Citation for published version

DOI

https://doi.org/10.1038/s41477-020-00813-w

Link to record in KAR

https://kar.kent.ac.uk/84676/

Document Version

Author's Accepted Manuscript

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk
If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
The environmental impacts of palm oil in context

Erik Meijaard¹,²,³*, Thomas Brooks⁴,⁵,⁶, Kimberly M. Carlson⁷,⁸, Eleanor M. Slade⁹, John Garcia Ulloa¹⁰, David L.A. Gaveau¹¹, Janice Ser Huay Lee⁹, Truly Santika¹,², Diego Juffe-Bignoli²,¹², Matthew J. Struebig², Serge A. Wich¹³,¹⁴, Marc Ancrenaz¹,¹⁵, Lian Pin Koh¹⁶, Nadine Zamira¹⁷, Jesse F. Abrams¹⁸,¹⁹, Herbert H.T. Prins²⁰, Cyriaque N. Sendashonga²¹, Daniel Murdiyarso¹⁰,²², Paul R. Furumo²³, Nicholas Macfarlane⁴, Rachel Hoffmann²⁴, Marcos Persio²⁵, Adrià Descals²⁶, Zoltan Szantoi²⁷,²⁸, Douglas Sheil²⁹

¹ Borneo Futures, Bandar Seri Begawan, Brunei Darussalam.
² Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, UK.
³ School of Biological Sciences, University of Queensland, St Lucia, Australia.
⁴ Science and Knowledge Unit, IUCN, Gland, Switzerland.
⁵ World Agroforestry Center (ICRAF), University of The Philippines Los Baños, Laguna, Philippines.
⁶ Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Australia.
⁷ Department of Natural Resources and Environmental Management, the University of Hawai‘i at Mānoa, HI, USA.
⁸ Department of Environmental Studies, New York University, New York, NY, USA.
⁹ Asian School of the Environment, Nanyang Technological University of Singapore, Singapore.
¹⁰ Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
¹¹ Center for International Forestry Research, Bogor, Indonesia.
¹² UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK.
School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.

Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.

Kinabatangan Orang-Utan Conservation Programme, Kota Kinabalu, Sabah, Malaysia.

Department of Biological Sciences, National University of Singapore, Singapore.

Rainforest Alliance, Washington, DC, USA.

Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.

Global Systems Institute and Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, United Kingdom.

Animal Sciences Group, Wageningen University, the Netherlands.

IUCN Policy and Programme Group, IUCN, Gland, Switzerland.

Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia.

Earth System Science, Stanford University, CA, USA.

Department of Veterinary Medicine, University of Cambridge, UK.

Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.

Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Barcelona, Spain.

European Commission, Joint Research Centre, Ispra, Italy.

Stellenbosch University, Stellenbosch, South Africa.

Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 2050. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. Greater research attention needs to be given to investigating the impacts of palm oil production compared to alternatives for the trade-offs to be assessed at a global scale.
Over the past 25 years, global oil crops have expanded rapidly, with major impacts on land use. The land used for growing oil crops grew from 170 million ha (Mha) in 1961 to 425 Mha in 2017 or ~30% of all cropland world-wide. Oil palm, soy, and rapeseed together account for >80% of all vegetable oil production with cotton, groundnuts, sunflower, olive, and coconut comprising most of the remainder (Table 1, Figure 1). These crops, including soy (125 Mha planted area) and maize (197 Mha planted area), are also used as animal feed and other products.

Oil palm is the most rapidly expanding oil crop. This palm originates from equatorial Africa where it has been cultivated for millennia, but it is now widely grown in Southeast Asia. Between 2008 and 2017, oil palm expanded globally at an average rate of 0.7 Mha per year, and palm oil is the leading and cheapest edible oil in much of Asia and Africa. While it has been estimated that palm oil is an ingredient in 43% of products found in British supermarkets, we lack comparable studies for the prevalence of other oils.

