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RUNNING HEAD: 

Low Aerobic Fitness is Associated with increased Gastrointestinal Injury and Microbial 

Translocation Following Exertional Heat Stress 

 

ABSTRACT 

Purpose: Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, 

whereby subsequent microbial translocation (MT) can result in potentially serious health 

consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT 

following exertional-heat stress is poorly characterised. Method: Ten untrained (UT; VO2max = 

45 ± 3 ml·kg-1·min-1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg-1·min-1) males completed 

an ecologically valid (military) 80-minute fixed-intensity exertional-heat stress test (EHST). 

Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed 

using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding 

Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. Results: UT 

experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than 

HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), 

although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml-1) versus HT (0.20 ± 0.29 

ng·ml-1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the 

EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic 

training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/Total 16S DNA 

responses. Conclusion: When exercising at the same absolute workload, UT individuals are 

more susceptible to small intestinal epithelial injury and MT than HT individuals. These 

responses appear partially attributable to greater thermoregulatory, cardiovascular, and 

perceptual strain.  
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ABBREVIATIONS: 

ANOVA Analysis of variance 

CV  Coefficient of Variation 

DSAT  Dual Sugar Absorption Test 

EDTA  Ethylenediaminetetraacetic acid 

EHS  Exertional Heat Stroke 

EHST  Exertional Heat Stress Test 

ELISA  Enzyme Linked Immunosorbent Assay 

GI  Gastrointestinal 

HPLC  High Performance Liquid Chromatography 

HR  Heart Rate 

HT  Highly Trained 

I-FABP  Intestinal Fatty-Acid Binding Protein 

I-HSP  Intracellular Heat Shock Protein 

ISAK International Society for the Advancement of Anthropometric 

Kinanthropometry 

LPS  Lipopolysaccharide 

L/R  Lactulose-to-Rhamnose 

MT  Microbial Translocation 

qPCR  Quantitative Polymerase Chain Reaction 

RH  Relative Humidity 

RPE  Rate of Perceived Exertion 

SD  Standard Deviation 

SEM  Sensor Electronics Module 

Tcore  Core Body Temperature 

Tbody  Mean Body Temperature 

Tskin  Mean Skin Temperature 

TS  Thermal Sensation 

UT  Untrained 

V̇O2max  Maximal Oxygen Uptake 
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INTRODUCTION 

The gastrointestinal (GI) microbiota is a complex ecosystem formed of up to 100 

trillion micro-organisms, which have co-evolved inside humans and perform multiple 

symbiotic functions (Cani, 2018). To prevent systemic immune activation, the microbiota is 

contained inside the GI lumen, a function that is tightly regulated by the multi-layered GI 

barrier (Wells et al., 2017). Exertional heat stress negatively disrupts the integrity of the GI 

barrier (Costa et al., 2017), and in a manner broadly associated with the severity of thermal 

strain (Pires et al., 2017; Ogden et al., 2020a). Though poorly characterised, the mechanisms 

driving this response are widely believed to be attributable to the combined influence of 

localised ischemic injury following hypoperfusion, and paracellular tight junction breakdown 

following hyperthermia-mediated cytotoxicity (Dokladny et al., 2016). In cases of severe GI 

barrier integrity loss, subsequent systemic microbial translocation (MT) can trigger a sequela 

of pro-inflammatory responses (Deitch, 2012). These responses may underpin several 

potentially serious health conditions that affect physically active populations (e.g. military 

personnel, firefighters, athletes), including: exercise-induced anaphylaxis (Christensen et al., 

2019), central-fatigue (Vargas and Marino, 2016) and exertional heatstroke (Lim, 2018). 

Exertional Heat Stroke (EHS) is the most severe condition along a continuum of heat-

related illnesses (Leon and Bouchama, 2011). The most widely accepted medical definition of 

EHS includes: a pathological rise in core body temperature (Tcore; >40°C); central nervous 

system dysfunction (e.g. delirium, coma); and multiple organ failure (Bouchama and Knochel, 

2002). In military settings, EHS poses a significant threat to operational performance and can 

have long-term career/health implications for incapacitated personnel (Epstein et al., 2012). 

The incidence of EHS in armed forces is estimated to be circa 0.5/1000 cases per person-year 

in both the United Kingdom (Stacey et al., 2016) and the United States (Army Forces Health 

Surveillance Centre, 2020). This prevalence is primarily attributable to the widespread 

exposure of highly-motivated individuals to strenuous physical activity, often whilst wearing 

encapsulating clothing and/or when deployed to hot ambient environments (Epstein et al., 

2012). Given these issues, various policies have been published that provide guidance on EHS 

management (Belval et al., 2018; Military Headquarters of the Surgeon General, 2019). 

However, until recently, little consideration had been given to the relevance of GI-MT within 

the pathophysiology of EHS (Lim, 2018; Ogden et al., 2020a). 



5 

Various intrinsic (e.g. age) and extrinsic (e.g. clothing) risk factors have been 

consistently advocated to predispose military personnel to EHS (Westwood et al., 2020). 

Aerobic fitness is one well-characterised intrinsic risk factor, whereby failure of a recent 

mandatory fitness test, has been associated with a 2-8 fold increased odds-ratio of EHS in 

comparison to a successful test (Wallace et al., 2006; Moore et al., 2016; Nelson et al., 2018). 

Improved cardiovascular stability (e.g. plasma volume) and cellular thermotolerance (e.g. 

intracellular heat shock protein [I-HSP] expression) are key mechanisms that likely explain the 

benefits afforded by improved aerobic fitness (Selkirk and McLellan, 2001; Kazman et al., 

2013). During self-paced physical activity, modification of thermoregulatory behaviour (e.g. 

slower pacing) helps to mitigate the enhanced risk of EHS experienced by less trained 

personnel (Selkirk and McLellan, 2001). However, these behavioural modifications are often 

unattainable during group-paced physical activities, which are a frequent setting where 

military EHS hospitalizations have been reported to arise (Epstein et al., 1999; Stacey et al., 

2015). Despite this knowledge, the influence of aerobic fitness on GI barrier integrity, MT and 

subsequent EHS have not been adequately characterised (Ogden et al., 2020a).  

