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Network optimality has been described in genes, proteins and human communicative networks. In the
latter, optimality leads to the efficient transmission of information with a minimum number of connections.
Whilst studies show that differences in centrality exist in animal networks with central individuals having
higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of
primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency.
Centralisation (whether several individuals are central in the group) and modularity (how a group is
clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient
networks. Such network properties affecting individual fitness could be shaped by natural selection. Our
results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the
importance of network efficiency and information flow through social learning relates to cognitive abilities.

N
etworks are observed at every level of biological organisation, from molecular pathways to ecosystems1.
The way genes, proteins and other entities interact is selected by evolutionary processes leading to so-
called optimal networks2,3. For instance, gene networks have been selected to be dynamically robust to

mutation, stochasticity, and changes in the environment3. Protein networks increase the adaptability of bacteria,
which have colonised every ecological niche on earth2. Neural networks can approximate statistically optimal
decisions4,5. Finally, at a larger scale, human communicative networks are also described as efficient when they
enhance cooperation between individuals or result in improved communication and decision making6–9. Efficient
networks are defined as those providing better (information) transmission in terms of speed and accuracy with
the minimum number of connections between entities, because the latter are costly to build and maintain10,11.
Given that network optimisation is so prevalent in biology, we expect animal social networks, through which
information flows via social processes, to be selected for optimality as well.
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Social networks have been increasingly studied in nonhuman ani-
mals12,13 and recent studies have shown that central individuals (i.e.
those most inter-connected individuals) attain greater fitness than do
peripheral ones: male chimpanzees with highest betweenness cent-
rality coefficients have higher fitness benefits14, juvenile baboons
with central mothers have higher survival15, central male beetles have
higher reproductive success16 and central male dolphins live longer17.
On the other hand, centrality can also have costs; for example, female
centrality in Japanese macaques is positively linked with higher expo-
sure to parasites18. In contrast to studies of human communication
networks, very little is known about network properties in animal
societies, or how these are related to efficiency at the group level.
Following Waters and Fewell19 the network structure of interactions
among ants should be selected to maximize colony-level function
and/or efficiency rather than individual success, the crucial question
here is whether or not social network properties enhance the fitness
of group members. Living in social groups entails costs, such as
competition for resources and disease and parasite transmission, in
addition it also provides benefits such as predator avoidance and
optimal decision making through information transmission. Social
individuals therefore need to balance these costs and benefits in order
to maximize their fitness within their social networks, which gener-
ates trade-offs between behavioural strategies20. Social transmission
of behaviour and disease within a group can take many forms and
may deeply affect an individual’s fitness. In humans, the parasite-
stress theory of sociality explains in-group assortative sociality and
patterns of philopatry, xenophobia and ethnocentrism in relation to
parasite pressure21. In theory, the social network properties, while
increasing decision accuracy and information flow, should also
increase the disease transmission rate creating a trade-off between
decision-making efficiency and infection risk.

In many group-living animals, social transmission of informa-
tion is vital for the diffusion of innovations and the maintenance
of behavioural traditions22, for collective decision-making and
coordinated motion23 and may have impacted the evolution of
sociality along with other selective pressures such as predation
or intra-group competition. Questions regarding the spread of
information within groups have recently attracted much attention
across disciplines, including economics24, social media analytics25

and communication26, and it has been shown that network struc-
ture can greatly affect the transmission process. For instance, the
presence of ‘super-spreaders’27, as well as a high degree of com-
munity clustering (high modularity)28, and homophily, the forma-
tion of strong connections between similar individuals, all
enhance the diffusion of information27.

Here, we studied network efficiency in primates. Phenomena
such as culture29, cooperation6 and motion coordination23 (collect-
ive movements or hunting) are present in species belonging to this
order and are likely to depend on social network efficiency.
Moreover, there is a gradient in the social abilities of primates30,
including humans31, which is linked to neocortex size32. Therefore,
primates are an ideal subject to study the relationship between
network efficiency and socio-cognitive capacities. In this study we
test the influence of some group characteristics and network mea-
sures on social network efficiency. Because several studies showed
that links exist between group size31, network density33 and neo-
cortex ratio, we first predict that network efficiency should depend
on mean neocortex ratio in primates. Secondly we expect that
network efficiency should decrease with group size. Indeed, it
has already been shown that when group size increases individuals
cannot manage all social relationships inducing a decrease in net-
work density34. Finally, how a social network is clustered or cen-
tralised may also affect how information is transmitted. As the
presence of ‘super-spreaders’27 or community clustering28 enhance
the diffusion of information27, we also expect these two variables
to increase network efficiency.

