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Abstract 

In recent years, there has been much debate about how our conscious perception 

of the world relates to our ability to store and process information about it. Given 

the tight coupling between these two processes, it is not surprising that the 

nature of this relationship has proved difficult to establish with any degree of 

certainty. Recent findings however, have provided an opportunity to quantify 

evidence about how such a relationship might manifest. In this thesis, we follow 

up on one particular such set of findings: examining the relationship between 

participants’ subjective experience of stimuli and their ability to encode them into 

working memory during the attentional blink.  

This problem is tackled in three progressive steps. Firstly, we attempt to establish 

with certainty that a difference does exists between these two cognitive 

processes. In order to quantify the distinctness of the two cognitive processes, 

we make use of state-trace analysis. Having established that the two cognitive 

processes are in some way distinct, we examine more closely what form their 

relationship takes; what kind of relationship of dependency exists between the 

two measures, is it possible to have one without the other? Finally, we attempt to 

provide a theory and computational model of the above results.  

Our findings provide evidence that working memory encoding and subjective 

experience are dissociated in some manner. Further examination yields evidence 

that it is possible that working memory encoding may exist as a necessary but 

insufficient condition for subjective experience. We develop a theory of this 

behaviour based on targets being encoded simultaneously, but only experienced 

in serial, and build a computational model of these results by integrating with an 

existing model – the Simultaneous Type/Serial Token model of attention. The 

predictions this model makes strongly match those observed in human 

participants. 
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1. Introduction 

One of the motivations of modern neuroscience is to understand how the 

physical matter of the brain gives rise to the complex spectrum of behaviours we 

observe from it. Creating suitable tools by which we can quantify all of these 

behaviours as we understand them however, is a challenge. In this thesis, we are 

concerned with one particularly challenging area: conscious perception or 

subjective experience. To be specific, what we are precisely interested in in this 

thesis is what a participant internally experiences of an external stimulus. For the 

avoidance of any doubt and for the sake of a consistent terminology, we are from 

now on going to refer to this phenomenon as subjective experience. Subjective 

experience is a challenging area because it is not a directly observable 

phenomenon. What a participant experiences of a stimulus is only available to 

them directly and unlike, for example, whether that stimulus has been encoded 

into working memory, is not directly amenable to an external test. 

In light of these difficulties, it is tempting to either write off subjective experience 

as impossible to study (Chalmers 1995) or as a phantom that arises out of our 

own ignorance of the subject matter (Hacker 2010). However, neither of these 

options will prove fruitful to neuroscience in the long term. Simply giving up is not 

an option, and the only way neuroscience will progress beyond these ideas if they 

are incorrect is to rise to the challenge of them and to understand why. In this 

thesis, we explore this subjective experience through comparison to a more 

directly measurable phenomena – working memory encoding. In particular, it is 

widely agreed that working memory and subjective experience are closely related, 

but there are many instances in which they appear to be in some way separable 

(Velichkovsky 2017). In light of this, by establishing how working memory 

encoding and subjective experience are related or co-dependent and most 

importantly, how they are not, we can inform not just the existing debate on their 

seperability, but contribute to the understanding of what underlies each process. 

We propose that this examination should take place in three stages. Firstly, any 

constructive comparison of the two cognitive processes presupposes that the 

two are separable in some way. As we will discuss, there is some evidence that 

this is the case, but our first step should be to establish this with high confidence. 

Secondly, if we can establish the distinctness of the two processes, we should 
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then examine in more detail the relationship between the two. It is clear that the 

measures are closely related in some way, but to what extent are they coupled 

together? For example, is it possible to elicit cases in which working memory 

encoding occurs in the absence of subjective experience, or subjective experience 

in the absence of working memory, or both, or neither? Finally, if we can establish 

evidence for some relationship between the two measures, we must then attempt 

to provide a theory and model of our results. While our findings may be 

interesting in and of themselves, these results are only as useful as they are 

interpretable in the context of other work. Developing a theory and modelling it 

provides an excellent opportunity to be critically assessed in a broader context.  

Research 

We now discuss how the research chapters of this thesis approach this problem. 