In a pioneering study, untrained individuals (VO2max 37-44 ml·kg·min-1) experienced a 

circa 100% increase in GI MT (plasma lipopolysaccharide [LPS]) when assessed at fixed 0.5°C 

Tcore increments above 38.5°C during a low-intensity (4.5 km·h-1, 2% incline) EHST in a 40°C 

ambient environment (Selkirk et al., 2008). In comparison, GI MT was unchanged from rest 

throughout this protocol in highly trained individuals (VO2max 54-73 ml·kg·min-1), despite this 

group presenting an increase in both exercise and thermal capacity. The notion that increased 

aerobic fitness protects GI barrier integrity during exertional-heat stress was not supported 

in a follow-up study by Morrison et al. (2014), who conversely demonstrated trained 

individuals (VO2max 64 ± 4 ml·kg·min-1) to have greater intestinal injury (plasma intestinal 

fatty-acid binding protein [I-FABP]) than untrained individuals (VO2max 46 ± 4 ml·kg·min-1) 

during a 90-minute self-paced EHST. In this study, mean and peak thermoregulatory strain 

were comparable between the two fitness groups. Together, these findings suggest that 

elevated aerobic fitness causes more pronounced GI barrier integrity loss during relative 

intensity exercise, potentially caused via greater splanchnic hypoperfusion, whilst GI MT is 

conversely blunted, potentially caused via an improved capacity for systemic microbial 

neutralisation (Lim et al., 2019).  
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The aim of the present study was to determine the influence of aerobic fitness on GI 

barrier integrity (dual-sugar absorption test, I-FABP) and MT (Bacteroides/total 16S bacterial 

DNA) biomarkers in response to a fixed-intensity exertional-heat stress protocol. This protocol 

has ecological relevance to worldwide military work/rest guidance doctrine for physical 

activity in the heat (Spitz et al., 2012). It is hypothesised that highly trained individuals would 

experience elevated GI barrier integrity loss, but reduced GI MT in comparison to untrained 

individuals. 

METHODS 

Participants and Ethical Approval 

Twenty healthy males volunteered to participate in the present study (Table 1). All 

participants were classified as untrained (UT; n= 10; ≤ 50 ml·kg-1·min-1; ≤ 3 h·week-1) or highly 

trained (HT; n= 10;  ≥ 60 ml·kg-1·min-1; ≥ 6 h·week-1) based upon a priori criteria for maximal 

oxygen uptake and weekly involvement in cardiovascular training (Morrison et al., 2014). Two 

further participants (n= 2) whose training status fell between the classification criteria 

following preliminary aerobic fitness assessment were excluded. There were no participant 

withdrawals following assignment. The primary activities of the UT group were recreational 

level sports (n= 4 football, n= 1 rugby, n= 1 judo, n= 1 downhill skiing, n= 3 weight lifting), 

whilst the primary activities of the HT group were regional level aerobic sports (n= 8 running, 

n= 1 cycling, n= 1 triathlon). This demographic (age, body composition, VO2max) is considered 

too broadly represent the heterogeneity of individuals enlisted in military ground combat 

roles worldwide (Fallowfield et al., 2019). Females were excluded as thermoregulation 

(Shechter and Boivin, 2010) and GI barrier function (Farage et al., 2009) are both influenced 

by menstruation. A general medical questionnaire was used to screen for a previous history 

of GI, cardiorespiratory and metabolic illness. No participant self-reported taking 

pharmacological medications or having suffered from an acute illness within 14 days prior to 

data collection. Written informed consent was obtained from each participant after they had 

been provided with a full written and verbal explanation of the experimental procedures. The 

study protocol was approved by MARJON University Research Ethics Committee (Approval 

Code: EP096) and was conducted in accordance with the principles outlined in the Declaration 

of Helsinki (2013). 
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[Table 1 – Insert Here] 

Experimental Overview 

This study applied a two-way independent groups design. Participants visited the 

laboratory on two occasions. Baseline anthropometrics and maximal oxygen uptake (V̇O2max) 

were assessed during the first visit. The second visit comprised an intermittent exercise-heat 

stress test (EHST). The EHST consisted of two bouts of 40 minutes fixed-intensity treadmill 

walking (6 km·h-1 and 7% gradient) in the heat (35°C and 30% relative humidity; RH). The 

exercise bouts were separated by 20 minutes seated recovery, including 4 minutes of forearm 

cold water immersion (de Groot et al., 2013). This protocol was designed in line with military 

work/rest schedule guidance, consistent across different militaries worldwide (Spitz et al., 

2012), and has previously been shown to demonstrate acceptable reliability for whole-body 

physiological and GI barrier integrity assessment (Ogden et al., 2020b). Data collection was 

undertaken in Plymouth, United Kingdom, where mean daily ambient temperature at a local 

meteorological station (Camborne, United Kingdom; latitude: 50.218 ° N) remained below 

20°C (Met Office, 2019). A schematic representation of the experimental protocol is provided 

in Figure 1. 

[Figure 1 – Insert Here] 

Dietary and Lifestyle Controls 

Dietary supplementation (e.g. glutamine, probiotics, bovine colostrum) and prolonged 

thermal exposures (e.g. saunas, sunbeds) were prohibited from 14 days before until the end 

of data collection (Ogden et al., 2020a). Alcohol, caffeine, strenuous physical activity and non-

steroidal anti-inflammatory drugs (e.g. ibuprofen) were all abstained for 48 hours before main 

experimental visits (van Wijck et al., 2012). Participants adhered to a ≥ 10 hour overnight fast 

and consumed 500 ml of plain water two hours prior to the experimental visits. Conformity 

with all pre-trial controls was assessed in writing upon laboratory arrival using a pre-trial 

control questionnaire. Participants remained fasted throughout main experimental trials 

(Edinburgh et al., 2018), but were permitted a 12 ml·kg-1 bolus of ambient temperature water 

(28-30°C) in the 20 minutes following both 40-minute exercise bouts. This volume of fluid is 

in line with worldwide military guidance (Spitz et al., 2012), whilst the temperature has 
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ecological validity for military field operations conducted in hot ambient environments.  

