etc.) from which the user could

select the appropriate one for the day’s activities. Alternatively, perhaps the user could

also annotate the map with icons or sketches in order to depict landmarks or reference

points, etc. Icons in particular would require much less processing time, e.g. when

zooming in or out of the map the icon need not be resized or rescaled like a bitmap

background would have to be. Such location-annotation icons could be implemented as

a simple stick-e note consisting of a location, icon definition, and description field (so

that when the user clicked on the icon a description could be displayed). Indeed, icons

could be incorporated as a general feature of stick-e notes, where any note could have

an icon field. Using these icon fields a specific icon could be created to represent a

particular note in the map display or in any of the other context element visualisations.

Closely related to location is direction. In the Kenyan fieldwork, direction was

commonly recorded, e.g. the direction of a group of giraffe, the direction of travel, etc.

Currently the user needs to carry a compass in order to establish direction, but there are

other methods that can be used to automatically estimate direction, although not always

to the accuracy of a conventional compass. The first method uses a knowledge of the

user’s location so that a general direction of travel can be estimated if the user is

keeping to a relatively constant heading (by simply projecting forward the user’s general

trajectory). The second method could provide a measure of direction that is

Chapter 3: Ecology Fieldwork Tools

125

independent of the direction of travel by calculating it from the time and relative

bearing of the sun. Finally, an electronic compass could be attached to the handheld

computer to supply the direction in which the computer is facing. Any of the

aforementioned methods could be most conveniently supplied as one of the proposed

context element modules, extending the base stick-e note systems’ context element

support.

3.2.6.6 User Interface Issues

A number of helpful user interface features of the stick-e note software made the

process of entering data much easier and faster than a conventional paper-notebook

approach. Firstly, all the timing data of behavioural observations was automatically

recorded by the stick-e note system, which tagged each behaviour change entered with

the current time, eliminating the need to carry, operate and transcribe data from a stop

watch. A counting feature was also provided that allowed numeric fields to be

incremented by using two of the PalmPilot’s hardware buttons, therefore not requiring

the observer to look away from their telescope (and possibly lose the subject from the

field of view) and also eliminating the need for a manual counter/clicker device. Finally,

the PalmPilot’s shortcut mechanism was used whereby a character, or short sequence

of characters, can be mapped to a word or phrase, therefore reducing the amount the

user has to write.

Recording data on single giraffes in the focal study (see Figure 18) proved to be the

most stressful test of the stick-e note system, both in terms of the amount of data

entered and the speed of entry. Stick-e notes derived from other templates could be

easily completed with no immediate time limitations. In the focal study, however, data

had to be entered quickly enough to keep up with the rapidly changing behaviour of the

giraffe. Fortunately the aforementioned user interface features allowed the user to

perform this activity faster and more efficiently that would have been possible with a

paper notebook. According to the ecologist using the system, recording the same data

in a manual system rather than in our prototype fieldwork tool would have been

difficult to accomplish without a second person to assist in making timings and writing

notes.

Chapter 3: Ecology Fieldwork Tools

126

Figure 18. Kathy testing the tools before beginning a giraffe observation session.

Another useful feature was the provision of buttons in the field-editing dialogs that

update the current value of a particular field automatically where possible, e.g. the Here

button on a location field editing dialog that inserts the current location value extracted

from an attached GPS receiver. The Here button was especially useful in circumstances

where the GPS receiver had not calculated a location fix when a stick-e note was first

created, allowing the user to update the field with the correct current location.

3.2.6.7 Hardware Issues

There were a number of hardware issues that were resolved during the first week.

Firstly, the adequate robustness of the device was proven, after it suffered a number of

falls and worked without fault during long periods of exposure to the strong midday

sun and the dusty environment. Secondly, the physical ergonomics of the device were

found to be well suited to the environment. The small and lightweight PalmPilot and

GPS receiver were easily stowed in separate pockets whilst still being linked by the data

cable, so adding little burden to Kathy in terms of additional equipment to carry around

and also being immediately accessible when needed. Thirdly, the ‘notepad’

configuration of the device and Graffiti pen-based data entry method were also

successful. The Graffiti hand-writing recognition system was quickly learnt by Kathy in

a matter of minutes, and after approximately 2 days of occasional usage she was

working at a speed similar to a traditional pen and paper equivalent, with few errors.

Chapter 3: Ecology Fieldwork Tools

127

The notepad form-factor of the Pilot was a natural transition from a paper notebook

method of recording data, and proved to be an intuitive way to enter data via a pen.

3.2.6.8 Grouping Stick-e Notes

The data that is recorded in each element of a behaviour list actually consists of several

distinct data items, e.g. ‘Feeding’, ‘Acacia’, ‘4m’, and ‘10’. However, as the list could

only support a single context element type for each list item, the multiple values were

recorded into a single NotePad type. This is not a satisfactory long-term solution

because all the facilities that the other type-dialogs provide are unavailable when merely

entering textual notes, e.g. the counting mechanism employing the Pilot’s hardware

buttons would have been ideally suited to recording the number of bites that a giraffe

was taking; but instead the user has to maintain a mental note of the bites and then

write down the total number at the end. It also makes it harder to download the data to

the desktop computer in a meaningful form as there is no formal structure to the notes.

In some way, support needs to be added to facilitate recording sets of data in a list.

A related issue is that of grouping separate stick-e notes together. For the giraffe

observation work a set of stick-e notes was created for each encounter with a group of

giraffe, one for the scan study, one or more for the focal study(s), and one for the

habitat survey. As is often the case when working with large collections of data,

methods of aggregating and structuring it are required, e.g. rather than three stick-e

note icons shown on the map for different parts of the same group study, one group

icon could be displayed instead. A common occurrence in the giraffe study was to

update a previously recorded scan stick-e note if more giraffes emerged from the bush

to join the group later on. If the stick-e notes were grouped into an observation set, the

previous scan note should be much easier to find than in the current method of looking

back through a list of all the recorded stick-e notes. Grouping also offers the possibility

of having common fields that could be shared across all stick-e notes within the group,

and hence eliminate any duplication of data.

The problems of structuring elements in the list and grouping stick-e notes together are

closely related. One deals with grouping whole stick-e notes together at a macro level,

the other with grouping individual elements of stick-e notes together at a micro level.

The fact that the giraffe study stick-e note templates sit between these two extremes is

Chapter 3: Ecology Fieldwork Tools

128

as a result of the ecologist trying to formulate the design at a level that makes accessing

and viewing the contents most efficient. In an alternative design all the context element

fields in a set of scan, focal, and habitat stick-e notes could be recorded in a single stick-

e note if desired. However, in such a design accessing particular parts of the stick-e note

(e.g. the habitat survey) is less convenient because the user has to scroll through the rest

of the fields to find it, and the logical groupings of the scan, focal, and habitat data are

less apparent. Similarly, if stick-e notes were created at a micro level, then the

relationships between data would be lost and the user overwhelmed with a multitude of

stick-e notes. The level at which the giraffe stick-e note templates encapsulate context

element fields reflects how the data is perceived by the ecologist in the most commonly

performed tasks, i.e. they most commonly work on the level of completing a scan,

focal, or habitat survey. Therefore it is easier for them if the related sets of data for

these tasks are grouped together. However, for less commonly performed tasks, such as

looking for a previously recorded survey or editing individual behaviour entries,

grouping of stick-e note data at different levels is required, such as grouping a set of

notes together or grouping a set of fields together.

3.2.7 Summary

In a prolonged trial in an ecology fieldwork project in Kenya the prototype tools not

only provided an electronic counterpart to the fieldworker’s conventional paper

notepad, but also provided many features that improved upon it in terms of both

usability and speed. Automatic entry of the current values of location, date and time

into the appropriate fields of a new stick-e note and the time-stamping of elements in a

list provided critical time-savings; moreover features such as the overloaded hardware

buttons, which allowed the incrementing or decrementing of numbers without the need

to look at the device, provided an enhancement that made recording data whilst looking

through the telescope much easier. Some features provided new functionality

altogether, such as being able to immediately see on a map where all the stick-e notes

are relative to the ecologist’s current location.

A good indicator of the success of the system is how well it was received by the users.

Kathy, the ecologist who was the primary user of the prototype in the ecology field trial

in Kenya, found the system to be very useful and believed it provided a great utility to

Chapter 3: Ecology Fieldwork Tools

129

her work to the extent that it would have been difficult to collect the same amount and

variety of data in a manual system without an assistant to help. In general, all the

ecologists at the research centre were very interested in the technology even at this early

stage. The main benefits they perceived were of saving time in data collection, being

able to download the data to a desktop computer instead of transcribing it from paper,

and also being able to create many backups of the data. It would appear that there is a

gap in the ecological-computing market that complements desktop based applications

such as GIS, which are useful for processing collected data, with tools that aid the user

to collect, view, and update data whilst in the field. Stick-e note software on small

handheld devices seems to provide an ideal solution for such a market. This is not

solely due to the resource limitations of available mobile devices but also in the nature

of the tasks that users wish to perform in and out of the field (i.e. generally data

collection in the field and data analysis and strategic decisions back at the base).

In summary, the prototype fieldwork tools and their trial in Kenya have shown that the

development of stick-e note programs on handheld computers is possible, that they are

useful, that they can be dramatically better than manual data collection methods, and

that there is a user demand for them.

3.3 Esoteric Fieldwork Tools for Rhino Identification

The data collection tools described thus far provide the general means with which to

design, create, and visualise stick-e notes. More esoteric functionality can be provided

by creating companion applications to this basic tool set. To experiment with this idea

we created a specialist application, called “RhinoIDer”, that enabled an ecologist to

identify and track an individual rhinoceros given some contextual cues. This application

allowed us to extend our context-aware research into some very esoteric context

elements and to explore some new methods of triggering.

Conventional identification of individual rhinos has only been possible through making

visual sightings of an animal. However, it would also be useful to identify individuals

from their footprints, as this would give the ecologists a considerably larger data set of

specific rhinos linked to specific locations. It would also allow them to perform remote

tracking of a rhino, where they could follow it from a much greater distance, even out

Chapter 3: Ecology Fieldwork Tools

130

of sight, as they would be able to identify it from its tracks rather than needing to make

a close approach to visually identify it.

Ecologists have supposed that a footprint could be used to identify an individual rhino

in a similar way as a fingerprint can be used to identify an individual person. However,

no-one has attempted this in the field as it would simply be too unwieldy: one must

carry around historical footprint data, make measurements of the footprints found, and

perform some comparison calculations on each possible rhino in order to identify the

particular individual. The rhino identification tool that we envisioned aimed to

automate most of this process so that it could be quickly and effectively carried out in

the field.

There are four context elements that we decided to utilise in the RhinoIDer program:

 Location. The black rhinoceros tends to live within a well defined home range (not

the same as a territory; home ranges often overlap). Therefore given the location of

the footprint we can filter out the likely and not-so-likely candidates for creating a

footprint.

 Footprint measurements. The ecologists established six individual measurements

to define the shape of the rhino footprint, as shown in Figure 19. These can be

compared with all the previously collected footprints for each rhino.

c

b

a

d

e1 e2

Figure 19. The 6 rhino footprint measurements.

Chapter 3: Ecology Fieldwork Tools

131

 Substrate type. Whether it is thick mud or fine sand can have a great impact on

the print that is made, so this needs to be considered in the comparison with

historic footprint data.

 Foot. The front and rear feet can be significantly different, so we need to make the

distinction and incorporate it in the comparison.

All four of these context elements utilised in rhino identification can be modelled in a

footprint stick-e note, as shown in Table 13.

Name Context Element / Simple Data Type

A Number

B Number

C Number

D Number

E1 Number

E2 Number

Substrate Picklist of possible substrates

Foot Picklist of ‘rear’ or ‘front’

Location Location

Misc. notes NotePad

Table 13. A stick-e note template for a rhino footprint.

The historic data to which the footprint is compared can also be stored in stick-e notes,

with one stick-e note per rhino, as shown in Table 14.

Name Context Element / Simple Data Type

Name Line of text

Footprint data Footprint sub-notes

H.R. top left Number

H.R. bottom right Number

Misc. notes NotePad

Table 14. A stick-e note for storing rhino information (including historic footprint data).

Chapter 3: Ecology Fieldwork Tools

132

Note that the rhino information template utilises a new stick-e note nesting feature that

allows a single or set of stick-e notes to be stored within the field of another stick-e

note. In this case a number of footprint stick-e notes for a rhino are stored within its

footprint data field. The “H.R. top left” and “H.R. bottom right” location fields define

the home range of the rhino. Note that this is a rather crude measure of the home

range (a polygon would be preferable) but it is sufficient for the purposes of this

prototype.

Using these stick-e notes as its data model the RhinoIDer attempts to automate as

much as possible of the four main tasks involved in the identification process:

 Compilation of historic data. Information about all the rhinos within the reserve

(approximately 25) and previous footprint measurements can be stored as a set of

stick-e notes. The set of prints can be transparently augmented as new footprints

are discovered and recorded in the field.

 Recording Measurements. The location of the footprint is automatically

ascertained and recorded using the attached GPS receiver. However, the individual

footprint measurements, substrate type, and foot, are ascertained and entered

manually. These could also potentially be automatically ascertained and recorded by

utilising an attached digital camera and image analysis software. The resulting new

types of context element could easily be incorporated into the stick-e note system if

the suggested support for ‘plug-in’ context element modules was provided.

 Comparison of data. The RhinoIDer can rapidly compare an entered footprint

with all other footprints for all possible rhinos.

 Identification of the Rhino. Ultimately the ecologist will make the final decision

in identifying the individual rhino but the RhinoIDer can greatly assist by filtering

out impossible candidates and prioritising the most likely ones. This process is

effectively a form of triggering the matching or near-matching rhino stick-e notes.

The RhinoIDer relies on the StickePad to let the user create and complete new rhino

footprint stick-e notes in the field. In this regard there is no difference to creating a

stick-e note from any other template. However, should the ecologist want to identify

the rhino to which the footprint belongs then they switch to the RhinoIDer program.

Chapter 3: Ecology Fieldwork Tools

133

The RhinoIDer’s main screen consists of two buttons labelled ‘Trigger’ and ‘Confirm

ID’. Selecting the trigger button will invoke the matching process in which a footprint

stick-e note is compared with all the footprints stored for each of the rhinos. Each

rhino that matches will be given a score based on the closeness of the match. This

score is used to order the list of rhinos, as shown in Figure 20.

Figure 20. The RhinoIDer program finds Makora to be the best matching rhino, with Loita and Job a poor
second and third place. Robert and Kerkura have a zero score, and the remaining rhinos have been filtered

out due to a failed match on one or more critical fields.

The ecologist can examine the bar chart of rhino scores and may click on one of the

entries to bring up the stick-e note containing that rhino’s information. This could be

considered as perusing a set of triggered stick-e notes. Once satisfied as to which rhino

the footprint belongs to, the ‘Confirm ID’ button can be selected. This causes the score

and name of one or more rhinos (more than one if the match is uncertain) to be tagged

onto the end of the footprint stick-e note as separate fields. Although the footprint

stick-e note could be automatically transferred to the footprint sub-note of the

matching rhino at this point, so augmenting the rhino’s historic footprint data, the

ecologists preferred to retain control of this process themselves.

Figure 21. Defining the source of the footprint context to be the most recently recorded footprint stick-e
note.

Chapter 3: Ecology Fieldwork Tools

134

There are two sets of options that allow the ecologist to configure the matching and

scoring process. The ‘context sources’ options, as shown in Figure 21, allow the

ecologist to define the origin of the current footprint and location data. The footprint

measurements can be derived from either the most recently recorded footprint stick-e

note (default), a stick-e note of the user’s selection, an average calculated from all

footprints recorded so far, or no source specified. “No source specified” may be used if

the ecologist is only interested in matching using location data. In turn, the source of

the location data can be defined as coming from the GPS receiver, the footprint source

(default), or no source.

Figure 22. Defining the role of each context field in the RhinoIDer.

The ‘context fields’ options, as illustrated in Figure 22, enable the ecologist to precisely

define the contribution and effect that each context field has on the matching and

scoring process. There are three attributes that can be defined for each element:

 Score. The ecologist can give each field a different score that will be added to the

total score for a rhino if the particular field matches. This allows a weighting or

confidence to be expressed as to the importance or accuracy of each different field.

 Error. For the numeric fields (i.e. footprint measurements) an error margin can be

defined within which the compared value can lie but still be considered to match.

Although the rhino’s foot remains constant it is unlikely that any two footprints

from the same rhino will exactly match to the millimetre accuracy in which they are

measured. As with GPS derived location data, a degree of error must be allowed

for.

Chapter 3: Ecology Fieldwork Tools

135

 Filter. If the match of a particular field is essential to the match of the footprint as

a whole then it may be defined as a filter field. If a filter field does not match then

the matching process will discard the whole rhino stick-e note irrespective of the

closeness of match of the other fields. Location is a particularly good field to filter

on as it removes any rhinos that could not possibly have been in the area to create

the footprint in the first place; the dimensions of the footprint in such a case are

irrelevant.

Compared with the triggering model of our early Post-it note application, described in

the stick-e notes chapter, the matching process here is much more sophisticated. Not

only is an error ‘penumbra’ defined but also weightings given to particular context

elements and the opportunity to filter by context elements that do not match. These

new characteristics are born as a result of the need for a more subtle form of triggering,

as earlier advocated. In this application the user is more interested in the degree of

triggerability and the reasons for triggering rather than in a simplistic triggering/not

triggering state (the reason is currently expressed as the percentage match but this could

be expanded to show the individual components of the calculation). The application

also requires a history of triggering to be maintained, where footprint stick-e notes are

annotated with the rhinos with which they were associated. Even the origin of the

current context is more sophisticated, being potentially derived from a number of

different sources rather than simply the next location broadcast by a GPS receiver.

The RhinoIDer is now being used by the ecologists in Sweetwaters Game Reserve in

Kenya. Although it still remains to be seen how successful footprint identification in

general proves to be (a large database of footprint data first needs to be built up) the

program itself has been working successfully in the field and allows for a good deal of

experimentation in using different fields, weightings, etc. to determine a match. More

importantly for us, the RhinoIDer illustrates how other programs can be added to the

core set of stick-e note design, creation, and visualisation tools. It also demonstrates the

use of a number of different types of context element and a more sophisticated form of

stick-e note triggering in order to suggest the identity of a rhino based on certain

contextual cues.

Chapter 3: Ecology Fieldwork Tools

136

3.4 Summary

The aim of the work presented in this chapter was two-fold: firstly, to explore some

novel applications of context-aware software, and secondly, to assess the usefulness and

practicality of such applications in “real world” environments. The novel applications

we created were aimed at the ecological fieldwork application domain, allowing users to

perform general data collection and visualisation tasks in the field. We also provided a

more esoteric tool that aided ecologists in recognising individual rhinos from their

footprints. Prototypes of these applications were used in several fieldwork projects,

including a giraffe behavioural study in Kenya, where both their practicality and

usefulness in the field were amply demonstrated. More specifically, the giraffe ecologist

was able to carry out more work, and new types of work, with less effort and in less

time than possible before.

The experiences and feedback generated from using the prototypes in the field radically

altered our concept of what a stick-e note is and provoked new ideas in areas such as

different triggering strategies, methods to model pretend contexts, and user interface

design. The user interface issues in particular were unexpected, yet found to be a critical

part of the success of the tools. As a result the next chapter is devoted to exploring the

HCI aspects of our work on the fieldwork tools.

137

CChhaapptteerr 44::

HHCCII iinn tthhee FFiieelldd

In experimenting with the prototype fieldwork tools described in the previous chapter

we found, not surprisingly, that user interface design was a critical element to their

successful deployment in the field. Good HCI design considers the abilities of both the

user and computer and how they can best be joined through the user interface to

effectively carry out a particular task. The majority of HCI research to date has

concentrated on the desktop environment where the user is able to focus the majority

of their attention on the computer in order to carry out the task at hand. However, in

fieldwork environments, and in many other general usage environments for context-

aware computing, this assumption no longer holds true. The user now finds themselves

in a dynamic environment where the computer will most likely be one of many sources

to be demanding their attention. Therefore, the way we design user interfaces for such

devices needs to be carefully reconsidered; simply reusing principles developed for

desktop computing is unlikely to be successful.

This chapter addresses these issues by exploring the unique characteristics of the

fieldwork user and environment, and presents some new user interfaces that were

created for the fieldwork tools in order to better suit those characteristics. The chapter

concludes with some general HCI design guidelines that we have developed from our

practical experiences

4.1 The Very Mobile Nature of Fieldwork

Handheld computing appliances are typically envisioned as tools within the

businessperson’s domain, where the executive is accompanied by a subset of their

business data stored on their handheld computer. During a meeting at the office or

whilst commuting to work on the train, the handheld computer allows them to work

with their data at a location of their choice. However, the world of the businessperson

Chapter 4: HCI in the Field

138

is far removed from the environment of the fieldworker. Perhaps one of the most

striking differences can be seen in terms of usage patterns. The businessperson will

normally be seated at a desk to use their handheld computer, or perhaps with the

handheld computer rested on their lap. We could therefore describe this as portable

computing rather than truly mobile computing because, although the user can roam

anywhere with their handheld computer, it is generally with the intention of bringing

computing resources to use within a static workplace rather than to use them whilst on

the move. The fieldworker’s environment, however, is a much more dynamic one,

where the handheld computer will be utilised throughout the course of the user’s work,

often spread over a wide geographic area. That is, the usage of the handheld computer

is truly mobile.

Static usage of handheld computers pose HCI challenges centred around the problems

arising from the ever diminishing size of the hardware, e.g. examining how software

displays can be adapted to the dramatically smaller handheld computer screens as in

[Kamba, Elson 1996 - #71], [Sarkar, Snibbe 1993 - #122] and [Scholtz, Lockhart 1997 -

#129]. However, at least the environment of use is still in common with traditional

desktop or laptop computers. Mobile usage of handheld computers offer even more

challenges as not only do the issues of miniaturisation have to be addressed but also the

completely different environments of use too. We believe that the requirements of

computing hardware and software intended for mobile usage are significantly different

from that of their statically used counterparts, and it is these different requirements and

how to satisfy them that we are interested in.

Kristoffersen et al [Kristoffersen and Ljungberg 1999 - #75] suggest three categories of

mobility: wandering (where the user wanders around with no one specific destination as

part of their day to day work), travelling (where the user spends some time travelling in

a vehicle in order to get to a particular location), and visiting (where the user may spend

some time in different locations). They also classify the technology used into mobile,

portable and desktop categories. However, these classifications focus on the mobility of

the user and device, whereas we are more interested in the mobility of the activity. We

believe it is the amount of mobility that the user requires whilst simultaneously using a

device that is the primary factor in influencing its design: hence our classification of

static usage and mobile usage.

Chapter 4: HCI in the Field

139

The ecology fieldwork work described in the previous chapter has given us a good case

study of mobile usage requirements. However, the user interface concepts and

prototypes that we propose in this chapter are intended to be widely applicable and are

not solely aimed at this area. Indeed, much of our work is valid for applications that

require mobile usage but are outside of the fieldwork arena altogether, e.g. handheld

computer tourist guides [Cheverst, Davies 2000 - #21], tools for a field service engineer

[Kristoffersen and Ljungberg 1999 - #74], etc.

4.2 Four Characteristics of the Fieldworker User

The nature of fieldwork has been described in general terms as highly mobile, where

the fieldworker will use the handheld computer throughout a variety of environments

during the course of some work: typically data collection activities. The unique nature

of mobile usage requirements within this context can be defined as four characteristics:

 Dynamic User Configuration. The fieldworker will want to collect data whenever

and wherever they like, but it is extremely unlikely that there will be any chairs or

desks nearby on which to set-up their computing apparatus. Nevertheless, the

fieldworker will still want to record data during observations whether they are

standing, crawling, or walking (all of which would be quite normal in fieldwork

conditions).

 Limited Attention Capacity. Data collection tasks are oriented around observing

a subject. Depending upon the nature of the subject the user will have to pay

varying amounts of attention to it. ‘Snap-shot’ observations require little more than

recording the current state of the subject at a particular point in time. However,

many observations are carried out over a more prolonged period of time during

which the fieldworker must keep constant vigil on the subject to note any changes

in state, e.g. observing animal behaviour. In these situations the user needs to spend

as much time as possible in observing and to minimise the time devoted to

interacting with the recording mechanism.

 High-Speed Interaction. The subjects of some time-dependent observations are

highly animated or, more commonly, have intense periods or ‘spurts’ of activity.

The fieldworker is normally a passive observer whose work is subject-driven;

Chapter 4: HCI in the Field

140

therefore during these spurts of activity they need to able to enter high volumes of

data very quickly and accurately, or it will be lost forever.

 Context Dependency. The fieldworker’s activities are intimately associated with

their context or, if different, the subject’s context. For example, in recording an

observation of a giraffe, its location or the location of the observation point will

almost certainly be recorded too. In this way the data recorded is self-describing of

the context from which it was derived. Further applications of the data often

involve analysing these context dependencies in some form, e.g. plotting giraffe

observations on to a map if location is part of the context.

The relative importance of these four factors can vary with different fieldwork. For

example, in testing our prototype software we have been involved with two projects: a

giraffe observational study in Kenya as detailed in the previous chapter [Pascoe, Morse

1998 - #99], and an archaeological survey near Sevilla, Spain [Ryan, Pascoe 1997 -

#119]. The giraffe behavioural study strongly exhibited all four of the above

characteristics, whereas in the archaeological study the characteristics of limited

attention capacity and high-speed interaction were not so pronounced. The differences

lie in the nature of the data collection subject; giraffe are very animated whereas roman

pottery is quite static. However, these attention and speed factors are still of importance

in archaeological fieldwork because, although the pottery may well be fixed in absolute

terms, the archaeologist will walk around an area and note any interesting subjects that

he passes by. Therefore, relative to the observer, the focus of observation is changing

quite rapidly, and the amount of attention that can paid to observations, and the speed

of recording them, are limiting factors as to how quickly the fieldwork can be

completed.

As an example of parallel research to ours, the work of telecommunication service

engineers and maritime consulting staff is examined in [Kristoffersen and Ljungberg

1999 - #74]. These mobile workers exhibit many of the same characteristics as our

fieldworkers; indeed, climbing up a telegraph pole to fix a telecommunications

installation is not so different to climbing up an acacia tree to observe a giraffe in terms

of the mobility requirements of a handheld computer, except perhaps for the high-

speed interaction requirement. However, the authors have chosen to focus on

identifying the general characteristics of the work context rather than the general

Chapter 4: HCI in the Field

141

characteristics of the user as we have done. We believe that the different approaches are

complementary and both highlight the limited attention capacity and dynamic

configuration of the user, though our work also addresses the typically context-

dependent nature of mobile work.

4.3 The Features of a Prototype Fieldwork Tool

We have concentrated on developing novel software applications that utilise existing

low-cost hardware rather than employing custom-made or expensive equipment,

making it more attractive for our user groups to consider deploying. Hence our use of

the PalmPilot and GPS receiver as described in the previous chapter. However,

although we were not able to design the hardware ourselves, we carefully examined the

available devices and evaluated their suitability for fieldwork environments through the

following criteria:

 Pen user interface. We found that the flip-open ‘clam-shell’ pocket computers

equipped with miniature keyboards were not suitable for fieldwork environments,

where the user is typically standing or walking whilst operating the device. Although

ideal for static situations where they can be rested on a work-surface, in-hand use of

these devices requires both the user’s hands and often involves a clumsy method of

typing with one’s thumbs. Pen-based interfaces on a pad-like device provide a more

ergonomic solution that can be held in one hand if simply viewing data; they

generally use some form of handwriting recognition for entering data. They provide

a natural substitute for the fieldworker’s paper notebook: similar in size and

operation, and suitable for use by the user in many different dynamic situations (e.g.

whilst walking).

 Small and unencumbering form factor. Given the nature of some of the work it

is important that the equipment does not encumber the user’s body or senses in any

way. For example, in searching for an elephant in dense bush the user will use their

sense of sight and hearing to the full and, should the elephant give chase, will need

to be able to run to the best of their ability! Therefore we have limited our

equipment selection to small handheld computers, ideally of a size that would

unobtrusively fit into a trouser pocket when not in use.

Chapter 4: HCI in the Field

142

 Battery-life. A typical fieldworker will spend a day in the field before returning to a

base camp. Therefore, a device that can be used for at least a whole day without

requiring replacement batteries is desirable.

 Robustness. The very nature of the environment makes it necessary to have

devices that are able to cope with knocks, drops, and the general conditions of

outdoor life, including heat, dust, rain, etc. In short, a very durable device is

required.

 Connectivity. Sensors may be used to automatically obtain some data values if

there is a way of connecting them to the main device. However, the process of data

collection is not an end in itself. The collected data will need to be downloaded to a

desktop computer for analysis and detailed study once the fieldwork has been

completed. Therefore, it is necessary to have a device that can be easily connected

to both a PC and various sensor devices.

Based on these criteria we chose the 3Com PalmPilot as the most suitable device at the

time. There are a number of specialised manufactures of ruggedised mobile computers,

but we wished to select a device that was reasonably priced, widely available, and

suitable for a variety of mobile environments, not just in fieldwork. All of our software

tools for ecology fieldwork (as described in the previous chapter) have been developed

for this platform. The simple form-based interface of our prototype software embodied

the design philosophy of PalmPilot software: “if it needs a manual then it’s too difficult

to use”. Rather than providing a radically new interface design from what the ecologist

may have previously encountered, we instead sought to provide innovative features set

within a familiar interface metaphor. This approach allowed the users to quickly master

the use of the system.

We are aware of one other project that aims to utilise computer-based fieldwork tools

in African ecology work [Bailey 1997 - #6]. However, their interests lie in allowing

illiterate trackers to accurately record the location of animal sightings through a simple

pictogram interface, rather than assisting the ecologists to record large and complex

data sets. So the user interface issues are quite different. They are interested in

providing trackers with a recording tool where they can note down any animal sightings

(and possibly their behaviour at the time of being spotted) in as quick and easy a

Chapter 4: HCI in the Field

143

manner as possible using a visual pictogram-based interface. Our work instead focuses

on providing ecologists with tools that aid them in recording much more complex

observations, such as giraffe behaviour time series, with the emphasis on developing

user-interfaces that are as transparent as possible to the observational activities.

We tested our prototype system in a number of environments, the most rigorous of

which was the three-month behavioural study of giraffe in Kenya [Pascoe, Ryan 1998 -

#103] [Pascoe, Ryan 1998 - #101]. In this trial a willing ecologist, Kathy Pinkney,

replaced her paper notebook with our prototype for the entire period of her fieldwork,

using it for all of her data collection tasks. The focus of her research was to investigate

the feeding behaviour of giraffe in order to assess their impact on the vegetation within

the Sweetwaters game reserve. To do this effectively she needed to collect a large

amount of raw observational data of giraffe feeding. For each nibble of the branch that

a giraffe took, Kathy would have to record the location, time, tree species, feeding

height, and number of bites taken, in addition to any other activities the giraffe indulged

in in-between nibbles. The giraffe’s voracious appetite for acacia and general

restlessness make recording the observations very difficult, especially considering that

the ecologist needs to look through a telescope and operate a stop watch at the same

time. In fact, such tasks are so difficult in traditional paper-notebook recording

methods that an assistant note-taker is normally required. However, with the aid of our

prototype fieldwork tools Kathy was able to collect all the necessary data single-

handedly.

During the course of the three-month study the prototype performed at a level that

allowed the ecologist to complete more work, in a way that was both faster and easier,

than is possible in a manual system. At the end of the study approximately 6000

observations had been recorded. The HCI factors in the prototype that led to this

success can be formulated into two general principles:

 Minimal Attention User Interfaces. Providing interface mechanisms that

minimise the amount of user-attention, though not necessarily the amount of user-

interaction, that is required to perform a particular task.

 Context-Awareness [Schilit, Adams 1994 - #125]. Imbuing the device with the

capability to sense its environment.

Chapter 4: HCI in the Field

144

The remainder of this chapter describes how these principles were applied in the

prototype system and presents our work on further enhancements and research arising

from our experiences of employing these principles in the field. We first examine

context-awareness, but only the small subset of the concept that is directly related to

the HCI issues of the fieldwork tools and users.

4.4 Context-Awareness

The fieldworker is generally equipped with a plethora of equipment to assist in the

observation process. In the Kenyan study, for example, a map and compass would have

been required to pinpoint location and a stopwatch required for recording time series

data such as giraffe behavioural observations. However, rather than taking more

equipment out into the field, we believe that a fieldworker endowed with a handheld

computer will actually take out less. The reason for this apparent paradox is that we

wish to assimilate as many of the other equipment interfaces into the handheld

computer as possible and to automate their operation. In addition, instead of providing

an electronic ‘copy’ of the device (e.g. a graphical simulation of a GPS receiver on the

handheld computer’s screen), we aim to embed the appropriate function within the task

it is related to: for example, automatically entering the current location into a new

observation note. This is achieved by making the handheld computer aware of its

context through various attached or embedded sensors so that it is able to supply

context information when needed.

In our prototype we made our programs aware of two elements of their context that

are useful in a wide array of activities: time and location. Knowledge of time is easily

obtained through the unit’s own internal clock, and this can be used to provide various

timing functions that eliminate the need for a stopwatch. Location was provided

through an attached GPS receiver that could pinpoint the user to within 100 metres

anywhere in the world (given an unobstructed view of the sky). The GPS receiver was a

separate unit attached via a serial cable, but we expect problems with cabling to

disappear in the near future through a combination of more sensors embedded in the

devices themselves and the ability to communicate with other external sensor units

through wireless technologies such as Bluetooth [Bluetooth-Consortium 2001 - #11].

Chapter 4: HCI in the Field

145

In effect, the handheld computer could become a universal interface or remote control

for a number of sensor ‘black-boxes’ that are wirelessly connected.

From a few basic sensors a number of software-derived context elements can be

generated. For example, a tide-level context element can be computed from the

location and time context elements. Similarly, a ‘dominant vegetation’ context element

can be derived from a location and GIS vegetation map. In fact, the wealth of potential

context information has spurred us into developing a Context Information Service

(CIS) [Pascoe, Ryan 1999 - #102], which is presented in the chapter 6.

One of the characteristics of the fieldworker described earlier was the need for high-

speed interaction. Context-awareness can help in this area by automating some aspects

of the fieldworker’s activities. In the prototype software the StickePad automatically

defaulted any time or location fields of a newly created note to the current clock or

GPS reading respectively (see Figure 23). Even such a seemingly minor enhancement

made the ecologist’s job much easier. For instance, recording giraffe feeding behaviour

through a telescope would normally have required two people, one to dictate the

observations being made through the telescope and the other to use the stopwatch to

record the times and details of the rapidly occurring events. However, the prototype

system allowed a single person to perform both tasks by automatically completing the

timing information as soon as the user indicated a new event had taken place, leaving

them to simply enter a code for the behaviour.

Figure 23. Editing a location field in the StickePad illustrates how context-awareness can be used to
expedite data collection; in this case by automatically entering the user's location (derived from an

attached GPS receiver) and allowing it to be easily updated via the 'Here' button.

Another characteristic attributed to the fieldworker is their context dependency. As

mentioned earlier, the data being collected is effectively a description of various

Chapter 4: HCI in the Field

146

elements of their context and at a later date the complete collection of data will be

compared and analysed from the perspective of one or more of these context elements.

For example, the collected notes could be plotted in a GIS in order to visualise and

analyse the data from a location context element perspective. Equipped with a

handheld computer we can effectively bring cut-down versions of these context

visualisation tools into the field, where not only can we view the various notes that have

been recorded but also our presence relative to them. In the prototype we implemented

a StickeMap program to demonstrate a form of context visualisation by plotting the

recorded notes and user’s current position on to a configurable map. Visualising data

using context information provides a powerful mechanism that allows the user to gain

an overview of the data from a particular contextual perspective, to filter information

that they are interested in, and also to look for patterns in the data.

4.5 The Minimal Attention User Interface (MAUI)

MAUIs seek to satisfy the needs of the fieldworker with respect to their characteristics

of dynamic user configuration and low attention capacity. An example of a task in the

Kenyan fieldwork that illustrates both of these characteristics particularly well is the

detailed giraffe observation. During one of these observations the ecologist was often

hiding behind vegetation, walking through the bush, or crouching over a telescope.

Data needed to be recorded in any of these circumstances. Additionally, observing a

giraffe’s detailed feeding behaviour (such as the number of bites taken from a particular

acacia tree) required a great deal of attention. This is especially true when observing

from a distance through a telescope, where, unless the user pays constant attention, the

giraffe can quickly move out of the field of view.

Conventionally, handheld computers require the direct attention of the user for the

whole duration of a particular task. During this period all of the user’s attention is

focused onto the device. For example, to select a document the user will hold their

handheld computer in one hand, select the document with the pen held in the other,

and all the time be looking at the device in order to correctly operate the interface. In a

fieldwork environment this distracting process can negatively affect the quality of the

work. Note that it is not the number of interactions occurring that is the important

factor, but the amount of attention that they require from the user.

Chapter 4: HCI in the Field

147

A MAUI attempts to remedy this situation by transferring interaction tasks to

interaction modes that take less of the user’s attention away from their current activity.

In effect it is about shifting the human-computer interaction to unused channels or

senses, and in a way that is not so cognitively demanding to distract the user from the

task at hand. As a small experiment of this idea, our prototype fieldwork software

overloaded two of the hardware buttons of the PalmPilot device with a configurable

increment and decrement function. These buttons could then be used to manipulate

sequential data with less attention from the user because the buttons provided enough

tactile feedback without requiring the user to actually look at the device. The user could

configure the amount decremented or incremented by these buttons for particular types

of data (e.g. tree height may increment in units of five metres and giraffe bites in steps

of one). This feature was most usefully employed in counting giraffe bites from a tree:

here the ecologist could keep a running total of the number of bites taken - just by

clicking a button for each bite - whilst simultaneously observing the giraffe through the

telescope. In effect, this is an eyes-free form of human-computer interaction.

Figure 24. The ecologist observes the giraffe whilst simultaneously recording data on the PalmPilot using
the Minimal Attention User Interface.

We are exploring other methods to optimise the eyes-free MAUI of our prototype. The

touch-sensitive screen provides one opportunity. If divided into selectable areas, say

four quadrants, a particular function or data value can be assigned to each of the

quadrants, e.g. a tree species selector where top-left = acacia, top-right = uclea, bottom-

Chapter 4: HCI in the Field

148

left = scutia, bottom-right = other. The user can easily identify the four corners of the

screen with their thumb and hence operate the interface in eyes-free mode (especially if

some form of audio feedback is given). Although we may not be able to divide the

screen into enough areas to support all functions or data types we can certainly

implement the most frequently required options to optimise for an eyes-free mode of

operation. However, lack of tactile feedback from the touch screen may be of concern.

Our interest in MAUIs is not limited to eyes-free forms of interaction but also covers

other methods that attempt to minimise the amount of distraction caused to the user’s

activity. One-handed operation is such a method. Although the user may need to

occasionally look at the screen, one-handed operation allows them to operate the device

with one hand whilst continuing to perform tasks with the other. Such a facility is

useful in many diverse situations, not just in fieldwork. For example, consider the

businessperson who wishes to consult their diary and to-do lists for the day whilst

walking to work with their briefcase in one hand and their handheld computer,

retrieved from their pocket, in the other. In such circumstances the hand that holds the

device also has to perform the interaction tasks. Small devices such as the PalmPilot are

ideally suited to this type of activity as they can be easily held in one hand whilst leaving

the thumb free for manipulating the screen or buttons.

Thus far we have only discussed operating on individual portions of a complete data set

or task. We also inherently need a minimal attention method of navigating between

these individual features. This was the area of the prototype interface that proved least

successful in the first Kenyan trial. For example, to edit a note the user had to decide

which field of the note to select, perform the editing operation using the type-specific

controls, return to the list of fields, and then decide the next field to edit. Although

easily executed, a problem arises when the user’s concentration is directed elsewhere,

such as at a giraffe: the number of decisions and manipulative processes involved in

selecting and modifying the data appropriately become a distraction to the main task at

hand. To improve this situation the form-filling interface could be structured as a set of

‘layered’ screens, one for each data element. The user would then be presented with a

sequence of these screens that is optimised for minimal attention, much like filling in a

questionnaire question by question. Note that, as with many of the features presented,

this would be an optional enhancement to the existing system rather than a

Chapter 4: HCI in the Field

149

replacement, because if the user’s attention is not pressed then they may prefer to work

with the data in the ‘bigger picture’, e.g. viewing the whole form whilst editing a small

field within it.

We have attempted to combine our ideas of layered sequential screens with those of

eyes-free or one-handed controls in the prototype fieldwork tools in order to provide a

better MAUI (i.e. one that can be operated with even less distraction to the user’s

activity). This has been tested in another field trial with the ecologists in Kenya. This

time the fieldwork requirement that drove our designs was the need for rapid data

collection carried out in parallel with other manual activities. An example that illustrates

this need is elephant dung pile counting. In this task the ecologist briskly walks a ten

kilometre transect recording the location and number of elephant dung piles on each

500 metre leg of the journey. They may also record any other animal sightings of

interest along the way and will often be using their binoculars. We concentrated on

providing a one-handed mode of operation for such activities so that the fieldworker

could easily operate the prototype whilst walking, looking through binoculars, tracking

animals, etc.

Figure 25. Most comfortable grip for one-handed operation.

The first design decision in developing our one-handed MAUI for the fieldwork tools

was to find the most comfortable fit in the hand for the device and to select the control

surfaces we would use. Figure 25 shows the most comfortable and secure method we

found to hold the device with one hand, which leaves the thumb free to operate the

device. However, the touch screen and hardware buttons can not be used together as

Chapter 4: HCI in the Field

150

the hand can only be positioned to place the thumb exclusively on either control

surface: the thumb is not extensible enough to be able to use both surfaces from the

same hand position. We decided to use the hand position that favours the touch screen

as this control surface offers much more flexibility in the design and presentation of the

MAUI controls.