Replication of much of the work done, using an entirely separate dataset, is 

available in Appendix E. 

State-trace Analysis of the Attentional Blink 

In this chapter, we probed the first question that any constructive examination of 

the relationship between working memory encoding and subjective experience 

presupposes – that the two are separable. What we were attempting to quantify 

was the functional distinctness of the two processes; i.e. that the two are not 

mutually dependent. Based on previous literature, we identified an appropriate 

paradigm over which to assess this distinction was the Attentional Blink. 

A standard approach for demonstrating this distinctness is to look for functional 

dissociations. These arise when it is possible to independently modify behaviour 

on different tasks that embody each of our different processes. Unfortunately, as 

we will discuss in the literature review, recent research (Bogartz 1976, Dunn, 

Kirsner 1988, Henson 2006, Davis-Stober, Morey et al. 2016) has provided 

evidence that such methods may not be as robust as originally thought. We 

therefore adopted a more recently developed methodology known as state-trace 

analysis that does not have the same vulnerabilities. 

Unfortunately, one of the weaknesses of this state-trace method is that, while it is 

excellent for evaluating the presence of dissociations, it is not possible on the 

basis of this state-trace analysis on its own to come to any conclusions about 
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the properties of these dissociations. In this chapter we therefore further 

developed a “post hoc” method that allowed us to assess which data points 

contributed to the dissociation found most strongly. This, combined with existing 

results (Pincham, Bowman et al. 2016), allowed us to come to some conclusions 

about the nature of the relationship between working memory encoding and 

subjective experience. 

Methods in State-Trace Analysis 

While we took care to validate the methods used in the previous chapter, the 

state-trace analysis we performed highlighted several areas in which the 

technique could be improved. Primary among these was the creation of an 

appropriate prior for the Bayesian methodology upon which the quantification of 

our state-trace analysis is based. In this chapter, we therefore developed a new 

method for taking an existing prior, and modifying it to more accurately reflect 

our current dataset. To prevent this influencing our results, the method made use 

of a contrast that is independent from our hypothesis of interest. After validating 

this method with test data, we then applied it to the state-trace analysis 

performed in the previous chapter. 

Modelling Subjective Experience 

Having established that it is possible to dissociate working memory encoding 

and subjective experience, and having gained some evidence about the nature of 

the relationship of these two cognitive processes, we attempted to establish a 

working theory and model of the results. Broadly, our theory was that the working 

memory encoding of multiple targets was able to progress simultaneously, but 

that the experience of the same targets could only occur in serial. 

There were several directions we could have taken the modelling of these results, 

but we opted to build our theory into an existing model. Our model of choice was 

the Simultaneous Type/Serial Token model (Bowman, H., Wyble 2007). It already 

naturally dealt with the simultaneity/seriality dichotomy and was able to provide 

both behavioural and electrophysiological predictions. Having created this model, 

we validated our findings by comparing the results from human data to 

predictions made from the model. 
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Meta-experience in the Attentional Blink 

In this chapter, we re-examine a weakness of our original analysis – that many of 

our conclusions are based on analysis performed on averages, but such averages 

do not fully characterise what occurs. While this is unlikely to compromise our 

existing conclusions, it opens up an interesting question –how does subjective 

experience match up to working memory encoding on a trial to trial basis? 

The question we are fundamentally addressing here is metacognition: how well 

our subjective reports reflect success at encoding targets into working memory. 

This is a topic that has been explored extensively in the metacognition literature, 

with several tools developed for quantifying this relationship. Unfortunately, none 

of these existing tools are suitable for assessing our dataset, and as part of this 

chapter we develop a new measure for metacognition. 

A complication of nomenclature arises when applying this method to our own 

data however, as we explicitly capture measures of subjective experience, instead 

of measures of confidence that a true metacognitive measure requires. To avoid 

confusion we introduce a new term for the “metacognition” calculated across our 

own data that uses subjective visibility ratings instead of confidence reports: 

meta-experience.  

We apply this method to determine how meta-experience changes during the 

attentional blink. We use these new findings to validate the model developed in 

the previous chapter. This further informs our understanding of the working 

memory encoding/subjective experience relationship. 