Anthropometric Measurements 

Participants’ height, body mass and body fat were measured following the 

International Society for the Advancement of Kinanthropometry (ISAK) guidelines (Marfell-

Jones et al. 2006). Height was measured barefoot using a stadiometer to the nearest 0.1 cm 

(HM-200, Marsden, Rotherham, UK), body mass was measured on an electronic scale to the 

nearest 0.05 kg (MC 180 MA, Tanita, Tokyo, Japan). Skinfold thicknesses were taken in 

duplicate (coefficient of variation [CV] = 2.1%) by the same researcher at the bicep, tricep, 

subscapular and suprailiac using skinfold callipers to the nearest 0.1 cm (Harpenden, Holtain 

Ltd, Crymych, UK). Predictions of body density were calculated using age- and sex-relevant 

equations (Durnin and Womersley, 1974).  

Maximal Oxygen Uptake 

Maximal oxygen uptake (V̇O2max) was determined using an incremental treadmill test 

(Desmo HP, Woodway GmbH, Weil am Rhein, Germany) to volitional exhaustion. The test was 

undertaken in normothermic laboratory conditions (18-22°C, 40-60% RH). The starting speed 

of the treadmill was 10 km·h-1 on a fixed 1% inclination. Treadmill speed was increased by 1 

km·h-1 increments every three minutes until reaching 13 km·h-1, when inclination was then 

increased by 2% every two minutes (Ogden et al., 2020b). Expired metabolic gases were 

measured continuously using a breath-by-breath metabolic cart (Metalyser 3B, Cortex, 

Leipzig, Germany). Heart rate (HR; Polar FT1, Polar Electro OY, Kempele, Finland) and rating 

of perceived exertion (RPE; Borg, 1970) was measured during the final ten seconds of each 

stage. The highest 30 second average V̇O2 was taken to be V̇O2max. The criteria used to define 

a true VO2max included three from: (1) a plateau in VO2 (an increase ≤ 2 ml·kg·min-1) despite 

increasing exercise intensity; (2) a respiratory exchange ratio ≥ 1.15; (3) a heart rate ≤ 10 

b·min-1 of the age-predicted maximum (220-age); and (4) an RPE of 20 (Winter et al. 2007). 

Exercise-Heat Stress Test 

The EHST commenced in the morning (08:30 ± 1 hour) to standardise for the influence 

of circadian variation (Waterhouse et al., 2005). Upon laboratory arrival, participants 

provided a mid-flow urine sample to assess hydration status. Duplicate urine osmolality 
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measurements were undertaken via freeze-point depression (Osmomat 3000, Gonotec, 

Berlin, Germany; CV = 0.4%) and urine specific gravity via a digital refractometer (3741 Pen-

Urine S.G, Atago Co. Ltd, Tokyo, Japan; CV = <0.1%). Each participant also provided a capillary 

blood sample into a K2EDTA microtube (Microvette®, Sarstedt, Numbrecht, Germany) for 

duplicate assessment of plasma osmolality using freeze-point depression (CV = 0.2%). Pre-

defined criteria for euhydration was: (1) a urine osmolality ≤ 700 mOsm.kg-1; and (2) urine 

specific gravity ≤ 1.020 AU (Casa et al., 2005). This control was met by all participants without 

need for additional fluid provision. Participants measured their nude body mass (180 MA, 

Tanita MC, Tokyo, Japan), before self-inserting a single-use rectal thermistor (Tcore; Phillips 

21090A, Guildford, UK) 12 cm beyond the anal sphincter. A HR monitor was positioned around 

participants’ chest (EQ02, Equivital™, Cambridge UK). Dress-state was standardised using 

summer military clothing (i.e. jacket [neck zipped, sleeves extended], trousers, boxer briefs, 

socks, trainers). The environmental chamber was regulated at ~35°C (UT: 35.0 ± 0.2°C; HT: 

35.1 ± 0.3°C; p= 0.54) and ~30% RH (UT: 32 ± 5%; HT: 30 ± 3%; p= 0.27). On entry to the 

chamber, skin thermistors (EUS-UU-VL3-O, Grant Instruments, Cambridge, UK) were affixed 

to the participant’s chest, arm, thigh and calf using one layer (5 x 5 cm) of cotton tape (KT 

Tape®, KT Health, UT, USA). Mean skin temperature (Tskin) was calculated using standard 

equations (Ramanathan, 1964).  

Participants then undertook the EHST (i.e. 40-minute walking bout; 20-minute seated 

rest; 40-minute walking bout). Throughout the EHST, Tcore and Tskin were recorded using a 

temperature logger (Squirrel SQ2010, Grant Instruments, Cambridge, UK) and HR was 

recorded using a Sensor Electronics Module (SEM) unit (EQ02, Equivital™, Cambridge UK). 

Mean whole-body temperature (Tbody) was calculated from simultaneous Tcore and Tskin 

measurements (Jay and Kenny, 2007). All data, including RPE and thermal sensation (TS; 

Toner et al., 1986), were reported at 20-minute intervals. The standardisation of instructions 

for perceptual measures included ensuring participants had a clear understanding of 

anchoring the top and bottom ratings to previous experiences of: (1) no exertion (RPE = 6) to 

maximum exertion (RPE = 20) and; (2) unbearably cold (TS = 0) to unbearably hot (TS = 8). 

Between the two walking bouts, participants immersed their forearms in a ~15°C (UT: 15.6 ± 

1.3°C, HT: 16.3 ± 0.7°C; p = 0.17) cold-water bath to help relieve physiological strain (de Groot 

et al., 2013). Upon EHST termination, participants were removed from the environmental 
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chamber, towel-dried and their post-EHST nude body mass recorded. Absolute sweat losses 

were calculated from the change in nude body mass from pre-to-post EHSTs after correction 

for fluid intake, blood withdrawal and urine output.  