Methods
Primate group data. We studied 78 groups of primates, including 4 human groups
(see Supplementary Information, Extended data table 5). The dataset comprised 24
species representing 6 families and 15 genera, including 3 species of strepsirrhines
(Lemurs), 5 species of platyrrhines (New World monkeys) and 16 species of
catarrhines (Old World monkeys). These groups were either captive (N 5 33) or free-
ranging (N 5 41; we considered this context as non-applicable for humans). There is
no difference in group size (F1,78 5 3.612, P 5 0.061) and in sex ratio (F1,78 5 0.275,
P 5 0.602) between captive or free-ranging groups. Network-derived data were based
on socio-positive interactions (body contacts, social grooming, or proximities) and
we used only one such class of interaction per group. Primate family and genus were
also included in the analysis to account for variance due to phylogeny. Social networks
were in all cases weighted and symmetrized in order to include the maximum number
of groups for comparison (fig. 1). The neocortex ratio values used were published in
previous studies35,36.

Social network measures. We calculated two efficiency indices, plus a centralisation
index, a modularity coefficient and the edge density (see Table 1), and compared them
to key parameters including group size, neocortex ratio and sex ratio. Edge density is
the number of observed relationships divided per the number of possible
relationships; it ranges from 0 to 1 with 0 meaning that no relationships were
observed and 1 that all possible relationships were observed in the group.

Efficiency is defined as how fast information can spread through the network with
the minimum number of connections. It ranges from 0 to 1 with more efficient
networks having values closer to 1. Following previous studies, we used two different
methods to calculate network efficiency19,23,37,38: the first efficiency coefficient, named
Global Efficiency, is the ratio between the number of individuals N, and the number of
connections I multiplied by the network diameter D (the longest of the shortest paths,
calculated using UCINET 6.039):

Global Efficiency~
N

I � D
ð1Þ

The second efficiency coefficient, named Average Dyadic Efficiency, is defined by
computing the inverse of the shortest path length d, for each pair of individuals i and j,
within the network (i.e. the inverse of the fewest number of links that must be used to
pass from one individual to another):

Average Dyadic Efficiency~
1

N N{1ð Þ
XN

i=j

1
d

ð2Þ

These two indices are not correlated (r 5 20.17, P 5 0.145) and have different
meanings. While Global Efficiency can be interpreted as a global index (how
information is transmitted from the spreader to the most peripheral individuals of the
network), Average Dyadic Efficiency considers each pair of individuals and assesses
how information should on average be transmitted between all these possible dyads
(see Table 1 for detailed definitions).

In addition we calculated the centralisation index, which increases when the net-
work is centralised around one or several individuals (as in the case of non-tolerant
species or those which form strict hierarchies) and decreases when it is decentralised
(i.e., distributed or egalitarian, as in the case of tolerant species or those with loose
hierarchies)40,41. Indeed, studies have shown that individuals in tolerant species, in
which the risk of injuries from conspecifics is reduced, interact with most members of
the group, making individuals more connected and their network more complete. On
the contrary, non-tolerant species are highly constrained by dominance and nep-
otism, making their network less dense and more centralised40–42. This centralisation
index is derived from the eigenvector centrality Ci of each individual i, the eigenvector
being a measure not only of how well an individual is associated to other individuals,
but also how well its neighbours are associated themselves (to have high eigenvector
centrality, an individual will have relatively strong associations to other individuals
with relatively strong associations):

CI~100 �

PN

i
Cmax{Cið Þ

Max
PN

i
Cmax{Cið Þ

ð3Þ

Where CI is the centralisation index, Cmax is the highest centrality and

Max
XN

i

Cmax{Cið Þ is what the sum
XN

i

Cmax{Cið Þ would be under the largest

possible centralisation of the network (if the network was a star, centralisation index
< 100). The concept of centralisation is widespread in social media analytics43 and
firm productivity related to leader management style44. Values higher than 100
indicate that the network is composed of isolated clusters of individuals. We assessed
subgroup clustering by computing maximum modularity Q, which for any division of
a group into clusters, is the fraction of internal connections in each cluster minus the
expected fraction, if links were distributed at random but with the same degree
sequence28,45. This maximum modularity ranged from 0 to 1, with a good estimation
of group clustering (in two or several clusters) when values are close to 1. We cal-
culated edge density, modularity and the centralisation index using respectively
SocProg 2.446 and UCINET 6.039.
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Statistical analyses. We applied a Bayesian mixed model approach to determine
which variables were significantly influencing the two efficiency response variables
(see Supplementary information for statistics).

