
Smaus, Jan-Georg (1999) Modes and types in logic programming. Doctor
of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/86132/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.86132

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 09 February 2021 in order to hold its content and record within University of Kent systems. It is available

Open Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If y...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/86132/
https://doi.org/10.22024/UniKent/01.02.86132
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

MODES AND TYPES IN LOGIC PROGRAMMING
a thesis submitted toThe University of Kent at Canterburyin the subjet of omputer sienefor the degreeof dotor of philosophy.

ByJan-Georg SmausDeember 1999

AbstratThis thesis deals with two themes: (1) onstrution of abstrat domains for mode anal-ysis of typed logi programs; (2) veri�ation of logi programs using non-standard se-letion rules.(1) Mode information is important mainly for ompiler optimisations. The preisionof a mode analysis depends partly on the expressiveness of the abstrat domain. Weshow how speialised abstrat domains may be onstruted for eah type in a typedlogi program. These domains apture the degree of instantiation of a term very pre-isely. The domain onstrution proedure is implemented using the G�odel languageand tested on some example programs to demonstrate the viability and high preisionof the analysis.(2) We provide veri�ation methods for logi programs using seletion rules otherthan the usual left-to-right seletion rule. We onsider �ve aspets of veri�ation: termi-nation; and freedom from (full) uni�ation, our-hek, oundering, and errors relatedto built-ins. The methods are based on assigning a mode, input or output, to eah ar-gument position of eah prediate. This mode is only �xed with respet to a partiularexeution. For termination, we �rst identify a lass of prediates whih terminate underthe assumption that derivations are input-onsuming, meaning that in eah derivationstep, the input arguments of the seleted atom do not beome instantiated. Input-onsuming derivations an be realised using blok delarations, whih test that ertainargument positions of the seleted atom are non-variable. To show termination fora program where not all prediates terminate under the assumption that derivationsare input-onsuming, we make the stronger assumption that derivations are left-based.This formalises the \default left-to-right" seletion rule of Prolog. To the best of ourknowledge, this work is the �rst formal and omprehensive approah to this kind oftermination problem. The results on the other four aspets are mainly generalisationsof previous results assuming the left-to-right seletion rule.

ii

AknowledgementsI am grateful to the many people who helped me write my PhD thesis.The researh of this thesis was partly arried out in the projet `Deteting andExploiting Determinay in Logi Programs' led by Andy King at the University of Kentat Canterbury and Pat Hill at the University of Leeds. Andy King was also my PhDsupervisor. I would like to thank Andy and Pat for their ritial guidane and friendlyenouragement.I was very fortunate to be a member of the logi programming group at the Univer-sities of Leeds and Kent. I would like to thank Florene Benoy, Andrew Heaton, JaobHowe and Jonathan Martin for the produtive and enjoyable time we spent together.I also thank Eerke Boiten, Naomi Lindenstrauss, Fred Mesnard and Erik Poll, whoproofread parts of my thesis. Maarten Steen has given me muh advie on organisationalmatters.Many olleagues have inspired my work. I would like to mention Krzysztof Apt,Tony Bowers, Henning Christiansen, Mihael Codish, Bart Demoen, Sandro Etalle,Fergus Henderson, Lee Naish and Salvatore Ruggieri.I gratefully aknowledge the �nanial support from the EPSRC and the Com-puting Laboratory of the University of Kent at Canterbury. During the �rst twoyears of my PhD studies I was employed as a researh assoiate under EPSRC GrantNo. GR/K79635, and in the remaining time, I reeived an E. B. Spratt Bursary.I made many friends during the time I spent in Canterbury, most of them throughmy `lunh group' or through the orhestra of Kent University. They have made thesethree and a half years a wonderful time. When I leave Canterbury this summer, I willbeome another outpost of this irle of friends whih already spans all over Europe,and even further.I am grateful to my family for their ontinuing support. Last but not least, I thankB�en�edite, my muse. iii

Prefae
Modes and types are two widely used onepts in analysis and veri�ation of logiprograms. On the analysis side, modes and types allow us to infer information aboutthe program whih is useful for ompiler optimisations, helping to generate more eÆientode. On the veri�ation side, modes and types allow us to prove a number of desirableproperties of the program, suh as our-hek freedom and termination. Some logiprogramming languages even go as far as only admitting programs that meet ertainmode and type requirements. This has great bene�ts in terms of eÆieny and reliabilityof software.The separations between the above areas are not learut. Moreover, the notionsof mode and type have di�ering meanings depending on the ontext in whih they areused. There is a whole spetrum of suh meanings.This thesis treats two substantially di�erent themes. However, both are related tomodes and types. The two themes are� the onstrution of abstrat domains for mode analysis of typed logi programs,� the veri�ation of logi programs for non-standard seletion rules.Modes and types have quite di�erent, albeit ertainly related, meanings for the twothemes. Within eah theme, our usage of these notions follows widespread onven-tions. To avoid onfusion, it seems therefore reasonable to keep the two themes learlyseparated.This gives rise to the following struture of this thesis. The thesis has three parts:an introdutory part and two parts orresponding to the two themes. Part I is dividedinto two hapters. Chapter 1 onsists of two separate introdutions for Parts II and III.Chapter 2 puts the two themes into ontext by giving an overview of the whole spetrumiv

of mode and type onepts that are used in the literature, whih enompasses theonepts used in this thesis.The work presented in Part II has been aepted for presentation at the 9th Inter-national Workshop on Logi-Based Program Synthesis and Transformation(LOPSTR'99) [SHK99a℄. The work presented in Part III is based on three onfer-ene papers [SHK98, SHK99b, Sma99℄, two of whih the author has written togetherwith Pat Hill and Andy King.

v

Contents
Abstrat iiAknowledgements iiiPrefae ivI Introdution and Bakground 11 Introdution 31.1 Mode Analysis for Typed Logi Programs 31.1.1 Previous Work . 31.1.2 Exploiting Type Delarations . 61.2 Non-Standard Derivations . 71.2.1 Corretness Properties of Programs 81.2.2 Termination of Input-Consuming Derivations 91.2.3 Ensuring Input-Consuming Derivations 101.2.4 Termination and blok Delarations 101.2.5 Further Aspets of Veri�ation 111.2.6 Weakening Some Conditions . 121.2.7 Related Work and Conlusion . 122 Notions of Modes and Types 132.1 Modes . 132.1.1 Desriptive versus Presriptive Modes 142.1.2 The Granularity . 162.2 Types . 172.2.1 What is a Type? . 172.2.2 Non-ground Types . 192.2.3 Polymorphism . 192.2.4 Desriptive versus Presriptive Types 202.3 Combining Modes and Types . 212.3.1 Diretional Types . 212.3.2 A Delarative View of Modes . 222.4 Summary . 22vi

II Mode Analysis for Typed Logi Programs 243 The Struture of Types and Terms 263.1 Introdution . 263.2 Motivating and Illustrative Examples . 273.3 Notation and Terminology . 283.4 Relations between Types . 293.5 Traversing Conrete Terms . 334 Abstrat Domains for Mode Analysis 404.1 Abstration of Terms . 404.2 Traversing Abstrat Terms . 444.3 Abstrat Compilation . 464.4 Implementation and Results . 494.5 Disussion and Related Work . 50III Non-Standard Derivations 545 Corretness Properties of Programs 565.1 Why Non-Standard Derivations? . 565.2 Notation and Terminology . 595.3 Modes and Permutations . 615.3.1 The Order of the Atoms in a Query 615.3.2 Are those Permutations Really Neessary? 625.3.3 Uniqueness of Derived Permutations 635.4 Permutation Niely Moded Programs . 655.5 Permutation Well Moded Programs . 685.6 Permutation Well Typed Programs . 695.7 Type-Consistent Programs . 706 Termination of Input-Consuming Derivations 726.1 Termination and the Seletion Rule . 726.2 Existential vs. Universal Termination . 746.3 Controlled Coroutining . 746.4 Showing that a Prediate is Atom-Terminating 776.5 Applying the Method . 826.6 Disussion . 837 Ensuring Input-Consuming Derivations 847.1 The Simpliity of blok Delarations . 847.2 Terminology Related to blok Delarations 857.3 Permutation Simply Typed Programs 857.4 Permutation Robustly Typed Programs 897.5 Summary of the Corretness Properties 97vii

8 Termination and blok Delarations 988.1 Two Approahes to the Termination Problem 988.2 Left-Based Derivations . 998.3 Termination and Speulative Bindings 1008.3.1 Termination by not Using Speulative Bindings 1018.3.2 Termination by not Making Speulative Bindings 1028.4 Termination and Atom-Terminating Prediates 1058.5 Disussion . 1119 Further Aspets of Veri�ation 1129.1 Uni�ation Free Programs . 1129.2 Our-Chek Freedom . 1159.3 Floundering . 1169.4 Errors Related to Built-ins . 1179.4.1 The Connetion between Delay Delarations and Type Errors . . 1179.4.2 Exploiting Constant Types . 1189.4.3 Atomi Positions . 1199.5 Disussion . 12010 Weakening Some Conditions 12110.1 Simplifying the blok Delarations . 12110.1.1 Permutation Simply Typed Programs Using Constant Types . . 12110.1.2 Programs that Respet Atomi Positions 12310.1.3 Exploiting the Fat that Derivations Are Left-Based 12410.2 Weakening Input-Linearity of Clause Heads 12610.3 Generalising Modes . 12910.4 Disussion . 12911 Related Work and Conlusion 13111.1 Related Work . 13111.1.1 The Signi�ane of \Pinning Down the Size" of an Atom 13111.1.2 Guarded Horn Clauses . 13211.1.3 Coroutining and Terminating Logi Programs 13311.1.4 Strong Termination . 13311.1.5 Generating Delay Delarations Automatially 13311.1.6 Veri�ation Using Modes and Types 13411.1.7 Termination of LD-Derivations 13511.1.8 Termination for Loal Seletion Rules 13511.1.9 Diretional Types . 13511.1.10 Termination by Imposing Depth Bounds 13611.1.11 Beyond Suess and Failure . 13611.1.12 Termination of Well-Moded Programs 13611.1.13 9-Universal Termination . 13611.1.14 Assertion-Based Debugging of (Constraint) Logi Programs . . . 13711.2 Conlusion . 13711.2.1 Some Distintive Novel Ideas . 13711.2.2 Open Problems . 13911.2.3 Summary of Part III . 140viii

Part IIntrodution and Bakground

1

Chapter 1IntrodutionIn this hapter, we will give two separate introdutions for Parts II and III, respetively.As mentioned in the prefae, both parts make use of notions of mode and type, but theyuse these notions in quite di�erent ways.In Part II, a mode is a haraterisation of the degree of instantiation of a term.A type is a set of terms de�ned by means of a delaration, as provided in typed logiprogramming languages suh as G�odel [HL94℄ or Merury [SHC96℄.In Part III, a mode is a spei�ation of eah argument position of eah prediate in aprogram as either input or output. A type is any set of terms losed under instantiation.In Chapter 2, we will onsider the relationships between these notions in more detail.1.1 Mode Analysis for Typed Logi ProgramsIn Part II we provide a generi method for onstruting abstrat domains for mode anal-ysis of typed logi programs. A mode is a haraterisation of the degree of instantiationof a term at a ertain point in the exeution of a program. Mode analysis is onernedwith �nding the modes of a program. We now present an introdution to mode analysisusing abstrat domains and then proeed to the atual ontribution of Part II.1.1.1 Previous WorkThe following example illustrates the notions of degree of instantiation and point in theexeution.Example 1.1 Consider the following program1 for the append prediate.append(Xs,Ys,Zs) :-Xs = [℄,Ys = Zs.append(Xs,Ys,Zs) :-Xs = [X|Xs1℄,Zs = [X|Zs1℄,append(Xs1,Ys,Zs1).1The program is in so-alled normal form, de�ned in Setion 3.3.3

4 CHAPTER 1. INTRODUCTIONappend(Xs,Ys,Zs) :-ground(Xs),iff(Ys,Zs).append(Xs,Ys,Zs) :-iff_and(Xs,X,Xs1),iff_and(Zs,X,Zs1),append(Xs1,Ys,Zs1).
ground(ground).iff(X,X).iff_and(ground,ground,ground).iff_and(any,ground,any).iff_and(any,any,ground).iff_and(any,any,any).Figure 1: An abstration of appendWhen we assume an initial query append([1; 2℄; [3; 4℄; Cs) and the standard left-to-rightseletion rule, then we an say that at eah point in the exeution just before an atomappend(s; t; u) is alled, s and t have the following degree of instantiation: they areground. Moreover, for every omputed answer, Cs is instantiated to a ground term. /Information as in the above example an be derived using abstrat interpretation [CC77℄.Here we will look at a partiular tehnique of abstrat interpretation alled abstrat om-pilation [CD94, CD95, DW86, HWD92℄, meaning that an abstrat program is evaluatedusing a onrete semantis.Example 1.2 Corresponding to the program in Example 1.1 is the abstrat programshown in Figure 1. Note that the abstrat program is obtained by replaing all uni�a-tions in the onrete program with alls to ground, iff and iff_and. These alls arealled abstrat uni�ations. The abstrat uni�ations operate on abstrat terms any andground, where ground represents a term that is de�nitely ground and any representsany term. For example, iff and(s; t; u) expresses that s is a ground term if and only ift and u are both ground terms. This reets that on the onrete level, a list is groundif and only if its head and tail are ground.When we assume an initial all append(ground,ground,_), all alls to append inthis abstrat program will have the term ground in the �rst two arguments, and the onlyanswer for append is append(ground; ground; ground). It has been shown by Codishand Demoen [CD95℄ that from this, it an be onluded that in the onrete program,all alls to append have ground terms in the �rst two arguments, and all answers toappend have ground terms in all arguments | just as was observed in Example 1.1. /The tehnique of the above example has been developed further [CD94℄ to derive ground-ness dependenies with more detail, using a more or less ad-ho notion of type. This isshown in the following example. Note that we are still assuming untyped languages.Example 1.3 Figure 2 shows an alternative abstration of the program in Example 1.1.Without worrying about the details, observe that the abstrat terms used in this ab-stration would be terms suh as integer, representing an integer,2 list(integer),representing a nil-terminated list of integers, list(any), representing a nil-terminatedlist whose elements ould be arbitrary terms, and any, representing any term.2Integers are just used as an example here.

1.1. MODE ANALYSIS FOR TYPED LOGIC PROGRAMS 5append(Xs,Ys,Zs) :-nil_dep(Xs),iff(Ys,Zs).append(Xs,Ys,Zs) :-ons_dep(Xs,X,Xs1),ons_dep(Zs,X,Zs1),append(Xs1,Ys,Zs1).
nil_dep(list(bot)).iff(X,X).ons_dep(list(A),B,list(C)) :-lub(A,B,C).ons_dep(any,_,C) :-C \== list(_).lub(A,A,A).lub(A,A,bot).lub(A,bot,A).lub(any,A,B) :- A \== B.Figure 2: An alternative abstration of appendThe onrete uni�ation Xs = [XjXs1℄ is abstrated as ons_dep(Xs,X,Xs1), whihrelates an abstrat term for the list Xs with the abstrations of its head X and itstail Xs1. For example, if X is integer and Xs1 is list(integer), then Xs would belist(integer). If however X is any and Xs1 is list(integer), then Xs would belist(any).For example, assume an initial all append(list(any),list(any),_), meaning thatappend is alled with the �rst two arguments being instantiated to lists. Then all allsto append in this abstrat program will have list(any) in the �rst two arguments,and the only answer for append is append(list(any); list(any); list(any)). For theonrete program, this implies: if append is alled with the �rst two arguments beinglists, then all subsequent alls to append also have lists in the �rst two arguments, andall answers to append have lists in all arguments. Similarly, we ould infer: if append isalled with the �rst two arguments being lists of integers, then all subsequent alls toappend also have lists of integers in the �rst two arguments, and all answers to appendhave lists of integers in all arguments. /

Clearly, in order to abstrat the append program as in the above example, one hasto know what a list is. The de�nition of a list underlying the above example is thestandard one: for any type � , nil is of type list(�); moreover, if h is of type � and t isof type list(�), then ons(h; t) is of type list(�). Codish and Demoen [CD94℄ are notonerned with how suh de�nitions ould be derived in general, but only deal with aspei� set of types inluding integers, lists, di�erene lists, and trees, and provide thede�nitions of the abstrations, suh as the de�nition of ons_dep in the above example.Of ourse, this set inludes the most frequently used types and therefore muh usefulinformation an already be inferred.

6 CHAPTER 1. INTRODUCTION1.1.2 Exploiting Type DelarationsIn typed logi programming languages, all types are de�ned by a type delaration. Forexample, in G�odel, the type of lists is de�ned as follows.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).The �rst line de�nes a type onstrutor List with one type parameter. We say thatList(u) is a polymorphi type, where u is a type parameter. In Setions 3.2 and 3.3, weexplain the syntax of G�odel in more detail, but this example should be self-explanatory.Throughout the rest of this setion, we will use G�odel type delarations to de�ne types.In Part II, we desribe a method whih takes a program, say the append program,inluding the type delarations, and generates an abstrat program similar to the onein Example 1.3. In partiular, the method generates the dependeny prediates suh asons_dep, whose onstrution seems quite ad-ho in the work of Codish and Demoen,sine they are onsidering untyped languages.To understand why this work is a proper generalisation of the work of Codish andDemoen [CD94℄ and also Codish and Lagoon [CL96℄, we must look at some more om-plex types. It is not surprising that when one introdues an ad-ho notion of types intoan untyped programming language, one is unlikely to deal with types that are moreomplex than, essentially, lists and trees. This is di�erent when one onsiders typedlanguages, as we do in Part II.First onsider the following type delarationsBASE IntegerList.CONSTANT Nil: IntegerList.FUNCTION Cons: Integer * IntegerList -> IntegerList.These delarations de�ne the type of integer lists, where we assume that Integer isthe usual built-in type. Note that IntegerList ontains exatly the same terms asList(Integer), and therefore it is reasonable to expet that the abstrat domain har-aterising the degree of instantiation of terms of type IntegerList should be the sameas the one skethed in Example 1.3. In our formalism, this is indeed the ase.Our formalism is based on a relation on types alled \is a subterm type of". Integerand IntegerList are both subterm types of IntegerList, meaning that a term of typeIntegerList an have subterms of type Integer and subterms of type IntegerList.If � is a subterm type of � , and � is not a subterm type of �, then we say that � is anon-reursive subterm type of � . If � is a subterm type of � , and � is a subterm typeof �, then we say that � is a reursive type of � . Integer is a non-reursive subtermtype of IntegerList, and IntegerList is a reursive type of IntegerList.The relation \is a non-reursive subterm type of" is a generalisation of the relation\is a parameter of" whih underlies the domain onstrution of Example 1.3. Onean argue that the type IntegerList has no raison d'être sine it is better to use theinstane List(Integer) of the polymorphi type List(u). However, we shall see otherexamples of a non-reursive subterm type not being a parameter.

1.2. NON-STANDARD DERIVATIONS 7Example 1.4 As another example, onsider a family tree.CONSTRUCTOR Family/1.FUNCTION Person: u * List(Family(u)) -> Family(u).For a person, we may want to store the name, the age, or any other attribute. The �rstargument of Person is used for this purpose. Moreover, we want to store the list ofhildren of this person, that is, a list of family trees, one for eah hild. As an example,onsider Family(String). Our formalism onstruts an abstrat domain for this typewhih an haraterise that all the \names" in the termPerson("Lisa",[Person("Frank",[℄),Person("Sara",[℄)℄)are instantiated, whereas this is not true for the termPerson("Lisa",[Person(x,[℄),Person(y,[℄)℄): /The methods of Codish and Demoen [CD94℄ and Codish and Lagoon [CL96℄ annotdeal with the above examples. We will see more examples in Part II.The abstrat domains used in our mode analysis are entirely in the spirit of previouswork [CD94, CL96℄, and the inherent omplexity of our mode analysis is thereforesimilar. In general, the omplexity of a mode analysis depends on the omplexity ofthe type delarations. We will argue that the formalism presented in Part II providesthe highest degree of preision that a generi domain onstrution should provide. Italso helps to understand other, more ad-ho and pragmati domain onstrutions asinstanes of a general theory. One ould always simplify or prune down (widen) theabstrat domains for the sake of eÆieny.Our method has been implemented in G�odel for G�odel programs. We show forsome example programs that the analysis times ompare well with a domain that onlydistinguishes ground and non-ground terms [CD95℄.1.2 Non-Standard DerivationsPart III is onerned with veri�ation methods for logi programs that use non-standardderivations, that is, they use a seletion rule other than the usual left-to-right sele-tion rule of Prolog. We onsider �ve aspets of veri�ation: termination, uni�ationfreedom3, our-hek freedom, ounder freedom, and freedom from errors related tobuilt-ins.Non-standard derivations are useful for a variety of purposes: multiple modes, par-allel exeution [AL95℄, the test-and-generate paradigm [Nai92℄, and ertain uses of a-umulators [EG99℄.3A program is alled uni�ation free if it only requires (double) mathing instead of the full uni�ationproedure.

8 CHAPTER 1. INTRODUCTIONFor veri�ation of logi programs [AE93, AL95, BC99, EBC99℄, in partiular pro-grams using non-standard derivations, it has been shown to be useful to assign a mode(input or output) to eah argument position of eah prediate, and require ertain or-retness properties onerning those modes. We will adopt some orretness propertiesthat have previously ourred in the literature and also introdue some new ones.Considering non-standard derivations does not imply that any atom in a query an beseleted for resolution at any time. For some aspets of veri�ation, suh as terminationor freedom from errors related to built-ins, it is neessary to ensure a ertain degreeof instantiation of an atom before that atom is seleted [AL95℄. We will argue thata reasonable minimal assumption is that derivations are input-onsuming, that is, anatom is only seleted one it is suÆiently instantiated in its input arguments, so thatuni�ation with a lause head does not instantiate these arguments any further.Input-onsuming derivations have not been de�ned in this form previously, althoughthe onept is related to (F)GHC [Ued86℄ and non-destrutive programs [ER98℄. Thisis disussed in Setion 11.1.In existing implementations, input-onsuming derivations an be ensured by delaydelarations [HL94, SIC98, SHC96℄. Using delay delarations, an atom in a query isseleted only if its arguments are instantiated to a spei�ed degree. In partiular, wewill onsider blok delarations. These are a simple kind of delay delaration where onlytests for partial instantiation are possible, but not, for example, tests for groundness.Hene Part III of this thesis is aimed at verifying programs with delay delarations,but we try to take the more abstrat view and formulate results in terms of input-onsuming derivations wherever possible. This view has not been taken by other authorspreviously [AL95, L�ut93, MT95, MK97, Nai92℄.We now give an overview of Part III. Note �rst the following general points:� Setion 5.2 de�nes most of the notation and terminology. Setions 7.2 and 8.2introdue some further terminology related to delay delarations. In any ase, theindex an be used to �nd the plae where notation or terminology is introdued.� Setion 11.1 is devoted to the literature related to Part III. However, the relatedliterature is also onsidered throughout the rest of Part III wherever useful formotivation or illustration.1.2.1 Corretness Properties of ProgramsIn Chapter 5, we introdue a number of orretness properties onerning the modes ofa program. The following example gives a avour of these properties.Example 1.5 Consider the usual append=3 program (it will be given in Figure 10 onpage 57), where the �rst two arguments are input and the third is output. The queryappend([1℄; [2℄; Xs); append([3℄; [4℄; Ys); append(Xs; Ys; Zs)is \well-behaved" in that it meets all orretness properties we introdue.In partiular, note that the third atom has variables Xs and Ys in input positions,and that these variables our elsewhere in output positions. In other words, every

1.2. NON-STANDARD DERIVATIONS 9variable has a produer. Moreover, note that Xs and Ys our eah only one in anoutput position. In other words, every variable has at most one produer. Finally,note that for eah variable, the output ourrene preedes any input ourrene. If weassumed the left-to-right seletion rule, this ould be interpreted as follows: every pieeof data is produed before it is onsumed.Having at most one produer is the main aspet of a well-known orretness propertyalled niely-modedness, and having at least one produer is the main aspet of an equallywell-known orretness property alled well-modedness. In ontrast, the queryappend([1℄; [2℄; Xs); append([3℄; [4℄; Xs); append(Xs; Ys; Zs)is not niely moded beause there are two output ourrenes of Xs, and it is not wellmoded beause there is no output ourrene of Ys. /As an be seen in the above example, the orretness properties are traditionally de�nedassuming that there is a left-to-right data ow in a query (or lause body) [AE93,AL95, AM94, AP94b, BC99, EBC99, EG99℄: every atom only uses as input data thatwas produed by other atoms ourring to the left. With suh a restrited view, it isnot possible to reason about programs where the textual order of atoms di�ers fromthe data ow. We will therefore generalise these properties by onsidering them upto permutation of a query. For example, a query is permutation niely moded if somepermutation of it is niely moded.1.2.2 Termination of Input-Consuming DerivationsInput-onsuming derivations formalise the natural meaning of input. For most pro-grams, assuming input-onsuming derivations is neessary for termination. For exam-ple, it is easy to see that given the usual append program, an in�nite derivation for thequery append([1℄; [℄; As); append(As; [℄; Bs)is obtained by always seleting the rightmost atom (see Figure 10 on page 57).This raises the question whether assuming input-onsuming derivations is suÆientto ensure termination. In Chapter 6, we de�ne a lass of prediates for whih this isindeed the ase. We present a method for showing that a prediate is in this lass.This method is based on level mappings, losely following the traditional approah forderivations using the standard left-to-right seletion rule [EBC99℄.Note however that the lass of prediates for whih all input-onsuming derivationsare �nite is quite limited. Relying on this assumption alone annot be a omprehensivemethod of showing termination for realisti programs. This is also the reason why wespeak of a lass of prediates and not of a lass of programs. Within one program, someprediates may be in that lass and some may not.

10 CHAPTER 1. INTRODUCTION1.2.3 Ensuring Input-Consuming DerivationsIn Chapter 7, we show how blok delarations, whih are a partiularly simple andeÆient kind of delay delaration, an be used to ensure that derivations are input-onsuming. The blok delarations delare that ertain arguments of an atom must benon-variable before that atom an be seleted for resolution.Usually, one would have blok delarations suh that an atom is only seleted whenits input positions are non-variable. However, this is sometimes not suÆient. Supposewe have a prediate p=1 whose argument is input, and \p(f(1))." is a lause de�ningthis prediate. The atom p(f(X)) is non-variable in its input position. Nevertheless itsseletion would violate the requirement of an input-onsuming derivation, sine uni�-ation with the lause head instantiates X. This and similar problems give rise to thede�nition of two further orretness properties for programs. Despite these problems,blok delarations are adequate for ensuring input-onsuming derivations in existingimplementations.Previous literature on delay delarations has not reognised that the simpliity andeÆieny of blok delarations give them a speial role. There has never been a system-ati aount of when blok delarations are suÆient to ensure any desired propertiessuh as termination, and when more omplex onstruts, say groundness heks, areneeded.1.2.4 Termination and blok DelarationsIn Chapter 8, we present two approahes to showing or ensuring termination for pro-grams with blok delarations. As suggested above, it is often neessary to makestronger assumptions about the seletion rule rather than just to assume that deriva-tions are input-onsuming. We do so by assuming left-based derivations. This formalisesthe \default left-to-right" seletion rule of most existing Prolog implementations.The �rst approah is relatively simple and tries to eliminate the well-known problemof speulative output bindings [Nai92℄. The approah onsists of two omplementarymethods: one exploits the fat that a program does not use any speulative bindings;the other exploits the fat that a program does not make any speulative bindings.The idea of the seond approah is as follows: �rst, blok delarations must beused to ensure that derivations are input-onsuming. Some prediates are known, byChapter 6, to terminate for all input-onsuming derivations. For all other prediates,the textual position of atoms using those prediates must be taken into aount. Morepreisely, the latter atoms must be plaed suÆiently late, whih ensures that they areonly seleted one their input is ompletely instantiated.Example 1.6 The following lause is part of a program for the well-known n-queensproblem. It is an example of the test-and-generate paradigm.nqueens(N,Sol) :-sequene(N,Seq),safe(Sol),permute(Sol,Seq).

1.2. NON-STANDARD DERIVATIONS 11A solution to the n-queens problem is enoded as a permutation of the list [1; : : : ; n℄,whih represents the position of the queen in eah row of the hess board. The prediatesequene generates the list [1; : : : ; n℄. This list is then permuted using permute and thesolution andidates are tested for being legal on�gurations by the prediate safe. Theall to safe ours before the all to permute to ahieve oroutining of the two atomssafe(Sol) and permute(Sol,Seq).In the lause body, the all to permute is plaed suÆiently late. Assuming left-based derivations, this means that when permute is alled, the input Seq is ground.With less instantiated input, termination of permute ould not be guaranteed. Inontrast, the prediate safe will frequently be alled with partially instantiated listsas input. However, this is not a problem beause, as we will see, the assumption ofinput-onsuming derivations is suÆient to ensure termination of safe. /Chapter 8 formalises and extends heuristis that have previously been proposed toensure termination of programs with blok delarations under the assumption of adefault left-to-right seletion rule [Nai92℄. In this informal work, even the seletion ruleitself is not formalised.Most approahes to the termination problem for programs using non-standard der-ivations abstrat from the relevane of the textual order of atoms for the seletionrule. These approahes must either yield relatively weak results, or strengthen theassumptions about the seletion rule in some other way rather than assuming the defaultleft-to-right seletion rule [AL95, L�ut93, MT95, MK97℄.1.2.5 Further Aspets of Veri�ationIn Chapter 9, we study some further aspets of veri�ation of logi programs usingnon-standard derivations.The �rst aspet is freedom from uni�ation. This means that the uni�ation proe-dure an be replaed with so-alled double mathing. The idea is that when a seletedatom in a query is uni�ed with the head of a lause, the input arguments of the lausehead are �rst bound to the input arguments of the seleted atom. This �ts with the ideathat derivations are input-onsuming, sine it means that the input arguments of theseleted atom are not instantiated. Afterwards, the output arguments of the seletedatom are bound to the output arguments of the lause. We will see that under ertainonditions, programs are free from uni�ation.The seond aspet is freedom from our-hek. It is well-known that the uni�ationalgorithm used in existing logi programming systems leaves out the our-hek foreÆieny reasons. We show that for programs meeting ertain orretness onditions,namely permutation niely moded, input-linear programs, the our-hek an safely beomitted.The third aspet is freedom from oundering. A derivation ounders if it ends witha non-empty query where no atom is suÆiently instantiated to be seleted in aor-dane with the blok delarations. Freedom from oundering is an important aspetof veri�ation mainly beause of its relationship to termination. In priniple, termina-tion and ounder freedom are oniting aims. Clearly, termination ould trivially beensured by having blok delarations suh that no atom an ever be seleted, whih

12 CHAPTER 1. INTRODUCTIONmeans that all derivations would ounder immediately. We show however that underreasonable assumptions, namely that programs are permutation well typed, no deriva-tions ounder. This implies that our methods for showing termination in no way relyon trivial termination by oundering.As the last aspet, we onsider freedom from errors related to built-ins. These aretype errors, arising from alls like X is foo, or instantiation errors, arising from alls likeX is V. One previous proposal for preventing suh errors uses well typed programs anddelay delarations to ensure that built-ins are only alled when their input argumentsare ground [AL95℄. Unfortunately, blok delarations annot test (diretly) whetheran argument is ground. The main ontribution of Setion 9.4 is to show that underertain onditions, blok delarations are nevertheless suÆient. The method is basedon onstant types, that is types onsisting only of onstants. The most prominentexamples would be integer or other numeri types. We exploit the fat that for a termof onstant type, being non-variable implies being ground.1.2.6 Weakening Some ConditionsIn Chapter 10, we onsider ways of simplifying the blok delarations by omitting teststhat an be proven at ompile time to be always met at runtime. This is partiularlyuseful for built-ins, sine there is usually no diret way of having delay delarations forthose. We will also onsider ways of weakening a restrition imposed for many resultsin Part III, namely that the input arguments of eah lause head ontains no variablemore than one. This restrition is quite severe in that it prevents two input argumentsbeing tested for equality. Moreover, we onsider a generalisation of the notion of a modeof a program, allowing for a prediate to be used in di�erent modes even within a singleexeution of the program.1.2.7 Related Work and ConlusionChapter 11 takes a look at the literature related to Part III. It then disusses some ideasand features that are distintive of this work, as well as some open problems. Finally,it onludes the thesis with a summary of Part III.

Chapter 2Notions of Modes and TypesThis hapter gives an overview of mode and type onepts used in the literature, en-ompassing the uses made of these onepts in this thesis. In Setion 2.1, we onsidermodes, in Setion 2.2, we onsider types, and in Setion 2.3, we onsider ways of om-bining the two onepts. Finally in Setion 2.4, we reall very briey the onepts ofmodes and types as used in this thesis.2.1 ModesOne of the distintive features of logi programming, as opposed to other programmingparadigms, is that there is no a priori notion of input and output. The same programan be used to ompute answers to di�erent problems [Apt97℄. The following exampleillustrates this.Example 2.1 A program like the following is the standard example to introdue logiprogramming to novies [Apt97, SS86℄.diret_flight(rome, london).diret_flight(paris, london).diret_flight(paris, rome).diret_flight(london, bristol).onnetion(X, Y) :-diret_flight(X, Y).onnetion(X, Y) :-diret_flight(X, Z),onnetion(Z, Y).This program an be used to answer questions of di�erent kinds.� Is there a ight onnetion from Rome to Bristol?| ?- onnetion(rome, bristol).yes 13

14 CHAPTER 2. NOTIONS OF MODES AND TYPES� To whih ities are there ight onnetions from Rome?| ?- onnetion(rome, City).City = london ? ;City = bristol ? ;no� From whih ities are there ight onnetions to Rome?| ?- onnetion(City, rome).City = paris ? ;no� Where do I hange planes ying from Paris to Bristol?| ?- diret_flight(paris, City), diret_flight(City, bristol).City = london ? ;noThese di�erent ways of using a logi program are usually referred to by saying that theprogram is used in di�erent modes. For example, onsider the seond query above. The�rst solution to this query is omputed by the following derivation:onnetion(rome; City); diret flight(rome; City); 2:One way of haraterising this derivation is by saying that the �rst argument positionsof onnetion and diret flight, respetively, are used as input positions, whereasthe seond positions are used as output positions.Another way of haraterising this is by saying that onnetion(rome; City)and diret flight(rome; City) are all patterns in this derivation, whereasonnetion(rome; london) and diret flight(rome; london) are answer patterns. Ormore abstratly, onnetion(ground ; free) and diret flight(ground ; free) are allpatterns, whereas onnetion(ground ; ground) and diret flight(ground ; ground)are answer patterns.For the last query, assuming the standard left-to-right seletion rule, we might alsosay that the �rst atom is a produer of City and the seond atom is a onsumer of City.All those haraterisations suggest that modes are inextriably linked to the proe-dural rather than the delarative view of logi programming. However, it is also possibleto take a delarative view of modes [Nai96℄, as we will disuss in Subsetion 2.3.2.We will now shed some light on di�erent notions of modes ourring in the litera-ture by omparing them under two riteria. The �rst riterion is how presriptive ordesriptive the notion of modes is. The seond riterion is the granularity with whihmodes are haraterised.2.1.1 Desriptive versus Presriptive ModesThis riterion is losely linked to the question: In whih ontext and for whih purposeare modes used? Figure 3 shows a rough subdivision of the literature into three groups.

2.1. MODES 15
groundness analysismodes as veri�ation toolmoded languages 6?desriptive

presriptive
Figure 3: Desriptive versus presriptive modesGroundness analysisMode analysis, more often alled groundness analysis, is onerned with the question \ata given program point, what is the degree of instantiation of variable x?", and in parti-ular, \is x bound to a ground term1?". Suh information is useful for ompiler optimisa-tions suh as the speialisation of uni�ation, but also beause it improves the preisionof other analyses [MS93℄. It is also important for termination analysis [LS96, LS97℄.Muh researh has been done on groundness analysis [AMSH94, AMSH98, BCHK97,Cod97, CBGH97, CDY94, CD94, CD95, CGBH94, CL96, GGS99, HHK97, HACK00,KSH99, MS93, TL97℄.For the derivation on the faing page, it an be inferred that at the point just beforediret flight is alled, the �rst argument of diret flight is a ground term, and atthe point after diret flight is resolved, the seond argument is also a ground term.In this ontext, \mode" is a desriptive onept, that is, no assumptions are madeabout how programs are | or should be | written. The analysis takes an arbitraryprogram and desribes the modes of this program. This is usually done using abstratinterpretation [CC77℄. Sine groundness is an undeidable property, this desriptionan only be approximate. For some program points an analysis might be able to inferthat a variable is bound to a ground term, but it annot deide the groundness of everyvariable for every program point.One usually distinguishes goal-dependent and goal-independent groundness analy-ses [CBGH97, CDY94, CGBH94, MS93℄. In the former, one assumes that the programis exeuted with an initial goal that is instantiated to a ertain degree. This introduesa slight presriptive aspet into groundness analysis, sine it assumes that programsshould be used in a ertain way. Most of the literature on groundness analysis howeveris relevant for goal-dependent and goal-independent groundness analyses alike.Part II is about the onstrution of abstrat domains for groundness analysis. Inthe implementation, these domains are used for goal-dependent groundness analysis.1A term is alled ground if it does not ontain variables.

16 CHAPTER 2. NOTIONS OF MODES AND TYPESModes as veri�ation toolModes have been used for a variety of veri�ation purposes [AM94, EG99℄. For exam-ple, they have been used to show that programs are our-hek free [AL95, AP94b℄,uni�ation free [AE93℄, suessful [BC99℄, and terminating [EBC99℄. Here it is assumedthat eah argument position of eah prediate is either input or output, and that theprogram and initial goal ful�ll ertain orretness properties suh as being well modedor niely moded. Usually, this approah is not onerned with how these modes aredetermined.For the derivation on page 14, one would say that for both prediates, the �rstargument is input and the seond is output, whih an be denoted by writing the modeof the program as fonnetion(I ;O); diret flight(I ;O)g.In this ontext, \mode" is a fairly presriptive onept, sine assumptions are madeabout how programs should be written and used. If a program does not adhere tothe orretness property required for a ertain veri�ation purpose, the veri�ationmethod is not appliable. Part III of this thesis uses modes to verify properties suh astermination and our-hek freedom.Moded languagesThe most presriptive approah to modes is to use a moded language, for example Mer-ury [Hen92, SHC96℄. In Merury, the user has to delare the mode of some prediates,while the mode of others is inferred. The program has to ful�ll ertain orretnessproperties onerning these modes. Otherwise it is not aepted by the ompiler.These orretness properties restrit the lass of legal programs and hene to aertain extent limit the expressiveness of a language. On the other hand, as Meruryshows, they allow the ompiler to generate very eÆient mahine ode.2.1.2 The GranularityWe now distinguish di�erent mode onepts by another riterion: the granularity of theformalism to haraterise the instantiation of a term, or in other words, the degree ofpreision with whih the instantiation of a term an be haraterised. Note that forthis riterion, we annot easily draw a piture like the one in Figure 3 on the preedingpage, sine there is no suh obvious hierarhy. We distinguish between two-valued andmore �ne-grained haraterisations.Two-valued haraterisationsThe lowest granularity is given when we have a haraterisation whih an only take twopossible values. Most groundness analyses only distinguish ground and possibly non-ground terms [AMSH94, AMSH98, BCHK97, CD95, HHK97, HACK00, KSH99, MS93℄.Likewise, the works whih use modes for veri�ation purposes only distinguish input andoutput positions [AE93, AL95, AM94, AP94b, BC99, EBC99, EG99℄. Part III of thisthesis also falls into this ategory, sine we assume that an argument position is eitherinput or output.

2.2. TYPES 17More �ne-grained haraterisationsThe mode analyses by Codish and others [CD94, CL96℄ haraterise the degree of in-stantiation of the list, say, [1; x; 5℄ by the abstrat term list(any), that is, a list whoseelements annot be haraterised. Note that haraterising this degree of instantiationis only meaningful with some notion of type. Similar approahes have been taken byGallagher and de Waal [GW94℄ and Van Hentenryk et al. [VCL95℄, and in Part II ofthis thesis.Other mode analyses that provide a relatively high degree of granularity but withoutusing any notion of type have been developed by Janssens and Bruynooghe [JB92℄ andTan and Lin [TL97℄.The mode system of Merury is based on instantiation states, whih are a formalismfor asserting how instantiated a term is. With instantiation states, one ould express,say, that an argument position of a prediate is bound to a list of variables when theprediate is alled and to a ground list when the prediate sueeds. This is a re�nementof the notion of input and output.2.2 TypesIn logi programming, a type is usually a set of terms assoiated with an argumentposition, reeting the programmer's understanding of what \kind" of term is expetedin this argument position. For example, as arguments to the prediate diret flightwe might expet terms suh as rome and paris, but not the number 3 or the list [3; 5℄.Types have been shown to be useful in all programming paradigms, sine they anhelp detet logial errors in a program. However, types are not as widespread in logiprogramming as in imperative and funtional programming.As before, we disuss di�erent notions of types ourring in the literature lookingat them from various angles.2.2.1 What is a Type?First, we distinguish various approahes by how abstratly and generally the types aredesribed. Figure 4 shows a rough subdivision of the literature into �ve groups. In thissubsetion, we ignore the existene of variables, that is, we only onsider ground terms.Built-in types in PrologProlog is an untyped programming language. Nevertheless, in Prolog implementations,there are usually a few built-in types suh as integer or atom [ISO95, SIC98℄. These areonly of any signi�ane in onnetion with built-in prediates, for example funtor=3.Any all to funtor where the third argument is a ground term other than an integerresults in a type error.Ad-ho typesCodish and Demoen [CD94℄ have shown how to derive type dependenies of logi pro-grams using a spei� set of types inluding integers, lists, di�erene lists, and trees.

18 CHAPTER 2. NOTIONS OF MODES AND TYPES

built-in types in Prologad-ho typesregular typesdelared typesarbitrary types 6
?onrete, ad-ho

abstrat, general

Figure 4: Expressiveness, generality of type formalismsThey suggest that this hoie is for illustrative purposes and that it ould easily begeneralised, but as we will disuss in Setion 4.5, the generalisation is by no meansobvious.Regular typesMany authors have developed formalisms to haraterise types in a more general way,for example regular approximations [GW94, GL96, SG95a℄ or type graphs [VCL95℄. Thework of Codish and Demoen has also been developed further in this respet [CL96℄. Inall of these formalisms, an unlimited number of di�erent types an be designed, butrestritions are imposed whih ensure that these types are, in some sense, regular.Delared typesTyped logi programming languages suh as Merury [SHC96℄ or G�odel [HL94℄ providea syntax used to delare types. Eah onstant, funtion and prediate symbol used in aprogram must have its type delared. The type delarations have to meet a number ofrestritions that an be syntatially heked. With these restritions it is possible totype-hek programs at ompile time. Part II of this thesis uses this notion of types.Arbitrary typesThe literature that uses types for veri�ation purposes [AE93, AL95, AM94, AP94b,BC99, BLR92℄ has the most general notion of type: any set of ground terms ould bea type. On the level of the theory, there is no need to impose any restritions. Part IIIof this thesis uses this notion of types.