Blood Collection and Analysis 

Venous blood samples (12 ml) were drawn immediately prior to and immediately 

following the EHST (< 2 minutes). At rest, participants stood upright for a minimum of 20 

minutes before blood withdrawal to allow capillary filtration pressure to stabilise (Shirreffs 

and Maughan, 1994). The forearm was sterilised with an 80% isopropyl alcohol wipe and 

blood was immediately drawn from an antecubital vein under minimal stasis (<30 seconds). 

Samples were collected directly into a K2 EDTA vacutainer (Becton Dickinson and Company, 

Plymouth, UK). A 0.5 ml aliquot of blood was immediately removed for haematological 

analysis and samples then centrifuged at 1300g for 15 minutes at 4°C to separate plasma. 

Aliquots were frozen at -80°C until analyses within 2 years. All blood handling was performed 

with sterile (pyrogen, DNA free) pipette tips and microtubes.  

Haematology 

Haemoglobin was measured using a portable photometric analyser (Hemocue® Hb 

201+, EFK Diagnostics, Madeburg, Germany; duplicate CV = 0.5%) and haematocrit using the 

microcapillary technique following centrifugation at 14,000g for 4 minutes at room 

temperature (Haematospin 1400, Hawksley and Sons Ltd, Lancing, England); duplicate CV = 

0.4%). Plasma volume was estimated using standard equations (Dill and Costill, 1974). Post-

exercise analyte concentrations were left uncorrected for acute plasma volume shifts, given 

the similarity of responses between groups and the low molecular weights of quantified 

analytes.  

Dual-Sugar Absorption Test (DSAT) 

Participants orally ingested a standard sugar probe solution containing 5 g Lactulose 

(Lactulose Oral Solution, Sandoz, Holzkirchen, Germany) and 2 g L-Rhamnose (L-rhamnose FG, 

99% pure, Sigma Aldrich, Missouri, USA) dissolved within 50 ml of plain water (osmolality = 

~750 mOsm·kg-1) ten minutes into the EHST. Probe concentrations were determined in 

duplicate from serum samples collected 90 minutes post probe ingestion (i.e. immediately 
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post-EHST) following a previously described high performance liquid chromatography (HPLC) 

protocol (Fleming et al., 1996). The recovery of both sugars was determined per litre serum 

(mg·l-1), where the lactulose/L-rhamnose (L/R) ratio was then corrected relative (%) to the 

concentration of sugar consumed. The limit of detection was 0.1 mg·l-1. The combined L/R 

ratio CV was 8.8%. 

Intestinal Fatty-Acid Binding Protein 

I-FABP (1:4 plasma dilution) was measured in duplicate plasma samples immediately 

pre and post EHST using a solid-phase sandwich ELISA (DY3078, DuoSet, R&D systems, 

Minneapolis, USA) following manufacturer instructions for optimising the assay for plasma 

samples. Briefly, this involved supplementing the standard reagent diluent (from the DuoSet 

ELISA) with 10% heat-inactivated normal goat serum (DY005, Reagent Additive 1, R&D 

systems, Minneapolis, USA). This diluent was used for diluting assay standards and samples. 

Standard reagent diluent without additional normal goat serum was used to reconstitute the 

detection antibody and dilute Streptavidin-HRP to the working concentration. The detection 

antibody was diluted to the working concentration in reagent diluent with 2% normal goat 

serum. The capture antibody was reconstituted and diluted to the working concentration in 

PBS without carrier protein. The intra-assay CV was 4.0%. 

Bacterial DNA  

Bacterial DNA was measured in duplicate from plasma samples collected prior to and 

immediately post EHST using a quantitative real-time polymerase chain reaction (qPCR) assay 

on a LightCycler 96 instrument (LightCycler 96, Roche, Basel, Switzerland). DNA was isolated 

from plasma using a Quick-DNA Mini Prep Plus kit (D4068, Zymo Research, Irvine, CA, USA) 

following manufacturer’s instructions. The elution buffer was heated to 65°C before use. Total 

16S bacterial DNA was quantified in line with previously outlined methodologies (March et 

al., 2019) using a University library probe, with standards (E2006-2, Zymo Research, Irvine, 

CA, USA) and primers (Eurogentec, Liège, Belgium) specific to a 16S region of the bacterial 

genome (limit of detection 0.1 pg·µl-1). Bacteroides species DNA were quantified using a 

double-dye probe/primer kit (Path-Bacteroides-spp, Genesig, Primerdesign Ltd, Chandler’s 

Ford, UK). Negative controls (PCR grade water) for the entire extraction process were below 

the limit of detection for both measures. Ratio data are presented as Bacteroides/total 
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bacterial DNA. The intra-assay CV was 9.8% for total 16S DNA and 18.8% for Bacteroides DNA. 

Statistical Analyses 

All statistical analyses were performed using Prism Graphpad software (Prism V.8, La 

Jolla, California, USA). Comparisons were made after first establishing normal distribution 

using a Shapiro-Wilk test (p > 0.05). A two-way analysis of variance (ANOVA) was used to 

identify between group differences over time (time x group). If Mauchly’s test for sphericity 

was violated, Greenhouse Geiser corrections were applied for epsilon < 0.75, while the 

Huynh-Feldt correction was used for less severe asphericity. Where significant interaction 

effects were identified, post-hoc Holm-Bonferroni step-wise corrected t-tests were used to 

determine the location of variance. When there was only a single comparison, an unpaired t-

test or non-parametric Mann-Whitney test (physical activity, body mass, DSAT, peak/Δ 

Bacteroides/total 16S DNA, peak/Δ I-FABP, HR mean) was used to determine between-group 

differences. Relationships were assessed using a non-parametric Spearman’s rank correlation 

coefficient. Correlations were classified as small (≤0.69), moderate (0.70-0.89) and large 

(≥0.90) (Vincent and Weir, 1995). Outliers were defined as ± 2.4 SD units (normally distributed 

data) or ± 4.0 SD units (non-normally distributed data) outside of the mean and were removed 

from subsequent analysis (Aguinis et al., 2013). Statistical significance was accepted at the 

alpha level of p ≤ 0.05. Data are presented as mean ± standard deviation (SD) unless otherwise 

stated. 