In such a hand grip the thumb is more easily manoeuvred in the vertical plane than the

horizontal, so the one-handed MAUI constructs its control elements as a series of

stacked lateral bands, equally suited to both left and right-handed users. The main

screen of the MAUI-enabled StickePad, as shown in Figure 26, consists of three

buttons that can be activated with a tap of the thumb to select the appropriate function.

Figure 26. StickePad main screen in one-handed mode.

Selecting the ‘New Note’ button invokes a sequence of one-handed controls through

which the user progresses to create a new note, as shown in Figure 27. In the first

control (a list selection control) the user chooses a note template by scrolling through

the possible choices using the up and down arrow buttons, then pressing the central

button when it displays the desired template name. The remaining controls in the

sequence allow the user to enter data as appropriate for the note. The example used in

Figure 27 shows a time control, which that can be updated with the current time, and a

numeric control that can be incremented and decremented using the arrow buttons. As

with the list selection control, once the desired data value is shown it is tapped with the

thumb to select it. Controls exist to manipulate all the Stickepad’s data types except for

textual data. A control does exist to display the textual data but it uses a normal text

editing dialog box if it needs to be edited, as editing text with this one-handed method

is probably too cumbersome to be useful.

Chapter 4: HCI in the Field

151

Figure 27. The first three of a sequence of one-handed controls to enter a new note.

In addition to designing an optimal layout of controls for one-handed operation we

have also investigated the use of multiple taps. Using this technique a button may have

more than one function assigned to it depending on the number of taps of the user’s

thumb on the touch screen. This is equivalent to the single and double-clicks

commonly executed on mouse buttons. A single and double tap can be easily

performed on the touch screen, and even treble and quadruple taps. However, both the

physical operation and cognitive load of remembering the number of taps for different

functions make it prohibitive to exceed quadruple taps. In the prototype MAUI we

commonly make use of single and double taps, and use treble and quadruple taps more

sparingly for functions that are used less often. One of the most useful examples of

using the multiple taps in the StickePad is to navigate through the sequence of controls

used to edit or enter each field of a note, as shown in the examples given in Table 15.

The multiple taps operate on the particular part of the control to which they are

applied, e.g. double clicking on the numeric control’s up arrow for incrementing is

obviously different to clicking on the numeric control’s down arrow for decrementing.

To navigate through a sequence of controls, multiple taps are directed at the data

display part of a control, e.g. the number displayed in the numeric control.

There is one other one-handed input technique: the thumb stroke. This involves

running the thumb from the top of the screen down past the halfway mark and also the

reverse action starting from the bottom of the screen. This is a very fast and fluid

motion and is used in the StickePad program to quickly flip between one-handed mode

Chapter 4: HCI in the Field

152

and normal mode (where the user may be interested in looking at the overview of

collected data displayed on the main screen). The thumb stroke is available to the user

whatever the current mode. Importantly, this allows the user to effortlessly switch to

one-handed mode using a one-handed operation rather than needing to activate the

menu and then select the option from a menu item in normal mode (which would

require two hands).

Number of
Taps

Sequence Navigation Number Editing

1 Next field/control in
sequence.

Increment or decrement
(depending on which
button pressed – up or
down arrow) by 1.

2 Previous field/control in
sequence.

Increment or decrement by
the number-specific step
amount.

3 Jump to the first
field/control in the
sequence.

-

4 Jump to the last
field/control in the
sequence.

-

Table 15. Two example uses of multiple taps.

In general, we are designing interfaces based on a model of the fieldwork activity, not

on a model of the fieldwork data. Although some interface elements are created to

manipulate particular types of data, it is the user’s activity that shapes the design of our

interface. Identical data may have completely different interfaces depending on the

user’s activity. For example, in the field the ecologist may want a simple and direct

interface that is oriented to recording data quickly, whereas back in the laboratory the

user will likely view the same data in a much more rich and complex form, such as in a

GIS (Geographical Information System). It may be tempting to encode the visual

interface into the logical template descriptions (as is often the case with HTML

documents) but this severely limits the flexibility and portability of the data model.

Therefore, we have been careful to keep interface and data models distinct in our

prototypes.

One final opportunity in developing MAUIs for fieldwork lies in the new hardware

capabilities that are becoming available in-built or as attachments to handheld

Chapter 4: HCI in the Field

153

computers. For example, microphones are becoming more prevalent with handheld

computers and provide opportunities for voice recognition, whilst small vibrating units

(typically used by pager software) offer the developer another means of providing

feedback to the user. Other innovative forms of hardware interface mechanisms are

explored in [Harrison, Fishkin 1998 - #57] and [Rekimoto 1996 - #109], which

investigate how various tilt and touch sensors can be employed to manipulate the

device through a variety physical movements and gestures.

4.5.1 General Guidelines for the Selection or Design of MAUIs

The design of our MAUIs is strongly influenced by the characteristics of the ecology

fieldwork activities. In particular, the interaction modes that the MAUI utilises are

selected to best fit the characteristics of the fieldwork activities. In order to assist in a

more general understanding and comparison of how different activities affect the

choice of interaction modes in a MAUI, we can construct a table of the activity’s

interaction mode characteristics, as the example in Table 16 illustrates.

 Visual Audio Tactile

Environment

(African Bush)

 Restricted.
Cannot make much noise
in case animals are
disturbed.

User

(Ecologist)

Task

(Giraffe observation)

Prohibited.
Ecologist will need to
keep her eyes on the
giraffe under observation.

Tools

(PalmPilot and data
collection software)

Small screen (160 x160
pixel).

No microphone. Very
limited audio output
through internal speaker.

4 tactile hardware push
buttons. Touch screen.

Table 16. Interaction mode characteristics for the ecology fieldwork activity.

In order to more precisely describe exactly where in the activity the interaction mode

characteristics originate, we have divided activity into environment, user, task, and

tools. Each of these aspects of the activity may prefer, restrict, or prohibit the use of a

particular interaction mode.

Chapter 4: HCI in the Field

154

In the ecology fieldwork activity in Table 16 we can see that the use of the audio mode

in a MAUI would not be a particularly good choice given the restriction imposed by the

environment and the very limited audio capabilities of the tools. Additionally, the

giraffe observation task requires the full attention of the user’s eyes, prohibiting the use

of the visual mode in a MAUI. However, there are no restrictions imposed on the

tactile mode by any aspect of the activity: in fact the tools even offer a few methods of

exploiting this mode. Therefore, in selecting or designing a MAUI for this activity we

would seek to choose one that primarily exploited the tactile mode.

Comparing the interaction mode characteristics of our MAUIs (Table 17) with that of

our activity (Table 16) enables us to select the eyes-free push-button MAUI as the best

interface for the ecology fieldwork activity. However, we also need to make sure that

the data types that need to be entered and conveyed in the activity are supported in the

chosen MAUI (in the fieldwork example, the majority are).

 Visual Audio Tactile Data Types

Input Hardware
buttons.

Numeric. Eyes-Free

Push-Buttons

Output

Input One-handed
thumb-driven
input via touch
screen.

Numeric,
picklist,
location, time,
date, bearing,
data series.

One-Handed

Oversized Controls

Output Easy-to-read
oversized
controls.

 Numeric,
picklist,
location, time,
date, bearing,
data series.

Table 17. Interaction mode characteristics of our MAUIs.

Complex activities may span more than one environment, user, task, or tool. If these

present incompatibilities in interaction mode characteristics then the activity needs to

be divided into sub-activities in which the interaction mode characteristics are

compatible. An appropriate MAUI can then be designed or selected for each sub-

Chapter 4: HCI in the Field

155

activity. Additionally, if the MAUI designer is able to choose the tools that are used in

the activity then they will be selected to suit the chosen MAUI rather than the MAUI

chosen to suit the tools. The tools only appear on the activity’s interaction mode

characteristic table if they are a fixed part of the activity, as the PalmPilot effectively

was in our case due to our development investment in it. If we could have chosen any

tools then perhaps a device with a chording keyboard would have been our selection,

since it allows a more sophisticated use of the tactile mode.

In summary, the ‘minimal attention’ in the ‘minimal attention user interface’ is achieved

through the effective use of modes of interaction that least distract or interfere with

those that the user is employing in her current activity. This complementary use of

interaction modes is the key to successful MAUI design.

MAUIs tend to be constructed for specific activities rather for general-purpose use, in

both our work and others: for example, in developing navigation aids for the blind

[Strothotte, Fritz 1996 - #137] and assistants to field service engineers [Kristoffersen

and Ljungberg 1999 - #74]. By constructing tables of interaction mode characteristics

for these activities we are able to more rigorously compare them with other activities,

and to select or design an appropriate MAUI that uses complementary interaction

modes. For example, considering the navigation aid to the blind, the following table can

be constructed.

 Visual Audio Tactile

Environment

(Urban area)

User

(Blind person)

Prohibited.
No visual sense.

Restricted.
Don’t want to interfere
with the person’s
awareness of their
environment.

Task

(Navigation)

 Restricted.
Person may be carrying
shopping, a cane, etc.

Table 18. Interaction mode characteristics for navigating for the blind.

Note that the table includes no tools aspect to this activity because we have assumed

that we have a choice of technology. On comparison with the table for the ecology

Chapter 4: HCI in the Field

156

fieldwork activity we can see that the prohibition of the visual mode is shared.

However, in this activity the audio mode is less restricted than the tactile one, which

could be prohibited altogether in certain situations (e.g. when carrying a lot of

shopping). Therefore, a MAUI that primarily utilised the audio mode, with perhaps

some auxiliary use of the tactile mode, would be best suited for a navigation aid for the

blind. Similarly, Table 19 shows that the activity characteristics of the

telecommunications service engineer also makes an audio-based MAUI the best

selection, though for different reasons.

 Visual Audio Tactile

Environment

(Up a telegraph pole)

 Restricted.
User needs at least one
hand free to hold on to
the pole.

User

(Field engineer)

Task

(Field servicing)

Restricted.
The user will wish to keep
her eyes on the facility
under repair for most of
the time.

 Restricted.
May be carrying lots of
other equipment.

Table 19. Interaction mode characteristics for a telecommunications field servicing.

We hope that by explicitly identifying interaction mode preferences/restrictions and

their origins in this way will enable developers to more easily and accurately identify

similar activities in terms of their interaction mode usage (the applications could appear

quite different in other ways). It should also assist in quickly identifying existing MAUIs

that can be successfully deployed for a particular activity, or in specifying the

interaction mode requirements or limitations for the design of a new MAUI.

4.6 Summary

We believe that context-aware tools will generally be exploited in highly mobile and

dynamic activities. It is these very different activities that drive the development of

radically different types of computing devices (e.g. handheld or wearable computers)

and the need for different modes of interaction with these devices. More specifically, in

this chapter the mobile nature of fieldwork activities was examined and four general

Chapter 4: HCI in the Field

157

characteristics of the fieldworker identified. These characteristics illustrated how HCI

design for desktop-computing environments is ill suited to computing in the field.

Two new general HCI principles for mobile environments were presented: context-

awareness and minimal attention user interfaces (MAUIs), both derived from the

successfully deployed fieldwork tools described in the previous chapter. In this chapter

we focused primarily on an exploration of MAUIs, describing their aim to reduce user

attention but not necessarily user interaction. Two different types of MAUI were

developed: one for one-handed interaction and another for eyes-free interaction; each is

suited to different types of activity. In conclusion some general guidelines were

developed in order to assist user interface designers in the selection and development

of MAUIs for a given activity.

159

CChhaapptteerr 55::

FFiieellddwwoorrkk TToooollss UUssaabbiilliittyy SSttuuddyy

Many existing context-aware applications have never seen real use over an extended

period. However, we thought it important, in order to establish the validity of our ideas,

to conduct proper field trials. Although we had already trialed our various prototypes in

the field, until the summer of 1999 they had only been used by one or two ecologists at

a time. What is more, these ecologists had already expressed their interest in using such

tools before the trial began. Therefore, our test user group was somewhat predisposed

to liking the tools and were tolerant of many problems that no doubt a less enthusiastic

user might have found unacceptable. In order to more accurately gauge the usability

and usefulness of the fieldwork tools we decided to perform a more extensive trial with

a much larger and unbiased user group. We wanted this group to be ambivalent

towards using the equipment before the trial, and to consist of a cross section of people

ranging in ability from computer professionals to those that had barely even touched a

computer before, i.e. providing a representative sample of potential fieldwork users.

Our hope was that the fieldwork tools could be mastered and usefully employed by any

of the individuals in the test group, and that users would express a preference for our

prototype fieldwork tools over a conventional paper-based system.

5.1 The Ecology Project and Test Group

Our need to perform a more extensive usability trial happily coincided with the start of

an extensive ecology project at the same Kenyan game reserve in which the earlier

single-user field trials had taken place. The aim of the ecology project was to construct

an ecological model of the whole reserve, with the key task of determining the

ecological carrying capacity of black rhino within the reserve. To construct such a

model, large amounts of data need to be collected over many years, and the only way in

which this data can be collected is by sending trained teams into the bush to take many

measurements and observations at regular intervals.

Chapter 5: Fieldwork Tools Usability Study

160

The ecology project was funded by a charitable organisation called Earthwatch, which

finances hundreds of fieldwork projects all over the world. They support projects

through revenue generated by volunteers, who pay to take part in the fieldwork projects

for a two-week ‘holiday’. Thus Earthwatch provide both the money and fieldwork man-

power to support a project. Projects are run by a small team of professionals in the

field.

In the case of the Kenyan Earthwatch project, called “Kenya’s Black Rhinos”, five

teams of approximately ten volunteers came out over the course of the summer of 1999

to perform the fieldwork tasks for the two-strong ecology team (consisting of the

principle investigator, Alan Birkett, and his assistant, Kathy Pinkney). Each team stayed at

the reserve for two weeks and performed various fieldwork activities over that time.

The fifty volunteers over the course of the summer formed our usability test group.

Coming from all walks of life, different age groups, different countries, and with a wide

range of computing abilities (their interests lying in ecology rather than computers),

they made an ideal unbiased and diverse group of people on which to perform a

usability test. To gauge their opinions of the prototype we designed a questionnaire to

capture their previous experiences of fieldwork and/or computing, and their

experiences and reactions to using the prototype in the field. By analysing the results of

this questionnaire we would assess the success, in terms of usability, of the fieldwork

tools.

5.2 The Fieldwork Activities

In order that the trial results be seen in perspective, we now explain how the fieldwork

was conducted. Each team of ten volunteers were split up into five pairs for the

duration of their two-week stay. With one day for arrival and another for training, this

left twelve days for the actual fieldwork itself. On the training day the group of

volunteers was given an introduction to the project, the reserve’s eco-system, and

training on the various devices they would use and the activities they would be expected

to perform. Of the full day’s training, only half an hour was explicitly devoted to

explaining the operation of the prototype fieldwork tools, i.e. operation of PalmPilot,

GPS receiver, and software. However, the volunteers were given the opportunity to use

the tools in a practice tree measuring activity later in the day. After the full day’s

Chapter 5: Fieldwork Tools Usability Study

161

training the volunteers were expected to be sufficiently proficient to carry out any of

the different activities without assistance, including use of all the equipment.

Eight different activities were devised for the volunteers, each of a day’s duration. All

of these activities were designed to produce data for the overall ecological research

programme, and all of them utilised the prototype fieldwork tools for data collection. A

rotating schedule was drawn up so that the pairs did different activities on each day;

though some of the activities were repeated. Appendix I describes each activity and

how the prototype was used to support them.

5.3 Advantages of Using the Prototype for the Project Organisers

Our main concern with the usability study was to ascertain how the prototype fieldwork

tools benefited or hindered the volunteer’s fieldworker activities. However, their use

also has a very significant impact on the role and work of the managers of the ecology

project. Indeed we were aware of this from the start of the project and it was the many

positive benefits that would be derived from using the technology that motivated the

project principal investigator’s desire to use the equipment.

If the project had been run without the prototype fieldwork tools then each volunteer

would have been equipped with a pen and paper notepad and would have been asked

to record the data manually. The “disaster stories” of this method were what spurred

the project’s principal investigator into using our tools in what was the first field season

of their fieldwork. The benefits of our prototype system that the principal investigator

saw are listed below:

 Automatic Transcription. Volunteers were able to download the data straight into

the laptop computer and onto the project spreadsheet in a matter of minutes. In a

traditional paper-based system someone (either the volunteer or project organiser)

would have had to key in all the hand-written data collected, a process that is both

time consuming and fraught with errors (especially with some individual’s hand-

writing). The sheer volume of data collected in this project made the transcription

process especially foreboding. The first three teams managed to collect 80,000 units

of data during the first six weeks (a spreadsheet cell being a unit of data). Indeed,

Chapter 5: Fieldwork Tools Usability Study

162

the data collection strategy would almost certainly have been altered to reduce the

volume of data had a manual system have been used.

 Reliable Measurements of Time and Place. The location, time and date fields

were automatically filled in by the software and hence immune from the

introduction of most types of error. The reliability of time and place data is critical

as all the other data elements of an observation are often correlated to either one of

these fields. Automatic availability also allowed the quick and effortless recording of

location data where it probably would not otherwise have been recorded (e.g. to

check where the volunteer had been during the course of a day’s activity). In a

manual system the activities based around behavioural observation or transect

walking would have involved much more work from the volunteer and the data

collected would be much more susceptible to error.

 Data Consistency. The ability to define a fixed template of fields to collect a

particular set of data, and the facility to define the particular type, parameters, and

validity checks for each field, ensured that the data was collected in a consistent and

valid form from volunteer to volunteer. With a paper notebook it would have been

difficult to enforce any particular data collection regime (as was found on one

occasion when one of the PalmPilot devices failed and a paper notebook had to be

used instead).

 Data Security. Downloading the PalmPilot data to the laptop each day allowed an

effective backup strategy in which many copies of each day’s data were kept in

distributed locations (including back in England via email). In the most likely worst

case equipment failure scenario only one day’s worth of data would be lost.

The deployment of the prototype fieldwork tool does have some disadvantages. Firstly,

there is the cost of the palmtop computers (which could only be expected to survive

for two years in such harsh conditions). Secondly, the project managers must spend

some time training the volunteers in the use of the equipment and providing support.

However, only one half hour of training was required during a full day of tuition on

various other equipment use and fieldwork activities, so this was not considered much

of a disincentive. Similarly, the support of the equipment required only a small amount

of the manger’s time in logistical activities, the most strenuous of which was probably

Chapter 5: Fieldwork Tools Usability Study

163

checking and recharging the equipment’s batteries. In the current state of development

there was also the risk of failure in the prototype system. However, I was on hand to fix

any problems, and the managers could also revert to the paper notebook system in the

case of a catastrophic failure. Thankfully no such failures occurred, and would not

occur with production quality software rather than a prototype.

5.4 The Usability Study

The advantages of the fieldwork tools that we have mentioned thus far are mostly

functional ones that enable an enhancement of the fieldworker’s data collection abilities

in terms of the quantity and quality of data collected. It is the project managers that

accrue most benefits from these improvements. However, we are just as interested, if

not more so, in how the prototype fieldwork tools positively or negatively affect the

experience of the volunteers carrying out the work in the field. To this end we designed

a questionnaire with the aim of capturing their experiences and feelings about using the

equipment in the field, and also to ascertain a little background information about the

individual to see if previous computing and/or fieldwork experience made individuals

more predisposed to like or dislike the tools. A blank questionnaire sample is included

in appendix C.

The questionnaire was given to the every volunteer on the second to last day of their

two-week stay. The first team was not surveyed as we used that initial two-week period

to test out and improve the processes and equipment use. However, all of the

subsequent four Earthwatch teams were surveyed, resulting in the completion of thirty

eight questionnaires. These questionnaires were not anonymous: volunteers were asked

to write their names on them so that further feedback could be sought on any

comments or suggestions that were either particularly interesting or hard to understand.

However, we instructed the volunteers to be ruthless in their criticism so that we would

have an accurate impression of their likes and dislikes of the prototype tools, which we

could then use to help improve the next generation of prototype tools.

When we processed the questionnaires, we generated four types of data:

Chapter 5: Fieldwork Tools Usability Study

164

 Multiple-Choice Responses. Multiple-choice questions could be entered straight

into a spreadsheet with a row for each subject and a column for each multiple-

choice question.

 Codified Responses. Some questions with textual responses were codified to

generate, in effect, a 1-5 rating of a particular quality or attribute. In these cases

more than one question could also be combined to generate the codified response.

For example, the four questions used to gauge previous fieldwork experience and

the three questions used to gauge previous computing experience were combined to

generate a 1 (expert) to 4 (novice) rating for fieldwork ability and computing ability

respectively. We generated those ratings ourselves rather than giving a multiple-

choice option to the volunteer so that the ratings would be more standard and less

subjective, and also so that we would have more detailed data on their abilities to

refer to if necessary. The resulting codified results could be entered into the same

spreadsheet as the multiple-choice questions.

 Categorised Responses. Some questions elicited responses that we could not

possibly predict in advance, e.g. likes or dislikes about the prototype. From all the

combined responses for a particular question we attempted to create a set of

categories of response. Each question was then represented in its own spreadsheet

section with a different response category on each row and a different subject in

each column. Each cell of the sheet contains a Boolean value to indicate whether

the subject expressed a certain category of response. Note that the subject may

express more than one category of response, i.e. the categories are not necessarily

mutually exclusive.

 Narrative Responses. Some data of a more narrative nature was left in its original

textual form, e.g. suggestions for future improvements to the prototype.

The multiple-choice and codified response spreadsheet is included in appendix D and

the codification scheme included in appendix E. The categorised response spreadsheet

is included in appendix F and the narrative responses included in appendix G. The rest

of this chapter utilises this raw data to answer some usability questions.

Chapter 5: Fieldwork Tools Usability Study

165

5.4.1 User Analysis

The test group was composed of individuals from professions as diverse as court

reporters, airport managers, students, personal assistants, attorneys, and so on, with a

fairly even spread of ages from early twenties to late fifties (though slightly more on the

twenties side than the fifties). The majority were of American origin (65%), roughly a

fifth were British (18%), and the remaining fifth were peoples of various nationalities

(German, Japanese, Australian, and Swiss). The group was predominantly female (70%).

proff icient
user
35%

occassional
use (w ord,
email, etc.)

47%

none (or
nearly none)

10%

computer
expert

8%

Figure 28. Previous computing experience of volunteers.

In addition to these personal attributes we also gauged previous experience in both

computing and ecology through a series of seven questions. For computing experience

we categorised individuals as having little or no experience, to be occasional users (if

they have occasionally used a computer for simple activities such as word processing or

email), to be proficient (if they are experienced users who use a computer on a regular

basis), or to be expert (if they have an advanced knowledge of computers and how they

work in addition to being able to use them). Approximately half the group were classed

as occasional users, one third were proficient users, and the remaining individuals were

equally divided between expert users and those with little or no computing experience,

as illustrated in Figure 28. Only five of the volunteers had previously used a handheld

computer; four of these were PalmPilot users and one was a Psion Series 5 user.

For fieldwork experience we classified the volunteers as having done little or no

previous fieldwork, having done one to two fieldwork projects previously, having done

many previous fieldwork projects, or to be a full-time fieldwork professional. A third of

the volunteers had no previous fieldwork experience, half had been on one or two

fieldwork projects previously, and the remaining individuals were equally divided

Chapter 5: Fieldwork Tools Usability Study

166

between many previous projects and full-time fieldwork professional, as illustrated in

Figure 29.

1-2 previous
projects

52%

many
previous
projects

8%

Full time
(professional)

5%

none (or
nearly none)

35%

Figure 29. Previous fieldwork experience of volunteers.

As we had hoped, the group was very diverse in nature, giving us a broad cross-section

of potential users with whom we could study the acceptance and usability of our

prototype fieldwork tools.

5.4.2 Acceptance Analysis

In order to establish how well received the tools were by the volunteers we asked them

a number of questions on their acceptability. When asked if they would prefer a manual

paper and pencil based system or our prototype system the group was unanimous in

selecting the fieldwork prototype. Not a single person chose to use pencil and paper

despite the wide range of computing abilities: a certain indicator that the prototype was

well received. The were many reasons for preferring the prototype, the top four were

data entry being faster (suggested by 22% of the group), increased efficiency with less

work and writing (20%), transcription of data being easier (15%), and less chance of

error (12%). A complete list of reasons is given in Figure 30.

In learning to use the prototype the half hour of training proved to be just the right

amount for almost three quarters of the group, with a quarter stating they would have

liked a little more training, but no one requiring a lot more training. The majority of the

group felt comfortable using the equipment after the first day (77%) and the remainder

within two to three days (18%) bar two individuals. One of these two individuals took a

week to get comfortable with the equipment and the other never gained a satisfactory

level of comfort. However, the latter individual had never used a computer before and

Chapter 5: Fieldwork Tools Usability Study

167

had also let his partner do all the work that involved using the prototype. Over half of

the rest of the volunteer pairs used the prototype equally between them. Of those that

did not, personal preference was the main reason for not doing so (64%), but also

differing ability was another possible reason (36%).

0 1 2 3 4 5 6 7 8 9 10

less chance for error

data entry faster

transcription quicker & easier

prompting help

more comfortable

more efficient / less work & w riting

consistency in collecting data

w ork is easier / simpler

weather-proof

R
ea

so
ns

 fo
r P

ro
to

ty
pe

 P
re

fe
re

nc
e

Number of Volunteers

Figure 30. The reasons given by volunteers for preferring the prototype fieldwork tools over traditional pen
and paper methods of data collection.

We also enquired as to whether the computing terminology was confusing to them.

Everyone understood the computing terms, though there was some difficulty in some

of the ecological terms which had been mistaken for computing ones!

We can safely conclude that the prototype system was well received by the volunteers,

with the majority of people feeling comfortable in using the system after the half hour

training period, and everyone expressing their preference for the prototype system over

a manual alternative (even the individual who never mastered the system!).

5.4.3 Before and After Impression Analysis

Although the acceptance analysis shows that everyone preferred the prototype system

over a manual one we also wanted to examine the volunteer’s impressions of the

prototype fieldwork tools before and after using them for the two weeks, and to see

how their opinions changed after they had used the prototype. We did this by asking

them to rate how they felt about using the PalmPilot before they arrived and how they

Chapter 5: Fieldwork Tools Usability Study

168

would feel about using it again on another project afterwards. We allowed them to

express five levels of enthusiasm: looking forward to using it a lot, looking forward to

using it a little, not worried one way or the other, a little worried about using it, very

worried about using it.

In retrospect it may have been more rigidly correct to conduct the “before feelings”

part of the questionnaire at the start of each volunteer groups’ two-week stay. However,

we have confidence in the integrity and memory of the volunteers in accurately

reporting their feelings of two weeks before.

Before using the equipment the largest of volunteers (43%) were not worried about

using the equipment one way or the other, a quarter of the group were looking forward

to using it a lot, and the remaining quarter were equally divided between a little worried

and looking forward to using it a little. No-one was very worried about using the

equipment. After using the prototype for their two weeks the majority of volunteers

were looking forward to using it again a lot (60%), some were looking forward to use it

again a little (18%), and some were not worried one way or the other (23%). No-one

was even a little worried about using the prototype after having used it for the two

weeks. Forty-three percent of the group had not changed their minds about their views

of the equipment, but these were the individuals with positive opinions to start with.

There was a massive increase in the people looking forward to use the equipment a lot

(an increase of 34%) with people who had the lowest enthusiasm originally now

showing the largest positive swing in opinion. The before and after impression change

is illustrated in Figure 31.

Chapter 5: Fieldwork Tools Usability Study

169

not w orried one
w ay or the other

46%

looking forw ard to
use it a little

13%

a little w orried
about using it

15% looking forw ard to
using it a lot

26%

looking forward to
using it a lot

59%

looking forward to
use it a little

18%

not worried one way
or the other

23%

Figure 31. Volunteers feelings about the prototype before (left) and after (right) using it.

Before using the prototype the majority of volunteers were not worried one way or the

other about using it, though a few were worried about using it. Afterwards the vast

majority are really looking forward to use it again, and absolutely no-one is worried

about using it at all. The majority of volunteer’s perceptions were improved by at least

one point on our five level scale.

We had only hoped for a “not worried one way or the other” level of enthusiasm. After

all, the volunteers are there out of an interest in Africa and ecology not in computing

equipment. It is therefore very gratifying to see that the majority of volunteers are now

looking forward to using the prototype again, and it is certainly a good indicator of the

prototypes success in the field.

5.4.4 Ease of Use Analysis

Although people’s general impressions of the equipment were good we also probed

them with more specific questions about the prototype’s usability. In determining the

ease of use of the prototype we considered both the PalmPilot system and our

Chapter 5: Fieldwork Tools Usability Study

170

software, and rated ease of use on a five level scale of: very difficult, difficult, okay,

easy, very easy.

The PalmPilot provided two methods of data entry: the Graffiti hand-writing

recognition system or an onscreen keyboard. The volunteers could use whichever

method they felt most comfortable with, and switch between them as they wished. Of

those who used Graffiti the vast majority (90%) found it ranged from okay to very easy

to use, and the same applied for keyboard users. Only three people had any difficulty

using Grafitti, and only one had any difficulty using the onscreen keyboard.

In using our prototype software, the selection of templates and general entry of data

(two of the most important aspects of the fieldwork tools) were both found to be

largely easy to very easy to use, with the remainder of volunteers finding them okay to

use. There were no difficulties at all in either of these processes. The same pattern was

found in a general ease of use rating for the prototype as a whole that the volunteers

were requested to give.

We combined all of the ease of use results (both those of the PalmPilot and our

software) to create a total ease of use rating. As shown in Figure 32, the vast majority of

users either found it easy or very easy to use the prototype, with only a very small

proportion having any difficulties.

very easy
45%

easy
42%

okay
11%

difficult
2%

Figure 32. Overall ease of use rated by the volunteers on a 5 point scale from 'very difficult' to 'very easy'.

In order to be a little more specific in our usability analysis we asked the volunteers to

state what data entry features they found particularly easy to use. The entering of GPS

locations (stated by 39% of the group) and picklists (25%) were reported to be

particularly easy to enter, the others are illustrated in Figure 33. We also asked users to

Chapter 5: Fieldwork Tools Usability Study

171

state any specific difficulties in entering data. Only eleven people reported finding any

data particularly difficult to enter (six found text entry to be hard, two found entering

numbers difficult, one had problems with entering a non-current time, and another

individual had problems with entering the location - due to a faulty GPS cable).

0 5 10 15 20

all

GPS location

picklists

numbers

bearing

dung count
D

at
a

Ty
pe

s

Number of Volunteers

Figure 33. Types of data that were reported by volunteers as being particularly easy to enter.

 The ease of use of the prototype has proven to be more than satisfactory for most

users, with only a small number of users experiencing any difficulty (and those mainly

due to the PalmPilot itself and not our software). The entering of data via a connected

GPS receiver was the single most highly rated feature that users perceived as enhancing

usability.

5.4.5 Likes and Dislikes Analysis

We asked the volunteers to state any particular likes of dislikes they had about the

prototype, and to also comment on any suggestions they may have for improving the

system. The four main likes about the prototype were the compact size of the device

making it easy to carry around, the ease of entering data into the form display, the

prompting of the type of data to enter, and the ease of downloading the data at the end

of the day. These and all the other likes can be seen in Figure 34.

Chapter 5: Fieldwork Tools Usability Study

172

0 2 4 6 8 10 12 14

data prompts in template

input data standardisation

easy to enter data in forms

easy to keep neat (e.g. correct errors)

quick to enter data

compact device - easy to carry

less mistakes

easy to dow nload

more efficient / less w ork & w riting

GPS connection

helped non-English speaker through Picklists etc.

can w alk and use it at the same time

everything
Fe

at
ur

e

Number of Volunteers

Figure 34. Features of the prototype liked by the volunteers.

The main dislike by far, expressed by half of the group, was the need to occasionally

reset the device. This problem was caused by a bug in the software which has now been

rectified. The only other major dislikes of significance (i.e. a dislike expressed by more

than two people) was that the entry speed was sometimes too slow (expressed by 19%

of the group) and the screen sometimes hard to read (16%).

The main suggestion for improvement was a better picklist (e.g. multiple selections,

quicker access to it, etc.) followed by the suggestions of a less cumbersome PalmPilot-

GPS cabling arrangement and an increase in the speed of the software. These and the

other suggestions are shown in Figure 35.

There were double the amount of likes suggested as compared to dislikes, and over half

of the dislikes have now been eliminated with the rectification of the reset bug. The

remaining dislikes are mostly one-off opinions expressed by individuals rather than a

consensus of opinion, bar the need to speed up the prototype and provide a better

cabling arrangement.

Chapter 5: Fieldwork Tools Usability Study

173

0 1 2 3 4 5

better picklists (e.g. multi-choice)

less cumbersome cables

speeded up

wireless connection between Palm &
GPS

automatic sequential numbering where
appropriate

Im
pr

ov
em

en
t S

ug
ge

st
io

n

Number of Volunteers

Figure 35. Suggestions for improvements to prototype made by volunteers.

5.4.6 Log Book Analysis

In addition to the questionnaire data, for the last two groups of volunteers we also kept

a daily equipment log in which we recorded the equipment used, the number of resets

required, any faults experienced, and the number of notes recorded. The complete log

data is included in appendix H.

In examining the logs we can see that for the last two groups (of two weeks duration

each) over four thousand stick-e notes were recorded, with eighty-eight resets incurred

in the process. Although the resets were obviously frustrating to the users (though from

the questionnaire data it does not appear to have impacted much on their enthusiasm

for using the equipment) they never resulted in any data loss or other harmful side-

effects. The only cause of serious problems (resulting in a backup paper notebook

having to be used on nine occasions and the loss of some data on two occasions) was

in the logistics of keeping the PalmPilot batteries charged. There was also one incident

where there was a fault in linking a GPS receiver to a PalmPilot, which was traced to a

faulty connector. We also asked for details of any other problems in the questionnaire,

but none of any significance was presented other than the battery, reset, and speed

Chapter 5: Fieldwork Tools Usability Study

174

issues (the last of these having no negative effect on their work other than in limiting

the rate at which data could be recorded).

5.4.7 Usability Study Summary

The usability study was conducted through a questionnaire presented to each member

of a diverse group (in terms of age, sex and previous fieldwork and computing

experience) of thirty-eight ecology volunteers. The acceptance of the technology was

unanimous with everyone preferring the prototype over traditional data collection

methods, and most of the group feeling comfortable with the system in the first day of

use. There was a small degree of worry about using the prototype before trying it, but

after their two-week projects all worries were dispelled and most people were in fact

looking forward to using the system again given the opportunity.

Very few people had problems using the PalmPilot itself and no one had any difficulties

in using the prototype software. One feature in particular that was identified by users as

enhancing the ease of use was the automatic recording of location data. The overall

usability of the prototype, rated on a five point scale ranging from very difficult to very

easy, was found by the vast majority of people to be easy or very easy. The general

features that user’s said they liked most about the prototype centred on convenience:

compact size, ease of data entry, the prompting of data to enter, and the ease of

transcription. The only negative aspects were the resets required, the wish for an

increase in speed by advanced users, and the battery charging logistics. The former two

problems would be fixed in production quality software, and the latter could be

rectified with self-charging internal batteries or simply better organisation of the

charging process.

Given such positive feedback from the volunteers throughout the summer of trials we

can confidently state that the usability of the tools has been a great success. However,

these people are only one part of the equation: the ecology researchers must use the

data collected from the tools, and also collect data with the tools themselves. We were

already familiar with their very positive opinions on our tools from our early prototype

work with them. Their interest in the tools led to this large field trial in the first place

(they had requested to use our new tools to aid in data collection with this new

volunteer-driven ecology project). They were pleased that, using the tools, the volunteer

Chapter 5: Fieldwork Tools Usability Study

175

data was indeed reliably and consistently collected and that it was available for

immediate analysis after a simple download procedure.

5.5 Summary

We have performed a comprehensive usability study of the prototype in the field with a

group of thirty-eight unbiased and diverse fieldwork volunteers over a period of eight

weeks. In this chapter we firstly presented the structure of the fieldwork: pairs of

volunteers performing various tasks over the course of a two week period, with teams

of approximately ten people for each two-week period. We also described the diverse

range of activities that each pair would be expected to carry out, ranging from rhino

observation to elephant dung counting, and how the prototype would enable such

activities through the recording of stick-e notes.

The benefits to the ecology project managers were clear from the outset: they would get

immediate and effortless transcription of the recorded data into a spreadsheet (through

a simple downloading procedure), the time and location data would be reliably recorded

(because it was automatically extracted from a GPS receiver and system clock), the data

collection would be performed in a consistent manner (via standard stick-e note

templates and enforced data types and ranges), and the data could be easily secured

(through various electronic backup strategies). However, we were also interested in how

the prototype would be received by the volunteers actually performing the fieldwork.

Therefore, to ascertain the usability of the tools in the field we gave each volunteer a

questionnaire that aimed to capture their feelings and experiences of using the

prototype. The results of an analysis of the data gathered were very positive: every

single volunteer preferred the prototype to traditional methods, in particular citing

features such as the ability to automatically record location data. Most users were

comfortable using the prototype within the first day after only half an hour of training,

and the majority were looking forward to using the prototype again in future projects.

In conclusion, we can safely state that the prototype is certainly most useful, practical,

and well received in real fieldwork projects.

Chapter 5: Fieldwork Tools Usability Study

176

177

CChhaapptteerr 66::

RReeccoonnssiiddeerriinngg CCoonntteexxtt aanndd

FFrraammeewwoorrkkss

The usability study effectively demonstrated the ability of context-aware systems to

help people in real world tasks and situations. However, it is rare to find such context-

aware systems in use today due to the large development overhead incurred in imbuing

software with a context-awareness. In effect there is a need for generic context-aware

services that can be compared to the GUI services available for user-interface

developers; imagine developing a user interface by manipulating individual pixels on the

screen. As was the case with the development of common GUI services, we believe

that the construction of context-aware services will encourage the adoption and an

increasing sophistication of context-awareness.

The stick-e note framework was our first attempt at providing a context service, and

the fieldwork tools were the first applications developed to utilise this service. In this

chapter we describe the lessons that we have learnt from the development of this

software, and re-examine our beliefs about the nature of context and the facilities a

context-aware framework should provide. We go on to present the general concept of a

context information service and define its structure in terms of a layered model of context-

aware capabilities. Using this model we compare a number of research projects that are

exploring context-aware services, and conclude with some suggestions as to the

desirable characteristics that a good context information service will exhibit.

6.1 The Nature of Context

At the start of our work on context-awareness we had conceived of context as being a

relatively simple snapshot of a set of environmental values such as location,

temperature, time, etc., which described a particular instance of the user’s environment.

Chapter 6: Reconsidering Context and Frameworks

178

But as our work has progressed it has revealed a more rich and complex nature of

context.

6.1.1 Context and Content May Not Be So Different

In our stick-e note framework we initially made a very clear distinction between context

and content. This was understandable given our concepts of Post-It notes and tourist

guides in which an item of data was electronically attached to a particular situation.

However, in developing the data collection tools for the ecologists the difference

became much less distinct. When using the tools they were just as interested in the

context of the note (i.e. the location in which it was recorded) as they were in the

behavioural observations that they recorded. Additionally, the information they

recorded, such as the current activity of a giraffe, could be considered to be as much

context as it was content. To them the only distinction between the content and

context of a stick-e note was that the computer automatically completed the contextual

parts.

We thus adjusted our concept of a stick-e note to accommodate this change of

perception. Instead of two separate context and content parts, there is now simply a set

of fields that describe a situation.

6.1.2 Context Can be Complex

Upon first consideration a context element such as location may appear to be a

relatively simple item of data to manipulate. However, it soon becomes apparent that

there is a plethora of different location sensing systems available such as GPS [Texas-

University 1999 - #141], active badges [Want, Hopper 1992 - #145], visual identifiers

[Rekimoto and Ayatsuka 2000 - #110], etc. These all tend to use their own

measurement systems and work in different, though sometimes overlapping, domains.

For example, GPS only works outdoors and tends to use latitude and longitude

measurements, whereas active badges are more often deployed indoors (due to

infrastructure costs) and use a cell-based measurement system. What is more, some of

these individual measurement systems have different operational attributes that can

dramatically affect their correspondence with the real world, e.g. latitude and longitude

is expressed in relation to a specific datum (essentially, a mathematical representation of

Chapter 6: Reconsidering Context and Frameworks

179

the Earth’s surface) – using the wrong datum can result in inaccuracies of as much as a

kilometre. To further add to the complexity locations may be specified in a variety of

ways, such as a point, a rectangle, or a polygon, each of with may have some form of

accuracy or error boundary.

Providing comprehensive support for a context element such as location, considering

the diversity of sensors and measurement systems, is a complex task.

6.1.3 Context is Much more than Location

Given the inherent mobility of handheld computers and the varying situations of

ubiquitous computing, it is not surprising that the location context element has been

the focus of much context-aware research. Indeed, our research was initially focused on

this context element as there were a wide array of automatic detection mechanisms and

obvious uses for location information. However, there are many other types of context

element that can be automatically detected, some of which may be more important than

location, depending, of course, on the application. For example, the orientation of the

user may be just as important as location in trying to determine what they are currently

looking at, and in our continuing work on the fieldwork tools we are now exploring

contexts as diverse as time of day, weather conditions and animal footprint

measurements.

6.1.4 Context is an Attribute not an Entity

In our initial stick-e note framework we considered context elements as individual

entities that existed in the user’s environment, e.g. the location, the temperature, etc.

However, context really makes no sense on its own. It inherently describes some real or

virtual entity. For example, a location may be attributed to a place, a person, a car, a

book, etc. A location on its own has no value unless we know what entity it is locating.