First we ran two Markov-chain Monte-Carlo (MCMC) models using the
complete dataset (n 5 78) to explain Global Efficiency and Average Dyadic
Efficiency. Then we applied the same model procedure to a reduced dataset after
removing humans from the analysis (n 5 74). Since we had repeated measures for
Family and Genus of the species analysed, we included them in the models as
nested random effects. We used log transformed Group Size (to linearise its
relationship with our efficiency measures), sex ratio (proportion of males), neo-
cortex ratio and centralisation index as fixed effects in the models. We did not
expect sex ratio to directly affect efficiency but this parameter may affect differ-
ences in social centralities between group members. Modularity and centralisation
index, calculated with Ucinet 6, are both measures derived from Social Network
Analysis and they are generally not independent because they reflect different
aspects of the positions of individuals inside the group and are influenced by the

positions of other individuals present in the network. In our dataset, modularity
was positively correlated with the centralisation index (r 5 0.51, P , 0.001,
fig. 2c) and we therefore chose to use only the more common centralisation index
for the modelling approach. We used a Pearson correlation test to examine the
link between modularity and Average Dyadic Efficiency as the centralisation index
influenced Average Dyadic Efficiency in the mixed models and for different other
controls that cannot be tested in the main model. We applied a step-down
sequential Bonferroni correction to these multiple comparisons.

Results
Phylogenetic variance. Before running the models we tested for
homogeneity of variance in the two efficiency response variables
(i.e. Global and Average Dyadic efficiencies) across the contexts of
group (captive or wild) and interaction types (body contact or

Figure 1 | Networks of four different species depict variations between groups and network efficiencies (Global noted as E1 and Average Dyadic noted
as E2). Size and colour of nodes are linked to individual centrality. The bigger and the bluer the node, the higher the centrality. CI indicates centralisation

index and Q is for modularity. We chose the four groups for the variances in networks measures. As a consequence, the group size of these four examples

are not representative of the mean species group size. We acknowledged C.S. for permission to use photographs.

Table 1 | Definitions of network indices

Network Index Technical definition Meaning Instances

Global Efficiency (E1) Ratio between the number of
individuals N, and the number of
connections I multiplied by the
network diameter D (see equation 1)

How maximum individuals
are connected with the
minimum of connections

Values close to 1 indicate a minimum
connection of nodes allowing optimal
information transmission across a
group

Average Dyadic Efficiency (E2) Inverse of the shortest path length d,
for each pair of individuals i and j,
within the network (see equation 2)

How well information can
be efficiently transmitted
to all individuals

Values close to 1 allow optimal
information transmission across a
group

Centralisation index (CI) Sum of the differences between
each individual’s centrality
and the centrality of the most central
individual, all divided by the sum of the
differences of centralities under the
hypothesis that the network was a star
(see equation 3)

To what extent a network
is dominated by a single
or a few individuals

Values close to 0 indicate an equal or
decentralised network whilst values
close to 100 indicate a network
centralised around one individual

Modularity (Q) Fraction of internal connections
in each cluster minus the expected
fraction if connections were distributed
at random but with the same degree
sequence

To what extent a
group is clustered

Values close to 0 indicate a purely
random distribution of relationships
whilst values close to 1 indicate strong
hierarchical clustering

www.nature.com/scientificreports
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proximity). Variance along context and interaction type were
homogeneous for both variables (Context variance test for Global
Efficiency: F1,74 5 0.65, P 5 0.200 and for Average Dyadic Efficiency:
F1,74 5 0.95, P 5 0.859; interaction type variance test for Global
Efficiency: F1,74 5 1.63, P 5 0.186 and for Average Dyadic
Efficiency: F1,74 5 0.73, P 5 0.329). Genus and family explain
respectively 22.6% and 5.4% of the variance for Global Efficiency
and 23.8% and less than 1% for Average Dyadic Efficiency.
Phylogeny does not influence both efficiency values (Global
Efficiency: K 5 0.389, P 5 0.673; Average Dyadic Efficiency: K 5
0.318, P 5 0.891) (see supplementary information for details).