Power Analysis 

A sample size estimation was calculated a priori using specialist statistical power 

software (G*Power 3.1, Kiel, Germany). Anticipated effect sizes were derived from previous 

studies comparing I-FABP (Morrison et al., 2014) and endotoxin (Selkirk et al., 2008) 

responses between individuals of low and high aerobic fitness following exertional-heat 

stress. In total, ≥9 (I-FABP) and ≥4 (endotoxin) participants per group were calculated 

necessary to detect a significant interaction effect using a two-way ANOVA with standard 

alpha (0.05) and beta (0.8) values.  
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RESULTS 

Thermoregulatory 

Tcore increased throughout the EHST (time; p < 0.01) and to a greater extent in the UT 

group compared with the HT group (Figure 2A; time x group interaction; p < 0.01). Peak (UT: 

38.88 ± 0.32°C, HT: 38.21 ± 0.30°C; p < 0.01), mean (UT: 37.99 ± 0.29°C, HT: 37.63 ± 0.19°C; p 

< 0.01) and Δ (UT: 1.97 ± 0.31°C, HT: 1.35 ± 0.38°C; p < 0.01) Tcore were all greater in the UT 

group. Tskin was increased throughout the EHST (time; p < 0.01) and to a greater extent in the 

UT group (Figure 2B; time x group interaction; p < 0.01). Peak (UT: 36.23 ± 0.53°C, HT: 35.56 

± 0.59°C; p = 0.02) and Δ (UT: 1.84 ± 0.61°C, HT: 0.81 ± 0.52°C; p < 0.01) Tskin were greater in 

the UT group, but mean (UT: 35.55 ± 0.36°C, HT: 35.56 ± 0.33°C; p = 0.26) Tskin was similar. 

Tbody was increased throughout the EHST (time; p < 0.01) and to a greater extent in the UT 

group (Figure 2C; time x group interaction; p < 0.01). Peak (UT: 38.75 ± 0.28°C, HT: 38.08 ± 

0.32°C; p < 0.01), mean (UT: 37.98 ± 0.29°C, HT: 37.63 ± 0.19°C; p < 0.01) and Δ (UT: 1.95 ± 

0.32°C, HT: 1.24 ± 0.34°C; p < 0.01) Tbody were greater in the UT group. Mean sweat rate (UT: 

1.52 ± 0.23 l·h-1; HT: 1.30 ± 0.25 l·h-1; p = 0.07) and % body mass loss (UT: 1.23 ± 0.26%; HT: 

1.13 ± 0.32%; p = 0.39) were similar between groups. 

Hydration and Cardiovascular  

Basal urine osmolality (UT: 273 ± 109 mOsmol·kg-1, HT: 261 ± 164 mOsmol·kg-1; p = 

0.87), urine specific gravity (UT: 1.007 ± 0.005 AU, HT: 1.005 ± 0.006 AU; p = 0.56) and plasma 

osmolality (UT: 296 ± 5 mOsmol·kg-1, HT: 295 ± 3 mOsmol·kg-1; p = 0.65) were similar between 

groups. The Δ plasma volume following the EHST were similar (UT: 0.22 ± 2.59%, HT: 0.89 ± 

2.49%; p = 0.59). HR was increased throughout the EHST (time; p < 0.01) and to a greater 

extent in the UT group (Figure 2D; time x group interaction; p < 0.01). Peak (UT:  173 ± 9 bpm; 

HT: 133 ± 11 bpm; p < 0.01), mean (UT: 156 ± 10 bpm; HT:  119 ± 6 bpm; p < 0.01) and Δ (UT:  

105 ± 17 bpm; HT: 78 ± 13 bpm; p < 0.01) HR were all greater in the UT group.  

Perception 

RPE was increased throughout the EHST (time; p < 0.01) and to a greater extent in the 

UT group (Figure 2E; time x group interaction p < 0.01). Peak (UT: 17 ± 2 AU; HT:  11 ± 2 AU; p 

< 0.01), mean (UT: 14 ± 1 AU; HT:  10 ± 1 AU; p < 0.01) and Δ (UT: 6 ± 3 AU; HT:  2 ± 2 AU; p < 

0.01) RPE were all higher in the UT group. TS was increased throughout the EHST (time; p < 
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0.01) and to a greater extent in the UT group (Figure 2F; time x group interaction; p < 0.01). 

Peak (UT: 7.0 ± 0.5 AU; HT:  6.0 ± 1.0 AU; p < 0.01), mean (UT: 6.0 ± 0.5 AU; HT:  5.5 ± 0.5 AU; 

p < 0.01) and Δ (UT: 2.5 ± 1.0 AU; HT:  1.0 ± 1.0 AU; p < 0.01) TS were all higher in the UT 

group. 

[Figure 2 – Insert Here] 

Gastrointestinal Barrier Integrity 

The DSAT (lactulose/L-rhamnose ratio) was similar between the UT (0.039 ± 0.030) and 

HT (0.027 ± 0.011) groups (Figure 3A; p = 0.59). I-FABP concentration increased (time; p = 

0.01) from pre- (UT: 1.17 ± 0.35  ng·ml-1; HT: 1.81 ± 1.10 ng·ml-1) to post-EHST (UT: 2.31 ± 1.34 

ng·ml-1; HT: 2.01 ± 1.03 ng·ml-1), and to a greater extent in the UT group (Figure 3B; time x 

group interaction; p = 0.05). This interaction effect was not visible at either time point 

following post-hoc correction. The Δ I-FABP response was however greater in the UT (1.14 ± 

1.35 ng·ml-1 [119 ± 77%]) versus the HT (0.20 ± 0.29 ng·ml-1 [16 ± 27%]) group (p = 0.02).  