In the stick-e note model where we thought of current context elements as self-

contained states existing in the environment, what we were actually doing was making

implicit assumptions about what they were attributed to. For example, the current

location context element was implicitly attributed to the user, temperature was

implicitly attributed to the local vicinity, orientation was implicitly attributed to the user,

Chapter 6: Reconsidering Context and Frameworks

180

giraffe behaviour (in the fieldwork tools) was implicitly attributed to the last giraffe

spotted, etc. Such implicit assumptions may work in simple applications but they are

not advisable. In more complex applications that consider the current context of more

entities than simply the user and the immediate vicinity, it is essential that context

elements be explicitly modelled as an attribute of a particular entity.

6.1.5 Virtual Entities can have More Complex Context

The current context of a physical object, such as a person, can be represented by a set

of otherwise unrelated fields, e.g. their location, temperature and orientation. The

context of virtual entities may be represented in the same way. For example, a virtual

billboard could be associated with a real location context element so that the

advertisement or information it presents can be displayed on a user’s handheld

computer when they walk by the location to which it is virtually attached. Unlike a real

billboard though, the virtual billboard may be easily moved to different locations. The

most interesting aspect of the virtual billboard however, and all other virtual objects, is

that they need not obey the laws of physics as real objects do. The virtual billboard can

therefore do otherwise impossible things like be in two or more places at the same

time, be visible only to certain types of people, exist only at certain temperatures, and

so on. The aforementioned attributes could be practically employed in a virtual

billboard that advertises an ice-cream parlour, where the billboards could be displayed

on any ice-cream lover’s handheld computer when walking near the store on a hot day!

Given their unique ability to defy the laws of physics, virtual entities need to express

their context in more complex terms than a simple set of fields. They require the ability

to represent their context in the form of conditional expressions of context that may

utilise Boolean operators.

6.2 The Nature of Context-Aware Applications

Given our comments on our evolving understanding of context, it is perhaps not

surprising that we found context-aware applications to be much more diverse in

structure and more time-consuming to develop than we had first anticipated.

Chapter 6: Reconsidering Context and Frameworks

181

6.2.1 There are Many Classes of Context-Aware Applications

The stick-e note framework suits applications that seek to place data in context and

automatically retrieve that data when the user enters that context. However, our work

on the context-aware fieldwork tools illustrates other types of applications, and there

are no doubt many more new and existing applications that require other forms of

context-awareness beyond what is offered by stick-e notes. This will particularly be the

case when imbuing existing applications with context-awareness because the developer

will probably prefer to add context-awareness in very specific places, in order to add

some extra ‘intelligence’ to the program, rather than completely rewriting the

application to fit the stick-e note framework. For example, a simple calendar and to-do

list program could be imbued with a context-awareness so that it knows what context

the diary and to-do entries will be carried out in. The to-do list could then offer a “do

now/here” view and the diary could have a more intelligent alarm system than, for

example, simply beeping half an hour before a meeting even when the user is currently

in a completely different city to that of the meeting.

The stick-e note framework does indeed provide useful support for a certain class of

context-aware applications, but there are no doubt other general classes of context-

aware applications and there are certainly applications that have their own esoteric uses

of context-awareness.

6.2.2 Context-Aware Applications tend to be Resource Hungry

A device or program that is aware of its context must, by definition, keep watch over its

environment. In its simplest form this may be performed by occasionally polling some

sensors that provide the current value of a particular context element. All context-aware

applications need to perform this task, so if more than one context-aware application is

simultaneously running on a device then there could be a competition for sensor

resources; there is then a danger of one of the applications locking out the others. This

is especially likely for sensors that require a continuing dialogue rather than periodically

broadcasting information.

For many applications obtaining the current context from a sensor is just the start of its

work. For example, in the stick-e note framework the current context is obtained in

order for the triggering engine to check if there are any stick-e notes that should be

Chapter 6: Reconsidering Context and Frameworks

182

triggered in those circumstances. This continual triggering process, and similar

processes in other context-aware applications, requires considerable processor

resources and could again place the application in competition with other programs

running on the device (including non-context-aware programs).

6.2.3 Context-Awareness has a High Development Cost

Writing a context-aware application from scratch is a hard process. To imbue a device

or program with a knowledge of just a single context element requires a good deal of

effort. One must develop the code to communicate with some external sensing system,

convert the obtained data into a desirable format, provide the necessary machinery for

manipulating the data, and finally, provide an interface with which the user can work

with the data. In the case of imbuing the fieldwork tools with a location-awareness, we

developed the code to communicate with a GPS receiver by listening to its broadcasts

of NMEA sentences (a data transmission format commonly used by GPS receivers),

provided functions to convert the latitude and longitude to other formats, e.g. UTM

and OSGB (these are two co-ordinate systems that we commonly use), provided the

means to calculate distances between locations, and provided a map-like visualisation of

the geo-referenced forms. In other words, a large portion of the development cost was

in producing the location-awareness capability.

This development effort does little to encourage the growth of the use of context-

awareness in applications, especially in cases where the context-awareness is incidental

to the main purpose of the application. For applications like the previously mentioned

context-aware to-do list and diary, it is unlikely that the development cost could be

justified for the relatively small benefits derived.

6.2.4 The Computing Environments are Diverse

During the relatively short time span of this work, approximately three years, we have

seen many advances in the mobile computing platforms available, each offering ever

more sophisticated computing capabilities. And, unlike desktop computing, the world

of handheld and ubiquitous devices is a very heterogeneous one, with many different

computing platforms each with their own esoteric operating systems.

Chapter 6: Reconsidering Context and Frameworks

183

Although this diversity makes for a quite exciting environment to work in, it does

present a major drawback in developing new software: we can find ourselves spending

more time rewriting the same programs for the latest platform than we can in

developing the new ideas that we wanted to explore.

6.2.5 The Greater the Context the Greater the Application

Our work has primarily been based on handheld computers that we have equipped with

sensors to detect various aspects of the immediate environment. This provides a user-

centric context-awareness in which the device shares the same contextual viewpoint as

the user, e.g. their location, the temperature there, etc. The more types of context we

support, the better a perception of our context the device has. But perception can also

be improved by incorporating the viewpoints of others, i.e. sharing contextual

information with other devices to build a much more expansive contextual model of

the world. Applications then have an enormous wealth of contextual information to

utilise, not just about the user’s context but about the context of the many other

people, devices, and objects that are sharing that environment. Obviously much more

sophisticated applications can be developed given such a dramatic increase in the

richness of context.

6.3 The Need for a Context Information Service

The issues we have addressed thus far point to a common theme: that developing

context-awareness is far from straightforward. In the current state of affairs

incorporating a context-aware capability into software could be likened, as we have

already mentioned, to developing a program’s graphical user interface by manipulating

individual bits and pixels rather than using the high-level facilities provided by a

common interface environment such as X-Windows or Microsoft Windows. One can

easily imagine that today’s user interfaces would be substantially less sophisticated

without the facilities provided by these environments. It is our belief that just as generic

interface services have enabled the growth and improvement of the graphical user

interfaces of software, so too will generic context services support the growth and

improvement of the context-aware capabilities of software. The context toolkit project

at Georgia Tech [Salber, Dey 1999 - #120] offers the same vision, though they focus on

Chapter 6: Reconsidering Context and Frameworks

184

developing the equivalent of individual GUI widgets whereas we concentrate on

developing the equivalent of the shared windowing environment in which such widgets

can be developed and made available to applications and end-users. Work in both areas

is essential and complementary.

We believe that at the core of a supporting infrastructure for context-aware computing

should be what we have termed a context information service (CIS) [Pascoe 1998 -

#98] [Pascoe, Ryan 1999 - #102]. The responsibilities of this service are to gather,

model, and provide contextual data, i.e. the general functionality that is required at the

heart of all context-aware applications. Unlike the stick-e note framework, the CIS does

not attempt to impose any application semantics: its role is in the provision of

contextual information. It is the common base on top of which more sophisticated

context-aware capabilities and applications may be built.

Most of the work on developing context information services originates from groups

that have been involved with specific applications or contexts, and who have sought to

develop a general CIS to support their efforts. This tends to result in CISs that have

biases or specialities, or that are tailored for a particular job. Each offers their own

unique contribution and some degree of generality, but we do not believe that a

sufficiently general-purpose service has yet been developed to support the full potential

range of context-aware applications. In an effort to rectify this situation the remainder

of this chapter explores the design space of context information services. We hope that

this will clarify the desirable characteristics of such services and thus help in the

construction of better services and, in turn, assist in building better and more

sophisticated context-aware applications.

With the aid of an examination of a wide range of different context-aware applications

and services, we have segmented the CIS design space into five layers that represent

common logical groupings of purpose or activities, as shown in Figure 36. The figure

also illustrates that a CIS could be distributed at the granularity of either complete

layers or sub-sets of a layer.

Chapter 6: Reconsidering Context and Frameworks

185

1. Sensor Support

2. Context Extraction Mechanisms

3. Context Data Type Support

4. Context Model

5. Client Interface

Distribution

D
is

tri
bu

tio
n

Figure 36. Layers of a Context Information Service.

We examine each CIS layer in remaining sections of this chapter. The potential

characteristics of each layer are enumerated and the pros and cons of different design

options are discussed. To aid in this discussion we have selected a diverse set of CIS

research projects (chosen to represent the current state-of-the-art of CIS research) that

we can examine to better understand the possible design options. A table of

characteristics is presented for each CIS layer so that the different approaches of the

reference projects can be easily compared. This should also be useful in providing an

overview of what aspects of CIS design have been, or are being, addressed and which

have yet to be fully explored. A brief summary of each of the reference projects is given

below before progressing to the first CIS layer. We then relate these systems (using

information taken from the cited publications) to our layers.

Chapter 6: Reconsidering Context and Frameworks

186

Application-Aware
Adaptation
(Odyssey)

This CIS developed at Carnegie Mellon
provides some extensions to the UNIX
operating system to enable application-aware
adaptation in a mobile environment.

[Satyanarayanan, Noble 1994 -
#124]

AROMA

Roskilde University are exploring how remote
awareness of an office can be supported
through a CIS that captures context from one
place, abstracts it, and sends it to another.

[Pedersen and Sokolar 1997 -
#104]

Context-Aware
Framework

Schilit’s context-aware framework was the first
attempt at developing a CIS. It supports the
modelling of various object’s context but is
primarily location based.

[Schilit, Adams 1994 - #125]

Context Toolkit

Georgia Tech have developed a broad range
of context-aware applications and are now
focusing on developing context-widgets akin to
user interface widgets in a GUI toolkit.

[Dey, Abowd 1999 - #29]

[Salber, Dey 1999 - #120]

Environment Aware
Mobile Applications

The objective of the CIS developed at Rutgers
is to support the adaptation of applications
based on information about their changing
mobile environment and available resources.

[Welling and Badrinath 1997 -
#151]

General Location
Service

Leonhardt’s CIS is focused entirely on location
contexts, developing a unified model in which
diverse location types and sensing
technologies can be accommodated.

[Leonhardt and Magee 1996 -
#80]

[Leonhardt and Magee 1998 -
#78]

Limbo

Lancaster University has been involved in
context-aware projects with a strong
networking element and has developed a
context information service based on tuples.

[Davies, Friday 1998 - #25]

[Davies, Wade 1997 - #26]

SAMoA

The Fraunhofer Institute for Computer
Graphics have been developing a CIS to
support the inherent context-switching of
people with multi-tasking jobs.

[Chavez, Ide 1998 - #20]

SitComp

Hewlett-Packard (UK) Labs’ CIS is based on
companion and location contexts and explores
how to interpret and abstract context in order
to be more useful and understandable.

[Hull, Neaves 1997 - #64]

SPIRIT

The SPIRIT work at AT&T Labs UK (formerly
ORL) focuses on providing information on
people and hardware devices within a richly
networked environment.

[Adly, Steggles 1997 - #4]

[Harter, Hopper 1999 - #58]

X.500 Location
Information Service

Philips Research Labs have developed a
location-oriented CIS that uses X.500 remote
directory access mechanisms to structure and
access contextual information.

[Maaß 1998 - #86]

Table 20. Summary of reference projects chosen to explore the CIS design space.

Chapter 6: Reconsidering Context and Frameworks

187

6.3.1 Layer 1: Sensor Support

Underlying all context-aware applications is some form of sensor, be it hardware

devices like GPS receivers and active badges, or software devices like user-logon

sensors. These sensors are the point of first contact with the outside world and are

responsible for the capture of raw context data.

 Fixed Extensible

Si
ng

le

M
ul

tip
le

O
ff-

lin
e

At
 R

un
-ti

m
e

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 21. Sensor support.

The flexibility and potential scope of a CIS is very much dependent on its underlying

infrastructure for sensor support. We offer a classification of four types to define the

flexibility of sensor support, increasing in flexibility from a fixed single sensor, to

multiple fixed sensors, to an extensible infrastructure that allows new sensors to be

added while the service is offline. The ultimate in flexibility is the ability to add sensors

at run-time without interrupting the CIS (useful for server-based CISs or any constant

and long-running CIS).

Although any system could be considered extensible from a developer’s perspective (i.e.

by writing and adding the code for a new sensor) we only consider the sensor support

Chapter 6: Reconsidering Context and Frameworks

188

truly extensible if it facilitates this at the client or user level. That is, the CIS should provide

an interface for the client or user to easily install and configure a new sensor module,

e.g. akin to installing a plug-in for a Web browser.

The X.500 location service CIS and the context-aware framework CIS base their sensor

support specifically on active badge or tagging systems, i.e. a single fixed sensor.

However, the majority of CISs have multiple fixed sensors. The fixed nature of these

sensors is more inherent in application-specific CISs like SAMoA which utilise a

specific set of sensors to achieve a specific goal. More general services, such as

SitComp or SPIRIT, have in fact taken into account extensibility but we still categorise

them as having fixed sensor support because they are extensible only at a developer

level rather than a client or user level.

Only four CISs have client-level extensibility. The Limbo CIS provides a tuple space

into which anyone can inject a tuple of context data, making it very extensible but also

lacking in any management or other support facilities for sensors. The general location

service CIS provides a management API that can be used to extend sensor support

(though only for location sensors) and the Environment Aware Mobile Applications

CIS provides an infrastructure into which new factories (equivalent to sensors) can be

added. The context toolkit CIS focuses on developing context widgets (equivalent to

highly abstracted sensors) which exist in their own right rather than necessarily being

part of a larger CIS. They are inherently extensible as new widgets can be installed

anywhere on a network, but they lack an over-arching management infrastructure.

In summary, sensor support in CISs is generally limited to a fixed set of sensors and

where extensibility is provided it is often at the cost of the lack of a comprehensive

management support infrastructure.

6.3.2 Layer 2: Context Data Extraction

The raw data from sensors often needs to be processed in some way in order to

transform it into a more useful or stable form for a CIS client. For example, the names

of places are often more useful than latitude and longitude values. We have identified

four general extraction mechanisms that may be employed within a CIS. The simplest is

to merely pass on the raw sensor data. However, abstraction mechanisms can convert this

Chapter 6: Reconsidering Context and Frameworks

189

raw data into a more meaningful form, e.g. Latitude 0o 1’ 41” Longitude 36o 54’ 10”

abstracted to the place name “Sweetwater’s Research Centre”. Often the output of

these abstraction mechanisms or sensors can form an input into another type of sensor,

so creating a mesh of interconnected sensors. We call this a sensor chaining mechanism, a

term first used to describe this technique in [Abowd, Dey 1997 - #2]. For example, the

outputs from a location sensor and a time sensor could form the inputs to another

sensor that produced a tide-level context computed from the input values.

 Mechanisms Q.O.S.

D
ire

ct
 V

al
ue

Ab
st

ra
ct

io
n

C
ha

in
in

g

By
 R

ef
er

en
ce

C
lie

nt
 D

riv
en

M
od

el
 D

riv
en

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 22. Context extraction support.

Combining abstraction and chaining mechanisms provides a sophisticated

infrastructure with which to process, transform, or fuse sensor data. These may be

resource intensive processes so a referencing mechanism is useful, whereby the context of

one object can be derived directly from that of another rather than having to be

independently computed. For example, if I am travelling on a bus then my positional

context will be the same as the bus’s, so my PDA’s CIS can simply reference the bus’s

location rather than working out my location itself.

Chapter 6: Reconsidering Context and Frameworks

190

The context extraction layer may also offer quality of service (QOS) facilities that

enable the balancing of sensor cost (e.g. processor time, power, etc.) with context

quality (e.g. accuracy, timeliness, smoothing of erratic data, etc.). The QOS may be

negotiated directly by each CIS client or, better, from a shared model of context where

the quality of service is derived from the characteristics of the objects being modelled.

For example, consider several CISs interested in the location of a person named Fred.

Instead of each CIS negotiating its own QOS for monitoring Fred’s location (i.e.

specifying how often to update his location) the type of object can help provide a

default QOS. In the case of Fred we know that he is a person and we also know the

way in which people generally change location (much different in speed and direction

from that of, say, a car). We can therefore provide a default update rate for Fred’s

location context based on the way a typical person moves around. Of course, in this

case we also have to take into account if the person is inside another object (e.g.

travelling in a car), though assuming a default mode of changing location still be useful

in many cases.

Many CISs such as the context-aware framework and SPIRIT utilise the context data

generated straight from sensors or, as is the case with Limbo, have no part in extracting

the context data at all (although it does support the propagation, and potential

conversion, of tuples from one CIS to another). Some CISs provide abstraction

mechanisms, e.g. the general location service CIS that represents location data in an

abstract logical form rather than as co-ordinates or cell identifiers. Only AROMA and

the context toolkit provide explicit support for chaining sensors together to generate

new contexts, although the general location service CIS and SitComp CIS do provide

facilities for combining or fusing sensor data of the same general type in order to

generate more robust and reliable context data.

The context-aware framework is the only CIS that seeks to provide QOS functions to

regulate the extraction of context data. The other CISs appear to extract data at a rate

predetermined by the CIS or sensor device rather than the more economical method of

extracting at a minimum rate to maintain a desired level of quality of service.

In general, CISs tend to provide data straight from sensors without much support for

the regulation of the extraction process (i.e. QOS) or for adding value to that data via

abstraction or sensor chaining.

Chapter 6: Reconsidering Context and Frameworks

191

6.3.3 Layer 3: Context Data Type Support

As with low-level sensors, the flexibility of context data type support has a direct

influence on the potential capability of the whole CIS. The context data output from

the extraction layer is stored and presented as one or more available data types. Context

may also come from clients who supply their own context data manually, i.e. they will

also require context data type support. For example, a user may decide to provide her

handheld fieldwork computer with a knowledge of which giraffe she is watching by

specifying its name using a custom-made “observing giraffe” context data type.

 Fixed Extensible

Si
ng

le

Ap
pl

ic
at

io
n

Sp
ec

ifi
c

Li
m

ite
d

Se
t

D
iv

er
se

 S
et

O
ff-

lin
e

At
 R

un
-ti

m
e

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 23. Context data type support.

We classify CIS data type support into two broad categories: fixed (where the CIS is

limited to the data types provided by the developer) and extensible (where the CIS can be

extended with new data types). The fixed category data types can be subdivided into

single type (only one data type provided), application specific (more than one data type but

for very esoteric tasks), limited set (2-3 general-purpose data types), and diverse set (many

Chapter 6: Reconsidering Context and Frameworks

192

general-purpose data types) support. We divide the extensible data type support into off-

line (where the service has to be stopped to install the new data types) and run-time

(where installation can progress without service disruption). As with sensor support we

mean extensibility at the client and user level rather than at the developer level.

It is not surprising to find that the data type support of CISs mirrors quite closely their

sensor support, as it is normally not very useful to be able to add new sensors without

also adding new context data types to support them. Exceptions are CISs in which only

certain classes of sensors can be added whose generated values can be mapped onto the

existing data types, e.g. the general location service CIS in which a new location

sensor’s values are mapped onto the existing location data types. Also, the context

toolkit CIS intends to provide a diverse and extensible array of widgets to provide

context data, but individually these widgets have fixed type support.

Although the context-aware framework CIS and X.500 have a single fixed context type,

a string type, it can be used to represent all sorts of different types of data in textual

form. Of course, this will not be as efficient as using specialist data types and will also

not offer the other advantages of using specific types, such as preventing incompatible

assignments, etc.

As with sensor support there is a general correlation in increasing extensibility with

decreasing management infrastructure. However, we believe that both management

infrastructure and extensibility are required. This is provided so some extent by the

environment-aware mobile applications CIS, which allows new factories (the equivalent

of sensors) to be added to a standard infrastructure. However, there is still no such

infrastructure for context data type support: each factory may generate whatever data

types it cares to.

6.3.4 Layer 4: Context Model

The context model of a CIS organises the individual context values obtained from

underlying layers into a coherent and uniform model to be presented to a client. We

have grouped the capabilities of such models into four categories: structure, viewpoint,

extensibility and service support.

Chapter 6: Reconsidering Context and Frameworks

193

Some CISs may be relatively structure-less and have no high-level data model at all.

They may instead simply provide an abstract interface onto the underlying sensors.

Other CISs may have very application specific or esoteric data models. More general-

purpose model support comes in the form of name-value pair structures, tuples, or a

completely object-oriented model in which context values are expressed as attributes of

an object representing a real or conceptual entity.

Many of the reference CISs provide simple context models or even no context model at

all. This is because they are essentially acting as conduits through which sensor data

flows. In CISs such as AROMA these conduits may perform quite complex conversion

or interpretation processes but are nevertheless simply providing abstractions of

underlying sensors rather than generating their own contextual model of the world.

However, the context-aware framework, SPIRIT, and X.500 location service CISs all

provide sophisticated context models in which context data is presented as attributes

that describe particular objects.

 Structure Viewpoint

N
on

e

Es
ot

er
ic

N
am

e/
Va

lu
e

Pa
irs

Tu
pl

es

O
bj

ec
t O

rie
nt

ed

Fo
cu

se
d

D
iff

us
e

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 24. Context model support (1).

Chapter 6: Reconsidering Context and Frameworks

194

A critical decision to be taken in the design of a CIS is the choice of model viewpoint.

A focused viewpoint refers to CISs that model the context of only one particular entity (be

it real or conceptual): for example, a CIS that is solely concerned with monitoring a

single patient’s physiological condition. Although suited to some specific applications

this viewpoint is extremely limiting as only context information pertaining to one

specific entity may be modelled. For example, the CIS would be able to monitor an

office-worker’s location but not the location of the surrounding office equipment. In

contrast, models with a diffuse viewpoint enable the context of many different objects to

be modelled simultaneously.

An object-oriented structure and a diffuse viewpoint make for a good combination.

The object orientation provides the generic structure necessary to enable the

construction of a diffuse viewpoint model that could contain any number and type of

objects of interest. For example, the context of a whole office environment could be

represented in a single model consisting of people, printers, and other objects of

interest, with their associated context attributes.

There is a strong correlation between object-oriented structure and diffuse viewpoints

and vice versa (i.e. simple structures and focused viewpoints) in the reference CIS

projects. The CISs with esoteric structures are designed for specific tasks (e.g. the

general location service CIS is designed explicitly to model location contexts) and fall

equally into either diffuse or focused viewpoints. For example, the application-aware

adaptation CIS extends the UNIX operating system with a number of context states

that describe a number of different resources (i.e. providing a diffuse view of different

resources) whereas the SAMoA CIS is concerned with the task status of a single

individual (i.e. providing a focused view of a single person). The context toolkit CIS is

quite unusual in that its context widgets tend to provide a model from the perspective

of the sensors rather than the objects being sensed. That is, the model tends to be of a

“what can I see here” nature rather than one that tries to construct a uniform context

model of known or detected objects. Its model support lies midway between a simple

sensor conduit and a comprehensive context model.

 An extensible model is essential for a general-purpose CIS as it is obviously not

possible to provide a model that includes every conceivable object of the real world or

imagination. The clients should, therefore, be able to easily add their own objects of

Chapter 6: Reconsidering Context and Frameworks

195

interest to the context model as and when required. As with extensibility in other layers

of the CIS we distinguish between an off-line extensibility (where the service has to be

temporarily halted to add the new support) and run-time extensibility (in which there is

no service disruption).

Many of the reference CISs provide a static context model (if they provide a context

model at all) that cannot be changed at the client or user level. It may be possible to add

new instances of structures or objects to such models, but not to add new types of

structure or object. For example, a static-model CIS that provided a person object type

would be able to add new instances of people but would not be able to add a new type

of object to represent, say, a giraffe. This limits such CISs to specific applications or the

level of generality that the original designer envisioned.

Most of the CISs that can be extended can be augmented as and when necessary during

their run-time. For example, a new object that models the location and state of printers

could be added to the context-aware framework CIS at any time. However, all the CISs

that provide such run-time extensibility do so by providing a general structure that can

describe any type object, e.g. a set of name value pairs in the X.500 directory service

CIS or a tuple with an object type attribute in the Limbo CIS. The X.500 directory

service CIS also has the disadvantage that the clients must be aware of the directory

organisation in order to use it.

None of the reference CISs provides a more sophisticated object model that can

support extensible types of object or structure. However, such a model would indeed

be useful in the management, organisation and validation of the context model. For

example, a person object may have its location context managed in a different way from

that of a vehicle due to the different speeds and ways they change, i.e. different classes

of object may have different default quality of service thresholds. Knowing how the

context a particular object type changes could also be used to validate sensor readings,

e.g. a person would rarely accelerate from 0 to 60 kph in ten seconds when walking

from office to office. It could also help clients to inquire about certain classes of object,

e.g. people and printers.

The final grouping of context model characteristics is service support. This includes any

value-added services provided to work with the CIS model other than simple context

Chapter 6: Reconsidering Context and Frameworks

196

accessor services. The general services we have identified include relationship modelling

(e.g. establishing a near-to relationship between objects), triggering by context (e.g.

notification when a person approaches the Cathedral), manipulators (e.g. methods for

calculating distances between two locations), and viewers to visualise the context data

(e.g. a town map display onto which the model’s objects are superimposed).

There are few services present in the reference CIS projects other than viewers to

display location data (as in the context-aware framework CIS and X.500 CIS) and some

triggering mechanisms, which could alternatively be viewed as more complex forms of

an event driven interface (see next section). Services tend to be either very basic (e.g.

the relationship service in the X.500 CIS only allows tags to be associated with objects)

or application specific (e.g. the manipulators in SAMoA are designed specifically for

aiding task organisation). AROMA lies somewhere between the two extremes as it

supports a diversity of context types but with the specific aim of providing a viewing

service that displays context information in a peripheral fashion.

 Extensible Service Support

O
ff-

lin
e

At
 R

un
-ti

m
e

R
el

at
io

ns
hi

ps

Tr
ig

ge
rin

g

M
an

ip
ul

at
or

s

Vi
ew

er
s

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 25. Context model support (2).

Chapter 6: Reconsidering Context and Frameworks

197

We believe that services are an optional part of the context model as the main role of

the CIS is as an information provider. Services that utilise or manipulate this

information can be constructed as additional layers of a context-aware architecture.

Indeed, it is often preferable to do this in order to keep the underlying CIS as general-

purpose as possible. The general location service does this by separating its ActiveMap

location viewer from the underlying CIS. We are taking this service-separation

approach in our own research by providing a triggering engine that will sit on top of

our context information service. We envision context services existing in multiple layers

of a context-aware architecture with a CIS at its base.

6.3.5 Layer 5: Client Interface

The top layer of the CIS mediates the interaction between CIS and clients, forming the

access-medium to all the context information contained within the CIS. Therefore it is

ultimately the design of this layer that is critical to the success of the CIS as a whole.

We have grouped the design characteristics of this layer into communication mechanisms

(i.e. the method of dialogue between client and CIS) and channels (i.e. the type of

connecting ‘pipe’ through which the dialogue proceeds).

We have identified three mechanisms that the CIS interface may use as a means to

communicate with its clients. The simplest mechanisms are polling and streaming. In

polling the client can only receive context information by explicitly requesting the value

of a specific context state. With a streaming mechanism the client continually receives a

stream of data containing the most current contextual information. In such a scheme

the client may be able to specify which contextual states are of interest and the rate at

which the stream is sent. A more sophisticated means of communication is an event-

driven mechanism that, in its simplest form, will update the client when a change in a

context state occurs. More sophisticated forms of this mechanism will allow clients to

specify what states they are interested in and to define the value boundaries under

which an event is generated, e.g. let me know when I have walked another 50 metres.

The latter case shares much in common with triggering and in our work we are

considering combining the two as a separate layer outside of the core CIS.

Note that no single communication mechanism is preferable to the rest. One

application may require a polling mechanism whereas another may be more suited to an

Chapter 6: Reconsidering Context and Frameworks

198

event-driven mechanism, i.e. the best mechanism is determined by the nature of the

client. For example, a program that printed to the nearest printer would only need

information on the context of printers when the user wanted to print (i.e. a polling

interface), a speedometer program would require a continuous feed of context data (i.e.

a streaming interface), and a program monitoring people in a meeting would be better

served by events generated as people enter or exit the meeting room (i.e. an event

driven interface). Therefore, a CIS should try to support as many of the communication

mechanisms as possible.

Whereas the communication mechanism defines the type of dialogue between CIS and

client, the communication channel defines the type of connection through which the

dialogue proceeds. We have identified three types of channel. A broadcast channel

provides a kind of ‘information bus’ onto which all clients are connected; when a client

has been connected it is then able to listen to all the context information that is

transmitted on this shared single channel. At the other extreme separate client channels

may be used to allow the CIS to communicate with each client individually. The best

solution is a client group channel that is a flexible combination of both of the

aforementioned channel types. With client group channels the CIS can assign one or

more clients to one or more client group channels, facilitating the effective

rationalisation of context information transmission. For example, instead of having

separate channels to each client interested in the location of a person named Fred,

many clients could be assigned to a single ‘Fred channel’. Then instead of

communicating Fred’s location several times on a number of separate channels the CIS

need only do this once on the single client group channel.

The final characteristic of the client interface is whether it provides any low-level hooks.

These are useful to developers who are building context infrastructure on top of the

CIS, e.g. building a triggering service. They provide access to critical parts of the CIS in

a faster and more efficient fashion than may be possible if using the client interface.

The majority of the reference CISs that are intended as general CISs provide both

polling and event driven interfaces, allowing them to cover a diverse range of

applications. The application-aware adaptation CIS and the environment-aware mobile

applications CIS only provide an event driven interface as they are designed as

extensions of existing event mechanisms of operating systems. Although AROMA is

Chapter 6: Reconsidering Context and Frameworks

199

the only CIS to explicitly support streaming (its primary role is providing real-time

views of remote contexts), event driven interfaces can simulate a streaming interface by

generating suitably fine-grained events.

 Mechanisms Channels

Po
llin

g

St
re

am
in

g

Ev
en

t D
riv

en

Br
oa

dc
as

t

C
lie

nt

C
lie

nt
 G

ro
up

Lo
w

-le
ve

l H
oo

ks

Application Aware
Adaptation

AROMA
Context-Aware

Framework

Context Toolkit
Environment Aware
Mobile Applications

General Location
Service

Limbo
SAMoA

SitComp
SPIRIT

X.500 Location
Information Service

Table 26. Client interface characteristics.

Nearly all the CISs have dedicated channels to each client, with only two CISs allowing

the efficient grouping of clients on a shared channel. The environment-aware mobile

applications CIS provides a limited predefined grouping based on classes of events, e.g.

a channel dedicated to events related to network connectivity. The context-aware

framework provides the most flexible and dynamic channel allocation by dynamically

grouping clients on channels that relate to a common interest. Note that AROMA has

no channels as it doesn’t have clients as such but rather internal viewer services.

Although no low-level hook support is indicated for any CIS, some of the CISs may

actually support them - such information isn’t readily available from the literature.

Chapter 6: Reconsidering Context and Frameworks

200

6.3.6 Distribution

Distribution does not feature as a single layer in our CIS model because, as is the case

with many systems, there are any number of areas within the CIS that could be

potentially distributed. Indeed, the distribution could occur within any of the layers or

even by distributing the layers themselves. However, three areas of particular

importance are the distribution of:

 Sensors, e.g. a remote weather sensor.

 Context model, e.g. transparently combining the context model of myself, held on my

handheld PDA, with the context model of my house, held on my home computer.

 Processing, e.g. different computers responsible for the updating of different parts of

the context model or for the provision of different services.

CIS designs have approached distribution in different ways ranging from it being an

essential characteristic of the CIS to not being supported at all. This has a direct impact

on the type of computer systems that the CIS can run on because if distribution is

essential to the operation of a CIS then a permanent network connection must be

available (ideally at all times, although some permanent distributions may be able to

sustain a limited period of disconnection). For highly mobile devices such as PDAs, in

which a CIS could be most useful, the luxury of a permanent network connection is

often just not possible let alone desirable. So permanently distributed CISs are generally

limited to locales that have a high-level of readily available infrastructure to support

them. This is the case with the SPIRIT project, which provides a permanently

distributed CIS in a highly networked office environment.

In between these two extremes of permanent and no distribution lies opportunistic

distribution. This is the most flexible method of distribution, where the CIS can

operate with no network connection at all but can also utilise distribution if the

resources become available. For example, the opportunistic distributed CIS could utilise

a weather monitor unit that it discovers nearby as a new sensor, or it could expand its

contextual model with the positions and times of some buses discovered from a CIS at

a bus stop.

Chapter 6: Reconsidering Context and Frameworks

201

Se
ns

or
s

C
on

te
xt

 M
od

el

Pr
oc

es
si

ng

Application Aware
Adaptation - - -

AROMA O - P

Context-Aware
Framework P O P

Context Toolkit P - -

Environment Aware
Mobile Applications - - -

General Location
Service O O O

Limbo - O -

SAMoA - - -

SitComp P - -

SPIRIT P P P

X.500 Location
Information Service P P -

Table 27. Distribution characteristics (P = permanent distribution, O = opportunistic distribution, ‘-’ = no
distribution supported).

The reference projects present the full range of distribution options ranging from

completely stand-alone non-distributed systems such as SAMoA to the permanent and

complete distribution of CISs such as SPIRIT. Distribution of sensors is the most

common form of distribution, with CISs such as the context-aware framework and

SitComp using distributed tagging technologies, and the AROMA CIS being able to

incorporate many types of networked device (e.g. video cameras and microphones) as

sensors. Distribution of the context model and processing is less common. The Limbo

CIS, the general location service CIS, and the context-aware framework CIS, all allow

their context models to be fragmented and distributed across a network, whereas the

context models of the SPIRIT CIS and the X.500 directory service CIS actually insist

on such a distribution. The distribution of processing is possible with the general

location service CIS and is inherent in the remaining CISs that support it, e.g. the

SPIRIT CIS whose processing utilises distributed components such as an object-

oriented database and various CORBA objects.

Chapter 6: Reconsidering Context and Frameworks

202

 We believe that CISs supporting distribution in an opportunistic fashion are likely to

form the best general-purpose services as they work equally well in connected and

unconnected environments, exploiting the currently available resources to provide as

good a service as possible.

6.4 Summary

In this chapter we have presented our views on the nature of context and context-

aware applications, views that have evolved with experience of developing context-

aware software. We have found context to be much subtler and complex than we had

originally proposed. Differences between context and content are blurred, working with

context elements may involve sophisticated manipulations, and each element inherently

describes some real world or virtual entity.

This more sophisticated view of context-awareness calls for some fundamental context

services in order to support its implementation. The need is for low-level common

services that provide support beneath the level of any application-specific semantics.

We have proposed that services fit into a five-layer model that addresses sensor

support, context data extraction mechanisms, context data type support, some form of

context model, and the type of client interface provided to the services offered. In

order to explore the design space of each service layer we compared a number of

research projects that have attempted to address the issue of context service provision.

In our survey of context service projects we found none that completely succeeded.

However, based on the suggestions we made for each service layer, in the next chapter

we propose our own model implementation of a prototype CIS that does attempt meet

all of our needs. Then in the final chapter of the thesis we explore how we might

distribute such a context information service.

203

CChhaapptteerr 77::

AA PPrroottoottyyppee CCIISS DDeessiiggnn

In this chapter we present a prototype CIS design that attempts to address the issues

and guidelines that have been raised in the previous chapter. The general aim of the CIS

is to offer the basic context provision service on top of which more complex context

services (such as stick-e notes) and applications may be constructed.

The CIS is a computer program’s first point of contact with the external world. As such

its duty is to discover information about the current context and present it to clients in

a useful and understandable form, providing a portal onto the state of the real and

imaginary world around us. The CIS must be simple for clients to use (our goal after all

is to encourage the use of context-awareness through these services) and at the same

time be flexible enough to support a plethora of different types of context element.

The design of the components and interfaces of the CIS we describe in this chapter is

complete, but a full implementation of the service has yet to be realised (due to time

constraints, not feasibility). We have succeeded in building a prototype of all the

modelling components but have yet to implement the service components (the two

types of components are described in the following paragraphs).

7.1 CIS Component Overview

Our CIS design is comprised of a number of modular components that a client may

assemble and connect together in various ways. These components can be divided into

two categories: (i) the modelling components that can be used to build a contextual model

of the world, and (ii) service components through which this contextual model may be

constructed, manipulated, and viewed. We start by describing the modelling

components.

Chapter 7: A Prototype CIS Design

204

The context modelling components enable a client to build an object-oriented model of

the subset of the real or imaginary world that is of interest to them. It also allows a

client to link the model to a sensor system so that it may be constantly updated.

Consider, for example, a context-aware shopping list program running on a palmtop

computer. Its task is to remind the user of the things she needs to buy in each shop that

she walks by. Such a program is interested in modelling the subset of the real world

comprised of the location of shops and its end-user, and perhaps also the current time

and the opening times of the shops. Using the modelling components of the CIS a

model consisting of a number of shop objects and a user may be quickly constructed

and linked to a location sensing system in order to keep the model continually updated.

The CIS provides five types of modelling components, as illustrated in Figure 37. To

the far left of the diagram is an artefact, which is a generic structure that can be used to

represent a real or imaginary physical object, such as a person. The artefact may consist

of a number of state components. Each state of an artefact represents the value of a

particular context element, such as the location of a person.

Artefact

State 1

State n

..

Monitor

Sensor

Sensor

Synthesizer

SensorMonitor

Figure 37. Modelling components of the CIS.

To the far right of the diagram are a number of sensor components, which interface

with a physical or software-based sensing system and provide current context element

values obtained from a sensor. There is a one-to-one mapping between a sensor

component and a physical sensor system, but the current values of one or more sensing

systems may be combined with a synthesizer component in order to generate a different

type of contextual element. For example, combining a location context element with a

time context element in order to provide a tide-level context element. A synthesizer

Chapter 7: A Prototype CIS Design

205

could also use one or more sensors generating the same type of context element in

order to produce a ‘best’ value for that context element.

The outputs of sensor and synthesizer components are connected to a specific

artefact’s state via a monitor component. The role of the monitor component is to

optimise the efficiency with which data flows from a sensor to a state. It aims to

minimise the amount of data flow and processing whilst maintaining a specified quality

of service threshold for a specific artefact’s state. Each state has its own monitor (if it is

linked to a sensor), enabling the quality of service for context element updates to be

precisely specified, and hence allowing the CIS to make best use of the limited

resources.

World World

Archive

C
at

al
og

Sensor
Array

Figure 38. Service components of the CIS.

The modelling components provide the building blocks with which to construct a

context model. However, to actually construct, maintain, and access the model, four

service components are provided, as shown in the Figure 38.

Chapter 7: A Prototype CIS Design

206

The catalog service maintains a repository of reusable modelling components. Once an

artefact, state, monitor, synthesizer, or sensor component has been created (e.g. a GPS

receiver sensor) it is entered into the catalog from where any CIS client may use it in

constructing a context model. The aim is that code written to interface with sensor

devices, represent context elements, etc., is only written once and then used over and

over again.

A client constructs a contextual model by taking components from the catalog service

and adding them to the world service, which is responsible for maintaining a common

context model for all clients. Within this common modelling area the clients may

develop their own models or reuse existing model components inserted by other

clients. For example, a new client may choose to reuse an existing artefact representing

the user and her location. This is a kind of run-time reusability made possible by the

CIS.

Sensor components drawn from the catalog service may be installed in the sensor array,

which acts as a shared access medium of sensors. Rather than clients hogging a

dedicated link to a sensor, and so preventing any other software from using that sensor,

the sensor array enables the sharing of sensors among any number of clients. A client

may utilise context element data directly from the sensor array, but more commonly a

sensor will be linked to an artefact’s state in the world service. The world service is the

modelling space in which a client may create a representation of the parts of the world

that it is interested in by inserting artefacts and states from the catalog service. The

modelling space is a common area in which clients may reuse the artefacts that other

clients have inserted. Some artefact’s states may be updated directly by a client, but they

may also be updated automatically by adding a monitor component that serves as an

intelligent bridge between state and sensor. Clients may use generic monitors or

develop their own custom-made monitors that use the sensors more efficiently.

The remaining service is the world archive. This allows clients to capture snapshots of the

world service model, or a subset of it. These “snapshots in time” may be used for

historic archival purposes or to save a segment of the world model so that it can be

“reanimated” at a later data (e.g. like saving a document and then later opening it again).

Chapter 7: A Prototype CIS Design

207

7.2 CIS Component Design

Before we discuss the design of individual components we should establish the

environment in which the CIS will be present. The CIS is designed as a device centric

service. That is, a CIS should be present on every device that wishes to support

context-aware software. It is not a server-based system in which client devices tap into

a central context information repository. Rather each device maintains its own suite of

CIS services from a first-person perspective. It is able to update its world service’s

context model through manual client updates or sensors that are attached or built into

the device.

We have two main reasons for choosing this first-person device-centric perspective for

our CIS. Firstly, although we value the concept of distributed context services, in many

cases context-aware software is to be found on palmtop computer devices with no

network connectivity. We therefore need a service that is capable of running in this

disconnected environment. Secondly, we have found that context information from the

immediate environment of a device is generally of the most value to the context-aware

software that it supports, e.g. the location of the user. This is quite clear when we

consider that context-aware software tends to be focused on adapting and reacting to

the physical environment of the user, i.e. the immediate environment of the device.