Captive versus wild context. Context – captive or wild - had an effect
on density33 but not on efficiency. This is surprising because several
studies have reported that the type of interaction and the context
directly impact the strength of relationships or the range of group
members47, and as a consequence, the structure of social networks.
However, central individuals in proximity networks are also often
central in contact networks, which could explain why we did not find
an effect of the type of interaction on efficiency. Furthermore, captivity
can reinforce social relationships because, as animals do not have to
search for food, they typically spend more time engaged in social
activities (with affiliative or agonistic interactions). However, an
increase in social activity would influence the overall strength of the
relationships, not necessarily the position of individuals within the
network, which would affect efficiency. Indeed, several studies
showed that individuals maintain the same ranking in centrality
whatever the studied interaction (proximity, grooming or contact)
even if the strength of interactions changed48,49. Other studies
showed that when a group is transferred in another environment
(new enclosure for instance, or from wildness to captivity),
individuals are closer to each other but centralities of group
members do not change; they keep the same social position in their
network50,51.

Influence of neocortex ratio. Principal relationships between
variables are summarised in Extended Data Fig. 1. We found that
the neocortex ratio predicted Global Efficiency; species that have a
higher neocortex ratio have more efficient networks (P 5 0.003,
fig. 2a, Extended data table 1). This association is still present
when controlling for group size (r 5 0.33, P 5 0.005, a 5 0.006)
and when excluding humans (P 5 0.046, Extended data table 2).
However, the neocortex ratio did not correlate with the
centralisation index in our study subjects (r 5 0.148, P 5 0.219,
a 5 0.004), which means that species with higher neocortex ratio
do not have more centralised networks than others.

Effects of centralisation and modularity. Contrary to modularity
(r 5 0.03, P 5 0.765, aadjusted 5 0.003), the centralisation index is
well linked to group size (r 5 20.23, P 5 0.046, a 5 0.05adjusted).
However, when controlling for the centralisation index, Global
Efficiency is still linked to group size (r 5 20.76, P , 0.001, a 5

0.025adjusted) and to neocortex ratio (r 5 0.34, P 5 0.002, a 5
0.008adjusted). We suggest that either network centralisation may be
explained by factors other than neocortex ratio, or that neocortex
ratio affects network properties in other ways. For instance, the type
of interaction does not affect the centralisation index (Context
variance test: F1,74 5 0.80, P 5 0.375) but the ecological context
does (Context variance test: F1,74 5 4.9, P 5 0.03), with wild
groups having higher centralisation indices (mean 5 58.31 6
31.17) than captive ones (mean 5 43.58 6 23.18) probably due to
higher food competition in the wild or to social behaviours more
devoted to preferred partners (building alliances).

Contrary to our expectations, the centralisation index negatively
predicted Average Dyadic Efficiency (P , 0.001, fig. 2b, Extended
data table 3) but did not significantly predict Global Efficiency (P 5

0.061, Extended data table 1), probably because Global Efficiency

does not depend on the shortest path between each dyad but only
on the diameter. Similar results were obtained with or without
humans included in the dataset (see Extended data tables 2 and 4).
Modularity is strongly positively correlated with the centralisation
index (r 5 0.51, P , 0.001, a 5 0.017, fig. 2c). This correlation still
exists when controlling for network density (r 5 0.34, P 5 0.002, a5

0.007). Here, modularity indirectly decreases efficiency (r 5 20.46,
P , 0.001, a 5 0.0125), reinforcing findings that information and
diseases have a lower probability of being transmitted between clus-
ters in highly modular networks52.

Effect of demographic variables. Sex ratios did not affect efficiencies
in our models (Extended data tables 1–4). By contrast, group size
affected both Global Efficiency (P , 0.001, fig. 2d and Extended data
fig. 2, Extended data table 1) and Average Dyadic Efficiency (P ,

0.001, Extended data table 3): the larger the group size, the lower the
network efficiency. In this study, group size is not correlated with
Neocortex ratio (r 5 20.17, P 5 0.149, a 5 0.004). This is probably
due to the captive groups being included in the dataset. However,
even if individuals in captivity cannot ‘‘manage their group size’’,
they can still manage their social relationships and, as a
consequence, the network efficiency. Group size is typically
thought to result from a trade-off between several advantages (e.g.
protection against predators and neighbouring groups, sharing of
information) and disadvantages (e.g higher disease transmission,
competition for resources)53 of sociality. Efficiency can now be
added to the list of disadvantages of larger group size because it
decreases the probability of information transmission across the
group. Indeed, as group size increases, networks inevitably should
become less dense because individuals are not able to interact with all
group members34, and, in very large groups, they may not remember
the status of their relationship with everyone in their group33,35.
Indeed network density is linked to group size in our study (r 5

20.41, P , 0.001, a 5 0.005). Lower density networks could easily
account for the apparent efficiency in these groups. Results showed
that group size still affects Global Efficiency (r 5 20.72, P , 0.001,
a 5 0.01) but not Average Dyadic Efficiency (r 5 0.23, P 5 0.043,
a 5 0.005) when controlling for density.