2.2. TYPES 192.2.2 Non-ground TypesIn the previous subsetion, we disregarded the possibility that a type might ontain non-ground terms, or in other words, that a non-ground term might have a type. Consideringnon-ground terms adds another dimension to the lassi�ation of di�erent approahesto types. Therefore this aspet should be studied separately.In typed logi programming languages suh as Merury [SHC96℄ or G�odel [HL94℄, avariable has a type whih is inferred from the delared types of the surrounding symbols.This ensures that the type of a term does not hange via further instantiation. Henethe degree of instantiation and the type of a term are ompletely di�erent issues. Inontrast, Codish and others [CD94, CL96℄ would use, say, list(any) to represent a listwhose elements annot be haraterised, and they would refer to list(any) as a type. InPart II, we also introdue objets suh as list(any), but we all them abstrat terms,not types, sine they only haraterise the instantiation of a term, not its type.Summarising, in typed logi programming languages, a non-ground term has a typewhih will not hange via further instantiation. In the terminology used by some workson groundness analysis, a non-ground term also has a type, but this type represents thedegree of instantiation of a term and hene may hange via further instantiation.The literature that uses types for veri�ation purposes [AE93, AL95, AM94, AP94b,BC99, BLR92℄ de�nes a type as any set of terms losed under instantiation. Comparedto requiring that a type must be a set of ground terms, this has the advantage thatone an reason about programs that operate on non-ground data strutures. For ex-ample, the prediate append an be used to append two lists whose elements are notinstantiated. Part III also de�nes types in this way.De�ning a type as a set of terms losed under instantiation links the notion of typeto that of mode. Therefore, we will onsider non-ground types further in Setion 2.3.2.2.3 PolymorphismPerhaps more important than the fat that the prediate append an be used to appendtwo lists whose elements are not instantiated, is the fat that append an be used toappend two lists regardless of the type of the list elements. Using a prediate for termsof di�erent types in this way is alled (parametri) polymorphism.A polymorphi type is a type that is parametrised by another type. For example,the type list(integer) is the type of integer lists and is omposed of a type onstrutorlist and a type integer. For any type � , there is a type list(�). Note that allowing fortype-heking at ompile time, as pratised in typed programming languages, is a muhharder problem for polymorphi languages than for monomorphi ones [Hen93, Hil93,Mil78, MO84℄.Part II of this thesis deals with groundness analysis of polymorphially typed pro-grams. Previous works only allowed for very restrited forms of polymorphism. Theworks whih use types for veri�ation purposes [AE93, AL95, AM94, AP94b, BC99,BLR92℄, inluding Part III of this thesis, do not treat polymorphism expliitly.There is another notion of polymorphism alled ad-ho polymorphism, but this isusually alled overloading [Mil78, Str67℄. For example, the onstant nil may be used

20 CHAPTER 2. NOTIONS OF MODES AND TYPES
type analysistypes as veri�ation tooltyped languages 6?desriptive

presriptive
Figure 5: Desriptive versus presriptive typesto denote the empty list as well as the empty tree. We are not onerned with ad-hopolymorphism in this thesis.2.2.4 Desriptive versus Presriptive TypesAs with modes, we an ompare notions of types with respet to how desriptive andpresriptive they are. Figure 5 shows a subdivision of the literature into three groups.Note that this subdivision is very similar to the one we had for modes (Figure 3 onpage 15).Type analysisType analysis [CD94, CL96, GGS99, VCL95℄ is onerned with the question \what isthe type of an argument or a variable?". This question an be quali�ed further by� speifying the types of the arguments of the query with whih the program is used,� speifying program points of interest, suh as the entry or exit point of a prediate.In this ontext, \type" is a desriptive onept, and type analysis is inseparably linkedto mode analysis. Saying that x is bound to a list an be viewed as a statement aboutthe type of x as well as the degree of instantiation of x. Type analysis is a partiularlypreise kind of mode analysis, as desribed in Subsetion 2.1.1, and further in the nextsetion.Type analysis is usually done using abstrat interpretation [CC77℄. The points madeabout abstrat interpretation on page 15 apply here as well.Types as veri�ation toolJust as type analysis is a partiularly preise kind of mode analysis, types as veri�ationtool [AE93, AL95, AM94, AP94b, BC99, BLR92℄ an be regarded as a re�nement ofmodes as veri�ation tool, and have been used for the same purposes. In addition toassuming that eah argument position of a program is either input or output, a type isassoiated with eah argument position. The program and initial goal have to be welltyped, whih is a property ensuring that all omputed answers have terms of the orret

2.3. COMBINING MODES AND TYPES 21type in eah argument position. Usually, this approah is not onerned with how thetype of eah argument position is determined.Just like modes as veri�ation tool (page 16), \type" is a fairly presriptive onepthere, sine assumptions are made about how programs should be written and used.Part III of this thesis uses this notion of type.Typed languagesAs with modes, the most presriptive approah to types is having a typed language suhas Merury [Hen92, SHC96℄ or G�odel [HL94℄. Part II deals with typed languages andhene uses this presriptive notion of types. In typed languages, the user has to delarethe types of eah onstant, funtion and prediate symbol used.2 The type delarationshave to meet a number of restritions that an be syntatially heked. These ensureat ompile time that no type errors an our. That is, a prediate annot be alledwith an argument not having the delared type.2.3 Combining Modes and TypesWe have seen on page 17 that �ne-grained haraterisations of the instantiation of aterm often use some notion of type. On the other hand, we have seen in Subsetion 2.2.2that the degree of instantiation of a term plays a role in some onepts of types. Hene,modes and types are losely related. We now look at two ways of developing thisrelationship.2.3.1 Diretional TypesA natural way of joining modes and types is by the notion of diretional types [BM95,BLR92, RNP92℄. A diretional type for an argument of a prediate has the form � ! � .It is an assertion that if the argument is instantiated to a degree spei�ed by � atall time, then it will be instantiated to a degree spei�ed by � when the prediatereturns. For example, the prediate append in forward mode ould be spei�ed byappend(list! list; list! list; free! list) whih should be read as: if append is alledwith the �rst and seond arguments being lists, then for any answer, all arguments willbe instantiated to lists.Diretional types have two aspets [BM95℄. One is input-output orretness: if aall satis�es the input assertion, then the answer should speify the output assertion. Itdoes not depend on the seletion rule. The other is all orretness: If a all satis�es itsinput assertion, all triggered alls should also satisfy their input assertion. This aspetdepends on the seletion rule.Both Part II and Part III of this thesis use formalisms that resemble diretionaltypes. The formalisms allow to express the intuition that, say, append is used in forwardmode, although the preise meanings of the formalisms di�er of ourse. To illustratethis point, we now show how this would be expressed. In Part II, simplifying the syntax2This requirement ould sometimes be relaxed sine the types of some symbols an be reonstrutedfrom the ontext.

22 CHAPTER 2. NOTIONS OF MODES AND TYPESsomewhat, this intuition would be expressed by saying that append(list; list; any) isa all pattern and append(list; list; list) is an answer pattern. In Part III, it wouldbe expressed by saying that the mode of append is append(I ; I ;O) and the type isappend(list; list; list).2.3.2 A Delarative View of ModesTo understand Naish's delarative view of modes [Nai96℄, we must �rst understandhis notion of type. It often happens that the suess set of a program, that is, theset of ground atoms that are true in all its models, ontains atoms that are not trueaording to the programmer's intentions. For example, the suess set of the usualappend program ontains the atom append([℄; 7; 7). A type is a set of atoms spei�ed bythe programmer whih exludes suh unintended atoms. For example, a natural typeof append would be the set of all ground atoms append(s; t; u) where s; t; u are lists.It is desirable that any all to a logi program an only give answers that are in thetype. Calls that ould result in answers not in the type should be onsidered unsafe.Suppose we are wondering whether a all to append(s; t; u) is safe. If we knew that allground instanes of append(s; t; u) that are in the suess set of append are also in thetype of append, then we would know that the all append(s; t; u) is safe. However, thereis no way we ould know the suess set without atually exeuting the program.Therefore, we have to approximate the suess set. A mode of a program is anyset of ground atoms whih is a superset of the suess set. One mode suggested forappend is fappend(s; t; u) j s 2 list ^ (t 2 list () u 2 list)g. Consider again thequestion whether a all is safe. If the all is append([℄; X; X), then it has a ground instaneappend([℄; 7; 7) whih is in the mode but not in the type, and it is therefore unsafe. Ifthe all is append([℄; X; [℄), then for all instanes in the mode, X must be bound to a list,and hene all instanes in the mode are also in the type and the all is safe. In short,the mode together with the type enode the requirement that either the seond or thethird argument must be a list for a all to be safe, whih means that either the seondor the third argument must be input. This shows how proedural information an bederived from this delarative view.2.4 SummaryIn this hapter, we gave an overview of mode and type onepts used in the literature,by looking at these onepts from di�erent angles. We now reall the most importantproperties of the mode and type onepts used in Parts II and III of this thesis.In Part II, modes are� desriptive: the modes of a program are analysed, not presribed;� �ne-grained: the modes are haraterised very preisely.In Part II, types are� delared: a syntax for this purpose is provided in typed programming languages;

2.4. SUMMARY 23� presriptive: we onsider typed programming languages, where a program mustmeet ertain riteria onerning the types before it an be aepted by the om-piler;� polymorphi: a type an be parametrised by another type;� independent of instantiation: the type of a term does not hange via instantiation.In Part III, modes are� (relatively) presriptive: the programs must meet ertain riteria onerning themodes for our methods to be appliable;� oarse: it is only possible to delare that arguments are input or output.In Part III, types are� \arbitrary": on the level of the theory, any set of terms (losed under instantiation)ould be a type;� (relatively) presriptive: the programs must meet ertain riteria onerning thetypes for our methods to be appliable;� losed under instantiation: if a term has a type, then it ontinues to have thattype even after it has been further instantiated.

Part IIMode Analysis for Typed LogiPrograms

24

Chapter 3The Struture of Types andTermsThis part of the thesis desribes a mode analysis for typed logi programs using abstratinterpretation. It is divided into two hapters. This hapter is onerned with onreteterms, whih are the data used in the programs we want to analyse. We de�ne relationsbetween the types in a program giving rise to ertain strutural properties of termswhih the mode analysis is supposed to haraterise.In the next hapter, we will then de�ne abstrat terms to haraterise these stru-tural properties, as well as the atual mode analysis.3.1 IntrodutionTypes are used in programming to restrit the underlying syntax so that only meaningfulexpressions are allowed. This enables most typographial errors and inonsistenies inthe knowledge representation to be deteted by the ompiler. As a onsequene, aninreasing number of appliations using typed logi programming languages suh asMerury [SHC96℄ or G�odel [HL94℄ are being developed.Modes haraterise the degree to whih program variables are instantiated at ertainprogram points. This information an be used to underpin optimisations suh as the spe-ialisation of uni�ation and the removal of baktraking, and to support determinayanalysis [HK97℄. When a mode analysis is formulated in terms of abstrat interpreta-tion, the program exeution is traed using desriptions of data (the abstrat domain)rather than atual data, and operations on these desriptions rather than operations onthe atual data. A simple domain for mode analysis has two elements ground and non-ground to distinguish between ground and possibly non-ground terms. More omplexdomains an haraterise partially instantiated data strutures with more preision.The main ontribution of this part of the thesis is to desribe a generi method ofderiving preise abstrat domains for mode analysis from the type delarations of a typedprogram. Eah abstrat domain is speialised for a partiular type and haraterisesvarying degrees of instantiation of terms of this type. In partiular it haraterisesthe property of termination. This property is well-known for lists as nil-terminationand is here generalised to arbitrary types. Observe that termination of terms is losely26

3.2. MOTIVATING AND ILLUSTRATIVE EXAMPLES 27related to the termination of programs that operate on these terms. For example, ifthe prediate Append is alled with the �rst argument being a nil-terminated list, allinvoked alls to Append also have the �rst argument being a nil-terminated list, andAppend is guaranteed to terminate.The proedure for onstruting suh domains is implemented (in G�odel) for G�odelprograms. By inorporating the onstruted domains into a mode analyser, we see thatalthough the preision of the analysis is signi�antly improved, the analysis times (forthe programs tested) ompare well with a domain that only distinguishes ground andnon-ground terms.The abstrat domains are used in an abstrat ompilation [CD95, DW86, HWD92℄framework: a program is abstrated by replaing eah uni�ation with an abstrat oun-terpart, and then the abstrat program is evaluated by applying a standard operationalsemantis to it.We believe that this work is the natural generalisation of work by Codish and oth-ers [CD94, CL96℄ and takes the idea presented there to its limits: our abstrat domainsprovide the highest degree of preision that a generi domain onstrution should pro-vide. It thus helps to understand other, more ad-ho and pragmati domain onstru-tions as instanes of a general theory.This hapter is organised as follows. Setion 3.2 introdues three examples. Se-tion 3.3 de�nes some syntax. Setion 3.4 de�nes relations between types. Setion 3.5de�nes termination of a term, as well as funtions that extrat ertain subterms of aterm.3.2 Motivating and Illustrative ExamplesWe introdue three examples that are used throughout Part II. The syntax is that ofthe typed language G�odel [HL94℄. Variables and (type) parameters begin with lowerase letters; other alphabeti symbols begin with upper ase letters. We use Integer(abbreviated as Int) to illustrate a type ontaining only onstants (1; 2; 3 : : :).Example 3.1 This is the usual list type. We give its delarations to illustrate the typedesription language of G�odel.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).List is a (type) onstrutor; u is a type parameter that an be instantiated to any typesuh as Int or List(Int); Nil is a onstant of type List(u); and Cons is the usualonstrutor for lists whose elements must all have the same type. We use the standardlist notation [: : : j : : :℄ where onvenient. It is ommon to distinguish nil-terminated listsfrom open lists. For example, [℄ and [1; x; y℄ are nil-terminated, but [1; 2jy℄ is open. /Example 3.2 This example was invented to ounter a ommon point of ritiism that\list attening" annot be realised in G�odel, that is terms suh as [1; [2; 3℄℄ annotbe de�ned, let alone attened. The Nests module formalises nested lists by the typeNest(v).

28 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSIMPORT Lists, Integers.CONSTRUCTOR Nest/1.FUNCTION E: v -> Nest(v);N: List(Nest(v)) -> Nest(v).A trivial nest is onstruted using funtion E, a omplex nest by \nesting" a list ofnests using funtion N. The notable property of the delaration for N is that the rangetype, Nest(v), is a proper sub\term" (in the syntati sense) of the argument typeList(Nest(v)). We have seen a similar type delaration in Example 1.4. We use thisexample throughout to demonstrate that this work is a non-trivial generalisation of pre-vious approahes to abstrat domain onstrution [CD94, CL96, TL97℄. The Integersmodule is imported sine we frequently use Nest(Int) as an example. /Example 3.3 A table is a data struture ontaining an ordered olletion of nodes,eah of whih has two omponents, a key (of type String) and a value, of arbitrarytype. We give part of the Tables module whih is provided as a system module inG�odel.IMPORT Strings.BASE Balane.CONSTRUCTOR Table/1.CONSTANT Null: Table(u);LH, RH, EQ: Balane.FUNCTION Node:Table(u) * String * u * Balane * Table(u) -> Table(u).Tables is implemented in G�odel as an AVL-tree [Emd81℄: A non-leaf node has a keyargument, a value argument, arguments for the left and right subtrees, and an argumentwhih represents balaning information. /3.3 Notation and TerminologyThe set of polymorphi types is given by the term struture T (�� ; U) where �� is a �nitealphabet of onstrutor symbols whih inludes at least one base (onstrutor of arity0), and U is a ountably in�nite set of parameters (type variables). We de�ne theorder � on types as the order indued by some (for example lexiographial) order ononstrutor and parameter symbols, where parameter symbols ome before onstrutorsymbols. Parameters are denoted by u; v. A tuple of distint parameters ordered withrespet to � is denoted by �u. Types are denoted by �; �; �; �; ! and tuples of types aredenoted by ��; �� .Let �f be an alphabet of funtion (term onstrutor) symbols whih inludes atleast one onstant (funtion of arity 0) and let �p be an alphabet of prediate sym-bols. Eah symbol in �f (respetively �p) has its type as subsript. If fh�1:::�n;�i 2 �f(respetively ph�1:::�ni 2 �p) then h�1; : : : ; �ni 2 T (�� ; U)? and � 2 T (�� ; U) n U . Iffh�1:::�n;�i 2 �f , then every parameter ourring in h�1; : : : ; �ni must also our in � .This ondition is alled transpareny ondition. We all � the range type of

3.4. RELATIONS BETWEEN TYPES 29fh�1:::�n;�i. A symbol is often written without its type if it is lear from the ontext.Terms and atoms are de�ned in the usual way [HL94, HT92℄. In this terminology, ifa term has a type �, it also has every instane of �.1 Thus in general, the type of aterm is not unique. However the most general type of a term is unique up to parameterrenaming. If V is a ountably in�nite set of variables, then the triple L = h�p;�f ; V ide�nes a polymorphi many-sorted �rst order language. Variables are denotedby x; y; terms by t; r; s; tuples of distint variables by �x; �y; and a tuple of terms by �t.The set of variables in a syntati objet o is denoted by vars(o).A substitution (denoted by �) is a mapping from variables to terms whih is theidentity almost everywhere. The domain of a substitution � is dom(�) = fx j x� 6= xg.The appliation of a substitution � to a term t is denoted as t�. Type substitutionsare de�ned analogously and denoted by .Programs are assumed to be in normal form. Thus a literal2 is an equation ofthe form x = y or x = f(�y), where f 2 �f , or an atom Q(�y), where Q 2 �p. A queryG is a onjuntion of literals. A lause is a formula of the form Q(�y) G. If S is aset of lauses, then the tuple P = hL; Si de�nes a polymorphi many-sorted logiprogram.3.4 Relations between TypesAn abstrat term haraterises the struture of a onrete term. It is a ruial hoiein the design of abstrat domains whih aspets of the onrete struture should beharaterised [TL97, VCL95℄. In this part of the thesis we show how this hoie an bebased naturally on the information ontained in the type delarations. This is formalisedin this setion. We desribe how funtion delarations relate types to one another.De�nition 3.1 [subterm type℄ A type � is a diret subterm type of � (denotedas � / �) if there is fh�1:::�n;�i 2 �f and a type substitution suh that � = � and�i = � for some i 2 f1; : : : ; ng. The transitive, reexive losure of / is denoted as /�.If � /� �, then � is a subterm type of �. /Throughout Part II, we impose two restritions on the language delarations we onsider.We �rst need to de�ne a simple type.De�nition 3.2 [simple type℄ A simple type is a type of the form C(�u), where C 2 �� ./The restritions are as follows:Simple Range Condition: For all fh�1:::�n;�i 2 �f , � is a simple type.Reexive Condition: For all C 2 �� and types � = C(��); � = C(��), if � /� � ,then � is a sub\term" (in the syntati sense) of � .1For example, the term Nil has type List(u), List(Int), List(Nest(Int)) et.2We ignore negated literals here. In the implementation, negated literals may our in the analysedprogram, but they are ignored in the analysis, whih means that they do not ontribute any information.

30 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSWe do not know of any real programs that violate these onditions. In partiular, theyare met by all examples in Setion 3.2. We now motivate the need for these restritions.The Simple Range Condition allows for the onstrution of an abstrat domain fora type suh as List(�) to be desribed independently of the type �. An example of aviolation of this ondition would be to delareFUNCTION F: String -> List(Float).in addition to the delarations in Example 3.1. Then we would have the pathologialsituation that a term of type List(Float) an have subterms of type String, Floatand List(Float), whereas for all � 6= Float, List(�) an only have subterms of type� and List(�). In Merury [SHC96℄ and in typed funtional languages suh as ML orHaskell [Tho99℄, this ondition is enfored by the syntax. For example, the list typewould be delared in Haskell asdata List u = Nil | Cons u (List u)and adding another delaration suh asdata List Float = F Stringwould be illegal. Being able to violate the Simple Range Condition an be regarded asan artefat of the G�odel syntax.An example of a violation of the Reexive Condition would be to delareFUNCTION F: List(List(u)) -> List(u).in addition to the delarations in Example 3.1. Then a term of type List(Int) ouldhave subterms of type List(Int), List(List(Int)), List(List(List(Int))) et. Theondition ensures that, for a program and a given query, there are only �nitely manytypes and hene, the abstrat program has only �nitely many abstrat domains.De�nition 3.3 [reursive type and non-reursive subterm type℄ A type � is a reursivetype of � (denoted as � ./ �) if � /� � and � /� �.A type � is a non-reursive subterm type of � (denoted as � // �) if � 6/� �and there is a type � suh that � / � and � ./ �. We write N (�) = f� j � // �g: IfN (�) = f�1; : : : ; �mg and �j � �j+1 for all j 2 f1; : : : ;m � 1g, we abuse notation anddenote the tuple h�1; : : : ; �mi by N (�) as well. /Note that for example, Int ./ Int, although one might �nd it ounterintuitive to thinkof Int as reursive type. Note moreover that in the above de�nition, � ./ � inludesthe ase that � = �. The de�nition has been designed to ahieve uniformity of thepresentation.It follows immediately from the de�nition that if � // �, then � 6./ �. The relation /an be visualised as a type graph (similarly de�ned by Janssens and Bruynooghe [JB92℄,Somogyi [Som87℄ and Van Hentenryk et al. [VCL95℄). The type graph for a type � isa direted graph whose nodes are subterm types of �. The node � is alled the initialnode. There is an edge from �1 to �2 if and only if �2 / �1. The reursive types of � areall the types in the strongly onneted omponent (SCC) of �, and the non-reursive

3.4. RELATIONS BETWEEN TYPES 31
Nest(v)

v

List(u)

u

List(Nest(v))

u

BalanceTable(u)

StringFigure 6: Some type graphs, with initial node highlightedsubterm types are all the types � not in the SCC of � but suh that there is an edgefrom the SCC to �. The �niteness of this graph is ensured by the Reexive Condition.Our domain onstrution relies on the fat that N (�) is �nite.Example 3.4 In Figure 6 there is a type graph for eah of the examples in Se-tion 3.2. Trivially Int ./ Int. However, List(u) ./ List(u) is non-trivial in that,in the type graph for List(u), there is a path from List(u) to itself. FurthermoreList(Nest(v)) ./ Nest(v). Non-reursive subterm types of simple types are often pa-rameters, as in N (List(u)) = hui and N (Nest(v)) = hvi. However, this is not alwaysthe ase, sine N (Table(u)) = hu; Balane; Stringi. /It is important that the relation / is losed under instantiation of its arguments.Lemma 3.1 Let �; � be types and a type substitution. If � / � then � /� . If� /� � then � /� � .Proof. For the �rst statement, there is fh�1:::�n;�i 2 �f and a type substitution 0suh that for some i 2 f1; : : : ; ng, �i 0 = � and � 0 = �. Consequently �i 0 = � and� 0 = � , so � / � . The seond statement follows from the �rst. 2The following lemma states another useful property of the relations /� and ./.Lemma 3.2 Let �; �; � be types so that � /� � /� � and � ./ �. Then � ./ �.Proof. Sine � ./ �, it follows that � /� �. Thus, sine � /� � , it follows that � /� � .Furthermore � /� �, and therefore � ./ �. 2The following lemma ensures that the abstrat domains de�ned later are well-de�ned.It states that any sequene of non-reursive subterm types terminates.Lemma 3.3 Let � 2 T (�� ; U) n U and � � �� . Let I be a non-empty index set(�nite or in�nite) starting at 1 and f(Ci(�ui); �i; i) j i 2 Ig a sequene where C1 2 �,�1 = C1(�u1) 1 = � , dom(1) � �u1 and, for eah i 2 I where i > 1:� Ci 2 �, dom(i) � �ui and Ci(�ui) i = �i i�1,� �i 2 T (�; U) and �i //Ci�1(�ui�1).

32 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMS
�4 �3 �2 �1

C3(�u3) C2(�u2) C1(�u1)6 6 6? ? ?

�

�

�= = = 2 1 0 3 2 1: : :: : : // // //
Figure 7: The sequene of non-reursive subterm typesThen I and hene f(Ci(�ui); �i; i) j i 2 Ig is �nite.Proof. Let 0 be the identity substitution. The sequene is illustrated in Figure 7.First note that, by Lemma 3.1 and De�nition 3.3, for eah i 2 I where i � 2, we have�i i�1 /� �i�1 i�2. Thus, for all i; j 2 I where i > j, �i i�1 /� �j j�1.Let d(�) be the number of ourrenes of onstrutors in a type �. If �0 � �� , de�neD(�0; �) = d(�) + XC2�00� X�2N (C(�u)) d(�)1A :The proof is by indution on D(�; �). Sine � =2 U , it follows that D(�; �) � 1. IfD(�; �) = 1, then � = C1(�u1), N (C1(�u1)) � U and jIj � 2.Suppose that D(�; �) = M > 1. Assume that, for all types � and sets of onstrutors�0 � � suh that D(�0; �) < M , the result holds. Sine the result obviously holdsif jIj � 2, suppose jIj > 2 so that �2 is not a parameter. Consider the sequenef(Ci(�ui); �i; 0i) j i 2 I 0g where I 0 is an index set starting at 2, 01 is the identitysubstitution and, for eah i 2 I 0, we have Ci(�ui) 0i = �i 0i�1. Sine �i //Ci�1(�ui�1), 0i 1 = i for eah i 2 I 0. As in the �rst paragraph, for eah i 2 I 0, �i 0i�1 /� �2.However, �2 //C1(�u1). Thus, by the Reexive Condition and Lemma 3.2, for eah i 2 I 0,we have Ci 6= C1. Thus, for eah i 2 I 0, we have Ci 2 �0 where �0 = � n fC1g. However,D(�0; �2) = d(�2) +D(�; �)� d(�) � X�2N (C1(�u)) d(�):Hene, as d(�) > 0 and �2 2 N (C1(�u)), D(�0; �2) < M and we an use the indutionhypothesis. Hene I 0 is �nite.Assume now that I 0 is maximal with respet to the above onditions and that jI 0j = N 0and suppose K = N 0 + 1 2 I. (If K =2 I, then, as I 0 is �nite, I is �nite.) Then�K 0K�1 = u where u is parameter sine, if �K 0K�1 = CK(�uK) 0K , then K also satis�esthe above onditions so that I 0 is not maximal. Thus 0K�1 is the identity substitutionand �K = u. By the transpareny ondition, sine �K /� C1(�u1), u 2 �u1. As K�1 = 0K�1 1, we have K�1 = 1 and �K K�1 2 �u1 1. Hene d(�K K�1) < d(�) so thatD(�; �K K�1) < D(�; �):

3.5. TRAVERSING CONCRETE TERMS 33
7

E(7) N([E(7)]) [E(7)] Nil

Figure 8: Term tree for N([E(7)℄)Nest(v)Hene, the indutive hypothesis an be applied to the remaining sequene starting at�K . Thus the subsequene starting at �K is �nite and therefore the omplete sequenestarting at � is �nite. 23.5 Traversing Conrete TermsWe now de�ne termination of a term, as well as funtions that extrat ertain subtermsof a term.From now on, we shall often annotate a term t with a type � by writing t�. The useof this notation always implies that the type of t must be a (possibly trivial) instane of�. The annotation � gives the (type) ontext in whih t is used. If S is a set of terms,then S� denotes the set of terms in S, eah annotated with �.De�nition 3.4 [subterm℄ Let t� be a term. Then t� is a subterm of t� at depth 0.If s = fh�1:::�n;�i(s1; : : : ; sn) and for some type substitution , s� is a subterm of t�at depth d, then s�i i is a subterm of t� at depth d + 1 for i 2 f1; : : : ; ng. We writes� /� t� if s� is a subterm of t� at some depth d (s� / t� when d = 1). /It an be seen that s� /� t� implies � /� �. When the supersripts are ignored, theabove is the usual de�nition of a subterm. The supersripts provide a uniform way ofdesribing the \polymorphi type relationship" between a term and its subterms, whihis independent of further instantiation.Example 3.5 xv is a subterm of E(x)Nest(v), and 7v is a subterm of E(7)Nest(v). /De�nition 3.5 [reursive subterm℄ Let s� and t� be terms suh that s� /� t� , and �a type suh that � ./ � and � /� �. Then s� is a �-reursive subterm of t� . Iffurthermore � = �, then s� is a reursive subterm of t� . /In partiular, for every type �, a variable is always a �-reursive subterm of itself. Theorrespondene between subterms and subterm types an be illustrated by drawing theterm as tree that resembles the orresponding type graph.Example 3.6 The term tree for t = N([E(7)℄)Nest(v) is given in Figure 8 where the nodefor t is highlighted. Eah box drawn with solid lines stands for a subterm. We an mapthis tree onto the type graph for Nest(v) in Figure 6 by replaing the subgraphs enlosed

34 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSwith dotted lines with orresponding nodes in the type graph. Thus the reursivesubterms of t our in the boxes orresponding to nodes in the SCC of Nest(v). Allsubterms of t exept 7v are reursive subterms of t.Note that E(7)Nest(v) is a Nest(v)-reursive subterm of [E(7)℄List(Nest(v)) (in De�-nition 3.5, take � = � = Nest(v) and � = List(Nest(v))). However, E(7)u is not areursive subterm of [E(7)℄List(u). Thus whether or not a member of a list should beregarded as a reursive subterm of that list depends on the ontext. /We now de�ne termination of a term. Consider a term t�, where � is simple. Termina-tion of t means that no reursive subterm of t� is a variable. The formal de�nition isslightly more general.De�nition 3.6 [termination funtion Z℄ Let t� be a term and � be a type suh that� ./ �. De�ne Z(t� ; �) = false if a �-reursive subterm of t� is a variable, and trueotherwise.A term t is terminated if t = fh�1:::�n;�i(t1; : : : ; tn) and Z(t� ; �) = true.3 A termis open if it is not terminated. For a set S� of terms de�ne Z(S� ; �) = Vt2S Z(t� ; �).We omit � in the expression Z(t� ; �) whenever � = �. /Example 3.7 Any variable x is open. The term 7 has no variable subterm, thereforeZ(7; Int) = true and 7 is terminated. The term [x℄List(u) has itself and NilList(u)as reursive subterms, therefore Z([x℄; List(u)) = true and [x℄ is terminated. How-ever, [x℄List(Nest(v)) has xNest(v) as a Nest(v)-reursive subterm, and so it follows thatZ([x℄List(Nest(v)) ; Nest(v)) = false. Furthermore, N([x℄)Nest(v) has xNest(v) as a reursivesubterm, so Z(N([x℄); Nest(v)) = false and N([x℄) is open. /The abstrat domain should not only haraterise termination, but also the instantiationof subterms of a term. We de�ne funtions whih extrat sets of subterms from a term.De�nition 3.7 [extrator E� for �℄ Let t� be a term and �, � be types suh that � ./ �and � 2 N (�). Let R be the set of �-reursive subterms of t� . De�neE�(t� ; �) = vars(R) [fs j r� 2 R and s� / r�g:For a set S� of terms de�ne E�(S� ; �) = St2S E�(t� ; �). As with Z, we write E�(t� ; �)simply as E�(t; �). /Example 3.8 For the term N([E(7)℄) of type Nest(Int), we haveEv(N([E(7)℄); Nest(v)) = f7g:The type Table(u) has three non-reursive subterm types u, Balane and String,and so there are three extrator funtions: Eu, whih extrats all value subterms;EBalane, whih extrats all arguments ontaining balaning information; and EString,whih extrats all key subterms. In partiular, this means that for a term t of typeTable(String), both EString(t) and Eu(t) would ontain terms of type String. /3Note that this inludes the ase that t is a onstant.

3.5. TRAVERSING CONCRETE TERMS 35Note that a priori, the extrated terms have no type annotation. This is beause, inthe proofs, we sometimes need to write an expression suh as E�(E�(t; �)� ; �), whihreads: �rst ompute E�(t; �), then annotate it with � , then pass it to E�.Note also that if t has a �-reursive subterm whih is a variable, then this variableis always extrated. Intuitively this is beause this variable might later be instantiatedto a term whih has variable subterms of type �. Thus the property \E�(t� ; �) does notontain variables" is losed under instantiation of t.The following lemma shows that Z and E� an be expressed in terms of the im-mediate subterms of a term. This provides the basis for de�ning the abstration of a(normal form) equation in a onrete program, whih naturally involves a term and itsimmediate subterms. Atually, we ould have de�ned Z and E� by this property, butthe de�nition using subterms is probably more intuitive.Lemma 3.4 Let t = fh�1:::�n;�i(t1; : : : ; tn) be a term and � 2 N (�). ThenZ(t; �) = ^�i./�Z(t�ii ; �)E�(t; �) = fti j �i = �g [[�i./�E�(t�ii ; �):Proof. Let r� be a � -reursive subterm of t�ii , for some i 2 f1; : : : ; ng where �i ./ � .Then by De�nitions 3.4 and 3.5, � ./ � and r� /� t� , and hene r� is a reursive subtermof t� .Now let r� be a reursive subterm of t� . Then either r� = t� or, for some i 2 f1; : : : ; ng,r� /� t�ii . In the latter ase, by De�nitions 3.4 and 3.5, � /� �i, �i / � and � ./ � . Hene,by Lemma 3.2, �i ./ � so that r� is a � -reursive subterm of t�ii .Thus the reursive subterms of t are t, together with the � -reursive subterms of t�ii , forall �i ./ � . The result then follows from De�nitions 3.6 and 3.7. 2The following lemmas are needed in the proof of Lemma 3.7, whih is the key lemmaused to prove Theorem 4.3.Lemma 3.5 Let � be a type, a type substitution, and t a term having a type whihis an instane of � . If s� is a subterm of t�, then s has a type whih is an instane of� .Proof. Indution on the depth of subterms. 2Lemma 3.6 Let �1; �2; �3 be types. If �1 ./ �2 and �2 ./ �3 for some type substitution then �1 ./ �3.Proof. By Lemma 3.1 it follows that �1 /� �3 and �3 /� �1 . 2Consider simple types � and � suh that � ./ � for some type substitution (forexample � = Nest(v), � = List(u) and and = fu=Nest(v)g). The following keylemma relates � with � with respet to the termination and extrator funtions.

36 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSLemma 3.7 Let � and � be simple types suh that � ./ � for some , let t be a termhaving a type whih is an instane of � , and � 2 N (�). ThenZ(t� ; �) = Z(t; �) ^ ^�2N (�)� ./�Z(E�(t; �)� ; �) (1)E�(t� ; �) = [�2N (�)� =�E�(t; �) [[�2N (�)� ./�E�(E�(t; �)� ; �) (2)Proof. The proof onsists of four parts. In Part 1, we de�ne a number of sets ofsubterms of t. We then show six propositions whih say that eah expression ourringin (1) and (2) an be expressed in terms of these sets. In Part 2 we show how the leftand right hand sides of both (1) and (2) an be related using these sets. This is thenused in Part 3 to show (1), and in Part 4 to show (2).Part 1: To avoid onfusion between the many symbols ourring in the proof, keep inmind that �, � , � and our in the statement and thus are �xed. We use f as anabbreviation for fh� 01:::� 0n;� 0i (not fh�1:::�n;�i, as earlier in this hapter), and �r to denote(r1; : : : ; rn). Supersripts are omitted where irrelevant. De�neR = fr! j r! is a �{reursive subterm of t� gS = fri j f(�r)� 0 0 2 R and � 0i 0 = �gA = fr! j r! is a �{reursive subterm of t�g:Note that, by Lemma 3.5, eah r! 2 A has a type whih is an instane of ! . Further-more for all � 2 N (�) de�neB� = fri j f(�r)� 0 0 2 A and � 0i 0 = �g:Note that, by Lemma 3.5, eah ri 2 B� has a type whih is an instane of � 0i 0 (= �).For all � 2 N (�) with � ./ � de�neC� = fr! j r! is a �-reursive subterm of some s� ; s 2 B�gD� = fri j f(�r)� 0 0 2 C� and � 0i 0 = �g:S1-S6 state how these sets relate to the omputations of (1) and (2).S1 Z(t� ; �) = false if and only if vars(R) 6= ;.S2 Z(t; �) = false if and only if vars(A) 6= ;.S3 E�(t� ; �) = vars(R) [S.S4 For eah � 2 N (�), E�(t; �) = vars(A) [B�.S5 For eah � 2 N (�) with � ./ �, Z(E�(t; �)� ; �) = false i� vars(C� [A) 6= ;.S6 For eah � 2 N (�) with � ./ �, E�(E�(t; �)� ; �) = vars(A) [vars(C�) [D�.

3.5. TRAVERSING CONCRETE TERMS 37S1 and S2 follow from De�nition 3.6 and the de�nitions of R and A. S3 and S4 followfrom De�nition 3.7 and the de�nitions of R;S;A and B�. S5 and S6 are proved below.First we prove S5.Z(E�(t; �)� ; �) = false () (by S4)Z((vars(A) [B�)� ; �) = false () (by Def. 3.6)vars(fr! j r! is a ��reursive subterm of s� ; s 2 vars(A) [B�g) 6= ; ()(by Def. 3.5)vars(A) [vars(fr! j r! is a ��reursive subterm of s� ; s 2 B�g) 6= ; ()(by Def. of C�)vars(A) [vars(C�) 6= ;:We now prove S6.E�(E�(t; �)� ; �) = (by S4)E�((vars(A) [B�)� ; �) = (by Def. 3.7)vars(fr! j r! is a ��reursive subterm of s� ; s 2 vars(A) [B�g) [fri j f(�r)� 0 0 is a ��reursive subterm of s� ; s 2 B�; � 0i 0 = �g =(by Def. 3.5)vars(A) [vars(fr! j r! is a ��reursive subterm of s� ; s 2 B�g)[fri j f(�r)� 0 0 is a ��reursive subterm of s� ; s 2 B�; � 0i 0 = �g =(by Def. of C�;D�)vars(A) [vars(C�) [D�:Part 2: Let r! be a subterm of t� at depth d. We show by indution on d that r! 2 Rif and only if r! 2 A or r! 2 C� for some � 2 N (�) with � ./ �. For d = 0 thisfollows from the de�nitions of R and A.Suppose now that r! is a subterm of t� at depth d > 0. Then there exists a subtermf(�r)� 0 0 of t� at depth d� 1 suh that for some i 2 f1; : : : ; ng, r = ri and ! = � 0i 0.\)": Assume that r! 2 R. Sine ! ./ �, it follows from Lemma 3.2 that � 0 0 ./ �so that f(�r)� 0 0 2 R. By the indution hypothesis there are two possibilities:a) f(�r)� 0 0 2 A. Sine � 0 0 ./ � , either ! ./ � or ! // � . If ! ./ � then r! 2 A. If! // � , that is ! 2 N (�), then r 2 B! and hene r! 2 C!, and therefore r! 2 C�for some � 2 N (�).b) f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �. Sine ! ./ � it follows thatr! 2 C�.\(": Again we break this up into ases:

38 CHAPTER 3. THE STRUCTURE OF TYPES AND TERMSa) r! 2 A. Sine ! ./ � , it follows by Lemma 3.2 that � 0 0 ./ � so that f(�r)� 0 0 2 A.By the indution hypothesis f(�r)� 0 0 2 R. Sine ! ./ � and � ./ �, it followsby Lemma 3.6 that r! 2 R.b) r! 2 C� for some � 2 N (�) with � ./ �. By de�nition of C� there are twopossibilities: either r 2 B�, in whih ase ! = � and f(�r)� 0 0 2 A, or ! ./ �and f(�r)� 0 0 is a subterm of an element of B�. In the latter ase, by Lemma 3.2,� 0 0 ./ � so that f(�r)� 0 0 2 C�.In both ases, by the indution hypothesis f(�r)� 0 0 2 R. In the �rst ase, sine! = � and � ./ �, it follows that r! 2 R. In the seond ase, sine ! ./ �,r! 2 R.Part 3: We prove (1). By S1, Z(t� ; �) = false if and only if vars(R) 6= ;. By Part2, vars(R) 6= ; if and only if vars(A) 6= ; or vars(C�) 6= ; for some � 2 N (�) with� ./ �. Then, by S2 and S5, this holds if and only ifZ(t; �) ^ ^�2N (�)� ./�Z(E�(t; �)� ; �) = false:
Part 4: We prove (2) by showing that:vars(R) [S = [� =�(vars(A) [B�) [[� ./�(vars(C�) [D�):The result then follows from S3, S4, and S6.\�": For a variable x 2 R it follows by Part 2 that x 2 A, or x 2 C� for some � 2 N (�)with � ./ �. For a term r 2 S, there is f(�r)� 0 0 2 R suh that r = ri, and � 0i 0 = �.By Part 2, either f(�r)� 0 0 2 A, or f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �.Assume �rst f(�r)� 0 0 2 A. We show that r 2 B� for some � 2 N (�) with � = �,namely � = � 0i 0. Sine by onstrution of A, � 0i 0 /� � , we only have to show that not� 0i 0 ./ � . By Lemma 3.6, � 0i 0 ./ � , together with � ./ �, would imply � 0i 0 ./ �.This however is a ontradition, sine it follows from � 0i 0 = � that � 0i 0 // �.Assume now f(�r)� 0 0 2 C� for some � 2 N (�) with � ./ �. Sine � 0i 0 = � it followsthat r 2 D�.\�": For a variable x 2 A, or x 2 C� for some � 2 N (�) with � ./ �, it follows byPart 2 that x 2 R.Seondly assume r 2 B� for some � 2 N (�) with � = �. By de�nition, there isf(�r)� 0 0 2 A suh that r = ri and � 0i 0 = �. By Part 2, f(�r)� 0 0 2 R, and sine� 0i 0 = �, it follows that r 2 S.Thirdly assume r 2 D� for some � 2 N (�) with � ./ �. By de�nition, there isf(�r)� 0 0 2 C� suh that r = ri and � 0i 0 = �. By Part 2, f(�r)� 0 0 2 R, and sine� 0i 0 = �, it follows that r 2 S. 2

3.5. TRAVERSING CONCRETE TERMS 39Example 3.9 First let � = � = List(u) and be the identity. Then by De�nition 3.3there is no � suh that � 2 N (�) and � ./ �. Therefore in both equations of Lemma 3.7,the right half of the right hand side is empty. Furthermore there is obviously exatlyone � suh that � = �, namely � = �. Thus the equations readZ(t; �) = Z(t; �) (1)E�(t; �) = E�(t; �) (2)In the same way, Lemma 3.7 redues to a trivial statement for the Tables module(Example 3.3) and in fat for many types that are ommonly used. However for Exam-ple 3.6, Lemma 3.7 says thatZ([E(7)℄List(Nest(v)) ; Nest(v)) = Z([E(7)℄; List(u)) ^ Z(Eu([E(7)℄; List(u)); Nest(v))(1)Ev([E(7)℄List(Nest(v)) ; Nest(v)) = ; [Ev(Eu([E(7)℄; List(u)); Nest(v))(2)/In this hapter, we have de�ned the aspets of the struture of a (onrete) term whihwe want to haraterise. First, we are interested in termination of a term. Seondly, wegroup the subterms of a term together aording to their types. This is done using theextrator funtions. In the next hapter, we will de�ne abstrat terms based on theseonepts.

Chapter 4Abstrat Domains for ModeAnalysisIn this hapter, we desribe a mode analysis using abstrat domains based on the ter-mination and extrator funtions introdued in the previous hapter.This hapter is organised as follows. Setion 4.1 de�nes the abstrat domains and theabstration funtion for terms. Setion 4.2 de�nes termination and extrator funtionsfor abstrat terms, in analogy to the funtions for onrete terms. Setion 4.3 de�nes anabstrat program and shows how its semantis approximates its onrete ounterpart.Setion 4.4 reports on experiments. Setion 4.5 disusses the results and related work.4.1 Abstration of TermsWe �rst de�ne an abstrat domain for eah type. Eah abstrat domain is a term stru-ture, built using the onstant symbols Bot, Any, Ter, Open, and the funtion symbolsCA, for eah C 2 �� . The meaning of these symbols will be explained shortly.De�nition 4.1 [abstrat domain℄ If � is a parameter, de�neD� = fBot; Anyg:If C(�u) is a simple type with N (C(�u)) = h�1; : : : ; �mi and � = C(�u) where is a typesubstitution, de�neD� = fCA(b1; : : : ; bm; Ter) j bj 2 D�j g [fCA(Any; : : : ; Any| {z }m times ; Open); Bot; Anyg:D� is the abstrat domain for �. If b 2 D�, then b is an abstrat term for �. /By Lemma 3.3, every abstrat domain is well-de�ned. We shall see later that if anabstrat term CA(b1; : : : ; bm; Ter) abstrats a term t, then eah bj orresponds to anon-reursive subterm type �j of C(�u). The bj haraterises the degree of instantiationof the subterms extrated by E�j . In partiular, the value Any for bj orresponds to thease when a variable is extrated by E�j from t. Thus, if t is a non-variable open term,eah bj must have the value Any. 40

4.1. ABSTRACTION OF TERMS 41The termination ags Ter and Open in the last argument position of an abstratterm are not abstrat terms but Boolean ags. The ag Ter abstrats the property ofa term being terminated (and thus orresponds to true) and Open that of being open(and thus orresponds to false). Note that for some types, for example Int, a terman be open only if it is a variable. In these ases, the termination ag is omitted inthe implementation (see Setion 4.4). We keep it in the theory for the sake of a uniformpresentation.Example 4.1 Consider the examples in Setion 3.2 (see also Figure 6 on page 31).DInt = fIntA(Ter); IntA(Open); Bot; Anyg:The following examples illustrate that De�nition 4.1 is \parametri".DList(Int) = fListA(i; Ter) j i 2 DIntg [fListA(Any; Open); Bot; AnygDList(String) = fListA(i; Ter) j i 2 DStringg [fListA(Any; Open); Bot; AnygDList(u) = fListA(i; Ter) j i 2 Dug [fListA(Any; Open); Bot; Anyg:Some further examples are, assuming that u � Balane � String:DBalane = fBalaneA(Ter); BalaneA(Open); Bot; AnygDString = fStringA(Ter); StringA(Open); Bot; AnygDTable(Int) = fTableA(i; b; s; Ter) j i 2 DInt; b 2 DBalane; s 2 DStringg[fTableA(Any; Any; Any; Open); Bot; AnygDNest(Int) = fNestA(i; Ter) j i 2 DIntg [fNestA(Any; Open); Bot; Anyg: /We now de�ne an order on abstrat terms whih has the usual interpretation that\smaller" stands for \more preise". Sine the least upper and greatest lower bound oftwo abstrat terms with respet to this order always exist, it follows that eah abstratdomain is a lattie.De�nition 4.2 [order < on abstrat terms℄ For the termination ags de�ne Ter <Open. For abstrat terms, < is de�ned as follows:Bot < b if b 6= Bot,b < Any if b 6= Any,CA(b1; : : : ; bm;) � CA(b01; : : : ; b0m; 0) if � 0 and bj � b0j , j 2 f1; : : : ;mg:For a set S of abstrat terms, let tS denote the least upper bound of S with respetto the order <. /We now de�ne the abstration funtion for terms. This de�nition needs an abstrationof truth values as an auxiliary onstrution. The abstration funtion formalises therelationship between onrete and abstrat terms, so that the results of a mode analysisan be interpreted. The abstration funtion is never atually omputed during theanalysis.