We envision every context-aware device having its own view on the world through its

own CIS. However, just as people share information about their environment it can

also be useful for these devices to share information about their perceptions of the

world. For example, if the device has no location sensor then it would be useful if it

could connect to a neighbouring device’s CIS and access its location information. We

describe a method of doing just that in the next chapter. But first we discuss in more

detail the design of CIS components in a stand-alone environment.

7.2.1 Sensors

As is the case for all of the various modelling components, sensors can be realised as

software components, e.g. Java objects. The CIS has been designed from an open

architecture perspective where we would like to encourage developers to create their

own components. Considering the plethora of sensor systems on the market this would

Chapter 7: A Prototype CIS Design

208

seem the only feasible approach in providing a CIS that aims to offer extensive context

element support. Although we typically talk about CIS sensor objects mapping to

physical sensor devices they can just as validly gather context data directly from other

software or data sources (e.g. looking at the user’s electronic diary to find out when he

is in a meeting). The function of the object is still that of a sensor irrespective of the

source of the resulting state and the method of its retrieval.

To allow third party developers to create and add their own sensors to a CIS we need

to establish a common interface through which other CIS components and clients may

interact with the sensor. The following functions define this interface:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc.

 Configurator GetConfigurator(): returns a standard configuration object

through which the sensor parameters may be queried and adjusted in a sensor-

independent manner.

 Status GetStatus(): returns the current status of the sensor (e.g. error

conditions).

 DateTime GetLastUpdated(): returns the date/time the sensor was last

updated.

 Boolean IsOnline(): checks if the sensor is online.

 Boolean SetOnline(): sets the sensor to be online and operational.

 Boolean SetOffline(): sets the sensor offline (i.e. the software module

suspends its interaction with the physical sensor).

 Descriptor[] GetReturnStates(): returns a list of Descriptor objects

describing the CIS states (i.e. context elements) that the sensor is able to supply.

 State GetState(Descriptor): returns the current value of the specified CIS

state.

Chapter 7: A Prototype CIS Design

209

This common interface enables sensors to be operated and used through a generic

mechanism, and hence new sensors can be transparently added to the CIS.

Nevertheless there will almost certainly be some sensor specific configuration necessary

when it is instantiated in the sensor array: if for example, specifying the serial port that

the device is connected to, the baud rate it is operating at, etc. For this initial

configuration process the CIS may require the user to specify the values of some

parameters. However, with the information contained in the sensor’s configurator

object the CIS can dynamically construct a user interface and supply some sensible

default values. Once the sensor is installed in the sensor array it may be discovered,

manipulated, and queried by other CIS components and clients. Note that the CIS does

not prevent the sensor offering its own supplementary proprietary interface in addition

to the standard CIS interface.

7.2.2 Synthesizers

Synthesizers output a state that is a function of one of more state inputs from other

sensors and/or synthesizers. Their function is to convert, abstract, combine, or

otherwise process the input data to generate a new state. The internals of the

synthesizer object therefore focus on processing of state, unlike the sensor objects,

which focus on retrieving state from an external source. However, at an interface level

synthesizers are the same as sensors bar the additional requirement of one or more state

input streams. The interface to a synthesizer is therefore a superset of a sensor. The

additional functions are listed here:

 SourceName[] GetSourceNames(): returns a list of names/identifiers for the

sensor sources that it requires.

 Descriptor GetSourceType(source_name): returns a descriptor object of the

state required for the specified source.

 SetSource(source_name, SensorID): specifies one of the source sensors.

 SetSource(source_name, ArtefactID, state_name): specifies an artefact’s

state to be used as a source.

Chapter 7: A Prototype CIS Design

210

 SetUpdateMode(mode): defines the strategy for generating the synthesizer’s

output state. It may be evaluated on request or continually updated at pre-specified

intervals.

 UpdateMode GetUpdateMode(): returns the current update mode.

 SetUpdateInterval(time): specifies the update frequency for the timer-based

update mode.

 Time GetUpdateInterval(): returns the current update interval.

 Update():explicitly requests the synthesizer to generate a new state value.

Note that an artefact state may also be specified as an input source for a synthesizer.

This is useful for artefact-states where no sensor is connected and the value is being

updated manually by the user or client program.

7.2.3 States

A state component represents a particular context element value. There may be more

complex peer interactions between state components than for sensors or synthesizers,

such as checking if one state is larger than another. However, this depends on the type

of context element. For example, checking if one temperature is higher than another

may be useful whereas checking if the mood of the user is larger than another is

nonsensical. An additional complexity is the need to support ranges and areas of state

values. To cope with these issues we have defined a class hierarchy of different general

types of state. When creating a new state object the developer will pick which type of

state is the most appropriate for her context element. In most cases the choice should

be intuitive.

Figure 39 only shows the state-unit branch of the hierarchy of state classes (shaded

boxes indicate instanciable classes). State unit classes represent a single context element

value, whereas the state containers handle ranges and areas of values. We do not

consider this tree as complete; the key root classes may need to be expanded upon as

context elements are discovered that do not fit with the existing structure. However, we

Chapter 7: A Prototype CIS Design

211

believe that this is a good starting point that will accommodate a large number of

context elements.

State

State
Unit

State
Container

Enum
State

Constrained
Static V. S.

Value
Set

Constrained
Dynamic V. S.

1D
State

2D
State

3D
State

Figure 39. The StateUnit branch of the State class hierarchy.

The State class is the root of both unit and container types of state and has the

following interface:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc.

 Configurator GetConfigurator(): returns a standard configuration object

through which the state’s parameters may be queried and adjusted in a state-

independent manner. A parameter, for example, may be the datum being used in a

latitude and longitude type.

 String ToString(): returns a string representation of the current state value.

 Boolean Equals(state): checks if the supplied state is equal to this one.

 State Duplicate(): returns a duplicate copy, or clone, of the state.

Chapter 7: A Prototype CIS Design

212

The purpose of the next class in the hierarchy, the StateUnit class, is purely for

maintaining a clear class structure, it adds nothing to the functional interface of the

State class.

At the next hierarchy level we classify state units into four possible types: enumerated

values (e.g. color), one-dimensional values (e.g. temperature), two-dimensional values

(e.g. x,y location), and three-dimensional values (e.g. location with altitude). We have

found that most states we have wanted to model will fit into this classification scheme.

However, if a state should not adequately fit into any of these categories then the

developer can simply derive their state from the generic StateUnit class. However, the

state would not have the expanded interfaces of the lower classes, as described below:

1D State: contains a single value that can be compared to other values.

 Boolean GreaterThan(1D_State): checks if this state value is greater than the

supplied one.

 Boolean GreaterThanOrEqual(1D_State): checks if this state value is greater

or equal to the supplied one.

 Boolean LessThan(1D_State): checks if this state value is less than the supplied

one.

 Boolean LessThanOrEqual(1D_State): checks if this state value is less than or

equal to the supplied one.

 Translate(1D_State): translates the current state value by the specified amount.

2D State: contains two 1D States for the x and y dimensions.

 SetX(1D_State): sets the x state.

 SetY(1D_State): sets the y state.

 1D_State GetX(): gets the x state.

 1D_State GetY(): gets the y state.

Chapter 7: A Prototype CIS Design

213

 Translate(1D_State, 1D_State): translates the current x and y states by the

specified amounts.

Comparison of two-dimensional states is done by extracting and comparing their one-

dimensional state values. It is often more useful to compare the individual one-

dimensional states than the two-dimensional state as a whole. For example, it is useful

to see if a location is west of another location or to see if it is north of another location,

but probably not to see if one two-dimensional co-ordinate as a whole is greater or less

than another one – the meaning is ambiguous.

3D State: contains three 1D states for x, y, and z dimensions.

 SetX(1D_State): sets the x state.

 SetY(1D_State): sets the y state.

 SetZ(1D_State): sets the z state.

 1D_State GetX(): sets the x state.

 1D_State GetY(1D_State): gets the y state.

 1D_State GetZ(1D_State): gets the z state.

 Translate(1D_State, 1D_State, 1D_State): translates the current x, y and z

states by the specified amount.

As with two-dimensional states the values are compared by extracting and comparing

the one-dimensional states.

Enumerated State: contains a string-based value that can represent non-dimensional

abstract states such as giraffe behaviour (e.g. feeding, running, defecating, ruminating).

Any string based value can be set with the following interface:

 Set(String): sets the value to the given string.

 String Get(): returns the current string value of the state.

Chapter 7: A Prototype CIS Design

214

Value Set Enumerated State: contains the same string values as the Enum State but

creates a set of usable values by observing the data entered with the set() function.

The two derived classes: Constrained Static Value Set and Constrained Dynamic Value

Set, provide exactly the same interface but with different semantics. The Constrained

Static Value Set only allows the values predefined in the value set to be entered with the

set() function. The Value Set values are set at start-up and are then immutable. The

Constrained Dynamic Value Set offers the same functionality but allows explicit

modification of the value set during runtime. The common interface for all three sets is

shown here:

 AddToValueSet(String): adds the specified string to the value set.

 RemoveFromValueSet(String): removes the specified string from the value set.

 Boolean IsInValueSet(String): checks if the specified value is contained

within the value set.

 String[] GetValues(): returns an array of all the values.

Using the enumerated states a client can define context elements based on string values,

and choose from a number of ways to enforce (or not enforce) the set of possible

values.

State

State
Container

State
Unit

Enum State
Container

1D State
Container

2D State
Container

3D State
Container

Range
Container

Rectangle
Container

State
Converter

Figure 40. The StateContainer branch of the State class hierarchy.

Chapter 7: A Prototype CIS Design

215

This concludes the support for state units. Figure 40 illustrates the right-hand branch of

the State class structure that offers the container support.

As previously mentioned, container classes allow the representation of ranges, areas, or

volumes of state rather than the singular values of the state unit classes. However,

containers are defined by a number of state units (e.g. a range container is defined by

two 1D state unite objects) and will often be used in conjunction with them (e.g.

checking if a point lies within a range).

Similarly to the StateUnit class, the StateContainer is an abstract class that simply

defines the general interface for state containers:

 Boolean Contains(StateUnit): checks if the specified state unit lies within the

container.

 Boolean Contains(StateContainer): checks if the specified state container

lies within the container.

 Boolean Overlaps(StateContainer): checks if there is an overlap of values

between this container and the supplied one.

Enumerated State Container: defines a container as a number of enumerated values,

i.e. a container of enumerated states is a set.

 Clear(): empties the container of all enum states.

 Add(EnumState): adds enumerated state unit to the container.

 Remove(EnumState): removes the specified enumerated state unit from the

container.

 Integer Size(): returns the size of the container, i.e. the number of state units.

 State Get(number): returns the specified state unit.

1D, 2D, and 3D State Containers: these are little more than place-holders that

maintain the clarity of the class structure. They add no additional functions to the

StateContainer interface.

Chapter 7: A Prototype CIS Design

216

Range Container: this is one type of one-dimensional container. It defines a value

range in terms of a two one-dimensional states.

 SetStart(1D_State): sets the one-dimensional value that defines the start of the

range.

 1D_State GetStart(): returns the start of the range.

 SetEnd(1D_State): sets the one-dimensional value that defines the end of the

range.

 1D_State GetEnd(): returns the end of the range.

Rectangle Container: this is one type of two-dimensional container. It defines a

rectangular value area with two two-dimensional states.

 SetBottomLeft(2D_State): sets the two-dimensional value that defines the

bottom-left corner of the value area.

 2D_State GetBottomLeft(): returns the bottom-left value.

 SetTopRight(2D_State): sets the two-dimensional value that defines the top-

right corner of the value area.

 2D_State GetTopRight(): returns the top-right value.

This concludes the basic set of classes from which states can be defined. In the two

class diagrams the shaded boxes indicate the classes that may be instantiated with no

further development effort (namely the enumerated states, the enumerated state

container, the range container, and the rectangle container). In an implementation of

this CIS it is likely that a number of other common states would also be added for

convenience, e.g. location, time, speed, temperature, etc. Certainly, there are many more

types of state container that will be required, e.g. a polygon representation of a 2D

container. However, third party developers may freely extend the state hierarchy

including, of course, more application-specific state support.

We wish to encourage third parties to develop their own state components but we

would also like to promote interoperability between different components. In order to

Chapter 7: A Prototype CIS Design

217

do this we introduce the StateConverter component that has the simple remit of

converting one state to another. The abstract interface for the state converter

component is given below:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc.

 DescriptorList GetInputStates(): returns a list of descriptors for the states

that it can convert from. Note that conversions are directional, i.e. support for the

conversion from one state to another does not guarantee that the reverse

translation holds true.

 DescriptorList GetOutputStates(): returns a list of descriptors for the states

that it can convert to.

 Boolean CanConvert(Descriptor Input, Descriptor Output): enables a

client to check if a conversion between the two states is possible.

 State GetConversionErrorMargin(Descriptor Input, Descriptor
Output): returns the error margin for the conversion process.

 State Convert(State input, Descriptor OutputType): accepts the input

state and returns the state value converted to the state described by OutputType.

There are no state converters supplied with the CIS but as third parties create new

types of state they may also develop converters to ensure compatibility with existing

components. The converters will be used either directly by clients, or indirectly by

monitors that may automatically select one from the catalog in order to convert a

sensor’s output to a form compatible with an artefact state.

7.2.4 Artefacts

An artefact is of a slightly different nature to the other components that we have

discussed thus far, in terms of the way in which the CIS can be extended. New types of

state, synthesizer, or sensor components are created through writing new program code

for objects that inherit the interface and functionality from one of the CIS base classes.

Chapter 7: A Prototype CIS Design

218

However, the single artefact class of the CIS is used to represent any type of artefact:

person, computer, giraffe, etc.

An artefact component simply consists of a name and a set of states that describe a

specific real or imaginary object, i.e. the artefact is not just a random aggregation of

states, rather they are all properties of the same object. If a CIS client would like to

create, for instance, a representation of a user and their location, then it would simply

instantiate a new artefact, name it appropriately and add a location state. To further

minimise the work of third parties to extend the CIS, artefact instances may be added

to the CIS catalog as artefact templates from which other artefacts may be created. For

example, a developer may create an artefact presenting a kongoni and add that to the

catalog as a template so that all that is required to create a kongoni in the future is to

pick the artefact template from the catalog.

We would like to offer the same simplicity in creating and adding new types of sensors,

synthesizers, and states. Unfortunately this is not possible as new types of these

components require additional processing code not, as is the case with artefacts, just

new data elements.

The artefact component is utilised through the following interface:

 Descriptor GetDescriptor(): in addition to storing the version information,

author, etc., that all components store in their descriptors, the artefact descriptor

also specifies the template name used to construct this artefact (if any) and whether

this artefact itself is to be regarded as a template.

 String ToString(): returns a string representation of the artefact, i.e. its name

and state values.

 Boolean Equals(Artefact): checks if the supplied artefact is equal, state by

state, to this one.

 Artefact Duplicate(): returns a duplicate copy of the artefact.

 String GetName(): returns the name of the artefact.

 SetName(String): sets the name of the artefact to the specified string.

Chapter 7: A Prototype CIS Design

219

 String GetTemplateName(): returns the name of the template used to construct

this artefact (if one was used and this is not a template itself).

 String[] GetStateNames(): returns a list of names for the states held within

the artefact.

 State GetState(String state_name): used to access a named state.

 SetState(String state_name, State): used to update the value of a named

state.

 AddState(String state_name, State): adds the state to the artefact under

the specified name.

 RemoveState(String state_name): removes the state of the specified name

from the artefact.

 AddMonitorWatcher(Monitor, String state_name): allows a monitor

component to watch for accesses to a particular state (see next section on monitors

for more information).

 RemoveMonitorWatcher(Monitor, String state_name): allows a monitor’s

interest in watching a particular state to be removed. If no state is specified then all

interests for that monitor are removed.

If a template was used to construct an artefact then the artefact remembers this name

even if the states it contains are changed. This information can later be used to hone

artefact searches in the world service, i.e. searching by name and type rather than just

name. Note that the creation of artefacts from templates, and the creation of templates

themselves, is handled by the catalog service.

Currently templates only exist as entities unto themselves but in future work we would

like to investigate the possibility of providing a hierarchy mechanism in which families

of templates can be created, similar in principle to inheritance used in object oriented

programming languages.

Chapter 7: A Prototype CIS Design

220

7.2.5 Monitors

Monitors connect sensors to artefact states and regulate, and attempt to optimise, the

flow of data between the two. They are more similar in construction to sensors than

artefacts, as new monitor components are created by programming new classes.

However, developing new monitors is not always necessary as they serve only to

improve CIS performance (by optimising sensor-to-state data flow) rather than to add

new functionality. Third party developers may use one of the generic monitors shown

in the class diagram below.

Monitor

Timer
Monitor

Just In Time
Monitor

Figure 41. Monitor component class hierarchy.

The Timer Monitor performs an update of the artefact-state it is connected to at

specified time intervals, whereas the Just In Time Monitor updates the artefact-state

whenever the state value is accessed from the artefact. The interface to the generic

monitor base class is given below:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc.

 SetArtefactState(ArtefactID, String state_name): connects the

monitor to the specified artefact’s state. (Can also be used to set the artefact-state to

none).

 SetSensor(Sensor): connects the monitor to the specified sensor. (Can also be

used to set the sensor to none).

 SetArtefactStateAsSource(ArtefactID, String state_name): allows the

source to be an artefact state. (Can also be used to set the artefact-state to none).

 Update(): explicitly requests that the monitor updates the artefact’s state.

Chapter 7: A Prototype CIS Design

221

 DateTime GetLastUpdated(): returns the time that the monitor last updated the

state.

 SetOnline(): turns the monitor on.

 SetOffline(): turns the monitor off.

 Boolean IsOnline(): checks if the monitor is online.

The Timer Monitor adds the following functions to the interface:

 SetUpdateInterval(Time): specifies the interval between state updates.

 Time GetUpdateInterval(): returns the interval between state updates.

The Just In Time Monitor adds one function to the interface:

 StateValueAccessed(): this function may be called by the artefact when an

access attempt is made on the state whose value the monitor is supplying.

This callback function of the Just In Time Monitor allows the monitor to supply a new

value to the artefact just before the artefact gives the value to a client requester. The

monitor registers its interest in a state with the artefact that owns it so that this

notification may be made.

Monitors conclude our description of the prototype CIS modelling components, we

now continue with the service components. Unlike many of the model components,

the service components are not intended to be extended by third parties. The four core

services remain the same across different platforms, providing a reliably consistent

interface to the CIS.

7.2.6 Catalog Service

The catalog manages the CIS’s repository of modelling components. Clients may search

or browse the catalog for particular components or particular types of component.

They may also add their own components to the catalog. It is this ability to discover

new components and to extend the range of modelling components that is the catalog’s

key objective. Without the catalog acting as a central manager for the CIS’s modelling

Chapter 7: A Prototype CIS Design

222

components it would be difficult for clients to add, distribute, or discover modelling

components outside of the core set provided with the CIS.

The catalog is accessed through the following interface:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc. of the catalog.

 AddComponent(ModelComponent, Descriptor): adds any type of modelling

component to the catalog. The service can then use the Descriptor information to

store the component in the appropriate part of the catalog and to resolve conflicts

such as replacing an old version of a component with a new version.

 RemoveComponent(Descriptor): removes the component specified by the

descriptor, but only if the component is not currently in use.

 Boolean ComponentExists(Descriptor): checks if the specified component

exists within the catalog.

 DescriptorList FindComponents(DescriptorSearch): the

DescriptorSearch object allows a client to express search queries for any of the

items of information stored within a Descriptor object. For example, this

function could be used to find all components added by a certain author.

 Integer HowManyComponents(ComponentType): checks how many

components of the given type are stored in the catalog, e.g. how many sensor

components.

 DescriptorList GetComponentDescriptors(ComponentType): retrieves a

list of Descriptors for all the components of the given type within the catalog.

 Descriptor GetComponentDescriptor(ComponentType, Integer):
retrieves the Descriptor of the single component specified.

 ModelComponent GenerateComponent(Descriptor): generates an instance of

the ModelComponent specified by the descriptor.

Chapter 7: A Prototype CIS Design

223

What we have not addressed in the catalog, and all the other service components, is

security and access rights to these functions. Obviously some control is required to

prevent client programs from maliciously removing or corrupting components within

these services. However, for the purposes of constructing a basic CIS design we will

assume that all programs are trustworthy.

In future versions we would also like to add more sophisticated search functions for

specific types of component, e.g. to find all sensors that output a location state.

7.2.7 Sensor Array Service

The sensor array provides a common area that can be populated with active sensors.

The objective of the sensor array is to allow runtime reusability of sensors, e.g. for any

number of clients to share access to the same location sensor without conflict.

Normally clients will work with sensor data indirectly by extracting values from

artefact’s states in the world service. However, a limited degree of interaction is

required with the sensor array to install and register interest in sensors using the

following interface.

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc. of the sensor array.

 SensorID AddSensor(Sensor, Time RemovalTimeout): adds a sensor to the

array (hence making it accessible to all other clients) and returns its unique identifier

within the sensor array. The sensor array may remove the sensor if it has not been

used for the RemovalTimeout period.

 Integer HowManySensors(): returns the number of sensors in the sensor array.

 SensorIDList GetAllSensorIDs(): returns a list of IDs for sensors within the

sensor array.

 SensorIDList FindSensorIDs(Descriptor StateType, Boolean
ExactStateMatch): searches for any sensors that can supply the specified type of

state, e.g. finding any sensor that can supply location information. If

Chapter 7: A Prototype CIS Design

224

ExactStateMatch is specified then only an exact match will suffice, even if a

sensor supplying a compatible/convertible type of state is found.

 Descriptor GetSensorInfo(SensorID): returns the descriptor for a particular

sensor.

 Sensor CheckoutSensor(SensorID, Function Callback): returns the

specified sensor. The Callback() function is used by the sensor array to check if

the client who checked out the sensor is still alive and interested in the sensor, and

also to communicate that a sensor is about to be removed.

 ReturnSensor(SensorID): allows the client to de-register its interest in the

sensor.

 Integer NoOfClients(SensorID): returns the number of clients who currently

have the sensor checked out.

 ConnectMonitor(SensorID, Monitor): connects the supplied monitor to the

sensor.

 DisconnectMonitor(SensorID, Monitor): disconnects the monitor from the

sensor.

 Integer NoOfMonitors(SensorID): returns the number of monitors that are

currently connected to the specified sensor.

 RemoveSensor(SensorID): forces the removal of a sensor from the sensor array.

The CIS lets any client enter a sensor into the sensor array. Clients may then “check

out” a sensor if they are interested in using it (including the client who originally added

the sensor to the array). When a client is finished with the sensor it should return it to

the array, although many clients may check out the same sensor simultaneously. The

sensor array maintains a registry of clients who have a sensor checked out. When there

are no longer any clients using a sensor, and after the given removal timeout period has

expired, the sensor will be automatically removed from the sensor array. To prevent

clients who fail to de-register from permanently “locking” a sensor the Callback()

function may be used to periodically check if clients are truly interested in the sensor. If

Chapter 7: A Prototype CIS Design

225

a client fails to respond then they will be considered to have returned the sensor.

Normally all sensor removal will be automatic, but a forced removal of a sensor is

possible using the RemoveSensor function. In such a scenario any clients that currently

have the sensor checked out will be notified of the removal via their callback function.

The automatic management and removal of sensor resources means that clients have

little work to do other than the original instantiation of the sensor in the array. The

originator client, and any other client, may then use the sensor and not worry about its

disposal, which will occur automatically when there is no more interest in the sensor.

7.2.8 World Service

The world service provides a context model of the real and imaginary world in the form

of a set of artefacts, representing objects, and their states, representing context

elements. It is at the heart of the CIS, providing client applications with a view onto the

world around them, i.e. it is the means with which clients obtain their context-

awareness. Similar in principle to the sensor array, the world service aims to offer a

common medium through which a context model can be constructed and shared by

many clients. The key activities are adding new artefacts and finding the value of a state

of an artefact that already exists. The following interface facilitates such activities:

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc. of the world service.

 ArtefactID AddArtefact(Artefact, Time RemovalTimeout): adds an

artefact to the world, hence making it accessible to all other clients, and returns a

unique identifier by which it can be referred to. Like the sensor array, the world

service may remove the artefact if no client has been interested for the

RemovalTimeout period.

 Integer HowManyArtefacts(): returns the number of artefacts in the world

service.

 ArtefactIDList GetAllArtefactIDs(): returns a list with the identifier of

every artefact in the world service.

Chapter 7: A Prototype CIS Design

226

 DescriptorList GetAllArtefactTemplates(): returns a descriptor list of all

the artefact templates currently in use in the world.

 ArtefactIDList Search(String Name, Descriptor Template,
Descriptor StateType, StateContainer, Boolean ExactStateMatch,
ArtefactIDList Scope): searches for an artefact using any combination of the

supplied search parameters, i.e. the client need only specify the parameters that they

are interested in using for a search. The Name parameter allows the client to specify

a search string that will be compared to the artefact’s name. The Template

parameter allows the client to specify the template from which the artefact was

created (e.g. to find people artefacts). The client may also specify that the artefact

must have a particular type of state, and that this state must lie within the given

StateContainer region. If the client exerts an ExactStateMatch then only states

that exactly match the StateType descriptor are included in the search. If it is not

set then other state types that are not exactly the same, but that are compatible with

this type of state, are also included. If the client is only interested in a particular

subset of the world then they can specify this in the Scope parameter. This helps to

improve system performance by limiting the scope of the search. It also can be used

in an iterative search process where the results from one search can be fed into the

subsequent search, so gradually honing down the list of artefacts.

 SearchID StandingSearch(String Name, Descriptor Template,
Descriptor StateType, StateContainer, Boolean ExactStateMatch,
ArtefactIDList Scope, Function Callback): this search function has the

same search semantics as the previous function but it is kept as a standing search in

the CIS. The client is continually informed through the supplied Callback()

function of artefacts that now match and now no longer match as a result of the

world changing.

 ArtefactIDList CurrentArtefactList(SearchID): returns the list of

artefacts that currently fall within the parameters of the specified standing search.

This may be used by the client if for some reason it loses track of the individual add

and remove commands issued by the CIS through the Callback() function.

 RemoveSearch(SearchID): removes the specified standing search from the CIS.

Chapter 7: A Prototype CIS Design

227

 WatchID AddWatch(ArtefactID, String StateName, Time
MaxUpdateFrequency, Function Callback): registers an interest in a particular

artefact state (or whole artefact if no state is specified). If the artefact/state changes

then the client is notified of the new state value through the Callback() function.

The MaxUpdateFrequency may be used to regulate how often the CIS informs the

client of a state change, so preventing saturation of the client with update

notifications.

 RemoveWatch(WatchID): removes the specified watch from the CIS.

 Artefact CheckoutArtefact(ArtefactID, Function Callback): returns

the specified artefact. The Callback() function is used by the world service to

check if the client who checked out the artefact is still alive and interested in the

artefact, and also to communicate that an artefact is about to be removed.

 ReturnArtefact(ArtefactID): allows the client to de-register its interest in the

artefact.

 State GetArtefactState(ArtefactID, String StateName): returns the

current state value of the specified artefact state. This function can be used by

clients to quickly ascertain the value of an artefact state without having to go

through the process of checking the artefact out, examining the state, and returning

the artefact.

 Descriptor GetArtefactInfo(ArtefactID): returns the descriptor for the

specified artefact.

 Integer NoOfClients(ArtefactID): returns the number of clients who

currently have the artefact checked out.

 ConnectMonitor(ArtefactID, String StateName, Monitor): connects the

supplied monitor to the specified artefact state.

 DisconnectMonitor(ArtefactID, String StateName, Monitor):
disconnects the monitor from the state.

Chapter 7: A Prototype CIS Design

228

 Integer NoOfMonitors(ArtefactID): returns the number of monitors that are

currently connected to the specified artefact.

 RemoveArtefact(ArtefactID): forces the removal of an artefact from the world

service. Clients using the artefact are notified of its removal.

The world service provides comprehensive capabilities for observing context changes.

Clients may view these context changes from the perspective of a particular artefact,

watching how its individual states change, or from the perspective of context region,

observing how artefacts enter and exit the region as their states change. Additionally,

the CIS allows the client to access artefacts and state information through either polling

or event delivery mechanisms, i.e. performing one-off queries/searches or registering

continuous watches/searches.

As with the sensor array component the world service is self-maintaining, automatically

removing artefacts that no longer have any interested clients.

7.2.9 World Archive Service

Context-aware applications may not just require access to the current context, but also

to past contexts. For example, memory prosthesis [Lamming, Brown 1994 - #76]

applications can help the user find files and other resources through specifying the

context in which they were last worked with. The world archive allows the client to

save and store a slice of the current CIS. These slices may be used for archival purposes,

providing a kind of context memory.

In computer systems persistence between sessions is common, so that an application

retains the same state and appearance the next time it is opened. The world archive

slices may be used for this purpose, allowing the reanimation of an archived CIS slice in

the future. For example, rather than having to execute the same set of operations to

create a context model each time a client program starts, it can instead save the slice of

the CIS it is interested in when it shuts down and then reanimate the slice when it

restarts.

The interface the world archive service provides to carry out such operations is as

follows:

Chapter 7: A Prototype CIS Design

229

 Descriptor GetDescriptor(): returns a descriptor object containing version

information, author, etc. of the sensor array.

 CreateSlice(String SliceName, ArtefactList, Boolean SaveLinks):
saves the subset of the world specified by the artefact list in a new slice that will be

named according to SliceName. If the client specifies to SaveLinks then

descriptors of the monitors and sensors that each artefact is connected to are also

filed. Storing the links enables the CIS to not only reanimate the artefact but also

the connections it had with the sensor system.

 DescriptorList ReanimateSlice(String SliceName): reanimates the slice

into the real world. If the slice contains an artefact that already exists in the world

then this artefact can be used by the client instead of reanimating the one stored in

the slice. The same applies in the reanimation of sensors and monitors. The archive

service returns a list of the descriptors for objects that were not reanimated.

 Integer HowManySlices(DateTime start, DateTime): returns the number

of slices that were archived within the specified time range.

 SliceNameList GetSliceNames(DateTime start, DateTime): returns the

names of slices that were archived within the specified time range.

 Integer HowManyArtefacts(String SliceName): returns the number of

artefacts in the given slice.

 ArtefactIDList GetAllArtefactIDs(String SliceName): returns a list with

the identifier of every artefact within the given slice.

 DescriptorList GetAllArtefactTemplates(String SliceName): returns a

descriptor list of all the artefact’s templates contained in the slice.

 ArtefactIDList Search(String SliceName, String Name, Descriptor
Template, Descriptor StateType, StateContainer, Boolean
ExactStateMatch, ArtefactIDList Scope): searches the slice for artefacts

matching the given parameters. Operates in the same way as the Search function

in the world service.

Chapter 7: A Prototype CIS Design

230

 State GetArtefactState(String SliceName, ArtefactID, String
StateName): returns the value of an artefact-state within the specified slice.

 Descriptor GetArtefactInfo(String SliceName, ArtefactID): returns

the descriptor for the specified artefact.

 RemoveSlice(String SliceName): removes the slice of the specified name.

Unlike the world service, which allows clients to checkout artefacts and operate on

them directly, the world archive service maintains tight control over the contents of

each slice. Access to the artefacts and states therein must be carried out through the

read-only interface, preventing clients from “altering history”. One could argue that

history may need to be corrected, e.g. if a sensor was malfunctioning and producing

spurious data. However, those spurious results could also be useful, e.g. in tracking

down problems with sensors, so we prefer to keep the archive authentic to the actual

data recorded.

7.3 Evaluating the Prototype Design

It is not possible to exhaustively evaluate the prototype design until an implementation

has been fully developed and thoroughly tested with a number of different types of

client application (as mentioned earlier, an implementation of the service components

has yet to be done). However, we can make a preliminary evaluation of the design alone

based on the criteria that we used in the previous chapter for comparing the work of

various CIS projects. That chapter commenced with a discussion of the nature of

context and the nature of context-aware applications, and then went on to examine in

detail the possibilities for a CIS within the context of a five-layer model. In this section

we shall assess our CIS prototype in terms of each of these aspects.

7.3.1 The Nature of Context and Context-Aware Applications

The first thing we noted about the nature of context was that there was not always a

clear distinction between context and content. Our prototype CIS design simply

represents sets of states that may or may not be dynamically updated from sensors. It

leaves it to the application to determine a particular context or content viewpoint of the

data. The CIS tries to manage the complexity of context by separating states from

Chapter 7: A Prototype CIS Design

231

sensors and by providing an environment in which new components can be added,

discovered and operated in a standard fashion. The state and sensor components also

seek to hide the complexity of context acquisition, conversion, and representation,

beneath a simple client interface.

The CIS has no bias to any particular type of context element. New states or sensors

for any type of context element can be added to the system. The CIS also supports the

concept of context elements as attributes, where each state is embedded in an artefact

representing a real or virtual object. To support the potentially more complex states of

virtual objects specialised state components may be developed, e.g. a logical expression

state that combines a number of other states with logical operators.

In the section on the nature of context-aware applications we first mentioned that there

are many different classes of context-aware application. The CIS provides context

provision support at a basic enough level to be application neutral but to still provide a

number of useful facilities that make accessing context information a much easier

process for client applications. The resource hogging nature of context-aware

applications is resolved by devolving responsibility for most context-aware operations

to common CIS services that can be optimised and shared by any number of CIS

clients. This delegation of context-aware duties to the CIS also dramatically reduces the

development costs of imbuing an application with context-awareness.

The issue of diverse computing environments is an implementation problem rather

than something that will affect our design. However, the CIS is certainly well suited to

be implemented in a platform independent language such as Java.

The final comment on the nature of context-aware applications was that the greater the

support of context the greater the sophistication of the application behaviour. The CIS

design seeks to enable the extension of context support through the ability to develop

and add new state, sensor, and artefact components. It also aims to promote reuse of

these components through a set of shared services through which a client may (a)

discover and use any of the existing components, and (b) also explore and add to the

common context model shared among clients.

Chapter 7: A Prototype CIS Design

232

7.3.2 Five Layer CIS Support

After addressing the nature of context-aware applications the previous chapter

proposed that developers wishing to create such applications currently face a situation

similar to that of developing an application’s GUI without any supporting libraries or a

common windowing environment. The CIS design addresses this problem by offering a

core context service to gather, model, and provide context information. In the previous

chapter we also examined a number of services in the context of a five layer support

model, and we will now do the same for our prototype CIS design.

 Layer 1: Sensor Support. We divided sensor support into fixed and extensible

categories. The prototype CIS design offers extensible support at runtime, allowing

sensors to be added to the catalog and sensor array services without needing to

suspend the operation of the system. Clients can discover and use new sensors as

and when they are added to the sensor array. That is, the prototype design offers

the highest level of sensor extensibility.

 Layer 2: Context Data Extraction. The CIS supports the full range of context

extraction mechanisms. Values can be transferred from a sensor to an artefact’s

state via a monitor with no further processing. However, abstraction of context

values and sensor chaining can also be performed using synthesizer components,

allowing the context to be processed, transformed or fused with other data whilst

en route to an artefact’s state. Both client driven and model driven quality of service

is supported in the CIS design, with monitors used to optimise the flow of data

between sensors and artefact states. Each artefact’s state has its own monitor so

that the flow of data can be customised to suit the characteristics of the object

whose state is being updated. Rather than using the generic monitors provided,

third parties may develop their own monitors in order to optimise sensor

interaction based on high-level application semantics that would not be possible for

the CIS to foresee. Monitors also allow referencing (the ability to supply one

artefact-state value from another artefact-state value) by accepting an artefact-state

as a source instead of a sensor or synthesizer.

 Layer 3: Context Data Type Support. Being application agnostic, the CIS design

supports a diverse set of context elements (i.e. states) and allows this support to be

Chapter 7: A Prototype CIS Design

233

extended at runtime with the addition of new components to the catalog service. As

soon as the components are added to the catalog they may be introduced and used

in the world service’s context model.

 Layer 4: Context Model Support. An object-oriented context model is at the core

of the CIS design. The world service presents context information in the form of

artefacts, representing real or virtual objects, that possess various states,

representing the object’s context. This model is fully extensible at runtime and

supports a diffuse viewpoint. However, although the world service provides a

common area in which all applications build their context model, they are not

forced to contribute to a central shared model; clients may build their own diffuse

models within the common area. A conscious decision was made in the design of

the prototype CIS not to include any peripheral service support such as

relationships, triggering, manipulators or viewers. We believe that these tend to be

platform and application specific, and as such should be provided as separate

service layers on top of the core CIS system.

 Layer 5: Client Interface. The CIS design supports all three communications

mechanisms for providing context information. Polling is supported by explicitly

executed client search commands, streaming is supported by setting “watches” on

the areas of interest, and event driven delivery is supported through standing

searches. Watches operate at such a low level that they effectively offer hook

support too. The CIS design is oriented towards client channels but it may

internally combine identical watches and standing searches, effectively supporting

client-group channels. The types of delivery channels supported is more significant

when dealing with a distributed CIS. The whole of the next chapter is devoted to

the distribution issue and explores a number of strategies for CIS distribution.

We have attempted to address the CIS requirements suggested by other research with

our initial definition of CIS requirements described in the previous chapter. However,

we can take a recent study by Brown et al [Brown 2001 - #17a] as further

authentication of our CIS design. The aim of their work was to outline the most

compelling applications of context-aware technology. In the process they define some

general requirements of infrastructure intended to capture and maintain contexts. Table

28 describes their requirements and how our CIS design fulfils them.

Chapter 7: A Prototype CIS Design

234

Requirements of Brown et al CIS Solution

To extract context from hardware sensors like GPS
receivers.

A sensor component can be developed for each
physical sensor, providing the CIS with the context
extracted from the physical device.

“Soft” sensors for extracting context from the user
directly, or from other software or data sources.

The same sensor component can be used to model
these soft sensors.

Virtual and real contexts, and switching between
them, e.g. firstly representing a person’s location
derived from a GPS receiver and then switching to
a “pretended” representation of his location.

A state of an artefact may be plugged into a sensor via
a monitor, and at any time unplugged and connected to
another sensor. A sensor may be reporting virtual
context or the client application itself may directly insert
a pretend value into an artefact’s state.

Synthesis for abstraction of context and error
elimination through multiple sensor inputs.

Synthesizer objects support multiple
sensor/synthesizer inputs and may be used to abstract,
eliminate error, or perform any other process that
generates a resulting state from one or more input
states.

Context memory, to record changes in context over
time.

This is the function of the world archive component,
which allows “snapshots” of the CIS context model to
be recorded.

Table 28. Brown et al's requirements, and the CIS solutions.

To summarise, we believe that the prototype CIS design successfully addresses all of

the issues and suggestions that were raised in the previous chapter and, as a result, the

majority of suggestions for infrastructure from other context-aware research. We think

this CIS will provide a valuable service from both the viewpoint of client applications

that wish to utilise context information and the third party developers wishing to build

and provide new context services.

7.4 Conclusion

In this chapter we have introduced a prototype design for a CIS that attempts to

address all the issues that were raised in the previous chapter. The prototype design is

based on two sets of components: a set of modelling components that provides the

building blocks with which to construct a context model, and a set of service

components through which clients may interact with the CIS.

Five key modelling components were proposed: sensors, synthesizers, monitors, states,

and artefacts. Sensors are software modules that act as the interface between the CIS

and sensor hardware/software, providing one or more current context elements.

Synthesizers offer a similar context element provision service but their source data

originates from one or more sensors or synthesizers whose output they abstract,

Chapter 7: A Prototype CIS Design

235

transform, or combine. At the other end of the model component spectrum are

artefacts. An artefact represents a real or virtual object and the set of states pertaining

to that artefact (i.e. the artefact’s context). The output of a sensor or synthesizer is

connected to an artefact state through a monitor component. The monitor attempts to

minimise the flow of data between sensor and state whilst maintaining a specified

quality of service level, so optimising the CIS performance.

The five modelling components are accessed through four service components: the

catalog, sensor array, world, and world archive. The catalog is an extensible repository

of reusable modelling components that any client may browse, select from, or

contribute to. The sensor array provides a shared sensor medium that clients may

populate with sensor components taken from the catalog. The world service provides

the majority of the core functionality, allowing clients to easily construct or reuse

context models and to query and/or monitor all or part of the model. The context

model is the subset of the real or virtual contextual world that the CIS clients are

interested in. Areas of this model that are of particular interest to a client may be stored

for later reference or ‘reanimation’ by using the world archive service.

We concluded this chapter with a preliminary evaluation of our prototype CIS design,

using the same criteria that we developed in the last chapter in our exploration of the

design space of CISs and the examination of various CIS projects. Our prototype CIS

design has satisfactorily addressed all of the issues that were raised in the that chapter,

offering a universal context provision mechanism that is highly reusable, sharable,

customisable, extensible, and resource friendly.

This chapter has only addressed CIS design in terms of a stand-alone service running

on a single non-networked computer. However, the next and final chapter examines the

last aspect of our work CIS work: an investigation into how CIS services may be

effectively distributed.

237

CChhaapptteerr 88::

CCoonncceeppttss ffoorr DDiissttrriibbuuttiinngg tthhee CCIISS

The CIS that we have presented in the previous chapter is limited in scope to modelling

context that can be detected by the device on which the CIS is running, e.g. through a

GPS device attached to a palmtop computer that is running the CIS. This results in a

rather insular view of the outside world which only provides client programs with a few

pieces of their context. Those pieces focus on the host device and its immediate

surroundings. However, if CISs running on different hosts could communicate with

one another then any one CIS would have access to a wealth of information about the

world in which it finds itself. That is precisely the aim of this chapter: to investigate

how contextual information can be distributed across many CISs.