As a wild plant, the oil palm is a colonising species that establishes in open areas. Cultivated palms are commonly planted as monocultures, although the tree is also used in mixed, small-scale and agroforestry settings. To maximize photosynthetic capacity and fruit yields, oil palm requires a warm and wet climate, high solar radiation, and high humidity. It is thus most productive in the humid tropics, while other oil crops, except coconut, grow primarily in subtropical and temperate regions (Table 1). Moreover, because oil palm tolerates many soils including deep peat and sandy substrates, it is often profitable in locations where few other commodity crops are viable. The highest yields from planted oil palm have been reported in Southeast Asia. Yields are generally lower in Africa and the Neotropics, likely reflecting differences in climatic conditions including humidity and cloud cover, as well as management, occurrence of pests and diseases, and planting stock.

Palm oil is controversial due to its social and environmental impacts and opportunities. Loss of natural habitats, reduction in woody biomass, and peatland drainage that occur during site
preparation are the main direct environmental impacts from oil palm development14. Such conversion typically reduces biodiversity and water quality and increases greenhouse gas emissions, and, when fire is used, smoke and haze5,15. Industrial oil palm expansion by large multi-national and national companies is also often associated with social problems, such as land grabbing and conflicts, labour exploitation, social inequity16 and declines in village-level well-being17. In producer countries, oil palm is a valued crop that brings economic development to regions with few alternative agricultural development options8, and generates substantial average livelihood improvements when smallholder farmers adopt oil palm18. Here we review the current understanding of the environmental impacts from oil palm cultivation and assess what we know about other oil crops in comparison. Our focus is on biodiversity implications and the environmental aspects of sustainability, and we acknowledge the importance of considering these alongside socio-cultural, political, and economic outcomes.

DEFORESTATION AND OIL PALM EXPANSION

A remote sensing assessment found that oil palm plantations covered at least 19.5 Mha globally in 2019 (Figure 2), of which an estimated 67.2\% were industrial-scale plantings and the remainder smallholders3. With 17.5 Mha, Southeast Asia has the largest area under production, followed by South and Central America (1.31 Mha), Africa (0.58 Mha) and the Pacific (0.14 Mha). However, the actual area under oil palm production could be 10–20\% greater than the area detected from satellite imagery, i.e. 21.5–23.4 Mha, because young plantations (< ca. 3 years), open-canopy plantations, or mixed-species agroforests were omitted3. Estimates suggest that the proportion of oil palm area under smallholder cultivation (typically less than 50 ha of land per family19) varies from 30–60\% in parts of Malaysia and Indonesia17 to 94\% in Nigeria5.

The overall contribution of oil palm expansion to deforestation varies widely and depends in part on assessment scope (temporal, spatial) and methods. We reviewed 23 studies that reported land use
or land cover change involving oil palm (Table S1 and S2). In Malaysian Borneo, oil palm was an important contributor to overall deforestation20. Here, new plantations accounted for 50% of deforestation from 1972 to 2015 when using a 5-year cut-off to link deforestation and oil palm development21 (Figure 3, Figure S2, Table S3). In contrast, one global sample-based study suggested that between 2000 and 2013, just 0.2% of global deforestation in “Intact Forest Landscapes” was caused by oil palm development22.

The degree to which oil palm expansion has replaced forests (defined as naturally regenerating closed canopy forests) varies with context. From 1972 to 2015, around 46% of new plantations expanded into forest, with the remainder replacing croplands, pasturelands, scrublands (including secondary forest regrowth), and other land uses5. Individual studies reported forest clearance ranging from 68% of tracked oil palm expansion in Malaysia and 44% in the Peruvian Amazon, to just 5–6% in West Africa, Central America, and South America excluding Peru (Figure 3). In general, oil palm expansion in the Neotropics is characterized by the conversion of previously cleared lands instead of forests23,24, although the extent to which oil palm displaces other land uses into forests remains uncertain. In Indonesia and Malaysian Borneo, industrial plantation expansion and associated deforestation have declined since ca. 20116,25. However, smallholder plantings developed to support demand by industrial palm oil mills may be increasing. To date, only two studies have clearly differentiated between forest clearing by smallholders and industrial plantations (Table S2). In Peru, 30% of smallholder plantings resulted in deforestation26, while in Sumatra, Indonesia 39% of smallholder expansion was into forest27. While we still lack broader understanding of the deforestation impacts of smallholders27, recent studies from Indonesian Borneo show that like industrial actors, smallholders sometimes convert fragile ecosystems such as tropical peatlands into oil palm plantations28. Other oil crops have not yet been mapped globally with similar levels of accuracy, precluding detailed assessments and comparisons.