Discussion
Link between cognitive capacities and social network efficiency.
The most striking result we found is the link between the neocortex
ratio and efficiency. In species with higher neocortex ratio, group
members should be able to adjust their social relationships in order to
gain better access to social information. As an indirect consequence,
this should optimize network efficiency. We know that direct
structure optimisation exists in humans, for instance in transport
or communication networks7,8,11, but this has never been
demonstrated in non-human primates. We also know that brain
structure reflects the complexity of social relationships. In humans,
the density of grey matter and the size of the amygdala are linked to
the size of social networks31,54. In non-human primates, Dunbar and
colleagues have shown a link between the size of the neocortex and
certain network properties (group size, density and connectivity)
that relate to the number of relationships a group member is able
to manage33,35. Most primate species have complex and dynamic
groups resulting in daily social challenges and cognitive problems.
This leads group members to develop social strategies. The more
complex the network of interactions and its dynamic (involving
kinship, dominance, shot-term coalitions, etc.), the more
individuals have to develop complex and efficient strategies to
manage this social environment. Our results provide distinctive
further support for the ‘‘social brain hypothesis’’30 because they
directly link a species’ relative neocortex size to the efficiency of its
derived social networks. There might also be another hypothesis for
which primates are not necessarily cognisant of their social network:
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neocortex ratio and network efficiency could be indirectly linked
through social learning29,55. Species with frequent opportunities for
information transmission and social learning should more readily
respond to selection for moderating social relationships: if
individuals can identify knowledgeable56 others or individuals
showing fitness increasing traditions and develop relationships
with these specific individuals, this could lead to an increase in
network efficiency. Network ratio and network efficiency could
also be linked indirectly through other factors such as ecological
variables. Indeed, we might expect that some environments result
in higher cognitive abilities (innovation, extractive foraging, tool
use) and in efficient networks due to resources distribution
shaping social relationships.

Influence of social system on efficiency. We also found that
network centralisation affects efficiency. From an evolutionary
perspective, our results suggest that a more egalitarian organization,
with small differences in centrality between group members, can be
more efficient than a more hierarchical one57, suggesting a negative
selection pressure on individual aggressiveness or a positive selection
for tolerance of other individuals41. Hierarchical species might also

require more redundancy in their networks (to preserve hierarchical
information), increasing links between individuals and then
decreasing efficiency58. Regarding the transmission of information,
a central individual might be considered as a super-spreader,
centralising information, speeding up information diffusion and
decision-making. However, even if information is centralised in the
apparent scale-free networks we often find approximated by animal
social groups, with only one or two central individuals, the greater the
number of connections, the more decentralised the network is and
the faster information can be transmitted to all individuals. Studies
bring contrasting results about the higher speed of information
transmission in centralised versus decentralised networks40,57, but
we know that decentralised networks have decreased error rates
and are less prone to the diffusion of inaccurate information.
Results on modularity confirm this assumption: strong differences
in centrality between individuals result in more modular networks
and it has been shown in humans that modularity enhances
cooperation in natural6 and artificial28 groups. Modular networks,
such as those found in fission-fusion societies, can therefore favour
cooperation between individuals (at the cluster level) and decrease
information and disease spread59 (at the group level).

Figure 2 | Influence of socio-species variables on network properties. All linearized models with statistical values are detailed in the supplementary

information. (a.) Neocortex ratio is positively correlated with Global Efficiency. (b.) Centralisation index is negatively correlated with Average Dyadic