42 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISDe�nition 4.3 [abstration funtion � for terms℄ Let � = C(�u) and let N (�) =h�1; : : : ; �mi. For the truth values de�ne �(true) = Ter and �(false) = Open. If S is aset of terms, de�ne �(S) = tf�(t) j t 2 Sg;where �(t) is de�ned as:Any if t is a variable,CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �))) if t = fh�1:::�n;�i(t1; : : : ; tn). /Note that this de�nition is based on the fat that �(;) = Bot. From this it follows thatthe abstration of a onstant t = fh�i is CA(Bot; : : : ; Bot; Ter).The least upper bound of a set of abstrat terms gives a safe approximation forthe instantiation of all orresponding onrete terms. Safe means that eah onreteterm is at least as instantiated as indiated by the least upper bound. As we will see inSetion 4.3, our mode analysis an only give approximations of the instantiation of termsin this sense. It an never infer that a term is de�nitely free, that is, an uninstantiatedvariable. Inferring that a term is de�nitely free requires di�erent tehniques [BDB+96℄.Example 4.2 We illustrate De�nition 4.3.�(7) = IntA(Ter) (� = Int;m = 0; n = 0)�(Nil) (� = List(u);N (�) = hui; n = 0)= ListA(�(;); �(Z(Nil; �)))= ListA(Bot; Ter)�(Cons(7; Nil)) (� = List(u);N (�) = hui; n = 2)= ListA(tf�(7)g; �(Z(Cons(7; Nil); �)))= ListA(IntA(Ter); Ter):Table 1 gives some further examples. Note that there is no term of type Int whoseabstration is IntA(Open). /The following is an auxiliary lemma needed for the proof of Lemma 4.2.Lemma 4.1 Let t� be a term. Every subterm of t� is either a reursive subterm of t� ,or a subterm of a term in E�(t; �), for some � 2 N (�).Proof. The proof is by indution on the depth of subterms of t� . For the base aseobserve that t� is a reursive subterm of itself.Now suppose the result holds for all subterms of t� up to depth i. Let r� be a subtermof t� at depth i and w! / r�. If r� is not a reursive subterm of t� , then r� is a subtermof a term in E�(t; �) for some � 2 N (�), and thus w! is also a subterm of a term inE�(t; �). If r� is a reursive subterm of t� , then sine � ./ � and ! / �, by De�nition 3.3either ! ./ � or ! // � . Thus either w! is a reursive subterm of t� or w 2 E!(t; �). 2The following lemma shows that the abstration aptures groundness.

4.1. ABSTRACTION OF TERMS 43Table 1: Some terms, their types, and abstrationsterm type abstrationx u Any[7,x℄ List(Int) ListA(Any; Ter)[7|x℄ List(Int) ListA(Any; Open)E(7) Nest(Int) NestA(IntA(Ter); Ter)[E(7)℄ List(Nest(Int)) ListA(NestA(IntA(Ter); Ter); Ter)N([E(7)℄) Nest(Int) NestA(IntA(Ter); Ter)N([E(7),x℄) Nest(Int) NestA(Any; Open)N([E(7)|x℄) Nest(Int) NestA(Any; Open)Lemma 4.2 Let S be a set of terms having the same type. Then a variable ours inan element of S (that is S is non-ground) if and only if Any or Open ours in �(S).Proof. There are three ases depending on whether S is empty, ontains a variable,or neither.Case 1: S is empty. Then �(S) = Bot.Case 2: x 2 S for some variable x. Then �(x) = Any and thus �(S) = Any.Case 3: S ontains no variables but ontains a non-variable term. Then the type ofterms in S is of the form � for some type substitution and simple type � = C(�u).Suppose that N (�) = h�1; : : : ; �mi for some m � 0. Then there are abstrat termsb1; : : : ; bm and a termination ag b suh that�(S) = CA(b1; : : : ; bm; b):There are two subases.Case 3a: For some t 2 S and variable x, x� is a reursive subterm of t� . ThenZ(t; �) = Open. Hene b = Open and�(S) = CA(b1; : : : ; bm; Open):Case 3b: No term in S has a reursive subterm that is a variable. Then Z(t; �) = Terfor eah t 2 S. Hene, by De�nition 4.2, b = Ter. The proof for this ase is by indutionon the length of the longest // -sequene (see Lemma 3.3) for � . The base ase is whenm = 0. Then by Lemma 4.1, every term in S is ground and �(S) = CA(Ter).Now suppose m > 0. By Lemma 4.1, S ontains a non-ground term if and only ifE�j (t; �) ontains a non-ground term for some t 2 S and j 2 f1; : : : ;mg. By De�ni-tion 4.3 �(S) = tfCA(�(E�1(t; �)); : : : ; �(E�m (t; �)); Ter) j t� 2 Sg:Thus, by De�nitions 4.2 and 4.3, for eah j 2 f1; : : : ;mg, we have bj = �(E�j (S; �)). Letj 2 f1; : : : ;mg. If E�j (S; �) is empty, by Case 1 above, �(E�j (S; �)) = Bot: If E�j (S; �)

44 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISontains a variable, by Case 2 above, �(E�j (S; �)) = Any: Otherwise, E�j (S; �) ontainsa non-variable term and the terms in E�j (S; �) have type �j , for whih, by indutionhypothesis, the result holds. Hene bj has an ourrene of Any or Open if and only ifE�j (S; �) ontains a non-ground term. It follows that �(S) has an ourrene of Any orOpen if and only if S ontains a non-ground term. 24.2 Traversing Abstrat TermsIn order to de�ne abstrat uni�ation and, in partiular, the abstration of an equationin a program, we require an abstrat termination funtion and abstrat extrators sim-ilar to those already de�ned for onrete terms. The type supersript annotation foronrete terms is also useful for abstrat terms.De�nition 4.4 [abstrat termination funtion and extrator for �℄ Let � and � = C(�u)be simple types suh that � ./ � for some , and N (�) = h�1; : : : ; �mi. Let b be anabstrat term for an instane of � .1. Abstrat termination funtion.AZ(b� ; �) = Open if b = AnyAZ(b� ; �) = Ter if b = BotAZ(b� ; �) = ^ ^�j ./�AZ(b�j j ; �) if b = CA(b1; : : : ; bm;):2. Abstrat extrator for �. Let � 2 N (�).AE�(b� ; �) = Any if b = AnyAE�(b� ; �) = Bot if b = BotAE�(b� ; �) = t(fbj j �j = �g[fAE�(b�j j ; �) j �j ./ �g) if b = CA(b1; : : : ; bm;): /As for the onrete termination funtions and extrators, we omit the supersript � inthe expressions AZ(b� ; �) and AE�(b� ; �) whenever � = � and is the identity. Inthis (very ommon) ase, the abstrat termination funtion is merely a projetion ontothe termination ag of an abstrat term (or Open if the abstrat term is Any). Similarly,the abstrat extrator for � is merely a projetion onto the jth argument of an abstratterm, where � = �j. Note the similarity between the above de�nition and Lemma 3.4.Example 4.3AZ(ListA(Any; Ter)List(Nest(v)) ; Nest(v)) = Ter ^AZ(Any; Nest(v)) = Open:AEv(ListA(Any; Ter)List(Nest(v)) ; Nest(v)) = Any:AZ(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)) ; Nest(v)) =Ter ^AZ(NestA(IntA(Ter); Ter); Nest(v)) = Ter:AEv(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)) ; Nest(v)) =AEv(NestA(IntA(Ter); Ter); Nest(v)) = IntA(Ter):

4.2. TRAVERSING ABSTRACT TERMS 45/The following theorem states the fundamental relationship between onrete and ab-strat termination funtions and extrators.Theorem 4.3 Let � and � = C(�u) be simple types suh that � ./ � for some , and� 2 N (�). Let t� be a term. Then�(Z(t� ; �)) = AZ(�(t)� ; �) (1)�(E�(t� ; �)) = AE�(�(t)� ; �) (2)Proof. The proof is by indution on the struture of t. First assume t is a variable xor a onstant d. Here we omit the type supersripts beause they are irrelevant.�(Z(x; �)) = �(false) = Open = AZ(Any; �) = AZ(�(x); �):�(E�(x; �)) = tf�(x)g = Any = AE�(Any; �) = AE�(�(x); �):�(Z(d; �)) = �(true) = Ter = AZ(CA(Bot; : : : ; Bot; Ter); �) = AZ(�(d); �):�(E�(d; �)) = t ; = Bot = AE�(CA(Bot; : : : ; Bot; Ter); �) = AE�(�(d); �):Now assume t is a ompound term. Let N (�) = h�1; : : : ; �mi. In the following sequenesof equations, � marks steps whih use straightforward manipulations suh as rearrangingleast upper bounds or appliations of � to sets. We show (1) working from right to left.AZ(�(t)� ; �) = (De�nition 4.3)AZ(CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �)))� ; �) = (De�nition 4.4)�(Z(t; �)) ^ ^�j ./�AZ(�(E�j (t; �))�j ; �) = (� and hypothesis)�(Z(t; �)) ^ ^�j ./��(Z(E�j (t; �)�j ; �)) = (� and Lemma 3.7)�(Z(t� ; �)):We show (2), also working from right to left.AE�(�(t)� ; �) = (De�nition 4.3)AE�(CA(�(E�1 (t; �)); : : : ; �(E�m (t; �)); �(Z(t; �)))� ; �) = (De�nition 4.4)t(f�(E�j (t; �)) j �j = �g [fAE�(�(E�j (t; �))�j ; �) j �j ./ �g) =(� and hypothesis)t([�j =�f�(E�j (t; �))g [[�j ./�f�(E�(E�j (t; �)�j ; �))g) = (� and Lemma 3.7)�(E�(t� ; �)): 2Example 4.4 This illustrates Theorem 4.3 for � = � = List(u) and � = u.�(Z([7℄; List(u))) = Ter = AZ(ListA(IntA(Ter); Ter); List(u))�(Eu([7℄; List(u))) = IntA(Ter) = AEu(ListA(IntA(Ter); Ter); List(u)):

46 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSIS/4.3 Abstrat CompilationWe now show how the abstrat domains an be used in the ontext of abstrat ompi-lation. We de�ne an abstrat program and show that it is a safe approximation of theonrete program with respet to the usual operational semantis.In a (normal form) program, eah uni�ation is made expliit by an equation. Wenow de�ne an abstration of suh an equation. Thus we de�ne for eah f 2 �f , aprediate whih expresses the dependeny between �(f(t1; : : : ; tn)) and �(t1); : : : ; �(tn).De�nition 4.5 [abstrat dependeny fdep℄ Let fh�1:::�n;�i 2 �f where � = C(�u) andN (�) = h�1; : : : ; �mi. Then fdep(CA(a1; : : : ; am;); b1; : : : ; bn) holds ifaj = t (fbi j �i = �jg [fAE�j (b�ii ; �) j �i ./ �g) for all j 2 f1; : : : ;mg (1) = ^�i./� AZ(b�ii ; �) (2)/Example 4.5 To give an idea of how De�nition 4.5 translates into ode, onsider Cons.Assuming that Lub(a; b;) holds if and only if = tfa; bg, one lause for Consdep mightbe:Cons_dep(List_a(,Ter),b,List_a(a,Ter)) <-Lub(a,b,).The �rst argument of Consdep stands for a list, and the other arguments for the headand tail of this list. Note however that the ode is slightly simpli�ed. The reason isthat unless the type of a, b, and is spei�ed, there are in�nitely many answers forLub(a,b,), whih auses a termination problem. Therefore, in the implementation,this lause is parametrised with the type of a, b, and . /Lemma 4.4 If t = f(t1; : : : ; tn) then fdep(�(t); �(t1); : : : ; �(tn)) holds.Proof. Suppose N (�) = h�1; : : : ; �mi and � = C(�u). By De�nition 4.3�(t) = CA(�(E�1(t; �)); : : : ; �(E�m (t; �)); �(Z(t; �))):We must show (1) and (2) in De�nition 4.5. First, we prove (1). For eah �j 2 N (�),�(E�j (t; �))= �(fti j �i = �jg [[�i./� E�j (t�ii ; �)) (Lemma 3.4)= t (f�(ti) j �i = �jg [f�(E�j (t�ii ; �)) j �i ./ �g) (moving � inwards)= t (f�(ti) j �i = �jg [fAE�j (�(ti)�i ; �) j �i ./ �g) (Theorem 4.3).

4.3. ABSTRACT COMPILATION 47Equation (2) is proven in a similar way:�(Z(t; �))= �(^�i./� Z(t�ii ; �)) (Lemma 3.4)= ^�i./� �(Z(t�ii ; �)) (moving � inwards)= ^�i./� AZ(�(ti)�i ; �) (Theorem 4.3). 2De�nition 4.6 [abstration � of a program℄ For a normal form equation e de�ne�(e) = (e if e is of the form x = yfdep(x; y1; : : : ; yn) if e is of the form x = f(y1; : : : ; yn):For a normal form atom a and lause K = h g1 ^ : : : ^ gl de�ne�(a) = a�(K) = �(h) �(g1) ^ : : : ^ �(gl):For a program P = hL; Si de�ne�(P) = f�(K) j K 2 Sg [ffdep(a; a1; : : : ; an) j fdep(a; a1; : : : ; an) holdsg: /Example 4.6 In the following we give the usual reursive lause for Append in normalform and its abstration.%onrete lause %abstrat lauseAppend(xs,ys,zs) <- Append(xs,ys,zs) <-xs = [x|x1s℄ & Cons_dep(xs,x,x1s) &zs = [x|z1s℄ & Cons_dep(zs,x,z1s) &Append(x1s,ys,z1s). Append(x1s,ys,z1s). /We now de�ne the operational semantis of onrete and abstrat programs. We assumea �xed language L and program P = hL; Si, and a left-to-right omputation rule. Aprogram state is a tuple hG; �i where G is a query and � a substitution. It is an initialstate if � is empty. We write C 2� S if C is a renamed variant of a lause in S.De�nition 4.7 [redues to℄ The relation P; (\redues to") between states is de�nedby the following rules:hh1 : : : : : hl; �i P; hh2 : : : : : hl; ��0i if h1 is `x = t' and x��0 = t��0 (1)hh1 : : : : : hl; �i P;hG : h2 : : : : : hl; ��0i if h G 2� S and h��0 = h1��0 (2)

48 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISMoreover, P; j for j � 0 and P;� are de�ned in the usual way. If for an initial query G,hG; ;i P;� hp(x1; : : : ; xn) : H; �i P;� hH; �0i;we all p(x1; : : : ; xn)� a all pattern and p(x1; : : : ; xn)�0 an answer pattern for p. /Note that it is ommon to require that �0 is the most general uni�er, but nevertheless,our notion of \redues" with arbitrary uni�er has been onsidered by Lloyd [Llo87℄.Theorem 4.5 Let H;H 0 be queries, � a substitution and j � 0. If hH; ;i P; j hH 0; �i,then h�(H); ;i �(P); j h�(H 0); ��i, where �� = fx=�(x�) j x 2 dom(�)g.Proof. By De�nition 4.7, hH; ;i P; j hH 0; �i if and only if hH; �i P; j hH 0; �i, andlikewise for �(P). Therefore it is enough to show that for all j � 0hH; �i P; j hH 0; �i implies h�(H); ��i �(P); j h�(H 0); ��i: (3)The proof is by indution on j. The base ase j = 0 holds sineh�(H); ��i �(P); 0 h�(H); ��i:For the indution step, assume (3) holds for some j � 0. We show that for every queryH 00 hH; �i P; j+1 hH 00; �i implies h�(H); ��i �(P); j+1 h�(H 00); ��i:If hH; �i P; j+1 hH 00; �i does not hold, the result is trivial. If hH; �i P; j+1 hH 00; �i, thenhH; �i P; j hH 0; �i P; hH 00; �i for some query H 0, andh�(H); ��i �(P); j h�(H 0); ��i by hypothesis.It only remains to be shown that h�(H 0); ��i �(P); h�(H 00); ��i. We distinguish twoases depending on whether Rule (1) or (2) of De�nition 4.7 was used for the stephH 0; �i P;hH 00; �i.Case 1: Rule (1) was used. H 0 = h1 : : : : : hl where h1 is `x = t', and t = yor t = f(x1; : : : ; xn). In the �rst ase �(h1) = h1. Sine x� = y�, it follows thatfx=�(x�); y=�(x�)g � �� and therefore x�� = y��. Thus h�(H 0); ��i �(P); h�(H 00); ��iby Rule (1). In the seond ase �(h1) = fdep(x; x1; : : : ; xn). Sine x� = f(x1�; : : : ; xn�),fx=�(f(x1�; : : : ; xn�)); x1=�(x1�); : : : ; xn=�(xn�)g � ��:Hene, by Lemma 4.4, fdep(x; x1; : : : ; xn) �� holds so that fdep(x; x1; : : : ; xn) �� 2 �(P)by De�nition 4.6. Thus h�(H 0); ��i �(P); h�(H 00); ��i by Rule (2).Case 2: Rule (2) was used. H 0 = h1 : : : : : hl where h G 2� S and h� = h1�. ByDe�nition 4.6, �(h1 G) 2� �(P). Furthermore �(h) has the form Q(�x), and �(h1)has the form Q(�y). Sine �x� = �y� it follows that Q(�x) �� = Q(�y) ��. 2

4.4. IMPLEMENTATION AND RESULTS 494.4 Implementation and ResultsFrom now on we refer to the abstrat domains de�ned in this hapter as typed domains.We have implemented the mode analysis for objet programs in G�odel. This imple-mentation naturally falls into two stages: in the �rst stage, the language delarationsare analysed in order to onstrut the typed domains, and the program lauses are ab-strated. In the seond stage, the abstrat program is evaluated using standard abstratompilation tehniques.We have implemented the �rst stage in G�odel, using the G�odel meta-programmingfailities. The analysed program may onsist of several (system or user-de�ned) modules,but its abstration will always be a one-module program. Sine virtually all G�odelprograms use G�odel system modules1, these are treated speially in our implementationin order to avoid analysing and abstrating them anew eah time.G�odel meta-programming is slow, but this �rst stage sales well, as the time forabstrating the lauses of a program is linear in their number. Analysing the typedelarations is not a problem in pratie. We have analysed ontrived programs withextremely omplex type delarations within a ouple of seonds.The seond stage was implemented in Prolog, so that an existing analyser ouldbe used. Abstrat programs produed by the �rst stage were transformed into Prolog.All all and answer patterns, whih may arise in a derivation of an abstrat programfor a given query, are omputed by the analyser. By Theorem 4.5, these patternsorrespond to patterns in the derivation of the onrete program. For example a allp(Any; IntA(Ter)) in a derivation of the abstrat program indiates that there may bea all p(x,7) in a derivation of the onrete program.In Table 2, the preision of the typed domain for Table(Int) (Example 4.1) is om-pared with a domain that an only distinguish between ground and non-ground terms.The latter domain has been shown by Codish and Demoen [CD95℄ to be equivalent tothe well-known Pos domain [MS93℄. The arguments of the prediate Insert represent:a table t, a key k, a value v, and a table obtained from t by inserting the node whosekey is k and whose value is v. Table 2 shows some initial all patterns and the answerpattern that is inferred for eah all pattern. For readability, we use some abbreviationsand omit the termination ag for types Integer, Balane and String.Clearly, inserting a ground node into a ground table gives a ground table. Thisould be inferred with the ground/non-ground domain (1) as well as the typed domains(3). Now onsider the insertion of a node with an uninstantiated value into a groundtable. With typed domains, it is inferred that the result is still a table but whose valuesmay be uninstantiated (4). This annot be inferred with a ground/non-ground domain(2). In fat, (2) only says that the answer pattern is no less instantiated than the allpattern, whih is trivial.We used a modi�ed form of the analyser of Heaton et al. [HHK97℄ running on aSun SPARC Ultra 170. The analysis times for Tables were: (1) 0.09 seonds, (2)1.57 seonds, (3) 0.81 seonds, (4) 2.03 seonds. Apart from Tables, we also analysedsome small programs, namely Append, Reverse, Flatten (from the Nests module),1In G�odel, all built-ins exept the equality prediate are provided via system modules.

50 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISTable 2: Some all and answer patterns for InsertGround/non-ground domain:Insert(ground; ground; ground; any) leads to answer pattern (1)Insert(ground; ground; ground; ground):Insert(ground; ground; any; any) leads to answer pattern (2)Insert(ground; ground; any; any):Typed domain:Insert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; Any) leads to answer pattern (3)Insert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; TabA(IntA; BalA; StrA; Ter)):Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; Any) leads to answer pattern (4)Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; TabA(Any; BalA; StrA; Ter)):TreeToList, Quiksort, and Nqueens. For these, all analysis times were below 0.03seonds and thus too small to be very meaningful. For most of these, the typed domainsresulted in more preise analyses, similarly as explained for Tables.Our experiene is that the domain operations, namely to ompute the least upperbound of two abstrat terms, are indeed the bottlenek of the analysis. Thereforeit is ruial to avoid performing these omputations unneessarily. Also one mightompromise some of the preision of the analysis by onsidering widenings [CC92℄ forthe sake of eÆieny. More work ould be done on the embedding of the typed domainsin the analysis. In order to ondut more experiments, one would need a suite of biggertyped logi programs. A formal omparison between analyses for typed logi programsand untyped ones is of ourse diÆult.4.5 Disussion and Related WorkWe have presented a general domain onstrution for mode analysis of typed logiprograms. For ommon examples (lists, binary trees), our formalism is simple andyields abstrat domains that are omparable to the domains designed by Codish andDemoen [CD94℄. In their formalism, however, an abstrat domain for obtaining thisdegree of preision for, say, the types in the Tables module, would have to be hand-rafted. In ontrast, our work desribes this onstrution for arbitrary types.The fundamental onepts of this work are reursive type and non-reursive sub-term type, whih are generalisations of ideas presented previously for lists [CD94℄. Theresulting abstrat domains are entirely in the spirit of previous work by Codish and oth-ers [CD94, CL96℄ and we believe that they provide the highest degree of preision thata generi domain onstrution should provide. Even if type delarations that requirethe full generality of our formalism are rare, this work is an important ontributionbeause it helps to understand other, more ad-ho and pragmati domain onstrutionsas instanes of a general theory. One ould always simplify or prune down our abstratdomains for the sake of eÆieny.

4.5. DISCUSSION AND RELATED WORK 51In its full generality the formalism is, admittedly, rather omplex. This is pri-marily due to funtion delarations where the range type ours again as a propersub\term" of an argument type, suh as the delaration of N in the Nests module (Ex-ample 3.2). If types were as widespread in logi programming as they are in funtionalprogramming, suh delarations would probably not seem very unusual. They are usedin the delarations for rose trees, that is, trees where the number of hildren of eahnode is not �xed [Mee88℄. One should also note that while the theory whih allowsfor a domain onstrution for, say, Nest(Int) is oneptually omplex, the omputa-tional omplexity of the atual domain operations for Nest(Int) is lower than for, say,List(List(List(Int))). In short, the omplexity of the abstrat domains dependson the inherent omplexity of the type delarations, as illustrated by the type graphs(Figure 6).We have built on ideas presented previously for untyped languages [CL96℄. Notablythe title of that work says that type, not mode, dependenies are derived. Even in anuntyped language suh as Prolog, one an de�ne types as sets of terms given by somekind of \delaration", just as in a typed language [AL94℄. In this ase type analysis(inferring that an argument is instantiated to a term of a ertain type) is inseparablefrom mode analysis. The analysis must aount for \inorretly" typed terms suh as[3j17℄. As it annot be assumed that, say, [3jy℄ will eventually be bound to a list, it isabstrated as any, thus not apturing that it is at least partially instantiated. In typedlanguages, this problem does not arise. It seems that Codish and Lagoon [CL96℄ providea straightforward domain onstrution for arbitrary types, but this is not the ase. Itis not spei�ed what kind of \delarations" are implied, but the examples and theorysuggest that all types are essentially lists and trees. The Tables and Nests examplesgiven in Setion 3.2 are not aptured.Reursive modes [TL97℄ haraterise that the left spine, right spine, or both, of aterm are instantiated. The authors admit that this may be onsidered an ad-ho hoie,but on the other hand, they present good experimental results. They do not assume atyped language and thus annot exploit type delarations in order to provide a moregeneri onept of reursive modes, as we have done by the onept of termination. Also,the degree of instantiation that we would express by, say, ListA(TableA(Any; Ter); Ter),annot be haraterised.A omplex system for type analysis of Prolog has been presented by Van Hentenryket al. [VCL95℄. As far as we an see, this system is not in a formal sense stronger orweaker than our mode analysis. The domain Pat(Type) used there is in�nite, so thatwidenings have to be introdued to ensure �niteness, and \the design of widening opera-tors is experimental in nature" [VCL95℄. In ontrast, we exploit the type delarations toonstrut domains that are inherently �nite and whose size is ditated by the omplexityof the type delarations. Similarly, in a paper by Janssens and Bruynooghe [JB92℄, the�niteness of abstrat domains and terms is ensured by imposing an ad-ho bound onthe number of symbols.Barbuti and Giaobazzi have presented a polymorphi type inferene for (untyped)logi programs [BG92℄. It is assumed that type delarations are given to de�ne alanguage of \well-typed" terms, similarly as in typed logi programming languages.However, the types of the prediate symbols are not delared, but rather inferred. In

52 CHAPTER 4. ABSTRACT DOMAINS FOR MODE ANALYSISpartiular, it might be inferred that some arguments of a prediate are not \well-typed".Suh information an be useful for debugging programs.Gallagher et al. have shown that the domain onstrution of any (stati) pro-gram analysis an be ast in terms of pre-interpretations [GBS95℄. Traditionally, pre-interpretations are used in prediate logi to assign a semanti value to a term, forexample the number `2' to the term 1+1 or 2. However, they an also be used tospeify a program analysis, by hoosing an appropriate domain on whih these pre-interpretations operate. The mode analysis we have presented here an without doubtalso be expressed in these terms, by hoosing as domains the abstrat domains wepropose here.Merury [SHC96℄ has a mode system based on instantiation states. These are asser-tions of how instantiated a term is. An instantiation state is similar to an abstrat term.Indeed, given some type delarations, it is possible to de�ne an instantiation state inMerury syntax whih, while not being exatly the same, is omparable in preision toan abstrat term in our formalism. In Merury, it is the user who has to speify a setof instantiation states by delaring the mode, and this mode is heked and enfored bythe ompiler. In ontrast, we have desribed how the abstrat terms and their valuesan be inferred automatially.The Merury ompiler also does some mode inferene. It is hard to assess whetheror not the ompiler an atually onstrut instantiation states without any help bymode delarations beause the relevant literature [Hen92, Som87℄ only refers to simpleexamples and does not speify the mode inferene preisely.It has been noted by Henderson [Hen92℄ that instantiation states loosely orrespondto abstrat interpretation, used for mode analysis in a language suh as G�odel, whihdoes not enfore modes. In this part of the thesis we developed this argument. Ourdomain onstrution an be regarded as inferring automatially, from a set of typedelarations, what the interesting instantiation states are.The mode system in Merury is based on work by Somogyi [Som87℄, where theSimple Range Condition and the Reexive Condition that we impose are not expliitlyrequired. However, Somogyi does not de�ne the type system preisely, instead referringto Myroft and O'Keefe [MO84℄, whose formal results have been shown to be inorret,namely in ignoring the transpareny ondition [Hil93, HT92℄. It is therefore diÆult toassess whether that approah would work for programs whih violate these onditions.We know of no real G�odel programs that violate either of the Simple Range or ReexiveConditions. We have found that violating the Reexive Condition raises fundamentalquestions about deidability in typed languages, whih seem to be related to the oneptof polymorphi reursion [Kah96, KTU93℄. It would be interesting to investigate thesequestions further.We believe that, sine our abstrat terms an haraterise the instantiation of aterm with what might be alled a \reasonable" degree of preision, they ould providea good basis for two further appliations: delaring modes and delaring onditions fordelaying.Conerning the �rst appliation, note that the present Merury implementation doesnot support instantiation states in their full generality, and it is hard to imagine that thiswould ever be needed. Thus one might onsider a language where modes are delared

4.5. DISCUSSION AND RELATED WORK 53using our abstrat terms.In G�odel, the delay delarations whih state that a prediate is delayed until anargument (or a subterm of the argument) is ground or non-variable, annot desribethe behaviour of the G�odel system prediates preisely. We have observed that, typially,the degree of instantiation for a G�odel system prediate to run safely without delayingould be spei�ed by an abstrat term in our typed domains. For example, the prediateAppend=3 will run safely if the �rst argument is a nil-terminated list.Our approah may also be appliable to untyped languages, if we have informationat hand that is similar to type delarations. Suh information might be obtained byinferring delarations [Chr97℄ or from delarations as omments [SG95b℄. Certainly ouranalysis would then regain aspets of type rather than mode inferene, whih it had lostby transferring the approah to typed languages.

Part IIINon-Standard Derivations

54

Chapter 5Corretness Properties ofProgramsIn this hapter, the need for non-standard derivations is motivated. Then several or-retness properties for programs onerning the modes and types are introdued. Theseproperties will be used throughout Part III.5.1 Why Non-Standard Derivations?The paradigm of logi programming is based on giving a omputational interpretationto a ertain fragment of �rst order logi. Kowalski [Kow79℄ advoates the separation ofthe logi and ontrol aspets of a logi program and has oined the famous formulaAlgorithm = Logi + Control.The programmer should be responsible for the logi part, and hene a logi programshould be a (�rst order logi) spei�ation. The ontrol should be taken are of by thelogi programming system.In reality, logi programming is far from this ideal. Without the programmer beingaware of the ontrol and writing programs aordingly, logi programs would usually behopelessly ineÆient or even non-terminating.One aspet of ontrol in logi programs is the seletion rule. This is a rule statingwhih atom in a query is seleted in eah derivation step. The standard seletion rule isthe LD seletion rule: in eah derivation step, the leftmost atom in a query is seletedfor resolution. This seletion rule is based on the assumption that programs are writtenin suh a way that the data ow within a query or lause body is from left to right.Example 5.1 Consider the program in Figure 9 and the following derivation, wherethe seleted atom is underlined in eah query:1permute([1℄; As);permute([℄; Z0); delete(1; As; Z0);delete(1; As; [℄); 2:1In examples, we use ; to denote derivation steps.56

5.1. WHY NON-STANDARD DERIVATIONS? 57permute([℄,[℄).permute([U|X℄,Y) :-permute(X,Z),delete(U,Y,Z). delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 9: The permute programappend([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).Figure 10: The append programIn the seond line, Z0 is an output argument of permute([℄; Z0). The proess of resolvingthis atom instantiates Z0 to [℄, whih is used by the atom delete(1; As; Z0) as input.Hene the data ow is from left to right. /Observe that the notion of data ow is based on the idea that some argument positionsserve as input positions and others as output positions. In the above example, the �rstargument of permute is input and the seond is output.The LD seletion rule ensures for this example that atoms are only seleted whenthey have a ertain degree of instantiation. The following example shows that this isruial in order to ensure essential properties, in partiular termination.Example 5.2 Consider the usual append program given in Figure 10 and the followingderivation where the rightmost atom is always seleted:append([1℄; [℄; As); append(As; [℄; Bs);append([1℄; [℄; [X0jAs0℄); append(As0; [℄; Bs0);append([1℄; [℄; [X0; X00jAs00℄); append(As00; [℄; Bs00); : : :The derivation is in�nite although there are only �nitely many answers to the query. Forthis example, the natural data ow would be from left to right. In fat, all derivationsterminate if the LD seletion rule is assumed. /The LD seletion rule is so established in logi programming that we have to justifywhy we onsider other seletion rules. There are at least four purposes for whih otherseletion rules are useful: using prediates in multiple modes, parallel exeution [AL95℄,the test-and-generate paradigm [Nai92℄, and some programs using aumulators [EG99℄.For motivation, we give an example of the �rst purpose.Example 5.3 Consider again the permute program (Figure 9). In the following deriva-tion, the rightmost atom is seleted in eah step. The data ow is from right to left.

58 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMS
permute(As; [1℄);permute(X0; Z0); delete(U0; [1℄; Z0);permute(X0; [℄) ; 2:In this example, the seond argument of permute is input and the �rst is output. /To allow for permute to be used in both modes, we need a seletion rule whih ismore exible than just stating that the leftmost or rightmost atom should be seletedin eah step. Several logi programming languages provide delay delarations for thispurpose [HL94, SIC98, SHC96℄. Using delay delarations, the user an speify a degreeto whih an atom must be instantiated in order to be seleted.Note that while delay delarations give the programmer some ontrol, they do notspeify preisely whih atom is seleted in eah step, sine there ould be more thanone atom whih is suÆiently instantiated to be seleted.In the literature, the need for suÆient instantiation of the seleted atom and henethe purpose of delay delarations is usually explained as \ensuring termination" and\preventing runtime errors related to built-in prediates" [AL95, L�ut93, MT95, MK97,Nai92℄. Taking a more abstrat viewpoint, one an haraterise the minimal and mostimportant purpose of delay delarations as follows:Delay delarations should ensure that in eah derivation step, the inputarguments of the seleted atom annot beome instantiated.In other words, an atom in a query an only be seleted when it is suÆiently instan-tiated so that the most general uni�er (MGU) with the lause head does not bind theinput arguments of the atom. We all derivations whih meet this requirement input-onsuming.Input-onsuming derivations reet the natural meaning of \input". The oneptis useful beause it abstrats from the tehnial details of partiular delay onstruts.Wherever possible we formulate results in terms of input-onsuming derivations ratherthan in terms of delay delarations.Note that for the query in Example 5.2, all derivations are input-onsuming if the LDseletion rule is assumed. In this and the following hapter, we do not worry about howinput-onsuming derivations an be ahieved in existing implementations. In Chapter 7,we show how input-onsuming derivations an be ahieved using delay delarations.This hapter is organised as follows. The next setion de�nes some notation andterminology. Setion 5.3 introdues a formalism onsisting of a permutation for eahlause in a program, whih indiates the diretion of data ow in this lause. Setion 5.4introdues permutation niely moded programs. Setion 5.5 introdues permutation wellmoded programs. Setion 5.6 introdues permutation well typed programs. Setion 5.7de�nes a property alled type onsisteny.

5.2. NOTATION AND TERMINOLOGY 595.2 Notation and TerminologyWe use standard notations of logi programming [Apt97, Llo87℄. Our speial notationsrelated to modes and types follow Etalle et al. [EBC99℄ and Apt and Luitjes [AL95℄.For the examples we use Prolog syntax. We reall some important notions.The set of variables in a syntati objet o is denoted as vars(o). A syntati objetis linear if every variable ours in it at most one. A substitution is idempotent if�� = �. Throughout Part III, we only onsider idempotent substitutions. The domainof a substitution � is dom(�) = fx j x� 6= xg. The range of a substitution � isran(�) = fx� j x 2 dom(�)g.We say that a term u ours diretly in a vetor of terms t, or equivalently, u �llsa position in t, if u is one of the terms of t. (For example, a ours diretly in (a; b)but not in (f(a); b).) A at term is a variable or a term f(x1; : : : ; xn), where n � 0 andthe xi are distint variables.For a prediate p=n, a mode is an atom p(m1; : : : ;mn), where mi 2 fI ;Og fori 2 f1; : : : ; ng. Positions with I are alled input positions, and positions with O arealled output positions of p. To simplify the notation, an atom written as p(s; t)means: s is the vetor of terms �lling the input positions, and t is the vetor of terms�lling the output positions. An atom p(s; t) is input-linear if s is linear. A mode ofa program is a set of modes, one mode for eah of its prediates.2 A program an haveseveral modes, so whenever we refer to the input and output positions, this is alwayswith respet to one partiular mode whih is lear from the ontext.A type is a set of terms losed under instantiation. A non-variable type is atype that does not ontain variables. The variable type is the type that ontainsvariables and hene, as it is instantiation losed, all terms. A ground type is a typethat ontains only ground terms. A onstant type is a ground type that ontainsonly (possibly in�nitely many) onstants. In the examples, we use the following types:any is the variable type, all ground the type ontaining all ground terms, list the non-variable type of (nil-terminated) lists, int the onstant type of integers, il the groundtype of integer lists, num the onstant type of numbers, nl the ground type of numberlists, and �nally, tree is the non-variable type de�ned by the ontext-free grammarftree! leaf; tree! node(tree; any; tree)g. These types are also shown in Table 3.We write t : T for \t is in type T". We use S, T to denote vetors of types, andwrite j= s : S) t : T if for all substitutions �, s� : S implies t� : T. It is assumedthat eah argument position of eah prediate p=n has a type assoiated with it. Thesetypes are indiated by writing the atom p(T1; : : : ; Tn) where T1; : : : ; Tn are types. Thetype of a program P is a set of suh atoms, one for eah prediate de�ned in P . Anatom (query) is orretly typed if eah argument position is �lled with a term of thetype of that position. A term t is type-onsistent [DM98℄ with respet to T if thereis a substitution � suh that t� : T . A term t ourring in an atom in some position istype-onsistent if it is type-onsistent with respet to the type of that position.A query is a �nite sequene of atoms. Atoms are denoted by a, b, h, queries byB, F , H, Q, R. We write a 2 B if a is an atom in B. Sometimes we say \atom"2We disuss a more general notion of mode in Setion 10.3.

60 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSTable 3: Some ommon typesName Desription Propertyany variable type variableall ground all ground terms groundlist (nil-terminated) lists non-variableint integers groundil integer lists groundnum numbers groundnl number lists groundtree ftree! leaf; tree! node(tree; any; tree)g non-variableinstead of \query onsisting of an atom". If a1; : : : ; an is a query, then ai1 ; : : : ; aim ,where 1 � i1 < : : : < im � n, is a subquery of a1; : : : ; an.A derivation step for a program P is a pair hQ; �i; hR; ��i, where Q =Q1; p(s; t); Q2 and R = Q1; B;Q2 are queries; � is a substitution; p(v;u) B a re-named variant of a lause in P ; and � the MGU3 of p(s; t)� and p(v;u). We allp(s; t)� (or p(s; t))4 the seleted atom and R�� the resolvent of Q� and h B. Weall R�� an LD-resolvent if Q1 is empty. A derivation step is input-onsuming ifdom(�) \ vars(s�) = ;.A derivation � for a program P is a sequene hQ0; �0i; hQ1; �1i; : : : where eah pairhQi; �ii; hQi+1; �i+1i in � is a derivation step.5 Alternatively, we also say that � is aderivation of P [fQ0�0g. We sometimes denote a derivation as Q0�0;Q1�1; : : :. AnLD-derivation is a derivation where the seleted atom is always the leftmost atom in aquery. An input-onsuming derivation is a derivation onsisting of input-onsumingderivation steps.A seletion rule R is a set of derivations losed under pre�xes, that is, if � 2 R,then for any pre�x �0 of �, we have �0 2 R. If � 2 R, we say that � is an R-derivation.6If (F; a;H); (F;B;H)� is a step in a derivation, then eah atom in B� (or B)4 is adiret desendant of a, and for all b 2 F;H, we say b� (or b)4 is a diret desendantof b. We say b is a desendant of a if (b; a) is in the reexive, transitive losure ofthe relation is a diret desendant. The desendants of a set of atoms are de�ned in theobvious way. Consider a derivation Q0; : : : ;Qi; : : : ;Qj ;Qj+1; : : :. We all Qj ;Qj+1 ana-step if a 2 Qi and the seleted atom in Qj;Qj+1 is a desendant of a.3The MGU is not unique. It is however unique up to renaming [Llo87℄, whih is why we simply speakof the MGU. We assume that whenever possible, an MGU is hosen whih does not bind s.4Whether or not the substitution has been applied is always lear from the ontext.5This de�nition follows Lloyd [Llo87℄. Apt requires that the sequene is maximal [Apt97℄.6This de�nition is more general than the de�nitions by Lloyd [Llo87℄ and Apt [Apt97℄. See alsoSubsetion 11.1.13.

5.3. MODES AND PERMUTATIONS 615.3 Modes and PermutationsApt and Luitjes [AL95℄ onsider four orretness properties for programs: niely moded,well moded, well typed, and simply moded. Niely-modedness is used to show that theour-hek an be safely omitted. Well-modedness and well-typedness are used to showthat derivations do not ounder. Finally, simply-modedness is a speial ase of niely-modedness and is used to show that a program is free from errors related to built-ins.Other authors have also used these or similar orretness properties, for example to showthat programs are uni�ation free [AE93℄, suessful [BC99℄, and terminating [EBC99℄.In Example 1.5, we have given a avour of these orretness properties.In this part of the thesis, we make extensive use of these orretness properties andalso de�ne two new ones. In Setion 7.5, we will give an overview summarising therelationships between them.In order to be useful for veri�ation of programs assuming non-standard derivations,these properties must be generalised. We now disuss the basis of this generalisation.5.3.1 The Order of the Atoms in a QueryIn a query (lause body) one an onsider three di�erent orderings among the atoms.First, there is the textual order. This does not need any explanation.Seondly, there is the produer-onsumer relation [KKS91℄ between atoms. A pair ofatoms (a; b) is in the produer-onsumer relation if a has a variable in an output positionwhih b has in an input position. The orretness properties we de�ne will ensure thatthe transitive losure of this relation is anti-symmetri. We shall refer to any order <suh that (a; b) is in the produer-onsumer relation only if a < b as produer-onsumerorder. Note that we neglet the fat that this order is not neessarily unique, sine anyproduer-onsumer order will do for our purposes.Thirdly, there is the exeution order, whih depends on the seletion rule.In the ase of LD-derivations, all of these orders are usually idential. The de�nitionsof the above orretness properties as they are used in most works [AE93, BC99, EBC99℄are based on this assumption. Otherwise, these orders may di�er.Example 5.4 Consider append(I ; I ;O) (Figure 10 on page 57) and the following der-ivation, where we annotate the atoms with supersripts so that we an refer to them:append(As; [℄; Bs)1:1; append([1℄; [℄; As)2:1 ;append([1jAs0℄; [℄; Bs)1:1; append([℄; [℄; As0)2:2 ;append(As0; [℄; Bs0)1:2; append([℄; [℄; As0)2:2 ;append([℄; [℄; Bs0)1:2 ; 2:In eah query, the produer-onsumer order is the onverse of the textual order. Con-erning the exeution order, note that atom 2:1 is seleted for resolution before atom1:1, but then atom 1:1 is seleted, even before atom 2:1 is resolved away ompletely,that is, before all desendants of atom 2:1 are resolved. We say that the omputationsfor the two atoms interleave or oroutine. /

62 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSTo formalise the produer-onsumer order, we assoiate, with eah query and eah lausein a program, a permutation � of the (body) atoms, whih gives the produer-onsumerorder. That is, if (ai; aj) is in the produer-onsumer relation, then �(i) < �(j). Thispermutation depends on the mode. For di�erent modes, the permutations are di�erent.This formalism has been proposed previously by Boye [Boy96℄. Hoarau and Mesnardhave developed a similar formalism for the purpose of reordering atoms in lause bodiesautomatially to ensure termination [HM99℄.5.3.2 Are those Permutations Really Neessary?The previous subsetion raises two questions:1. Could the textual order not be idential to the produer-onsumer order?2. Could we not pretend that the textual order is idential to the produer-onsumerorder, to simplify the notation?Judging from the literature [AL95, Nai92℄ but also from personal ommuniation webelieve that it is not widely reognised that these question must be distinguished.To answer the �rst question, ompare the derivations for permute in Examples 5.1and 5.3. Here we have a single program whih an be used in two distint modes.Depending on the mode, the produer-onsumer order in eah query (lause body) isdi�erent, whereas the textual order is always the same. Therefore, it is impossiblethat the textual order is always idential to the produer-onsumer order. It has beenproposed to solve this problem by generating a speialised version of a program for eahmode, suh that for eah version, the textual order is always idential to the produer-onsumer order [SHC96℄. However, doing so implies a strit loss of generality, in thesense that we are not onsidering one single program running in several modes.Although other authors [AL95, Nai92℄, in the ontext of delay delarations, have notexpliitly assumed multiple modes, they mainly give examples where delay delarationsare learly used for that purpose (see page 133). Whether allowing multiple modes is agood approah or whether it is better to generate multiple versions of eah prediate isan ongoing disussion [Hil98℄.Even without assuming multiple modes, the textual order annot always be identialto the produer-onsumer order. For example, programs that use the test-and-generateparadigm rely on the atom whih tests (\onsumes") ourring to the left of the atomwhih generates (\produes"). We will see suh a program in Figure 22 on page 106.So the answer to the �rst question is: no, the textual order annot always be identialto the produer-onsumer order.The answer to the seond question is less learut. It depends on what kind ofseletion rule we onsider.Some authors have studied derivations where the textual order is irrelevant for theseletion of an atom and hene for the exeution order [AL95, L�ut93, MT95℄. Therefore,one may assume for the sake of notational onveniene that in fat the textual order isidential to the produer-onsumer order. Although not expliitly stated, the de�nitionsof the above orretness properties as they are used by Apt and Luitjes [AL95℄ are based

5.3. MODES AND PERMUTATIONS 63on this assumption. More preisely, any result stated there an be generalised triviallyto programs where the atoms in the lause bodies are permuted in an arbitrary way.The same holds for many of the results presented in this thesis, and we will thereforealso sometimes adopt this simplifying assumption, in partiular in Chapter 6. Also inthis hapter, we onsider results for whih the textual order of atoms is irrelevant.Nevertheless, we maintain the permutations to make the results easily appliable inother parts of the thesis.Whenever we onsider derivations where the textual order of atoms is irrelevant, wedo not have to treat multiple modes expliitly. We an pretend that there is a renamedversion of eah prediate for eah mode, suh that in all lauses, the textual order isidential to the produer-onsumer order. This is not a loss of generality, but merelya notational onveniene. In the atual ode, there is still only one version of eahprediate.Of ourse, when we onsider input-onsuming derivations, the seletion rule must\know" what mode is assumed in a partiular exeution of the program, sine otherwiseit would not be de�ned what an input-onsuming derivation is. This an be realisedwith delay delarations, as we will see in Chapter 7.In Chapter 8, we will study left-based derivations, for whih the textual order isrelevant for the exeution order. For left-based derivations, the textual order has to betaken into aount as it is. It is not orret to make a simplifying assumption about it.5.3.3 Uniqueness of Derived PermutationsAs explained in Subsetion 5.3.1, we assoiate, with eah query and eah lause ina program, a permutation of the (body) atoms, whih gives the produer-onsumerorder. We will later de�ne orretness properties whih are parametrised by thesepermutations. However, some statements only depend on the permutations themselvesand not on the orretness property onsidered. To avoid repeating virtually identialstatements, we formulate these statements here in a general way.In this subsetion, we assume a program P where a permutation is assoiated witheah lause, and an initial query Q that also has a permutation assoiated with it. Weall Q or a lause in P �-ordered if the permutation assoiated with it is �. Later,�-ordered will be replaed with �-niely moded, �-well typed et. The � is omittedwhenever � is the identity.Let � be a permutation on f1; : : : ; ng. For notational onveniene we extend thedomain of � by de�ning �(i) = i whenever i =2 f1; : : : ; ng. In examples, � is written ash�(1); : : : ; �(n)i. Also, we write �(o1; : : : ; on) for the sequene obtained by applying �to the sequene o1; : : : ; on, that is o��1(1); : : : ; o��1(n). For example, if Q = a1; a2; a3; a4is a query and � = h4; 3; 1; 2i, then �(Q) = a3; a4; a2; a1. Note that if n � 1, then apermutation on f1; : : : ; ng is neessarily the identity.We now de�ne the permutation assoiated with any query ourring in a derivationof P [fQg. This is de�ned indutively. Given a �-ordered query and a �-ordered lause,the permutation assoiated with the resolvent is derived from � and � in a natural way.De�nition 5.1 [derived permutation℄ Let Q0 = a1; : : : ; an be a �-ordered query andC = h b1; : : : ; bm be a �-ordered lause. Suppose for some k 2 f1; : : : ; ng, h and

64 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSa1 a2 a3 a4a3 a4 a2 a1PPPPPPPP��������� ������ b1 b2b2 b1 a1 b1 b2 a3 a4resolve- a3 a4 b2 b1 a1XXXXXXXXXXX�������� ��������Figure 11: The derived permutation Der(�; �; k)ak are uni�able. Then we say that the resolvent of Q0 and C with seleted atom ak is%-ordered, where % is a permutation on f1; : : : ; n+m� 1g de�ned by%(i) = 8>>>>>><>>>>>>: �(i) if i < k; �(i) < �(k)�(i) +m� 1 if i < k; �(i) > �(k)�(k) + �(i� k + 1)� 1 if k � i < k +m�(i�m+ 1) if k +m � i < n+m; �(i�m+ 1) < �(k)�(i�m+ 1) +m� 1 if k +m � i < n+m; �(i�m+ 1) > �(k):We all % the derived permutation and write Der(�; �; k) = %. /Figure 11 illustrates the derived permutation when n = 4 , � = h4; 3; 1; 2i , m = 2 ,� = h2; 1i , and k = 2. By De�nition 5.1, we have Der(�; �; k) = h5; 4; 3; 1; 2i, sineDer(�; �; k)(1) = �(1) + 2� 1 = 5 (2nd line)Der(�; �; k)(2) = �(2) + �(2� 2 + 1)� 1 = 4 (3rd line)Der(�; �; k)(3) = �(2) + �(3� 2 + 1)� 1 = 3 (3rd line)Der(�; �; k)(4) = �(4� 2 + 1) = 1 (4th line)Der(�; �; k)(5) = �(5� 2 + 1) = 2 (4th line).Observe also that in the trivial ase that � and � are the identity, Der(�; �; k) is alsothe identity, for all k 2 f1; : : : ; ng.Throughout Part III, we will frequently onsider a derivation Q1; : : : ;Qn suh thatQ1 is �1-ordered and Qn is �n-ordered, where \ordered" is replaed with \niely moded",\well typed", et. Whenever we do this, we imply that �n is uniquely determined. Morepreisely, we imply that there are indies k1; : : : ; kn and permutations �1; : : : ; �n and�1; : : : ; �n�1 suh that for eah i 2 f1; : : : ; n� 1g� Qi is �i-ordered,� the kith atom in Qi is seleted in the step Qi;Qi+1,� the lause used in the step Qi;Qi+1 is �i-ordered,� �i+1 = Der(�i; �i; ki).This is important to stress beause the uniqueness of the permutation �n will notneessarily follow from the de�nitions of the orretness properties. However, as statedin Subsetion 5.3.1, it is no loss of generality to assume that the produer-onsumerorder is unique.