OIL PALM’S DIRECT IMPACTS ON SPECIES
The International Union for the Conservation of Nature (IUCN) Red List of Threatened Species documents 321 species for which oil palm is a reported threat, significantly more than for other oil crops (Figure 4, Table 1). Species threatened by oil palm made up 3.5% of the taxa threatened by annual and perennial non-timber crops (9,088 species) and 1.2% of all globally threatened taxa (27,159 species) in 2019 (Supplementary Materials, Table S4). These species include orangutans *Pongo* spp., gibbons *Hylobates* spp. and the tiger *Panthera tigris*. Species threat lists, however, are incomplete as most plant groups have not been comprehensively assessed, and the focus of threat studies may be biased toward certain oil crops. For example, perennial crops (oil palm, coconut, olive) might be more easily identified as a threat to a species than annual crops, because perennial crops facilitate long-term studies that are more difficult with annual crops that may not be planted every year. Also, the IUCN Red List focuses on threats in the recent past, and is thus biased toward crops with recent rapid expansion. Better information is needed for all oil crops about where they are grown, and how their expansion has affected and could affect natural and semi-natural ecosystems and biodiversity. We note that because coconut is primarily grown in tropical island nations it stands out as a particular threat for rare and endemic species with small ranges (Table 1).

Oil palm plantations contain lower species diversity and abundance for most taxonomic groups when compared to natural forest. Plant diversity in some plantations is less than 1% of that in natural forests, but because oil palm is perennial, associated plant diversity may exceed that of annual oil crops (Table 1). One study found 298 plant species in the oil palm undergrowth, and another found 16 species of fern on oil palm trunks, while a meta-analysis of plant diversity in a range of annual crops, including oil crops, found between one and 15 associated plant species.

Plant diversity in any oil croplands also depends on management choices such as tillage, weeding and the use of herbicides or other chemicals.

Recorded mammal diversity in oil palm is 47–90% lower than in natural forest, and strongly depends on the proximity of natural forests. Oil palm plantations generally exclude forest specialist
species38,39, which are often those species of greatest conservation importance. For example, forest-dependent gibbons (Hylobatidae) cannot survive in stands of monocultural oil palm, but can make use of interspersed forest fragments within an oil palm matrix31. Some species, although unable to survive solely in oil palm, will utilise plantations. For instance, planted oil palm in Malaysian Borneo supported 22 of the 63 mammal species found in forest habitats36, and 31 of 130 bird species40, most of them relatively common species. Oil palm in Guatemala and Brazil supported 23 and 58 bird species, respectively39,41, while 12 species of snakes were found in a Nigerian oil palm plantation42. Various species will enter plantations to feed on oil palm fruit, including Palm-nut Vultures \textit{Gypohierax angolensis}43 and Chimpanzee \textit{Pan troglodytes}43 in Africa and porcupines (Hystricidae), civets (Viverridae), macaques (Cercopithecidae), elephants (Elephantidae) and orangutans in Southeast Asia44. The highest diversity of animal species in oil palm areas, however, is generally found in the wider landscape that includes remnant patches of native vegetation45,46. Factors that are likely to positively influence biodiversity values in both industrial-scale and smallholder plantations include higher landscape heterogeneity, the presence of large forest patches and connectivity among these47, and the plant diversity and structure of undergrowth vegetation. For example, in palm areas where there is systematic cattle grazing, bird and dung beetle abundance and diversity increase48,49. Oil palm cultivation involves the introduction and spread of invasive species including the oil palm itself (noted in Madagascar and Brazil’s Atlantic Forests50), as well as non-native cover crops and nitrogen-fixing plants (e.g., \textit{Mucuna bracteata} or \textit{Calopogonium caeruleum}). Similarly, management of oil palm plantations can increase the local abundance of species such as Barn Owls \textit{Tyto alba}, introduced into plantations to control rodents51. Oil palm plantations also support pests such as the Black Rat \textit{Rattus rattus}, pigs \textit{Sus} spp., and beetles such as the Asiatic Rhinoceros Beetle \textit{Oryctes rhinoceros} and the Red Palm Weevil \textit{Rhynchophorus ferrugineus}52. Such species can impact palm oil production negatively, for example in reducing oil palm yields through damage to the palm or fruit.
They also have a range of local effects, both positive and negative for biodiversity, including animals that prey on them, such as snakes, owls, monkeys and cats, while the extra food provided by oil palm fruits can increase pig populations resulting in reduced seedling recruitment in forests neighbouring oil palm.