[Figure 3 – Insert Here] 

Microbial Translocation 

Total 16S DNA was unchanged (time; p = 0.34) from pre- (UT = 5.50 ± 1.38 µg·ml-1; HT 

= 5.54 ± 0.74 µg·ml-1) to post-EHST (UT = 5.60 ± 0.82 pg·µl-1; HT = 5.94 ± 0.94 pg·µl-1) in both 

groups (Figure 4A; time x group interaction; p = 0.56). There was no difference in the Δ total 

16S DNA response between the UT (0.10 ± 1.16 µg·ml-1) and HT (0.40 ± 1.13 µg·ml-1) groups 

(p = 0.56). Bacteroides/total 16S DNA ratio displayed a significant time x group interaction 

(Figure 4B; p = 0.04). However, there was no significant difference in Bacteroides/total 16S 

DNA ratio between groups at either pre- (UT = 0.14 ± 0.10; HT = 0.20 ± 0.21; p = 0.44) or post- 

(UT = 0.32 ± 0.26; HT = 0.16 ± 0.08; p = 0.13) the EHST following post hoc adjustment. The Δ 

Bacteroides/total 16S DNA ratio was greater in the UT (0.18 ± 0.25) versus HT (-0.04 ± 0.18) 

group (p < 0.01). Unfortunately, Bacteroides concentrations were below the limit of detection 

in 7/40 samples (in these cases ratio data are presented as zero).  

[Figure 4 – Insert Here] 
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Associations 

Associations between GI (DSAT, Δ I-FABP, Δ Bacteroides/total 16S DNA) and whole-

body (VO2max, weekly training, age, body mass, body fat, peak Tcore, peak Tbody, mean HR, mean 

RPE) responses were conducted for the entire dataset (n = 20). Small positive correlations 

were reported between the DSAT, with both absolute peak I-FABP concentrations (r = 0.46; p 

= 0.04) and Bacteroides/total 16S DNA ratio (r = 0.43; p = 0.05). No association was reported 

between the DSAT with Δ I-FABP or Δ Bacteroides/total 16S DNA ratio. Δ I-FABP displayed a 

small negative correlation with weekly training (r = -0.55; p = 0.01). Δ Bacteroides/total 16S 

displayed a small negative correlation with VO2max (r = -0.64; p < 0.01), weekly training (r = -

0.55; p < 0.01), body mass (r = 0.48; p = 0.03) and % body fat (r = 0.54; p = 0.01). Δ I-FABP 

correlated positively with mean RPE (r = 0.57; p < 0.01) and tended to correlate with peak 

Tcore (r = 0.42; p = 0.06). Δ Bacteroides/total 16S DNA ratio displayed a small positive 

correlation with each: peak Tcore (r = 0.53; p = 0.02), peak Tbody (r = 0.59; p < 0.01), mean HR (r 

= 0.60; p < 0.01) and mean RPE (r = 0.58; p < 0.01). No further associations between Δ GI and 

whole-body responses were evident.  

DISCUSSION 

The aim of this study was to determine the influence of aerobic fitness on GI barrier 

integrity (DSAT and I-FABP) and MT (Bacteroides/total 16S DNA) biomarkers following a fixed-

intensity ecologically valid military EHST. The main findings were that GI permeability (serum 

DSAT) was comparable between the UT and HT groups following the EHST, however, small 

intestinal epithelial injury (I-FABP) increased to a greater extent (119% versus 16%) in the UT 

group following this protocol. In line with small intestinal epithelial injury, MT 

(Bacteroides/total 16S DNA) only increased following the EHST in the UT group. Small 

associations (r = 0.4-0.7) were evident between certain whole-body thermoregulatory (e.g. 

mean RPE, peak Tcore) and GI barrier integrity (I-FABP, Bacteroides/total 16S DNA) responses 

upon combining data from the entire cohort. This would suggest that some of the benefits 

afforded by high aerobic fitness are likely attributable to a reduction in whole-body 

physiological strain. Given GI barrier integrity loss has been proposed as a key event within 

the pathophysiology of EHS (Lim, 2018), relevant doctrine should consider providing 

supplementary guidance for UT individuals to directly support GI barrier integrity (e.g. 
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nutritional supplementation) and/or attenuate thermal strain (e.g. reduced load carriage, 

cooling) during group-paced occupational activities. 

The DSAT is the gold-standard in vivo technique to assess GI permeability (Bischoff et 

al., 2014). The traditional endpoint of the DSAT is the 5-hour urinary recovery ratio of pre-

ingested lactulose-to-L-rhamnose (L/R), though serum assessment offers a valid alternative 

over a reduced (1-2 hour) time course (Fleming et al., 1996). Previous work from our 

laboratory has demonstrated the serum DSAT to increase ~2-fold above resting levels 

([rest] = 0.014 ± 0.006, [post‐EHST] = 0.028 ± 0.005; p  = 0.02) in a mixed-cohort of 

recreationally trained (VO2max = 40-55 ml·kg·min-1) males utilising an identical EHST to herein 

(Ogden et al., 2020b). Contrary, to the a priori hypothesis, GI permeability was comparable 

between the UT and HT individuals following the EHST in the present study, whilst absolute 

responses were in line with our previous research (Ogden et al., 2020b). This is the first study 

to assess the influence of aerobic fitness on GI permeability using the DSAT in response to 

either exercise or heat stress. Given the difficulty of obtaining intestinal biopsies in healthy 

humans, and the absence of available evidence from animal models, it is difficult to speculate 

whether aerobic fitness influences localised pathways (e.g. I-HSP] concentration, GI tight 

junction structure) that strengthen GI barrier integrity (Ogden et al., 2020a). Indirect 

mechanistic evidence is equally inconsistent. For example, pro-inflammatory cytokine 

(Landers-Ramos et al., 2014; Morrison et al., 2014) and stress hormone (Wright et al., 2010; 

Reihmane et al., 2012) concentrations, which dysregulate GI tight junctions structure 

(Dokladny et al., 2016), do not appear to be influenced by aerobic fitness in response to 

exertional-heat stress. In comparison, the expression and activity of I-HSP’s in blood 

leukocytes are more pronounced in HT individuals following exertional-heat stress, though 

whether a comparable response is initiated in GI tissue is unknown (Fehrenbach et al., 2001).  