5.4. PERMUTATION NICELY MODED PROGRAMS 65At eah step of a derivation, the relative order of atoms given by the derived per-mutation is preserved. The following lemma formalises this.Lemma 5.1 Let Q; : : : ;R be a derivation for P , where Q = a1; : : : ; an is �-ordered andR = b1; : : : ; bm is �-ordered.a. Let i; j 2 f1; : : : ; ng suh that �(i) < �(j). Then for all k; l 2 f1; : : : ;mg suhthat bk is a desendant of ai and bl is a desendant of aj, we have �(k) < �(l).b. Let k; l 2 f1; : : : ;mg suh that �(k) < �(l), and let i; j 2 f1; : : : ; ng suh that bkis a desendant of ai and bl is a desendant of aj (note that i and j exist and areunique). Then �(i) � �(j).Proof. Inspetion of the derived permutation in De�nition 5.1 shows that the re-sult holds for derivations of length 1. The general result follows by a straightforwardindution on the length. 2In the trivial ase that all permutations are the identity, the above lemma merely statesthat resolution preserves the textual order of atoms in a query.5.4 Permutation Niely Moded ProgramsApt and Luitjes de�ne niely moded queries [AL95℄. In a niely moded query, a variableourring in an input position does not our later in an output position, and eahvariable in an output position ours only one. We generalise this to permutationniely moded.De�nition 5.2 [permutation niely moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-niely moded if t1; : : : ; tn is alinear vetor of terms and for all i 2 f1; : : : ; ngvars(si) \ [�(i)��(j)�n vars(tj) = ;:The query �(Q) is a niely moded query orresponding to Q.The lause C = p(t0; sn+1) Q is �-niely moded if Q is �-niely moded andvars(t0) \ n[j=1 vars(tj) = ;:The lause p(t0; sn+1) �(Q) is a niely moded lause orresponding to C.A query (lause) is permutation niely moded if it is �-niely moded for some�. A program P is permutation niely moded if all of its lauses are. A nielymoded program orresponding to P is a program obtained from P by replaingeah lause C in P with a niely moded lause orresponding to C. /

66 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSNote that in the lause head, the letter t is used for input and s is used for output,whereas in the body atoms it is vie versa. This onvention is used throughout beauseit allows for a suint notation, in partiular in De�nitions 5.4, 5.5 and 7.4.Note also that a one-atom query p(s; t) is (permutation) niely moded if and onlyif vars(s) \ vars(t) = ; and t is linear.For many results it is neessary to require that eah lause head is input-linear.De�nition 5.3 [input-linear lause/program℄ A lause C = p(t; s) Q is input-linear if t is input-linear. A program is input-linear if all of its lauses are input-linearand it ontains no uses of =(I ; I). /Note that in the above de�nition, uses of the built-in equality prediate are takeninto aount. Coneptually, the equality prediate is de�ned as \X = X.". Therefore,an input-linear program must not use the equality prediate in mode =(I ; I), sinethe lause \X = X." is not input-linear for this mode. This is disussed further inSetion 10.2.Example 5.5 Consider the permute program (Figure 9 on page 57). For the modefpermute(I ;O); delete(I ;O ; I)g, this program is niely moded and input-linear.In mode fpermute(O ; I); delete(O ; I ;O)g, it is permutation niely moded andinput-linear. The seond lause for permute is h2; 1i-niely moded, and the other lausesare niely moded.In \test mode", that is, fpermute(I ; I); delete(I ; I ;O)g, it is permutation nielymoded, but not input-linear, beause the �rst lause for delete is not input-linear.The seond lause for permute is h2; 1i-niely moded, and the other lauses are nielymoded. /The problem of �nding a mode for a program so that it is niely moded has beenonsidered by Chadha and Plaisted [CP91℄.We quote the following persistene property for niely-modedness.Lemma 5.2 [AL95, Lemma 11℄ Let Q be a niely moded query and C be a nielymoded, input-linear lause where vars(Q) \ vars(C) = ;. Then every resolvent of Qand C is niely moded.We generalise this result to permutation niely-modedness.Lemma 5.3 Let Q = a1; : : : ; an be a �-niely moded query and C = h b1; : : : ; bm bea �-niely moded, input-linear lause where vars(Q) \ vars(C) = ;. Suppose for somek 2 f1; : : : ; ng, h and ak are uni�able. Then the resolvent of Q and C with seletedatom ak is Der(�; �; k)-niely moded.Proof. Let � be the MGU of h and ak. By De�nition 5.2, a��1(1); : : : ; a��1(n) isniely moded and h b��1(1); : : : ; b��1(m) is niely moded and input-linear. Thus byLemma 5.2,(a��1(1); : : : ; a��1(�(k)�1); b��1(1); : : : ; b��1(m); a��1(�(k)+1); : : : ; a��1(n)) �

5.4. PERMUTATION NICELY MODED PROGRAMS 67is niely moded, and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an) � is Der(�; �; k)-nielymoded. 2The requirement that the lause must be input-linear an be dropped if the derivationstep is input-onsuming. It is assumed that the seleted atom is suÆiently instantiated,so that a multiple ourrene of the same variable in the input arguments of the lausehead annot ause any bindings to the query.Lemma 5.4 Let Q = a1; : : : ; an be a �-niely moded query and C = p(v;u) b1; : : : ; bm be a �-niely moded lause where vars(Q) \ vars(C) = ;. Suppose forsome k 2 f1; : : : ; ng, p(v;u) and ak = p(s; t) are uni�able with MGU �, and dom(�) \vars(s) = ;. Then the resolvent of Q and C with seleted atom ak is Der(�; �; k)-nielymoded.Proof. Let C 0 = p(v0;u) b1; : : : ; bm be an input-linear lause suh that1. vars(v) � vars(v0) and vars(v0) \ vars(Q) = ;,2. there exists a substitution � suh that C 0� = C and dom(�) = vars(v0)nvars(v).Intuitively, v0 is obtained from v by renaming, for eah variable ourring several times,all but one ourrenes apart using fresh variables.Sine dom(�) \ vars(s) = ;, it follows that � = �1�2, where �1 is an MGU of v and s,and v�1 = s, and �2 is an MGU of u�1 and t�1.By (2) and sine v�1 = s, we have v0��1 = s. Moreover by (1), (2) and sine dom(�1) �vars(v), we have dom(��1) � vars(v0), and hene ��1 is an MGU of v0 and s.By (2), u� = u and t� = t. Therefore �2 is an MGU of u��1 and t��1.So we have that ��1 is an MGU of v0 and s, and �2 is an MGU of u��1 and t��1.Therefore ��1�2 = �� is an MGU of p(v0;u) and p(s; t) [Apt97, Lemma 2.24℄. Heneby Lemma 5.3 and sine C 0 is input-linear, (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)�� isa Der(�; �; k)-niely moded resolvent of C 0 and Q. However, by (1) and (2),(a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)��;and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is Der(�; �; k)-niely moded. 2For a permutation niely moded program and query, it is guaranteed that every input-onsuming derivation step only instantiates other atoms in the query that our \later"than the seleted atom, aording to the produer-onsumer order.Lemma 5.5 Make the same assumptions as in Lemma 5.4. Then for all i with �(i) <�(k), dom(�) \ vars(ai) = ;.Proof. Let ak = p(s; t). Sine the derivation step is input-onsuming, dom(�) \vars(Q) � vars(t). Thus sine Q is �-niely moded, dom(�) \ vars(ai) = ; for all iwith �(i) < �(k). 2

68 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSThe above lemma will be used in Chapter 6, where the permutation � is always theidentity. For better readability, we restate the lemma for this ase.Lemma 5.6 Let Q = Q1; a;Q2 be a niely moded query and C = h B a nielymoded lause where vars(Q) \ vars(C) = ;. Let hQ; ;i; hQ1;B;Q2; �i be an input-onsuming derivation step using C. Then dom(�) \ vars(Q1) = ;.5.5 Permutation Well Moded ProgramsWell-modedness has been introdued by Dembinski and Ma luszy�nski [DM85℄ and widelyused for veri�ation sine [AL95, AP94b, EBC99℄. When we assume LD-derivations,well-modedness ensures that the input arguments of an atom are ground when the atomis seleted. In the programming language Merury it is even mandatory that programsare well moded8, whih is one of the reasons for its remarkable performane [SHC96℄.De�nition 5.4 [permutation well moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a queryand � a permutation on f1; : : : ; ng. Then Q is �-well moded if for all i 2 f1; : : : ; ngand L = 1 vars(si) � [L��(j)<�(i) vars(tj) (1)The lause p(t0; sn+1) Q is �-well moded if (1) holds for all i 2 f1; : : : ; n+ 1g andL = 0.A permutation well moded query (lause, program) and a well moded query(lause, program) orresponding to a query (lause, program) are de�ned in analogyto De�nition 5.2. /Note that a one-atom query p(s; t) is (permutation) well moded if and only if s is ground.Example 5.6 Consider the permute program (Figure 9 on page 57) It is well modedfor mode fpermute(I ;O), delete(I ;O ; I)g, and permutation well moded for modefpermute(O ; I); delete(O ; I ;O)g, with the same permutations as Example 5.5. /We quote a persistene result for well-modedness whih has been shown previously forLD-resolvents [AP94b℄ and arbitrary resolvents [AL95℄.Lemma 5.7 [AL95, Lemma 16℄ Let Q be a well moded query and C be a well modedlause where vars(Q) \ vars(C) = ;. Then every resolvent of Q and C is well moded.We generalise this result to permutation well-modedness.Lemma 5.8 Let Q = a1; : : : ; an be a �-well moded query and C = h b1; : : : ; bm be a�-well moded lause where vars(Q) \ vars(C) = ;. Suppose for some k 2 f1; : : : ; ng, hand ak are uni�able. Then the resolvent ofQ andC with seleted atom ak isDer(�; �; k)-well moded.Proof. Analogous to Lemma 5.3, but using Lemma 5.7 instead of Lemma 5.2. 28To be preise: an be made well moded by reordering of atoms.

5.6. PERMUTATION WELL TYPED PROGRAMS 695.6 Permutation Well Typed ProgramsThe disadvantage of (permutation) well-modedness is that it is not possible to rea-son about programs that operate on non-ground data strutures. For example, thequery append([A; B℄; [C℄; Zs) is not (permutation) well moded for mode append(I ; I ;O)sine the input is not ground. Therefore well-modedness has been generalised to well-typedness [AL95, AP94b, BLR92℄.In a well typed query, the �rst atom is orretly typed in its input positions. Further-more, given a well typed query Q; a;Q0 and assuming LD-derivations, if Q is resolvedaway, then a beomes orretly typed in its input positions. We generalise this to per-mutation well typed. As with the modes, we assume that the types of all argumentpositions are given. In the examples, they will be the obvious ones.De�nition 5.5 [permutation well typed℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a query,where pi(Si;Ti) is the type of pi for eah i 2 f1; : : : ; ng. Let � be a permutation onf1; : : : ; ng. Then Q is �-well typed if for all i 2 f1; : : : ; ng and L = 1j= (^L��(j)<�(i) tj : Tj)) si : Si: (2)The lause p(t0; sn+1) Q, where p(T0;Sn+1) is the type of p, is �-well typed if (2)holds for all i 2 f1; : : : ; n+ 1g and L = 0.A permutation well typed query (lause, program) and a well typed query(lause, program) orresponding to a query (lause, program) are de�ned in analogyto De�nition 5.2. /Note that a one-atom query p(s; t) is (permutation) well typed if and only if s is orretlytyped.Example 5.7 Consider the permute program (Figure 9 on page 57) where the type isfpermute(list; list), delete(any; list; list)g. It is well typed for mode fpermute(I ;O),delete(I ;O ; I)g, and permutation well typed for fpermute(O ; I); delete(O ; I ;O)g,with the same permutations as Example 5.5. The same holds when we assume typefpermute(nl; nl), delete(num;nl; nl)g. /As before, we quote a persistene property for well-typedness.Lemma 5.9 [AL95, Lemma 23℄ Let Q be a well typed query and C be a well typedlause where vars(Q) \ vars(C) = ;. Then every resolvent of Q and C is well typed.We now generalise this result to permutation well-typedness.Lemma 5.10 Let Q = a1; : : : ; an be a �-well typed query and C = h b1; : : : ; bm bea �-well typed lause where vars(Q)\ vars(C) = ;. Suppose for some k 2 f1; : : : ; ng, hand ak are uni�able. Then the resolvent ofQ and C with seleted atom ak isDer(�; �; k)-well typed.Proof. Analogous to Lemma 5.3, but using Lemma 5.9 instead of Lemma 5.2. 2

70 CHAPTER 5. CORRECTNESS PROPERTIES OF PROGRAMSThe following two statements are needed for the proof of Theorem 8.5. The �rst saysthat for a �-well typed queryQ, every pre�x of �(Q) is well typed. It follows immediatelyfrom De�nition 5.5.Proposition 5.11 Let Q = a1; : : : ; an be a �-well typed query. For all i 2 f1; : : : ; ng,the subquery of Q ontaining all aj suh that �(j) � �(i) is permutation well typed.The seond statement says that if all atoms in �(Q) before an atom a are resolved away,then a beomes orretly typed in its input positions.Lemma 5.12 Let P be a permutation well typed program and Q = a1; : : : ; an a �-welltyped query. For all j 2 f1; : : : ; ng, if Q; : : : ; (F; aj ;H)� is a derivation of P [fQg andfor all i with �(i) < �(j), (F; aj ;H)� ontains no desendants of ai, then aj� is orretlytyped in its input positions.Proof. Suppose (F; aj ;H)� onsists of m atoms and is �-well typed, and aj isthe lth atom in F; aj ;H. We show that �(l) = 1. Thus assume, for the purpose ofderiving a ontradition, that there is a k 2 f1; : : : ;mg suh that �(k) < �(l). Then byLemma 5.1 (b), the kth atom in (F; aj ;H)� is either a desendant of aj , or a desendantof some atom ai suh that �(i) < �(j). The �rst ase is impossible sine aj has not yetbeen resolved in (F; aj ;H)� and thus the only desendant of aj is aj�. The seond aseis impossible by the assumption that for all i with �(i) < �(j), (F; aj ;H)� ontains nodesendants of ai.Thus there is no k 2 f1; : : : ;mg suh that �(k) < �(l), and so �(l) = 1. Therefore itfollows by De�nition 5.5 that aj� is orretly typed in its input positions. 2It follows from the de�nitions that permutation well-typedness is a generalisation ofpermutation well-modedness. In the following proposition, reall that all ground is thetype ontaining all ground terms.Proposition 5.13 Every permutation well moded program is permutation well typed,assuming all argument positions are of type all ground.Every permutation well typed program, where all argument positions have a groundtype, is permutation well moded.In Chapter 6, our formal results assume (permutation) well typed programs. These re-sults are automatially appliable to all (permutation) well moded programs, sine theseare (permutation) well typed, assuming all argument positions are of type all ground.5.7 Type-Consistent ProgramsPermutation well-typedness is losely linked to the modes of a program: the type or-retness of ertain output positions implies type orretness of ertain input positions.This notion is quite di�erent from the onept of well typed programs as it is used intyped logi programming languages suh as Merury [SHC96℄ or G�odel [HL94℄, and alsoin other ontexts, as we have disussed in Setion 2.2.

5.7. TYPE-CONSISTENT PROGRAMS 71In typed logi programming languages, every argument position in a program hasa type. The type-heking of the program allows to guarantee at ompile time that noinorretly typed term an ever our in an argument position during a derivation forthe program. This has been turned into the following slogan [Mil78, MO84℄:Well-typed programs annot go wrong.This is learly a desirable property, sine the ourrene of an inorretly typed term inan argument position nearly always reveals a programming error [HL94, page 5℄. Theproperty is also desirable for veri�ation purposes, as we will see in the next hapter.Unfortunately, our notion of permutation well typed programs does not allow for suha guarantee.Example 5.8 Consider append(I ; I ;O) (Figure 10 on page 57). The queryappend([℄; [℄; foo); append(foo; [℄; Zs)is well typed sine trivially j= foo : list) foo : list. That is, sine the output ofthe �rst atom is wrongly typed, we an say that orretly typed output of the �rstimplies orretly typed input for the seond atom. We will onsider this problem againin Subsetion 9.4.1. Boye has given a similar example and has argued that suh queries(or programs) are pathologial [Boy96℄. /The question therefore is: given a permutation well typed program and a seletion ruleR, do all R-derivations for a permutation well typed query onsist of queries that anbe instantiated so that all arguments are orretly typed? We strongly suspet that thisquestion is undeidable. Nevertheless, we will de�ne lasses of programs for whih thisquestion an be answered positively. We now give suh programs a name.De�nition 5.6 [type-onsistent℄ Let P be permutation well typed program and R aseletion rule.A query is type-onsistent if it is permutation well typed and has a orretly typedinstane. The program P is type-onsistent with respet to R if for all all type-onsistent queries Q, all R-derivations of P [fQg onsist of type-onsistent queries./In a slight abuse of terminology, we shall often say that a program is type-onsistentwith respet to LD-derivations, input-onsuming derivations et.Obviously every query has a ground instane. This implies that for permutationwell moded programs, we an immediately state the following proposition.Proposition 5.14 Let P be a permutation well moded program, or equivalently (byProposition 5.13), a permutation well typed program, where the type of all positions isall ground. Then P is type-onsistent with respet to any seletion rule.

Chapter 6Termination of Input-ConsumingDerivationsIn this hapter, we identify a lass of programs for whih all input-onsuming deriva-tions terminate. To this end, we will make use of the orretness properties de�ned inChapter 5.6.1 Termination and the Seletion RuleTermination of logi programs has been widely studied for LD-derivations [Apt97, AP90,DD94, DVB92, DD93, DD98, EBC99, LS97℄. All of these works are based on thefollowing idea: at the time when an atom a in a query is seleted, it is possible to pindown the size of a. The tehnial meaning of \pinning down the size" di�ers amongdi�erent methods (see Subsetion 11.1.1). What is important here is that this sizeannot hange via further instantiation. It is then shown that for the atoms introduedin this derivation step, it is again possible to pin down their size when eventually theyare seleted, and that these atoms are smaller than a.This idea has also been applied to arbitrary derivations [Bez93℄. Programs whihterminate for arbitrary derivations are alled strongly terminating. Sine no restritionis imposed as to when an atom an be seleted, it is required that for eah query ina derivation, the size of eah of its atoms is always bounded. The lass of stronglyterminating programs is very small: it ontains hardly any \real" non-trivial programs.For most programs, to ensure termination, it is neessary to require a ertain degreeof instantiation of an atom before it an be seleted. This an be ahieved using delaydelarations [AL95, L�ut93, MT95, MK97, Nai92, SHK99b, SHK98℄. The problem isthat, depending on what kinds of delay delarations and seletion rules are used, it maynot be possible to pin down the size of the seleted atom, sine this size may dependon the resolution of other atoms in the query that are not yet resolved. Nevertheless,the approahes by Marhiori and Teusink [MT95℄ and Martin and King [MK97℄, andto a limited extent L�uttringhaus-Kappel [L�ut93℄ are based on the idea desribed above.Others avoid any expliit mention of \size" and instead try to redue the problem toshowing termination for LD-derivations [Nai92℄.The approah taken in this hapter falls between the two extremes of making no72

6.1. TERMINATION AND THE SELECTION RULE 73assumptions about the seletion rule on the one hand and making very spei� assump-tions on the other. We identify prediates for whih all input-onsuming derivationsare �nite. Other works in this area have usually made spei� assumptions about theseletion rule and the delay delarations, for example loal seletion rules [MT95℄, delaydelarations that test arguments for groundness or rigidness [L�ut93, MK97℄, or the de-fault left-to-right seletion rule of most Prolog implementations [Nai92℄. In ontrast, weshow how previous results about LD-derivations an be generalised, the only assumptionabout the seletion rule being that derivations are input-onsuming.We exploit the fat that under ertain onditions, it is enough to rely on a relativederease in the size of the seleted atom, even though this size annot be pinned down.Example 6.1 Consider append(I ; I ;O) (Figure 10 on page 57) and the following input-onsuming derivation. Note that the derivation is the same as in Example 5.4 exeptfor the textual order of the atoms.append([1℄; [℄; As); append(As; [℄; Bs);append([℄; [℄; As0); append([1jAs0℄; [℄; Bs);append([℄; [℄; As0); append(As0; [℄; Bs0);append([℄; [℄; Bs0); 2:When append([1jAs0℄; [℄; Bs) is seleted, it is not possible to pin down its size in anymeaningful way. In fat, nothing an be said about the length of the (input-onsuming)derivation assoiated with append([1jAs0℄; [℄; Bs) without knowing about other atomsthat might instantiate As0. However, the derivation ould be in�nite only if the deriva-tion assoiated with append([℄; [℄; As0) was in�nite. Our method is based on suh adependeny between the atoms of a query. /The lass of programs for whih all input-onsuming derivations are �nite is obviouslylarger than the lass of strongly terminating programs. Nevertheless, the lass is stillquite limited. We now give an example of a program whih is not in the lass.Example 6.2 For the permute program (Figure 9 on page 57) in mode fpermute(O ; I);delete(O ; I ;O)g, we have the following in�nite input-onsuming derivation:permute(W; [1℄);permute(X0; Z0); delete(U0; [1℄; Z0);permute(X0; [1jZ00℄); delete(U0; [℄; Z00);permute(X00; Z000); delete(U00; [1jZ00℄; Z000); delete(U0; [℄; Z00);permute(X00; [1jZ0000℄); delete(U00; Z00; Z0000); delete(U0; [℄; Z00); : : : /To ensure termination even for programs like the one above, most authors have madestronger assumptions about the seletion rule, thereby negleting the important lassfor whih assuming input-onsuming derivations is suÆient. We will show in Chapter 8that if we an identify prediates in this lass, then this information an be embeddedinto a more omprehensive method for showing termination. We have attempted toformulate our results as generally as possible to make them widely appliable.

74 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSIn this hapter, we onsider derivations where the textual position of an atom withina query is irrelevant for its seletion. As we have explained on page 63, we an thereforeassume without loss of generality that the textual order of atoms within a query is iden-tial to the produer-onsumer order. That is, whenever we use one of the orretnessproperties introdued in Chapter 5, we an assume that the permutation is the identityand that eah prediate has a �xed mode. This simpli�es the notation.This hapter is organised as follows. Setion 6.2 explains why the order of lausesin a program is irrelevant for the termination problem we onsider. Setion 6.3 showsthat for well typed and niely moded programs, it is suÆient to prove terminationfor one-atom queries. Setion 6.4 then shows how one-atom queries an be proven toterminate. In Setion 6.5 we sketh how the method presented here ould be applied.Setion 6.6 disusses the results and some related work.6.2 Existential vs. Universal TerminationApart from the seletion of an atom in eah derivation step, there is also another aspetof ontrol in logi programs: the hoie of the lause used to resolve the atom. Di�erenthoies result in di�erent derivations, some of whih ould be in�nite. In most logiprogramming systems, the lauses are tried in order of textual ourrene. It is possiblefor a system �rst to ompute one �nite derivation but then on baktraking omputean in�nite one, and hene not terminate. This situation is referred to as existentialtermination [DD94℄, sine (at least) one �nite derivation is omputed. Whether or nota program existentially terminates for a query may depend on the textual order oflauses in the program.As disussed by De Shreye and Deorte [DD94℄, most approahes to the terminationproblem are interested in universal termination, that is, �niteness of all derivations. Thisis also true for this thesis, and therefore, for the termination problems we onsider, thelause order in a program is irrelevant. De Shreye and Deorte also remark that provingexistential termination is a very hard problem, but nevertheless, it has been addressedby a few authors [Bau92, CT77, FGKP85, Mar96℄.6.3 Controlled CoroutiningIn this setion we de�ne atom-terminating prediates. A prediate p is atom-terminat-ing if (under ertain onditions) all input-onsuming derivations of a query p(s; t) are�nite. Like Etalle et al. [EBC99℄, we then show that termination for one-atom queriesimplies termination for arbitrary queries.For LD-derivations, it is almost obvious that it is suÆient to show termination forone-atom queries, and it only requires that programs and queries are well moded, butnot niely moded [EBC99, Lemma 4.2℄. Given an LD-derivation � for a query a1; : : : ; an,the sub-derivations for eah ai do not interleave, and therefore � an be regarded as aderivation for a1 followed by a derivation for a2 and so forth. The following exampleillustrates that in the ontext of interleaving sub-derivations (oroutining), this is notat all obvious.

6.3. CONTROLLED COROUTINING 75Example 6.3 Consider append(I ; I ;O) (Figure 10 on page 57) and the queryappend([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As):This query is well moded but not niely moded. Then we have the following in�niteinput-onsuming derivation:append([℄; [℄; As); append([1jAs℄; [℄; Bs); append(Bs; [℄; As);append([℄; [℄; As); append(As; [℄; Bs0); append([1jBs0℄; [℄; As) ;append([℄; [℄; [1jAs0℄); append([1jAs0℄; [℄; Bs0); append(Bs0; [℄; As0); : : :This well-known termination problem of programs with oroutining has been identi�edas irular modes [Nai92℄. /To avoid the problem, we require programs and queries to be niely moded. We do notrequire programs to be well moded. However, we require them to be well typed andtype-onsistent with respet to input-onsuming derivations. By Proposition 5.14, wellmoded programs are one lass of programs meeting this requirement.Reall that a one-atom query p(s; t) is well typed and niely moded if and only if sis orretly typed, vars(s) \ vars(t) = ; and t is linear.De�nition 6.1 [atom-terminating prediate/atom℄ Let P be a well typed and nielymoded program whih is type-onsistent with respet to input-onsuming derivations.A prediate p in P is atom-terminating if for eah well typed, type-onsistent andniely moded query p(s; t), all input-onsuming derivations of P [fp(s; t)g are �nite.An atom is atom-terminating if its prediate is atom-terminating. /We need the following simple auxiliary lemma to prove Lemma 6.2.Lemma 6.1 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a well typed, type-onsistent andniely moded query. Then there exists a substitution � suh that dom(�) =vars(t1; : : : ; tn�1), and pn(sn; tn)� is well typed, type-onsistent and niely moded.Proof. SineQ is type-onsistent and types are losed under instantiation, there existsa (minimal) substitution � suh that dom(�) = vars(t1; : : : ; tn�1) and (t1; : : : ; tn�1)�is ground and orretly typed. Note that vars(ran(�)) = ;.By De�nition 5.5, pn(sn; tn)� is well typed. Sine Q is niely moded, it follows thatdom(�) \ vars(tn) = ; and hene pn(sn; tn)� is type-onsistent. Moreover, vars(sn) \vars(tn) = ; and vars(ran(�)) = ;, and hene vars(sn�) \ vars(tn�) = ;. Thereforeby De�nition 5.2, pn(sn; tn)� is niely moded. 2The following lemma says that an atom-terminating atom annot proeed inde�nitelyunless it is repeatedly fed by some other atom.Lemma 6.2 Let P be a well typed and niely moded program whih is type-onsistentwith respet to input-onsuming derivations. Let F; b;H be a well typed, type-onsistentand niely moded query where b is an atom-terminating atom. An input-onsuming

76 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSderivation of P [fF; b;Hg an have in�nitely many b-steps only if it has in�nitely manya-steps, for some a 2 F .Proof. In this proof, by an F -step we mean an a-step, for some a 2 F ; likewisewe de�ne an H-step. By Lemma 5.6, no H-step an instantiate any desendant of b.Thus the H-steps an be disregarded, and without loss of generality, we assume that His empty. Suppose � is an input-onsuming derivation for P [fF; bg ontaining �nitelymany F -steps. We an write � = hF;b; ;i; : : : ; hQ0; �0i; ~�where hQ0; �0i; ~� ontains no F -steps. Sine by Lemma 5.6, no b-step an instantiateany desendant of F , there exists an input-onsuming derivation�2 = hF;b; ;i; : : : ; hR; �i; : : : ; hQ0; �0i; ~�suh that hF;b; ;i; : : : ; hR; �i ontains only F -steps and hR; �i; : : : ; hQ0; �0i; ~� ontainsonly b-steps (that is, the F -steps are moved forward using the Swithing Lemma [Llo87,Lemma 9.1℄). Sine R = R0; b for some R0, there exists an input-onsuming derivation�3 = hb; �i; : : : ; hI0; �0i; ~�3obtained from hR; �i; : : : ; hQ0; �0i; ~� by removing the pre�x R0 in eah query.By Lemmas 5.10 and 5.4, R� is well typed and niely moded, and sine P is type-onsistent with respet to input-onsuming derivations, R� is type-onsistent. Thus byLemma 6.1, there is a substitution � suh that b�� is well typed, type-onsistent andniely moded. Moreover dom(�) = V , where V is the set of variables in the outputpositions of R0�.By Lemma 5.6, no b-step in �2, and hene no derivation step in �3, an instantiatea variable in V . Sine dom(�) = V , it thus follows that we an onstrut an input-onsuming derivation �4 = hb; ��i; : : : ; hI0; �0�i; ~�3�by applying � to eah query in �3.Sine b�� is a well typed, type-onsistent and niely moded query and b is atom-termi-nating, �4 is �nite. Therefore �3, �2, and �nally � are �nite. 2The following theorem is a onsequene and states that atom-terminating atoms ontheir own annot produe an in�nite derivation.Theorem 6.3 Let P be a well typed and niely moded program whih is type-onsistentwith respet to input-onsuming derivations, and Q a well typed, type-onsistent andniely moded query. An input-onsuming derivation of P [fQg an be in�nite only ifthere are in�nitely many steps where an atom is resolved that is not atom-terminating.Proof. We �rst show:

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 77(�) For any well typed, type-onsistent and niely moded query Q0, an input-onsum-ing derivation of P [fQ0g an be in�nite only if it ontains at least one step wherean atom is resolved that is not atom-terminating.So let �0 be an in�nite input-onsuming derivation of P [fQ0g. Then it follows byLemma 6.2 that �0 ontains in�nitely many a-steps, for some a 2 Q0 that is not atom-terminating. Hene the �rst a-step in �0 is a step where an atom is resolved that is notatom-terminating. This implies (�).Now let � be an in�nite input-onsuming derivation of P [fQg. Assume, for the purposeof deriving a ontradition, that � ontains only �nitely many steps where an atom isresolved that is not atom-terminating. Let ~� be a suÆx of � ontaining no steps wherean atom is resolved that is not atom-terminating. By Lemmas 5.10 and 5.4, the �rstquery of ~� is well typed and niely moded. Moreover, ~� is in�nite, and so we have aontradition to (�). Thus it follows that � ontains in�nitely many steps where anatom is resolved that is not atom-terminating, whih ompletes the proof. 2Theorem 6.3 provides us with the formal justi�ation for restriting our attention toone-atom queries.6.4 Showing that a Prediate is Atom-TerminatingAll approahes to termination mentioned earlier more or less expliitly rely on measuringthe size of the input in a query [Apt97, AP90, DD94, DVB92, DD93, DD98, EBC99,LS97℄. We agree with Etalle et al. [EBC99℄ that it is reasonable to make this dependenyexpliit. This gives rise to the notion of moded level mapping, whih is an instane oflevel mapping introdued by Bezem [Bez93℄ and Cavedon [Cav89℄. Sine we use welltyped programs instead of well moded ones, we have to generalise the onept further.In the following de�nition, BP denotes the set of ground atoms using prediatesourring in P .De�nition 6.2 [moded typed level mapping℄ Let P be a program. The funtion j:j isa moded typed level mapping if1. it is a level mapping, that is a funtion j:j : BP ! IN,2. for any ground s, t and u, jp(s; t)j = jp(s;u)j.3. if p(s; t) is orretly typed in its input positions, then jp(s; t)�1j = jp(s; t)�2j forall substitutions �i suh that p(s; t)�i is ground (i = 1; 2).For a 2 BP , jaj is the level of a. /Thus the level of an atom only depends on the terms in the input positions. Moreover,the level of an atom is �xed one its input arguments are orretly typed; this is whereour onept di�ers from moded level mappings. As Proposition 5.13 shows, the oneptsoinide if the only type is all ground, that is, if we only onsider well moded programs.The following onept, adopted from Apt [Apt97℄, is useful for proving terminationfor a whole program inrementally, by proving it for one prediate at a time.

78 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSDe�nition 6.3 [depends on℄ Let p; q be prediates in a program P . We say that prefers to q if there is a lause in P with p in its head and q in its body, and p dependson q (written p w q) if (p; q) is in the reexive, transitive losure of refers to. We writep A q if p w q and q 6w p, and p � q if p w q and q w p. /Abusing notation, we shall also use the above symbols for atoms, where p(s; t) w q(u;v)stands for p w q, and likewise for A and �. Furthermore, we denote the equivalenelass of a prediate p with respet to � as [p℄�.The following de�nition provides us with a riterion for proving that a prediate isatom-terminating.De�nition 6.4 [ICD-aeptable℄ Let P be a program and j:j a moded typed levelmapping. A lause C = h B is aeptable for input-onsuming derivations(with respet to j:j) if for every substitution � suh that C� is ground, and for every ain B suh that a � h, we have jh�j > ja�j. We abbreviate aeptable for input-onsumingderivations by ICD-aeptable.A program (set of lauses) is ICD-aeptable with respet to j:j if eah lauseis ICD-aeptable with respet to j:j. /Let us ompare this onept to some similar onepts in the literature: reurrent [Bez93℄,well-aeptable [EBC99℄ and aeptable [AP94a, DD98℄ programs.Like Deorte and De Shreye [DD98℄ and Etalle et al. [EBC99℄ but unlike Apt andPedreshi [AP94a℄ and Bezem [Bez93℄, we require jh�j > ja�j only for atoms a wherea � h. This is onsistent with the idea that termination should be proven inrementally:to show termination for a prediate p, it is assumed that all prediates q with p A qhave already been shown to terminate. Therefore we an restrit our attention to theprediates q where q � p.Like Bezem but unlike Apt and Pedreshi, Deorte and De Shreye and Etalle et al.,our de�nition does not involve models or omputed answer substitutions. Traditionally,the de�nition of aeptable programs is based on a model M of the program, andfor a lause h a1; : : : ; an, jh�j > jai�j is only required if M j= (a1; : : : ; ai�1)�.The reason is that for LD-derivations, a1; : : : ; ai�1 must be ompletely resolved beforeai is seleted. By the orretness of LD-resolution [Llo87℄ and well-modedness, theaumulated answer substitution �, just before ai is seleted, is suh that (a1; : : : ; ai�1)�is ground and M j= (a1; : : : ; ai�1)�.Suh onsiderations ount for little when derivations are merely required to be input-onsuming. This is illustrated in Example 6.2. In the third line of the derivation,permute(X0; [1jZ00℄) is seleted, although there is no instane of delete(U0; [℄; Z00) in themodel of the program. This problem has been desribed by saying that delete makesa speulative output binding [Nai92℄. Programs that do not make speulative outputbindings are onsidered in Subsetion 8.3.2.Theorem 6.4 Let P be a well typed and niely moded program whih is type-onsistentwith respet to input-onsuming derivations, and let p be a prediate in P . Suppose allprediates q with p A q are atom-terminating, and all lauses de�ning prediates q 2 [p℄�are ICD-aeptable. Then p, and hene every prediate in [p℄�, is atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 79Proof. Suppose the set of lauses de�ning the prediates q 2 [p℄� is ICD-aeptablewith respet to the moded typed level mapping j:j. For an atom a using a prediatein [p℄�, we de�ne jjajj = sup(fja�j j a� is groundg), if the set fja�j j a� is groundg isbounded. Otherwise jjajj is unde�ned. Observe thatif jjajj is de�ned for an atom a, then jja�jj � jjajj for all �. (�)To measure the size of a query, we use the multiset ontaining the level of eah atomwhose prediate is in [p℄�. The multiset is formalised as a funtion Size, whih takesas arguments a query and a natural number:Size(Q)(n) = #fq(u;v) j q(u;v) 2 Q; q � p and jjq(u;v)jj = ng:Note that if a query ontains several idential atoms, eah ourrene must be ounted.We de�ne Size(Q) < Size(R) if and only if there is a number l suh that Size(Q)(l) <Size(R)(l) and Size(Q)(l0) = Size(R)(l0) for all l0 > l. Intuitively, a derease withrespet to < is obtained when an atom in a query is replaed with a �nite number ofsmaller atoms. By K�onig's Lemma [Fit96℄ or Dershowitz [Der87℄, all desending hainswith respet to < are �nite.Let Q0 = p(s; t) be a well typed, type-onsistent and niely moded query. Then s isorretly typed and thus jjQ0jj is de�ned. Let � = Q0;Q1;Q2 : : : be an input-onsumingderivation of P [fQ0g.Sine all prediates q with p A q are atom-terminating, it follows by Theorem 6.3 thatthere annot be an in�nite suÆx of � without any steps where an atom q(u;v) suh thatq � p is resolved. We show that for all i � 0, if the seleted atom in Qi;Qi+1 is q(u;v)and q � p, then Size(Qi+1) < Size(Qi), and otherwise Size(Qi+1) � Size(Qi). Thisimplies that � is �nite, and, as the hoie of the initial query Q0 = p(s; t) was arbitrary,p is atom-terminating.Consider i � 0 and let C = q(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) be the lause,q(u;v) the seleted atom and � the MGU used in Qi;Qi+1.If p A q, then p A qj for all j 2 f1; : : : ;mg and hene by (�) it follows that Size(Qi+1) �Size(Qi).Now onsider q � p. Sine C is ICD-aeptable, it follows that jjq(v0;um+1)�jj >jjqj(uj ;vj)�jj for all j with qj � p. This together with (�) implies Size(Qi+1) <Size(Qi). 2Example 6.4 We now give a few examples of atom-terminating prediates. For allprediates, we assume that all argument positions have type all ground. We denote theterm size of a term t, that is the number of funtion and onstant symbols that ourin t, as TSize(t).The program for append(I ; I ;O) (Figure 10 on page 57) is ICD-aeptable, wherejappend(s1; s2; t)j = TSize(s1). Thus append(I ; I ;O) is atom-terminating. The sameholds for append(O ;O ; I), de�ning jappend(t1; t2; s)j = TSize(s).

80 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSnqueens(N,Sol) :-sequene(N,Seq),permute(Sol,Seq),safe(Sol).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).
safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.Figure 12: Fragment of a program for n-queensThe lauses de�ning delete(O ; I ;O) (Figure 9 on page 57) are ICD-aeptable,where jdelete(t1; s; t2)j = TSize(s). Thus delete(O ; I ;O) is atom-terminating. Thesame holds for delete(I ;O ; I), de�ning jdelete(s1; t; s2)j = TSize(s2).In a similar way, we an show that permute(I ;O) is atom-terminating. However,permute(O ; I) is not atom-terminating, as seen in Example 6.2.The book on the G�odel language [HL94, page 81℄ shows a program that ontains alause, whih in Prolog would be written asslowsort(X,Y) :-permute(Y,X),sorted(Y).The mode is fslowsort(I ;O); permute(O ; I); sorted(I)g, and there are delay dela-rations to ensure that derivations are input-onsuming. The prediate slowsort isnot atom-terminating. However it an easily be made atom-terminating by replaingpermute(Y,X) with permute(X,Y), so that permute is used in the mode in whih it isatom-terminating.1Note that aording to the G�odel spei�ation, no guarantees are given about theseletion rule that go beyond ensuring that derivations for the above program are input-onsuming. Hene the program is not guaranteed to terminate even for a \well-behaved"query suh as slowsort([1; 2℄; Y). Even though Hill and Lloyd do not laim that theprogram terminates, one would still expet it to do so. In ontrast, we an modify theprogram as stated above, and guarantee that the modi�ed program terminates.Figure 12 shows a fragment from a program for the n-queens problem. The mode isfnqueens(I ;O); sequene(I ;O); safe(I); permute(O ; I); is(O ; I); safe aux(I ; I ; I);no diag(I ; I ; I); =\=(I ; I)g. Again using as level mapping the term size of one of thearguments, one an see that the lauses de�ning fno diag; safe aux; safeg are ICD-aeptable and thus these prediates are atom-terminating. Note that for eÆienyreasons, this program relies on input-onsuming derivations where atoms using safeare seleted as early as possible. This will be disussed in Chapter 8.1This example had to be adapted beause the argument order in the de�nition of permute given inthe G�odel book is the reverse of the order in Figure 9. It is the ase though that slowsort, as given inthe G�odel book, is not atom-terminating.