Management within oil palm areas to retain riparian reserves and other set-asides containing natural forest may contribute to pollination and pest control within the plantation, although they may also harbour pests and disease. Studies to date suggest overall limited, or neutral, effects of such set-asides on pest control services, spill over of pest species, or oil palm yield. There are also plenty of unknowns, for example, the African beetle Elaiedobius kamerunicus has been introduced as an effective oil palm pollinator and is now widely naturalised in Southeast Asia and America where it also persists in native vegetation and visits the inflorescences of native palms but its impacts, if any, are unexamined.

Smallholder plantations tend to be smaller and more heterogeneous than industrial developments, which potentially benefits wildlife, but this remains poorly studied. A handful of studies indicate that smallholdings support a similar number of, or slightly more, bird and mammal species than industrial plantations, e.g. However, species in smallholder plantations may be more exposed to other pressures, such as hunting, when compared to industrial plantations.

OTHER ENVIRONMENTAL IMPACTS

Oil palm plantations have a predominantly negative net effect on ecosystem functions when compared to primary, selectively logged or secondary forest. The clearance of forests and drainage of peatlands for oil palm emits substantial carbon dioxide. Oil palms can maintain high rates of carbon uptake and their oil can potentially be used to substitute fossil fuels, and thus contribute towards sustainable energy (SDG 7) and climate change response (SDG 13). Yet, biofuel from oil
palm cannot compensate for the carbon released when forests are cleared and peatlands drained over short or medium time-scales (<100 years). Moreover, the carbon opportunity cost of oil palm, which reflects the land’s opportunity to store carbon if it is not used for agriculture, is not very different from annual vegetable oil crops (Table 1).

Oil palm plantations, and the production of palm oil, can also be sources of methane and nitrous oxide, both potent greenhouse gases that contribute further to climate change, although the former is sometimes used as biogas, reducing net greenhouse gas release. Other emissions associated with oil palm development include elevated isoprene production by palm trees, which influences atmospheric chemistry, cloud cover and rainfall, although how this affects the environment remains unclear. In addition, there is some evidence that emissions of other organic compounds, e.g., estragole and toluene, are also higher in oil palm plantations than in forest, but these emissions appear minor compared to isoprene.

Forest loss and land use conversion to oil palm impact the local and regional climate, although the extent of these impacts remains debated. For example, increased temperatures and reduced rainfall recorded over Borneo since the mid-1970s are thought to relate to the island’s declining forest cover which is partly due to the expansion of oil palm, with climate changes being greater in areas where forest losses were higher. Indeed, oil palm plantations tend to be hotter, drier and less shaded than forests due to their less dense canopy, and often have higher evapotranspiration rates than forests. A drier hotter climate increases the risk of fire and concomitant smoke pollution, especially in peat ecosystems. In addition to human health consequences (e.g., respiratory diseases, conjunctivitis), such fires can impact wildlife and atmospheric processes. For example, aerosols from fires can scatter solar radiation, disrupt evaporation, and promote drought. Few of these relationships are well-studied.
Conversion of natural forests to oil palm plantations increases run-off and sediment export due to loss or reduction of riparian buffers, reduced ground cover, and dense road networks. Streams flowing through plantations tend to be warmer, shallower, sandier, more turbid, and to have reduced abundances of aquatic species such as dragonflies (Anisoptera) than streams in forested areas. Fertilizers, pesticides, and other chemicals used on plantations also impact water quality and aquatic habitats. The effluent from most modern mills is minimized, but release into local rivers has caused negative impacts to people and to aquatic and marine ecosystems. Some hydrological impacts may be viewed as positive: for example, construction of flood-control channels and sedimentation ponds for palm oil effluent can benefit some water birds.