This chapter is pure theory: we did not have the time or resources to make a practical

implementation and evaluation of the design concepts that we propose. It can be

viewed as the start of much further work on how CISs may be distributed. The work

presented is a speculative set of initial concepts, ideas and discussions for future work.

This chapter first addresses some general distribution issues for contextual information

and then proposes three design concepts, which we discuss in some depth. The first

design concept considers connecting CISs at a low level to facilitate CISs on separate

devices in presenting a common and shared world of contextual information. The

second design concept discusses distribution at a more logical level where shared

worlds of distributed artifacts can be constructed in order to represent a grouping

around a particular theme. The third design proposes how a set of software agents

could be used to discover, manage, and dispose of local references to remote artifacts that

may be of interest to a particular CIS. These three concepts form our initial thoughts

on how a CIS could be distributed and, as such, are a speculation on how this field

could evolve in the future.

Chapter 8: Concepts for Distributing the CIS

238

8.1 General Distribution Issues

This section defines what it is that we would like to distribute and categorises the

various communication mediums over which the distribution could take place.

8.1.1 What to Distribute

There are essentially three areas in the CIS that we can consider for distribution:

 Electronic Resources. Electronic resources are virtual entities whose context can

be modelled within the CIS but whose physical presence is separate from it. For

example the context of a virtual billboard may be modelled as an artifact in the CIS,

but the actual billboard may be a web page stored on a remote server.

 CIS Artifacts. Some artifacts represented within a CIS on a local host may actually

be of interest to a number of remote hosts’s CISs. Therefore, a CIS should be

capable of incorporating artifacts from remote CIS worlds into its own local world,

and also making its own local artifacts available to other remote CIS worlds.

 CIS Sensors. Sensors and synthesizers are often located on the same host as is the

artifact whose current context they help provide, e.g. the location of a tourist that is

derived from a GPS sensor attached to her PDA. However, sometimes these

sensors are remote, e.g. a weather sensor that accesses a remote meteorological

station, or a vehicle tracking system that reports back to a central control centre

rather than the driver.

In this chapter we concentrate on the artifact level distribution. That is, in transparently

providing CIS clients with a distributed collection of artifacts that are transparently

accessible through the client’s local CIS world service. Therefore we are primarily

concerned with the distribution of the CIS world service component (we leave other

aspects of CIS distribution to future work). Additionally, rather than relying on the

client to specify the sets of remote artifacts that should be incorporated into the local

CIS world, wherever possible the local CIS should attempt to discover such resources

on the client’s behalf. This is especially important for applications such as a tourist

guide, where the client may not necessarily know where to find the resources in the new

Chapter 8: Concepts for Distributing the CIS

239

area in which it finds itself. The other two levels of distribution, electronic resources

and CIS sensors, we leave for future research.

8.1.2 Communications Infrastructure

The communications mediums that the CIS may be exposed to can be categorised as:

• Wired Network. This is the ideal medium for creating local groups of physically

remote CIS artifacts. Well-established distribution technology such as CORBA

[CORBA 2001 - #23] and Java RMI [Sun 2001 - #138] can easily support the

representation and manipulation of objects over these fixed wired networks.

However, on the main platforms of interest to this thesis (i.e. palmtop and wearable

computers) a wired link is not realistic.

• Wireless Network. The same well-established distribution technology may be used

over wireless LANs such as 802.11. However, the necessary supporting

infrastructure (base stations with wired LAN connections every 100-500 metre area)

make this option prohibitive for wide areas but feasible for “hot-spot” areas such as

an airport or museum.

• Mobile & Satellite Phones. These currently provide the only practical solution for

continuous mobile communications over a wide area. It is also a low cost solution

from the perspective of new physical infrastructure for each user to install, i.e.

none! However, it has the negative characteristics of high cost and low bandwidth.

• Situated Communications. These consist of technologies ranging from infrared

and Bluetooth [Bluetooth-Consortium 2001 - #11], which are relatively high

bandwidth, to active badges [Want, Hopper 1992 - #145] and locusts [Kirch,

Starner 1997 - #72], which are relatively low bandwidth. They provide a situated

form of communications that a mobile device can exploit when being in varying

degrees of proximity and alignment to the facility. The most communicatively

limited technologies, such as locusts, may only be capable of transmitting small

items of information from a particular place, though this could be all that is needed

for some applications, e.g. a locust location beacon. The more capable technologies

such as Bluetooth support a higher capacity of communications.

Chapter 8: Concepts for Distributing the CIS

240

Depending on cost, function, and application, the CIS may need to be distributed over

any one or combination of these underlying communications mediums. Therefore, the

design of the CIS’s distribution capabilities must take into account the varying degrees

of connectivity and bandwidth, ranging from a high bandwidth and continuous

connection to a low bandwidth and intermittent connection, and be able to exploit the

mediums it finds available in its ever-changing environment of use. Bearing this in

mind, we now proceed to presenting the first of our three CIS distribution design

concepts.

8.2 The Federation Distribution Design Concept

The aim of a federation of CISs is to provide a client of any one CIS with transparent

access to the combined resources of a group of co-operating CISs, effectively letting

the client work with a group of CISs as if it were a single stand-alone CIS. There is

potential for sharing all four CIS service components (the world, sensor array, catalog

and world archive) in such a federation but we solely concentrate on the distribution of

the world service component, i.e. the distribution of the component that provides the

contextual model of the world.

A CIS federation is intended to amalgamate artifacts that are distributed across a

number of remote CIS worlds into one local and location-transparent world. For

example, if two CISs were to form a federation then each would subsequently present a

world composed of the artifacts from both CISs. The two CIS worlds still reside on

physically separate CISs but are conceptually unified and treated as one, as illustrated in

Figure 42. This federation is maintained in a distributed fashion where each CIS

continues in its responsibility for the artifacts that it has introduced to the world; there

is no notion of any controlling CIS or hierarchy of authority. In our model, a CIS

shares its whole world with other members of the federation; however, as is described

later, there is a provision for privacy filters. And, as with all distributed systems that

share resources, provisions must be made to overcome potential naming conflicts (but

this is not addressed here).

Chapter 8: Concepts for Distributing the CIS

241

Actual

Distributed

World

Apparent

Unified

World

CIS

Clients

Figure 42. CIS clients transparently access a unified distributed world.

This distributed federation of equal authority members is ideal when sharing

information between CISs of equal status, e.g. a group of tourists sharing their own

locations with one another. Other scenarios, such as federating a tourist office’s CIS

and a tourist’s CIS appear different but work equally well, the only difference being the

imbalance in the amount of artifacts modelled by each CIS world. This imbalance is

actually exactly what is required in such a situation, enabling the delegation of the bulk

of the storage and modelling load to a dedicated server rather than duplicating it on lots

of tourists’ palmtop computers.

8.2.1 Discovering a CIS

A curious aspect to the tourist example is the lack of knowledge that a tourist has on

arriving in a new location. She has no idea what CISs exist within her new environment

or where to find them. However, we could exploit some situated form of

communications to help her discover them, for example, locust devices hanging in an

airport arrival’s lounge could broadcast contact information (e.g. network addresses,

phone numbers, etc.) for publicly available CISs, enabling the tourist’s palmtop

computer to transparently discover them. Devices such as locusts act as servers of CIS

Chapter 8: Concepts for Distributing the CIS

242

keys that facilitate the connection and integration of the tourist’s CIS with their new

environment.

A key server would operate by broadcasting keys on a low-cost low-bandwidth medium,

e.g. IrDA [Infrared-Data-Association 2001 - #66]. Upon discovering such a key the

local CIS would contact the remote CIS via a higher-bandwidth bi-directional

communications channel (the details of which would be supplied in the key). Note that

more than one key server could broadcast the same CIS key, i.e. the same CIS could be

used for more than one locale. Key servers would be physically planted wherever they

are required, e.g. a blackbox embedded in the high street that provides a key to a CIS

containing advert and public transport artifacts.

 Tourist

Information

Office Server

Commercial

Adverts Server

Guided

Tours

Server

Airport

CIS Keys

Highway

CIS Keys

CIS Web

Search

In-Situ

Tourist’s

CIS

Remote

(armchair)

Tourist’s CIS

Access

Routes

CIS Services

and Routes

Figure 43. Example high-level CIS distribution and discovery model.

Figure 43 illustrates a simplified example of three physically separate CISs that may

each be of interest to a tourist. Both an armchair and in-situ tourist can gain access to

these CISs, though they will locate them in different ways and will probably use a

different communications medium to contact them.

Some CIS worlds may not contain artifacts with a location context element, in which

case a spatially situated CIS key may at first seem irrelevant. However, the role of the

CIS key is to provide route information to CISs and is not solely for situating CISs that

are describing entities in the current locale. For example, a CIS key may inform the

Chapter 8: Concepts for Distributing the CIS

243

tourist’s CIS of a cheaper and faster route to one of the remote CISs that her CIS is

currently connected too.

8.2.2 Choosing Distribution and Managing CIS Loading

There are a number of ways in which the CIS world could be distributed ranging from

a subscription service, in which local copies are kept and updated, to a fully distributed

service where remote objects are accessed directly. The latter case is most suited to a

CIS due to the requirement for real-time modelling of context. The CIS would provide

transparent access not only to the artifacts within its own world but also to those in

remote CIS worlds. When accessing the contents of a remote artifact the local CIS

would work directly with that artifact rather than a local copy. Such an arrangement

provides the ultimate timeliness/accuracy for modelling and minimises local storage

space requirements. However, it does face potential problems with overloading CISs

that are acting as servers (e.g. a tourist information office’s CIS) and with coping with

limited connectivity (e.g. a costly mobile phone connection from a tourist’s handheld

computer).

There will undoubtedly be situations where one or more CISs are loaded far more

heavily than the others are. This is probably the case with the tourism application where

there could be a tourist information office CIS that can expect to be accessed by many

electronic tourist guides simultaneously. Not only is there a likelihood of heavy loading

but it is also difficult to predict when that heavy loading will occur, e.g. 100 tourists may

unexpectedly arrive at once. Therefore, the CIS must be able to dynamically respond to

varying load conditions.

If a CIS world is being overloaded with remote accesses then it needs to be segmented

to try to divide the remote interactions and share them among more than one computer

to cope with the load. It is likely that for large systems this will already occur to a

limited extent in order to logically group artifacts together in different worlds. For

example, the tourist information office may have all the town attractions on computer

X, all the adverts on computer Y, etc., and a unified world presented through a

federation of the CISs. This form of underlying segmentation is mainly for

organisational or management purposes and it doesn’t effectively combat the problem

Chapter 8: Concepts for Distributing the CIS

244

of one machine getting overloaded, e.g. lots of systems accessing the computer

dedicated to tourist attractions.

A CIS replicator can solve the overloading problem by taking responsibility for providing

accessibility to one or more worlds to the rest of the federation. A CIS can hand off all

accessing responsibilities to the replicator, which keeps a duplicate copy of the world

that the CIS is responsible for. The replicator is updated by the CIS whenever its world

changes (as the original CIS still retains responsibility for the management of the world,

it is just the external accesses that are delegated). Other CISs subsequently

communicate directly with replicator but can still rely on completely up-to-date data.

Should the replicator become overloaded then it can hand off some of its

responsibilities to child replicators (a process transparent to the source CIS). And

should these child replicators become overloaded then they too can hand off to further

replicators ad infinitum. In this way a tree structure of replicators is dynamically

constructed (as illustrated in Figure 44) as and when the need arises, with each

replicator managing its own loading and passing of updates to children. A linear array

of replicators could also be used but the tree structure allows for a delegated ‘chain of

command’ for managing the addition and removal of replicators.

CIS

Federation
Member

Replicator

Replicator

Replicator

Replicator

Replicator

Replicator

Other CISs in the Federation

Remote
CIS Accesses

CIS Updates

Figure 44. Three levels of CIS replication.

Chapter 8: Concepts for Distributing the CIS

245

The replicator model provides a flexible and scalable way of dynamically coping with

the overloading of a CIS world caused by an increase in accesses by external CISs.

However, there are, of course, standard distributed systems issues associated with them,

e.g. potential for uncontrolled expansion of replicators, problems when a master

crashes, etc. There are also two other potential sources of overloading: sensor updates

and federation maintenance messages, but these are much less likely to stress the

system. However, if they do then sensor updates can be internally regulated by the CIS.

Dealing with federation maintenance message overload is covered in a later section.

8.2.3 The Structure and Formation of a Federation

 A federation is initially formed by a CIS that specifies a remote CIS it wishes to

federate with and a name to identify the resulting federation. The federation is

negotiated on a peer-to-peer level where each CIS is asked what level of connectivity it

would like with the other. Each CIS responds by specifying one of five levels of

connectivity it would like:

 Reject. A reject is returned if the local CIS wants absolutely nothing to do with the

remote one, in which case the federation process is aborted.

 Passive. The local CIS accepts the federation but neither wants to observe the

remote CIS’s world or have its own local world observed.

 Observer. The local CIS is only interested in observing the remote CIS’s world,

and not in sharing its own local world.

 Provider. The local CIS is willing to provide its own local world to the remote CIS

but does not want to observe the remote CIS’s world.

 Full. The local CIS is interested both in being a provider and an observer of the

federated CIS world.

Other members may then be inserted into the federation through a similar process,

where every CIS in the federation negotiates its own connectivity with the newcomer.

In the process of joining the federation, should one of the federation’s members issue a

reject then the newcomer is completely barred from the federation no matter how other

Chapter 8: Concepts for Distributing the CIS

246

members respond. If the member successfully joins the federation it will communicate

directly with each member rather than through its original point of contact (such a

scheme would lead to uneven distribution and bottlenecks). Another method of

forming federations is by merging two federations together. In this process a new

common name is agreed for the federation and each CIS in one federation negotiates

with each CIS in the other. The merging produces a new federation with no knowledge

of the previous two federations (and hence, no way to automatically revert to the

previous configuration).

Each CIS records information about the federations that it is a member of at three

levels:

 Firstly, each federation has a name that is used to differentiate it should a CIS join

more than one federation. However, to the CIS client a single world is provided

transparent of the underlying federations (although there may be explicit

mechanisms made available to query or filter by federation).

 Secondly, each member of the federation maintains a list of all other members of

the federation and the type of connectivity between them. Everyone will have the

same CISs in their list but not necessarily the same type of connectivity. Thus, each

member may have different views on to the federated world.

 Finally, the CIS inserts references into its world of all the remote artifacts it can see

within the federation. Federation members subsequently keep each other appraised

of artifacts arriving and departing. Note that the reference is a mechanism through

which all queries and manipulations are translated to the remote source, ensuring

accurate up-to-date data and minimum storage requirements on the local CIS.

To create and maintain this federation information a number of messages are passed

between members. These messages fall into three categories:

 Membership Messages: join requests, merge requests, leaving notifications.

 Formation Messages: list of artifacts sent to a new CIS, list of artifacts received

from a new CIS, connectivity requests (to dynamically renegotiate the connectivity

with another CIS).

Chapter 8: Concepts for Distributing the CIS

247

 World Maintenance Messages: artifacts added, artifacts removed.

Such message passing is another potential source of overloading for a CIS, e.g. a CIS

being unable to cope with all the messages about the artifacts coming and going from

another CIS in the federation. This is the reason that several levels of connectivity with

other CISs are provided. A local CIS may decide to be solely a provider to another CIS

and not an observer so that it will not receive these maintenance messages. At the

extreme it may wish to have no contact at all with the CIS and so specify a passive link.

Even though there is no communication between the CISs in such a case it is still

important to have a passive link. This is so that when a new member joins the

federation using a particular CIS as an initial point of contact it can be informed of all

the other members of the federation irrespective of whether the initial point-of-contact

actively communicates with them or not. As each federation member is aware of every

other (even if only through a passive link) a new member may join the federation using

any member CIS as an initial point of contact.

8.2.4 Security and Privacy

A federation is an essentially open model where, in general, the individual CIS members

openly share their world of artifacts amongst the other members. However, for reasons

of privacy and the potentially sensitive or commercial nature of the data, a CIS may

wish to control access over its world. There are three general levels of security:

• World Level. This is the coarsest granularity of security whereby a CIS may wish to

restrict the access to its world as a whole. The mechanism for doing this has already

been outlined: when joining a federation accessibility is negotiated between the new

CIS and each member of the federation to determine which CIS worlds the

newcomer can view and which CISs it will let view its own world. Note that

different access rights can be specified for each federation member.

• Artifact Level. At a finer granularity the CIS may not wish to share individual

artifacts within its world with particular CISs. For example, perhaps the user does

not want to reveal information about herself that she has modelled in a ‘user’

artifact.

Chapter 8: Concepts for Distributing the CIS

248

• State Level. At the finest level of granularity individual states within an artifact may

be declared as private so that although the artifact in which they are embedded may

be publicly accessible throughout a federation that particular state is not. This level

of security is particularly useful in giving a degree of anonymity to a shared artifact.

For example, in the tourist guide application the tourist may be willing to share the

artifact representing herself but wish to keep the ‘tourist name’ state private. This

will allow other CISs to see where tourists are and what they are doing but they will

not be able to associate this information with specific tourists, thus preventing ‘big

brother’ scenarios in which a central CIS is used to spy on an individual.

Screen
Array

Screen with
access windows
to the local CIS

Local CIS
world containing
various artifacts

Successful model
access by a remote
CIS

Remote CIS
access blocked
by 3rd security
screen

Figure 45. Conceptual diagram of security screening.

All three levels of security can be provided through a single security screener service. A

security screener uses an array of screens to regulate access to the single CIS that it is

responsible for. For each remote CIS that the local CIS is federated with, an array of

screens can be constructed. Both incoming and outgoing communications are filtered

through this array to block unauthorised communication. Each remote CIS is allocated

Chapter 8: Concepts for Distributing the CIS

249

a screen array in the local security screener, and the slots of this array can be filled with

screens from a reusable collection. A single screen array is illustrated in Figure 45,

showing how communication from a remote client is blocked unless there is a window

right through all the screens on to the part of the world that it is interested in. A screen

is essentially a filter that defines which artifacts and states within the CIS world are and

are not accessible through it. In Figure 45 the filtering was illustrated as windows in a

succession of screens. However, the filtering can also be specified from an inverse

perspective, which, in terms of the diagram, would appear as patches through

transparent screens instead of windows through opaque screens. Patches or windows

can be created to cover areas ranging from single states to single artifacts or even the

whole world. Once defined, a screen is placed in a reusable pool that can then be used

to populate one or more screen arrays. In addition to the screen arrays, for each remote

client there is also a universal array which all communications must pass through. A

communication must pass successfully through each screen in both the remote CIS

array and the universal array before being transmitted. This allows universal and CIS

specific security policies to be implemented simultaneously.

An interesting possibility for security screens is the notion of blurry windows. Rather

than two simple can-see-it / cannot-see-it states, blurry windows could let a state be

seen but would cause the value to be blurred, e.g. the location could only be

distinguished to within a 100 metre area rather than a pinpoint location. This could be

useful in applications where general low-resolution information can be revealed but

more accurate information needs to be concealed. For example, a person may allow

others to see that she is in town but not disclose the exact place.

The more security restrictions placed on the CIS, the greater the processing overhead in

communications with remote CISs; this is unavoidable. However, for a completely

open CIS with no security restrictions the security infrastructure does not pose any

obstacle, i.e. there is almost no operational overhead in having the security screener

with no screens. Additionally, in implementing a security policy the order of the screens

could be managed to optimise efficiency, e.g. a screen that blocked out 99% of the

world could be placed first to eliminate the bulk of communications before they get to

the remaining screens.

Chapter 8: Concepts for Distributing the CIS

250

The security screener could also be a good way of implementing access charges. Instead

of simply a clear path through a series of windows, the path may also pass through

‘coloured’ windows indicating that a certain amount should be paid for such a

communication. In a commercial CIS service clients could therefore be charged

different amounts for accessing different parts of the world. However, as with any

other service that provides data in digital form, how to prevent customers from freely

passing data on to others must be considered. We do not attempt to address this

general, but complex, issue here.

The CIS federation security is partially built on the trust of other members. It is

therefore impossible to guarantee the security of information once it is even partially

made available to others unless we completely trust the remote CISs concerned. For

example, if CIS A gives access of an artifact to CIS B, although A prevents others from

accessing the same information directly, there is nothing stopping B, if he is

unscrupulous, to act as a gateway for unauthorised access to this information by

providing a local copy to others. The only way to be completely secure is to keep the

relevant parts of the world private to the local CIS.

8.2.5 Managing Poor Connectivity with Windows and Mirrors

The distributed world set forward thus far has assumed a high speed TCP/IP

connection between the members of the federation and has not taken into account the

poor network connectivity that some members may face, e.g. a tourist’s handheld

computer communicating via a mobile phone. Providing direct access to a remote

world across the federation is ideal for maximising the timeliness of data and

minimising local memory and storage requirements, but some of the members could

have connections that make communicating over low bandwidth and dealing with

periods of disconnection more pressing issues. Such connections could exhibit some of

the following characteristics:

 Unreliable. The communications may be susceptible to errors and/or periods of

disconnection.

 Low bandwidth. The throughput of information may be limited.

 Costly. Connection time can be expensive for devices such as mobile phones.

Chapter 8: Concepts for Distributing the CIS

251

 No TCP/IP. Rather than a Java RMI-friendly TCP/IP protocol there may just be

a plain serial link.

 Point to point. The communication medium may be point to point rather than

global.

The latter two characteristics of no TCP/IP and point to point communications need

to be addressed at the communications protocol level. CIS connections with these

characteristics can no longer rely on Java RMI to handle the distributed

communications; instead an alternative low-level form of communication must be

devised. This alternative form of communication can be provided through a CIS

connector. Rather than talking directly to a remote CIS, communications now pass

through this CIS connector that provides an interface for membership, formation, and

world maintenance messages to be transmitted to and received from a CIS connector

of a remote CIS. Additionally, it provides methods through which artifacts and states of

a remote CIS world can be accessed over these poor connections. Note that as a CIS

connector is required on each side of the connection: even CISs with high-bandwidth

network access will have one in order to talk to a CIS with poor connections.

The connector has no notion of the state or membership of a federation; the CIS

retains the knowledge of where a remote CIS is, what artifacts it has, and how to

contact it. The CIS connector simply acts as a courier responsible for transparently

delivering CIS messages and data between two CISs over a poor connection.

The combination of high-cost, low bandwidth, and unreliable communication

characteristics requires a radically different approach than in the constantly connected

networked CIS. Communications need to be not only reduced but also made more

flexible to deal with unreliable communications and slow (or non-existent) turn around

times. The CIS connector addresses these concerns with two strategies:

 Access Windows. To flexibly minimise/optimise connection use.

 Artifact & State Mirrors. To attempt to cope with periods of disconnection.

Access windows are periods of connection time through which a CIS connector is able

to access a remote CIS connector. These windows can be flexibly defined to balance

Chapter 8: Concepts for Distributing the CIS

252

the need to optimise communications usage with the remote access requirements of the

CIS. A CIS connector will use one or more of these windows to implement its remote

communications strategy. A window consists of an opening and a closure that define

the start conditions and termination conditions of a period of communications. There

are three types of opening and closure with which to define a window, as illustrated in

Table 29.

 Opening Closure

Scheduled The opening is scheduled for a regular
repeating interval, e.g. every 10 minutes.

The window is closed after a
predetermined time period irrespective of
whether the link is still being used or not
in the meantime.

Dynamic The opening is dynamically created when
the need arises, e.g. when a CIS
attempts to access a remote artifact.

The window is closed as soon as it is no
longer being utilised.

Delayed Dynamic As above, with the addition of a predefined
delay before the opening in order to wait for
other remote communications that can be
batched together.

The window is closed when a predefined
time period after the previous
communication expires. This allows other
communications to arrive in the
meantime (after which the period is
reset).

Table 29. Window opening and closure types.

A window can be created from any pairing of an opening and closure type, e.g. a

dynamic opening combined with a scheduled closure. Additionally, openings or

closures may be combined so that an opening or closure will occur when any of the

individual conditions are met. For example, a dynamic delayed closure could be

combined with a scheduled closure, where if the delayed closure does not occur before

a certain time period then the scheduled closure will. Such a scheme is useful for

putting a maximum time limit on a window that will normally have a dynamic delayed

closure. Figure 46 illustrates some simple window schemes.

The CIS connector will implement its communication strategy by defining a window

for each communication channel it has access to. In some rarer cases there may be the

need for more than one window per channel, for example, to temporarily increase the

communications capacity by introducing another scheduled window, which will later be

removed.

Before a window is opened the remote connector must give its consent for the process

to proceed. Normally consent will be given because the remote CIS is presumably

Chapter 8: Concepts for Distributing the CIS

253

interested in the data that will be sent, and also the remote CIS can use this window to

perform any additional communications that it needs with the local CIS (in effect,

getting a free connection). However, in some situations the remote client may decline

or may simply be unavailable, in which case the window is not opened and the local

CIS is informed that it is currently not accessible.

Scheduled
Opening and

Closure

Scheduled
Opening and

Dynamic Closure

Dynamic Opening
and Scheduled

Closure

Dynamic
Opening and

Closure

Desired
Communication

Communication
through Windows

Communication
passes through
immediately

Communication
delayed until next
available window

Figure 46. Example window schemes.

Unavailability and periods of disconnection are unavoidable with some communication

mediums. The distributed CIS needs to cope with such conditions as best as it can (and

fail gracefully when they become untenable). The CIS connector does this through an

array of ‘mirrors’ that model individual states of a remote CIS’s artifact locally, where

one slot of an array can contain one mirrored state. The mirrors can then be used by

the CIS connector as a substitute for the remote artifact states during periods of

disconnection.

Chapter 8: Concepts for Distributing the CIS

254

The array is dynamically partitioned into two areas, with one side that can be populated

by the CIS client (who will be either a user or another piece of software) and the other

side that can be populated by the CIS connector. A user may add a mirror to the array

to ensure that a remote state that is essential to their successful operation is always

available (albeit, perhaps, in an out of date form). The CIS connector is also trying to

ensure the same thing by automatically adding mirrors to the array in order to locally

model remote states that are heavily used by CIS clients. The partitioning of the mirror

array is dynamically controlled so as to maximise space utilisation.

CIS Connector
Partition

User
Partition

Figure 47. Conceptual view of a mirror array

A mirror is created by duplicating a state from a remote artifact. However, in addition

to its current state it may also obtain drift or prediction data. The drift data expresses how

the accuracy of the state decreases over time, whereas the prediction data supplies

information on how the state will change over time and the confidence in those

predictions. Rather than a static snapshot of the remote source, predictive data enables

the local CIS connector to attempt to locally mirror the changes occurring to the

remote state. Of course, the CIS client is informed that mirrors are being used rather

than real data and is given the potential inaccuracy of the data if drift or predictive

information is available. When the remote CIS is directly available again the mirror is

updated each time the remote state is accessed, therefore placing no added load on the

communications medium to maintain the mirror (except when initially created). A client

may also instruct a mirror to autonomously refresh itself at regular intervals. This is

intended for state mirrors that are essential to the operation of the client but which are

Chapter 8: Concepts for Distributing the CIS

255

infrequently accessed and therefore not otherwise kept up to date enough. The

autonomous updates will occur in periods when there is an access window available.

In some cases the client may be able to use an alternative source for getting

information, e.g. when the national weather forecast is not accessible, it uses its own

barometer in order to make a guess. For this reason it is useful for the client to be able

to know when a mirror is being used rather than the real source, and what the

likelihood of error is.

8.2.6 Federation Design Summary

A CIS federation provides a means to distribute a CIS world over many physical

devices whose own CISs are each responsible for the maintenance of their part of the

shared world. The membership of the federation is agreed upon by all the members,

although some CISs may express more interest in a specific area of the federation than

others. Should the federation start to overload any one CIS in particular, the CIS can

delegate its communication responsibilities to a replicator hierarchy that dynamically

manages this external interaction load. If a CIS member is poorly connected to the rest

of the federation it can channel its communications through a CIS connector that

implements a communications strategy based on the characteristics of the connection.

Through such mechanisms the federation attempts to distribute the CIS world in a way

that takes into consideration overloading, connection characteristics (time, cost,

bandwidth, etc.), storage requirements, and timeliness/accuracy of the contextual data.

Although thought of specifically for a CIS environment, there are similar general-

purpose mechanisms to be found in the general distributed systems literature

[Tanenbaum 1994 - #140] [Slowman 1987 - #131] as is the case with the other

concepts presented in this chapter.

8.3 The Logical World Distribution Design Concept

The federation concept is well suited in coupling CIS worlds residing on different

devices into one seamless service whose underlying distribution is transparent to a

client. The resulting CIS world is presented to clients as one unified group of artifacts

that are the same in appearance as if they were residing on the same physical device.

CIS members of the federation collaborate in a peer-to-peer manner in order to

Chapter 8: Concepts for Distributing the CIS

256

maintain this distributed world. Such a distribution concept works well for a collection

of equal status CISs combining to form a super-CIS world, but it does not work as well

for collections of CISs whose individual roles are not in equilibrium. For example, a

tourist guide application may have a more client-server nature. The tourist office’s CIS

may provide contextual information to the tourist (although the tourist clients may also

contribute information about themselves) and the tourist’s CIS may only be interested

in viewing a specific subset of the federation members (e.g. just the tourist office’s CIS).

The tourist’s CIS is probably not at all interested in the creation and maintenance

processes, and consequent overhead, involved in being a federation member.

Additionally, although the tourist CIS may only be interested in only a few specific

artifacts within the federation it will receive information about all of them. The security

screening mechanism can ‘hide’ artifacts from the federation but this can only be used

to restrict what artifacts a member provides rather than allowing another member to

express ones that it is interested in observing. For example, in joining a federation with

the aim to communicate with the tourist board’s CIS the tourist’s CIS will also be

directed to negotiate links with all the other members of the federation (such as all the

other tourists) which is certainly not very desirable.

This tourist application example highlights the need for a distributed CIS world that

can be consulted without necessarily becoming a full-blown member to do it. Tourist

CISs are primarily concerned with viewing a collection of CISs containing tourist

information rather than taking part in the management of such a collection. However,

the limitations are not just on the client side. Take, for example, a tourist CIS federation

that contains details of artifacts in London. Such a federation would be fine if the

information were held on a set of CISs that contained only the information that was of

interest to London. However, perhaps ABC cinemas have a CIS containing artifacts for

each of their cinemas across the country. It would be extremely inefficient to have to

join the London tourist federation simply to contribute a single cinema artifact to it. To

summarise, federations are good at combining CISs that consist of entirely related

worlds or artifacts but not for partial or customised groupings or for groupings of

members with logically unequal roles.

A logical world provides an alternative distribution concept for applications in which a

federation is unsuitable. Logical worlds support passive viewers and work at the level of

Chapter 8: Concepts for Distributing the CIS

257

sharing artifacts rather than sharing worlds. Instead of a member CIS contributing all

the artifacts in the world that it sees fit too, the logical world filters out the artifacts that

are of interest or have a common theme or grouping. The idea of logical worlds is

based on the premise that there will be sets of logically related artifacts that can be

defined in advance of a need, and that these will be useful to more than one client.

8.3.1 A Layered Model

The logical world contains a related set of artifacts that are drawn from various other

stand-alone or federated worlds. Note that the logical worlds are not a replacement for

federations: they offer a different and complementary service. Logical worlds could be

compared to views onto a relational database; they present a window onto a subset of

interesting artifacts taken from a number of stand-alone or federated CIS worlds, as

shown in the Figure 48.

Local World Layer

Logical World Layer

Federation Layer

Figure 48. The logical world draws on the artifacts of federated and local worlds for its membership.

The figure illustrates how the underlying local worlds, the federated worlds, and the

logical worlds exist as a series of conceptual layers in the CIS, with increasingly abstract

groupings with each higher level. The local world simply supports the artifacts that the

physical host device is aware of. The layer above allows federations of CISs to be

formed where CISs collaborate to provide a shared world. Finally, the logical layer

allows logical worlds to be formed that pertain to particular logical groupings of

Chapter 8: Concepts for Distributing the CIS

258

artifacts. At the local and federation levels a CIS presents one unified world but at the

logical layer there may be many different worlds presented.

8.3.2 Logical World Structure

The management of a logical world may be distributed across a number of CISs. This

management distribution may reflect the underlying distribution of the member

artifacts in local CISs. However, it could equally be undertaken by CISs that are

responsible for managing the world membership of artifacts that are not from their

own local world. In this way we have a very flexible way of distributing the

management load for the logical world. Additionally, instead of dividing the same

activities between CISs, different CISs may be responsible for different management

duties. These duties typically fall into two categories: world maintenance (managing the

underlying artifact membership) and world viewing (managing the viewing of the world

by clients of the CIS). Therefore, some managing CISs may undertake all

responsibilities, some may only assist in managing the membership, and others may just

act as windows for clients to look into the world. This structure results in three levels of

distribution:

 Management distribution.

 Client viewing distribution.

 Underlying artifact distribution.

A lightweight CIS could be constructed by utilising the logical world distribution. It

could simply manage the viewing of a remotely maintained logical world, i.e. provide a

world to its clients but take no responsibility for maintaining it. The processing load

would be substantially reduced and the sensor array and catalog components could be

removed from the CIS altogether (the archive may be kept if the client wishes to do any

archival work).

Unlike federations, where different CIS members could negotiate different views onto

the world, the logical world by its very nature presents the same view from any of the

managing CISs (if they have undertaken viewing responsibilities, of course).

Chapter 8: Concepts for Distributing the CIS

259

With the distributed management of membership there is the possibility that the same

artifact can be added to the world by different managers. To cope with this the list of

member artifacts that each manager maintains is also annotated with the parties

interested in each artifact, i.e. the manager or client that added the artifact. The artifact

is then not removed from the world until all the registered interests are removed (or if

the artifact is removed from the underlying source world).

8.3.3 Creating and Maintaining a Logical World

To form a group a description of its membership has to be defined. The easiest way to

achieve this is for the clients to explicitly define the individual artifacts that are of

interest. However, for most purposes it would be preferable to specify the membership

in a more abstract way. For example, people in the same room as me, all the white-

knuckle rides in a theme park, etc. This definition is dynamic as it refers to states of an

artifact that could change; therefore the artifact membership may also be continually

changing. To support such dynamic membership the client must also specify the

potential membership pool in the definition, i.e. those worlds whose artifacts the CIS

should check when evaluating the membership. The definition of a logical world thus

comprises the following elements:

 Logical world name.

 Static artifact member list.

 Dynamic membership conditions.

 Source worlds.

The process of creating and maintaining a logical world given this definition is now

examined. Firstly, by considering the issues involved in a stand-alone localised logical

world (albeit with artifacts from remote sources) and, secondly, considering a

distributed logical world.

8.3.3.1 Making a Local Logical World

First of all the CIS creates a new logical world and populates it with the list of static

members. It then evaluates the dynamic membership by matching the artifacts of each

Chapter 8: Concepts for Distributing the CIS

260

of the source worlds with the set of dynamic membership conditions, e.g. all people

whose location is within 50 metres of my office. The formation of the logical world is

now complete.

Keeping the world up-to-date after its creation involves re-evaluating its dynamic

membership. This could be carried out in a top-down fashion, where the logical world

continually queries the underlying worlds, or in a bottom-up fashion, where the

underlying worlds inform the logical world of any new matching members or existing

members that should now be removed. However, to prevent over-loading the

underlying worlds (especially likely if dealing with continually changing states such as

location) a top-down approach is taken that places the burden of processing on the

logical world. Therefore, the logical world needs to poll the underlying local worlds at

intervals to re-evaluate the dynamic membership.

The polling interval could be defined as a set period after which the whole dynamic

membership of the logical world is re-evaluated. However, this is both time-consuming

and often a wasteful approach because different artifacts are liable to change at

different rates. What is required is a more targeted form of polling that permits

different polling intervals for different artifacts. For example, people every hour, cars

every five minutes etc. Different intervals can be targeted at specific artifacts, general

types of artifacts, or even the whole world. There are also two special types of interval:

continuous, for a constantly updated membership, and never, for members that never need

to be updated (e.g. the location of the Pizza Hut is unlikely to change). Clients can also

inspect when membership was last updated and if necessary call for an explicit update

of a portion or all of the logical world. These mechanisms combined allow the client to

define an updating strategy that is appropriate for both the accuracy required by the

application and the amount of processing resources to expend.

 The client is generally responsible for managing the static membership, i.e. artifacts

explicitly added and removed from a group. However, the client may specify a lifetime

when adding an artifact into the logical world and when this lifetime expires the CIS

will automatically remove it. Without a specified lifetime the CIS leaves it in the logical

world for as long as clients are interested in it.

Chapter 8: Concepts for Distributing the CIS

261

8.3.3.2 Making a Distributed Logical World

In addition to having the member artifacts from distributed sources the logical world

itself may be managed in a distributed way. The same general processes and

mechanisms explained in the local logical world are still used in a distributed logical

world but with a few additional steps and mechanisms to allow for their distributed

operation.

The main difference is that the logical group is created in sections rather than as one

whole definition. When the client requests that a logical group be formed it can specify

that it would like it to be distributed. This results in a repeating interaction with

between CIS and the client to organise the distribution, as show below:

1. The client informs its local CIS of the logical world it would like to create.

2. The client informs the local CIS of a CIS that it wishes to delegate some of the management and

viewing duties to. The management duties may consist of only part of the overall definition of the

logical world. Viewing duties consist of providing clients with access to the logical world.

3. The local CIS communicates with the specified CIS (if not itself) and issues the duty request.

4. If the request is accepted the client may move on to the next part of the distribution by returning to

step 2 while there are still more duties to delegate. If not accepted the client may return to step 2

and try to assign the same duties to another CIS, or simply abort the process.

This process establishes the initial distribution but this may be modified over time by

adding and removing new CISs and altering the membership definition. For example, a

client may decide to add a new CIS to take over some of the duties of another or to

take on a new additional part of the membership definition. Merging of two logical

worlds may also be performed to produce one common world, e.g. combining the

‘people in office’ and ‘people in corridor’ logical worlds into one ‘people near my

workplace’ logical world.

8.3.4 Logical World Design Summary

The logical world provides a means to group a set of logically related artifacts that may

be distributed across a number of underlying CIS local worlds and to present them to

Chapter 8: Concepts for Distributing the CIS

262

clients as a single logical world. The grouping can be defined in abstract terms that

allow members to join and leave the world dynamically as their states change. In

addition to the distribution of the artifact members, the management processes of the

logical group itself may also be distributed across a number of CISs.

These features allow for a much more sophisticated and flexible model of distribution

than federations but one that is also much more complex.

8.4 The Self-Forming Distribution Design Concept

Both federations and logical worlds require some degree of participation by the clients

in order to specify the distribution configuration. However, for many clients it would

be desirable to simply use the local CIS without any participation in its underlying

distribution and have it transparently and autonomously provide access to remote

artifacts that are of specific interest to it. In essence, incorporating artifacts of interest

to the local CIS as and when they are needed with no formal grouping infrastructure to

manage.

Logical worlds are limited to groups of related artifacts that can be specified in advance

and are of common interest to clients, e.g. a logical world of artifacts for Leicester

Square. Instead of this the self-forming distribution model can dynamically add and

remove remote artifacts from the local CIS world, tailoring it to be of direct interest to

its clients and requiring no help from them in distribution and group set-up. There is a

need for federations to support the low-level distribution of a large CIS over a number

of computers, and there is also a need for logical worlds to support groupings of

artifacts of general interest to many different clients. However, the self-forming

distribution model addresses another area: that of providing a world whose

transparently distributed artifact membership is dynamically and autonomously updated

to reflect the current interests of its clients.

There are two main challenges in the design of a self-forming autonomous distribution:

(1) finding remote worlds and (2) managing the transparent and dynamic incorporation

of relevant artifacts from those remote worlds into the local CIS’s world.

Chapter 8: Concepts for Distributing the CIS

263

8.4.1 Finding Worlds

To incorporate remote artifacts into the local CIS world the first step has to be the

discovery of remote worlds that form the source of these artifacts. CIS keys (as

described in the earlier section on federations) provide an ideal method of remote CIS

discovery. Thus far they have only been considered as in-situ contact information

automatically presented by a device in order to discover connections to a remote CIS.

An example was previously given of a tourist entering an airport whereupon his PDA

detects a number of keys that are being wirelessly broadcast. This section shall go into

more detail of the services they provide and how they provide them.

A key simply contains a description of how to contact a remote CIS, e.g. details of a

dial-up connection. The important aspect of keys, however, is their embedded nature.

A local CIS discovers the key when it is in a particular physical context such as the

airport. Rather than a global centralised hierarchy of CISs that need to be looked up

like a DNS, embedded keys allow access points to remote CISs to be situated and

distributed in the contexts where they may be required. The key is physically situated in

a particular contextual space and can be discovered by a CIS when it also present in

that space. Of course, it is then up to the local CIS to decided if it wishes to use the

remote CIS or not.

Keys may be embedded equally well in both the real and virtual world. For example, a

key may be placed at the physical entrance to Alton Towers but also embedded as

meta-data to be discovered when examining the theme park’s web page (in effect

linking content to context). To support the discovery of keys in different contextual

spaces different technologies can be employed. To embed the key in a physical

contextual space (e.g. at the entrance to the theme park) some form of ‘black box’

device may be physically embedded in the pavement to wirelessly transmit the keys (e.g.

via Bluetooth). Note that the contextual space of the black box and the key are not

necessarily the same, e.g. the key may exist in the same location space but only be

present during 9am-7pm. For more virtual and abstract contextual spaces such as a

Web page there may be no need for any ‘key server’ technology as the CIS can just

search the viewed Web pages for keys. This will require some explicit effort on the part

of the local CIS. Virtual objects such as applications (including web browsers) and

system processes could also present keys to the CIS through some ‘plug-in’ type

Chapter 8: Concepts for Distributing the CIS

264

mechanism. Finally, the local CIS itself may contain some keys that it uses when their

context matches that of some other specified artifact. In this case the keys are

discovered by an internal process rather than being presented by an external force.