I-FABP is the prominent biomarker of small intestinal epithelial injury and is tightly 

associated with localised splanchnic perfusion (van Wijck et al., 2011; Bischoff et al., 2014). In 

the present study, the increase (Δ) in I-FABP following exertional-heat stress was comparable 

to previous research utilising similar intensity (60-70% VO2max) and duration (60-90 minute) 

EHSTs (e.g. Szymanski et al., 2017 [87%, Δ 0.800 ng·ml-1]; Ogden et al., 2020b [56%, Δ 0.834 

ng·ml-1]). In comparison, larger Δ I-FABP responses have been reported following longer 
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EHSTs (≥ 120 minutes) of similar intensity (e.g. Snipe et al., 2018 [432%, Δ 1.230 ng·ml-1]; 

Gaskell et al., 2019 [710%; Δ 1.805 ng·ml-1]). In comparison to GI permeability responses, Δ I-

FABP concentrations were more pronounced in the UT group than in the HT group following 

the EHST in the present study. This finding is in direct opposition to previous evidence by 

Morrison et al. (2014) who found HT individuals to experience more pronounced small 

intestinal injury than UT individuals during a 90-minute relative-intensity EHST. Whilst 

Morrison et al. (2014) proposed that HT individuals may redistribute a greater proportion of 

cardiac output away from the splanchnic organs than UT individuals during exertional-heat 

stress to support thermoregulation, they also acknowledge a limitation of their research was 

that their UT group had a lower overall thermal impulse given that 5/8 participants were 

unable to complete the EHST. The present finding that small intestinal epithelial injury is 

reduced in HT individuals in response to exertional-heat stress is supported by research in 

livestock, which demonstrate aerobically trained animals to better sustain splanchnic 

perfusion during passive heat stress in comparison to untrained animals (Sakurada and Hales, 

1998). In humans, splanchnic cardiovascular stability has not been directly examined in 

response exertional-heat stress, however, given aerobic training characteristically increases 

blood plasma volume (Sawka et al., 2011) and splanchnic arterial luminal area (Gabriel and 

Kindermann, 1996), comparable responses might be anticipated. 

Bacterial DNA is an emerging biomarker of GI MT through high-sensitivity conserved 

16S gene sequencing (Paisse et al., 2016). In comparison to traditional GI MT biomarkers (e.g. 

endotoxin), bacterial DNA assessment appears less susceptible to issues surrounding 

exogenous contamination given that ability to target microbial phyla/species (e.g. 

Bacteroides) with high GI specificity (Ogden et al., 2020a). The assessment of total 16S DNA is 

to control for co-variates that influence Bacteroides DNA concentration independent of GI 

MT, such as the efficiency of DNA extraction, immune function, and DNase concentrations 

(March et al., 2019). In the present study, stable and comparable total 16S DNA 

concentrations were evident across both groups, however, only the UT group experienced a 

significant increase in the Bacteroides/total 16S DNA ratio following the EHST. Previous 

studies have reported similar basal Bacteroides/total 16S DNA ratios as herein (~0 – 1.0), with 

a tendency to increase following 60-80 minutes exertional-heat stress, though large inter- and 

intra-individual variability in responses were apparent (March et al., 2019; Ogden et al., 
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2020b). In both previous studies, participants’ aerobic fitness was a potential co-variate, with 

VO2max ranging between 40-60 ml·kg·min-1. In support of the present findings, UT individuals 

were shown to experience significant systemic endotoxemia during exhaustive walking in the 

heat, however, this response was absent in HT individuals despite exhibiting a longer exercise 

capacity (Selkirk et al., 2008). The findings of Selkirk et al. (2008), where blood was collected 

at fixed 0.5°C Tcore increments, suggest that the protective benefits of aerobic fitness largely 

occur independent of absolute thermoregulatory strain. Correspondingly, given a lack of 

strong association between any GI barrier integrity and MT biomarker in the present study, 

this might infer that HT individuals might also acquire an improved capacity for systemic 

microbial neutralisation. Though speculative, indirect evidence has previously shown higher 

levels of aerobic fitness (e.g. VO2max, sports performance) to increase certain anti-microbial 

defences, including: immunoglobulin G and M concentration (Bosenberg et al., 1988; Camus 

et al., 1997); high density lipoprotein concentration (Lippi et al., 2006); CD14+CD14 monocyte 

profile (Selkirk et al., 2009); and hepatic reticuloendothelial (Kupffer cell) endotoxin 

phagocytosis (Komine et al., 2017).  

Whole-body physiological responses – including thermoregulatory, cardiovascular, 

and perceptual strain – were all more pronounced in the UT versus HT individuals throughout 

the EHST. These results were highly anticipated, given that aerobic training is well-

characterised to induce a plethora of physiological adaptations that both support 

thermoregulation (e.g. increased evaporative heat loss) and lower the relative metabolic cost 

(e.g. increased cardiac output) of fixed-absolute intensity exercise (Havenith et al., 1995; 

Cheung and McLellan, 1998). This reduction in whole-body physiological strain might have 

contributed towards blunting the Δ I-FABP and Bacteroides/total 16S DNA response in the HTt 

participants within the present study. Relevantly, a recent systematic review outlined an 

exercise-induced Tcore threshold of 38.6°C for GI barrier integrity loss (DSAT, I-FABP and 

endotoxin) to be commonplace (>50% incidence) and of 39.0°C for GI barrier integrity loss to 

be universal (100% incidence; Pires et al., 2017). In the present study, 9/10 UT participants 

had a peak Tcore that exceeded 38.6°C, including 4 participants whose Tcore exceeded 39.0°C, 

whilst only 2/10 HT participants surpassed the 38.6°C Tcore threshold and none the 39.0°C 

threshold. Likewise, small associations were evident between peak Tcore with both Δ I-FABP 

and Bacteroides/total 16S DNA when data for the entire participant cohort (n= 20) was 
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accumulated. Mechanistically these responses appear logical, given that hyperthermia 

disrupts GI barrier integrity in a broadly dose dependant manner (Dokladny et al., 2016). In 

the present study, small positive associations were also found between: (1) I-FABP and mean 

RPE and; (2) Bacteroides/total 16S DNA with peak Tbody, mean HR, and mean RPE. The 

independent effect of these whole-body physiological responses on GI barrier integrity/MT 

have never been directly assessed and warrant future investigation utilising more valid 

methodologies (e.g. clamped Tcore).  