Drainage of peatlands and other wetlands to establish oil palm disrupts hydrological cycles, potentially impacting neighbouring forests and other habitats. The protection and restoration of riparian buffers and reserves within oil palm plantations is therefore key to preserving water quality, with recent research also showing the importance of these landscape features for biodiversity and ecosystem function. Riparian reserve widths required by law in many tropical countries (20–50 m on each bank) can support substantial levels of biodiversity, maintain hydrological functioning, and improve habitat connectivity and permeability for some species within oil palm. However, research is urgently needed regarding minimum buffer width and size requirements under different contexts, for different taxa, and for different oil crops.

THE FUTURE OF OIL PALM

Demand for agricultural commodities is growing. Some predict that palm oil production will accelerate across tropical Africa. However, due to current socio-cultural, technical, political and ecological constraints only around one-tenth of the potential 51 million ha in the five main producing countries in tropical Africa is likely to be profitably developed in the near future, although this might change as technological, financial and governance conditions improve. The
expansion of oil palm in the Neotropics is also uncertain because of greater challenges the sector faces compared to Southeast Asia, including lower yields, high labour costs, volatile socio-political contexts, and high investment costs. Although the importance of these factors varies from country to country, in general the expansion of the palm oil industry in the Americas depends heavily on economic incentives and policies, and access to international markets.

Meeting the growing demand for palm oil, while adhering to new zero deforestation policies, and consumer pressure to be more sustainable, will likely require a combination of approaches, including increasing yields in existing production areas especially those managed by smallholders, and planting in deforested areas and degraded open ecosystems such as man-made pastures. These strategies span a land-sparing and land-sharing continuum, with higher-yielding oil palm cultivation sparing land and perhaps reducing overall impacts on biodiversity, although intermediate strategies on the sparing-sharing continuum may be better at meeting broader societal goals.

Irrespective of the optimal strategy, replanting with high-yielding palms or implementing land sharing agroforestry techniques are challenging for smallholders, who often lack resources and technical knowledge, and may not be able to access improved varieties required to increase yields. In such situations, provision of technical support from government agencies, non-government organisations or private companies may help smallholders choose intensification over clearing more land to increase palm oil production.

The extent to which biofuel demand by international markets will drive oil palm expansion remains unclear. There is resistance from environmental non-governmental organizations and governments, including the European Union, the second-largest palm oil importer after India, to the use of palm oil as a biofuel to replace fossil fuels and meet climate change mitigation goals. Such resistance is related to the high CO₂-emissions from oil palm-driven deforestation and associated peatland development. Nonetheless, if oil palm is developed on low carbon stock lands, estimates suggest it may have lower carbon emissions per unit of energy produced than other oil crops like European
rapeseed. Consistent and comparable information on the extent and consequences of other oil crops is urgently required to encourage more efficient land use.

GOVERNANCE OPTIONS

Efforts to address the impacts of oil palm cultivation and palm oil trade have been the focus of several initiatives. For example, the two main producer countries have set up the Malaysian Sustainable Palm Oil and Indonesian Sustainable Palm Oil certification schemes, which mandate that oil palm producers comply with a set of practices meant to ensure social and environmentally responsible production. International concerns related to deforestation have been addressed through the High Carbon Stock and High Conservation Value approaches, which are methodologies that guide identification and protection of lands with relatively intact forest or value for biodiversity, ecosystem services, livelihoods and cultural identity. These frameworks are used by producers to meet the requirements of palm oil sustainability initiatives including certification under the Roundtable on Sustainable Palm Oil (RSPO) standard. This standard was recently expanded to include protection, management, and restoration of riparian areas within certified plantations, a prohibition on new planting on peat, and compliance with the standard is now being used to meet corporate zero-deforestation commitments. There is evidence for positive impacts of RSPO certification achieved through improved management practices, including changes in agrochemical use, improved forest protection, and reduced fires and biodiversity losses, although these effects remain small.

Many producers and traders of palm oil have now committed to “zero deforestation”. A 2017 cross-commodity survey found that companies in the palm oil sector have the highest proportion of no-deforestation commitments across four commodity supply chains (palm oil, soy, timber and cattle) linked to global deforestation. Although most of these commitments have been made by retailers and manufacturers, oil palm growers have also made such pledges. In 2018, 41 of the 50 palm oil
producers with the largest market capitalization and land areas had committed to address
deforestation, with 29 of them pledging to adhere to zero deforestation practices91. These
commitments have been identified as a factor in declining expansion of oil palm in Malaysia and
Indonesia6,25, although low commodity prices have likely also contributed6. Such private supply chain
initiatives like certification and zero-deforestation commitments may be most effective in reducing
environmental impacts when leveraged with public and institutional support such as plantation
moratoria for certain areas and national low-carbon rural development strategies92, as has been
demonstrated, for example, in Brazilian soy production93.