An interesting aspect of using physical ‘black-box’ devices to transmit keys is that their

location may be relative or proximity-based rather than absolute. For example, rather

than attached to the entrance of Alton Towers, a black-box could be embedded in a

moving object such as a bus, robot, cruise ship, printer, dog, tank, person, etc. Keys to

the CISs of these devices could therefore be discovered when coming within proximity

of them (or even in contact of them). It maybe that the CIS for, say, a person, resides

on some network far away but they have a little black-box attached to them that

transmits the key (perhaps in the form of the CIS’s network address) to other persons’

or devices’ CISs within range of the transmission. To the device or person the remote

artifacts describing the person become available transparently as they approach them.

Remote CIS

Worlds Keys & key
servers

Remote Artifact
ReferencesTransmitted Keys

Local CIS
World

Artifact
representing
remote rhino
tracker CIS

Dog

Alton
Towers

Entrance

Alton
Towers

Web Page

Device
Operating
System

Jason’s
Pets CIS

Alton
Tower’s

CIS

Rhino
Tracker

CIS

System
State
CIS

Figure 49. Keys from a variety of sources are discovered and used as a pool of artifacts from which ones of
interest are entered into the local world in the form of a reference.

In summary, embedded CIS keys act as filtering and grouping mechanisms that allow

remote CIS worlds to be discovered when and where they are needed. They can be

thought of as a multi-contextual indexing mechanism into a planet filled with CIS

Chapter 8: Concepts for Distributing the CIS

265

worlds, where the current index is derived from the current contextual space of the

local CIS. Figure 49 illustrates the discovery of keys and the ensuing flow of interesting

artifacts from the remote CISs.

The key servers are totally distributed with probably no connection to any other system

except for clients who enter the same context. In this way the system can be infinitely

scaled as there is no performance impact as new key servers are added (because they are

disconnected from anything else other than clients in the same context space).

8.4.2 Incorporating Relevant Artifacts

Finding the remote CISs is only the first stage of formation in a self-forming group.

The next stage involves selecting artifacts that are of interest or relevance in the remote

world and transparently adding references to them in the local CIS world. Simply

adding all of the artifacts from the remote world is not a good idea as the local world

would quickly fill up with references of no use whatsoever. However, to select artifacts

of relevance the local CIS needs to know what its clients’ interests are. There are two

methods of doing this:

i. Home Artifacts. When creating an artifact template the designer can specify a

profile of what is of interest to that artifact, e.g. for a person artifact template an

interest may be specified in all things within 20 metres. When an artifact is

created from a template and added to a CIS world its interests are normally

ignored. However, there may be certain artifacts within the world that represent

the entities that CIS clients are working for, e.g. the ‘user’ artifact. These

artifacts can be nominated as home artifacts and as such their interests will be

used in determining which of remote artifacts will be incorporated into the local

CIS.

ii. Explicit Interests. Some clients may have temporary interests or simply interests

that are not related to any artifacts represented in the local CIS world. In such

cases they can register an explicit interest that is the same in form and function

as those used for home artifacts.

Both types of interest are essentially a form of query that use artifacts, types of artifacts,

or states of artifacts as their terms. These interests may also be conditional, i.e. the

Chapter 8: Concepts for Distributing the CIS

266

interest only exists under certain circumstances. For example, a tourist artifact may be

interested in restaurants if lunchtime is approaching and she has made no reservations

as yet.

After discovering a key to a remote CIS the local CIS compares the explicit and home

artifact interests with the artifacts in the remote world. Any remote artifacts that match

an interest are stored as references in the local CIS world. These references are linked

to the interests that brought them to the local world, and if all interests in a reference

disappear then it is removed from the world. This process is relatively straightforward,

but the maintenance of the remote references due to changing interests and artifact

states is more complex.

To maintain references to distributed artifacts, as the states of artifacts in the remote

worlds that the local CIS knows of change, local references should be added or

removed as appropriate for the current interests. The local CIS must undertake the

responsibility for detecting the state changes in the remote artifacts because the remote

CIS probably has no interest in the matter. This implies that the local CIS must

intermittently check the remote artifacts; a polling system rather than the external

event-driven nature of remote world discovery. When and how much an artifact

changes is unpredictable and hence leads to the problem of deciding when to check the

remote world. Polling at fixed intervals is a poor solution as each artifact may have

vastly different rates of change; also the clients may require different levels of accuracy.

To solve these problems an update interval is supplied with each of the interests so that

the clients can define what granularity of accuracy they require on membership of

different artifacts, e.g. busses could have an update interval of 30 seconds. The interval

specifies the time between evaluations of an interest so that there is a guaranteed period

of rest, i.e. the interval is timed from the end of the last evaluation rather than when it

started (hence, avoiding overlapping evaluations). A reference is time-stamped with the

time of its last evaluation so that clients can determine the currency of its membership

(especially useful if there is more than one interest for a reference).

Another maintenance problem is the build up of discovered keys as the CIS moves

around the world. Each key that the CIS finds is used to add another remote CIS to the

list of those checked when evaluating interests. If keys are not disposed of when no

longer of use the local CIS will quickly become deluged with hundreds and thousands

Chapter 8: Concepts for Distributing the CIS

267

of remote artifacts it needs to check when evaluating interests. Therefore, there

certainly needs to be a way of disposing of keys when they are no longer needed. But

how does the CIS judge when a key is no longer needed? The number of remote

references to that key is not a valid indicator, especially if artifacts frequently come and

go from the remote CIS. A better method is to define the contextual space of the whole

remote CIS itself. This contextual space can be transmitted as part of the key and

subsequently used by a local CIS to compare with its own interests. If there is no

overlap between the local interests and the contextual space of the remote CIS then the

remote CIS and key can be thrown away. This overlap checking can be ‘piggy-backed’

onto the evaluations of each interest, with only a minor processing cost equivalent to

evaluating the membership of one more remote artifact. We can therefore ensure that

there are no redundant keys being kept.

If local CISs move directly out of the contextual space of a remote CIS this solution

works well. However, if they tend to hover around the edge of the contextual space it

will cause the client to be continually flipping between discovering and disposing of the

key, which is liable to cause considerable processing overhead. This ‘hovering effect’ is

caused by placing two transitions on one boundary, i.e. discovery and disposal occur on

the same boundary but by crossing it in different directions. This problem can therefore

be solved by creating two separate boundaries: one for discovery and one for disposal.

Now a remote CIS will not be discovered until crossing the discovery boundary and

will not be disposed of until exiting the disposal boundary. The discovery boundary

describes the contextual space that the key inhabits in terms of a local CIS discovering it.

The disposal boundary describes the contextual space that remote CIS inhabits in terms

of a local CIS not disposing of it. There may also be a need for an extra space in which

the key is not used but not disposed of either; a kind of buffer zone so that should the

client re-enter the discovery space it already has the key to hand. This ‘onion’ of spaces

described by a key is illustrated in Figure 50.

Ideally these spaces could be specified relative to the device on which the local CIS

resides, therefore being equal to all devices. For example, five minutes from the space is

more universal than 2 miles because a person may take 20 minutes to walk 2 miles

whereas a car may take 1 minute. Specifying the time-to-return is universal for all objects.

It could also be a useful measure in ignoring keys whose contextual space the local CIS

Chapter 8: Concepts for Distributing the CIS

268

will only be within for a very short time. These indirect forms of specifying contextual

distance make an interesting area for future research.

Disposal Boundary.
The CIS interests must
move outside of this
boundary before the key
to the remote CIS is
disposed of.

Discovery Boundary.
This CIS interests must be
inside this contextual
boundary to begin using
the remote CIS.

Disuse Boundary.
The CIS interests must
move outside of this
boundary before the
remote CIS is disused.

Remote Artifacts.
Artifacts of the remote
CIS world are situated
somewhere within its

contextual space.

Figure 50. Contextual boundaries used in discovering, disusing, and disposing of CIS keys.

Note that the same “hovering effect” problem occurs in triggering, and the same

contextual boundary solution can be applied to solve it.

8.4.3 An Agent Based Approach

The autonomous nature of the self-forming distribution model makes it well suited to

employ software agent technology [Kalakota, Stallaert 1996 - #70]. The following sub-

sections describe a set of three specialised agents that could work on behalf of a CIS in

the provision of self-forming groups.

8.4.3.1 The Key Agent

The key agent continually works in the background, as do the others by their nature as

agents, looking for keys in various places. The agent relies on a set of customisable

modules that operate in specific domains, e.g. one for listening for infrared key

broadcasts, another for examining a browser’s current web page for embedded keys,

etc. These domain modules can be turned on and off, new ones added, and current

ones removed, and other concurrently running programs can dynamically register as

modules.

Chapter 8: Concepts for Distributing the CIS

269

In the tourist application where a tourist may wish to make her CIS available to the

world, the key broadcast by her palmtop computer may refer interested parties to a

replicator residing on her home PC rather than the local CIS on her palmtop. This

delegates the external accessing of her CIS to a computer with more processing and

communications resources than her limited palmtop device. The local CIS will update

the replicator at given intervals and clients of the replicator can examine the time of the

last update.

Rather than broadcasting access information to every person and device who cares to

use it, some clients may want to restrict who can view the information. This is achieved

by encrypting the contents of the CIS key so that only devices that have been given the

appropriate public-key (in the encryption sense of the term) can decipher the contents

and attempt to access the remote CIS. Others without the public-key will still discover

the CIS key but be unable to use it. Even those who do successfully decrypt the key will

face another level of security at the remote CIS in the form of the security screener.

8.4.3.2 The Interest Agent

The interest agent is responsible for continually maintaining the membership of

references to remote artifacts within the local CIS world. The key agent passes the

interest agent any keys that it discovers, which are then used by the interest agent to

form the source pool of remote artifacts that it must check for membership. This

membership evaluation is executed by spawning a new process for each interest present

within the CIS. These timer-driven processes perform the evaluation at the rate

specified by the interest’s interval, checking all the artifacts from each remote CIS

whose contextual discovery space they lie within. They also time-stamp introduced

references each time they are evaluated so that clients can query the currency of their

membership. If interests lie outside of a remote CIS’s disuse boundary then the interest

checking process does not use that remote CIS as part of the source pool of artifacts to

evaluate (and references already present from that remote source are removed). The

interest agent regularly downloads a new copy of the remote CISs contextual space

definition as it is possible that it will change over time.

The interest agent monitors the interests and makes sure that if one disappears, if its

conditions are no longer met, or if it changes form, that the related interest process and

Chapter 8: Concepts for Distributing the CIS

270

references are removed or updated accordingly (taking into account multiple interests in

a reference). If an interest is simply modified then the related process carries on as

normal but the client can request that the next scheduled evaluation be brought

forward (the interval remains the same thereafter).

The interest agent is also responsible for interest, or rather lack of interest, in keys and

their appropriate disposal. As long as there is one interest inside the disposal boundary

then the key is kept, but as soon as it detects that there are none remaining the interest

agent disposes of the key. Clients interested in a particular remote artifact may place a

hold on the reference so that even if it or its remote CIS are no longer of interest the

agent will not remove it until the client withdraws the hold. A hold may also be placed

on a key so that it is retained despite having no related interests: in effect its disposal

boundary becomes infinite.

8.4.3.3 The Cache Agent

The cache agent uses the same basic scheme as devised for federations, whereby an

algorithm based on the amount, frequency, and time of accesses to a remote state are

used to provide an automated caching scheme. However, the cache agent could also

exploit an importance attribute specified on each interest to help determine which

remote states to cache, honing its search on poorly connected but important artifacts.

Should a remote state be unavailable when a client tries to access it, the cache agent

intercedes with the cached value, which it annotates with the date it was last updated.

8.4.4 Self-Forming Design Summary

The self-forming distribution model is concerned with dynamically populating the local

CIS world with references to remote artifacts that are likely to be of interest to the local

CIS. The result is a transparently distributed world of artifacts that is tailored to the

needs of the local CIS’s clients. The autonomous maintenance of this distribution is

carried out by three agents: (i) a discovery agent that finds remote CISs through a

variety of methods, (ii) an interest agent that assesses which remote artifacts should be

included as references in the local world, and (iii) a cache agent that attempts to store a

local copy of important remote states for use in periods of disconnection.

Chapter 8: Concepts for Distributing the CIS

271

8.5 Conclusion and Future Work

In the preceding two chapters we have presented the idea of a context information

service and described a prototype implementation. In this final chapter of the thesis we

have explored how the context information service could potentially be distributed, as

we believe that for many context-aware applications the ability to access remote

contextual information will not just be useful but essential. In this chapter we have

proposed a number of design concepts for structuring the distribution of the context

information service.

The first concept for a distributed CIS was based on the idea of connecting separate

and remote CISs into one co-operating super-CIS, or federation. The federation provided

a flexible way of managing a distributed but common world of artifacts, with internal

and external access control mechanisms and a scheme for coping with the overloading

of individual CIS members. Federations present a good method of distributing a unified

service over physically separate devices, but they do not provide any facilities for

working with sub-sets or groupings of related artifacts. The second concept, called

logical worlds, addresses that problem by allowing a logical world to be defined that

consists of artifacts of a common theme that are drawn from a number of remote CISs.

The management of a logical world can also be distributed in a very flexible manner

allowing different members to undertake different amounts and types of management

duties. A logical world is a good way of collecting related remote artifacts into a

common pool that a number of CISs are interested in and willing to manage. The final

concept, a self-forming distribution, works on behalf of the interests of a single CIS

rather than a collective of mixed interests. Through a set of three autonomous agents it

seeks to provide the local CIS with access to all the remote artifacts it can discover (and

that are of interest to the local CIS) in a completely transparent and autonomous way.

The three distribution concepts have different characteristics that will make them

suitable for different types of applications. However, within the scope of this work we

have only sought to establish the CIS distribution design concepts. The refinement of

these concepts into more formal models, the development of prototypes, and their

trials within different application areas, we leave to future work.

Chapter 8: Concepts for Distributing the CIS

272

273

CChhaapptteerr 99::

SSuummmmaarryy aanndd CCoonncclluussiioonn

We propose that through PDAs, wearables, and ubiquitous devices, computing

technology is becoming more and more integrated with us and our everyday world.

Unlike the stable static environment of desktop computers, which can rely on the user

working within the virtual desktops that they present, these new forms of computing

device will find themselves immersed in highly dynamic physical environments, in

which the computer must take more responsibility in integrating itself into the user’s

world rather than vice versa. Context-awareness is a key enabling factor in supporting

computers in these new environments, enabling them to sense their physical (and

sometimes virtual) context and react and adapt to it in order to provide better, more

appropriate, or completely new services to the user.

The ambition of this thesis is to demonstrate the new application possibilities which

context-awareness presents and that by providing the necessary supporting architecture,

user interface guidelines, and better understanding of context itself, will encourage,

enhance and support the creation of context-aware software. The diagram in Figure 51,

first presented in the chapter one, illustrates the areas of the context-aware research

domain to which this thesis has contributed. The grey area with the dashed outline does

not intend to show the amount of work in each area, but rather the scope of this work

within the whole domain. For example, our context-aware infrastructure work is very

broad in scope, aiming to support any context-aware software, whereas our applications

research is tightly focused on fieldwork activities (although, of course, there are many

lessons from this work that can be used in other types of application too).

Chapter 9: Summary and Conclusion

274

9.1 Overview of Contribution

In the following sections we summarise our work in each of the context-aware software

layers, as illustrated in the diagram below, describing the contribution that we have

made and suggesting areas for future work.

new hardware: computing devices, sensors, and communications

context-aware infrastructure

application-specific infrastructure

applications

user interfaces
Chapter 5

Chapter 4

Chapter 3

Chapter 2

Chapter 6

Chapter 7

Chapter 8

Figure 51. Illustration of the areas in which this thesis has contributed.

9.1.1 User Interfaces

In our user interface work we made a distinction between a mobile device that is used

statically, and a mobile device that is used whilst mobile. The latter case of mobile usage

was our main area of interest and was the focus of our investigations in the ecology

fieldwork application domain.

We identified four attributes of mobile workers: “dynamic user configuration”, “limited

attention capacity”, “high speed interaction” and “context dependency”. We found

context-awareness to be useful in helping computing devices better address some of

these issues in their user interfaces. We also invented the MAUI, a user interface that

Chapter 9: Summary and Conclusion

275

aims to reduce the attention required of the user, but not necessarily the number of

interactions. This is achieved through an appropriate selection of modes of interaction

for a particular activity. In an attempt to enable other developments to effectively reuse

the principles that we have discovered, we devised a general-purpose system whereby

the characteristics of the user’s activity and of the different user interface mechanisms

available could be plotted onto tables, from which their compatibility could be

compared. A designer can build up a library of these tables to support the design of

future user interfaces, helping achieve the ‘minimal attention’ in the ‘minimal attention

user interface’ through the effective use of modes of interaction that least distract or

interfere with those that the user is employing in her current activity.

9.1.1.1 Contribution

This user interface work contributes by providing a better understanding of the

characteristics of the users and environments that new types of computing device

intended for mobile usage will face. We have also created the novel concept of MAUIs,

and have described and demonstrated how user interfaces can be created for mobile

devices in order to best suit their user’s activity. And through our method of identifying

the preferences and restrictions in different modes of interaction for both activity and

user interface controls, we have provided a concrete way in which designers can easily

employ these design guidelines.

9.1.1.2 Future Work

Although we have presented two practical implementations of the MAUI concept in

the user interface (a thumb-operated control for one-handed use, and a tactile control

for eyes-free use), a great deal more work is required in creating new types of user

interface controls to support different modes of interaction. Work is also required in

investigating how these controls can be bound together to form coherent user

interfaces. An important aspect, which was beyond the scope of our thesis research, is

in combining the context-aware and MAUI techniques. Rather than creating static user

interfaces, context-aware MAUIs could enable user interfaces to dynamically and

autonomously change so as to continuously present themselves in the most suitable

form for the user.

Chapter 9: Summary and Conclusion

276

9.1.2 Applications

Our focus for applications research was in the domain of fieldwork, where we

collaborated with a group of ecologists on a number of relatively large-scale

experiments. We applied the concept of stick-e notes as a basis for some data collection

fieldwork software we created, running on a PalmPilot device connected to a GPS

receiver. This suite of three context-aware applications enabled an MSc ecology student

to complete her summer of giraffe observation fieldwork in less time, and with more

data collected, than would have been possible without the tools.

In addition to the generic data collection tools, we also developed a rhino identification

tool in which context played an important role. A number of context elements, such as

the location, footprint dimensions, substrate and footedness, were utilised in a program

that aided ecologists in identifying the rhino whose footprint had been discovered.

Besides illustrating the exciting new possibilities of context-aware software for new

computing devices, we also wished to use these applications to examine if they would

be as useful as our (and others’) work had suggested. To this end we conducted an

extensive usability study with forty ecology fieldwork volunteers over a period of five

months. These volunteers came from a wide variety of backgrounds, with a large

percentage of them being novices to both computing and fieldwork. Their acceptance

of our tools was unanimous with all participants preferring them to the manual paper-

based solution, and with the majority of individuals managing to learn how to use them

within half an hour, and feeling comfortable with the technology within their first day

of fieldwork. The top four reasons given for the tools’ popularity were faster data entry

data (some fields, such as location, being automatically completed), an increase in

efficiency with less work and writing, easier transcription of the data (automated

download), and less chance for error (by automatic collection of complex data such as

location, and through standardised forms with embedded input validity checks).

9.1.2.1 Contribution

Our work on applications has demonstrated how new types of practical context-aware

computing tools can be employed in new application domains, which in this case had

previously been without any form of computing support. The applications have shown

how context-awareness can be used effectively, and through these applications we have

Chapter 9: Summary and Conclusion

277

contributed to a better understanding of context-awareness, stick-e notes, and the

surrounding processing and user interface issues. To establish whether these new types

of computing technology would actually be useful to real users in their everyday work

environments we conducted an extensive usability study. The result was resoundingly

positive in that the acceptance by users was unanimous, and the application of context-

awareness well received.

We hope that these applications will actively encourage future work on building new

context-aware software in new application domains, fieldwork being just one such

domain. We hope that the demonstrated user acceptance of the fieldwork tools will

help to show that, rather than fanciful ideas, these new concepts and devices can be

very successful and useful in helping user’s with practical real-world activities.

9.1.2.2 Future Work

With regard to the fieldwork tools in particular, in future work we would like to build

better user interfaces based on our HCI research and employ more types of sensor to

enable better context-awareness. There is also the possibility for other types of

application for the field that concentrate on presenting data to researchers and/or

tourists, rather than in collecting and recording it. It is likely that such applications

could make much fuller use of the triggering concept and perhaps incorporate wireless

communications technologies in order to bring remote digital resources out into the

appropriate context in the field.

9.1.3 Application Infrastructure

Our first foray into context-awareness was in the development of the stick-e note

framework. Stick-e notes were based on Brown’s concept of an electronic Post-It note

[Brown 1996 - #15], allowing digital data to be attached to physical contexts just as

how a paper-based note could be attached to a physical object using conventional Post-

It notes. The stick-e note proved to be much more versatile than its manual

counterpart, potentially allowing any form of digital data to be attached to any form of

context or combination of contexts, e.g. location, temperature, time, etc.

Chapter 9: Summary and Conclusion

278

We designed the stick-e note framework to provide a foundation for applications that

need to work with electronic resources associated with physical contexts. Application

processing revolved around three fundamental processes: attaching (where electronic

data is attached to physical contexts), matching (where stored stick-e notes are

compared to see if their context matches the current context), and dispatching (where

any stick-e notes that matched are delivered to interested clients). The application data

was stored as stick-e notes, consisting of context and content data.

9.1.3.1 Contribution

The stick-e note framework was our initial attempt at supporting context-aware

application development through a generic storage and processing model (i.e. stick-e

notes and the attaching, matching, and dispatching processes). Although not covering

all types of context-aware applications, we provided a good model for those that work

with data that is in some way associated with the physical world. A key part of this

model is triggering, where electronic resources associated with a set of physical

conditions are automatically delivered to interested clients when those conditions occur.

9.1.3.2 Future Work

We believe that the application semantics that the framework provides are very useful,

but rather than providing all the services from capturing context to delivering stick-e

notes, it should focus solely on the functions directly involving stick-e notes. In future

work we would like to replace the indirect functions with the context information

service that we summarise in the following section. We believe that in the future

context-aware services will be developed as stacks, with basic context-capturing services

at the bottom supporting more application-specific ones, such as stick-e notes, at the

top.

More effective triggering engines is a specific area of concern for future work, as is the

need to present triggering to the user in a more comprehensive and understandable

way, e.g. explanations of what caused the triggering, providing “early warning systems”

and not just a binary triggered event, and presenting (and working with) context data in

more understandable forms than the raw data extracted from sensors. Of course, there

Chapter 9: Summary and Conclusion

279

is also a need for work on complementary application frameworks to support other

types of applications in which stick-e notes are not appropriate.

9.1.4 Context-Aware Infrastructure

After completing our work on context-aware applications we re-examined the nature of

context and context-aware applications. Finding each to be more complex than we had

supposed at the beginning of our research we were forced to re-evaluate the role of our

supporting infrastructure, which at that point consisted solely of the stick-e note

framework. We defined a lower-layer piece of supporting infrastructure which we called

the “context information service”. The responsibilities of this service are to gather,

model, and provide contextual data, i.e. the general functionality that is required at the

heart of all context-aware applications. It is the common base on top of which more

sophisticated context-aware capabilities and applications may be built.

We performed a thorough examination of research in the area, selecting eleven

infrastructure projects in particular with which to examine the current state of the art.

We divided the functionality that we believed to be necessary of a context information

service into five layers: sensor support, context extraction mechanisms, context data

type support, context model, and client interface. We also considered the ability to

distribute the service’s sensors, context model, and processing. Examining each project

layer by layer we found that most work had biases to particular types of application or

context, and that none provided what we regarded as a complete solution. This state of

affairs led us to propose our own solution for a context information service consisting

of a set of service components and modelling components that can be used to

represent and monitor the context of physical and virtual objects. We also outlined

some initial ideas for distributing the CIS.

9.1.4.1 Contribution

We have contributed to the understanding of context and context-awareness,

developing a more complete view of their often-complex nature than other models. To

support context-aware applications in working with this context data we defined the

context information service, which forms the core support in a context-aware software

stack. We have specified the desirable characteristics of a CIS at five different levels of

Chapter 9: Summary and Conclusion

280

functionality, enabling the analysis of context-aware infrastructures and identification of

their strengths and weaknesses. Seeing the lack of a complete service in existing

solutions we have designed our own context information service that meets all of the

requirements and provides context-aware software developers with a simple yet very

flexible context-aware infrastructure. Finally, we have also presented some novel

concepts for the distribution of a CIS.

9.1.4.2 Future Work

We welcome further work on using our definition of a CIS to evaluate other services

and to help extend them to form a complete CIS. Perhaps further research will also

require additions and adaptations to the initial CIS requirements proposed here. In

regard to our own CIS design, a full implementation must be created and a number of

different client applications constructed in order to evaluate it conclusively, as is the

case for our suggested methods of distribution. Our proposals for distribution of the

CIS revolved around the world service component; further work is needed on how to

distribute the other service components.

9.2 Research Aims Revisited

Throughout this thesis we have explored context-awareness and expanded the

understanding of both context and context-aware applications. We have investigated

the need for infrastructures to support the development of context-aware applications

and have developed both an application-oriented framework and a context information

service, together these form the basis of a context-aware software stack. Through the

development of some specialist applications for fieldworkers we have demonstrated

how context-awareness can be effectively used to create compelling applications for

new types of computing technology in new application domains, and effectively shown

that people are eager to use them. In our user interface research we have presented

some guidelines for developing new types of user interface for these applications, and

also presented some new interface controls for eyes-free and one-handed use.

Our research has examined a slice of context-aware computing software spanning user

interface to underlying infrastructure, and has aimed to contribute at each level. We

believe that our infrastructure level research will lead to a better understanding of

Chapter 9: Summary and Conclusion

281

context and the means with which context-awareness can be more widely and easily

utilised. Our applications research demonstrates how these new technologies can be

used effectively, and how whole new application domains can be discovered. Finally

our user interface research provides the necessary guidelines to ensure that these new

applications will integrate with the world of the user and prove effective and

convenient tools.

In the introduction we defined the aims of the thesis in terms of three levels. We

conclude by revisiting each of these levels here and comment on our contribution:

Level 1: Infrastructure

Research Aim: to investigate if software infrastructure to support context-

awareness is required, and if so, to determine what services that infrastructure

should provide and how it should provide them.

Contribution: we developed a prototype application framework called stick-e

notes (presented in chapter two) and a number of context-aware applications

(presented in chapters two and three). These demonstrated the complex nature

of context and certainly showed the need for supporting infrastructure. We

further used our applications and framework research, and that of other

researchers, to support the development of a general set of requirements for a

context-aware infrastructure, as described in chapter six. Finally, a prototype

context information service was proposed to illustrate how such an

infrastructure could be realised and distributed, presented in chapters seven and

eight.

Level 2: Applications

Research Aim: to further the understanding of context and context-awareness

through empirical experiments, to explore practical applications of context-

awareness, and to find out if context-awareness can be usefully employed in

practice.

Contribution: all of our research on stick-e note frameworks (presented in chapter

two), electronic Post-It applications (also presented in chapter two), and data

Chapter 9: Summary and Conclusion

282

collection applications (presented in chapter three) helped to promote a further

understanding of context and how it can be used within applications. In chapter

six we condensed our findings from the different applications into a set of

characteristics defining context and a set of requirements of context-aware

applications. Finally, to ascertain a tangible measure of how useful context-

awareness is in practice, we performed an extensive field trial and usability study

(detailed in chapter five), which showed a very positive response towards our

context-aware applications (and the context-aware features in particular).

Level 3: HCI

Research Aim: to explore new methods of human-computer interaction for this

new area of computing, to determine their usability, and to establish some

general HCI design principles.

Contribution: using our prototype applications as a foundation, in chapter five we

explored the unique environment and characteristics of our users and

developed the concept of the Minimal Attention User Interface. This concept

emphasises the reduction of attention necessary by the user but not necessarily

the amount of interaction. We created some new hands-free and eyes-free data

input methods to put our ideas to practical use, and developed a general set of

MAUI design guidelines to aid in realising this concept in other applications.

In summary, we believe that our work has demonstrated the new application

possibilities which context-awareness presents and has defined the necessary supporting

software infrastructure, user interface guidelines, and better understanding of context

itself, that will encourage and enable the creation of context-aware software.

283

TTaabbllee ooff RReeffeerreenncceess
1. Abowd, G., CyberGuide: A Mobile Context-Aware Tour Guide, Wireless Networks, 1997(3), pp.

421-433.

2. Abowd, G.D., Dey, A., and Wood, A., Applying Dynamic Integration as a Software

Infrastructure for Context-Aware Computing, Georgia Tech, Atlanta, 1997, GIT-GVU-97-18.

3. Addlesee, M., ORL Active Floor, IEEE Personal Communications, 1997, 4(5), pp. 35-41.

4. Adly, N., Steggles, P., and Harter, A., SPIRIT: a Resource Database for Mobile Users, ACM

CHI'97 Workshop on Ubiquitous Computing, March 1997, Atlanta, Georgia, USA.

5. Asthana, A., Cravatts, M., and Krzyanowski, An Indoor Wireless System for Personalised

Shopping Assistance, IEEE Workshop on Mobile Computing Systems and Applications (WMCSA '99),

December 8-9 1994, New Orleans, USA, pp. 69-74.

6. Bailey, K., Stone Age Skills Meet the Challenge of the Techno-Age, The Times, 8th October

1997, London, pp. 16-17 (Interface section).

7. Bartlett, J., F, W4 - The Wireless World Wide Web, IEEE Workshop on Mobile Computing Systems

and Applications, December 8-9 1994, pp. 176-178.

8. Bennet, F. and Harper, A., Low Bandwidth Infra-Red Networks and Protocols for Mobile

Communicating Devices, Olivetti, 1993.

9. Bennett, F., Richardson, T., and Harter, A., Teleporting - Making Applications Mobile, IEEE

Workshop on Mobile Computing Systems and Applications, December 8-9 1994, pp. 82-84.

10. Bennett, P., Peter Bennett's GPS and NMEA Site, http://vancouver-

webpages.com/peter/idx_nmeadoc.html, Peter Bennett, 31/07/2001.

11. Bluetooth-Consortium, Bluetooth Homepage, http://www.bluetooth.com/, Bluetooth-

Consortium, 01/01/2001.

12. Borovoy, R., McDonald, M., Martin, F., and Resnick, M., Things that Blink: Computationally

Augmented Name Tags, IBM Systems Journal, 1996, 35(3&4), pp. 488-495.

13. Bowskill, J., Morphett, J., and Downie, J., A Taxonomy for Enhanced Reality Systems, 1st

International Symposium on Wearable Computers, 13-14 October 1997, Cambridge, MA, USA, pp.

175-176.

14. Brody, A.B. and Gottsman, E.J., Pocket BargainFinder: A Handheld Device for Augmented

Commerce, First International Symposium on Handheld and Ubiquitous Computing (HUC '99),

September 1999, Karlsruhe, Germany, pp. 44-51.

Table of References

284

15. Brown, P.J., The Stick-e Document: a Framework for Creating Context-Aware Applications,

EP '96, September 1996, Palo Alto, CA, USA, pp. 259-272.

16. Brown, P.J., Bovey, J.D., and Chen, X., Context-Aware Applications: From the Laboratory to

the Marketplace, IEEE Personal Communications, 1995, 4(5), pp. 58-64.

17. Brown, P.J. and Jones, G.J.F., Context-Aware Retrieval: Exploring a New Environment for

Information Retrieval and Information Filtering, Personal & Ubiquitous Computing, 2001, 5(4),

pp.253-263.

17a. Brown, P.J, Burleson, W., Lamming, M., Rahlff, O-W., Romano, G., Scholz, J., and Snowdon,

Context-awareness: some compelling applications,

http://www.dcs.ex.ac.uk/~pjbrown/papers/compelling.html, 31/07/2001.

18. Bruegge, B. and Bennington, B., Applications of Mobile Computing and Communication,

IEEE Personal Communications, 1996(February), pp. 64-71.

19. Butz, A., Hollerer, T., Feiner, S., McIntyre, B., and Beshers, C., Enveloping Users and

Computers in a Collaborative 3D Augmented Reality, IWAR '99, October 1900, San Francisco,

CA, USA, pp. 35-44.

20. Chavez, E., Ide, R., and Kirste, T., SAMoA: An Experimental Platform for Situation-Aware

Mobile Assistance, IMC '98, November 1998, Rostock, Germany.

21. Cheverst, K., Davies, N., Mitchell, K., and Friday, A., Experiences of Developing and

Deploying a Context Aware Tourist Guide: The GUIDE Project, MOBICOM 2000, August

2000, Boston, MA, USA, pp. 20-31.

22. Cheverst, K., Davies, N., Mitchell, K., Friday, A., and Efstratiou, C., Developing a Context-

Aware Electronic Tourist Guide: Some Issues and Experiences, CHI 2000, April 2000,

Netherlands, pp. 17-24.

23. CORBA, CORBA Homepage, http://www.corba.org/, CORBA, 31/07/2001.

24. Davies, N., Cheverst, K., Mitchell, K., and Friday, A., Caches in the Air: Disseminating

Information in the Guide System, 2nd IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA '99), February 1999, New Orleans, USA, pp. 11-19.

25. Davies, N., Friday, A., Wade, S., and Blair, G., L2imbo: A Distributed Systems Platform for

Mobile Computing, ACM Mobile Networks and Applications (MONET), 1998, 3(2), pp. 143-156.

26. Davies, N., Wade, S., Friday, A., and Blair, G., Limbo: A Tuple Space Based Platform for

Adaptive Mobile Applications, International Conference on Open Distributed Processing/Distributed

Platforms (ICODP/ICDP'97), May 1997, Toronto, Canada, pp. 291-302.

27. Demers, A.J., Research Issues in Ubiquitous Computing, 13th Annual ACM Symposium on

Principles of Distributed Computing, 14-17 August 1994, Los Angeles, CA, USA, pp. 2-9.

Table of References

285

28. Dey, A. and Abowd, G., The Context Toolkit: Aiding the Development of Context-Aware

Applications, Workshop on Software Engineering for Wearable and Pervasive Computing (SEWPC), June

2000, Limerick, Ireland.

29. Dey, A., Abowd, G., and Salber, D., A Context-based Infrastructure for Smart Environments,

MANSE'99, December 1999, pp. 114-128.

30. Dey, A., Salber, D., and Abowd, G., The Conference Assistant: Combining Context-Awareness

with Wearable Computing, ISWC '99, October 1999, San Francisco, CA, USA, pp. 21-28.

31. Dey, A.K. and Abowd, G.D., CyberDesk: The Use of Perception in Context-Aware

Computing, PUI 97 Perceptual User Interfaces Workshop, October 1997, pp. 26-27.

32. Dey, A.K. and Abowd, G.D., CybreMinder: a context-aware-system for supporting reminders,

Personal Technologies, 2000, 4(4), pp. 172-186.

33. Dias, A.E., Santos, E.M., Pimentão, J.P., Pedrosa, P., and Romão, T.I., Bringing Ubiquitous

Computing Into Geo-Referenced Information Systems, Second Joint European Conference &

Exhibition on Geographical Information, Barcelona, Spain, pp. 100-103.

34. Dix, A., Co-operation Without (reliable) Communication: Interfaces for Mobile Applications,

Distributed Systems Engineering, 2(3), pp. 171-181.

35. Duffet-Smith, P., High Precision CURSOR and Digital CURSOR: the Real Alternatives to GPS

and Control, EURONAV 96 Conference on Vehicle Navigation.

36. Elrod, S., Hall, G., Costranza, R., Dixon, M., and Des Rivieres, J., Responsive Office

Environments, Communications of the ACM, 1993, 36(7), pp. 84-85.

37. Emmerson, B., The Mobile Intranet, Byte, 1998(May 1998), pp. 15-19.

38. Fadel, C., PDAs Will Come of Age in the Nineties, Electronic Design, 1995, 43(1), pp. 104-106.

39. FCC, Revision of the Commission's Rules To Ensure Compatibility with Enhanced 911

Emergency Calling Systems (Wireless E911 Rules), Federal Communications Commission, 1996,

OGC-96-34.

40. Feiner, S., The Importance of Being Mobile: Some Social Consequences of Wearable

Augmented Reality Systems, IWAR'99, October 1999, San Francisco, CA, USA, pp. 145-148.

41. Feiner, S., MacIntyre, B., Haupt, M., and Solomon, E., Windows on the World: 2D Windows

for 3D Augmented Reality, UIST '93, November 1993, pp. 145-155.

42. Feiner, S., MacIntyre, B., Höllerer, T., and Webster, A., A Touring Machine: Prototyping 3D

Mobile Augmented Reality Systems for Exploring the Urban Environment, 1st Wearable

Symposium, 13-14 October 1997, Cambridge, MA, USA, pp. 74-81.

43. Feiner, S., MacIntyre, B., and Seligmann, D., Knowledge-based Augmented Reality,

Communications of the ACM, 1993, 36(7), pp. 52-62.

Table of References

286

44. Fickas, S., Kortuem, G., and Segall, Z., Software Organisation for Dynamic and Adaptable

Wearable Systems, ISWC '97, October 1997, Cambridge, MA, USA, pp 56-64.

45. Finger, S., Terk, M., Subrahmanian, E., Kasabach, C., Prinz, F., Siewiorek, D., Smailagic, A.,

Stivoric, J., and Weiss, L., Rapid Design and Manufacture of Wearable Computers,

Communications of the ACM, 1996, 39(2), pp. 63-70.

46. Fitzmaurice, Situated Information Spaces and Spatially Aware Palmtop Computers,

Communications of the ACM, 1993, 36(7), pp. 38-49.

47. Fitzmaurice, G. and Buxton, W., The Chameleon: Spatially Aware Palmtop Computers, CHI

'94, April 1994, Boston, MA, USA, pp. 451-452.

48. Fitzmaurice, G.W., Zhai, S., and Chignell, M.H., Virtual Reality for Palmtop Computers, ACM

Transactions on Information Systems, 1993, 11(3), pp. 197-218.

49. Fletcher, R., Force Transduction for Human-Technology Interfaces, IBM Systems Journal, 1996,

35(3&4), pp. 630-638.

50. Foner, L.N., Artificial Synesthesia via Sonification: A Wearable Augmented Sensory System,

ISWC'97, October 1997, Cambridge, MA, USA, pp. 156-157.

51. Foster, C.D., PDAs and the Library Without a Roof, Journal of Computing in Higher Education,

1995, 7(1), pp. 85-93.

52. Freedman, N. and Pollock, I., Ward Round - Mobile Computing System Trial, Current Perspectives

in Healthcare Computing Conference, 18-20 March 1996, pp. 661-671.

53. Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns, 1st Edition, 1995,

Addison-Wesley, 0201633612.

54. Gellersen, H.-W., Beigl, M., and Schmidt, A., Environment-Mediated Mobile Computing,

Symposium on Applied Computing '97, February-March 1999, San Antonio, TX, USA, pp. 416-418.

55. Gessler, S. and Kotulla, A., PDAs as Mobile WWW Browsers, Computer Networks and ISDN

Systems, 1995(28), pp. 53-59.

56. Goldberg, L., Wireless LAN's: Mobile-Computing's Second Wave, Electronic Design, 1995,

43(13), pp. 55-72.

57. Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., and Want, R., Squeeze Me, Hold Me, Tilt

Me! An Exploration of Manipulative User Interfaces, CHI'98, April 1998, Los Angeles, CA,

USA, pp. 17-24.

58. Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P., The Anatomy of a Context-

Aware Application, 5th Annual ACM/IEEE International Conference on Mobile Computing and

Networking (MOBICOM 1999), August 1999, Seattle, WA, USA, pp. 59-68.

59. Herring, The Global Positioning System, Scientific American, 1996(February), pp. 44-50.

Table of References

287

60. Herzberg, A., Krawczyk, H., and Tsudik, G., On Travelling Incognito, IEEE Workshop on

Mobile Computing Systems and Applications, December 8-9 1994, pp. 205-211.

61. Hindus, D., Arons, B., Stifelman, L., Gaver, B., Mynatt, E., and Back, M., Designing Auditory

Interactions for PDAs, UIST 95, November 14-17 1995, Pittsburgh, PA, USA, pp. 143-146.

62. Hollerer, T. and Pavlik, J., Situated Documentaries: Embedding Multimedia Presentations in the

Real World, ISWC '99, October 1999, San Francisco, CA, USA, pp. 79-86.

63. Honeyman, P. and B, H.L., Communications and Consistency in Mobile File Systems, IEEE

Personal Communications, 1995, 2(6), pp. 44-48.

64. Hull, R., Neaves, P., and Bedford-Roberts, J., Towards Situated Computing, 1st International

Symposium on Wearable Computers (ISWC '97), 13-14 October 1997, Cambridge, MA, USA, pp.

146-153.

65. Imielinski, T. and Badrinath, B.R., Mobile Wireless Computing, Communications of the ACM,

1994, 37(19), pp. 18-28.

66. Infrared-Data-Association, IrDA Homepage, http://www.irda.org/, Infrared Data Association

(IrDA), 31/07/2001.

67. Jameel, A., Stuempfle, M., Jiang, D., and Fuchs, A., Web on Wheels: Toward Internet-Enabled

Cars, IEEE Computer, 1998(January 1998), pp. 69-76.

68. Janin, A., Zikan, K., Mizell, D., Banner, M., and Sowizral, H., A Videometric Head Tracker for

Augmented Reality Applications, SPIE, pp. 308-315.

69. Kaashoek, F., Pinckney, T., and Tauber, J.A., Dynamic Documents: Mobile Wireless Access to

the WWW, IEEE Workshop on Mobile Computing Systems and Applications, December 8-9 1994, pp.

179-184.