6.4. SHOWING THAT A PREDICATE IS ATOM-TERMINATING 81plus_one(X) :-minus_two(su(X)).minus_two(su(X)) :-minus_one(X).minus_two(0).
minus_one(su(X)) :-plus_one(X).minus_one(0).

Figure 13: An example requiring a omplex level mappingAs a more omplex example, onsider the program in Figure 13, whose mode isfplus one(I); minus two(I); minus one(I)g. De�ningjplus one(s)j = 3 � TSize(s) + 4jminus two(s)j = 3 � TSize(s)jminus one(s)j = 3 � TSize(s) + 2;the lauses are ICD-aeptable and thus the prediates are atom-terminating. /We see from these examples that whenever in some argument position of a lause head,there is a ompound term of some reursive data struture, suh as [XjXs℄, and allreursive alls in the body of the lause have a strit subterm of that term, suh asXs, in the same position | then the lause is ICD-aeptable using as level mappingthe term size of that argument position. Sine this situation ours very often, itan be expeted that an average program ontains many atom-terminating prediates.However, it is unlikely that in any real program, all prediates are atom-terminating.The example in Figure 13 shows that more omplex senarios than the one desribedabove are possible, but we doubt that they would often our in pratie. Thereforelevel mappings suh as the one used for this program will rarely be needed.Consider again De�nition 6.4. Given a lause h a1; : : : ; an and an atom ai � h,we require jh�j > jai�j for all grounding substitutions �, rather than only for � suh that(a1; : : : ; ai�1)� is in a ertain model of the program. This is of ourse a severe restrition.For example, if we onsider permute(O ; I) (Figure 9 on page 57), there annot be amoded typed level mapping suh that jpermute([UjX℄; Y)�j > jpermute(X; Z)�j for all �.That however is not surprising sine permute(O ; I) is not atom-terminating.With a similar argument, we an show that there annot be a moded typed levelmapping suh that the usual reursive lause for quiksort(I ;O) (a modi�ed versionof it is shown in Figure 14 on page 87) is ICD-aeptable, although we onjeture thatquiksort(I ;O) is atom-terminating. This shows a limitation of the method presentedhere. It might be possible to relax De�nition 6.4 to allow more programs, but the fatremains that many prediates are not atom-terminating.Our method of showing that a prediate p is atom-terminating is based on assumingthat all prediates q with p A q have already been shown to be atom-terminating. Thusif p an be shown to be atom-terminating using Theorem 6.4, then all prediates q withp A q are atom-terminating. This does not mean that if p is atom-terminating, then

82 CHAPTER 6. TERMINATION OF INPUT-CONSUMING DERIVATIONSall prediates q with p A q are atom-terminating. This is demonstrated in the followingexample.Example 6.5 Consider the following program with mode fp(I); q(I)g and type fp(int);q(int)g.p(0) :- q(0). q(0).q(1) :- q(1).The prediate p is atom-terminating, but our method fails to show this, sine q is notatom-terminating. Of ourse this program is ontrived, and we do not expet thisproblem to our in \real" programs. /6.5 Applying the MethodThe requirement of input-onsuming derivations merely reets the very meaning of in-put: an atom must only onsume its own input, not produe it. Thus if one aepts that(appropriately hosen) modes are useful for veri�ation and reet the programmer'sintentions, then one should also aept this requirement and regard any violation of itas pathologial.2The requirement of input-onsuming derivations is trivially met for LD-derivationsof a well moded query and program, sine the leftmost atom in a well moded queryis ground in its input positions. It an also be ensured by using delay delarations asin G�odel [HL94℄ that require the input arguments of an atom to be ground before thisatom an be seleted. In the next hapter we shall see how input-onsuming derivationsan be ensured using blok delarations.As we have said in the introdution of this hapter, the lass of programs for whihall input-onsuming derivations terminate is quite limited. For the prediates that arenot atom-terminating, stronger assumptions about the seletion rule are neessary. InChapter 8, we show one way of inorporating the method of this hapter into a moreomprehensive method for proving termination. We now briey sketh two other ways.First, we ould build on a tehnique developed by Martin and King [MK97℄. Theyonsider oroutining derivations, but impose a bound on the depth of eah sub-derivationby introduing auxiliary prediates with an additional argument that serves as depthounter. Applying the results of this hapter, we only have to impose this depth boundfor the prediates that are not atom-terminating. For the atom-terminating prediates,we an save the overheads involved in this tehnique.Seondly, we ould use delay delarations as they are provided for example inG�odel [HL94℄. For the atom-terminating prediates, it is suÆient to ensure input-onsuming derivations, by heking for partial instantiation of the input positions usinga DELAY : : : UNTIL NONVAR : : : delaration. For the other prediates, it must be ensuredthat the input positions are ground using a DELAY : : : UNTIL GROUND : : : delaration. Note2An exeption, onerning programs we annot verify using the methods of this thesis, is disussedin Subsetion 11.1.9.

6.6. DISCUSSION 83that aording to its spei�ation, G�odel does not guarantee a (default) left-to-right se-letion rule, and therefore delay delarations are ruial for termination. Note also thata groundness test is usually more expensive than a test for partial instantiation. To thebest of our knowledge, there has never been a systemati treatment of the question ofwhen GROUND delarations are needed, and when NONVAR delarations are suÆient.6.6 DisussionWe have identi�ed the lass of programs for whih all input-onsuming derivations are�nite. Prediates an be shown to be in that lass using the notions of level mappingand aeptable lause in a very similar way to methods for LD-derivations [DD94, DD98,EBC99℄.We have onsidered input-onsuming derivations rather than, say, a partiular kindof delay onstrut. This abstrat view should make it possible to inorporate the resultsof this hapter into various more omprehensive methods for proving termination. Oneadvantage is that in this hapter, we do not impose the restrition that programs mustbe input-linear. This restrition, as we will see in the next hapter, is neessary so thatblok delarations an ensure input-onsuming derivations. Hene if input-onsumingderivations an be ensured without imposing this restrition, say by using guards as in(F)GHC [Ued86℄, then the results of this hapter ould be applied to show termination.Note also that the method presented in this hapter an be used to show terminationof parallel exeutions [CC94, Ti91℄. In formalisations of parallel exeutions, one impor-tant question is whih atoms should be allowed to be seleted in parallel. This questionhas several aspets, one of whih is termination. Conerning this aspet, we an statethat performing input-onsuming derivation steps in parallel, rather than onseutively,does not a�et the termination behaviour of a program.This hapter losely follows Etalle et al. [EBC99℄. They have a statement analogousto Theorem 6.4, but they also show a onverse statement. It says that if for a prediatep, all LD-derivations for a well moded query p(s; t) terminate, then there is a levelmapping suh that the lauses de�ning p are well-aeptable. It would be interestingto show a similar result for arbitrary input-onsuming derivations, but presumably thismust be diÆult, sine our de�nition of aeptability is muh more restritive.Unlike most other approahes to termination [AP94a, Bez93, DVB92, DD98, EBC99,LS97, MK97℄, we do not rely on the idea that the size of an atom an be pinned downwhen the atom is seleted. We show that under ertain onditions, it is enough to relyon a relative derease in the size of the seleted atom, even though this size annotbe pinned down. More preisely, we exploit the fat that an atom in a query annotproeed inde�nitely unless it is repeatedly fed by some other atom ourring earlier inthe query. This implies that every derivation for the query is �nite.

Chapter 7Ensuring Input-ConsumingDerivationsIn this hapter, we show how blok delarations an be used to ensure that derivationsare input-onsuming. To this end, we must introdue further orretness properties inthe style of the properties introdued in Chapter 5.7.1 The Simpliity of blok DelarationsThe blok delarations delare that ertain arguments of an atom must be non-variablebefore that atom an be seleted. InsuÆiently instantiated atoms are delayed. Asdemonstrated in SICStus Prolog [SIC98℄, blok delarations an be eÆiently imple-mented: the test whether arguments are non-variable has a negligible impat on perfor-mane. Therefore blok delarations or similar onstruts are widely used.It is a distintive feature of this work that we onsider blok delarations, as op-posed to delay delarations whih an hek for the instantiation of a subterm of anargument [HL94℄, or delay delarations that hek for groundness.One would expet that blok delarations are suÆiently powerful to ensure thatderivations are input-onsuming. Consider the lause head append([X|Xs℄,Ys,[X|Zs℄)(Figure 10 on page 57) and assume that the mode is append(I ; I ;O). If we want toresolve an atom append(s; t; u) in a query, then we should hek �rst whether s is non-variable, beause otherwise the derivation step would not be input-onsuming. However,we will see that the tehnial details are quite subtle.As mentioned on page 58, we believe that the most important purpose of delaydelarations is to ensure input-onsuming derivations. Most works about delay delara-tions do not expliitly state what their purpose is [AL95, L�ut93, MT95, MK97, Nai92℄.Moreover, at least L�uttringhaus-Kappel [L�ut93℄ onsiders delay delarations that areused for a purpose that goes far beyond ensuring that derivations are input-onsuming.Namely, they are used to ensure that an atom is only seleted when it is bounded withrespet to some norm (this is done to ensure termination).This hapter is organised as follows. The next setion introdues some terminol-ogy related to blok delarations. Setion 7.3 introdues permutation simply typed84

7.2. TERMINOLOGY RELATED TO BLOCK DECLARATIONS 85programs, whih are a lass of programs for whih blok delarations an ensure input-onsuming derivations. Setion 7.4 introdues permutation robustly typed programs,whih are an extension of the previous lass for whih blok delarations an still ensureinput-onsuming derivations. Setion 7.5 gives a summary and omparison of all theorretness properties for programs introdued in this thesis.7.2 Terminology Related to blok DelarationsA blok delaration [SIC98℄ for a prediate p=n is a (possibly empty) set of atoms eahof whih has the form p(b1; : : : ; bn), where bi 2 f?; -g for i 2 f1; : : : ; ng. A programonsists of a set of lauses and a set of blok delarations, one for eah prediate de�nedby the lauses. If P is a program, then an atom p(t1; : : : ; tn) is seletable in P if foreah atom p(b1; : : : ; bn) in the blok delaration for p, there is some i 2 f1; : : : ; ng suhthat ti is non-variable and bi = -.A delay-respeting derivation for a program P is a derivation where the seletedatom is always seletable in P . We say that it ounders if it ends with a non-emptyquery where no atom is seletable.7.3 Permutation Simply Typed ProgramsTo ensure that derivations are input-onsuming, one would expet that there should beblok delarations suh that an atom an only be seleted when its input argumentsare non-variable. The following example however shows that this is not suÆient.Example 7.1 Consider the following version of delete(O ; I ;O).:- blok delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|[H|T℄℄,[U|Z℄) :- delete(X,[H|T℄,Z).Then we have the following delay-respeting but not input-onsuming derivationdelete(A; [1jL℄; R); delete(A; [H0jL0℄; R0); delete(A; [H00jL00℄; R00); : : :Note that although delete(A; [1jL℄; R) is not a well typed query, it may our in a welltyped query, say delete(B; [2℄; L); delete(A; [1jL℄; R). This version of delete is part ofthe most spei� program [MNL90℄ orresponding to the program in Figure 9 on page 57,proposed [Nai92℄ to prevent looping for permute(O ; I). However, it does not work. Thequery permute(A; [1℄) indeed terminates, but permute(A; [1; 2℄) still loops. /Thus to ensure that derivations are input-onsuming, we will require that eah inputargument in eah lause head is at. This ondition is violated by the lause headdelete(X,[U|[H|T℄℄,[U|Z℄), but it is met for the program in Figure 9 on page 57.The next example shows however that requiring at terms in lause heads is stillnot enough.

86 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSExample 7.2 Consider the following program in mode p(I ;O).:- blok p(-,?).p(g(Y),Y).Then p(g(X); 3) ; 2 is a delay-respeting but not input-onsuming derivation, sine Xbeomes instantiated to 3. /The easiest solution is to require that the output positions in a query are always �lledwith variables. In mode p(I ;O), the query p(g(X),3) should not arise, sine its outputis already instantiated. We will now present this solution, although it has ertainlimitations. In Setion 7.4, we will see how these limitations an partly be overome.We �rst de�ne permutation simply-modedness, whih is a generalisation of simply-modedness [AE93, AL95℄, just as for the other orretness properties. In a permutationsimply moded query, the output positions are �lled with variables.De�nition 7.1 [permutation simply moded℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-simply moded if it is �-nielymoded and t1; : : : ; tn is a vetor of variables. The lause p(t0; sn+1) Q is �-simplymoded if it is �-niely moded and t1; : : : ; tn is a vetor of variables.A permutation simply moded query (lause, program) and a simply modedquery (lause, program) orresponding to a query (lause, program) are de�ned inanalogy to De�nition 5.2. /We quote the following persistene property for simply-modedness.Lemma 7.1 [AE93, Lemma 27℄ Let Q be a simply moded query and C a simply modedlause where vars(Q) \ vars(C) = ;. Then every LD-resolvent of Q and C is simplymoded.We ombine permutation simply-modedness with permutation well-typedness, addingan extra ondition onerning the lause heads.De�nition 7.2 [permutation simply typed℄ A query is �-simply typed if it is�-simply moded and �-well typed. A lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is�-simply typed if it is �-simply moded and �-well typed, and t0 has a variable in eahposition of variable type and a at type-onsistent term in eah position of non-variabletype.A permutation simply typed query (lause, program) and a simply typed query(lause, program) orresponding to a query (lause, program) are de�ned in analogyto De�nition 5.2. /Note that sine the vetor of output arguments of a permutation simply typed query isa linear vetor of variables, permutation simply typed queries are type-onsistent.Example 7.3 The permute program (Figure 9 on page 57), for any of the types in Ex-ample 5.7, is simply typed for mode fpermute(I ;O); delete(I ;O ; I)g, and permutationsimply typed for mode fpermute(O ; I), delete(O ; I ;O)g. /

7.3. PERMUTATION SIMPLY TYPED PROGRAMS 87:- blok quiksort(-,-).quiksort([℄,[℄).quiksort([X|Xs℄,Ys) :-append(As2,[X|Bs2℄,Ys),part(Xs,X,As,Bs),quiksort(As,As2),quiksort(Bs,Bs2).:- blok append(-,?,-).append([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).
:- blok part(?,-,?,?),part(-,?,-,?),part(-,?,?,-).part([℄,_,[℄,[℄).part([X|Xs℄,C,[X|As℄,Bs):-leq(X,C),part(Xs,C,As,Bs).part([X|Xs℄,C,As,[X|Bs℄):-grt(X,C),part(Xs,C,As,Bs).:- blok leq(?,-), leq(-,?).leq(A,B) :- A =< B.:- blok grt(?,-), grt(-,?).grt(A,B) :- A > B.Figure 14: The quiksort programExample 7.4 Figure 14 shows a version of quiksort. Assume thetype fquiksort(nl; nl), append(nl; nl; nl), leq(num;num), grt(num;num);part(nl; num; nl; nl)g. The program is permutation simply typed for modefquiksort(I ;O); append(I ; I ;O); leq(I ; I); grt(I ; I); part(I ; I ;O ;O)g. It isnot permutation simply typed for mode fquiksort(O ; I); append(O ;O ; I); leq(I ; I);grt(I ; I); part(O ; I ; I ; I)g, beause of the non-variable term [X|Bs2℄ in an outputposition.As an aside, note that this program uses auxiliary prediates leq and grt to realiseblok delarations on the built-ins =< and >. Built-ins will be disussed in Setions 9.4and 10.1. /Example 7.5 Figure 15 shows a program that onverts binary trees into lists or vieversa. The type of the program is ftreeList(tree; list), append(list; list; list)g. It ispermutation simply typed for mode ftreeList(I ;O); append(I ; I ;O)g. However it isnot permutation simply typed for mode ftreeList(O ; I); append(O ;O ; I)g, beause ofthe non-variable term [Label|RList℄ in an output position. /The persistene properties stated in Lemmas 5.3 and 5.10 are independent of the se-letion rule. We show a similar persistene property for permutation simply typedprograms. However this property only holds if the derivation step is input-onsuming,sine otherwise output positions of the resolvent might beome non-variable. In thefollowing lemma, it is not atually assumed that the derivation step is input-onsuming.It is only assumed that the input arguments of the seleted atom are an instane of theinput arguments of the lause head. While this is trivially neessary for a derivationstep to be input-onsuming, point (d) of the lemma states that it is also suÆient.

88 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS:- blok treeList(-,-).treeList(leaf,[℄).treeList(node(L,Label,R),List) :-append(LList,[Label|RList℄,List),treeList(L,LList),treeList(R,RList).
:- blok append(-,?,-).append([℄,Y,Y).append([X|Xs℄,Ys,[X|Zs℄) :-append(Xs,Ys,Zs).Figure 15: Converting trees to lists or vie versaLemma 7.2 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-simply typed query and C =pk(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) a �-simply typed, input-linear lause wherevars(C) \ vars(Q) = ;. Suppose for some k 2 f1; : : : ; ng, pk(sk; tk) and pk(v0;um+1)are uni�able and sk is an instane of v0. Then there is an MGU � = �1�2 of pk(sk; tk)and pk(v0;um+1) suh thata. v0�1 = sk and dom(�1) � vars(v0),b. tk�2 = um+1�1 and dom(�2) � vars(tk),. dom(�) � vars(tk) [vars(v0),d. dom(�) \ vars(sk) = ;, that is, the derivation step is input-onsuming,e. dom(�) \ vars(t1; : : : ; tk�1;v1; : : : ;vm; tk+1; : : : ; tn) = ;,f. the resolvent of Q and C with seleted atom pk(sk; tk) isDer(�; �; k)-simply typed.Proof. Claim (a) follows from the assumption that sk is an instane of v0.Sine tk is a linear vetor of variables, there is a substitution �2 suh that dom(�2) �vars(tk) and tk�2 = um+1�1, whih shows (b).Sine Q is �-niely moded, we have vars(tk) \ vars(sk) = ;, and therefore vars(tk) \vars(v0�1) = ;. Thus it follows by (b) that � = �1�2 is an MGU of pk(sk; tk) andpk(v0;um+1). Claim () follows from (a) and (b). Claim (d) follows from () be-ause vars(tk) \ vars(sk) = ;. Claim (e) follows from () beause of the linearity of(t1; : : : ; tn;v0; : : : ;vm).By Lemmas 5.3 and 5.10, the resolvent is Der(�; �; k)-niely moded and Der(�; �; k)-well typed. By (e), the vetor of the output arguments of the resolvent is a linear vetorof variables, and hene (f) follows. 2The following lemma states a persistene property similar to Lemma 7.2 (f) but forLD-resolvents only. Note that in this ase, it is not neessary to require an input-linear lause. However, beause of this weaker assumption, the lemma is not atually aorollary of Lemma 7.2.Lemma 7.3 Every LD-resolvent of a simply typed query Q and a simply typed lauseC, where vars(C) \ vars(Q) = ;, is simply typed.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 89Proof. By Lemma 7.1, the resolvent is simply moded. By Lemma 5.10, the resolventis well typed. Therefore the resolvent is simply typed. 2The next lemma says that in an input-onsuming derivation for a permutation simplytyped program and query, it an be assumed without loss of generality that the outputpositions in eah query are �lled with variables that our in the initial query or in somelause body used in the derivation. This is used to prove Theorem 8.3.Lemma 7.4 Let P be a permutation simply typed, input-linear program, and Q0 apermutation simply typed query. Let �0 = ; and � = hQ0; �0i; hQ1; �1i; : : : be an input-onsuming derivation of P [fQ0g. Then for all i � 0, if x is a variable ourring in anoutput position in Qi, then x�i = x.Proof. The proof is by indution on the position i in the derivation. The base asei = 0 is trivial sine �0 = ;. Now suppose the result holds for some i and Qi+1 exists.By Lemma 7.2 (f), Qi�i is permutation simply typed. Thus the result follows for i + 1by Lemma 7.2 (e) and the indutive hypothesis. 2For permutation simply typed programs, blok delarations an be used to ensure input-onsuming derivations. However, before we show this, we �rst introdue a generalisationof permutation simply typed programs.7.4 Permutation Robustly Typed ProgramsExamples 7.4 and 7.5 suggest that De�nition 7.2 is sometimes too restritive. Bothprograms have an atom using append in a lause body where the seond argument ofthat atom is non-variable. This means that these programs are not permutation simplytyped when append is used in mode append(O ;O ; I).It has been aknowledged previously by Apt and Etalle [AE93℄ that it is diÆult toreason about queries where non-variable terms in output positions are allowed, but onthe other hand, there are natural programs where this ours. These authors assumethat output positions in a query are always �lled with variables, but onsider allowingfor non-variable terms as a diretion for future work.We de�ne permutation robustly-typedness, whih is a arefully rafted extension ofpermutation simply-typedness, allowing for non-variable but at terms in ertain outputpositions. The de�nition is more ompliated than the de�nitions of previous orretnessproperties. The diÆulty in designing suh a onept is in ensuring that a persisteneproperty analogous to Lemmas 5.3, 5.8, 5.10 and 7.2 holds. In partiular, the de�nitionis suh that permutation robustly typed queries are type-onsistent, whih is importantso that we an apply the results of Chapter 6.In the sequel, we assoiate a label free or bound with eah argument position ofeah prediate. The intuition behind these labels is as follows: an atom should beseletable only when it is non-variable in its bound input positions. Moreover, a querymay ontain a non-variable term in an output position only if the position is bound.De�nition 7.3 [free-bound-labelling℄ Let P be a permutation well typed program. Afree-bound-labelling is a funtion assigning a label free or bound to eah argumentposition of eah prediate p, suh that

90 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS� all positions of variable type are free,� if there is a lause in P de�ning p whose head has a non-variable term in an inputposition, then this input position is bound.We denote the projetion of a vetor of arguments r onto its free positions as rf , andonto its bound positions as rb. /We assume that a free-bound-labelling is assoiated with eah program, without makingthis expliit. As with assigning the mode and the type to a prediate, we do not proposea method of deiding whih positions should be free or bound. In all our exampleshowever, the hoie is simple:� an input position of p is bound if and only if there is some lause de�ning p whosehead has a non-variable term in that position,� an output position of p is bound if and only if there is some lause body ontainingan atom using p, whih has a non-variable term in that position.Note in partiular that the onditions of the above de�nition an only be met if eahlause head has a variable in eah input position of variable type. By De�nition 7.2,this requirement is learly met by permutation simply typed programs.De�nition 7.4 [permutation robustly typed℄ Let Q = p1(s1; t1); : : : ; pn(sn; tn) be aquery and � a permutation on f1; : : : ; ng. Then Q is �-robustly typed if it is �-nielymoded and �-well typed, tf1; : : : ; tfn is a vetor of variables, and tb1; : : : ; tbn is a vetor ofat type-onsistent terms.The lause p(t0; sn+1) Q is �-robustly typed if it is �-niely moded and �-welltyped, and1. tf0; : : : ; tfn is a vetor of variables, and tb0; : : : ; tbn is a vetor of at type-onsistentterms,2. if a position in sbn+1 of type � is �lled with a variable x, then x also �lls a positionof type � in tb0; : : : ; tbn.A permutation robustly typed query (lause, program) and a robustly typedquery (lause, program) orresponding to a query (lause, program) are de�ned inanalogy to De�nition 5.2. /Permutation robustly typed programs are an extension of permutation simply typedprograms. Consequently, De�nition 7.2 oinides with De�nition 7.4 in the ase thatall output positions are free, and all input positions of variable type are free. Note thata permutation simply typed program is also permutation robustly typed with respetto a free-bound-labelling where the input positions are labelled as explained just afterDe�nition 7.3.Example 7.6 Reall that we assume for all examples that an input position of a pred-iate p is bound if and only if there is some lause de�ning p whose head has a non-variable term in that position.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 91Consider again Example 7.3. The permute program (Figure 9 on page 57) is per-mutation simply typed in both modes and hene permutation robustly typed, assumingthat all output positions are free.Consider the quiksort program (Figure 14 on page 87) with the type given inExample 7.4. This program is permutation robustly typed in mode fquiksort(O ; I);append(O ;O ; I); leq(I ; I); grt(I ; I); part(O ; I ; I ; I)g, assuming the seond positionof append is the only bound output position. Note in partiular that Condition 2of De�nition 7.4 is met for the reursive lause of append: the variable Ys �lls anoutput position of the head and also an output position of the body. The program isalso permutation robustly typed in mode fquiksort(I ;O); append(I ; I ;O); leq(I ; I);grt(I ; I); part(I ; I ;O ;O)g, assuming that all output positions are free.Similarly, the treeList program (Figure 15 on page 88) is permutation robustlytyped in mode ftreeList(O ; I); append(O ;O ; I)g assuming the seond position ofappend is the only bound output position. It is also permutation robustly typed inmode ftreeList(I ;O); append(I ; I ;O)g assuming that all output positions are free./In Lemma 7.2, we showed a persistene property of permutation simply-typedness.There we did not atually assume that the derivation step is input-onsuming, but onlythat the input arguments of the seleted atom are an instane of the input arguments ofthe lause head. The following example shows that for permutation robustly-typedness,this is not suÆient.Example 7.7 Consider append(I ; I ;O) (Figure 10 on page 57) and assume that allpositions are bound. Then the queryappend([℄; [℄; Bs); append([℄; Bs; [CjCs℄)is (permutation) robustly typed. Suppose we want to resolve the seond atom using the�rst lause for append. The vetor ([℄; Bs) is an instane of ([℄; Y), and yet the MGUof append([℄; Bs; [CjCs℄) and append([℄; Y; Y) binds Bs to [CjCs℄, and hene the derivationstep would not be input-onsuming. /We now state a simple proposition whih is illustrated in Figure 16. If we read p(s; t)as a seleted atom and p(v;u) as a lause head, the proposition states a neessaryondition for a derivation step to be input-onsuming.Proposition 7.5 Let p(s; t) and p(v;u) be two atoms that are uni�able with MGU �,and suppose that dom(�) \ vars(s) = ;. If in some position, u is �lled with a variablex and t is �lled with a non-variable term, and x also has a diret ourrene in v inposition i, then s is non-variable in position i.The following lemma shows a persistene property of permutation robustly-typedness.Lemma 7.6 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-robustly typed query, let k 2f1; : : : ; ng, and C = pk(v0;um+1) q1(u1;v1); : : : ; qm(um;vm) a �-robustly typed,input-linear lause where vars(Q) \ vars(C) = ;. Suppose that pk(sk; tk) andpk(v0;um+1) are uni�able and

92 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONS
p(sz }| {: : : ; f(: : :); : : :; tz }| {: : : ; f(: : :); : : :)p(: : : ; x ; : : :| {z }v ; : : : ; x ; : : :| {z }u)Figure 16: Illustrating Proposition 7.5

C : pk(v0; um+1) :- q1(u1;v1) � � � qm(um;vm)
Q : p1(s1; t1) : : : pk(sk; tk) : : : pn(sn; tn)..jStage 1 ...3Stage 2 (f+)...� Stage 3 (b�)

Figure 17: Data ow in the uni�ation1. sk is an instane of v0, and2. if a variable x �lls positions i in vb0 and j in ubm+1, and position j in tbk is non-variable, then position i in sbk is also non-variable.Then there is an MGU � of pk(sk; tk) and pk(v0;um+1) suh thata. dom(�) \ vars(sk) = ;, that is, the derivation step is input-onsuming,b. the resolvent of Q and C with seleted atom pk(sk; tk) is Der(�; �; k)-robustlytyped.Proof. We show how � is omputed, where we onsider three stages. In the �rst, skand v0 are uni�ed. In the seond, the output positions are uni�ed where the bindingsgo from C to Q. In the third, the output positions are uni�ed where the bindings gofrom Q to C. Figure 17 illustrates whih variables are bound in eah stage. The �rstthree parts of the proof orrespond to the three stages of the uni�ation.Part 1: (unifying sk and v0). Sine by assumption 1, sk is an instane of v0, there is a(minimal) substitution �1 suh that v0�1 = sk. We show that the following statementshold:S1a dom(�1) \ vars(sk) = ;.S1b dom(�1) \ vars(v1; : : : ;vm; t1; : : : ; tn) = ;.S1 Let x be a variable ourring diretly in a position of type � in ubm+1�1, suhthat tbk is non-variable in this position. Then x =2 vars(sk). Moreover, x an onlyour in v1; : : : ;vm; t1; : : : ; tn in a bound position of type � , and the ourrenemust be diret.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 93S1d vars(um+1�1) \ vars(tk) = ;.S1a holds by the onstrution of �1.S1b holds sine by De�nition 7.4 and the assumption that C is input-linear, we havethat v0; : : : ;vm; t1; : : : ; tn is linear.Let x be a variable ourring diretly in a position of type � in ubm+1�1, suh that tbkis non-variable in this position. Let y be the variable in the same position in ubm+1.Suppose that y 2 vars(v0). Then by De�nition 7.4, y ours diretly in vb0 , say inposition i, and by assumption 2, sbk is non-variable in position i. Thus y�1 is not avariable, whih is a ontradition. Therefore y 62 vars(v0). Hene y 62 dom(�1) andthus x = y and x =2 vars(sk). Furthermore it follows by De�nition 7.4 that x an onlyour in v1; : : : ;vm; t1; : : : ; tn in a bound position of type � , and the ourrene mustbe diret. Thus S1 holds.Sine Q is permutation niely moded, vars(sk)\vars(tk) = ; and hene vars(ran(�1))\vars(tk) = ;. Thus S1d holds.Part 2: (unifying tk and um+1�1 in eah position where either the argument in tk isa variable, or the arguments in tk and um+1�1 are both non-variable). Note that thisinludes all positions in tfk and ufm+1�1, but may also inlude positions in tbk and ubm+1�1.Sine, by S1b, tk�1 = tk, Part 2 overs preisely the output positions where the binding\goes from um+1�1 to tk�1" (see Figure 17). We denote by tf+k the projetion of tk ontothe positions where the argument in tk is a variable, or the arguments in tk and um+1�1are both non-variable, and by tb�k the projetion onto all other positions, and likewisefor um+1�1.By S1d, vars(uf+m+1�1) \ vars(tf+k) = ;. Thus there is a minimal substitution �0 suhthat tf+k �0 = uf+m+1�1. Let �2 = �1�0. Then by S1b and S1d, tf+k �2 = uf+m+1�2. We showthe following statements:S2a dom(�2) \ vars(sk) = ;.S2b dom(�2) \ vars(v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn) = ;.S2 Let x be a variable ourring diretly in a position of type � in ub�m+1�2.1 Thenx =2 vars(sk), and x an only our in v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn ina bound position of type � , and the ourrene must be diret.S2d vars(um+1�2) \ vars(tb�k) = ;.Sine vars(sk) \ vars(tk) = ;, we have dom(�0) \ vars(sk) = ;. This and S1a implyS2a.S2b holds beause S1b holds and (v1; : : : ;vm; t1; : : : ; tn) is linear.1By de�nition of the supersript notation b� we have that tb�k is non-variable in this position.

94 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSBy S1d, dom(�0)\vars(ub�m+1�1) = ;. This together with S1 implies S2. Furthermore,beause of the linearity of tk, S2d follows.Part 3: (unifying tb�k and ub�m+1�2). By S1d, dom(�0) \ vars(ub�m+1�1) = ;, and thusub�m+1�2 = ub�m+1�1. Therefore, by the de�nition of the supersript b� in Part 2, ub�m+1�2is a vetor of variables. By S2d, vars(ub�m+1�2) \ vars(tb�k) = ;, so that there is aminimal substitution �00 suh that ub�m+1�2�00 = tb�k . Let �3 = �2�00. Then, by S2b, wehave ub�m+1�3 = tb�k �3. We show the following statements:S3a dom(�3) \ vars(sk) = ;.S3b (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn)�3 is linear and has at type-onsistentterms in all bound positions and variables in all free positions.By S2, dom(�00) \ vars(sk) = ;. This and S2a imply S3a.Suppose x is a variable in ub�m+1�2 ourring in a position i of type � , and x also ours in(v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn). By S2, the latter ourrene of x is in a boundposition of type � , and the only ourrene of x in (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn).Let I be the set of positions where x ours in ub�m+1�2, and let T be the set of termsourring in tb�k in positions in I. Then T is a set of variable-disjoint, at terms.Therefore their most general ommon instane x�00 is a at term and x�00 is type-onsistent with respet to � . Moreover, sine (v1; : : : ;vm; t1; : : : ; tk�1; tb�k ; tk+1; : : : ; tn)is linear, vars(x�00)\vars(v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn) = ; and hene it followsthat (v1; : : : ;vm; t1; : : : ; tk�1; tk+1; : : : ; tn)�00 is linear and type-onsistent. This and S2bimply S3b.Part 4: De�ning � = �3 it follows that pk(sk; tk)� = pk(v0;um+1)�. By S3a, sk� = sk,whih shows (a). By S3b and Lemmas 5.3 and 5.10, the resolvent of Q and C isDer(�; �; k)-robustly typed, whih shows (b). 2From Lemma 7.6, we an onlude that permutation robustly typed programs are type-onsistent with respet to input-onsuming derivations. Of ourse, this holds in parti-ular for permutation simply typed programs.Lemma 7.7 Every permutation robustly typed program is type-onsistent with respetto input-onsuming derivations.Proof. Let P be a permutation robustly typed program and Q a permutation robustlytyped query. Trivially, assumption 1 in Lemma 7.6 is neessary for a derivation step tobe input-onsuming. By Proposition 7.5, assumption 2 in Lemma 7.6 is also neessaryfor a derivation step to be input-onsuming. Hene by Lemma 7.6 (b), any input-onsuming derivation of P [fQg ontains only permutation robustly typed queries. ByDe�nition 7.4, every permutation robustly typed query is type-onsistent, and hene Pis type-onsistent with respet to input-onsuming derivations. 2We de�ne input seletability. We will see that in a program with input seletability, anatom is seletable only if it meets assumptions 1 and 2 in Lemma 7.6.

7.4. PERMUTATION ROBUSTLY TYPED PROGRAMS 95:- blok permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-permute(X,Z),delete(U,Y,Z). :- blok delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 18: The permute program with blok delarationsDe�nition 7.5 [input seletability℄ Let P be a permutation robustly typed program.P has input seletability if for every permutation robustly typed query Q, an atomin Q is seletable in P if and only if it is non-variable in all bound input positions. /Input seletability is similar to the ondition that \the delay delarations imply math-ing" [AL95℄.For a program to have input seletability, the blok delarations must be suh thatan atom whose free output positions are all variable is seletable if and only if all boundinput positions are non-variable.Example 7.8 Figure 18 shows the permute program of Figure 9 on page 57, withblok delarations added. Here we only onsider delete. Let us �rst assume modedelete(I ;O ; I), with a free-bound-labelling delete(free; free; bound) as explained onpage 90. Then the blok delarations ensure input seletability. Now assume modedelete(O ; I ;O) with a free-bound-labelling delete(free; bound; free). For this mode,the blok delarations also ensure input seletability. Hene the blok delarationsensure input seletability with respet to two di�erent modes. /The following proposition states that input seletability ensures that every seletableatom meets assumptions 1 and 2 in Lemma 7.6.Proposition 7.8 Let P be a permutation robustly typed, input-linear program withinput seletability, Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-robustly typed query, k 2f1; : : : ; ng, and C = pk(v0;um+1) B a lause in P . Suppose that pk(sk; tk) isseletable and pk(sk; tk) and pk(v0;um+1) are uni�able. Then assumptions 1 and 2 inLemma 7.6 are ful�lled.Proof. Sine p(sk; tk) is seletable in P , it follows that sk is non-variable in all boundpositions. By De�nition 7.4, v0 is a linear vetor having at terms in all bound positions,and variables in all other positions. Thus assumption 1 is ful�lled. Assumption 2 isful�lled sine sk is non-variable in all bound positions. 2The following theorem is a onsequene of Proposition 7.8 and Lemma 7.6.Theorem 7.9 Let P be a permutation robustly typed, input-linear program with inputseletability, and Q a permutation robustly typed query. Then every delay-respetingderivation of P [fQg is input-onsuming.

96 CHAPTER 7. ENSURING INPUT-CONSUMING DERIVATIONSNote that the onverse is not true. There ould be input-onsuming derivation stepswhih are not delay-respeting.The following example illustrates why it is an advantage that the seleted atom onlyhas to be non-variable in the bound input positions.Example 7.9 Consider the blok delaration for append in Figure 15 (page 88). Giventhat the usual modes for append are append(I ; I ;O) and append(O ;O ; I), one mightexpet a general theory to say that an atom using append should be seletable if eitherthe �rst two arguments or the third argument are non-variable. This would orrespondto the blok delaration:- blok append(-,?,-), append(?,-,-).However, the simpler blok delaration is justi�ed sine by De�nition 7.3, we mayassume that for the mode append(I ; I ;O), the seond position is free. The simplerblok delaration is the one usually given [HL94, L�ut93, MT95℄, but to the best of ourknowledge, its adequay has never been explained on suh an abstrat level. /The next example illustrates why in De�nition 7.5, input seletability is de�ned withrespet to atoms in permutation robustly typed queries.Example 7.10 Consider append(O ;O ; I) where the seond position is the only boundoutput position, as in quiksort(O ; I) (Figure 14 on page 87) or treeList(O ; I)(Figure 15 on page 88). The program for append has input seletability. Q =append(A,[B|Bs℄,[1℄) is a permutation robustly typed query, and its atom is se-letable. The atom append([℄,[℄,C) is also seletable, although its input position isvariable. This does not ontradit De�nition 7.5, sine the �rst position is free, and thusthis atom annot our in a permutation robustly typed query with respet to modeappend(O ;O ; I). /Looking at De�nition 7.4, one is tempted to think that it is best to assoiate the labelbound with all output positions, beause that would make the de�nition less restri-tive. However, we require a program to have input seletability in eah of its modes.Sine input seletability is de�ned with respet to atoms in permutation robustly typedqueries, and permutation robustly typed queries are de�ned with respet to given freeand bound positions, it turns out that the hoie of free and bound positions onstrainsthe possible set of modes. This is illustrated in the following example.Example 7.11 Consider append(O ;O ; I), where both output positions are bound, andthe blok delaration is as in Figure 15 (page 88). Note that this blok delaration isintended to allow for the urrent mode append(O ;O ; I), but also alternatively for modeappend(I ; I ;O). Now onsider the queryappend(Cs; Ds; [1; 2; 3℄); append([AjAs℄; [BjBs℄; Cs)This query is robustly typed with respet to the urrent mode append(O ;O ; I). Theseond atom is seletable although it is variable in its only bound input position. There-fore the program does not have input seletability. This ould be reti�ed by replaingthe blok delaration with

7.5. SUMMARY OF THE CORRECTNESS PROPERTIES 97

�-niely modedDef. 5.2 (page 65)our-hek freedom �-well typedDef. 5.5 (page 69)non-oundering
�-simply modedDef. 7.1 (page 86)| �-robustly typedDef. 7.4 (page 90)termination �-well modedDef. 5.4 (page 68)|

�-simply typedDef. 7.2 (page 86)termination,error-freedom,uni�ation-freedom
�����R �����	 �����R �����	

�����	 �����R
1 2 3

4 6
5

Figure 19: The orretness properties:- blok append(?,?,-).but then the program ould not be used in mode append(I ; I ;O) anymore. However,we have not enountered a ase where a \natural" mode of a program was ruled outbeause of this problem. /7.5 Summary of the Corretness PropertiesWe now give an overview of the orretness properties for programs and queries that areused in this thesis. Figure 19 shows all the properties. An arrow stands for impliation.In eah box, we quote the de�nition of the property and state the main purpose forwhih it is used, apart from the obvious purpose of de�ning other properties.The arrows 1{4 orrespond to impliations by de�nition. As stated in Proposi-tion 5.13, permutation well-modedness is permutation well-typedness for the speialase that the only type is the type all ground. Moreover, permutation simply-typednessis permutation robustly-typedness for the speial ase that all output positions, and ex-atly the input positions of variable type, are free.

Chapter 8Termination and blokDelarationsIn this hapter, we onsider termination of logi programs with blok delarations.In Setion 6.5, we said that often, assuming input-onsuming derivations is not suf-�ient to ensure termination. We now make an additional assumption, namely thatderivations are left-based. These are derivations where (allowing for some exeptionsexplained in the next setion) the leftmost seletable atom is seleted in eah step. Thisis intended to model derivations in the ommon implementations of Prolog with blokdelarations [SIC98℄. Sine \leftmost" obviously refers to the textual order of atoms ina query, we annot make the simplifying assumption in this hapter that the textual or-der is always idential to the produer-onsumer order, as disussed in Subsetion 5.3.2.That is, whenever we use one of the orretness properties suh as permutation niely-modedness, we annot assume that the permutations are always the identity.8.1 Two Approahes to the Termination ProblemOur �rst approah to the termination problem is foused on speulative output bind-ings [Nai92℄, that is, output bindings made before it is known that a solution exists.This is a well-known soure of non-termination assoiated with delay delarations. Wepresent two omplementing methods for dealing with this problem and thus proving (orensuring) termination. Whih method must be applied depends on the program andon the mode being onsidered. The �rst method exploits the fat that a program doesnot use any speulative bindings, by ensuring that no atom ever delays for all left-basedderivations. The seond method exploits the fat that a program does not make anyspeulative bindings. This approah builds on previous heuristis [Nai85, Nai92℄ andrelies on onditions whih are easy to hek. However, it is quite limited.The seond approah to the termination problem builds on Chapter 6 but assumesthat derivations are not only input-onsuming, but also left-based. The question is:what shall we do about prediates that are not atom-terminating? A good intuitiveexplanation for the problem these prediates pose is that they may loop when alled withinsuÆient input. For example, onsider the permute program as shown in Figure 20.For permute(O ; I) the query permute(A,[1|B℄) has insuÆient input and may loop.98

8.2. LEFT-BASED DERIVATIONS 99:- blok permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-delete(U,Y,Z),permute(X,Z). :- blok delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 20: Plaing reursive alls last for permuteHowever, the query permute(A,[1,2℄) has suÆient input and terminates. The ideafor proving termination is that, for suh prediates, alls with insuÆient input mustnever arise. This an be ensured by appropriate ordering of atoms in the lause bodies,as demonstrated in Figure 20 (in ontrast to Figure 18 on page 95). This may atuallywork in several modes, provided not too many prediates have this undesirable property.Both approahes impliitly rely on termination of LD-derivations, in that they trans-late the termination problem for a program with delay delarations to the same problemfor a orresponding program exeuted left-to-right. It is assumed that, for the orre-sponding program, termination an be shown using some existing tehnique [Apt97,AP90, DD94, DVB92, DD93, DD98, EBC99, LS96, LS97℄. For the example programswe give, exept for the program in Figure 13 on page 81, Lindenstrauss has on�rmedto us that the TermiLog system [LSS97℄ an automatially prove termination for theorresponding programs assuming LD-derivations.This hapter is organised as follows. The next setion de�nes left-based deriva-tions. Setion 8.3 presents the �rst approah. Setion 8.4 presents the seond approah.Setion 8.5 disusses the results of this hapter and ompares the two approahes.8.2 Left-Based DerivationsWe now attempt to formalise derivations in most existing Prolog implementations. Someauthors have onsidered a seletion rule stating that in eah derivation step, the leftmostseletable atom is seleted. Boye laims that several modern Prolog implementationsand even G�odel [HL94℄ use this seletion rule [Boy96, page 123℄. Apt and Luitjes [AL95℄have interpreted Naish's [Nai86, Nai92℄ notion of a \default left-to-right" seletion rulein this way. Naish has not spei�ed preisely what a default left-to-right seletion ruleis, but he is aware of the fat that the seletion rule of most Prolog implementationsdoes not state that the leftmost seletable atom is always seleted.1As an aside, Apt and Luitjes also laim that L�uttringhaus-Kappel [L�ut93℄ has on-sidered this seletion rule, but this is de�nitely not the ase, sine L�uttringhaus-Kappelonsiders arbitrary delay-respeting derivations.Prolog implementations do not usually guarantee the order in whih two simultane-ously woken atoms are seleted. In the following, we de�ne waiting atoms, whih arethe atoms that were previously delayed, together with all their desendants. We speifythat waiting atoms are always preferred over other atoms, but we do not speify therelative seletion order of two waiting atoms.1Personal ommuniation.