LAND USE TRADE-OFFS AMONG VEGETABLE OILS

While the environmental impacts of oil palm on natural ecosystems are overwhelmingly negative,
such impacts also need to be considered in relation to other land uses, including competing
vegetable oil commodities, all of which have their own implications for biodiversity, carbon
emissions and other environmental dynamics (Table 1). Global vegetable oil production is expected
to expand at around 1.5% per year between 2017 and 202794, while use is projected to expand at
1.7% per year globally between 2013 and 2050 from a baseline of 165 million tons (Mt), including for
use in food, feed and biofuel9. Unless demand for oil decelerates, this implies an additional
production of an average of 3.86 Mt of vegetable oil per year. If this production was delivered by oil
palm alone, yielding ca. 4 tons of crude palm oil per ha5,7, 31.3 Mha of additional vegetable oil
production land would be needed between 2020 and 2050. If, the addition instead all came from
soy, yielding about 0.7 tons of oil per ha9, 179 Mha of extra land, or nearly six times as much, would
be required. This simple calculation glosses over nuances of substitutability95 or differential yield
increases among crops, but illustrates the magnitude of differences between land needed by oil
crop and other oil crops96. 8
Understanding impacts is, however, not just a matter of comparing current and projected
distributions and yields of different crops and thus land needs, but also requires clarifying how each
hectare of land converted to an oil crop impacts both the environment and people. For example, soy
is known to have a large negative impact on biodiversity, with few vertebrates occurring in this
annual monoculture crop97, and is responsible for loss of high biodiversity savanna and forest
ecosystems in South America98. Thus, sustainable development, including simultaneous delivery of
SDGs 2 on agriculture and 15 on biodiversity (alongside contributions to SDG 7 on energy and SDG
13 on climate), must consider the wider trade-offs posed by sourcing global vegetable oils99. One key
uncertainty is the extent to which demand can be met by increasing yields within established
vegetable oil croplands. An additional uncertainty is whether other options, for example microalgal-
derived lipids100, may soon offer viable alternatives to meet demand for biofuel.

THE WAY FORWARD

The expansion of oil palm has had large negative environmental impacts and continues to cause
deforestation in some regions. Nevertheless, oil palm contributes to economic development5, has
improved welfare for at least some people17, and can be consistent with at least some conservation
goals especially when compared to other oil crops91. There remain substantial gaps in our
understanding of oil palm and the interaction between environmental, socio-cultural and economic
impacts of the crop, and the scope, stringency and effectiveness of governance initiatives to address
these5. None of these concerns and trade-offs are unique to oil palm: they also apply to other
vegetable oil crops30,98, as well as other agricultural products101. Indeed, all land uses and not just
those in the tropics have impacts on their environment8, that can either be prevented or restored102. Pressure on the palm oil industry has, however, apparently resulted in more research on the impacts
of palm oil production compared to other oils resulting in an urgent need to better study these
alternatives.
In a world with finite land and growing demands, we must consider global demands for food, fuel and industrial uses hand-in-hand with environmental conservation objectives. Oil palm’s high yields mean that it requires less land to meet global oil demand than other oil crops. However, minimising overall vegetable oil crop impacts requires evaluation for their past, current and projected distribution and impacts, and review of their yields and global trade and uses. This information is needed to enable better planning and governance of land use for all oil crops, matching risks and opportunities with local conditions and realities, and to optimize the simultaneous delivery of the SDGs.

LITERATURE CITED

Li, T., M. Evidence-based options for advancing social equity in Indonesian palm oil: Implications for research, policy and advocacy. (Center for International Forestry Research (CIFOR), 2018).

Valin, H. et al. The land use change impact of biofuels consumed in the EU. Quantification of area and greenhouse gas impacts. (ECOFYS Netherlands B.V., Utrecht, the Netherlands, 2015).