70. Kalakota, R., Stallaert, J., and Whinston, A.B., Mobile Agents and Mobile Workers, 29th Hawaii

International Conference on System Sciences, pp. 354-365.

71. Kamba, T., Elson, S., Harpold, T., Stamper, T., and Sukaviriya, P., Using Small Screen Space

More Efficiently, Human Factors in Computing Systems, April 1996, Vancouver, Canada, pp. 383-

390.

72. Kirch, D., Starner, T., and Assefa, S., The Locust Swarm: An Environmentally-powered,

Networkless Location and Messaging System, ISWC '97, October 1997, Cambridge, MA, USA,

pp. 169-170.

73. Kortuem, G., Segall, Z., and Bauer, M., Context-Aware, Adaptive Wearable Computers as

Remote Interfaces to 'Intelligent' Environments, Second International Symposium on Wearable

Computers (ISWC'98), October 1998, Pittsburgh ,PA, USA, pp. 58-65.

Table of References

288

74. Kristoffersen, S. and Ljungberg, F., "Making Place" to Make IT Work: Empirical Explorations

of HCI for Mobile CSCW, International ACM SIGGROUP conference on Supporting Group Work,

November 1999, Phoenix, AZ, USA, pp. 276-285.

75. Kristoffersen, S. and Ljungberg, F., Mobile Use of IT, IRIS22, August 1999, Jyvaskyla, Finland,

Vol. 2, pp. 271-284.

76. Lamming, M., Brown, P., Carter, K., Eldridge, M., Flynn, M., Louie, G., Robinson, P., and

Sellen, A., The Design of a Human Memory Prosthesis, The Computer Journal, 1994, 37(4), pp.

153-163.

77. Lamming, M. and Flynn, M., "Forget-me-not" Intimate Computing in Support of Human

Memory, EuroPARC, Cambridge, UK, 1994, EPC-1994-103.

78. Leonhardt, U. and Magee, J., Multi-Sensor Location Tracking, ACM/IEEE International

Conference on Mobile Computing and Networking, October 1998, Dallas, TX, USA, pp. 203-214.

79. Leonhardt, U. and Magee, J., Security Considerations for a Distributed Location Service, Journal

of Network and Systems Management, March 1998, 6(1), pp. 51-70.

80. Leonhardt, U. and Magee, J., Towards a General Location Service for Mobile Environments,

Third IEEE Workshop on Services in Distributed and Networked Environments, June 1996, Macau, pp.

43-50.

81. Leonhardt, U., Magee, J., and Dias, P., Location Service in Mobile Computing Environments,

Computer & Graphics, 1996, 20(5), pp. 627 632.

82. lesswire, lesswire AG's homepage, http://www.lesswire.de/, lesswire AG, 31/07/2001.

83. Lewis, T., Information Appliances: Gadget Netopia, IEEE Computer, 1998(January), pp. 59-68.

84. Long, S., Aust, D., Abowd, G., and Atkeson, C., Cyberguide: Prototyping Context-Aware

Mobile Applications, ACM CHI 96 Conference on Human Factors in Computing Systems, pp. 293-294.

85. Long, S., Kooper, R., Abowd, G.D., and Atkeson, C.G., Rapid Prototyping of Mobile Context-

Aware Applications: The Cyberguide Case Study, 2nd ACM International Conference on Mobile

Computing and Networking (MobiCom '96), November 1996, pp. 97-107.

86. Maaß, H., Location-aware Mobile Applications based on Directory Services, Mobile Networks and

Applications, 1998, 3(2), pp. 157-173.

87. Mann, S., Smart Clothing: The Shift to Wearable Computing, Communications of the ACM, 1996,

39(8), pp. 25-26.

88. Mann, S., Wearable Computing: A First Step Toward Personal Imaging, Computer,

1997(February 1997), pp. 25-32.

89. Meth, C., PDAs: What will it Take to Satisfy Users?, Electronic Design, 1994, 42(26), pp. 49-54.

90. MIT, Things That Think Homepage, http://www.media.mit.edu/ttt/, MIT, 31/07/2001.

Table of References

289

91. Mukherjee, A. and Siewiorek, D., Mobility: A Medium for Computation, Communication, and

Control, IEEE Workshop on Mobile Computing Systems and Applications, December 8-9 1994, Santa

Cruz, CA, USA, pp. 8-11.

92. NMEA, NMEA 0183 Info, http://www.nmea.org/0183.htm, National Marine Electronics

Association, 31/07/2001.

93. Noble, B., Price, M., and Satyanarayana, M., A Programming Interface for Application-Aware

Adaptation in Mobile Computing, Computing Systems, 1995, 8(4), pp. 345-363.

94. Not, E., Petrelli, D., Stock, O., Strapparava, C., and Zancanaro, M., Person-Oriented Guided

Visits in a Physical Museum, Fourth International Conference on Hypermedia and Interactivity in

Museums (ICHIM 97), September 1997, Paris, France, pp. 162-172.

95. Not, E. and Zancanaro, M., Content Adaptation for Audio-Based Hypertexts in Physical

Environments, Hypertext '98, June 1998, Pittsburgh, PA, USA, pp. 25-31.

96. Palm, Palm Computing Homepage, http://www.palm.com/, Palm Computing Inc., 31/07/2001.

97. Paradiso, J.A., The Interactive Balloon: Sensing, Actuation, and Behaviour in a Common

Object, IBM Systems Journal, 1996, 35(3&4), pp. 473-488.

98. Pascoe, J., Adding Generic Contextual Capabilities to Wearable Computers, The Second

International Symposium on Wearable Computers, 19-20 October 1998, Pittsburgh, PA, USA, pp. 92-

99.

99. Pascoe, J., Morse, D.R., and Ryan, N.S., Developing Personal Technology for the Field, Personal

Technologies, 1998, 2(1), pp. 28-36.

100. Pascoe, J. and Ryan, N., Mobile Computing in Fieldwork Environments Homepage,

http://www.cs.ukc.ac.uk/projects/mobicomp/Fieldwork/index.html, Computing Lab, University

of Kent at Canterbury, 01/01/2000.

101. Pascoe, J., Ryan, N., and Brown, P., Context Aware: the Dawn of Sentient Computing?, GPS

World, 1998, 9(9), pp. 22-30.

102. Pascoe, J., Ryan, N., and Morse, D., Issues in Developing Context-Aware Computing

Applications, HUC '99, September 1999, Karlsruhe, Germany, pp. 208-221.

103. Pascoe, J., Ryan, N.S., and Morse, D.R., Human Computer Giraffe Interaction: HCI in the

Field, Workshop on Human Computer Interaction with Mobile Devices, 21-23 May 1998, University of

Glasgow, UK, GIST Technical Report G98-1.

104. Pedersen, E.R. and Sokolar, T., AROMA: Abstract Representation of Presence Supporting

Mutual Awareness, CHI '97, March 1997, Atlanta, USA, pp. 51-58.

105. Pentland, A.P., Petrazzuoli, M., Gerega, A., and Starner, T., The Digital Doctor: An Experiment

in Wearable Telemedicine, The First International Symposium on Wearable Computers ISWC '97,

October 1997, Cambridge, MA, USA, pp. 173-174.

Table of References

290

106. Pfitzmann, A., Pfitzmann, B., and Waidner, M., Trusting Mobile User Devices and Security

Modules, IEEE Computer, 1997(February 1997), pp. 61-68.

107. Priyantha, N., Chakraborty, A., and Balakrishnan, H., The Cricket Location-Support System,

MOBICOM 2000, August 2000, Boston, MA, USA, pp. 32-43.

108. Randell, C. and Muller, H., The Shopping Jacket: Wearable Computing for the Consumer,

Personal Technologies, 2000, 4(4), pp. 241-244.

109. Rekimoto, J., Tilting Operations for Small Screen User Interfaces, Symposium on User Interface

Software and Technology (UIST '96), November 1996, Seattle, WA, USA, pp. 167-168.

110. Rekimoto, J. and Ayatsuka, Y., CyberCode: Designing Augmented Reality Environments with

Visual Tags, Designing Augmented Reality Environments (DARE 2000), April 2000, Denmark, pp 1-

10.

111. Rekimoto, J., Ayatsuka, Y., and Hayashi, K., Augment-able Reality: Situated Communication

through Digital and Physical Spaces, ISWC '98, November 1998, Pittsburgh, PA, USA, pp. 68-

75.

112. Rekimoto, J. and Nagao, K., The World through the Computer: Computer Augmented

Interaction with Real World Environments, UIST 95, November 14-17 1995, Pittsburgh, PA,

USA, pp. 29-36.

113. Resnick, M., Things to Think With, IBM Systems Journal, 1996, 35(3&4), pp. 441-442.

114. Resnick, M., Martin, F., Sargent, R., and Silverman, B., Programmable Bricks: Toys to Think

With, IBM Systems Journal, 1996, 35(3&4), pp. 443-452.

115. Rhodes, B., Margin Notes: Building a Contextually Aware Associative Memory, IUI '00, January

2000, New Orleans, LA, USA, pp. 219-224.

116. Rhodes, B.J., The Wearable Rememberence Agent: A System for Augmented Memory, Personal

Technologies Special Issue on Wearable Computing, 1997, 1, pp. 218-224.

117. Rhodes, B.J. and Starnar, T., Remembrance Agent: A Continuously Running Automated

Information Retrieval System, The First International Conference on The Practical Application of

Intelligent Agents and Multi Agent Technology, 1996, pp. 487-495.

118. Rudall, B.H., Contemporary Systems and Cybernetics, Kybernetes, 1997, 26(4), pp. 370-388.

119. Ryan, N.S., Pascoe, J., and Morse, D.R., Enhanced Reality Fieldwork: the Context-Aware

Archaeological Assistant, Computer Applications in Archaeology 1997, October 1997, Oxford,

England.

120. Salber, D., Dey, A., and Abowd, G., The Context Toolkit: Aiding the Development of Context-

Enabled Applications, CHI'99, May 1999, Pittsburgh, PA, USA, pp. 434-441.

121. Saldana, J. and Cohn, D.L., A Hybrid Model for Mobile File Systems, IEEE Workshop on Mobile

Computing Systems and Applications, December 8-9 1994, Santa Cruz, CA, USA, pp. 20-23.

Table of References

291

122. Sarkar, M., Snibbe, S.S., Tversky, O.J., and Reiss, S.P., Stretching the Rubber Sheet: a Metaphor

for Viewing Large Layouts on Small Screens, Symposium on User Interface Software and Technology

(UIST'93), November 1993, Atlanta, GA, USA, pp. 81-91.

123. Satyanarayanan, M., Mobile Information Access, IEEE Personal Communications, 1996(February),

pp. 26-33.

124. Satyanarayanan, M., Noble, B., Kumar, P., and Price, M., Application-Aware Adaptation for

Mobile Computing, Operating Systems Review., 1994, 29(1), pp. 52-55.

125. Schilit, B., Adams, N., and Want, R., Context-Aware Computing Applications, IEEE Workshop

on Mobile Computing Systems and Applications, December 8-9 1994, Santa Cruz, CA, USA, pp. 85-

90.

126. Schilit, B.N., Douglis, F., Kristol, D.M., Krzyzanowski, P., Sienicki, J., and Trotter, J.A.,

TeleWeb: Loosely Connected Access to the World Wide Web, Computer Networks and ISDN

Systems, 1996, 1996(28), pp. 1431-1444.

127. Schilit, W.N., System Architecture for Context-Aware Mobile Computing, Columbia University,

1995.

128. Schmidt, A., Beigl, M., and Gellersen, H.-W., There is More to Context than Location, IMC '98,

November 1998, Rostock, Germany.

129. Scholtz, J.C., Lockhart, P., Salvador, T., and Newbery, J., Design: no job too small, CHI '97,

March 1997, Atlanta, GA, USA, pp. 447-454.

130. Selker, T., New Paradigms for Using Computers, Communications of the ACM, 1996, 39(8), pp.

60-69.

131. Slowman, M., Distributed Systems and Computer Networks, 1987, Prentice Hall, 0-13-215864-

7.

132. Smailagic, A. and Siewiorek, D.P., Modalities of Interaction with CMU Wearable Computers,

IEEE Personal Communications, 1996, 1996(February), pp. 14-25.

133. Smith, D.G., Personal Intelligent Communications, BT Technology Journal, 1995, 13(2), pp. 106-

113.

134. Starner, T., Mann, S., Rhodes, B., and Levine, J., Augmented Reality through Wearable

Computing, Presence, 1997, 6(4), pp. 386-398.

135. Starner, T., Rhodes, B., Weaver, J., and Pentland, A., Everyday-use Wearable Computers. June

15, 1999. (http://www.gvu.gatech.edu/ccg/publications/starner-everyday-use-061599.pdf)

136. Stilp, L., Carrier and End-User Applications for Wireless Location Systems, SPIE, pp. 119-126.

137. Strothotte, T., Fritz, S., Michel, R., Raab, A., Petrie, H., Johnson, V., Reichert, L., and Schalt, A.,

Development of Dialogue Systems for a Mobility Aid for Blind People: Initial Design and

Table of References

292

Usability Testing, ACM SIGCAPH Conference on Assistive Technologies, April 1996, Vancouver,

Canada, pp. 139-144.

138. Sun, Java Homepage, http://www.javasoft.com/, Sun Microsystems Inc, 31/07/2001.

139. Symbian, Symbian Homepage, Symbian, 31/07/2001.

140. Tanenbaum, Distributed Operating Systems, First Edition, 1994, Prentice Hall, 0132199084.

141. Texas-University, Global Positioning System Overview,

http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html, Department of Geography,

University of Texas at Austin, 31/07/2001.

142. Thompson, S., Sheat, D., and Holland, R., Using Telecommunications to Deliver Real-Time

Transport Information; ‘Superoute 66 Live’ Trial Results, 6th World Congress on Intelligent Transport

Systems, November 1999, Newcastle upon Tyne, UK.

143. Verplaetese, P., Inertial Proprioceptive Devices: Self-Motion-Sensing Toys and Tools, IBM

Systems Journal, 1996, 35(3&4), pp. 639-650.

144. Voelker, G.M. and Bershad, B.N., Mobisaic: An Information System for a Mobile Wireless

Computing Environment, IEEE Workshop on Mobile Computing Systems and Applications,

December 8-9 1994, pp. 185-190.

145. Want, R., Hopper, A., Falcao, V., and Gibbons, J., The Active Badge Location System, ACM

Transactions on Information Systems, 1992, 10(1), pp. 91-102.

146. Want, R., Shilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis, J., and Weiser,

M., An Overview of the PARCTAB Ubiquitous Computing Experiment., IEEE Personal

Communications, 1995, 2(6), pp. 28-43.

147. Ward, A., Jones, A., and Hopper, A., A New Location Technique for the Active Office, IEEE

Personal Communications, 1997, 4(5), pp. 42-47.

148. Webster, A., Feiner, S., MacIntyre, B., Massie, W., and Krueger, T., Augmented Reality in

Architectural Construction, Inspection, and Renovation, ASCE Third Congress on Computing in

Civil Engineering, June 1996, Anaheim, CA, USA, pp. 913-919.

149. Weiser, M., The Computer for the 21st Century, in Scientific American, September 1991, pp. 94-

104.

150. Weiser, M., The Future of Ubiquitous Computing, Communications of the ACM, 1998, 41(1), pp.

41-42.

151. Welling, G. and Badrinath, B.R., A Framework for Environment Aware Mobile Applications,

17th International Conference on Distributed Computing Systems (ICDCS '97), May 1997, Maryland,

USA, pp. 384-391.

Table of References

293

152. Wood, K.R., Richardson, T., Bennett, F., Harter, A., and Hopper, A., Global Teleporting with

Java: Toward Ubiquitous Personalized Computing, IEEE Computer, 1997(February 1997), pp.

53-59.

153. Wright, E., GPS Takes a Vacation, GPS World, June 1995, pp. 22-30.

154 Zimmerman, T.G., Personal Area Networks: Near-Field Intrabody Communications, IBM

Systems Journal, 1996, 35(3&4), pp. 609-617.

295

AAppppeennddiixx AA::

SSttiicckk--ee NNoottee FFrraammeewwoorrkk

DDeessiiggnn DDiiaaggrraammss

Design diagrams are presented in Booch notation [“Object Oriented Analysis and

Design with Applications”, Grady Booch, 1993, ISBN 0805353402]

Family
Management

Stick-e
Management

Contextual
Representation

Device
Interfacing

Generic
Classes

global

Figure 52. Top level class categories.

Appendix A: Stick-e Note Framework Design Diagrams

296

JPTime

Time
Stamp

JPList String

JPBiTree

JPDate

Figure 53. Class diagram for generic classes category.

A

Context

A

Location

Point Rectangle

Frame
12

Figure 54. Class diagram for contextual representation category.

Appendix A: Stick-e Note Framework Design Diagrams

297

A

Device

Active Badge
Device

GPS Device

A

Location Device

Figure 55. Class diagram for device interfacing category.

Appendix A: Stick-e Note Framework Design Diagrams

298

StickeRef

(impl.)

SeStore

Open Families

JPList

(from Generic Classes)

Triggered
Record

(impl.)

SeManage

{1}

SeDisplay

Family Notes
1

N

S
Write Protected Notes

1

1StickeNote

(from Stick-e
Management

)

1

N

1

N

Open Families

1

N

1

N

Family Displays

1

N

Registered Displays

1

N

String

(from Generic Classes

Figure 56. Class diagram for the family management category.

Appendix A: Stick-e Note Framework Design Diagrams

299

StickeNote

Relative Every

Every Time
Stamp

(from Generic Classes)

SeEnvironment

{1}

JPList

(from Generic Classes)

String

(from Generic Classes)

Open Notes
1

1

Current Context

1

1

A

Context

(from Contextual
Representation)

Trigger Every

1

1
S

Write Protected Notes

1

N

Trigger Condition

1

N

A

Location Device

(from Device
Interfacing)

Locator

1

N

Pretend Environment
1

N

Figure 57. Class diagram for the stick-e note management category.

Appendix A: Stick-e Note Framework Design Diagrams

300

Manager : Se
Manage

Stick-e : Sticke
Note

Triggered
Record :

Family : Se
Store

Display : Se
Display

Note: Operations 4-7 are repeated

P

6: Trigger ()

F

5: Find Last Trigger Time ()

F

2: OpenFamily (string)
4: GetNextNote ()

8: CloseFamily (string)

F

1: RegisterDisplay (SeDisplay)

3: FamilyOpenNotification (string)
7: StickeTriggerNotification (string, StickeNote)

9: FamilyCloseNotification ()

Figure 58. Object interaction diagram for the family management classes.

Appendix A: Stick-e Note Framework Design Diagrams

301

Environment :
SeEnvironment

Locator :
Location Device

Context :
Context

Manager : Se
Manage

Stick-e : Sticke
Note

Family : Se
Store

F

4: GetLocation ()
P

2: Trigger ()

L

1: GetNextNote ()

F

6: Match (Context)

L

3: GetLocationContext ()
5: GetPretendLocationContext ()

Figure 59. Object interaction diagram for the stick-e management classes.

303

AAppppeennddiixx BB::

SSttiicckkee--ee NNoottee DDeesskkttoopp

AAuutthhoorriinngg TTooooll

This appendix illustrates through a series of screenshots some of the features of the

PC-based stick-e note management and simulation tool. Using this application,

simulations of different environments were performed with test stick-e notes and

families. This enabled the trigger checking and model-view-controller mechanisms to

be tested in addition to the storage, retrieval and manipulation of stick-e notes with

their attached content and contexts. Additionally a GPS receiver (in simulator-mode)

was attached to the computer to facilitate the testing of ‘real’ location data in addition

to pretend contexts.

Appendix B: Stick-e Note Desktop Authoring Tool

304

Figure 60. Direct control over the SeManage processing parameters (such as frequency and intensity of
processing) and a view into the internal status of SeManage.

Figure 61. Environmental status panel through which the devices and pretend contexts that are present
within the SeEnvironment object can be viewed, created, updated, amended and deleted.

Appendix B: Stick-e Note Desktop Authoring Tool

305

Figure 62. Facility for creating and editing stick-e notes, entering or referencing content for the note, and
attaching the stick-e note to a context(s).

Figure 63. Creation and maintenance of families (into which stick-e notes can be later added or removed).

Figure 64. An implementation of a SeDisplay class is provided, which lets the user directly register families
for processing, or respond to open-family notification messages from the SeManage. Any incoming

triggered stick-e notes are made available for the user to view. Many SeDisplays can be open at once to
test the one to many relationship from controller to view(s).

Appendix B: Stick-e Note Desktop Authoring Tool

306

307

AAppppeennddiixx CC::

UUssaabbiilliittyy SSuurrvveeyy QQuueessttiioonnnnaaiirree

Earthwatch “Computing in the Field” Questionnaire

You have been one of the first people to carry out the various fieldwork activities using

a PalmPilot handheld computer. This is a new method of data collection that we are

pioneering, so we are most interested to receive feedback from you on your experiences

with this new technology.

For us the PalmPilots offer many benefits, such as ensuring the consistency of data

collected and providing a quick and transcription-error-free method of entry into a

spreadsheet on the day of collection. The latter ability enables us to start processing the

data immediately and to give you timely feedback on any preliminary results before you

leave. Downloading onto the laptop computer also enables us to implement a backup

strategy to ensure the safety of the data; the worst-case scenario of equipment failure

would only result in a single day’s data being lost.

In this questionnaire we are interested in the viewpoint of you, the fieldwork volunteer,

and your experience of using the PalmPilot in the field. From the information collected

in these questionnaires we hope to discover how the PalmPilots have impacted on your

fieldwork experience and to identify areas where we can make improvements. We are

also interested in correlating people’s views with any background or previous

experience in ecology/environmental work or computing.

If you are interested in learning about the results of this questionnaire please fill in your

email address in the personal details section, below.

Appendix D: Multiple Choice Codified Response Sheet

308

Your Personal Details

Name:

Email Address:

Sex (M/F):

Age (20s 30s 40s 50s 60s 70s):

Occupation:

Nationality:

Your Fieldwork Background

1. Have you been involved in any other Earthwatch projects? If so, which ones?

2. Do you have any ecology/environmental work experience or qualifications? If so,
please describe them.

3. What previous ecology/environmental fieldwork experience do you have?

4. What other general fieldwork experience do you have? For example, archaeological
fieldwork.

Appendix D: Multiple Choice Codified Response Sheet

309

Your Computing Background

5. Do you have any computing work experience or qualifications? If so, please
describe them.

6. Do have a computer at home? If so, what are the main things you use it for?

7. Have you used a handheld computer before? If so, what make/model (e.g.
PalmPilot, Psion Series 5, Casio Windows CE, etc.) and for how long and for what
purpose?

Your Experience using the PalmPilot

8. How did you feel about using the PalmPilot before you arrived?

 Looking forward to using it a lot

 Looking forward to using it a little

 Not worried one way of the other

 A little worried about using it

 Very worried about using it

9. Was there enough training to use the PalmPilots?

 Too much

 A bit too much

 Just the right amount

 Too little

 Much too little

Appendix D: Multiple Choice Codified Response Sheet

310

10. If you went on a similar project in the future how would you feel about using a
PalmPilot again?

 Looking forward to using it a lot

 Looking forward to using it a little

 Not worried one way of the other

 A little worried about using it

 Very worried about using it

11. How many sessions of using a PalmPilot did it take before you felt comfortable in
using it? By ‘session’ we mean using the PalmPilot to carry out a particular day’s
activities. Please indicate if you were comfortable using the PalmPilot before the
first session (i.e. immediately after the training) or are still not comfortable in using
it.

12. Given the choice, would you now prefer to use paper, pen, map, and stopwatch, or
PalmPilot and GPS to collect your data in the field? Please explain your choice.

13. Did you or your partner do most of the PalmPilot work, or was it roughly equal? If
not equal was there any particular reason why?

14. What things, if any, did you particularly like about using the PalmPilot?

15. What things, if any, did you particularly dislike about using the PalmPilot?

Appendix D: Multiple Choice Codified Response Sheet

311

16. How easy did you find using Graffiti? (Graffiti is handwriting-like method of
entering letters and numbers into the PalmPilot). Do not tick any boxes if you did
not use Graffiti.

 Very easy

 Easy

 Okay

 Difficult

 Very difficult

17. How easy was it to use on-screen keyboard? Do not tick any boxes if you did not
use the keyboard.

 Very easy

 Easy

 Okay

 Difficult

 Very difficult

18. How easy was it to choose the correct template(s) for your activity?

 Very easy

 Easy

 Okay

 Difficult

 Very difficult

19. How easy was it to enter all the data?

 Very easy

 Easy

 Okay

 Difficult

 Very difficult

Appendix D: Multiple Choice Codified Response Sheet

312

20. Were there any types of data (e.g. numbers, picklists, GPS location, line of text, etc.)
that you found particularly easy to enter?

21. Were there any types of data (e.g. numbers, picklists, GPS location, line of text, etc.)
that you found particularly hard to enter?

22. Did you find any terminology confusing? If so what?

23. Were there any difficulties you had using the PalmPilot that you haven't already
mentioned?

24. Do you have any suggestions for improvements that could be made?

25. Generally speaking, how did you find using the PalmPilot on the whole?

 Very easy

 Easy

 Okay

 Difficult

 Very difficult

26. How many resets do you estimate you had to perform?

Appendix D: Multiple Choice Codified Response Sheet

313

27. Did you have any trouble linking the PalmPilot to the GPS receiver? If so, please
describe.

28. Please write any other comments you would like to make in the space below.

Thank you very much for taking time to complete this questionnaire.

315

AAppppeennddiixx DD::

MMuullttiippllee--CChhooiiccee CCooddiiffiieedd

RReessppoonnssee SShheeeett

[The columns of the sheet are spread out over the following pages.

 The “Volunteer No” column is repeated for readability]

Appendix D: Multiple Choice Codified Response Sheet

316

Team No.

Volunteer No

Name

Email

Sex

Age

s s1 Sally Burnett si_burnett@hotmail.com f 20

s s2 Kathy Pinkney kathy@mepinkney.freeserve.co.uk f 20

1 1 Kathy White kwhite@earthwatch.org f 30

1 2 Anne Levin anne_levin@prodigy.net f 20

1 3 Veronica Anderson veronica_anderson@yahoo.com f 20

1 4 William Lemp complaw@epconline.com m 40

1 5 Steve Readinger - m 50

1 6 Brian Robbins brobbins@loeb.com m 30

1 7 Trish Levin tlevin@raystoneinc.com f 50

1 8 Dianne Clapp davesong@aol.com f 50

1 9 Samanha Gerry caninenurse@juno.com f 20

1 10 Annette Purdue - f 20

1 11 Carola hallay carola.hallay@unilever.com f 30

2 12 Ronda Planck-Preston czrhinos@aol.com f 30

2 13 Burke Johnson bjohnson@carteransley.com m 30

2 14 Cara Cupit cara7471@aol.com f 20

2 15 Monte Shouse - m 50

2 16 Diane Grauel patrusrach@aol.com f 20

2 17 Duane Nickell dnic310@aol.com m 40

2 18 Sarah Howell sah39@hermes.cam.ac.uk f 20

2 19 Carola Braune carola.heiner@t-online.de f 50

2 20 Heiner Stickann carola.heiner@t-online.de m 40

3 21 Sabine McCarthy sabine_peter_99@hotmail.com f 30

3 22 Peter McCarthy sabine_peter_99@hotmail.com m 20

3 23 John McCracken pachomama@earthlink.net m 20

3 24 Carrie McCracken pachomama@earthlink.net f 20

3 25 Bonnie Bahn bonnie.bahn@hmsc.orst.edu f 50

3 26 Kathryn Dunn kdunn@syl.sj.nec.com f 20

3 27 Yuka Maezawa yuka@cim.ed.fujitsu.co.jp f 30

3 28 Stuart Grayson stuart.grayson@bluewin.ch m 40

3 29 "T" St. John tstjohn@alliantfs.com f 30

4 30 Sharon Castner SharenC@home.com f 50

4 31 Gary Kaufman GarySharon@home.com m 50

4 32 Nancy Ronan NLMnyc@aol.com f 40

4 33 Felix Patton bioscope@zetnet.co.uk m 40

4 34 Kathy Smith Kathy_Smith@hotmail.com f 20

4 35 Ginny Hounsell ginny5@earthlink.net f 40

4 36 Sue Davis sue.davis@talk21.com f 30

4 37 Pat Williamson PATWMSN@worldnet.att.net f 50

4 38 Bruni Tessmer btessmei@ford.com f 50

Appendix D: Multiple Choice Codified Response Sheet

317

Vol.
No

Occupation

Nationality

Fieldwork
Experience (1-4)

Computing
Experience (1-4)

s1 Student British 3 2

s2 Student British 4 3

1 Dept Director, Earthwatch Centre for Field Research USA 4 3

2 Admin Assistant USA 2 3

3 Japanese Marketing Liason USA 2 4

4 Attorney USA 3 1

5 Family Physician USA 1 1

6 Financial Officier of Law Firm USA 2 3

7 CPA/Finance Director USA 2 2

8 Nurse USA 1 2

9 Veterinary Nurse USA 1 3

10 Veterinary Nurse USA 1 2

11 Secretary German 1 2

12 Cincinnati Zoo Education Department USA 2 3

13 Attorney USA 2 2

14 Teacher USA 1 2

15 Retired USA 2 1

16 Retail Petshop Manager USA 1 2

17 Teacher USA 2 2

18 Student British 2 2

19 Teacher German 2 3

20 Teacher German 2 3

21 Pharmacist Swiss 1 2

22 Engineer British 2 1

23 Wildlife Rehabilitator USA 1 2

24 Student USA 3 3

25 Secretary USA 2 3

26 Marketing Assistant USA 2 3

27 Programmer Japanese 2 4

28 IT Consultant British 2 4

29 Marketing USA 1 3

30 Flight Attendant USA 1 2

31 Airport Management USA 2 2

32 Theatre USA 1 2

33 Development Manager, Agribusiness British 2 3

34 Librarian Australian 2 2

35 Theatre USA 1 2

36 Manager (BT) British 2 3

37 Court Reporter USA 2 2

38 P.A. German 1 2

Appendix D: Multiple Choice Codified Response Sheet

318

Vol.
No

6. Handheld Computer
User (y/n) 7. Handheld Computer Model

8. Feel before (1-5)

9. Enough Training (1-5)

s1 n - - 3

s2 y PalmPilot 1 3

1 n - 1 3

2 n - 3 3

3 y PalmPilot 1 3

4 n - 3 3

5 n - 3 4

6 n - 3 3

7 n - 1 3

8 n - 4 4

9 n - 3 3

10 n - 4 3

11 n - 2 4

12 y PalmPilot 3 4

13 n - 3 4

14 n - 1 3

15 n - 4 3

16 n - 3 3

17 n - 3 3

18 y IBM Workpad 2 4

19 n - 1 3

20 n - 1 3

21 n - 3 3

22 n - 3 3

23 n - 3 3

24 n - 3 3

25 n - 2 3

26 n - 2 3

27 n - 4 2

28 n - 3 3

29 n - 1 3

30 n - 2 4

31 n - 3 3

32 n - 1 3

33 n - 3 3

34 n - 3 3

35 n - 4 4

36 y Psion 3c, 5, 5mx 1 3

37 n - 4 4

38 n - 3 4

Appendix D: Multiple Choice Codified Response Sheet

319

Vol.
No

10. Feel after (1-5)

Feeling Improvement

11. Comfortable after (1-5)

12. Preferred System
(pp, e, man)

s1 1 - 1 pp

s2 1 0 1 pp

1 1 0 1 pp

2 1 2 1 pp

3 1 0 1 pp

4 2 1 3 pp

5 1 2 3 pp

6 2 1 2 pp

7 1 0 1 pp

8 3 1 - pp

9 1 2 1 pp

10 1 3 1 pp

11 1 1 1 pp

12 1 2 1 pp

13 3 0 3 pp

14 1 0 1 pp

15 3 1 5 pp

16 3 0 3 pp

17 2 1 3 pp

18 1 1 1 pp

19 1 0 1 pp

20 1 0 1 pp

21 1 2 1 pp

22 2 1 1 pp

23 1 2 1 pp

24 1 2 1 pp

25 2 0 2 pp

26 2 0 1 pp

27 1 3 2 pp

28 3 0 2 pp

29 2 -1 3 pp

30 1 1 2 pp

31 1 2 1 pp

32 1 0 1 pp

33 3 0 1 pp

34 1 2 1 pp

35 3 1 2 pp

36 1 0 1 pp

37 3 1 4 pp

38 3 0 3 pp

Appendix D: Multiple Choice Codified Response Sheet

320

Vol.
No

13. Work division (y, e, p)

16. Graffiti ease of use (1-5)

17. Keyboard ease of use (1-5)

s1 y 1 2

s2 y 1 1

1 e 1 1

2 e 2 2

3 e 1 1

4 e 2 2

5 e 2 -

6 e 3 1

7 y 3 1

8 p - -

9 e - 1

10 e - 2

11 e 2 1

12 y 2 1

13 p 4 2

14 e - 2

15 p 3 3

16 e 3 1

17 y 2 2

18 e 2 2

19 y - 1

20 p - 1

21 e 2 -

22 e 2 -

23 e 1 1

24 p 3 2

25 e - 4

26 e 2 1

27 e 2 1

28 e 4 2

29 e 2 1

30 y 2 1

31 p

32 y 3 2

33 p

34 e 3 2

35 e 3 1

36 y 3 2

37 p 3 2

38 e 4 1

Appendix D: Multiple Choice Codified Response Sheet

321

Vol.
No

18. Template selection
ease of use (1-5)

19. All data entry
ease of use (1-5)

25. Using PP
ease of use (1-5)

s1 1 2 1

s2 1 1 1

1 1 2 1

2 1 1 1

3 1 2 1

4 1 2 2

5 2 1 2

6 1 3 2

7 1 1 1

8 2 2 3

9 1 1 1

10 1 2 1

11 2 2 2

12 1 2 2

13 3 3 2

14 1 1 2

15 3 2 2

16 2 2 2

17 1 2 1

18 1 2 2

19 1 1 1

20 1 1 1

21 1 1 1

22 1 1 1

23 1 2 2

24 2 1 2

25 2 2 3

26 1 1 1

27 2 2 2

28 2 2 2

29 1 1 1

30 1 2 1

31

32 2 1 1

33

34 2 3 2

35 1 3 1

36 1 2 1

37 2 2 2

38 2 2 3

Appendix D: Multiple Choice Codified Response Sheet

322

Vol.
No

26. No of resets

27. GPS Trouble (y/n)

s1 1 n

s2 n

1 20 y

2 n

3 20 n

4 48 n

5 6 y

6 24 n

7 28 n

8 10 n

9 24 n

10 24 n

11 24 y

12 10 n

13 8 n

14 20 n

15 8 n

16 15 n

17 24 n

18 12 n

19 36 n

20 36 n

21 7 n

22 7 n

23 8 n

24 15 n

25 6 y

26 5 n

27 1 n

28 3 n

29 1 n

30 20 n

31

32 4 y

33 n

34 2 n

35 6 n

36 50 n

37 0 n

38 0 n

323

AAppppeennddiixx EE::

CCooddiiffiiccaattiioonn SScchheemmee

For Numerically Coded Questions:

 1 2
Fieldwork Experience (1-4) none (or nearly none) 1-2 previous projects

Computing Experience (1-4) none (or nearly none) occassional use (word, email, etc.)

8. Feel before (1-5) looking forward to using it a lot looking forward to use it a little

9. Enough Training (1-5) too much a bit too much

10. Feel after (1-5) looking forward to using it a lot looking forward to use it a little

11. Comfortable after (1-5) first time first day

16. Graffiti ease of use (1-5) very easy easy

17. Keyboard ease of use (1-5) very easy easy

18. Template selection ease of use (1-5) very easy easy

19. All data entry ease of use (1-5) very easy easy

25. Using PP ease of use (1-5) very easy easy

3 4 5

many previous projects Full time (professional) -

profficient user computer expert -

not worried one way or the other a little worried about using it very worried about using it

just the right amount too little much too little

not worried one way or the other a little worried about using it very worried about using it

2-3 days one week never

okay difficult very difficult

okay difficult very difficult

okay difficult very difficult

okay difficult very difficult

okay difficult very difficult

For Textually Coded Questions:

6. Handheld Computer User (y/n) y = yes, n = no

7. Handheld Computer Model name of make and model

12. Preferred System (pp, e, man) pp = PalmPilot system, e = either, man = manual system

13. Work division (y, e, p) y = you did most, e = both equal, p = partner did most

27. GPS Trouble (y/n) y = yes, n = no

325

AAppppeennddiixx FF::

CCaatteeggoorriisseedd RReessppoonnssee SShheeeett

[This sheet is spread out over the following pages in a row-first manner.

Row and column headings are repeated for readability.]

Appendix F: Categorised Response Sheet

326

 Total s1 s2 38 37 36 35 34 33 32 31
12a. Prefer PalmPilot system because

less chance for error 5 1

data entry faster 9 1 1

transcription quicker & easier 6 1 1

prompting help 2

more comfortable 4 1

more efficient / less work & writing 8 1

consistency in collecting data 2 1

work is easier / simpler 4 1

weather-proof 1

12b. Prefer manual system because

13. Partner inequality reasons

differing ability 4 1

preference 7 1 1 1

14. PalmPilot likes

data prompts in template 6 1

input data standardisation 4 1 1

easy to enter data in forms 9 1

easy to keep neat (e.g. correct errors) 4 1

quick to enter data 7 1

compact device - easy to carry 12 1 1 1

less mistakes 2

easy to download 6 1 1

more efficient / less work & writing 5 1

GPS connection 2

helped non-English speaker through Picklists etc. 1

can walk and use it at the same time 1 1

everything 1

15. PalmPilot dislikes

Resets 16 1 1 1 1

losing data 1

speed of entry 6 1 1 1

general data entry tedium 1

hard to read screen at times 5 1

easy to lose pen 1

linking up GPS took time 1

non-standard comments time-consuming/difficult 1

worried about batteries running down 2

Appendix F: Categorised Response Sheet

327

 Total s1 s2 38 37 36 35 34 33 32 31
20. Easy data types to enter

all 10 1 1

GPS location 17 1 1 1

picklists 11 1 1 1

numbers 4 1

bearing 1

dung count 1

21. Hard data types to enter

comments 1

GPS (because of cable) 1

numbers 2 1

picklists 1

text 5 1

time values that were not the current time 1

22. Confusing terminology

23. PalmPilot difficulties

batteries run down 2

keeping up with behaviour data entry 1

slow at times 2 1

jumped to one-handed mode 1

downloading difficult 1

wanted to compare Pilot & GPS locations 1

24. Suggestions for improvements

better picklists (e.g. multi-choice) 4 1

default data values 1

less cumbersome cables 2

graphical forms (e.g. footprints) 1

speeded up 2 1

less steps to filling in form (1 button not 3) 1 1

wireless connection between Palm & GPS 1

field name displayed in edit dialogs 1

automatic sequential numbering where appropriate 1

download straight into Excel 1 1

27. GPS trouble

GPS pin broke 1

Cable connection loose 4 1

Created note before GPS was on 1

Appendix F: Categorised Response Sheet

328

 30 29 28 27 26 25 24 23 22 21
12a. Prefer PalmPilot system because

less chance for error 1

data entry faster 1

transcription quicker & easier 1

prompting help

more comfortable

more efficient / less work & writing 1

consistency in collecting data

work is easier / simpler 1 1

weather-proof 1

12b. Prefer manual system because

13. Partner inequality reasons

differing ability

preference 1 1 1

14. PalmPilot likes

data prompts in template 1

input data standardisation

easy to enter data in forms 1

easy to keep neat (e.g. correct errors) 1

quick to enter data

compact device - easy to carry 1 1 1

less mistakes 1

easy to download 1

more efficient / less work & writing 1 1

GPS connection 1

helped non-English speaker through Picklists etc. 1

can walk and use it at the same time

everything

15. PalmPilot dislikes

resets 1 1

losing data

speed of entry 1

general data entry tedium

hard to read screen at times 1

easy to lose pen

linking up GPS took time

non-standard comments time-consuming/difficult

worried about batteries running down 1 1

Appendix F: Categorised Response Sheet

329

 30 29 28 27 26 25 24 23 22 21
20. Easy data types to enter

all 1 1 1

GPS location 1 1 1 1 1

picklists 1 1 1

numbers 1 1

bearing

dung count

21. Hard data types to enter

comments

GPS (because of cable)

numbers

picklists 1

text 1 1 1 1

time values that were not the current time 1

22. Confusing terminology

23. PalmPilot difficulties

batteries run down 1

keeping up with behaviour data entry

slow at times

jumped to one-handed mode

downloading difficult 1

wanted to compare Pilot & GPS locations 1

24. Suggestions for improvements

better picklists (e.g. multi-choice) 1

default data values

less cumbersome cables

graphical forms (e.g. footprints)

speeded up

less steps to filling in form (1 button not 3)

wireless connection between Palm & GPS 1

field name displayed in edit dialogs 1

automatic sequential numbering where appropriate 1

download straight into Excel

27. GPS trouble

GPS pin broke

Cable connection loose

Created note before GPS was on 1

Appendix F: Categorised Response Sheet

330

 20 19 18 17 16 15 14 13 12 11
12a. Prefer PalmPilot system because

less chance for error

data entry faster 1 1 1

transcription quicker & easier

prompting help

more comfortable 1 1 1

more efficient / less work & writing 1 1 1 1

consistency in collecting data

work is easier / simpler 1

weather-proof

12b. Prefer manual system because

13. Partner inequality reasons

differing ability 1

preference 1

14. PalmPilot likes

data prompts in template 1

input data standardisation

easy to enter data in forms 1 1 1

easy to keep neat (e.g. correct errors)

quick to enter data 1 1

compact device - easy to carry 1

less mistakes

easy to download 1

more efficient / less work & writing 1

GPS connection

helped non-English speaker through Picklists etc.

can walk and use it at the same time

everything

15. PalmPilot dislikes

resets 1 1 1 1

losing data 1

speed of entry 1

general data entry tedium

hard to read screen at times 1

easy to lose pen 1

linking up GPS took time 1

non-standard comments time-consuming/difficult

worried about batteries running down

Appendix F: Categorised Response Sheet

331

 20 19 18 17 16 15 14 13 12 11
20. Easy data types to enter

all 1 1

GPS location 1 1 1

picklists 1 1 1

numbers

bearing

dung count

21. Hard data types to enter

comments 1

GPS (because of cable) 1

numbers

picklists

text

time values that were not the current time

22. Confusing terminology

23. PalmPilot difficulties

batteries run down 1

keeping up with behaviour data entry 1

slow at times 1

jumped to one-handed mode 1

downloading difficult

wanted to compare Pilot & GPS locations

24. Suggestions for improvements

better picklists (e.g. multi-choice)

default data values

less cumbersome cables 1

graphical forms (e.g. footprints)

speeded up 1

less steps to filling in form (1 button not 3)

wireless connection between Palm & GPS

field name displayed in edit dialogs

automatic sequential numbering where appropriate

download straight into Excel

27. GPS trouble

GPS pin broke

Cable connection loose 1 1

Created note before GPS was on

Appendix F: Categorised Response Sheet

332

 10 9 8 7 6 5 4 3 2 1
12a. Prefer PalmPilot system because

less chance for error 1 1 1

data entry faster 1 1 1

transcription quicker & easier 1 1 1

prompting help 1 1

more comfortable

more efficient / less work & writing 1 1

consistency in collecting data 1

work is easier / simpler

weather-proof

12b. Prefer manual system because

13. Partner inequality reasons

differing ability 1 1

preference

14. PalmPilot likes

data prompts in template 1 1 1

input data standardisation 1 1

easy to enter data in forms 1 1 1 1

easy to keep neat (e.g. correct errors) 1 1

quick to enter data 1 1 1 1

compact device - easy to carry 1 1 1 1 1

less mistakes 1

easy to download 1 1

more efficient / less work & writing 1

GPS connection 1

helped non-English speaker through Picklists etc.

can walk and use it at the same time

everything 1

15. PalmPilot dislikes

resets 1 1 1 1 1 1

losing data

speed of entry 1

general data entry tedium 1

hard to read screen at times 1 1

easy to lose pen

linking up GPS took time

non-standard comments time-consuming/difficult 1

worried about batteries running down

Appendix F: Categorised Response Sheet

333

 10 9 8 7 6 5 4 3 2 1
20. Easy data types to enter

all 1 1 1

GPS location 1 1 1 1 1 1

picklists 1 1

numbers 1

bearing 1

dung count 1

21. Hard data types to enter

comments

GPS (because of cable)

numbers 1

picklists

text

time values that were not the current time

22. Confusing terminology

23. PalmPilot difficulties

batteries run down

keeping up with behaviour data entry

slow at times

jumped to one-handed mode

downloading difficult

wanted to compare Pilot & GPS locations

24. Suggestions for improvements

better picklists (e.g. multi-choice) 1 1

default data values 1

less cumbersome cables 1

graphical forms (e.g. footprints) 1

speeded up

less steps to filling in form (1 button not 3)

wireless connection between Palm & GPS

field name displayed in edit dialogs

automatic sequential numbering where appropriate

download straight into Excel

27. GPS trouble

GPS pin broke 1

Cable connection loose 1

Created note before GPS was on

335

AAppppeennddiixx GG::

NNaarrrraattiivvee RReessppoonnsseess

S1. Kathy Pinkney

Notes are time-stamped and its easy to collect time-budget data.