Efficiency. (c.) Modularity is positively correlated with centralisation index. (d.) Group size is negatively correlated with Global Efficiency.
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Evolution of social networks. Group members might adjust their
relationships in ways that increase their fitness. In order to gain
more social information, there is a pressure to be linked to a
maximum number of individuals, resulting in efficient networks.
On the other side, they have to be linked to related, dominant or
central individuals to gain access to food or protection, resulting
in more centralised or modular networks. Indeed several studies
have shown that the fitness of individuals increase with their
centrality15–17, suggesting the importance of being in centralized
networks for these individuals. In our study, the centralisation
index negatively affects efficiency (Extended data table 3), which
may reflect a trade-off between increasing the network efficiency
and increasing one’s own centrality. On one side, networks
should be decentralised to increase efficiency and information
transmission; on the other side, individuals may tend to increase
their own centrality (and as a consequence, the network
centralisation) to gain food access, protection, grooming, etc.
Another trade-off may derive from the balance between
information and disease transmission18. Efficient social networks
favour the transmission of information but also of diseases, and
individuals who gain advantages by being central in information
networks could also pay a cost by being central in disease
networks. In the same way, but at a more global scale, efficient
networks increasing information transmission should also increase
transmission rate of pathogens. In a heterogeneous and unpredictable
environment, group members need to share information about food
resources and the network should be efficient in order to favour this
information sharing. Conversely, in an environment where there is a
high risk of contracting pathogens, networks should not be efficient to
avoid contagion among individuals. These two trade-offs could explain
the diversity of social networks observed in nature and why they are not
all maximally efficient. In accordance with environmental conditions,
and especially with the risks of contracting diseases or the benefits of
shared information, two evolutionary forces of sociality, networks could
be fashioned through individuals’ behaviours and relationships in order
to be more or less centralised and more or less efficient (fig. 3). Modular
networks, such as those generated by fission-fusion dynamics (adaptive
responses to features of the ecological and social environment), could
also reflect strategies for balancing the conflict between maximizing
information flow and minimizing infection risk59. The use of network
efficiency measures to understand disease transmission could have

important implications in disease management and the conservation
of endangered species.

Another significant trade-off in network structure is likely to derive
from achieving efficiency (due to the cost of maintaining unnecessary
ties) and maintaining a suitable level of network redundancy, which is
an element of robustness58. Networks should be expected to be robust
to the loss of pathways. In animal societies like non-human primates,
robustness comes in the form of maintenance of network stability
despite loss of individuals or social relationships within the group.
Redundancy may be particularly important for dominance interac-
tions, because not all individuals in the network may interact (particu-
larly in species that live in large social groups, which also tend to be the
species with high social complexity and large neocortex size).
Redundancy in networks may be as important as efficiency, yet
redundancy and efficiency work in opposite directions: the former
favours more connections, the latter favours fewer connections.

Conclusion
Sociality is suggested to have evolved as a strategy for animals to cope
with challenges in their environment. It has already been shown that
social network tendencies are heritable in a gregarious primate, the
rhesus macaques42. However, previous studies focused only on cent-
rality at the individual-level and on the effect(s) of centrality on
individuals’ fitness, and not on the entire social structure and its
efficiency19. Here, we show that network efficiency, which ultimately
affects the fitness of individuals, is also linked to the neocortex ratio
and to other group variables (group size, centralisation and modu-
larity). Our results are in accordance with the cultural intelligence
hypothesis55,60, which stresses the importance of the high costs of
brain tissue, general behavioural flexibility and the role of social
learning in acquiring cognitive skills. Our study highlights the inter-
play between social networks and information flow through social
learning and the development of neocortex ratio (fig. 3). Network
efficiency could also be selected via these mechanisms and thereby
increase all group members’ fitness. Species with frequent opportun-
ities for information transmission and social learning should more
readily respond to selection for managing social relationships. As for
cultural complexity, species with more efficient networks should
show higher cognitive abilities55,60. Future work that manipulates
social network efficiency (by modifying individual centralities,
information or disease flow for instance) could assess how the fitness

Figure 3 | Representation of the dynamic relationship between social networks, efficiency (information or disease flow) and individuals48. Individual

characteristics influence social networks through their effects on social relationships, and also network efficiency through variation both in individual

behaviour and individual preferences for sociality. These are emergent properties because the network is more than the sum of individual interactions;

therefore its properties are not directly traceable by studying only behavioural interactions. As feedback, network efficiency could influence the behaviour

of individuals to be more central in the network or favour information flow. Selective pressures (ecological or social) have direct effects on how

individuals interact, associate and on the overall social network, and thus on sociality and efficiency. These three different levels have a direct effect on

individual fitness, which influences individual characteristics through natural selection. This overall schema shows how natural selection at the individual

level can favour upper-level structure such as social networks and their efficiency.
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of group members is affected and how individuals subsequently
adapt their behaviours and manage their relationships to optimise
their social networks within environmental constraints.
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