LIMITATIONS  

Despite the execution of a tightly controlled methodological design, the present 

results were not without some limitations. First, the EHST only evoked moderate disturbance 

of GI barrier integrity and MT, potentially limiting the practical application of these findings 

in more severe situation’s indicative of EHS. However, the present EHST was selected as it had 

strong ecological validity in representing group-based military field activities (Spitz et al., 

2012; Military Headquarters of the Surgeon General, 2019). Second, Bacteroides DNA analysis 

had poor analytical reliability (CV = 18.8%). This is largely attributable to a proportion of 

samples being close or below the assays minimum level of detection (1 copy·µl-1). Despite this 

limitation, our group has previously characterised the absolute test-retest reliability of 

Bacteroides/total 16S using the present EHST, whereby it is noted that the statistically 

significant Δ response between the UT and HT group reported herein exceeds the typical error 

of measurement (ratio = 0.077) and 95% limits of agreement (ratio = 0.213) previously 

reported (Ogden et al., 2020b). To further improve analytical reliability, future analysis might 

consider the assessment of whole-blood samples, given that bacterial 16S DNA 

concentrations in the buffy coat and red blood cells far exceed that of plasma (Paisse et al., 

2016). Third, a basal DSAT was not performed to minimise the burden placed on participants 

with the aim of improving overall adherence. This lack of basal DSAT correction likely 

contributes to the lack of association between this biomarker with both Δ I-FABP and 

Bacteroides/total 16S DNA responses. Fourth, females were excluded from participation due 

to unavailability of menstruation hormone testing. Previous evidence has shown no influence 

of sex on GI barrier integrity responses to exertional-heat stress (Snipe and Costa, 2018). 

Finally, the HT group were statistically older and had a lower body fat percentage than the UT 

group. The difference in chronological age between the two groups is unlikely to have clinical 
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relevance, given basal GI permeability appears relatively stable across the lifespan (Saweirs 

et al., 1985; Saltzman et al., 1995). In comparison, a small positive association was found 

between % body fat and the Δ Bacteroides/total 16S DNA ratio (but not DSAT or I-FABP 

responses), which is a limitation concordant with previous research in this field (Selkirk et al., 

2008; Morrison et al., 2014). 

CONCLUSION  

This is the first study to extensively assess the influence of aerobic fitness on GI barrier 

integrity and MT biomarkers in response to exertional-heat stress. There was no difference in 

GI permeability (serum DSAT) between the two groups, but there was more pronounced small 

intestinal epithelial injury (I-FABP) following the EHST in the UT group. These findings suggest 

that the GI barrier is more resistant to perturbation in HT individuals, though not to the extent 

where GI permeability is measurably altered. Likewise, GI MT (Bacteroides/total 16S DNA) 

only increased following the EHST in the UT group. Given that GI permeability was not 

different between the two groups, this suggests that GI MT neuralization might also be 

upregulated with aerobic fitness. These data broadly support conclusions drawn from studies 

assessing the impact of exertional heat stress on either GI barrier integrity or MT in isolation. 

It should be noted that peak thermoregulatory responses (e.g. Tcore = 38-39.5°C) were sub-

clinical when compared with situations were exertional-heat stroke predominately arise (e.g. 

Tcore ˃ 40.0°C). These findings should help inform occupational EHS doctrine, in relation to the 

management of UT individuals to support GI barrier integrity (e.g. reduced load carriage, 

cooling) during group-paced physical activity in the heat.   
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Table 1. Participant demographic characteristics 

Measure Low trained  
(n= 10) 

High trained  
(n= 10) 

Age (years) 27 ± 5 32 ± 4** 

Height (m) 1.78 ± 0.04 1.77 ± 0.03 

Body Mass (kg) 79.5 ± 14.0 71.4 ± 5.1 

Physical Activity (h·week-1) 5 ± 1 10 ± 1** 

Aerobic Training (h·week-1) 2 ± 1 9 ± 1** 

Body Fat (%) 16.3 ± 3.7 9.0 ± 2.3** 

V̇O2max (ml·kg-1·min-1) 45 ± 3 64 ± 4** 

 

 

 

Figure 1. Schematic illustration of the experimental measurement timings 
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Figure 2. Whole-body physiological responses to EHSTs: (A) = core temperature; (B) = mean 
skin temperature; (C) = mean body temperature; (D) = heart rate; (E) = thermal sensation; 
and (F) = rate of perceived exertion. Solid line = UT, broken line = HT. Significant overall 
effect of time (*p ≤ 0.05; ** p ≤ 0.01). Significant group * time interaction (+ p ≤ 0.05; ++ p ≤ 
0.01).  
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Figure 3. Gastrointestinal barrier integrity responses pre- and immediately post- the 
exertional-heat stress tests: (A) = L/R ratio (DSAT) at 90 minutes; (B) I-FABP. UT = untrained 
group, HT = highly trained group.  Significant overall effect of time (*p ≤ 0.05; ** p ≤ 0.01). 
Significant group * time interaction (+ p ≤ 0.05; ++ p ≤ 0.01).  

 

 

Figure 4. Gastrointestinal microbial translocation responses pre- and immediately post- the 
exertional-heat stress tests: (A) = total 16S DNA; (B) Bacteroides/total 16S DNA. UT = 
untrained group, HT = highly trained group. Significant group * time interaction (+ p ≤ 0.05; 
++ p ≤ 0.01).  

 