Core hypothesis 

To summarise, we wish to assess the relationship between working memory 

encoding and subjective experience. This assessment takes the form of three 

research hypothesis that progress, one from another: 

1) Working memory encoding and subjective experience can be dissociated 

2) Assuming working memory encoding and subjective experience are 

dissociated, the relationship of the dependency between the two (if any) 

between these two processes can be established 
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3) Assuming a relationship of dependency (or lack thereof) between working 

memory encoding and subjective experience can be established, this can 

be modelled (in the Simultaneous Type/Serial token model of attention) 

 

In this chapter, we have covered the broad motivation for the thesis, the research 

questions it will attempt to solve, and a summary of how each of our research 

chapters is going to address them. We now move on to the first major section of 

the thesis, the literature review, in which we will cover the major theoretical 

background to the work that will be undertaken. 
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2. Literature review 

Consciousness 

In this thesis, a term that has been and will be used extensively is consciousness. 

Unfortunately, the word consciousness is a somewhat ambiguous term whose 

definition has been co-opted into defining a very large number of different 

concepts (Zeman 2005), many of which are just as ill-defined as the word 

consciousness itself (Antony 2001). As a starting point, we will borrow the 

definition from the Stanford Encyclopaedia of Philosophy (Zalta, Nodelman et al. 

2005) “The state of quality of being aware of an external object or something 

within oneself”, though it will quickly become apparent that such a definition is 

inadequate. Even from this starting point however, it is easy to see why 

consciousness has been a topic of fervent study and debate; even this apparently 

uncertain and incomplete definition strikes at the heart of our understanding of 

ourselves. However, while it is clearly desirable to measure something so 

important, we must proceed carefully to avoid confusion arising over this 

multifaceted concept.  

In this subchapter, we review some of the existing literature around 

consciousness and how it relates to our working memory encoding/subjective 

experience dichotomy. Before we begin however, we wish to make clear one point 

of nomenclature. One concept referred to extensively in the discussions about 

consciousness in the literature is the internal experience of an external stimulus, 

what a participant internally experiences of an external stimulus presented to 

them. Some authors, notably (Pincham, Bowman et al. 2016) whose data we 

extensively make use of, discuss the internal experience of an external stimulus 

as conscious experience or conscious perception. For consistency, and for the 

avoidance of doubt, in this work we will refer to this as subjective experience 

unless directly quoting another work. Further, we refer to any measure of this 

subjective experience as subjective report. 

The Easy and Hard Problems of Consciousness 

The problem of defining and measuring consciousness has been widely 

considered. One framing of the problem that has gained a lot of traction is the 

partitioning of the problems of consciousness into two distinct groups – the easy 
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problems of consciousness and the hard problems of consciousness (Chalmers 

1995). The easy problems are those that are vulnerable to typical quantitative 

analysis, specifically: 

“[…]are those [problems] that seem directly susceptible to the standard methods 

of cognitive science, whereby a phenomenon is explained in terms of 

computational or neural mechanisms” 

Whereas the hard problems are those problems that are not. The classic example 

of a hard problem is that of qualia, the phenomenal character of an item - what it 

is like to have an experience of a stimulus; for example, ones internal experience 

of the “redness” of red. 

While this distinction is interesting, it has caused a lot of debate. Criticisms of 

Chalmers work have generally come from the viewpoint that the hard problem is 

for some reason or another either a false dilemma (Kalat 2014, Hacker 2010) or is 

not truly hard (Dennett 2000), or they have specifically attacked the dualist view 

that is somewhat central to his argument (Carruthers, G., Schier 2017). The theory 

has also been criticised based on a similar intuition to the one given in the 

introduction to this section – Dehaene (Kalat 2014) has argued that the hard 

problem only arises because of our insufficient understanding of what 

consciousness is, and that with evolved understanding, the problem will 

disappear. Hacker (Hacker 2010) has made a somewhat similar, though perhaps 

more vitriolic argument: 

“The whole endeavour of the consciousness studies community is absurd – they 

are in pursuit of a chimera. They misunderstand the nature of consciousness. 