100 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSDe�nition 8.1 [waiting atom, left-based derivation℄ Let P be a program and letQ0; : : : ;Qi : : : be a delay-respeting derivation, where Qi = R1; R2, and R1 ontainsno atom that is seletable in P . Then every desendant of every atom in R1 is waiting.A delay-respeting derivation Q0;Q1 : : : is left-based if in eah Qi, an atom whih isnot waiting is seleted only if there is no seletable atom to the left of it in Qi. /Example 8.1 Consider the following program::- blok a(-). :- blok b(-)a(1). b(X) :- b2(X).(1). b2(1). d.The following is a left-based derivation. Waiting atoms are overlined. The seletedatom in eah step is underlined, as in previous examples.a(X); b(X); (X); d ; a(1); b(1); d ; a(1); b2(1); d ; a(1); d ; d ; 2:Note that b(1) and b2(1) are waiting and seletable, and therefore they an be seletedalthough there is the seletable atom a(1) to the left. In ontrast, d is never waitingand an only be seleted in the last step. The following is another left-based derivation.Here, the leftmost seletable atom is seleted in eah step.a(X); b(X); (X); d ; a(1); b(1); d ; b(1); d ; b2(1); d ; d ; 2: /We do not believe that it would be useful or pratial to try to speify the seletionrule of existing Prolog implementations more preisely. Our experiments suggest thatit depends on the order in whih variables are bound when two terms are uni�ed, whihis learly an artefat of the implementation. We are on�dent however that derivationsin most Prolog implementations are left-based. To the best of our knowledge, thishas not been formalised previously, although Naish has onsidered suh derivationsinformally [Nai86, Nai92℄.We an state the following simple lemma about left-based derivations.Lemma 8.1 Let P be a program and � a left-based derivation suh that in eah queryin �, the leftmost atom is seletable in P . Then � is an LD-derivation.Proof. Let � = Q0;Q1; : : :. We show by indution that for all i � 0, Qi ontains nowaiting atom, and the leftmost atom in Qi is seleted in the step Qi;Qi+1.In Q0, no atom is waiting, and hene the leftmost atom is seleted. Now suppose thatfor some i > 0, Qi ontains no waiting atom. Then, sine the leftmost atom of Qi isseletable, it is seleted. Moreover, no atom in Qi+1 is waiting. 28.3 Termination and Speulative BindingsIn this setion, we present two omplementing methods for showing termination. Theseare explained in the following example.

8.3. TERMINATION AND SPECULATIVE BINDINGS 101Example 8.2 Consider the permute program (Figure 18 on page 95). The derivationin Example 6.2 loops beause delete produes a speulative output binding [Nai92℄: Theoutput variable Z0 is bound before it is known that this binding will never have to beundone. Assuming left-based derivations, termination in both modes an be ensured byswapping the two body atoms of the reursive lause for permute. The modi�ed programis shown in Figure 20 on page 99. This tehnique has been desribed as plaing reursivealls last [Nai92℄. To explain why the program terminates, we have to apply a di�erentreasoning for the di�erent modes.In mode permute(O ; I), the atom that produes the speulative output ours tex-tually before the atom that onsumes it. This means that the onsumer waits untilthe produer has ompleted, that is, undone the speulative binding. The programdoes not use speulative bindings. In mode permute(I ;O), delete is used in modedelete(I ;O ; I), and in this mode it does not make speulative bindings.Observe that in mode permute(O ; I), termination for this example depends onderivations being left-based, and therefore any method whih abstrats from the textualorder must fail. /The methods presented in this setion an be used to prove termination for permute(Figure 20 on page 99), treeList (Figure 15 on page 88), plus one (Figure 13 onpage 81), and delete as de�ned in Example 7.1. However, they do not work forquiksort (Figure 14 on page 87) and nqueens (whih will be shown in Figure 22on page 106).8.3.1 Termination by not Using Speulative BindingsIn LD-derivations, speulative bindings are never used [Nai92℄. By Lemma 8.1, a left-based derivation is an LD-derivation, provided the leftmost atom in eah query in thederivation is always seletable. Moreover, by De�nition 5.5, the leftmost atom in a welltyped query is always non-variable in its input positions of non-variable type. Thisimplies the following theorem.Theorem 8.2 Let Q be a well typed query and P a well typed program suh thatan atom is seletable in P whenever its input positions of non-variable type are non-variable. Then every left-based derivation of P [fQg is an LD-derivation.We now give two examples of programs where by Theorem 8.2, we an use any methodfor LD-derivations [DD94℄ to show termination for any well typed query.Example 8.3 Consider permute(O ; I) (Figure 20 on page 99) with either of the typesgiven in Example 5.7. This program is well typed. /Example 8.4 Consider the delete program in Example 7.1. Assuming either of thetypes given in Example 5.7, this program is well typed. Moreover, this is a program forwhih Setion 8.4 is not appliable, beause the program is not permutation robustlytyped. /

102 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS8.3.2 Termination by not Making Speulative BindingsSome programs and queries have the property that there annot be any failing deriva-tions [PR99℄. Bossi and Coo [BC99℄ have de�ned a lass of suh programs allednoFD, assuming LD-derivations. We de�ne non-speulative programs, whih is a simi-lar onept. The de�nition is based on permutation simply typed programs.De�nition 8.2 [non-speulative℄ A program P is non-speulative if it is permutationsimply typed, input-linear, and every simply typed atom using a prediate in P isuni�able with some lause head in P . /Note that unlike noFD programs, non-speulative programs must be input-linear. Thusin partiular, they must not use the equality prediate in mode =(I ; I), that is, theymust not use equality tests.Example 8.5 We give some examples of non-speulative programs. Both versions ofthe permute program (Figure 18 on page 95 and Figure 20 on page 99), assumingeither of the types given in Example 5.7, are non-speulative in mode fpermute(I ;O);delete(I ;O ; I)g. Every simply typed atom is uni�able with at least one lause head.Both versions are not non-speulative in mode fpermute(O ; I); delete(O ; I ;O)g,beause delete(A,[℄,B) is a simply typed atom whih is not uni�able with any lausehead.The program treeList (Figure 15 on page 88) is non-speulative in the modeftreeList(I ;O); append(I ; I ;O)g. It is not non-speulative in mode ftreeList(O ; I);append(O ;O ; I)g beause it is not permutation simply typed (see Example 7.5).Now onsider the plus one program (Figure 13 on page 81) and suppose all argu-ments have type f0; su(0); su(su(0)); : : :g. Then the program is non-speulative.We will see later that this gives us an alternative way of proving termination for thisprogram. /A delay-respeting derivation for a non-speulative program P with input seletabilityand a permutation simply typed query annot fail.2 However it ould still be in�nite.The following theorem says that this an only happen if the simply typed programorresponding to P has an in�nite LD-derivation for this query.Theorem 8.3 Let P be a non-speulative program with input seletability and P 0 asimply typed program orresponding to P . Let Q be a permutation simply typed queryand Q0 a simply typed query orresponding to Q. If there is an in�nite delay-respetingderivation of P [fQg, then there is an in�nite LD-derivation of P 0 [fQ0g.Proof. For simpliity assume that Q and eah lause body in P do not ontain twoidential atoms. Let Q0 = Q, �0 = ; and� = hQ0; �0i; hQ1; �1i; : : :2It an also not ounder, as we will see in Setion 9.3.

8.3. TERMINATION AND SPECULATIVE BINDINGS 103be a delay-respeting derivation of P [fQg. The idea is to onstrut an LD-derivation�0 of P 0 [fQ0g suh that whenever � uses a lause C, then �0 uses the orrespondinglause C 0 in P 0. It will then turn out that if �0 is �nite, � must also be �nite.We all an atom a resolved in � at i if a ours in Qi but not in Qi+1. We all aresolved in � if for some i, a is resolved in � at i. Let Q00 = Q0 and �00 = ;. Weonstrut an LD-derivation �0 = hQ00; �00i; hQ01; �01i; : : :of P 0 [fQ0g showing that for eah i � 0 the following hold:S1(i) If q(u;v) is an atom in Q0i that is not resolved in �, then vars(v�0i)\ dom(�j) = ;for all j � 0.S2(i) Let x be a variable suh that, for some j � 0, x�j = f(: : :). Then x�0i is either avariable or x�0i = f(: : :).We �rst show S1(0) and S2(0). Let q(u;v) be an atom in Q00 that is not resolved in �.Sine �00 = ;, it follows that v�00 = v. Furthermore, by Lemmas 7.3 and 7.4 and sineq(u;v) is not resolved in �, we have v�j = v for all j. Thus S1(0) holds. S2(0) holdsbeause �00 = ;.Now assume that for some i, hQ0i; �0ii is de�ned, Q0i is not empty, and S1(i) and S2(i) hold.Let p(s; t) be the leftmost atom of Q0i. We de�ne a derivation step hQ0i; �0ii; hQ0i+1; �0i+1iwith p(s; t) as the seleted atom, and show that S1(i+ 1) and S2(i+ 1) hold.Case 1: p(s; t) is resolved in � at l for some l. Consider the simply typed lauseC 0 = h B0 orresponding to the uniquely renamed lause (using the same renaming)used in � to resolve p(s; t). Sine p(s; t) is resolved in � at l, and � is delay-respetingand P has input seletability, it follows that p(s; t)�l is non-variable in all bound inputpositions. Thus eah bound input position of p(s; t) must be �lled by a non-variableterm or a variable x suh that x�l = f(: : :) for some f . Moreover, p(s; t)�0i must havenon-variable terms in all bound input positions sine Q0i�0i is well typed. Thus it followsby S2(i) that in eah bound input position, p(s; t)�0i has the same top-level funtor asp(s; t)�l, and sine h has at terms in the bound input positions, there is an MGU �0iof p(s; t)�0i and h. We use C 0 for the step hQ0i; �0ii; hQ0i+1; �0i+1i.We must show S1(i + 1) and S2(i + 1). Consider an atom q(u;v) in Q0i other thanp(s; t). By Lemma 7.2 (e), vars(v�0i) \ dom(�0i) = ;. Thus for the atoms in Q0i+1 thatour already in Q0i, S1 is maintained. Now onsider an atom q(u;v) in B0 whih is notresolved in �. By Lemma 7.4, v�0i+1 = v. Sine q(u;v) is not resolved in �, for all j > lwe have that q(u;v) ours in Qj and thus by Lemma 7.4, v�j = v. Thus S1(i + 1)follows. S2(i + 1) holds beause of S2(i) and sine p(s; t) is resolved using the samelause head as in �.Case 2: p(s; t) is not resolved in �. Sine P 0 is non-speulative, there is a (uniquelyrenamed) lause C 0 = h B0 in P 0 suh that h and p(s; t)�0i have an MGU �0i. We useC 0 for the step hQ0i; �0ii; hQ0i+1; �0i+1i.

104 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSWe must show S1(i+1) and S2(i+1). Consider an atom q(u;v) in Q0i other than p(s; t).By Lemma 7.2 (e), vars(v�0i) \ dom(�0i) = ;. Thus for the atoms in Q0i+1 that ouralready in Q0i, S1 is maintained. Now onsider an atom q(u;v) in B0. Clearly q(u;v) isnot resolved in �, sine it does not even our in �. Sine vars(C 0)\ vars(Qj�j) = ; forall j and sine by Lemma 7.4, we have v�0i+1 = v, S1(i+ 1) follows.By S1(i), we have vars(t�0i) \ dom(�j) = ; for all j. By Lemma 7.2 (), we havedom(�0i) � vars(t�0i) [vars(C 0). Thus we have dom(�0i) \ dom(�j) = ; for all j.Moreover, S2(i) holds, and so S2(i+ 1) follows.Sine this onstrution an only terminate when the query is empty, either Q0n is emptyfor some n, or �0 is in�nite.Thus we show that if �0 is �nite, then every atom resolved in � is also resolved in �0. Solet �0 be �nite of length n. Assume for the sake of deriving a ontradition that j is thesmallest number suh that the atom a seleted in hQj ; �ji; hQj+1; �j+1i is never seletedin �0. Then j 6= 0 sine Q0 and Q00 are permutations of eah other and all atoms in Q00 areeventually seleted in �0. Thus there must be a k < j suh that a does not our in Qkbut does our in Qk+1. Consider the atom b seleted in hQk; �ki; hQk+1; �k+1i. Then bythe assumption that j was minimal, b must be the seleted atom in hQ0i; �0ii; hQ0i+1; �0i+1ifor some i � n. Hene a must our in Q0i+1, sine the lause used to resolve b in �0 isa simply typed lause orresponding to the lause used to resolve b in �. Thus a mustour in Q0n, ontraditing that �0 terminates with the empty query.Thus if �0 is �nite, then � is also �nite, or equivalently, if � is in�nite, then �0 is alsoin�nite. 2As stated on page 99, for permute(I ;O) (Figure 20 on page 99), treeList(I ;O) (Fig-ure 15 on page 88) and plus one(I) (Figure 13 on page 81), the orresponding simplytyped programs terminate for simply typed queries, assuming LD derivations. By The-orem 8.3 it follows that the former programs terminate for permutation simply typedqueries, assuming delay-respeting derivations.3All of these examples an also be shown to terminate using Chapter 6. We now givea program for whih this is not the ase.Example 8.6 Consider the program in Figure 21, where the mode is fis list(I);equal list(I ;O)g and the type is fis list(list); equal list(list; list)g. The pro-gram is permutation simply typed (the seond lause is h2; 1i-simply typed) and non-speulative, and all LD-derivations for the orresponding simply typed program ter-minate. Hene it follows that all delay-respeting derivations of a permutation simplytyped query and this program terminate. While we onjeture that is list is alsoatom-terminating, the method of Chapter 6 annot show this (ompare this to thedisussion about quiksort(I ;O) on page 81).This example is learly a ontrived one, whih is partly beause it has been designedto be as simple as possible. We are not aware of a more natural example, but thisexample suggests that the method presented in this subsetion might be useful wheneverthe method of Chapter 6 fails to prove that a prediate is atom-terminating. /3In the ase of plus one, we would have to add blok delarations to ensure input seletability.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 105:- blok is_list(-).is_list([℄).is_list([X|Xs℄):-is_list(Ys),equal_list(Xs,Ys). :- blok equal_list(-,?).equal_list([℄,[℄).equal_list([X|Xs℄,[X|Ys℄):-equal_list(Xs,Ys).Figure 21: The is list programNote that any program that uses tests annot be non-speulative. In the quiksortprogram (Figure 14 on page 87), the atoms leq(X,C) and grt(X,C) are tests. Thesetests are exhaustive, that is, at least one of them sueeds [BC99℄. We are on�dentthat the result of this subsetion ould be generalised to allow for suh tests. We havenot attempted this generalisation beause on the whole, the method presented in thenext setion seems more useful. Pedreshi and Ruggieri however onsider a more generalnotion of \non-failure", whih allows for programs suh as quiksort [PR99℄.8.4 Termination and Atom-Terminating PrediatesWe now present an alternative method for showing termination whih overomes someof the limitations of the methods presented in the previous setion. In partiular, themethod an be used for quiksort (Figure 14 on page 87) and nqueens (Figure 22)as well as permute (Figure 20 on page 99) and treeList (Figure 15 on page 88). Weexpet the method presented here to be more useful, although, as Examples 8.4 and 8.6show, it does not subsume the methods of the previous setion.In this setion, two tehniques are ombined. On the one hand, we use Chapter 6to show that ertain prediates are atom-terminating. On the other hand, we reduethe problem of proving termination for a program with blok delarations to the sameproblem for a orresponding program without blok delarations, as in the previoussetion. It is assumed that termination for the orresponding program has been shownusing some existing method for LD-derivations [DD94℄.Let us now illustrate the limitations of the previous setion. For permute(O ; I)(Figure 20 on page 99), termination ould be ensured by applying the heuristi ofplaing reursive alls last [Nai92℄. The following example however shows that even thisversion of permute(O ; I) an ause a loop depending on how it is alled within someother program.Example 8.7 Figure 22 shows a program for the n-queens problem. Here blok de-larations are used to implement the test-and-generate paradigm. We have already seena fragment of this program in Figure 12 on page 80, however with a di�erent order ofatoms in the �rst lause.Assuming mode fnqueens(I ;O); sequene(I ;O); safe(I); permute(O ; I); <(I ; I),is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g and type fnqueens(int; il);sequene(int; il); safe(il); permute(il; il); <(int; int); is(int; int);

106 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONS:- blok nqueens(-,?).nqueens(N,Sol) :-sequene(N,Seq),safe(Sol),permute(Sol,Seq).:- blok sequene(-,?).sequene(0,[℄).sequene(N,[N|Seq℄):-0 < N,N1 is N-1,sequene(N1,Seq).:- blok safe(-).safe([℄).safe([N|Ns℄) :-safe_aux(Ns,1,N),safe(Ns).

:- blok safe_aux(-,?,?), safe_aux(?,-,?),safe_aux(?,?,-).safe_aux([℄,_,_).safe_aux([M|Ms℄,Dist,N) :-no_diag(N,M,Dist),Dist2 is Dist+1,safe_aux(Ms,Dist2,N).:- blok no_diag(-,?,?), no_diag(?,-,?),no_diag(?,?,-).no_diag(N,M,Dist) :-Dist =\= N-M,Dist =\= M-N.:- blok permute(-,-).permute([℄,[℄).permute([U|X℄,Y) :-delete(U,Y,Z),permute(X,Z).:- blok delete(?,-,-).delete(X,[X|Z℄,Z).delete(X,[U|Y℄,[U|Z℄) :-delete(X,Y,Z).Figure 22: A program for n-queenssafe aux(il; int; int); no diag(int; int; int); =\=(int; int)g, the �rst lause is h1; 3; 2i-robustly typed. Moreover, the query nqueens(4,Sol) terminates.If however in the �rst lause, the atom order is hanged by moving sequene(N,Seq)to the end, then nqueens(4,Sol) loops. This is beause resolving sequene(4,Seq)with the seond lause for sequene makes a binding (whih is not speulative) whihtriggers the all permute(Sol,[4|T℄). This all results in a loop sine permute(O ; I) isnot atom-terminating. Note that [4|T℄, although non-variable, is insuÆiently instan-tiated for permute(Sol,[4|T℄) to be orretly typed in its input position: permute isalled with insuÆient input.Note that in this example, unlike in the quiksort program (Figure 14 on page 87),there are no blok delarations for the built-ins <, is and =/=. In Setion 10.1, we willsee why it is not neessary to have blok delarations here. /To ensure termination, atoms in a lause body that loop when alled with insuÆientinput should be plaed so that all atoms whih produe the input for these atomsour textually earlier. Note that this explains in partiular why in the seond lausefor permute in the above example, the reursive all to permute must be plaed last.In Chapter 6, we have seen that atom-terminating prediates do not loop for input-onsuming derivations, whih means in partiular, they do not loop when alled with

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 107insuÆient input.This setion assumes permutation robustly typed programs. By Theorem 7.9, delay-respeting derivations for permutation robustly typed, input-linear programs with inputseletability are input-onsuming.A query is alled well fed if eah atom is atom-terminating or ours in suh aposition that all atoms whih \feed" the atom our earlier.De�nition 8.3 [well fed℄ Let P be a permutation robustly typed program. For a�-robustly typed query p1(s1; t1); : : : ; pn(sn; tn), an atom pi(si; ti) is well fed if allprediates q with pi w q are atom-terminating, or �(j) < �(i) implies j < i for all j. A�-robustly typed query (lause) is well fed if all of its (body) atoms are well fed. P iswell fed if all of its lauses are well fed. /Of ourse, sine it is undeidable whether a prediate is atom-terminating, we mustassume it to be not atom-terminating if it has not been shown to be atom-terminat-ing. In Example 6.5, we have seen the situation that a prediate p is atom-terminatingbut some prediate q with p A q is not atom-terminating. To simplify the proof ofTheorem 8.5, we want to exlude this pathologial situation. This is reeted in theabove de�nition by the requirement \all prediates q with pi w q are atom-terminating",rather than just \pi is atom-terminating".Example 8.8 The programs mentioned in Example 7.6 are well fed in the given modes.The nqueens program (Figure 22 on page 106) is well fed in the mode given in Exam-ple 8.7. The program is not well fed in mode fnqueens(O ; I); sequene(O ; I); safe(I);permute(I ;O); <(I ; I), is(O ; I); safe aux(I ; I ; I); no diag(I ; I ; I); =\=(I ; I)g, beauseit is not permutation niely moded in this mode: in the seond lause for sequene, N1ours twie in an output position. /The property of being well fed is persistent under resolution.Lemma 8.4 Every resolvent of a well fed query Q and an input-linear well fed lauseC, where vars(Q)\vars(C) = ; and the derivation step is input-onsuming, is well fed.Proof. By Lemma 7.6 (b), the resolvent is permutation robustly typed. The onditionon the permutation in De�nition 8.3 an be heked by inspeting De�nition 5.1. 2The following theorem redues the problem of showing termination of left-based deriva-tions for a well fed program to showing termination of LD-derivations for a orrespondingrobustly typed program.Theorem 8.5 Let P be an input-linear, well fed program with input seletability, andQ a well fed query. Let P 0 and Q0 be a robustly typed program and query orrespondingto P and Q, respetively. If every LD-derivation of P 0 [fQ0g is �nite, then every left-based derivation of P [fQg is �nite.Proof. In this proof, all an atom p(s; t) ritial if it is not the ase that all prediatesq with p w q are atom-terminating. Let Q0 = Q, �0 = ; and� = hQ0; �0i; : : : ; hR1; �1i; hQ1; �1i; : : : ; hR2; �2i; hQ2; �2i : : :

108 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSbe a left-based derivation, where R1; R2; : : : are the queries in � where a ritial atomis seleted.Part 1: We show for eah i � 0: If Ri exists, then in eah query in hQ0; �0i; : : : ; hRi; �ii,the ritial atoms are not waiting, and for eah l � i, the leftmost ritial atom in Rl isseleted in the step hRl; �li; hQl; �li. The proof is by indution on i.Case 1: Base ase. The ase i = 0 is trivial sine R0 does not exist.Case 2: Indutive step. Suppose the statement holds for some i � 0.Case 2a: If Ri+1 does not exist, the statement follows trivially for i+ 1.Case 2b: Now suppose that Ri+1 exists. Let Qi = a1; : : : ; an and suppose Qi�i is�-robustly typed, and k is the smallest number suh that ak is ritial.Let (F; ak) be the subquery of Qi ontaining all aj with �(j) � �(k). By Lemma 8.4,Qi�i is well fed, and thus j � k for all aj in (F; ak). By Proposition 5.11(F; ak)�i is permutation well typed. (1)Consider an arbitrary h ~Q; ~�i in hQi; �ii; : : : ; hRi+1; �i+1i and assume that no ritialatom in the query preeding h ~Q; ~�i in � is waiting. Note that sine ~Q ontains ak, itfollows that ~Q ontains at least one desendant of (F; ak). By (1) and Lemma 5.10, ~Qontains, in partiular, at least one desendant a of (F; ak) suh that a~� is seletable,and moreover, either a = ak or a ours to the left of ak in ~Q. Therefore no ritialatom in h ~Q; ~�i is waiting.Suppose that Ri+1�i+1 ontains a desendant a of (F; ak) suh that a�i+1 is seletable,and a 6= ak. Then, sine by the previous paragraph, ak is not waiting in Ri+1, it followsthat ak annot be seleted in hRi+1; �i+1i; hQi+1; �i+1i, whih ontradits the de�nitionof Ri+1. Thus it follows thatRi+1 ontains no desendant of F , (2)and so ak�i+1 is seletable. Moreover, no ritial atom in Ri+1�i+1 is waiting, and sothe seleted atom in hRi+1; �i+1i; hQi+1; �i+1i is ak.Part 2: For all i > 0 suh that Ri exists, let Ci be the uniquely renamed lause usedin the step hRi; �ii; hQi; �ii, and let C 0i be a robustly typed lause orresponding to Ci(using the same renaming). Let Q00 = Q0 and �00 = ;. We onstrut an LD-derivation�0 = hQ00; �00i; : : : ; hR01; �01i; hQ01; �01i; : : : ; hR02; �02i; hQ02; �02i : : : ;where R01; R02; : : : are the queries in �0 where a ritial atom is seleted, suh that forall i > 1, C 0i is the lause used in hR0i; �0ii; hQ0i; �0ii. Sine �0 is �nite by assumption, thisimplies that � is �nite. We show the following statements for all i � 0 suh that Qiexists:S1(i) The ritial atoms of Qi and Q0i are idential and our in the same order.

8.4. TERMINATION AND ATOM-TERMINATING PREDICATES 109S2(i) �i = �0i�i for some substitution �i.S3(i) Let Qi = a1; : : : ; an and assume that Qi�i is �-robustly typed, and let ak be aritial atom (k 2 f1; : : : ; ng). By S1(i) we an write Q0i = (F 0; ak; I 0) for some F 0and I 0. For every a in F 0, for every aj (j 2 f1; : : : ; ng) that is a desendant of ain �, we have �(j) < �(k).The proof is by indution on i.Case 1: Base ase. S1(0) follows from De�nition 8.3. S2(0) holds sine �0 = �00 = ;.For S3(0), note that Q00 = �(Q0) and hene F 0 ontains exatly the atoms aj with�(j) < �(k).Case 2: We now assume that S1(i){S3(i) hold for some i � 0 and that Qi+1 exists, andonstrut hQ0i; �0ii; : : : ; hR0i+1; �0i+1i; hQ0i+1; �0i+1iso that S1(i+ 1){S3(i + 1) hold.As in Part 1, let Qi = a1; : : : ; an, suppose that Qi�i is �-robustly typed, let k be thesmallest number suh that ak is ritial, and (F; ak) be the subquery of Qi ontaining allaj with �(j) � �(k). By S1(i), Q0i = (F 0; ak; I 0) for some F 0 and I 0, where F 0 ontainsonly atom-terminating atoms. By S3(i), for every a in F 0, for every aj (j 2 f1; : : : ; ng)that is a desendant of a in �, we have �(j) < �(k), and therefore aj is in F . Thus itfollows by (2) in Part 1 thatRi+1 ontains no desendants of F 0. (3)Let R0i+1 = ak; I 0. By (3) and sine by S2(i), �0i is more general than �i, it is possibleto onstrut an LD-derivation hQ0i; �0ii; : : : ; hR0i+1; �0i+1i, suh that if ~C is the uniquelyrenamed lause used to resolve an atom in �, then a robustly typed lause ~C 0 orrespond-ing to ~C (using the same renaming) is used in hQ0i; �0ii; : : : ; hR0i+1; �0i+1i. Furthermore�0i+1 is more general than �i+1. Hene C 0i+1 an be used in hR0i+1; �0i+1i; hQ0i+1; �0i+1i.Sine in the lause body of C 0i+1, the ritial atoms our in the same order as in Ci+1,S1(i+1) holds. Sine �0i+1 is more general than �i+1, it follows that �0i+1 is more generalthan �i+1, so S2(i + 1) holds. For the ritial atoms in Qi+1 whih our in the lausebody of C 0i+1, S3(i+1) follows from De�nition 8.3. For the ritial atoms in Qi+1 whihour already in Ri+1, S3(i+ 1) follows from S3(i).By De�nition 7.4, Q is permutation well typed, type-onsistent and permutation nielymoded. By Lemma 7.7, P is type-onsistent with respet to input-onsuming deriva-tions. By Theorem 7.9, � is input-onsuming. Hene by Theorem 6.3, � ould be in�niteonly if there are in�nitely many steps where a ritial atom is resolved.4 Sine �0 is �-nite, � annot have in�nitely many steps where a ritial atom is resolved, and thus �is �nite. 24Reall that as disussed on page 63, Theorem 6.3 generalises to permutation well typed and permu-tation niely moded programs and queries.

110 CHAPTER 8. TERMINATION AND BLOCK DECLARATIONSExample 8.9 Consider the quiksort program (Figure 14 on page 87) with the typegiven in Example 7.4. As stated in Example 8.8, this program is well fed in modefquiksort(I ;O); append(I ; I ;O); leq(I ; I); grt(I ; I); part(I ; I ;O ;O)g. In partiu-lar, the append atom in the body of the reursive lause for quiksort is well fed sineit is atom-terminating (see Example 6.4). All other body atoms in the program are wellfed beause of their textual position.As stated on page 99, the robustly typed program orresponding to this programterminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5it follows that the quiksort program of Figure 14 terminates for all well fed queries,assuming left-based derivations.Now onsider the mode fquiksort(O ; I); append(O ;O ; I); leq(I ; I); grt(I ; I);part(O ; I ; I ; I)g. The quiksort program is also well fed with respet to this mode.The two reursive alls in the seond lause for quiksort are well fed beause oftheir textual position. All other atoms are well fed beause they are atom-terminating.For part, this an be shown using Theorem 6.4, where the level mapping of an atompart(l; ; s; b) is de�ned as the sum of the list lengths of s and b. As for the �rst mode,we an onlude that the program terminates for all well fed queries, assuming left-basedderivations. /Example 8.10 Consider the nqueens program (Figure 22 on page 106). We have seenin Example 6.4 that no diag, safe aux and safe are atom-terminating.The lause de�ning nqueens is h1; 3; 2i-robustly typed. The seond atom is well fedsine it is atom-terminating. The �rst atom is well fed sine for � = h1; 3; 2i, �(j) < �(1)implies j < 1 for all j. The third atom is well fed sine �(j) < �(3) implies j < 3 forall j.As stated on page 99, the robustly typed program orresponding to this programterminates for all robustly typed queries, assuming LD-derivations. By Theorem 8.5it follows that the nqueens program of Figure 22 terminates for all well fed queries,assuming left-based derivations.Aording to the produer-onsumer order, safe(Sol) ours textually too early.However, this is the idea of the test-and-generate paradigm: the test safe(Sol) omesbefore the generator permute(Sol,Seq). This way, safe(Sol) is always seleted asearly as possible and therefore \non-solutions" to the n-queens problem are detetedearly.Our method an only show termination for the mode given in Example 8.7, butnot for the mode nqueens(O ; I), although the program atually terminates for thatmode (provided the blok delarations are modi�ed to allow for both modes). Thereason that our method fails is not some insigni�ant detail of our de�nitions that ouldeasily be reti�ed. One an de�nitely say that the modes in this program \go wrong":every all to sequene(O ; I) triggers alls to sequene(I ;O). The onsequene is thatnqueens(O ; I) runs in exponential time although it ould run in quadrati time.To the best of our knowledge, no method previously proposed an prove terminationfor this program, whih is a lassial example of a program using oroutining. /Similarly, we an show termination for permute (Figure 20 on page 99) and treeList(Figure 15 on page 88). We are assuming here that all built-ins have input seletability.

8.5. DISCUSSION 111Built-ins will be disussed in Setion 9.4. In Setion 10.1, we will see why in some ases,it is not neessary to have blok delarations for the built-ins.8.5 DisussionIn this hapter, we have presented two approahes to proving termination for programswith blok delarations.The �rst approah is foused on speulative output bindings, whih have long beenreognised as a soure of non-termination in programs with delay delarations [Nai92℄.The approah onsists of two omplementing methods based on not using and notmaking speulative bindings, respetively. For permute (Figure 20 on page 99) andtreeList (Figure 15 on page 88), it turns out that in one mode, the �rst methodapplies, and in the other mode, the seond method applies. This approah is simpleto understand and to apply, and it represents the �rst work on termination we havepublished [SHK99b℄.The seond approah builds on Chapter 6. We require programs to be permutationrobustly typed, a property whih ensures that derivations are input-onsuming. In thenext step, we identify prediates that are atom-terminating. Atom-terminating atomsan be plaed in lause bodies anywhere. The other atoms must be plaed suÆientlylate, so that their input is suÆiently instantiated when they are alled. Provided thatthe orresponding robustly typed program terminates for all LD-derivations, this thenimplies that the original program terminates for all left-based derivations.On the whole, the seond approah is more useful. It an be used to show termi-nation for quiksort (Figure 14 on page 87) and nqueens (Figure 22 on page 106),where the �rst approah fails. In the original paper where this approah was �rstpresented [SHK98℄, it was not yet based on the results of Chapter 6 in their presentgeneral form. In this thesis, the approah follows the idea that one should abstratfrom the details of partiular delay onstruts wherever possible, and instead onsiderinput-onsuming derivations.On the other hand, as Examples 8.4 and 8.6 show, the seond approah does notformally subsume the �rst. Example 8.6 suggests in partiular that the method ofSubsetion 8.3.2 might be useful whenever the method of Chapter 6 fails to prove thata prediate is atom-terminating, although it atually is. Of ourse, it would ultimatelybe desirable to have a more powerful method for proving that a prediate is atom-terminating, but we onsider this to be a diÆult problem.

Chapter 9
Further Aspets of Veri�ation
So far, we have studied termination of non-standard derivations. Following work by Aptand others [AE93, AL95℄, we now investigate four other aspets of veri�ation: programsshould only require mathing instead of the full uni�ation proedure wherever possible;the omission of the our-hek should be safe; programs should not ounder; and thereshould be no type or instantiation errors with the use of built-ins.Our results on uni�ation freedom, our-hek freedom and ounder freedom aregeneralisations of previous work [AE93, AL95℄. Our work on built-ins is aimed mainlyat arithmeti built-ins. We exploit the fat that for numbers, being non-variable impliesbeing ground, and show how to prevent instantiation and type errors.This hapter is organised as follows. Setion 9.1 shows when programs are uni�a-tion free. Setion 9.2 shows when the our-hek an safely be omitted. Setion 9.3shows when programs do not ounder. Setion 9.4 is about errors related to built-ins.Setion 9.5 onludes.
9.1 Uni�ation Free ProgramsA program is uni�ation free if uni�ation an be replaed by mathing. Knowing thata program has this property an improve the eÆieny of the ompiled ode. Apt andEtalle [AE93℄ show uni�ation freedom for LD-derivations. They assume simply modedand well typed programs and rely on the seleted atom always being orretly typed inits input positions. 112

9.1. UNIFICATION FREE PROGRAMS 113When we generalise these results to arbitrary input-onsuming derivations, we musttake into aount that the seleted atom may not be suÆiently instantiated to beorretly typed in its input positions. Nevertheless, we will now see that permutationsimply typed programs are uni�ation free. We �rst reall some de�nitions [AE93℄.De�nition 9.1 [math, left-right disjoint℄ Given two vetors of terms s = s1; : : : ; snand t = t1; : : : ; tn we use fs = tg as abbreviation for the set of equations fs1 =t1; : : : ; sn = tng. Consider a set of equations E = fs = tg. A substitution � suh thatdom(�) � vars(s) and s� = t, or dom(�) � vars(t) and t� = s, is a math for E.Furthermore, E is left-right disjoint if vars(s) \ vars(t) = ;. /The following is a speial ase of iterated mathing [AE93℄.De�nition 9.2 [double mathing℄ Let E be a left-right disjoint set of equations. E issolvable by double mathing if the following holds: if E is uni�able, then there aresets of equations E1 and E2 and substitutions �1 and �2 suh that� E = E1 [E2,� E2�1 is left-right disjoint, and� �1 is a math for E1 and �2 is a math for E2�1. /We now de�ne programs that are uni�ation free for input-onsuming derivations, asopposed to LD-derivations as assumed by Apt and Etalle [AE93℄.De�nition 9.3 [uni�ation free for input-onsuming derivations℄ Let � be a derivation.Let p(s)1 be a seleted atom in � and p(t) the head of the lause used to resolve p(s).Then the set of equations s = t is suessfully onsidered in �.Let P be a program and Q a query. Suppose that all sets of equations suess-fully onsidered in all input-onsuming derivations of P [fQg are solvable by doublemathing. Then P [fQg is uni�ation free for input-onsuming derivations. /Note that unlike Apt and Etalle, we say that a set of equations is suessfully onsid-ered, rather than just onsidered. This is beause an atom an only be resolved if theuni�ation with the lause head is suessful. In our notion of derivation, there is nosuh thing as \trying" to unify an atom with a lause head unsuessfully.In the sequel, sine we only onsider input-onsuming derivations, we will simplysay \uni�ation free" instead of \uni�ation free for input-onsuming derivations".Apt and Etalle [AE93℄ exploit the fat that many programs have generi expressionsin their input positions. A generi expression for a type T is a term t suh that if s isa term of type T and s is uni�able with t, then s is an instane of t. In a permutationsimply typed program, the input positions of eah lause head are �lled with generiexpressions, sine they are �lled with variables in positions of variable type and attype-onsistent terms in positions of non-variable type.1Note that s is a vetor of terms. We do not are about input or output positions at this point.

114 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONTheorem 9.1 Let P be a permutation simply typed, input-linear program and Q apermutation simply typed query. Then P [fQg is uni�ation free.Proof. Consider a derivation step R;R0 in an input-onsuming derivation of P [fQg,where p(s; t) is the seleted atom, p(v;u) is the head of the lause used in this step and� is the MGU. By Lemma 7.2 (f), R is permutation simply typed. Let E1 = fs = vgand E2 = ft = ug so that E1 [E2 is the set of equations suessfully onsidered at thisstep. By Lemma 7.2 (a, b), � = �1�2 where �1 is a math for E1, dom(�1) � vars(v),vars(ran(�1)) � vars(s) and �2 is a math for ft = u�1g. Sine dom(�1) � vars(v)and vars(v) \ vars(t) = ;, we have E2�1 = ft = u�1g. Therefore �2 is a math forE2�1. Sine R is permutation simply typed, vars(s) \ vars(t) = ; so that E2�1 is left-right disjoint. Therefore E1 [E2 is solvable by double mathing and hene P [fQg isuni�ation free. 2Most programs we have seen are permutation simply typed and input-linear, and heneuni�ation free. However, quiksort(O ; I) (Figure 14 on page 87) and treeList(O ; I)(Figure 15 on page 88) are not permutation simply typed. The following exampleillustrates why the reasoning of the above theorem does not work for those programs,even though they may well be uni�ation free. This diÆulty has been aknowledgedpreviously by Apt and Etalle [AE93℄.Example 9.1 Consider the following two derivations for treeList(O ; I) (Figure 15 onpage 88). Here the �rst lause for append is used:treeList(A; [1℄);append(LList; [LabeljRList℄; [1℄); treeList(L; LList); treeList(R; RList);treeList(L; [℄); treeList(R; [℄)and here the seond lause is used:treeList(A; [1℄);append(LList; [LabeljRList℄; [1℄); treeList(L; LList); treeList(R; RList);append(Xs; [LabeljRList℄; [℄); treeList(L; [1jXs℄); treeList(R; RList):In both derivations, the last step is solvable by double mathing. In the �rst ase, thepartitioning of the set of equations isE1 = f[1℄ = Yg; E2 = f[LabeljRList℄ = Y; LList = [℄g:In the seond ase, it isE1 = f[1℄ = [XjZs℄; [LabeljRList℄ = Ysg; E2 = fLList = [XjXs℄g:Note that the seond argument position of append is in a di�erent set of the partitiondepending on the lause whih is used. It is not possible to �x a partitioning into theinput and output positions, whih is the idea underlying Theorem 9.1. /

9.2. OCCUR-CHECK FREEDOM 1159.2 Our-Chek FreedomA derivation is our-hek free if for every set of equations onsidered in this derivation,the our-hek an safely be omitted. We must �rst de�ne what it means for a setof equations to be onsidered. This builds on De�nition 9.3. The onept has beenpreviously de�ned by Apt and Luitjes [AL95℄. However, their de�nition is impreise inthat it depends on a onept of a derivation whih may end with a failed attempt tounify a seleted atom with a lause, without atually de�ning this onept formally.De�nition 9.4 [onsidered℄ Let P be a program and � a derivation. A set of equationss = t is onsidered in � if it is either suessfully onsidered in �, or there is an atomp(s) in the last query of � and a lause in P whose head is p(t). /In the above de�nition, no assumptions are made about the degree of instantiation ofthe \seleted atom" p(s). This is beause our result on our-hek freedom holds forarbitrary derivations. It would of ourse be possible to take into aount that � is say,delay-respeting or left-based, and impose a restrition suh as \p(s) must be seletable".It would however not be meaningful to take into aount that � is input-onsuming. Weillustrate this with an example.Example 9.2 Consider the programp(A,B).p(A,A).where the mode is p(I ; I), and onsider the query p(X; f(X)). Suppose we require thatderivations are input-onsuming. Then we an perform a derivation step using the �rstlause. We annot perform a derivation step using the seond lause, beause p(X; f(X))and p(A; A) are not uni�able. It is therefore meaningless to reason about whether thisderivation step would have been input-onsuming. The notion of input-onsuming isonly meaningful for atual derivation steps, not for attempted ones. /De�nition 9.5 [our-hek free℄ A derivation is our-hek free [AL95, AP94b℄if no exeution of the Martelli-Montanari uni�ation algorithm [MM82℄ for a set ofequations onsidered in this derivation ends with a set of equations inluding an equationx = t, where x is not t, but x ours in t. /We quote the following theorem.Theorem 9.2 [AL95, Theorem 13℄ Let P be a niely moded, input-linear programand Q a niely moded query. Then all derivations of P [fQg are our-hek free.The next theorem is a trivial onsequene of this and Lemma 5.3.Theorem 9.3 [our hek℄ Let P be a permutation niely moded, input-linear pro-gram and Q a permutation niely moded query. Then all derivations of P [fQg areour-hek free.Most programs onsidered in this thesis are permutation niely moded and input-linear,and hene our-hek free.

116 CHAPTER 9. FURTHER ASPECTS OF VERIFICATION9.3 FlounderingFreedom from oundering is an important aspet of veri�ation mainly beause of itsrelationship to termination. As Apt and Luitjes [AL95℄ put it[. . . ℄ the \stronger" the delay delarations are the bigger the hane that adeadlok arises, but the smaller the hane that divergene [non-termination℄an result. So deadlok freedom and termination seem to form two bound-aries within whih lie the \orret" delay delarations.In other words, one an always trivially ensure termination by having delay delarationssuh that no atom is ever seletable. That way, every derivation immediately oundersand hene terminates. Likewise, one an trivially ensure non-oundering by delaringthat every atom is always seletable.2 That way, no derivation an ever ounder butpossibly at the ost of non-termination.Therefore, for every approah to the termination problem of programs with delaydelarations, one must ask ritially: Does the method \buy" termination with ounder-ing? For the automatially generated delay delarations of L�uttringhaus-Kappel [L�ut93℄,the answer ould sometimes be \yes". This is disussed in Subsetion 11.1.5.Compared to termination however, non-oundering is an easy problem. Under thereasonable assumption that programs and queries are permutation well typed, it anbe shown that no derivation ounders. The assumption is reasonable beause mostprograms are permutation well typed.3 On the other hand, it is usually unreasonableto expet non-oundering for a query that is not instantiated enough to be permuta-tion well typed. We have argued in Subsetion 1.2.2 that ensuring input-onsumingderivations is paramount. Usually, oundering is the only way to ensure this for insuf-�iently instantiated queries. As an example, onsider the query append([1jXs℄; [℄; Zs)(see Figure 10 on page 57).The following theorem generalises [AL95, Theorem 26℄ to permutation well typedprograms. Note that permutation robustly typed programs with input seletability(De�nition 7.5) ful�ll the ondition that an atom is seletable if it is non-variable in allinput positions of non-variable type.Theorem 9.4 Let P be a permutation well typed program and Q be a permutationwell typed query. Assume that an atom is seletable if it is non-variable in all inputpositions of non-variable type. Then no delay-respeting derivation of P[fQg ounders.Proof. Let Q0 = Q and � = Q0;Q1; : : : be a delay-respeting derivation of P [fQg.Consider an arbitrary Qi = a1; : : : ; an where n � 1. By Lemma 5.10, Qi is �-well typedfor some �. By De�nition 5.5, the atom a��1(1) is orretly typed in its input positions,and thus non-variable in its input positions of non-variable type. Therefore a��1(1) isseletable. Thus every non-empty query in � ontains a seletable atom, and so � doesnot ounder. 22Tehnially, this is ahieved simply by having no delay delarations at all.3Etalle and others [AE93, EBC99℄ even laim that most programs are well typed and simply moded.

9.4. ERRORS RELATED TO BUILT-INS 117The above theorem an be used to show freedom from oundering for all programs withblok delarations we have introdued.9.4 Errors Related to Built-insBuilt-in prediates (built-ins) an be a soure of exeution errors. Some built-ins produean error if ertain arguments have a wrong type or are insuÆiently instantiated. Forexample, X is foo results in a type error and X is V results in an instantiationerror.Not surprisingly, delay delarations are useful to prevent instantiation errors, sinethey test for suÆient instantiation. The relationship between delay delarations andtype errors will be explained in the next subsetion.One problem with built-ins is that their implementation may not be written inProlog, or whatever logi programming language we onsider. Thus we assume thateah built-in is oneptually de�ned by possibly in�nitely many (fat) lauses. TheISO standard for Prolog [ISO95℄ does not de�ne the built-in prediates as oneptuallauses, but it is nevertheless so preise that it should generally be possible to verifywhether suh a de�nition is orret.To prove that a program is free from errors related to built-ins, we require it to meetertain orretness properties (see Setion 7.5). These properties have to be satis�ed bythe oneptual lauses for the built-ins as well as by the user-de�ned lauses.For example, there ould be fats \0 is 0+0.", \1 is 0+1.", and so forth. Apartiularly interesting example is \X = X." whih is the de�nition of the built-in =.This is why in an input-linear program, the mode =(I ; I) is forbidden, sine the lauseis not input-linear for that mode.In this setion, we �rst explain why type errors are related to delay delarations.We then present two approahes to ensuring freedom from instantiation and type errorsfor programs with delay delarations. For di�erent programs and built-ins, di�erentapproahes may be appliable.9.4.1 The Connetion between Delay Delarations and Type ErrorsAt �rst sight, it seems that delay delarations, or more generally, non-standard seletionrules, do not a�et the problem of type errors, be it positively or negatively. Delaydelarations annot enfore arguments to be orretly typed. Also, one would not expetthat a non-standard seletion rule ould be the ause of wrongly typed arguments.This is probably true in pratie, but in theory, there is the problem of type on-sisteny, whih is partiularly relevant for non-standard derivations (see Setion 5.7).Consider the program onsisting of the fat lause \two(2)." and the built-in is, withtype ftwo(int), is(int; int)g and mode ftwo(O); is(O ; I)g. Suppose an atom using isis seletable only when its input is non-variable. The queryX is foo; two(foo)is h2; 1i-well typed sine trivially j= foo : int) foo : int. It results in a type error.