1. Kathy White

GPS is great but probably doesn't help give you a good physical understanding of

where you are unlike a manual map and compass.

Need a more efficient method of recording giraffe observations. New template for each

tree is cumbersome.

Good for data standardisation, parameterisation, and prompting.

Data entry speed is faster good (faster than manual system).

I think PalmPilots are a great way to have volunteers collect data.

It will be interesting to see the robustness over the course of a summer in comparison

to other equipment. Also interesting to see if volunteers adapt to using the technology

or if anyone is overwhelmed.

2. Anne Levin

Stickepad should auto-scroll to last note recorded.

3. Veronica Anderson

Would be nice to have default values for some fields.

4. William Lemp

Appendix G: Narrative Responses

336

Would be nice to have multiple options selectable from a picklist.

It is a great tool for field research.

6. Brian Robbins

Concept seems sound and exporting of data directly to spreadsheet is great!

Tech support very friendly & helpful.

7. Trish Levin

Suggest graphical multi-menu-picklist idea for faster entry of behaviours.

I'm really excited about your work. Good luck!

9. Samantha Gerry

I enjoyed using both pieces of equipment and found them easy to use, it was an effort

to think of suggestions.

10. Annette Purdue

It was a good learning experience for me to use the GPS and PalmPilot. I hope to use

them in the future. Thanks for your patience!

12. Ronda Planck-Preston

Palm/GPS is the best way to get the best data for research.

13. Burke Johnson

Overall, it was easy and a good experience.

Had some concern about switching from template to template when it asks about

deleting data.

For you the best thing is probably that you don't have to read my handwriting!

16. Diane Grauel

Appendix G: Narrative Responses

337

Had fun and enjoyed the chance to use the PalmPilot and GPS.

17. Duane Nickell

Good luck, Jason! It’s been great knowing you!

25. Bonnie Bahn

Keeping batteries charged and spares available isn’t done daily and it needs to be.

27 Stuart Grayson

Organisation improvement: each team should have a PalmPilot allocated and the team

is responsible for ensuring that the batteries are OK and that they have back-ups.

Dislike: Trying to capture data originally captured on paper, i.e. having to override the

time entry which is picked up from the clock.

Sometimes we wanted to use a GPS location already in the PalmPilot and compare with

current GPS – but the PalmPilot stores the co-ordinates in non-UTM format.

28. “T” St.John

‘h’ hard to write at times.

30. Sharon Castner

Jason, thanks I really enjoyed using this. You might contact Dave Balfour at Hlu

Hluwe/omfolozi in South Africa. All his data was done with clipboards and pencils &

paper and compass headings. He may be very receptive to this.

Sometimes keys pressed on the on-screen keyboard did not respond [almost certainly was

due to screen mis-calibration].

In 1998 I used paper/pencil and clipboard in the drizzle walking down/up mountains.

Rain washed some data away and another girl sweated her data off.

33. Felix Patton

Good System but there must be some way of preventing complete loss of data.

Appendix G: Narrative Responses

338

34. Kathy Smith

Took too much time when doing rhino & giraffe behaviour – they move too fast and

the PP moves too slow.

35. Ginny Hounsell

If a couple of the templates were tightened up it would make the recording even faster

and easier.

I’m glad I got to use the PalmPilot since I’m not experienced in computer work. I

learned a little more and overcame some reservations.

36. Sue Davis

It couldn’t go fast enough, i.e. I could tap quicker than the screen refreshed. Also after

crashes I had to page through all notes to get to the last one I was working on.

Psion is better for data entry but not when standing up. Comments took a long time to

enter.

Ground cover – Kathy said one thing, Alan another.

No note for Morani’s flatulence.

Most fatal errors were on vegetation trees which is also the longest spreadsheet.

I would like to try the system with other Earthwatch projects. I would prefer to get the

fatal errors sorted first – I call tell when it is going to happen as previous boxes do not

disappear when they should so usually I get time to save before it goes. But it is the

same error under the same conditions usually (high speed entry or high number of

notes).

37. Pat Williamson

Didn’t like walking and typing. Pencil should have been attached.

Before a team goes out it would be perhaps more efficient if all the parties were

comfortable with the equipment. Since I don’t really enjoy using computers I left it up

Appendix G: Narrative Responses

339

to someone else and when she was not there my other partner and I struggled and felt

very incompetent. I will be sure that doesn’t happened to me again. I felt like I wasted

Kathy’s time and some of our own. I should not have been so lazy in relying on

someone else.

341

AAppppeennddiixx HH::

EEqquuiippmmeenntt FFaauulltt LLoogg

Summary:

Total Resets 88

Total Notes 4162

Notes per reset 47.3

Paper used 9

Data Lost 2

PP Locked Up 9

GPS Trouble 1

[The sheet is spread out over the next few pages in a row-first manner.

Row and column headings are repeated for readability.]

Appendix H: Equipment Fault Log

342

Date Pair No Activity PalmPilot No GPS No Cable No No of Resets GPS Link-up Trouble PP Locked Up

28-Jul-99 1 a 5 0 n n

28-Jul-99 2 f 3 3 n n

28-Jul-99 3 d 4 0 n n

28-Jul-99 4 c1 2 3 0 y n

29-Jul-99 1 b 1 0 n n

29-Jul-99 2 a 3 4 2 n n

29-Jul-99 3 f 2 0 n n

29-Jul-99 4 d 4 3 3 1 n n

29-Jul-99 5 d 5 3 3 1 n n

30-Jul-99 1 c1 2 2 0 n n

30-Jul-99 2 b 3 4 0 n n

30-Jul-99 3 a 1 3 0 n y

30-Jul-99 4 f 4 1 n n

31-Jul-99 2 c1 2 3 0 n n

31-Jul-99 3 b 3 4 0 n n

31-Jul-99 4 a 4 4 2 3 n n

1-Aug-99 1 d 1 1 1 2 n n

1-Aug-99 3 c1 2 3 2 0 n n

1-Aug-99 4 b 4 4 0 n n

2-Aug-99 1 b 1 1 1 1 n n

2-Aug-99 2 d 3 2 5 n n

2-Aug-99 4 c2 4 3 1 n n

3-Aug-99 1 f 2 3 n n

3-Aug-99 2 e 3 10 n n

3-Aug-99 3 d 1 4 2 n n

3-Aug-99 4 d 4 2 3 n n

4-Aug-99 1 a 1 2 n n

4-Aug-99 2 f 3 5 n n

4-Aug-99 3 e 2 2 6 n y

5-Aug-99 1 b 1 1

5-Aug-99 3 f 3 5 y

5-Aug-99 4 e 2 2 3 n n

6-Aug-99 1 c2 1 1 1 0 n n

6-Aug-99 3 a 4 3 n n

6-Aug-99 4 f 2 2 n n

7-Aug-99 3 b 2 2 0 n n

7-Aug-99 4 a 4 2 n n

25-Aug-99 1 a 2 3 1 4 n y

25-Aug-99 2 f 3 0 n n

25-Aug-99 3 d 1 2 2 2 n y

25-Aug-99 4 c1 5 3 0 n n

26-Aug-99 1 b 4 4 3 0 n n

26-Aug-99 2 a 3 1 2 n n

26-Aug-99 4 d 5 3 2 0 n n

Appendix H: Equipment Fault Log

343

Date Pair No Activity PalmPilot No GPS No Cable No No of Resets GPS Link-up Trouble PP Locked Up

27-Aug-99 2 c1 2 2 1 0 n n

27-Aug-99 3 a 4 3 1 n y

27-Aug-99 4 f 5 0 n n

28-Aug-99 2 d 4 3 3 n n

28-Aug-99 3 b 2 2 1 0 n n

28-Aug-99 4 a 5 4 2 0 n n

29-Aug-99 4 b 5 4 3 0 n n

30-Aug-99 1 d 3 2 2 n n

30-Aug-99 2 b 4 3 3 0 n n

30-Aug-99 3 c1 2 2 1 0 n n

31-Aug-99 1 f 3 0 0 n n

31-Aug-99 2 e 5 4 3 1 n n

31-Aug-99 3 g 2 1 0 n n

31-Aug-99 4 b 1 3 4 0 n n

1-Sep-99 1 a 2 3 2 0 n

1-Sep-99 2 f 3 0 n n

1-Sep-99 3 e 1 4 4 1 n y

1-Sep-99 4 g 5 0 n n

2-Sep-99 1 e 3 2 2 n n

2-Sep-99 2 a 2 3 1 n n

2-Sep-99 3 f 1 0 n n

2-Sep-99 4 e 5 3 2 1 n n

3-Sep-99 1 c2 3 4 4

3-Sep-99 2 b 5 3 1 0 n n

3-Sep-99 3 a 4 2 2 1 n y

3-Sep-99 4 2 0 n

4-Sep-99 1 g 5 4 1 0 n n

4-Sep-99 2 c1 2 3 4 0 n n

4-Sep-99 3 b 3 2 2 0 n n

4-Sep-99 4 a 4 1 n y

5-Sep-99 1 f 3 0 n n

5-Sep-99 2 g 2 4 0 n n

5-Sep-99 3 c2 4 3 1 0 n n

5-Sep-99 4 b 5 4 0 n n

Appendix H: Equipment Fault Log

344

Date Data Lost No of Notes Recorded Paper Used? Memory Used

28-Jul-99 y 28 y 0

28-Jul-99 n 140 n 301

28-Jul-99 n 0 y 0

28-Jul-99 n 28 n 198

29-Jul-99 n 29 n 205

29-Jul-99 n 52 n 280

29-Jul-99 n 43 n 212

29-Jul-99 n 36 n 217

29-Jul-99 n 24 n 208

30-Jul-99 n 56 n 216

30-Jul-99 n 89 n 289

30-Jul-99 n y

30-Jul-99 n 150 n 268

31-Jul-99 n 13 n 196

31-Jul-99 n 26 n 254

31-Jul-99 n 51 n 234

1-Aug-99 n 81 n 251

1-Aug-99 n y 196

1-Aug-99 n 62 n 240

2-Aug-99 n

2-Aug-99 n 76 n 292

2-Aug-99 n 20 n

3-Aug-99 n 206 n 290

3-Aug-99 n 22 n 262

3-Aug-99 n 48 n 225

3-Aug-99 n 96 n 259

4-Aug-99 n 114 n 269

4-Aug-99 n 123 n 286

4-Aug-99 n 41 n 222

5-Aug-99

5-Aug-99 136 n

5-Aug-99 n n

6-Aug-99 n 121 n 281

6-Aug-99 n 42 y 213

6-Aug-99 n 100 n

7-Aug-99 n 27 n 205

7-Aug-99 n 51 n

25-Aug-99 n 53 n 236

25-Aug-99 n 128 n 299

25-Aug-99 n 152 n

25-Aug-99 n 19 n 200

26-Aug-99 n 6 n

26-Aug-99 n 51 n

26-Aug-99 n 120 n

Appendix H: Equipment Fault Log

345

Date Data Lost No of Notes Recorded Paper Used? Memory Used

27-Aug-99 n 29 n

27-Aug-99 n 51 n

27-Aug-99 n n

28-Aug-99 n 147 n

28-Aug-99 n 11 n

28-Aug-99 n 51 y

29-Aug-99 n 10 n

30-Aug-99 n 111 n

30-Aug-99 n 8 n

30-Aug-99 n 16 y

31-Aug-99 n n

31-Aug-99 n 33 n

31-Aug-99 n 63 n

31-Aug-99 n 11 n 194

1-Sep-99

1-Sep-99 n 129 n

1-Sep-99 n 25 n

1-Sep-99 n 148 n

2-Sep-99 n 50 n

2-Sep-99 n 51 n

2-Sep-99 n 55 n

2-Sep-99 y 22 n

3-Sep-99 y

3-Sep-99 n 10 n n

3-Sep-99 n 53 n

3-Sep-99 n y

4-Sep-99 n 139 n

4-Sep-99 n 12 n

4-Sep-99 n 9 n

4-Sep-99 n 1 n

5-Sep-99 n 125 n

5-Sep-99 n 118 n

5-Sep-99 n 12 n

5-Sep-99 n 2 n

Appendix H: Equipment Fault Log

346

Date Comments

28-Jul-99 PalmPilot had screen fault. Taking batteries out caused data loss.

28-Jul-99

28-Jul-99 PalmPilot lost templates because batteries were taken out over night (Ronda's email)

28-Jul-99 Loose connection on PalmPilot-GPS cable

29-Jul-99

29-Jul-99

29-Jul-99

29-Jul-99

29-Jul-99 screen still problematic

30-Jul-99

30-Jul-99

30-Jul-99 PalmPilot got stuck into one-handed mode

30-Jul-99

31-Jul-99

31-Jul-99 Flickering screen

31-Jul-99

1-Aug-99

1-Aug-99 Confusion over GPS UTM coords and PalmPilot Lat-lon coords

1-Aug-99

2-Aug-99

2-Aug-99

2-Aug-99

3-Aug-99

3-Aug-99

3-Aug-99

3-Aug-99

4-Aug-99

4-Aug-99

4-Aug-99 Veg plot + veg trees template would lock up after a while

5-Aug-99

5-Aug-99

5-Aug-99

6-Aug-99

6-Aug-99 gave up using PalmPilot because of resets needed every few trees

6-Aug-99

7-Aug-99

7-Aug-99

25-Aug-99

25-Aug-99

25-Aug-99

25-Aug-99

26-Aug-99

26-Aug-99

26-Aug-99

Appendix H: Equipment Fault Log

347

Date Comments

27-Aug-99

27-Aug-99 need paperclip.

27-Aug-99 need paperclip and battery recharge.

28-Aug-99

28-Aug-99

28-Aug-99 Batteries flat and spares also. 13 notes entered in field then the rest in the centre.

29-Aug-99

30-Aug-99

30-Aug-99

30-Aug-99

31-Aug-99

31-Aug-99

31-Aug-99

31-Aug-99

1-Sep-99

1-Sep-99

1-Sep-99

1-Sep-99 Check batteries - low.

2-Sep-99 Recharge batteries.

2-Sep-99

2-Sep-99 Batteries low.

2-Sep-99 Recharge batteries

3-Sep-99 Batteries out and programs lost.

3-Sep-99

3-Sep-99

3-Sep-99 Battery failed and had no spare.

4-Sep-99

4-Sep-99

4-Sep-99

4-Sep-99

5-Sep-99

5-Sep-99

5-Sep-99

5-Sep-99

349

AAppppeennddiixx II::

KKeennyyaann FFiieellddwwoorrkk AAccttiivviittiieess

Activity A: Tree Growth and Damage Measurement on a Plot

In this activity a team of two volunteers navigate to a pre-specified plot using the GPS

receiver, where 50 or more acacia drepanolobium trees have been permanently tagged with

numbered aluminium discs. Each tree’s height, diameter and damage condition is then re-

measured and recorded using the prototype tools. On returning to the research centre in

the afternoon the volunteers download the data into a spreadsheet, and by comparing the

collected data with the data for the same trees measured in 1998, calculate the annual

growth rate and percentage damage for each height class.

Two stick-e note templates were created for this activity, one for recording the data about

the plot and another used to record information about each tree, as illustrated in Table 30

and Table 31 respectively.

Name Type Description

Plot number Number The numeric ID of one of the 200 tree growth plots.

Location Location GPS derived location of the plot.

Comments NotePad Any comments about the plot; e.g. has it been burned recently.

Table 30. Growth-Plot stick-e note template.

Name Type Description

Tag number Number Tree tag number.

Height1 Number Height of the tree from first position.

Height2 Number Height of the tree from second position.

Height3 Number Height of the tree from third position.

Diameter Number Tree diameter.

Damage Picklist General type of damage sustained by the tree: main stem, missing,
dead or none

Appendix I: Kenyan Fieldwork Activities

350

Name Type Description

dead, or none.

Fresh damage Boolean Whether there is fresh damage to the tree or not.

Damage type Picklist Specific type of damage to the tree: main stem snapped off, tree
pushed over, tree stepped on, main stem bitten off, tree leaning.

Damage height Number Height at which the damage was sustained.

Damager Picklist Cause of damage to the tree: elephant, rhino, giraffe, fire, natural
causes, other.

Ants Picklist The species of ants living on the tree: rbb, rrb, rrr, bbb, brb, brr, rbr,
bbr, or none.

Comments NotePad Any miscellaneous comments.

Table 31. Growth-Trees stick-e note template.

The growth-plot template is used only once when arriving at the plot, then for each tree a

growth-trees stick-e note is recorded. Although the location of the plot is known in

advance it is recorded again in a growth-plot note so that the project manager can verify

that the volunteers attended to the correct plot.

Activity B: Rhino Identification

A team of two volunteers join the daily three-man armed rhino patrol at dawn to search

for rhinos. The volunteers record the locations of all sightings of rhino and any rhino

signs, such as footprints and middens (middens are the locations in which rhinos

regularly defecate). Where there is positive identification, either by sighting or by prints,

the name of the rhino (each rhino in the reserve has a unique name) and its location are

recorded. If the rhino can be kept in view, the volunteers record on the PalmPilot all

behavioural activities, such as walking, feeding, sleeping, etc. On their return the

volunteers enter the location data into a spreadsheet for use by CALHOME (a computer

program for calculating the home ranges of animals) and download any observational

data onto a spreadsheet for later analysis. There are three separate templates, for creating

rhino sightings, rhino signs, and rhino footprint stick-e notes respectively, as illustrated in

Table 32, Table 33 and Table 34.

Name Type Description

Male name Picklist A picklist of the names of all the male rhinos in the reserve (Job,
Jupiter, Kerkura, Loita, Otoro, Morani, Baraka, Rodney).

Appendix I: Kenyan Fieldwork Activities

351

Name Type Description

Female name Picklist A picklist of the names of all the female rhinos in the reserve
(Chema, Kilo, Mokora, Shemsha, Tamu, Waya, Saba, Tulivu, Carol,
Ischerine).

Calf name Picklist A picklist of the names of all the calf rhinos in the reserve (no
name, Robert, Tulia, Jama, Hifaldi).

Location Location GPS derived location of the sighting.

Activity Picklist Current activity of the rhino: walking, sleeping, feeding, defecating,
spraying, scraping, standing, out of sight, wallowing, head rubbing,
running, or drinking.

Comments Notepad Any miscellaneous comments, e.g. type of food being eaten.

Table 32. Rhino Sighting stick-e note template.

Name Type Description

Sign Picklist The type of rhino sign spotted: midden, bedding sight, footprints,
dust bath, wallow, browse, or tree rubbing.

Location Location GPS derived location of the sign.

Comments NotePad Any miscellaneous comments.

Table 33. Rhino Signs stick-e note template.

Name Type Description

Location Location GPS derived location of the footprint.

A Number Footprint measurement.

B Number Footprint measurement.

C Number Footprint measurement.

D Number Footprint measurement.

E1 Number Footprint measurement.

E2 Number Footprint measurement.

Substrate Picklist Type of ground the footprint was found in: damp mud, dry mud,
coarse soil, fine soil, sand.

Foot Picklist Which of the rhino’s feet the print is from: front or rear.

Male name Picklist A picklist of the names of all the male rhinos in the reserve (Job,
Jupiter, Kerkura, Loita, Otoro, Morani, Baraka, Rodney).

Female name Picklist A picklist of the names of all the female rhinos in the reserve
(Chema, Kilo, Mokora, Shemsha, Tamu, Waya, Saba, Tulivu, Carol,
Ischerine).

Calf name Picklist A picklist of the names of all the calf rhinos in the reserve (no
name Robert Tulia Jama Hifaldi)

Appendix I: Kenyan Fieldwork Activities

352

Name Type Description

name, Robert, Tulia, Jama, Hifaldi).

Comments NotePad Any miscellaneous comments.

Table 34. Rhino Footprint stick-e note template.

Accurate location data is essential for this activity as the main use of the data is to analyse

and identify which rhinos are where in the reserve, and what behaviours they exhibit in

different areas. The prototype fieldwork tool ensures a reliable, accurate (relative to

manual methods), and transcription-error-free method of collecting this location data.

Activity C1: Elephant Distribution by Eight Kilometre Transects

A team of two volunteers walks a specified five to eight kilometre transect and records all

elephant dung piles within five metres of either side of the transect line (specified as a

series of waypoints in the GPS receiver). GPS recordings are taken every half kilometre

along the transect. On their return the volunteers input the data into a spreadsheet for

processing and use by IDRISI (a GIS) to create an elephant distribution map. Only one

template, as illustrated in Table 35, is used for this activity.

Name Type Description

Location Location GPS derived location of the sign.

No. of dung piles Number Number of dung piles counted in this leg of the transect.

End of transect? Boolean Checked if this is the last point on the transect.

Table 35. Dung stick-e note template.

The volunteers are often not able to follow the planned route of the transect due to

dense vegetation blocking the path or encounters with dangerous animals (there are

only so many dung piles one can find before encountering their creator!). Recording the

GPS derived locations is therefore essential in ascertaining where exactly the volunteer

did walk.

Each stick-e note records data for one half kilometre leg of the transect, during which

time the dung count can be incremented using the MAUI controls each time an

elephant dung pile is spotted (so leaving the volunteer’s eyes free for spotting dung

rather than operating the PalmPilot).

Appendix I: Kenyan Fieldwork Activities

353

Activity C2: Tree Damage Sampling by Eight Kilometre Transect

A team of two volunteers walks a specified five to eight kilometre transect and records

the location and condition of freshly damaged acacia drepanolobium trees within fifty

metres of the transect line (which is specified as a series of waypoints in the GPS

receiver). GPS readings are taken every half kilometre. After returning and downloading

the data the volunteers calculate the mean percentage damaged trees for each section of

the transect, and input the data into a spreadsheet as data points for using in creating a

damage map in the IDRISI GIS. The single template used to collect the data is illustrated

in Table 36.

Name Type Description

Location Location GPS derived location of the sign.

Damage Boolean If there is damaged tree here, or if the note is just being used to
record the point along the transect.

Damager Picklist Cause of damage to the tree: elephant, rhino, giraffe, fire, natural
causes, other.

Type of damage Picklist Specific type of damage to the tree: main stem snapped off, tree
pushed over, tree stepped on, main stem bitten off, tree leaning.

Distance Number Distance from the tree to the transect line.

Bearing Bearing The direction of the tree from the transect line.

Height after Number The height of the tree after being damaged.

Height before Number The estimate height of the tree before being damaged.

Diameter Number The diameter of the tree at breast height.

Comments Notepad Any miscellaneous comments.

End of transect? Boolean Checked if this is the last point on the transect.

Table 36. Transect-Damage stick-e note template.

As with the dung-pile-counting transect, the ability to reliably record where the volunteer

has walked and to allow for an eyes-free form of operation is essential. In fact, it is even

more so as the volunteer has to look out for damaged trees within a one hundred metre

area and to record the position of each one found.

Activity D: Tree Damage Sampling on Plots

Appendix I: Kenyan Fieldwork Activities

354

A team of two volunteers carries out a half kilometre transect within one of the 25 plots

with tagged trees in order to measure tree growth. The volunteers measure the height,

diameter and damage status of all acacia drepanolobium trees within one metre either side

of the transect line. The half kilometre is split into five lines each of one hundred metres

length, the location of which is selected by the volunteers to give random detailed data on

tree height distribution and damage status. The first tagged tree on the plot is the centre

point of the study. On returning to the research centre, the data will be input to a

spreadsheet and the percentage of trees damaged and killed in each height class

calculated. Two templates are used to collect the data, one for describing the plot and the

other for describing each tree, as illustrated in Table 37 and Table 38.

Name Type Description

Plot number Number The numeric ID of one of the plots.

Location Location GPS derived location of the plot.

Comments NotePad Any miscellaneous comments.

Table 37. Damage-Plot stick-e note template.

Name Type Description

Tree number Number Sequential number of the tree.

Height Number Height of the tree.

Diameter Number Diameter of the tree at breast height.

Damage Picklist Either main stem or no damage (damage to other parts of the tree
should not be recorded).

Fresh damage? Boolean Recording if the damage is recent or not.

Damage type Picklist Specific type of damage to the tree: main stem snapped off, tree
pushed over, tree stepped on, main stem bitten off, tree leaning.

Damage height Number Height at which the damage was sustained.

Damager Picklist Cause of damage to the tree: elephant, rhino, giraffe, fire, natural
causes, other.

Ants Picklist The species of ants living on the tree: rbb, rrb, rrr, bbb, brb, brr, rbr,
bbr, or none.

Table 38. Damage-Trees stick-e note template.

The use of the damage picklist in the damage-trees template is a good example of how

the software prompts the user to enter the appropriate data whilst preventing them

Appendix I: Kenyan Fieldwork Activities

355

from straying into performing redundant or incorrect tasks. It would be very easy to

record any type of damage (as is done in the other activities) if the picklist did not

restrict the volunteer’s choices.

Activity E: Vegetation Sampling

A team of two volunteers navigates to a pre-specified location using the GPS receiver,

where they select the nearest tree/shrub to the location and use it as the central point in

marking out a circle of a thirty metre diameter. After recording specific details of the

ground within the boundary of the circle they carry out a series of measurements on the

central tree/shrub, and then repeat the measurements on the 9 nearest trees/shrubs to it.

This data is downloaded to a spreadsheet and later used in the construction of a

vegetation map of the reserve. Two templates are used to collect the data, one for

describing the plot and the other for describing each tree, as illustrated in Table 39 and

Table 40.

Name Type Description

Location Location GPS derived location of the plot.

% ground cover Number Percentage of ground covered by trees/shrubs.

Slope Number Angle of the slope (measured with an inclinometer).

Aspect Bearing Direction in which the slope faces.

Grass Ht 0 Number Grass height at 0 metres across the circle.

Grass Ht 3 Number Grass height at 3 metres across the circle.

Grass Ht 6 Number Grass height at 6 metres across the circle.

Grass Ht 9 Number Grass height at 9 metres across the circle.

Grass Ht 12 Number Grass height at 12 metres across the circle.

Grass Ht 18 Number Grass height at 18 metres across the circle.

Grass Ht 21 Number Grass height at 21 metres across the circle.

Grass Ht 24 Number Grass height at 24 metres across the circle.

Grass Ht 27 Number Grass height at 27 metres across the circle.

Grass Ht 30 Number Grass height at 30 metres across the circle.

Comments Notepad Any miscellaneous comments.

Table 39. Vegetation-Plot stick-e note template.

Appendix I: Kenyan Fieldwork Activities

356

Name Type Description

Tree number Number The sequence number of the tree.

Distance Number The tree’s distance from the central tree.

Bearing Bearing The direction of the tree from the central tree.

Species Picklist A selection of all the possible tree/shrub species.

Height Number Height of the tree.

Crown diameter Number Diameter of the widest point of the tree.

Lowest leaf height Number The height of the tree’s lowest leaf.

Foliage shape Picklist A selection of general shapes of trees: cylinder, flat, hemisphere,
sphere, cone (base up), or cone (base down). Used to calculate total
bio mass of the tree.

Damage Picklist A selection of M, B, T, MB, BT, MT, or MBT, where M = Main stem,
B = Branch, and T = Terminal shoot.

Bush Boolean If it is a bush or a tree.

No. of stems Number The number of stems if it is a bush.

Flowers Picklist The state of any flowers: buds, open, dead, buds + open, buds +
dead, open +dead, all, or none.

Fruit Picklist The state of any fruit: unripe, ripe, rotten, ripe + rotten, unripe + ripe,
unripe + rotten, all, or none.

Gum Boolean If the tree has gum coming out of its stems.

Ants Picklist The species of ants living on the tree: rbb, rrb, rrr, bbb, brb, brr, rbr,
bbr, or none.

Table 40. Vegetation-Trees stick-e note template.

This activity generated the most data per stick-e note by far compared to all the other

fieldwork activities. As a result it was in performing this activity in which the main bug

of the prototype system would most frequently occur. This is worth describing briefly

as it no doubt influenced the volunteer’s perception of the tools. The bug would

manifest itself in the form of an operating system “fatal error” message and the

subsequent need to reset the device. Although inconvenient (and a little disturbing to

the novice user!) the problem caused no loss of data except in the stick-e note currently

being edited (which would have to be re-entered). After the reset the volunteers could

continue with their task as per normal. We eventually traced the problem to a memory

leak in part of the code handling the display of picklists.

Activity F: Rhino/Giraffe Behaviour in Morani's Compound

Appendix I: Kenyan Fieldwork Activities

357

A team of two volunteers works in the 70 acre protected area which houses the black

rhino called Morani. Morani can be safely approached and observed at close quarters

when feeding on acacia and in the herb layer, giving valuable insights into how a rhino

feeds. The data collected will be added to a rhino foraging database and compared with

data collected in the reserve where rhino cannot be approached as closely. A single rhino-

behaviour template is used to collect behavioural data on Morani, as illustrated in Table

41.

The behaviour is recorded by creating a new stick-e note for Morani’s activity when he is

first approached and then by creating a new stick-e note every time his activity changes.

The prototype always automatically includes a time and date field in the stick-e note

regardless of the template design, so there is no need to define such fields explicitly in

stick-e note template. The time data is used to calculate a time budget of activities for the

rhino.

Name Type Description

Rhino activity Picklist Current activity of the rhino: walking, sleeping, feeding, defecating,
spraying, scraping, standing, out of sight, wallowing, head rubbing,
running, or drinking.

Food type Picklist The general type of food Morani is eating (if his activity is feeding):
acacia, scutia, herbs, grasses, euclea, or other.

Tree species Picklist If identifiable, the specific tree species that Morani is eating can be
identified from an extensive list.

Herb species Picklist If identifiable, the specific herb species that Morani is eating can be
identified from an extensive list.

Comments Notepad Any miscellaneous notes.

Table 41. Rhino Behaviour stick-e note template.

A wild male giraffe, called Dent, also lives in the same protected area and can be

approached sufficiently closely to observe how a giraffe behaves. As with Morani,

volunteers carry out a detailed study of Dent’s behaviour, including how long the giraffe

feeds on each tree. This data will be added to a giraffe foraging database at a later date. A

single stick-e note template is used to record Dent’s behaviour, as illustrated in Table 42.

Name Type Description

Activity Picklist Current activity of the giraffe: walking, standing-vigilent, standing-
ruminating, walking-ruminating, running, feeding-acacia, feeding-
other, interaction, other, or out of sight.

Appendix I: Kenyan Fieldwork Activities

358

Name Type Description

New tree Boolean If the giraffe has started feeding on a new tree.

Feeding height Number The height at which the giraffe is feeding.

Bite rate start Time The time at which the giraffe starts biting the tree at that height.

Number of bites Number The number of bites taken at that height.

Bite rate finish Time The time at which the giraffe stops taking bites at that height.

Comments Notepad Any miscellaneous notes.

Table 42. Giraffe Behaviour stick-e note template.

The general behaviour is recorded in the same manner as with Morani, and the

automatically provided time and date information is also used to build up a time budget

for Dent’s different behaviours. More detailed data can also be collected on Dent’s

feeding behaviour by completing a new stick-e note each time he engages in another

feeding bout. This was described to the volunteers as an optional activity as there is an

immense amount of data to collect in a very small space of time, as the giraffe can

change trees, feeding heights, and take a number of bites all in a matter of seconds. The

ability to automatically capture some timing data and to have the ‘now’ buttons to

quickly update the other time fields made the activity at least feasible for a good

proportion of the volunteers (those who were most comfortable with using the

technology).

The rhino and giraffe behavioural observations were certainly the most demanding of

the activities in terms of the speed and volumes of data recorded. However, the ease-

of-use of the interface was demonstrated when one of Morani’s guards, a local tracker

with no previous computing experience whatsoever, started to help the volunteers by

taking control of the PalmPilot and recording all of Morani’s behaviour himself. In fact,

he seemed to enjoy using the equipment so much that it has been difficult thereafter for

the volunteers do any work with the PalmPilots themselves!

Activity G: Seedling Sampling on a Plot

A team of 2 volunteers performs quadrate sampling on one of the thirty plots that

contain tagged trees. For this activity volunteers measure the height, diameter and

damage status of all acacia drepanolobium seedlings and trees within one hundred 2m x

Appendix I: Kenyan Fieldwork Activities

359

2m quadrates measured out with a thirty metre tape measure (see Figure 65). Every tree

in the quadrate is measured and recorded, including any seedlings. The aim of this

activity is to get a random sample of trees and seedlings so that the percentage height

distribution can be calculated. Two templates are used to collect the data: one to record

general information about the plot, illustrated in Table 43, and another used to record

information about each individual tree or sapling, illustrated in Table 44.

Name Type Description

Plot number Number The numeric ID of one of the plots.

Location Location GPS derived location of the plot.

Comments Notepad Any miscellaneous comments.

Table 43. Seedlings-Plot stick-e note template.

Name Type Description

Quadrate number Number The numeric ID of the quadrate (see Figure 65).

Height Number Height of the tree of seedling.

Diameter Number Diameter of the tree or seedling main stem.

Damage Picklist Either main stem damage or none.

Comments Notepad Miscellaneous notes.

Table 44. Seedlings stick-e note template.

Appendix I: Kenyan Fieldwork Activities

360

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 65. Sampling quadrate.

The summary data of previously recorded stick-e notes displayed in the StickePad main

screen is essential for this activity. Without this reference of what data they have

collected so far the volunteer can easily lose track of which quadrate of the one

hundred quadrates they have progressed to.

Student Support Activities

In addition to the planned Earthwatch activities, a number of templates was also

created to aid in the research of a number of MSc students also working at the reserve.

In particular there were three students, studying baboons, lions, and giraffes

respectively, who wanted to utilise the Earthwatch volunteers to record observations of

their animals of interest if they came across them or any signs of them during their

day’s activity. The students could then collect the data gathered by each volunteer pair

from the spreadsheet on the laptop computer at the end of the day. The necessary

stick-e note templates only take a couple of minutes to construct, and provide a

consistent, reliable, and efficient method of collecting extra data from the volunteers.

The templates for recording information about lions, giraffes and baboons are

illustrated in Table 45, Table 46 and Table 47.

The lion stick-e note template could be more straightforwardly constructed as a set of

smaller templates for lion sightings, kills, faeces, and tracks. However, the template

designers preferred to group all the information into one template so as not to

Appendix I: Kenyan Fieldwork Activities

361

overwhelm the volunteers with a huge selection of templates to choose from when

creating a new stick-e note.

Name Type Description

Location Location GPS derived location of the observation.

% tree cover Number Percentage of ground covered by shrubs and trees.

Species in sight Notepad List of species currently in the area.

Lion sighting? Boolean If a lion was sighted or not.

Adult males Number Number of adult males sighted.

Adult females Number Number of adult females sighted.

Sub-adults Number Number of sub-adults sighted.

Cubs Number Number of cubs sighted.

Lion kill? Boolean If a lion kill was discovered or not.

Species of prey Picklist Species of the kill: baboon, buffalo, bushbuck, eland, giraffe, grant’s
gazelle, hartebeest, impala, oryx, thompson’s gazelle, warthog,
waterbuck, zebra, or other.

Remains left Notepad Description of remains left.

Lion faeces? Boolean If there were lion faeces or not.

No. of faeces Number Quantity of faeces.

Substrate Picklist Type of ground surface: road or grass.

Lion tracks? Boolean If there were lion footprints or not.

Substrate Picklist Type of ground surface: road or grass.

Adult males Number Quantity of male tracks.

Adult females Number Quantity of female tracks.

Sub-adults Number Quantity of sub-adult tracks.

Cubs Number Quantity of cub tracks.

Comments Notepad Any miscellaneous comments.

Table 45. Lion stick-e note template.

Appendix I: Kenyan Fieldwork Activities

362

Name Type Description

Location Location GPS derived location of the observation.

Bearing Bearing Direction of giraffe from the observation point.

Distance Number Distance of giraffe from the observation point.

Movement direction Bearing Direction in which the giraffe are moving.

Group size Number Total number of giraffe in the group.

Male adult Number Number of adult male giraffes in the group.

Female adult Number Number of adult female giraffes in the group.

Male sub-adult Number Number of sub-adult male giraffes in the group.

Female sub-adult Number Number of sub-adult female giraffes in the group.

Male juvenile Number Number of juvenile male giraffes in the group

Female juvenile Number Number of juvenile female giraffes in the group.

Comments Notepad Any miscellaneous comments.

Table 46. Giraffe Sighting stick-e note template.

Name Type Description

Location Location GPS derived location of the plot.

No of baboons Number Number of baboons in the troop spotted.

Comments Notepad Any miscellaneous comments.

Table 47. Baboon stick-e note template.

A major goal of all the student’s studies was to estimate the population and distribution

of their species. Having data collected by the 5 pairs of volunteers who were each day

in different parts of the reserve was obviously a great boon to achieving that goal. The

prototype fieldwork tools ensured that volunteers accurately recorded the location, time

and date of the observations and that the rest of the data was collected in a consistent

fashion.

Downloading the Data

At the end of each day’s activity the data stored on the prototype was downloaded into

the research centre’s laptop computer. Although a quite straightforward process, this

was probably the most complex activity to perform: especially so for the computing

Appendix I: Kenyan Fieldwork Activities

363

novices who would have to get to grips with basics of using Microsoft Windows ’98 in

addition to the downloading process itself.

To download the data the volunteer would first log into the laptop computer, place the

PalmPilot device into the hotsync cradle and then press the hotsync button. The device

would then transfer all the stored stick-e notes to the laptop computer. Although this is

all that needs to be done to save the data to the laptop, the project organisers also

wanted the volunteers to import the data into an Excel spreadsheet. Indeed, it is likely

that stick-e notes will often need to be compatible with a variety of different packages

on the PC, depending on the particular application. To this end we provided a program

called StickeStore on the laptop computer; StickeStore could export the stick-e notes to

a tab-delimited text file, which could then be imported into the relevant application,

Microsoft Excel in this case. Each pair had their own spreadsheet that they added their

collected data to each day, and each spreadsheet contained a separate sub-sheet that

corresponded to, and was named the same as, a stick-e note template.

Each volunteer was taken through the process of downloading on the first day in the

field and then on subsequent days was given a step-by-step instruction sheet to help

them carry out the process on their own, which the majority of the pairs successfully

accomplished. Only one in five pairs required additional assistance after the second and

third days. However, with the fieldwork computing tools not a single pair required

additional help after the first day’s training, other than the occasional query at the end

of the day’s work. Thus this software for downloading and exporting, which was not

part of our research work, indirectly illustrated the research project’s success in

achieving ease of use.