Correspondence and requests for materials should be addressed to emeijaard@gmail.com.

Acknowledgements The development of this situation analysis was supported by the IUCN project “Global Commons: Solutions for a Crowded Planet”, funded by the Global Environment Facility. DJB received funding from the UK Research and Innovation’s Global Challenges Research Fund under the Trade, Development and the Environment Hub project (project number ES/S008160/1). MP was supported by the CNPq research productivity fellowships (#308403/2017-7). JGU was funded by SNSF R4D-project Oil Palm Adaptive Landscapes.

Author contributions

EM, DS, and TB conceptualized this study and developed the initial manuscript, with KC, JGU, DG, JSHL, DJB, SAW, MA, SW, LPK, JFA, ZS and AD assisting in the acquisition, analysis, and interpretation of the data and further writing. ES, TS, JA, HP, CS, DM, PF, NM, RH, MP, and MS provided substantial input into the text revisions, and NZ, JA, DJB, KC, DG, AD and JFA designed the graphics.

Competing Interests statement

None of co-authors in this study, except DJB, MP, and JGU, received funding for conducting this review, although the information was partly based on a study funded by the Global Environment Facility. EM, TB, DG, MA, SW, LPK, JGU, KC, NM and DS are members of and have received funding from the IUCN Oil Palm Task Force, a group tasked by the IUCN members to investigate the sustainability of palm oil. TB, DJB, MA, CS and NM work for conservation organizations and EM, MA and MP have done work paid by palm oil companies or the Roundtable on Sustainable Palm Oil.
Figure 1. Main vegetable oil crops (see Table 1). (a) Harvested area from 1961 to 2017. (b) Vegetable oil production from 1961 to 2014. Data from FAOSTAT4.

Figure 2. Maps of industrial and smallholder-scale oil palm from analysis of satellite imagery until the second half of 20193, and examples of species it affects negatively: (a) Panthera onca (Near Threatened)103 and Ara macao (Least Concern)39; (b) Pan troglodytes (Endangered)80; (c) Panthera tigris (Endangered)104, Helarctos malayanus (Vulnerable)104, Pongo pygmaeus (Critically Endangered)105, Casuarius unappendiculatus (Least Concern)106, and Dendrolagus goodfellowi (Endangered)107. The maps lack information on plantations < 3 years old and planted oil palm in mixed agroforestry settings, but provide the most up-to-date estimates available. For each region the percentages of intact (green) and non-intact forests (orange) are shown relative to the total extent of forest ecosystems22.

Figure 3. Oil palm's estimated role in deforestation aggregated across studies, years, and regions. Panel a depicts the contribution of oil palm to overall deforestation, while b shows the percentage of all oil palm expansion that cleared forest (Supplementary Methods). There were no data for Peru and South and Central America for panel a, and no global data for panel b. Southeast Asia (SE Asia) excludes Indonesia and Malaysia, which are shown separately, while South America excludes Peru. Each filled circle represents one time period from a single study, with individual studies represented by distinct colours. The size of the circle corresponds to the relative number of area-years represented in that time period (larger circles represent a larger study area and longer time period of sampling). Boxplot middle bars correspond to the unweighted median across study-time.
periods; lower and upper hinges represent the 25th and 75th percentiles of study-time periods; and whiskers extend from the upper (lower) hinge to the largest (smallest) value no further than 1.5 times the interquartile range from the hinge (Figure S2, Tables S2 and S3).

Figure 4 - Species groups with more than 8 threatened species with the terms "palm oil" or "oil palm" in the threats texts of the IUCN Red List of Threatened Species Assessments. In total 321 species assessments had oil palm plantations as one of the reported threats (301 when excluding groups with < 8 threatened species), which constitutes 3.5% of threatened species threatened by annual and perennial non-timber crops (9,088 species) and 1.2% of all globally threatened species (27,159 species) in 2019 (Supplementary Material and Table S4). CR = Critically Endangered; EN = Endangered; VU = Vulnerable.
Table 1. Overview of the major oil crops, typical production cycle, yields, main production countries, biomes in which impacts primarily occur, carbon emissions, the number of threatened species according to the IUCN Red List of Threatened Species29 for which the specific crop is mentioned as a threat, and the median species richness and median range-size rarity (amphibians, birds and mammals) of species occurring within the footprint of each crop with first and third quartile in brackets (IUCN Red List) (see Supporting Online Methods, Figure S1, Table S4). Carbon emissions include carbon opportunity costs and production emissions61. “n/a” indicates that no data are available.