118 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONFor LD-derivations this problem does not arise. The well typed query orrespondingto the above query is two(foo); X is foo. Sine the type of two is int and the programis well typed, the atom two(foo) an never be resolved, and therefore the derivationfails without ever reahing X is foo.9.4.2 Exploiting Constant TypesThe approah desribed in this subsetion aims at preventing instantiation and type er-rors for built-ins, for example arithmeti built-ins, that require arguments to be ground.It has been proposed by Apt and Luitjes [AL95℄ to equip these prediates with de-lay delarations so that they are only exeuted when the input is ground. This hasthe advantage that one an reason about arbitrary arithmeti expressions, as in, say,quiksort([1+1,3-8℄,M). The disadvantage is that blok delarations annot be used.In ontrast, we assume that the type of arithmeti built-ins is the onstant type num.Then we show that blok delarations are suÆient. The following lemma is similar toand based on [AL95, Lemma 27℄.Lemma 9.5 Let Q = p1(s1; t1); : : : ; pn(sn; tn) be a �-well typed query, where pi(Si;Ti)is the type of pi for eah i 2 f1; : : : ; ng. Suppose, for some k 2 f1; : : : ; ng, that sk hasa non-variable term s ourring diretly in a position of onstant type S, and there is asubstitution � suh that tj� : Tj for all j with �(j) < �(k). Then s : S (and thus s isground).Proof. By De�nition 5.5, sk� : Sk, and thus s� : S and so s� is a onstant. Sine sis already non-variable, it follows that s is a onstant and thus s� = s. Therefore s : S.2By De�nition 7.2, for every permutation simply typed query Q, there is a � suh that Q�is orretly typed in its output positions. Thus by Lemma 9.5, if the arithmeti built-inshave type num in all input positions, then it is enough to have blok delarations suhthat these built-ins are only seleted when the input positions are non-variable.Note that in the following theorem, we do not mention instantiation or type errors,as we have not de�ned formally what an error \is". From a formal point of view, allthat matters is that an atom seleted when its input arguments are orretly typed doesnot produe an error.Theorem 9.6 Let P be a permutation simply typed, input-linear program with inputseletability and Q be a permutation simply typed query. Then in any delay-respetingderivation � of P [fQg, an atom will be seleted only when it is orretly typed in itsinput positions of onstant type.Proof. By Lemma 7.2 (f) and Theorem 7.9, � onsists of permutation simply typedqueries. The result thus follows from Lemma 9.5. 2Example 9.3 Consider quiksort(I ;O) (Figure 14 on page 87) with the type givenin Example 7.4. No delay-respeting derivation for a permutation simply typed queryand this program an result in an instantiation or type error related to the arithmetibuilt-ins. /

9.4. ERRORS RELATED TO BUILT-INS 119:- blok length(-,-).length(L,N) :-len_aux(L,0,N).:- blok less(?,-), less(-,?).less(A,B) :-A < B.
:- blok len_aux(?,-,?), len_aux(-,?,-).len_aux([℄,N,N).len_aux([_|Xs℄,M,N) :-less(M,N),M2 is M + 1,len_aux(Xs,M2,N).Figure 23: The length program9.4.3 Atomi PositionsSometimes, when the above method does not work beause a program is not permutationsimply typed, it is still possible to show absene of instantiation errors for arithmetibuilt-ins. We observe that these built-ins have argument positions of type num or intwhih are onstant types. Thus, the idea is to delare ertain argument positions in aprediate, inluding the above argument positions of the built-ins, to be atomi. Thismeans that they an only be ground or free but not partially instantiated. Then thereneed to be blok delarations suh that an atom is only seleted when the argumentsin these positions are non-variable, and hene ground. Just as with types and modes,we assume that the positions whih are atomi are already known.De�nition 9.6 [respets atomi positions℄ A query (lause) respets atomi posi-tions if eah term in an atomi position is ground or a variable whih only ours inatomi positions. A program respets atomi positions if eah of its lauses does. /A program need not be permutation niely moded or permutation well typed in orderto respet atomi positions.Example 9.4 The program in Figure 23 omputes the length of a list. In this example,we are regarding the atom M2 is M + 1 as an atom with three arguments M2, M, and 1.The program then respets atomi positions, assuming that all argument positions areatomi, exept the �rst argument position of length and len aux, respetively. Theblok delaration on the built-in < is realised with an auxiliary prediate less. /The property of respeting atomi positions is persistent under resolution.Lemma 9.7 Let C be a lause and Q a query whih respet atomi positions, wherevars(C) \ vars(Q) = ;. Then a resolvent of C and Q also respets atomi positions.Proof. Let Q = a1; : : : ; an be the query and C = h b1; : : : ; bm be the lause. Letak be the seleted atom and assume it is uni�able with h using MGU �. We must showthat Q0 = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)�respets atomi positions.

120 CHAPTER 9. FURTHER ASPECTS OF VERIFICATIONLet x be a variable whih �lls an atomi position in ak or h. Sine Q and C respetatomi positions, x� is either a variable whih only ours in atomi positions in Q0, ora ground term.Consider a term s �lling an atomi position in a1; : : : ; ai�1; ai+1; : : : ; an or b1; : : : ; bm.If s is a ground term, then s� is also a ground term. Suppose that s is a variable. Ifs 62 dom(�), then s� is also a variable. If s 2 dom(�) then s must �ll an atomi positionin ak or h. By the previous paragraph, s� is either a variable whih only ours inatomi positions in Q0, or a ground term. 2By the following theorem, instantiation errors an be prevented by having blok de-larations suh that an atom using a built-in is only alled when it is non-variable in itsatomi positions. The theorem is a onsequene of the above lemma.Theorem 9.8 Let P be a program and Q be a query whih respet atomi positions.Let p be a prediate suh that an atom using p is seletable in P only if it is non-variablein its atomi positions. Then in any delay-respeting derivation of P [fQg, an atomusing p is seleted only when it is ground in its atomi positions.Using Theorem 9.8 we an show freedom from instantiation errors for programs wherethe arithmeti arguments are variable-disjoint from any other arguments, suh as theprogram in Figure 23. Note that type errors annot be ruled out using the theorem.Note also that for this example, we an only rule out instantiation errors aused by<, sine the auxiliary prediate less realises a blok delaration for <. We annot ruleout instantiation errors aused by is. In Setion 10.1, it will be justi�ed that there isno blok delaration for is.9.5 DisussionIn this hapter, we have presented veri�ation methods onerning four aspets of veri-�ation: freedom from uni�ation, our-hek, oundering, and errors related to built-ins. These methods build on and improve previous work in this area [AE93, AL95℄.We have shown that permutation simply typed programs are uni�ation free forarbitrary input-onsuming derivations. This result is more general than the orre-sponding one by Apt and Etalle [AE93℄ sine they only onsider (input-onsuming)LD-derivations. However, we require that all lause heads are input-linear and have atterms in their input positions.Our results on our-hek freedom and non-oundering are straightforward vari-ations of previous results [AL95℄. They are based on the observation that when weonsider derivations where the textual order of atoms in a query is irrelevant for theseletion of an atom, any result for niely moded or well typed programs trivially gen-eralises to permutation niely moded or permutation well typed programs. Note thatour result on our-hek freedom holds for all derivations.We have shown that for (arithmeti) built-ins, blok delarations are often suÆ-ient to ensure freedom from instantiation and type errors. This improves previousresults [AL95℄ in that those assume delay delarations that test for groundness. In thenext hapter, we will show that sometimes, no delay delarations are needed at all.

Chapter 10Weakening Some ConditionsIn this hapter, we onsider ways of weakening some onditions imposed on the programsfor veri�ation purposes. We have postponed these onsiderations so far to avoid makingthe main arguments of Part III unneessarily ompliated.In Setion 10.1, we give onditions so that ertain blok delarations an be omittedwithout a�eting the runtime behaviour. In Setion 10.2, we study ways of weakeningthe requirement that lause heads must be input-linear. Setion 10.3 shows that we aneasily generalise the notion of mode of a program. Setion 10.4 is a disussion.10.1 Simplifying the blok DelarationsEven for programs ontaining blok delarations, it is rare that all prediates haveblok delarations. In partiular, blok delarations for built-ins are awkward beausethey an only be realised (at least in SICStus [SIC98℄) by introduing an auxiliary pred-iate (see Figure 14 on page 87). This makes previous methods for veri�ation [AL95℄but also the methods we introdued in Chapter 9 somewhat impratial. The nqueensprogram (Figure 22 on page 106), whih is a standard example of a program using blokdelarations, does not have any blok delarations for the built-ins.Even for user-de�ned prediates, it is desirable to omit the blok delarations ifpossible, sine runtime testing for instantiation has an overhead, albeit small.In this setion, we show how, using information about the initial query, it an beensured that some of the instantiation tests always sueed so that they atually beomeredundant. This justi�es the omission of blok delarations.An additional bene�t is that in some ases, we an even ensure that arguments areground, rather than just non-variable. We will see in Setion 10.2 that this is useful inorder to weaken the restrition that every lause head must be input-linear.10.1.1 Permutation Simply Typed Programs Using Constant TypesIn the program in Figure 22 on page 106, there are no blok delarations and heneno auxiliary prediates for <, is and =\=. This is justi�ed beause the input for thoseprediates is always provided by the lause heads. For example, it is not neessary tohave a blok delaration for < beause when an atom using sequene is alled, the �rstargument of this atom is already ground. 121

122 CHAPTER 10. WEAKENING SOME CONDITIONSWe show here how this intuition an be formalised for permutation simply typedprograms. In the following de�nition, we onsider a set B ontaining the prediates forwhih we want to omit the blok delarations.De�nition 10.1 [B-ground℄ Let P be a permutation simply typed program and B aset of prediates whose input positions are all of onstant type.A query is B-ground if it is permutation simply typed and eah atom using aprediate in B has ground terms in its input positions.An argument position k of a prediate p in P is a B-position if there is a lausep(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) in P suh that for some i where pi 2 B, somevariable in si also ours in position k in p(t0; sn+1).The program P is B-ground if every B-position of every prediate in P is an inputposition of onstant type, and an atom p(s; t), where p 62 B, is seletable only if it isnon-variable in the B-positions of p. /As the following example shows, the requirement on seletability in the above de�nitionis not automatially met by programs with input seletability.Example 10.1 The nqueens program (Figure 22 on page 106) is B-ground, whereB = f<; is; =\=g. The �rst position of sequene, the seond position of safe aux, andall positions of no diag are B-positions.Does input seletability guarantee for this example that an atom p(s; t), where p 62 B,is seletable only if it is non-variable in the B-positions of p? Aording to De�nition 7.3,the seond position of safe aux and all positions of no diag might be free positions.Therefore the answer is no. However, the blok delarations given in Figure 22 doguarantee this requirement. /The following theorem says that for B-ground programs, the input of all atoms usingprediates in B is always ground.Theorem 10.1 Let P be a B-ground, input-linear program and Q a B-ground query,and � an input-onsuming, delay-respeting derivation of P [fQg. Then eah query in� is B-ground.Proof. The proof is by indution on the length of �. Let Q0 = Q and � = Q0;Q1; : : :.The base ase holds by the assumption that Q0 is B-ground.Now onsider some Qj where j � 0 and Qj+1 exists. By Lemmas 7.2 (f) and 7.7, Qjand Qj+1 are permutation simply typed and type-onsistent. The indution hypothesisis that Qj is B-ground.Let p(u;v) be the seleted atom, C = p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) be thelause and � the MGU used in the step Qj;Qj+1. Consider an arbitrary i 2 f1; : : : ; ngsuh that pi 2 B.If p 62 B, then by the ondition on seletability in De�nition 10.1, p(u;v) is non-variablein the B-positions of p, and hene, sine the B-positions are of onstant type, p(u;v) isground in the B-positions of p. If p 2 B, then p(u;v) is ground in all input positions bythe indution hypothesis, and hene p(u;v) is a fortiori ground in all B-positions of p.

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 123Thus it follows that si� is ground. Sine the hoie of i was arbitrary and beause ofthe indution hypothesis, it follows that Qj+1 is B-ground. 2In Setion 7.4, we have seen that input-onsuming derivations an be ensured withblok delarations so that programs have input seletability (Theorem 7.9). Now bythe above theorem, we an drop the requirement of input seletability for the prediatesin B. Regardless of seletability, atoms using prediates in B are only seleted when theirinput is ground, simply beause their input is ground at all times during the exeution.Theorems 7.9 and 9.6 are appliable for programs where only the prediates not in Bmeet the requirement of input seletability. On the other hand, for those prediates,the requirements on the blok delarations may atually go beyond input seletability.Example 10.2 In the nqueens program (Figure 22 on page 106), there are no blokdelarations, and hene no auxiliaries, for the ourrenes of is, < and =\=, but there areblok delarations on safe aux and no diag that ensure the ondition on seletabilityin De�nition 10.1. Theorems 7.9 and 9.6 are appliable for the nqueens program. /10.1.2 Programs that Respet Atomi PositionsThe idea used in the previous subsetion an also be applied to programs whih are notpermutation simply typed but whih respet atomi positions. However there are somesmall tehnial di�erenes. The example we use for illustration here is the program inFigure 23 on page 119.Note that in the following de�nition, we assoiate a mode (or possibly several alter-native modes) with a program, although De�nition 9.6 is independent of modes.De�nition 10.2 [B-ground�℄ Let P be a program whih respets atomi positions andB a set of prediates whose input positions are all atomi.A query is B-ground� if it respets atomi positions and eah atom using a prediatein B has ground terms in its input positions.An argument position k of a prediate p in P is a B-position� if there is a lausep(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) in P suh that for some i where pi 2 B, somevariable in si also ours in position k in p(t0; sn+1).The program P is B-ground� if every B-position� of every prediate in P is anatomi input position, and an atom p(s; t), where p 62 B, is seletable only if it isnon-variable in the B-positions� of p. /Example 10.3 Consider the program in Figure 23 on page 119 with atomi positionsde�ned as in Example 9.4. This program is fisg-ground�, and the seond position oflen aux is an fisg-position�. /The following theorem is analogous to Theorem 10.1.Theorem 10.2 Let P and Q be a B-ground� program and query, and � be a delay-respeting derivation of P [fQg. Then eah query in � is B-ground�.Proof. The proof is by indution on the length of �. Let Q0 = Q and � = Q0;Q1; : : :.The base ase holds by the assumption that Q0 is B-ground�.

124 CHAPTER 10. WEAKENING SOME CONDITIONSNow onsider some Qj where j � 0 and Qj+1 exists. By Lemma 9.7, Qj and Qj+1respet atomi positions. The indution hypothesis is that Qj is B-ground�.Let p(u;v) be the seleted atom, C = p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) be thelause and � the MGU used in the step Qj;Qj+1. Consider an arbitrary i 2 f1; : : : ; ngsuh that pi 2 B.If p 62 B, then by the ondition on seletability in De�nition 10.2, p(u;v) is non-variablein the B-positions� of p, and hene, sine Qj respets atomi positions, p(u;v) is groundin the B-positions� of p. If p 2 B, then p(u;v) is ground in all input positions by theindution hypothesis, and hene p(u;v) is a fortiori ground in all B-positions of p.Thus it follows that si� is ground. Sine the hoie of i was arbitrary and beause ofthe indution hypothesis, it follows that Qj+1 is B-ground�. 2By Theorem 10.2, it is justi�ed that there is no blok delaration for is in the programin Figure 23 on page 119. More preisely, any delay-respeting derivation for thisprogram and an fisg-ground� query is also a derivation for the same program exeptthat is is only seletable when its input is non-variable. Therefore by Theorem 9.8,there are no instantiation errors.10.1.3 Exploiting the Fat that Derivations Are Left-BasedWe now show that if derivations are left-based, the blok delarations an be omittedin even more ases.De�nition 10.3 [well plaed℄ Let P be a permutation well typed program and Q =p1(s1; t1); : : : ; pn(sn; tn) a �-well typed query. An atom pi(si; ti) is well plaed in Qif for all j 2 f1; : : : ; ng, �(j) < �(i) implies j < i. For the lause C = p(t0; sn+1) Q,an atom is well plaed in C if it is well plaed in Q. /Not surprisingly, well plaed atoms stay well plaed throughout a derivation. Thisproposition an be veri�ed by inspeting De�nition 5.1.Proposition 10.3 Let C and Q be a permutation well typed lause and query and letQ0 be a resolvent of C and Q. Then eah well plaed atom in Q, other than the seletedatom, is also well plaed in Q0. Moreover, if the seleted atom is well plaed in Q, theneah well plaed atom in C is also well plaed in Q0.The following theorem says that in a left-based derivation, a well plaed atom is notseleted before it is orretly typed in its input positions, sine the atoms that \feed"it will always be preferred. Therefore, if it an be ensured that atoms using a prediatep are always well plaed, then it is not neessary to hek the input positions of atomsusing p with blok delarations.Theorem 10.4 Let P be a permutation well typed program where an atom is seletablein P if all input positions of non-variable type are non-variable, and let Q be a permu-tation well typed query. Let p be a prediate and W = fq j q w pg, and suppose in

10.1. SIMPLIFYING THE BLOCK DECLARATIONS 125Q and all lauses of P , all atoms using prediates in W are well plaed. Then in anyleft-based derivation of P [fQg, all atoms using prediates inW are seleted only whenthey are orretly typed in their input positions.Proof. Let � be a left-based derivation of P [fQg. We show that atoms usingprediates inW whih are eventually seleted never beome waiting (see De�nition 8.1)in �.1 In partiular, we look at one arbitrary but �xed atom using a prediate in Wwhih is eventually seleted in �. We show that if it is not waiting at some query in�, then it will never beome waiting. When it is eventually seleted, then any diretdesendants of this atom that use a prediate in W are not waiting either. Sine in theinitial query, no atoms are waiting, it follows by an obvious indutive argument thatatoms using prediates in W whih are eventually seleted never beome waiting in �.Let Q0 = a1; : : : ; an be a �-well typed query in � where for some i 2 f1; : : : ; ng, ai is anatom using a prediate in W whih is eventually seleted in �. Assume that ai is notwaiting. By Proposition 10.3, ai is well plaed in Q0. Sine ai is eventually seleted, wean write � as � = Q; : : : ;Q0; : : : ; (F; ai;H)�; (F;B;H)� : : :Consider an arbitrary query (~F ; ai; ~H)~� in Q0; : : : ; (F; ai;H;)� (that is, a query in �before ai is seleted).If (~F ; ai; ~H)~� ontains any desendents of atoms aj suh that �(j) < �(i), then sine aiis well plaed in Q0, it follows that these desendants our in ~F ~�. Sine (~F ; ai; ~H)~� ispermutation well typed, it follows by Lemma 5.1 (a) that there is at least one seletableatom in ~F ~�, and therefore ai does not beome waiting in the derivation step following(~F ; ai; ~H)~�.If however, (~F ; ai; ~H)~� ontains no desendant of an atom aj suh that �(j) < �(i),then by Lemma 5.12, ai~� is orretly typed in its input positions and hene seletable.Therefore ai does not beome waiting in the derivation step following (~F ; ai; ~H)~�.Sine ai is never waiting, it follows by the de�nition of left-based derivations that aian only be seleted if there is no seletable atom to the left of ai. That is, F� ontainsno seletable atom. Therefore, sine ai is well-plaed in Q0, it follows that (F; ai;H)�ontains no desendant of an atom aj suh that �(j) < �(i), and thus by Lemma 5.12,ai� is orretly typed in its input positions.Moreover, sine ai is not waiting when it is seleted, it follows that the diret desendantsof ai that use a prediate in W are not waiting either. 2Note that permutation robustly typed programs with input seletability (De�nition 7.5)ful�ll the ondition that an atom is seletable if it is non-variable in all input positionsof non-variable type.In a similar way as in Subsetion 10.1.1, the above theorem justi�es dropping therequirement of input seletability for the prediates inW. Theorem 7.9 is appliable forprograms where only the prediates not inW meet the requirement of input seletability.1They also never beome waiting if they are never seleted, but we are not interested in suh atoms.

126 CHAPTER 10. WEAKENING SOME CONDITIONSExample 10.4 In the nqueens program (Figure 22 on page 106 and Figure 20 onpage 99), the blok delaration for permute an be omitted. Note however that thisrequires that any all to nqueens is well plaed in the query where it ours. More-over, the version of permute without blok delarations an only be used in modepermute(O ; I). /10.2 Weakening Input-Linearity of Clause HeadsFor most of our results, it is assumed that programs are input-linear. Building on theprevious setion, we now disuss ways of weakening this rather severe restrition.The requirement that lause heads are input-linear is needed to show the persisteneof permutation niely-modedness (Lemma 5.3). This is analogous to the same state-ment restrited to niely-modedness (Lemma 5.2, [AL95, Lemma 11℄). However, thelause head does not have to be input-linear when the statement is further restrited toLD-resolvents [AP94b, Lemma 5.3℄. The following example by Apt (personal ommu-niation) demonstrates this di�erene.Example 10.5 Consider the programeq(A,A).q(A).r(1).where the mode is fq(I); r(O); eq(I ; I)g. The queryq(X); r(Y); eq(X; Y)is niely moded. The query q(X); r(X) is a resolvent of the above query, and it is notniely moded. Sine eq=2 is equivalent to the built-in ==2, the example illustrates whyinput-linear programs must not ontain uses of =(I ; I). /Requiring input-linear lause heads is undoubtedly a severe restrition. It means thatit is not possible to test two input arguments for equality. However, this also indiateswhy in the above example, resolving eq(X,Y) is harmful: eq is intended to be a test,learly indiated by its mode eq(I ; I), but in the given derivation step, it is atually nota test, sine it binds variables.By Lemma 5.4, the requirement of input-linear heads an be dropped if derivationsteps are input-onsuming. This means that an atom using =(I ; I) must be only seletedwhen both arguments are ground.The mode =(I ; I) ould be realised with an equality test, say eq test(s; t), whoseoperational semantis is as follows: if s and t are idential, it sueeds; if s and t are notuni�able, it fails; otherwise, the test is delayed until s or t beome further instantiated.Suh a test is used in the guards of lauses in onurrent (onstraint) logi languagessuh as (F)GHC [Ued86℄, but in ordinary logi programming languages, it is usually notprovided.Alternatively, the mode =(I ; I) an be realised with a delay delaration suh thatan atom s=t is seleted only when s and t are ground. In SICStus, this an be done

10.2. WEAKENING INPUT-LINEARITY OF CLAUSE HEADS 127using the built-in when [SIC98℄. However we do not follow this line beause we fous onblok delarations, and beause it would ommit a partiular ourrene of s=t to be atest in all modes in whih the program is used.Nevertheless, even using blok delarations, there are situations when lause headsthat are not input-linear an be allowed. E�etively, we have to show that eah deriva-tion step using a non input-linear lause ould be replaed with a derivation step usingan input-linear lause.We �rst need to de�ne formally what it means for an atom to have a subterm \in aertain plae", and what a non-linear plae is.De�nition 10.4 [to have in a plae℄ Let a = p(t1; : : : ; tn) be an atom. Then for eahi 2 f1; : : : ; ng, a has ti in plae pi. Moreover, if a has a term f(s1; : : : ; sm) in plae �,then for eah i 2 f1; : : : ;mg, a has si in plae �:f i. A plae � is an input plae of aif � = pi:� 0 and i is an input position of p. /Example 10.6 The atom p(f(g(X)); h(Y)) has X in plae p1:f1:g1 and Y in plae p2:h1.The atom p(f(g(Z)); h(7)) has 7 in the same plae where p(f(g(X)); h(Y)) has Y. /De�nition 10.5 [non-linear plae℄ Let p(v;u) B be lause. A plae � is a non-linear plae of p(v;u) if it is an input plae and p(v;u) has a variable in � whihours more than one in v. /Example 10.7 Let p(f(g(X)); h(X)) : : : be a lause where the mode is p(I ; I). Thenp1:f1:g1 and p2:h1 are non-linear plaes of p(f(g(X)); h(X)). Moreover, p(f(g(Z)); h(7))has the terms Z and 7 in the non-linear plaes of p(f(g(X)); h(X)). /The following lemma states that if a seleted atom is ground in all non-linear plaesof the lause head, and the seleted atom is uni�able with the lause head, then thislause an be replaed by a ertain input-linear lause without a�eting the resolvent.Note the similarity between the following lemma and Lemma 5.4.Lemma 10.5 Let Q = a1; : : : ; an be a query and C = p(v;u) b1; : : : ; bm a lausewhere vars(Q) \ vars(C) = ;. Suppose that for some k 2 f1; : : : ; ng, p(v;u) andak = p(s; t) are uni�able with MGU �, and p(s; t) is ground in all non-linear plaes ofp(v;u).

128 CHAPTER 10. WEAKENING SOME CONDITIONSLet C 0 = p(v0;u) b1; : : : ; bm be an input-linear lause suh that1. vars(v) � vars(v0) and vars(v0) \ vars(Q) = ;,2. there exists a substitution � suh that C 0� = C and dom(�) = vars(v0)nvars(v).Then (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is also a resolvent of Q and C 0.Proof. Consider an arbitrary variable x that ours more than one in v, and letX � dom(�) be the set of variables x0 suh that x0� = x. Sine p(s; t) is ground inall plaes where p(v;u) has x, it follows that s has the same ground term, say t, inall plaes where v has x. Therefore it follows that any uni�er of p(v0;u) and p(s; t)binds eah variable in X to t. This means that �� is an MGU of p(v0;u) and p(s; t).Moreover, by assumptions 1 and 2,(a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� = (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)��;and so (a1; : : : ; ak�1; b1; : : : ; bm; ak+1; : : : ; an)� is not only a resolvent of C and Q, butalso a resolvent of C 0 and Q. 2Lemma 10.5 should not be interpreted as suggesting a program transformation, namelyto replae lauses with orresponding input-linear lauses. Suh a transformation mightmake a lause head uni�able with a potential seleted atom where it was not uni�ablebefore, whih would a�et the semantis of the program. It is only in the ase thatp(s; t) and p(v;u) are already uni�able that we an, oneptually, replae C with C 0.Lemma 10.5 is appliable whenever we an guarantee that the seleted atom is alwaysground in the non-linear plaes of the lause head. We now outline two ways in whihthis an be ensured.First, one an exploit the fat that atoms are well plaed. Consider a permutationwell typed program where an atom is seletable in P if all input positions of non-variabletype are non-variable. We an weaken De�nition 5.3 by allowing for lause heads p(t; s)where a variable x ours in several input positions, provided that� all ourrenes of x in t are in positions of ground type, and� in eah lause of the program and in any initial query for the program, eah atomusing a prediate q w p is well plaed.By Theorem 10.4, it is then ensured that multiple ourrenes of a variable in theinput of a lause head implement an equality test between input arguments. Therefore,Lemmas 5.3, 7.2 and 7.6 hold assuming this weaker de�nition of \input-linear".Example 10.8 Consider the append program (Figure 10 on page 57) in \test mode",that is append(I ; I ; I). This program is permutation niely moded but not input-linear.Nevertheless, the program an be used in this mode provided that all arguments are ofground type and alls to append are always well plaed. /Seondly, one an exploit the fat that the arguments being tested for equality are ofonstant type. This time we have to weaken De�nition 5.3 by allowing for lause headsp(t; s) where a variable x ours in several input positions, provided that

10.3. GENERALISING MODES 129� all ourrenes of x in t are diret and in positions of onstant type, and� an atom using p is seletable only if these positions are non-variable.By Theorem 9.6, it is then ensured that when an atom p(u;v) is seleted, u has onstantsin eah position where t has x.Example 10.9 The length program in Figure 23 on page 119 an be used in modeflength(O ; I); len aux(O ; I ; I)g in spite of that fat that len aux([℄; N; N) is not input-linear, using either of the two explanations above. The �rst explanation relies on allatoms using prediates q w len aux being well plaed. This is somewhat unsatisfatorysine imposing suh a restrition impedes modularity. Therefore, the seond explanationis preferable. /10.3 Generalising ModesIn Setion 5.2, we have de�ned a mode of a program as a set ontaining one mode foreah of its prediates. This means that we have allowed for a program to be used indi�erent modes at di�erent exeutions, but within eah exeution, the mode of eahprediate was �xed. For example, the queryappend([1; 2℄; [3; 4℄; Zs); append(As; Bs; Zs);where the �rst atom has mode append(I ; I ;O) and the seond atom has modeappend(O ;O ; I), uses the same prediate in di�erent modes and hene would not be,say, permutation niely moded. This is a disadvantage as one an easily imagine thata program might use append(I ; I ;O) is one plae and append(O ;O ; I) in another. Wehave de�ned modes in this way to avoid unneessary onfusion.It is easy to see however that the de�nition of a mode of a program ould be gener-alised. De�ne a mode M of a program as a set of modes ontaining at least one mode foreah of its prediates. De�ne that a lause C = p(t; s) B is, say, permutation nielymoded with respet to a mode p(m1; : : : ;mn) 2 M if it is permutation niely moded,assuming that the mode p(m1; : : : ;mn) is assigned to the lause head and some modein M is assigned to eah body atom in C. De�ne that a program is permutation nielymoded if for eah prediate p and eah mode p(m1; : : : ;mn) 2M , all lauses de�ning pare permutation niely moded with respet to p(m1; : : : ;mn).10.4 DisussionIn this hapter, we presented some methods that an be used to improve the results ofthe earlier hapters in two ways: omitting the blok delarations for some prediates,and allowing for multiple ourrenes of variables in the input of lause heads.Omitting the blok delarations is partiularly useful for (arithmeti) built-ins.It aims at the way arithmeti built-ins are used in pratie: it is awkward havingto introdue auxiliary prediates to implement delay delarations for built-ins. The

130 CHAPTER 10. WEAKENING SOME CONDITIONSnqueens program is a standard example of a program whih ontains blok delarations,but not for the built-ins. We give a formal justi�ation for this.The requirement that lauses must be input-linear is quite ommon [AL95, AE93,ER98℄. However it is a rather severe restrition, in that it usually rules out prediatesrunning in \test mode" (see Example 10.8). We have shown how this restrition ansometimes be weakened.Finally, we have outlined a generalisation of modes allowing for prediates to beused in di�erent modes in di�erent plaes in a program, even within a single exeution.

Chapter 11Related Work and ConlusionIn Chapter 2, we gave an overview of the literature using modes and types. In thishapter, we look, more spei�ally, at the literature related to Part III of this thesis.We then onlude the thesis by highlighting the main ontributions and novel ideas,and mentioning some open problems.11.1 Related WorkThis setion has several subsetions, eah of whih is devoted to a paper or a group oflosely related papers. Subsetion 11.1.1 is an exeption. It disusses the signi�ane of\pinning down the size" of an atom throughout the termination literature. We disussthe papers more or less in hronologial order.In Subsetion 6.1, we observed that a distinguishing aspet between works on termi-nation is the assumptions they make about the seletion rule. This inludes assumptionsabout delay delarations, as one usually thinks of the seletion rule as being parametrisedby the delay delarations, if there are any. Figure 24 illustrates a variety of assumptionsabout the seletion rule that have been made in the literature. We will refer to this�gure as we disuss the di�erent approahes.11.1.1 The Signi�ane of \Pinning Down the Size" of an AtomAs explained in Setion 6.1, most approahes to termination rely on the idea that thesize of an atom an be pinned down when the atom is seleted. Depending on this size,it is then possible to give an upper bound for the number of desendants of this atom.Tehnially, \pinning down the size" usually means that the atom is bounded withrespet to some level mapping [AP94a, Bez93, EBC99, LS97, MK97℄. However, thereare exeptions [DVB92, DD98℄. In those works, termination an be shown for the query,say, append([X℄; [℄; Zs) using as level mapping the term size of the �rst argument, eventhough the term size of [X℄ is not bounded. However, the method only works for LD-derivations and relies on the fat that any future instantiation of X annot a�et thedesendants of append([X℄; [℄; Zs). Therefore it is e�etively possible to pin down thesize of append([X℄; [℄; Zs).On the whole, there seems to be a strong relutane to give up this idea, although131

132 CHAPTER 11. RELATED WORK AND CONCLUSION

LD-derivationsInput-onsuming derivationsLoal seletion rules Rigidness heks Depth boundsArbitrary derivations 6
?spei�

general

Figure 24: Assumptions about the seletion ruleit is reognised that it must fail on some standard examples of programs using orou-tining [Nai92℄. This is illustrated in Example 6.1. Therefore, some authors attempt tosimplify the atual problem by proposing program transformations or introduing addi-tional assumptions about the seletion rule [Bez93, MT95, MK97℄. It seems that thesemodi�ations mainly serve the purpose of making it easier to reason about termination,and not of making programs terminate that would not terminate otherwise. We willdisuss this point further below when we look at the various approahes.11.1.2 Guarded Horn ClausesThe de�nition of input-onsuming derivations has a ertain resemblane with derivationsin the language of (Flat) Guarded Horn Clauses [Ued86, Ued88℄. In (F)GHC, a lausehas the form h G jB, where G is alled a guard. There is no baktraking, that is,the hoie of a lause to resolve an atom annot be undone later if the derivation fails.It is therefore ruial that the \orret" lause is used in eah step. To this end, anatom a an be resolved using a lause h G jB only when a is an instane of h andG� is entailed, where � is an MGU of a and h. The atom a an beome instantiatedonly later via expliit uni�ations (using the built-in equality prediate) ourring inthe body B.Thus whether or not an atom a is seletable in (F)GHC depends not only on a itselfbut, at least in theory, on the lause used to resolve a. This is similar to the onept ofinput-onsuming derivations, where whether or not a derivation step is input-onsumingmay depend on the lause used to resolve an atom.When we onsider Moded FGHC [CU96, UM93, UM94℄, this resemblane beomeseven learer. Intuitively, arguments of the seleted atom that a�et the hoie of thelause are input arguments, whereas arguments that beome instantiated by the bodyB are output arguments. In Moded FGHC, a number of orretness onditions areimposed that formalise, among other things, this intuition.

11.1. RELATED WORK 13311.1.3 Coroutining and Terminating Logi ProgramsNaish studies the problem of termination of programs with oroutining [Nai92℄. Heonsiders the when delarations of NU-Prolog [TZ86℄, whih are essentially the same asblok delarations. These delarations e�etively ensure input-onsuming derivations,although Naish does not use this onept. The default left-to-right seletion rule ofProlog is assumed. This work gives good intuitive explanations why programs loopand heuristis to ensure termination. However, the work is not formal. It is not evenformalised what the default left-to-right seletion rule is.Prediates are assumed to have a single mode. As mentioned on page 62, Naishsuggests that alternative modes should be ahieved by multiple versions of a prediate.This approah is quite ommon and is also taken in Merury [SHC96℄, where theseversions are generated by the ompiler. While it is possible to take that approah,some authors give the impression that assuming single modes does not imply any lossof generality [AE93, AL95, EBC99℄. However, generating multiple versions implies odedupliation and hene a loss of generality (see Subsetion 5.3.2).Naish uses examples where under the assumption of single modes, there is no rea-son for using delay delarations in the �rst plae. For example, if we only onsiderpermute(O ; I), then the program in Figure 20 (page 99) does not loop for the plain rea-son that no atom ever delays, and thus the program is exeuted using LD-derivations.In this ase, the elaborate interpretation that one should \plae reursive alls last" ismisleading. On the other hand, if we only onsider permute(I ;O), then the version ofFigure 20 would hardly be used, on the grounds that it is muh less eÆient than theversion of Figure 18 (page 95). In short, Naish's disussion on delay delarations laksmotivation when only one mode is assumed.11.1.4 Strong TerminationBezem [Bez93℄ has identi�ed the lass of strongly terminating programs, whih areprograms that universally terminate under any seletion rule (see Figure 24 on thefaing page). While it is shown that every total reursive funtion an be omputed bya strongly terminating program, this does not hange the fat that few existing programsare strongly terminating. Transformations are proposed for three example programs tomake them strongly terminating, but no general proedure for transforming programsis given.11.1.5 Generating Delay Delarations AutomatiallyL�uttringhaus-Kappel [L�ut93℄ proposes a method for generating ontrol (delay de-larations) automatially, and has applied it suessfully to many programs. However,rather than pursuing a formalisation of some intuitive understanding of why programsloop, and imposing appropriate restritions on programs, he attempts a high degree ofgenerality. This has ertain disadvantages.First, the method only �nds aeptable delay delarations, ensuring that the mostgeneral seletable atoms have �nite SLD-trees. What is required however are safe delay

134 CHAPTER 11. RELATED WORK AND CONCLUSIONdelarations, ensuring that instanes of most general seletable atoms have �nite SLD-trees. A safe program is a program for whih every aeptable delay delaration is safe.L�uttringhaus-Kappel states that all programs he has onsidered are safe, but gives nohint as to how this might be shown in general. This is a missing link.Seondly, the delay delarations for some programs suh as quiksort require anargument to be a nil-terminated list before an atom an be seleted. Suh a list is some-times alled rigid [MK97, MKS97℄, sine its length annot hange via further instanti-ation (see Figure 24 on page 132). As L�uttringhaus-Kappel points out, \in NU-Prolog[or SICStus℄ it is not possible to express suh onditions"1 [TZ86℄. Note that suh usesof delay delarations go far beyond ensuring that derivations are input-onsuming. Infat, they ensure that the size of the seleted atom an be pinned down.In a way, the need for suh strong delay delarations arises beause L�uttringhaus-Kappel assumes arbitrary delay-respeting derivations, rather than left-based deriva-tions. Obviously, his method annot show termination when termination depends onderivations being left-based.Thirdly, oundering annot be ruled out systematially, but only avoided on a heuris-ti basis. Thus in priniple, the method sometimes enfores termination by oundering.This lies in the nature of the weak assumptions made, and thus is sometimes unavoid-able, but there is no notion that would allow to reason about whether for a partiularprogram, it was avoidable or not. In ontrast, the notions of permutation well-typednessand input-onsuming derivations allow to reason about whether oundering is avoidableor not (see Setion 9.3).11.1.6 Veri�ation Using Modes and TypesApt, Etalle, Luitjes and Pellegrini are among the authors who use orretness prop-erties related to modes and types to verify logi programs [AE93, AL95, AP94b℄. Theseorretness properties have been adopted and extended in this thesis (see Setion 7.5).Apt and Luitjes [AL95℄ present some methods for veri�ation of logi programs withdelay delarations. They onsider four aspets of veri�ation: our-hek freedom, non-oundering, freedom from errors related to built-ins, and termination.The results on our-hek freedom are a generalisation of work by Apt and Pel-legrini [AP94b℄ from LD-derivations to arbitrary derivations. Our-hek freedom isshown based on niely-modedness. As disussed in Setion 10.2, showing the persisteneof niely-modedness, and hene our-hek freedom, for arbitrary derivations requiresthat lause heads are input-linear.For arithmeti built-ins, Apt and Luitjes require delay delarations suh that anatom is delayed until the arguments are ground. Suh delarations are usually imple-mented less eÆiently than blok delarations.Little attention is devoted to termination. Apt and Luitjes propose a method forshowing termination whih is limited to deterministi programs, that is programs wherefor eah seleted atom, there is at most one lause head uni�able with it. Moreover,1This statement should probably be weakened. It is possible to express suh onditions, but only byintroduing auxiliary prediates [MK97℄.

11.1. RELATED WORK 135Apt and Luitjes give onditions for the termination of append, but these are ad-ho anddo not address the general problem.The results on uni�ation freedom of Setion 9.1 are based on work by Apt andEtalle [AE93℄. These authors assume well typed programs and LD-derivations.11.1.7 Termination of LD-DerivationsThe methods for proving termination presented in Chapter 8 impliitly rely on previouswork on termination for LD-derivations [Apt97, AP90, DVB92, DD93, DD98, EBC99℄.De Shreye and Deorte give a survey of the termination literature [DD94℄. TheTermiLog system is a tool for proving termination automatially [LS96, LS97, LSS97℄.11.1.8 Termination for Loal Seletion RulesFor proving termination, Marhiori and Teusink [MT95℄ rely on norms and the ov-ering relation between subqueries of a query. This is loosely related to well-typedness.However, their results are not omparable to ours beause they assume a loal seletionrule, that is a rule whih always selets an atom whih was introdued in the mostreent step. No existing language using a loal seletion rule is mentioned. Assumingloal seletion rules, it an be ensured that the size of the seleted atom an always bepinned down.The authors state that programs that do not use speulative bindings deserve fur-ther investigation, and that they expet any method for proving termination with fulloroutining either to be very omplex, or very restritive in its appliations.11.1.9 Diretional TypesBoye [Boy96℄ de�nes generally well typed programs, of whih the permutation well typedprograms onsidered here are a speial ase. The generalisation lies in onsidering notjust a produer-onsumer relation between atoms in a query, but rather between theindividual argument positions. This allows to reason about ertain programs whihoperate on open data strutures.The standard example is a program whih takes as input a binary tree whose labelsare numbers, and returns a tree with the same struture but where all labels are replaedby the maximum label of the original tree. Although this is oneptually a two-passproblem, the program does only one pass over the original tree. This works by �rstonstruting the output tree suh that all labels are aliased to the same variable. Onlyafter the original tree has been passed ompletely, and thus the maximum label is known,will this variable be instantiated.The maximum label of the original tree is a passed as an input argument to the mainprediate of this program, and nevertheless, by the very nature of the algorithm, it an-not be instantiated at the time when an atom using this prediate is seleted. Thereforeprograms using this tehnique annot work assuming input-onsuming derivations. Atpresent, we an only state that suh programs are an exeption to the priniple thatderivations must be input-onsuming. It would ertainly be desirable to generalise thepriniple so that suh programs would also be inluded.

136 CHAPTER 11. RELATED WORK AND CONCLUSION11.1.10 Termination by Imposing Depth BoundsMartin and King [MK97℄ ensure termination by imposing a depth bound on the SLD-tree (see Figure 24 on page 132). This is realised by a program transformation introdu-ing additional argument positions for eah prediate whih are ounters for the depthof the omputation. As with other approahes, the size of the seleted atom an alwaysbe pinned down: it is simply the value of the depth bound. The diÆulty is of ourseto �nd an appropriate depth bound that does not ompromise ompleteness.11.1.11 Beyond Suess and FailureEtalle and van Raamsdonk [ER98℄ study generalisations of the notions of suessfuland failing derivations, whih are traditionally regarded as the ornerstones of ontrolin logi programming. They de�ne non-destrutive programs. This onept is similarto input-onsuming derivations, although they take a di�erent viewpoint: they de�nea program property rather than a property of the seletion rule. A non-destrutiveprogram is a program for whih all delay-respeting derivations are input-onsuming.In Chapter 7, we have seen several (syntatially de�ned) lasses of non-destrutiveprograms.11.1.12 Termination of Well-Moded ProgramsChapter 6 losely follows Etalle et al. [EBC99℄, who study well-terminating programs,that is programs for whih all LD-derivations for all well moded queries terminate.Proving that a program has this property is based on moded level mappings and well-aeptable lauses. These onepts are similar to moded typed level mapping (De�-nition 6.2) and ICD-aeptable lause (De�nition 6.4). For simply moded programs,the paper even gives a haraterisation of well-termination. That is, it shows that if aprogram is well-terminating, then its lauses are well-aeptable. This is not a ontra-dition to the undeidability of termination, as the existene of a level mapping withrespet to whih a program is well-aeptable is undeidable.11.1.13 9-Universal TerminationBezem [Bez93℄ has de�ned strong termination, whih is universal termination for all se-letion rules. Ruggieri [Rug99℄ has de�ned a omplementary onept alled 9-universaltermination. A program P and query Q 9-universally terminate if there exists a sele-tion rule S suh that all S-derivations of P [fQg are �nite. This onept is importantwith regards to the separation of the logi and ontrol aspets of a program as advo-ated by Kowalski [Kow79℄. If a program 9-universally terminates, then it is, at least inpriniple, possible to assoiate ontrol with the program so that it atually terminates.If the program does not 9-universally terminate, then it does not terminate for anyseletion rule.In this ontext, fair seletion rules play a speial role. A seletion rule is fair if eahatom in a query is eventually seleted. Ruggieri shows that a program 9-universallyterminates if and only if it terminates for all fair seletion rules [Rug99, Theorem 2.4.3℄.Thus from the point of view of proving termination, assuming fair seletion rules is the

11.2. CONCLUSION 137strongest assumption one an make about the seletion rule. If a program does notterminate for a fair seletion rule, it does not terminate for any seletion rule.Note that Ruggieri follows Apt [Apt97℄ in de�ning a seletion rule as a funtion thattakes a derivation and returns an atom in the last query (the seleted atom). However,this de�nition is too restritive for our purposes. For example, it is not possible to de�nea seletion rule that exatly orresponds to input-onsuming derivations. A seletionrule as de�ned by Apt annot be used to model the situation that no atom an beseleted, or that more than one atom an be seleted (so that it is left open whih atomis atually seleted). Moreover, it annot be used to model that whether or not an atoman be seleted may depend on the lause used to resolve this atom. This latter aspetannot even be modelled using sets of seletion rules as de�ned by Apt. Lloyd [Llo87℄has a de�nition of seletion rule whih is even more restritive than that of Apt, in thatwhether or not an atom is seletable may only depend on the present query, and not onthe whole derivation.11.1.14 Assertion-Based Debugging of (Constraint) Logi ProgramsPuebla et al. have developed an assertion-based debugging system for onstraint logiprograms [PBH99℄. This has aspets of program analysis as well as veri�ation. Unlikethe veri�ation methods we have presented here, no restritions (suh as well-typedness)are imposed on the program. The system inorporates various tehniques involvingabstrat interpretation and runtime heking. One ould imagine that the veri�ationtehniques of this thesis ould also be inorporated into this system.11.2 ConlusionThe main ontribution of Part III is to provide a method for showing terminationof programs with blok delarations assuming left-based derivations. That is, we areproposing a solution to the termination problem for programs with delay delarations asthe problem was originally stated, albeit informally, by Naish [Nai92℄. This problem isa \realisti" one, sine the assumptions of blok delarations and left-based derivationsreet the most ommonly used implementations.To the best of our knowledge, this is the �rst formal and omprehensive approah tothis problem. Other authors have either been informal [Nai92℄, or made other (usuallystronger) assumptions and hene studied another problem [MT95, MK97℄, or dealt withthe problem under very restrited irumstanes [AL95℄.We now highlight some original, distintive ideas and onepts of Part III. We thenmention some open problems. Finally we reall the main results.11.2.1 Some Distintive Novel IdeasFormalising Seletion RulesIt is ommonly assumed that seleted atoms in a derivation should be instantiated toa ertain degree in order to ensure termination and other desirable properties [AL95℄.

138 CHAPTER 11. RELATED WORK AND CONCLUSIONIn Chapter 5, we presented the onept of input-onsuming derivation, providing aharaterisation of \a ertain degree" whih is both abstrat and intuitive.Without assuming input-onsuming derivations, even prediates for whih termina-tion should be trivial do not terminate (see page 9). On the other hand, we have shownthat for many prediates, this assumption about the seletion rule, together with someorretness onditions satis�ed by the program, is suÆient to ensure termination.However, there are also many prediates for whih this assumption is not suÆient.One way to strengthen the assumptions about the seletion rule is to assume the defaultleft-to-right seletion rule of Prolog. Owing to subtleties involving simultaneously wokenatoms, neither software manuals nor theoretial works have attempted to formalise thisrule preisely. The notion of left-based derivation introdued in this thesis (based onpreviously published work [SHK98℄) is a formalisation of default left-to-right seletionrules. It is relatively simple and unrestritive, so that we an laim with reasonableon�dene that derivations in existing Prolog systems are left-based.Termination without Pinning down the Seleted AtomMost methods for proving termination of logi programs are based on the following idea:when an atom a in a query is seleted, it is possible to pin down the size of a, and thenew atoms introdued in this derivation step are smaller than a. These methods arebound to fail on most programs using oroutining, suh as the oroutining derivationof append in Example 6.1 [Bez93, L�ut93, MT95, MK97℄. In ontrast, we show thatunder ertain onditions, it is suÆient to rely on a relative derease in the size of theseleted atom, even though this size annot be pinned down. This is the key to provingtermination for programs with oroutining.Three Orderings on AtomsIn this thesis, three di�erent orderings between the atoms of a query (or lause body) areelaborated: the textual order, the produer-onsumer order and the exeution order. Itis shown that for LD-derivations, all of these orders are idential. Moreover, for seletionrules where the textual position is irrelevant for the seletion of an atom, the textualorder and the produer-onsumer order an be assumed to be idential, as a matterof simpli�ation. For seletion rules where the textual position of atoms matters, theproduer-onsumer order an be made expliit using a permutation of the atoms.(Permutation) Robustly Typed ProgramsMany veri�ation methods for logi programs, inluding some in this thesis, rely on theassumption that programs are simply moded, so that a query always has variables inthe output positions [AE93, EBC99℄. In Setion 7.4, we de�ne (permutation) robustly-typedness, a orretness property allowing for non-variable terms in ertain outputpositions. This property is persistent under resolution and type-onsistent with respetto input-onsuming derivations.We have used this property for showing termination, but it may well have otheruses, for example to show uni�ation freedom for a larger lass of programs [AE93℄.

11.2. CONCLUSION 139Multiple ModesThroughout Part III, it is assumed that prediates may be used in multiple modes,although this assumption is not always made expliit. We have argued that in the on-text of programs using non-standard derivations, one should at least allow for multiplemodes, although only few prediates an reasonably be used in multiple modes. In pre-vious literature, there is sometimes a lak of motivation: for the examples given, there isno reason for using delay delarations in the �rst plae, if not to enable multiple modes.blok DelarationsWe have argued that among the various kinds of delay delarations, blok delarations,whih an only test for partial instantiation of arguments of an atom, play a speialrole. They an be more eÆiently implemented than more omplex onstruts suhas delay delarations testing for groundness. Moreover, they are well suited to realiseinput-onsuming derivations while allowing for oroutining.11.2.2 Open ProblemsWe now disuss some open problems and possible extensions of this work.Weakening the Corretness PropertiesThe veri�ation methods introdued in this thesis are based on a number of orret-ness properties that the veri�ed programs must have (see Setion 7.5). Etalle andGabbrielli [EG99℄ have identi�ed programs using layered modes, whih are a small butinteresting lass of programs for whih none of the above orretness properties holds,sine it is not possible to establish a produer-onsumer relation (see Subsetion 5.3.1)between the atoms of eah query. Therefore, Etalle and Gabbrielli re�ne the oneptof produer-onsumer relation by onsidering the individual argument positions ratherthan entire atoms, similarly to Boye [Boy96℄. It would be interesting to extend someresults of this thesis to suh programs.Termination for Input-Consuming DerivationsAs stated previously (page 81), we annot show that all input-onsuming derivationsof quiksort(I ;O) are �nite, although we onjeture that they are. Ideally, one wouldlike to �nd a haraterisation of the programs for whih all input-onsuming derivationsare �nite (see Setion 6.6 and Subsetion 11.1.12).A Uniform Veri�ation Method for Built-insFor showing that a program is free from errors related to built-ins (Setion 9.4), we haveintrodued two methods. Whether one of these methods or even both are appliabledepends on the program. It would be desirable to �nd one uniform approah whihwould work for a larger lass of programs.

140 CHAPTER 11. RELATED WORK AND CONCLUSIONWeakening the blok DelarationsWe have disussed that blok delarations an be omitted or simpli�ed when suÆientinstantiation an be guaranteed at ompile time. This issue is related to another prob-lem, namely the rather severe restrition that lause heads must be input-linear. Itwould be interesting to study this relationship further and ome up with results thatare more general than the ones in Chapter 10.11.2.3 Summary of Part IIIIn Part III of this thesis, we have presented veri�ation methods for logi programsusing non-standard derivations, that is programs not using the LD seletion rule.In Chapter 5, we motivated the usefulness of non-standard derivations. We thenintrodued a number of orretness properties onerning the modes of a program.Many veri�ation methods an be based on these properties.In Chapter 6, we introdued input-onsuming derivations as a minimal assumptionneeded to prove termination. We used level mappings to provide a method for provingthat a program (fragment) terminates for all input-onsuming derivations.In Chapter 7, we showed how blok delarations an be used to ensure that deriva-tions are input-onsuming. Examples were used to illustrate that this is a non-trivialproblem. We introdued the lass of permutation robustly typed programs, whih is are-fully rafted so that blok delarations an in fat ensure input-onsuming derivations,without being too restritive.In Chapter 8, we presented a omprehensive method for showing termination forprograms with blok delarations. It is based on the insight that for some atoms, thetextual position in a query is irrelevant, whereas other atoms must be plaed suÆientlylate in a query to ensure that they are always alled with suÆient input. This assumesleft-based derivations.In Chapter 9, we presented veri�ation methods onerning some further aspets ofveri�ation. These were freedom from uni�ation, our-hek, oundering, and errorsrelated to built-ins.In Chapter 10, we onsidered ways of omitting the blok delarations for someprediates, and allowing for multiple ourrenes of variables in the input of lauseheads.

Bibliography[AE93℄ K. R. Apt and S. Etalle. On the uni�ation free Prolog programs. InA. Borzyszkowski and S. Sokolowski, editors, Proeedings of the Confereneon Mathematial Foundations of Computer Siene, LNCS, pages 1{19, Berlin,1993. Springer-Verlag.[AL94℄ A. Aiken and T. K. Lakshman. Diretional type heking of logi programs.In B. Le Charlier, editor, Proeedings of the 1st Stati Analysis Symposium,LNCS, pages 43{60. Springer-Verlag, 1994.[AL95℄ K. R. Apt and I. Luitjes. Veri�ation of logi programs with delay delarations.In V. S. Alagar and M. Nivat, editors, Proeedings of AMAST'95, LNCS,Berlin, 1995. Springer-Verlag. Invited Leture.[AM94℄ K. R. Apt and E. Marhiori. Reasoning about Prolog programs: From modesthrough types to assertions. Formal Aspets of Computing, 6(6A):743{765,1994.[AMSH94℄ T. Armstrong, K. Marriott, P. Shahte, and H.S�ndergaard. Boolean fun-tions for dependeny analysis: Algebrai properties and eÆient representa-tion. In B. Le Charlier, editor, Proeedings of the 1st Stati Analysis Sympo-sium, LNCS, pages 266{280. Springer-Verlag, 1994.[AMSH98℄ T. Armstrong, K. Marriott, P. Shahte, and H.S�ndergaard. Two lassesof Boolean funtions for dependeny analysis. Siene of Computer Program-ming, 31(1):3{45, 1998.[AP90℄ K. R. Apt and D. Pedreshi. Studies in pure Prolog: Termination. In J. W.Lloyd, editor, Proeedings of the Symposium in Computational Logi, LNCS,pages 150{176. Springer-Verlag, 1990.[AP94a℄ K. R. Apt and D. Pedreshi. Modular termination proofs for logi and pureProlog programs. In G. Levi, editor, Advanes in Logi Programming Theory,pages 183{229. Oxford University Press, 1994.[AP94b℄ K. R. Apt and A. Pellegrini. On the our-hek free Prolog programs. ACMTransations on Programming Languages and Systems, 16(3):687{726, 1994.[Apt97℄ K. R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.[Bau92℄ M. Baudinet. Proving termination properties of Prolog programs: A semantiapproah. Journal of Logi Programming, 14:1{29, 1992.141

[BC99℄ A. Bossi and N. Coo. Suesses in logi programs. In P. Flener, editor,Proeedings of the 8th International Workshop on Logi Program Synthesisand Transformation, LNCS, pages 219{239. Springer-Verlag, 1999.[BCHK97℄ F. Benoy, M. Codish, A. Heaton, and A. M. King. WideningPos for EÆient and Salable Groundness Analysis. Tehnial Re-port 515, University of Kent at Canterbury, 1997. Available athttp://www.s.uk.a.uk/pubs/1997/515/index.html.[BDB+96℄ M. Bruynooghe, B. Demoen, D. Boulanger, M. Deneker, and A. Mulkers. Afreeness and sharing analysis of logi programs based on a pre-interpretation.In R. Cousot and D. A. Shmidt, editors, Proeedings of the 3rd Stati AnalysisSymposium, LNCS, pages 128{142. Springer-Verlag, 1996.[Bez93℄ M. Bezem. Strong termination of logi programs. Journal of Logi Program-ming, 15(1 & 2):79{97, 1993.[BG92℄ R. Barbuti and R. Giaobazzi. A bottom-up polymorphi type inferene inlogi programming. Siene of Computer Programming, 19:281{313, 1992.[BLR92℄ F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of diretionalityfor proving termination of logi programs. In K. R. Apt, editor, Proeedings ofthe 9th Joint International Conferene and Symposium on Logi Programming,pages 321{335. MIT Press, 1992.[BM95℄ J. Boye and J. Ma luszy�nski. Two aspets of diretional types. In L. Sterling,editor, Proeedings of the 12th International Conferene on Logi Program-ming, pages 747{761. MIT Press, 1995.[Boy96℄ J. Boye. Diretional Types in Logi Programming. PhD thesis, Link�opingsUniversitet, 1996.[Cav89℄ L. Cavedon. Continuity, onsisteny and ompleteness properties for logi pro-grams. In G. Levi and M. Martelli, editors, Proeedings of the 6th InternationalConferene on Logi Programming, pages 571{584. MIT Press, 1989.[CBGH97℄ M. Codish, M. Bruynooghe, M. Gar��a de la Banda, and M. Hermenegildo.Exploiting goal independene in the analysis of logi programs. Journal ofLogi Programming, 32(3):247{261, 1997.[CC77℄ P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattie model forstati analysis of programs by onstrution or approximation of �xpoints. InPriniples of Programming Languages, pages 238{252. ACM Press, 1977.[CC92℄ P. Cousot and R. Cousot. Comparing the Galois onnetion and widen-ing/narrowing approahes to abstrat interpretation. In M. Bruynoogheand M. Wirsing, editors, Proeedings of the 4th Symposium on ProgrammingLanguage Implementations and Logi Programming, LNCS, pages 269{295.Springer-Verlag, 1992. 142

[CC94℄ J. Chassin de Kergommeaux and P. Codognet. Parallel logi programmingsystems. ACM Computing Surveys, 26(3):295{336, 1994.[CD94℄ M. Codish and B. Demoen. Deriving polymorphi type dependenies for logiprograms using multiple inarnations of Prop. In B. Le Charlier, editor, Pro-eedings of the 1st Stati Analysis Symposium, LNCS, pages 281{296. Springer-Verlag, 1994.[CD95℄ M. Codish and B. Demoen. Analyzing logi programs using \PROP"-ositionallogi programs and a Magi Wand. Journal of Logi Programming, 25(3):249{274, 1995.[CDY94℄ M. Codish, D. Dams, and E. Yardeni. Bottom-up abstrat interpretation oflogi programs. Theoretial Computer Siene, 124(1):93{125, 1994.[CGBH94℄ M. Codish, M. Gar��a de la Banda, M. Bruynooghe, and M. Hermenegildo.Goal dependent versus goal independent analysis of logi programs. In F. Pfen-ning, editor, Proeedings of the 5th International Conferene on Logi Pro-gramming and Automated Reasoning, LNCS, pages 305{319. Springer-Verlag,1994.[Chr97℄ H. Christiansen. Deriving delarations from programs. Tehnial report,Roskilde University, P.O.Box 260, DK-4000 Roskilde, 1997.[CL96℄ M. Codish and V. Lagoon. Type dependenies for logi programs using ACI-uni�ation. In Proeedings of the Israeli Symposium on Theory of Computingand Systems, pages 136{145. IEEE Press, 1996. To appear in TheoretialComputer Siene.[Cod97℄ M. Codish. EÆient goal direted bottom-up evaluation of logi programs. InL. Naish, editor, Proeedings of the 14th Joint International Conferene andSymposium on Logi Programming. MIT Press, 1997. Presented as poster.[CP91℄ R. Chadha and D.A. Plaisted. Corretness of uni�ation without our hekin Prolog. Tehnial report, University of North Carolina, 1991.[CT77℄ K. L. Clark and S.-�A. T�arnlund. A �rst order theory of data and programs. InB. Gilhrist, editor, Information Proessing, Proeedings of the IFIP Congress77, Toronto, pages 939{944, 1977.[CU96℄ K. Cho and K. Ueda. Diagnosing non-well-moded onurrent logi programs.In M. Maher, editor, Proeedings of the 13th Joint International Confereneand Symposium on Logi Programming, pages 215{229. MIT Press, 1996.[DD93℄ S. Deorte and D. De Shreye. Automati inferene of norms: A missing linkin automati termination analysis. In Proeedings of the 10th InternationalLogi Programming Symposium, pages 420{436. MIT Press, 1993.[DD94℄ D. De Shreye and S. Deorte. Termination of logi programs: The never-ending story. Journal of Logi Programming, 19/20:199{260, 1994.143

[DD98℄ S. Deorte and D. De Shreye. Termination analysis: Some pratial propertiesof the norm and level mapping spae. In J. Ja�ar, editor, Proeedings of the15th Joint International Conferene and Symposium on Logi Programming,pages 235{249. MIT Press, 1998.[Der87℄ N. Dershowitz. Termination of rewriting. Journal of Symboli Computation,3(1 & 2):69{115, 1987. Corrigendum 4(3), 409{410.[DM85℄ P. Dembinski and J. Ma luszy�nski. AND-parallelism with intelligent baktrak-ing for annotated logi programs. In Proeedings of the 2nd International LogiProgramming Symposium, pages 29{38. MIT Press, 1985.[DM98℄ P. Deransart and J. Ma luszy�nski. Towards soft typing for CLP. In Fran�oisFages, editor, JICSLP'98 Post-Conferene Workshop on Types for Con-straint Logi Programming. �Eole Normale Sup�erieure, 1998. Available athttp://disipl.inria.fr/TCLP98/.[DVB92℄ D. De Shreye, K. Vershaetse, and M. Bruynooghe. A framework foranalysing the termination of de�nite logi programs with respet to all pat-terns. In Proeedings of FGCS, pages 481{488. ICOT Tokyo, 1992.[DW86℄ S. K. Debray and D. S. Warren. Detetion and optimization of funtional om-putations in Prolog. In E. Shapiro, editor, Proeedings of the 3rd InternationalConferene on Logi Programming, LNCS, pages 490{504. Springer-Verlag,1986.[EBC99℄ S. Etalle, A. Bossi, and N. Coo. Termination of well-moded programs.Journal of Logi Programming, 38(2):243{257, 1999.[EG99℄ S. Etalle and M. Gabbrielli. Layered modes. Journal of Logi Programming,39:225{244, 1999.[Emd81℄ M. van Emden. AVL tree insertion: A benhmark program biased towardsProlog. Logi Programming Newsletter 2, 1981.[ER98℄ S. Etalle and F. van Raamsdonk. Beyond suess and failure. In J. Ja�ar,editor, Proeedings of the 15th Joint International Conferene and Symposiumon Logi Programming, pages 190{204. MIT Press, 1998.[FGKP85℄ N. Franhez, O. Grumberg, S. Katz, and A. Pnueli. Proving terminationof Prolog programs. In R. Parikh, editor, Logis of Programs, pages 89{105.Springer-Verlag, 1985.[Fit96℄ M. Fitting. First-order Logi and Automated Theorem Proving. Springer-Verlag, 1996.[GBS95℄ J. Gallagher, D. Boulanger, and H. Sa�glam. Pratial model-based statianalysis for de�nite logi programs. In J. W. Lloyd, editor, Proeedings of the12th International Logi Programming Symposium, pages 351{365. MIT Press,1995. 144

[GGS99℄ T. Gabri�, K. Glynn, and H. S�ndergaard. Stritness analysis as �nite-domain onstraint solving. In P. Flener, editor, Proeedings of the 8th In-ternational Workshop on Logi-based Program Synthesis and Transformation,LNCS, pages 255{270. Springer-Verlag, 1999.[GL96℄ J. P. Gallagher and L. Lafave. Regular approximation of omputation pathsin logi and funtional languages. In O. Danvy, R. Gl�uk, and P. Thiemann,editors, Proeedings of the Dagstuhl Seminar on Partial Evaluation, LNCS,pages 115{136. Springer-Verlag, 1996.[GW94℄ J. P. Gallagher and A. de Waal. Fast and preise regular approximations oflogi programs. In P. Van Hentenryk, editor, Proeedings of the 11th Inter-national Conferene on Logi Programming, pages 599{613. MIT Press, 1994.[HACK00℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. M. King. A simple polynomialgroundness analysis for logi programs. Submitted to the Journal of LogiProgramming, 2000.[Hen92℄ F. Henderson. Strong modes an hange the world! Honours report, Depart-ment of Computer Siene, University of Melbourne, Australia, 1992.[Hen93℄ F. Henglein. Type inferene with polymorphi reursion. ACM Transationson Programming Languages and Systems, 15(2):253{289, 1993.[HHK97℄ A. J. Heaton, P. M. Hill, and A. M. King. Analysing logi programs withdelay for downward-losed properties. In N.E. Fuhs, editor, Proeedings of the7th International Workshop on Logi Program Synthesis and Transformation,LNCS. Springer-Verlag, 1997.[Hil93℄ P. M. Hill. The ompletion of typed logi programs and SLDNF-resolution.In A. Voronkov, editor, Proeedings of the Fourth International Confereneon Logi Programming and Automated Reasoning, LNCS, pages 182{193.Springer-Verlag, 1993.[Hil98℄ P. M. Hill, editor. ALP Newsletter, http://www-lp.do.i.a.uk/alp/,February 1998. Pages 17,18.[HK97℄ P. M. Hill and A. M. King. Determinay and determinay analysis. Journalof Programming Languages, 5(1):135{171, 1997.[HL94℄ P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT Press,1994.[HM99℄ S. Hoarau and F. Mesnard. Inferring and ompiling termination for onstraintlogi programs. In P. Flener, editor, Proeedings of the 8th International Work-shop on Logi-based Program Synthesis and Transformation, LNCS, pages 240{254. Springer-Verlag, 1999.[HT92℄ P. M. Hill and R. W. Topor. Types in Logi Programming, hapter 1, pages1{61. MIT Press, 1992. 145

[HWD92℄ M. Hermenegildo, R. Warren, and S. K. Debray. Global ow analysis as apratial ompilation tool. Journal of Logi Programming, 13(1-4):349{366,1992.[ISO95℄ International Organization for Standardization. The ISO Prolog Standard,1995. http://www.logi-programming.org/prolog std.html.[JB92℄ G. Janssens and M. Bruynooghe. Deriving desriptions of possible valuesof program variables by means of abstrat interpretation. Journal of LogiProgramming, 13(2 & 3):205{258, 1992. First author name erroneously spelt\Janssen".[Kah96℄ S. Kahrs. Limits of ML-de�nability. In H. Kuhen and S. D. Swierstra, editors,Proeedings of the 8th Symposium on Programming Language Implementationsand Logi Programming, LNCS, pages 17{31. Springer-Verlag, 1996.[KKS91℄ M. R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. A transforma-tional methodology for proving termination of logi programs. In Proeed-ings of the 5th Conferene for Computer Siene Logi, LNCS, pages 213{226.Springer-Verlag, 1991.[Kow79℄ R. A. Kowalski. Algorithm = Logi + Control. Communiations of the ACM,22(7):424{436, 1979.[KSH99℄ A. M. King, J.-G. Smaus, and P. M. Hill. Quotienting share for dependenyanalysis. In D. Swierstra, editor, Proeedings of the European Symposium onProgramming, 1999.[KTU93℄ A. J. Kfoury, J. Tiuryn, and P. Urzyzyn. Type reonstrution in the preseneof polymorphi reursion. ACM Transations on Programming Languages andSystems, 15(2):290{311, 1993. Title wrongly given in table of ontents: Typereursion in the presene of polymorphi reursion.[Llo87℄ J. W. Lloyd. Foundations of Logi Programming. Springer-Verlag, 1987.[LS96℄ N. Lindenstrauss and Y. Sagiv. Cheking termination of queries to logi pro-grams. Tehnial report, Hebrew University of Jerusalem, 1996. Available athttp://www.s.huji.a.il/�naomil.[LS97℄ N. Lindenstrauss and Y. Sagiv. Automati termination analysis of logi pro-grams. In L. Naish, editor, Proeedings of the 14th Joint International Confer-ene and Symposium on Logi Programming, pages 63{77. MIT Press, 1997.[LSS97℄ N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for hek-ing termination of queries to logi programs. In O. Grumberg, editor, Proeed-ings of Computer Aided Veri�ation, LNCS, pages 444{447. Springer-Verlag,1997.[L�ut93℄ S. L�uttringhaus-Kappel. Control generation for logi programs. In D. S.Warren, editor, Proeedings of the 10th International Conferene on LogiProgramming, pages 478{495. MIT Press, 1993.146

[Mar96℄ M. Marhiori. Proving existential termination of normal logi programs. InM. Wirsing and M. Nivat, editors, Proeedings of AMAST'96, LNCS, pages375{390. Springer-Verlag, 1996.[Mee88℄ L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam;IFIP Working Group 2.1 working paper 592 ROM-25, 1988.[Mil78℄ R. Milner. A theory of type polymorphism in programming. Journal of Com-puter and System Sienes, 17(3):348{375, 1978.[MK97℄ J. C. Martin and A. M. King. Generating eÆient, terminating logi programs.In M. Bidoit and M. Dauhet, editors, Proeedings of TAPSOFT'97, LNCS,pages 273{284. Springer-Verlag, 1997.[MKS97℄ J. C. Martin, A. M. King, and P. Soper. Typed norms for typed logi programs.In J. P. Gallagher, editor, Proeedings of the 6th International Workshop onLogi Program Synthesis and Transformation, LNCS, pages 224{238. Springer-Verlag, 1997.[MM82℄ A. Martelli and U. Montanari. An eÆient uni�ation algorithm. ACM Trans-ations on Programming Languages and Systems, 4:258{282, 1982.[MNL90℄ K. Marriott, L. Naish, and J. L. Lassez. Most spei� logi programs. Annalsof mathematis and arti�ial intelligene, 1(2), 1990. Also in proeedings of the5th Joint International Conferene and Symposium on Logi Programming.[MO84℄ A. Myroft and R. O'Keefe. A polymorphi type system for Prolog. Arti�ialIntelligene, 23:295{307, 1984.[MS93℄ K. Marriott and H. S�ndergaard. Preise and eÆient groundness analysisfor logi programs. ACM Letters on Programming Languages and Systems,2(1{4):181{196, 1993.[MT95℄ E. Marhiori and F. Teusink. Proving termination of logi programs with delaydelarations. In J. W. Lloyd, editor, Proeedings of the 12th International LogiProgramming Symposium, pages 447{461. MIT Press, 1995.[Nai85℄ L. Naish. Automati ontrol of logi programs. Journal of Logi Programming,2(3):167{183, 1985.[Nai86℄ L. Naish. Negation and Control in Prolog. Number 238 in LNCS. Springer-Verlag, 1986.[Nai92℄ L. Naish. Coroutining and the onstrution of terminating logi programs.Tehnial Report 92/5, University of Melbourne, 1992.[Nai96℄ L. Naish. A delarative view of modes. In M. Maher, editor, Proeedings of the13th Joint International Conferene and Symposium on Logi Programming,pages 185{199. MIT Press, 1996.147

[PBH99℄ G. Puebla, F. Bueno, and M. Hermenegildo. A framework for assertion-based debugging in onstraint logi programming. In A. Bossi, editor, Pre-Proeedings of the 9th International Workshop on Logi-based Program Synthe-sis and Transformation, pages 31{38. Universit�a C�a Fosari di Venezia, 1999.Extended abstrat.[PR99℄ D. Pedreshi and S. Ruggieri. On logi programs that do not fail. In S. Etalleand J.-G. Smaus, editors, Proeedings of the Workshop on Veri�ation, organ-ised within ICLP'99, volume 30 of Eletroni Notes in Theoretial ComputerSiene. Elsevier, 1999.[RNP92℄ Y. Rouzaud and L. Nguyen-Phoung. Integrating modes and subtypes intoa Prolog type heker. In K. R. Apt, editor, Proeedings of the 9th JointInternational Conferene and Symposium on Logi Programming, pages 85{97. MIT Press, 1992.[Rug99℄ S. Ruggieri. Veri�ation and Validation of Logi Programs. PhD thesis, Di-partimento di Informatia, Universit�a di Pisa, 1999.[SG95a℄ H. Sa�glam and J. P. Gallagher. Approximating onstraint logi programs usingpolymorphi types and regular desriptions. Tehnial Report CSTR-95-017,University of Bristol, 1995. Presented as a poster at the 7th Symposium onProgramming Language Implementations and Logi Programming.[SG95b℄ K. Stroetmann and T. Gla�. A semantis for types in Prolog: The typesystem of pan version 2.0. Tehnial report, Siemens AG, ZFE T SE 1, 81730M�unhen, Germany, 1995.[SHC96℄ Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Mer-ury, an eÆient purely delarative logi programming language. Journal ofLogi Programming, 29(1{3), 1996.[SHK98℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi programs withblok delarations running in several modes. In C. Palamidessi, editor, Pro-eedings of the 10th Symposium on Programming Language Implementationsand Logi Programming, LNCS. Springer-Verlag, 1998.[SHK99a℄ J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typedlogi programs. In A. Bossi, editor, Pre-Proeedings of the 9th InternationalWorkshop on Logi-based Program Synthesis and Transformation, pages 163{170. Universit�a C�a Fosari di Venezia, 1999. Extended abstrat.[SHK99b℄ J.-G. Smaus, P. M. Hill, and A. M. King. Preventing instantiation errorsand loops for logi programs with multiple modes using blok delarations.In P. Flener, editor, Proeedings of the 8th International Workshop on Logi-based Program Synthesis and Transformation, LNCS, pages 289{307. Springer-Verlag, 1999.[SIC98℄ Intelligent Systems Laboratory, Swedish Institute of Computer Siene, POBox 1263, S-164 29 Kista, Sweden. SICStus Prolog User's Manual, 1998.http://www.sis.se/isl/sistus/sistus to.html.148

[Sma99℄ J.-G. Smaus. Proving termination of input-onsuming logi programs. InD. De Shreye, editor, Proeedings of the 16th International Conferene onLogi Programming. MIT Press, 1999.[Som87℄ Z. Somogyi. A system of preise modes for logi programs. In J.-L. Lassez,editor, Proeedings of the 4th International Conferene on Logi Programming,pages 769{787. MIT Press, 1987.[SS86℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.[Str67℄ C. Strahey. Fundamental onepts in programming languages. Notes for theInternational Summer Shool in Computer Programming, Copenhagen, 1967.[Tho99℄ S. Thompson. Haskell: The Craft of Funtional Programming. Addison-Wesley, 1999. Seond Edition.[Ti91℄ E. Tik. Parallel Logi Programming. MIT Press, 1991.[TL97℄ J. Tan and I. Lin. Reursive modes for preise analysis of logi programs. InJ. Ma luszy�nski, editor, Proeedings of the 14th International Logi Program-ming Symposium, pages 277{290. MIT Press, 1997.[TZ86℄ J. Thom and J. Zobel. NU-Prolog Referene Manual, version 1.0. Departmentof Computer Siene, University of Melbourne, Australia, 1986. TehnialReport 86/10.[Ued86℄ K. Ueda. Guarded Horn lauses. In E. Wada, editor, Proeedings of the 4thJapanese Conferene on Logi Programming, LNCS, pages 168{179. Springer-Verlag, 1986.[Ued88℄ K. Ueda. Guarded Horn Clauses, a parallel logi programming language withthe onept of a guard. In M. Nivat and K. Fuhi, editors, Programming ofFuture Generation Computers, pages 441{456. North Holland, Amsterdam,1988.[UM93℄ K. Ueda and M. Morita. Message-oriented parallel implementation of ModedFlat GHC. New Generation Computing, 11(3):323{341, 1993.[UM94℄ K. Ueda and M. Morita. Moded Flat GHC and its message-oriented imple-mentation tehnique. New Generation Computing, 13(1):3{43, 1994.[VCL95℄ P. Van Hentenryk, A. Cortesi, and B. Le Charlier. Type analysis of Prologusing type graphs. Journal of Logi Programming, 22(3):179{209, 1995.
149

Index-, 85<, 41B, 122, 123BP , 772, 14, 56D, 40Der, 64E�, 34I , 59O , 59R, 60�f , 28�p, 28�� , 28T (�� ; U), 28U , 28Z, 34[: : : j : : :℄, 27�, 47�, 42�, 78j:j, 77dom, 592, 59=(I ; I), 126fdep, 46h ; i, 60hL; Si, 29;, 14, 56t, 41j= s : S) t : T, 59// , 30�(o1; : : : ; on), 63p(s; t), 59�, 28ran, 59./, 30!, 21

rb, 90rf , 90A, 78w, 78[p℄�, 78/� , 29/ , 29sup, 79t : T , 59vars, 59?, 85abstrat ompilation, 4, 27, 46, 49abstrat dependeny, 46abstrat domain, 40well-de�ned, 31abstrat extrator, 44abstrat interpretation, 15, 20, 26abstrat term, 4, 16, 29abstrat termination funtion, 44abstrat uni�ation, 4, 44abstrationof a onstant, 42of a program, 47of a term, 42of a truth value, 42aeptable lause, 83aeptable delay delaration, 133aeptable for input-onsuming deriva-tions, 78aeptable program, 78aumulator, 7, 57ad-ho polymorphism, 19ad-ho type, 6, 18Algorithm = Logi + Control, 56all ground, 59alphabet, 28analysisfor groundness, 15150

annotation of type, 33answer, 57answer pattern, 14, 48, 49Any, 40any, 59any, 4Append, 27, 49abstration of, 47append, 3, 57, 61, 73, 75, 79, 96blok delaration, 96in test mode, 128approximationsafe, 42Apt, 59, 60, 78, 89, 112, 113, 116, 126,134, 136, 137arbitrary type, 18argument positionadditional, 135input, 57output, 57arithmeti built-in, 118arithmeti expression, 118atom, 29, 59atom-terminating, 75bounded, 72, 84, 131ritial, 107leftmost, 98most general, 133most reently introdued, 135seletable, 85seleted, 58, 60waiting, 100woken, 99atom-terminating, 75atomi position, 119auxiliary prediate, 87, 119AVL-tree, 28B-ground, 122B-ground�, 123B-position, 122B-position�, 123BP , 77baktraking, 26, 74, 132balaning, 28base, 28

Bezem, 77, 78, 133, 136bindingspeulative, 98, 101binding order, 100blok delaration, 9, 84, 85for built-in, 87, 119overhead, 121Boolean ag, 41Bot, 40bound, 51depth of omputation, 135bounded atom, 72, 84, 131built-in, 18, 58, 117arithmeti, 118implementation, 117requiring groundness, 118built-in prediate, see built-inbuilt-in type, 18all safe, 22unsafe, 22all pattern, 14, 48, 49initial, 49irular mode, 75lause, 29aeptable, 83oneptual, 117fat, 117input-linear, 66lause headinput-linear, 126lause order, 74Codish, 4{7, 16, 18, 19, 27, 49{51oneptual lause, 117onrete semantis, 4onurrent language, 126Cons, 6, 27Consdep, 46ons dep, 4onsidered, 115suessfully, 113onstant, 28onstant type, 59, 118onstraint language, 126onstrutor151

term, 28type, 28onsumer, 14, 62, 101ontrol, 56, 58, 133oroutining, 11, 61, 74orretly typed, 59orrespondingniely moded . . . , 65robustly typed . . . , 90simply moded . . . , 86simply typed . . . , 86well moded . . . , 68well typed . . . , 69overing relation, 135ritial atom, 107D, 40Der, 64dataatual, 26desription of, 26data ow, 56data strutureopen, 135reursive, 81De Shreye, 72, 74, 78, 105, 131, 135deadlok, see ounderingdelarationas omment, 53delay, 72infer, 53delarative view, 14delared type, 18delaring modes, 52Deorte, 72, 74, 78, 105, 131, 135dereaserelative, 73, 83, 138degree of instantiation, 3delay, 84delay ondition, 52delay delaration, 58, 72aeptable, 133overhead, 121purpose, 58, 84safe, 133delay-respeting derivation, 85

in�nite, 102DELAY : : : UNTIL GROUND : : :, 82DELAY : : : UNTIL NONVAR : : :, 82delete, 56, 66, 73, 80, 85, 95Demoen, 4{7, 18, 49, 50dependenyabstrat, 46depends on, 78depth, 33of omputation, 135depth bound, 51derivation, 60arbitrary, 72delay-respeting, 85failing, 102, 136oundering, 85in�nite, 57, 73input-onsuming, 8, 58, 60, 137LD, 60, 72left-based, 63, 100, 138suessful, 136derivation step, 60atual, 115attempted, 115derived permutation, 63desendant, 60diret, 60desriptive mode, 15desriptive type, 20determinay, 26deterministi program, 134diret desendant, 60diret ourrene, 59diretional type, 21disjointleft-right, 113divergene, 116dom, 59domainabstrat, 40ground/non-ground, 49hand-rafted, 50of a substitution, 29, 59typed, 49double mathing, 11, 113152

9-universal termination, 136E�, 34equation, 29, 35, 44, 46, 113, 115errorinstantiation, 117type, 117typographial, 26Etalle, 8, 59, 74, 77, 78, 83, 89, 112{114,116, 120, 134, 136, 139exeutionparallel, 7, 57, 83exeution order, 61, 138exeution point, 3exhaustive tests, 105existential termination, 74expressionarithmeti, 118generi, 113meaningful, 26extrator, 34abstrat, 44fdep, 46fail, 102failing derivation, 136fair seletion rule, 136Family, 7feed, 75FGHC, 83, 126, 132Moded, 132�ll a position, 59�rst order logi, 56�xed mode, 74at term, 59Flatten, 49attening lists, 27oundering, 11, 85, 102, 116, 134freedom from, 116vs. termination, 116forward mode, 21free term, 42free-bound-labelling, 89full uni�ation, 112funtion, 28funtional language, 30generalised mode, 129

generate, 62generate ontrol, 133generi expression, 113GHC, 83, 132glb, 41goal, 15goal-dependent, 15goal-independent, 15G�odel, 26, 27, 70meta-programming, 49system modules, 49granularity, 16greatest lower bound, 41ground, 26ground, 4ground type, 59ground/non-ground domain, 49groundness, 42groundness analysis, 15guard, 83, 126, 132Guarded Horn Clauses, 132Haskell, 30Hill, 80I , 59ICD-aeptable, 78idempotent substitution, 59iff, 4iff and, 4inorret type, 51index set, 31in�nite derivation, 57, 73initial node, 30input, 14, 59from lause head, 121insuÆient, 98, 106input position, 57input seletability, 95, 95, 122of built-ins, 110input-onsuming, 8, 58, 60, 137input-linear, 126atom, 59lause, 66program, 66instantiationdegree of, 26153

suÆient, 58instantiation error, 117instantiation state, 17, 52insuÆient input, 106Int, 27Integer, 6, 27IntegerList, 6interleave, 61, 74il, 59int, 59is, 117ISO standard, 117iterated mathing, 113key, 28King, 72, 82, 135Kowalski, 56, 136Lagoon, 6, 7, 51languageonurrent, 126onstraint, 126moded, 16polymorphi . . . , 29typed, 20lattie, 41LD-derivation, 60, 72, 136in�nite, 102LD-resolvent, 60least upper bound, 41left-based derivation, 63, 100, 138left-right disjoint, 113leftmost atom, 98length, 119level mapping, 83moded, 136moded typed, 77linear, 59input, 59List, 6list, 27attening, 27nil-terminated, 27open, 27rigid, 134list, 59Lists, 27

Lloyd, 60, 80, 137loal seletion rule, 73, 135logi, 56lub, 41lub, 4L�uttringhaus-Kappel, 72, 99, 116, 133Luitjes, 59, 99, 115, 116, 118, 134Marhiori, 72, 135Martelli-Montanari, 115Martin, 72, 82, 135math, 113mathing, 11double, 113iterated, 113Merury, 26, 52, 68, 70meta-programming, 49MGU, 58, 60ML, 30mode, 14, 26, 59as veri�ation tool, 15irular, 75delare, 52desriptive, 15�nding a, 66�xed, 74forward, 21generalised, 129in Merury, 52multiple, 7, 57, 62of a program, 59presriptive, 16reursive, 51single, 74wrong, 110mode analysis, 15mode delaration, 16Moded FGHC, 132moded language, 16moded level mapping, 136moded typed level mapping, 77monomorphi type, 19most general uni�er, see MGUmost spei� program, 85multiple modes, 7, 57, 62Naish, 21, 72, 99, 100, 131{133, 137154

Nests, 27niely moded, 16, 61, 65Nil, 6, 27nil-terminated, 26, 27noFD, 102non-destrutive program, 136non-ground, 26non-ground type, 18non-linear plae, 127non-reursive subterm type, 6, 50non-speulative, 102non-variable term, 10, 84non-variable type, 59normal form, 3, 29Nqueens, 50nqueens, 80, 105NU-Prolog, 133, 134num, 59, 118nl, 59O , 59our-hek, 11our-hek free, 115ourrenediret, 59one-atom query, 74Open, 40open, 27open data struture, 135open term, 34operational semantis, 27orderexeution, 61, 138of binding, 100of lauses, 74on abstrat terms, 41produer-onsumer, 61, 74, 138textual, 61, 74, 138ordered, 63output, 14, 57, 59overloading, 19parallel exeution, 7, 57, 83parameter, 28parametri polymorphism, 19pattern, 48, 49Pat(Type), 51

Pellegrini, 134permutation, 62, 63derived, 63identity, 74permutation niely moded, 65permutation robustly typed, 90permutation simply moded, 86permutation simply typed, 86permutation well moded, 68permutation well typed, 69permute, 56, 57, 66, 73, 80persistenepermutation niely moded, 66, 67permutation robustly typed, 91permutation simply typed, 88permutation well moded, 68permutation well typed, 69well fed, 107Person, 7pin down the size, 72, 83, 131, 138plae, 127plaing reursive alls last, 101, 105, 133p(s; t), 59polymorphi type, 28polymorphi reursion, 52polymorphi type relationship, 33polymorphism, 19ad-ho, 19Pos, 49positionatomi, 119�ll a, 59input, 57, 59output, 57, 59prediate, 28atom-terminating, 75auxiliary, 87, 119built-in, 18, see built-inuser-de�ned, 121presriptive mode, 16proedural view, 14produer, 9, 14, 62, 101produer-onsumer order, 61, 74, 138produer-onsumer relation, 61program, 85deterministi, 134155

in normal form, 29input-linear, 66most spei�, 85non-destrutive, 136polymorphi . . . , 29projetion, 44query, 29, 59one-atom, 74Quiksort, 50quiksort, 87R-derivation, 60van Raamsdonk, 8, 136ran, 59rangeof a substitution, 59type, 28reurrent program, 78reursionpolymorphi, 52reursive data struture, 81reursive mode, 51reursive type, 6, 50redues to, 47Reexive Condition, 29, 52regular approximation, 18regular type, 18relationproduer-onsumer, 61relative derease, 73, 83, 138resolvent, 60respets atomi positions, 119Reverse, 49rigidness, 73, 134robustly typed, 90rose tree, 51Ruggieri, 136safe approximation, 42safe all, 22safe delay delaration, 133SCC, 30seletable atom, 85seleted atom, 58, 60seletion rule, 60default, 73

fair, 136LD, 56left-based, 98leftmost seletable, 99loal, 73, 135Prolog, 73standard, 56semantisonrete, 4operational, 27set of equations, 113, 115onsidered, 115partition, 114suessfully onsidered, 113SICStus, 18, 84, 121Simple Range Condition, 29, 52simple type, 29simply moded, 61, 86simply typed, 86single mode, 74size of a query, 79of a term, 79pin down, 72, 83, 131, 138SLD-tree, 135�nite, 133solvable by double mathing, 113Somogyi, 52speulative binding, 98, 101make, 101, 102use, 101step, 60derivation, 60strong termination, 72, 133strongly onneted omponent, see SCCsubquery, 60substitutionidempotent, 59term, 29type, 29subterm, 33immediate, 35reursive, 33sub\term", 29, 51proper, 28subterm type, 6156

su, 102suess set, 21suessful, 15, 61suessful derivation, 136suessfully onsidered, 113suÆient instantiation, 58sup, 79supersript, 33TSize, 79tableground, 49Tables, 28, 49Ter, 40term, 28, 29abstrat, 4, 16, 29ompound, 81depth of, 33at, 59free, 42non-variable, 10, 84open, 34terminated, 34tree of, 33type-onsistent, 90term size, 79TermiLog, 99, 135terminated term, 34termination9-universal, 136existential, 74of term, 26, 34strong, 72, 133universal, 74, 133vs. oundering, 116termination funtion, 34abstrat, 44test, 62, 105test mode, 66, 128test-and-generate, 7, 10, 57, 62, 110Teusink, 72, 135textual order, 61, 74, 138Thompson, 30transpareny ondition, 28, 52tree AVL, 28

of term, 33rose, 51tree, 59TreeToList, 49type, 21, 28, 59ad-ho, 6, 18annotation, 33arbitrary, 18, 50built-in, 18onstant, 59delared, 18desriptive, 20diretional, 21ground, 59inorret, 51monomorphi, 19non-ground, 18non-reursive subterm, 6, 30, 50non-variable, 59of a program, 59reursive, 6, 30, 50regular, 18simple, 29subterm, 6, 29variable, 59type analysis, 20type onstrutor, 19type delarationontrived, 49type error, 18, 21, 117type graph, 18, 30, 33type variable, 28type-onsistent, 59, 71, 90, 109, 117wrt. input-onsuming derivations, 71wrt. LD-derivations, 71typed domain, 49typed language, 20, 70U , 28Ueda, 8, 83, 132undeidability, 15uni�ation, 115abstrat, 4, 44full, 112speialisation, 26uni�ation free, 11, 15, 61, 112, 113157

9-universal termination, 136universal termination, 74unsafe all, 22user-de�ned prediate, 121value, 28van Raamsdonk, 8, 136variable type, 59vars, 59waiting atom, 100well fed, 107well moded, 16, 61, 68well plaed, 124well typed, 61, 69well-aeptable program, 78when, 127when delarations, 133widening, 50, 51woken atom, 99wrong mode, 110Z, 34

158