<table>
<thead>
<tr>
<th>Oil crop</th>
<th>Type of crop</th>
<th>Oil yield (t ha(^{-1}))</th>
<th>Main oil production countries</th>
<th>Main biome impacted</th>
<th>Kg CO2e/MJ61</th>
<th># species threatened by crop29</th>
<th>Median Species Richness (number of species)29</th>
<th>Median range-size rarity (ha ha(^{-1}) 10e5)28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil palm</td>
<td>Perennial (25 years cycle)</td>
<td>1.9–4.8</td>
<td>Indonesia, Malaysia, Thailand</td>
<td>Tropical rainforest</td>
<td>1.2</td>
<td>321</td>
<td>472 [443, 504]</td>
<td>36 [27, 57]</td>
</tr>
<tr>
<td>Elaeis guineensis</td>
<td>Annual (~6 months cycle), rotated with other crops</td>
<td>0.4–0.8</td>
<td>China, USA, Brazil, Argentina</td>
<td>Subtropical grass savanna, temperate steppe, and broadleaf forest</td>
<td>1.3</td>
<td>73</td>
<td>278 [251, 462]</td>
<td>10 [5, 14]</td>
</tr>
<tr>
<td>Soybean</td>
<td>Annual (~6 months cycle), rotated with other crops</td>
<td>0.7–1.8</td>
<td>China, Germany, Canada</td>
<td>Temperate steppe and broadleaf forest and taiga</td>
<td>1.2</td>
<td>1</td>
<td>227 [187, 308]</td>
<td>4 [3, 10]</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>Annual (~6 months cycle). Rotated with other crops</td>
<td>0.3–0.4</td>
<td>China, India</td>
<td>Subtropical monsoon, dry and humid forest and temperate areas</td>
<td>1.2</td>
<td>35</td>
<td>299 [234, 347]</td>
<td>10 [7, 12]</td>
</tr>
<tr>
<td>Cotton</td>
<td>Annual (~6 months cycle). Rotated with other crops</td>
<td>0.5–0.8</td>
<td>China, India</td>
<td>Subtropical monsoon, dry and humid forest and</td>
<td>1.5</td>
<td>6</td>
<td>351 [308, 426]</td>
<td>11 [7, 16]</td>
</tr>
<tr>
<td>Crop</td>
<td>Type</td>
<td>Rotation with other crops</td>
<td>Areas</td>
<td>Production</td>
<td>YLD</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypogaea</td>
<td>Rotated with other crops</td>
<td>temperate areas</td>
<td>Ukraine, Russia, and broadleaf forest</td>
<td>1.0</td>
<td>1</td>
<td>[177, 222]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower</td>
<td>Annual (3-4 months crop cycle)</td>
<td>Ukraine, Russia, and broadleaf forest</td>
<td>0.5–0.9</td>
<td>1</td>
<td>189 [177, 222]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td></td>
<td></td>
<td>Temperate steppe and broadleaf forest</td>
<td>1.0</td>
<td>1</td>
<td>[2, 9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coconut</td>
<td>Perennial (30–50 y cycle)</td>
<td>Tropical and subtropical forest</td>
<td>0.4–2.4</td>
<td>65</td>
<td>317 [264, 414]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td></td>
<td></td>
<td>Philippines, Indonesia, India</td>
<td>n/a</td>
<td>73</td>
<td>[35, 113]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>Annual (5-6 months crop cycle)</td>
<td>Temperate steppe and broadleaf forest</td>
<td>0.1–0.2</td>
<td>131</td>
<td>273 [222, 427]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zea mays</td>
<td></td>
<td></td>
<td>USA, China, and broadleaf forest</td>
<td>0.7</td>
<td>9</td>
<td>[5, 20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive</td>
<td>Perennial, long lived.</td>
<td>Mediterranean vegetation</td>
<td>Spain, Italy, and Greece</td>
<td>n/a</td>
<td>14</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>Sometimes inter-cropped</td>
<td></td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>