The conception of consciousness which they have is incoherent. The questions 

they are asking don’t make sense. They have to go back to the drawing board and 

start all over again. It’s literally a total waste of time.” 

Regardless on which side of the debate one stands, this framing of the problem of 

consciousness brings forth the distinction between working memory encoding 

and subjective experience we made in our introduction. Whether or not a stimulus 

is, for example, encoded into working memory is a quantity that is potentially 

different from how a person internally experiences a stimulus. 
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Subjective vs Objective Measures of Consciousness 

This working memory encoding/subjective experience debate has been 

previously discussed extensively in the literature, though in terms of the 

differentiation between the “phenomenological awareness” of the phenomenal 

character (subjective experience) of a stimulus versus the “access 

consciousness” (working memory encoding) of a stimulus that is available for 

report (Block 1995). 

One well debated viewpoint on the relationship of these two quantities is that 

phenomenological awareness overflows conscious access in the sense that we 

internally experience more of stimuli than is available for objective report later. 

Put another way, phenomenological awareness is a necessary but not a sufficient 

condition for conscious access. Block (Block 1995) is a notable proponent of this 

viewpoint, initially on the basis of the Sperling paradigm. The Sperling paradigm 

(Sperling 1960) (Figure 1) measures the recall of participants in two conditions. 

The first condition is one in which a grid of letters are presented for 500ms, 

followed by a blank screen. Participants are then asked to report all the letters 

they can. Typically, participants can report 4. The second condition is identical to 

the first, but after the grid has been removed, participants are cued on a row to 

report. Participants still managed to recall 4 items, but those items will be on the 

cued row. Importantly, though participants are only ever able to report 4 items, 

they subjectively feel that they can see the whole grid. Block cites this (Block 

2007) as evidence that the participants are on some level richly experiencing the 

whole grid, but are unable to report all of it. 

Dehaene (Dehaene, Changeux et al. 2006) has contested the validity of this 

experiment on the basis of the change blindness paradigm. The change blindness 

paradigm uses an alternating series of images that are subtly different from one 

another to demonstrate that participants will not notice small changes between 

the pictures (Simons, Rensink 2005). It is argued that change blindness shows 

that participants are overconfident on their ability to report, and instead of seeing 

a scene, they often merely suffer from the illusion of seeing because they know 

they can reorient their attention to any part of the scene at a given moment to 

obtain information about it (Dehaene, Changeux et al. 2006). This result has led 

some to conclude that participants are not actually experiencing the whole grid 
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as they subjectively feel in the Sperling paradigm, and that, at any given moment, 

very little of the scene is actually being processed – a sparse experience. (De 

Gardelle, Sackur et al. 2009) have also demonstrated a modified Sperling test that 

introduces the presence of unexpected “letter-like” pseudo letters into the grid. 

Despite the introduction of these pseudo-letters, participants still felt that they 

were experiencing a grid consisting entirely of letters. In light of these results, the 

authors propose that the “illusion of seeing” is the result of our expectations of 

what we will see and partial information about the scene. Block has criticised the 

validity of the results of this modified experiment (Block 2011) on the basis of low 

contrast stimuli and the introduction of a backward mask. He cites Fragile Visual 

Short Term Memory (a four seconds lasting fragile VSTM store with a capacity 

that is at least a factor of two higher than robust VSTM) (Sligte, Scholte et al. 

2008) as one which demonstrates something similar without the same problems 

– and incidentally as one that supports a rich experience. 

 

Figure 1) An example of the Sperling paradigm (Sperling 1960). Adapted from (Kouider, De 
Gardelle et al. 2010) who perform a modified version of the experiment. An array of letters is 
presented for 500ms. Participants are then either presented an aural cue which indicates to the 
subject to focus report on a certain row, or allows to report freely. In both instances, participants 
will be able to report approximately 4 stimuli, but when cued on a row to report, those 4 stimuli will 
be in that row. 

In further support of a rich experience, (Vandenbroucke, Fahrenfort et al. 2014) 

record fMRI during an inattentional blindness task based on Kanizsa figures (an 

optical illusion). Notably, the Kaniza illusion requires conscious processing of its 

inducers to be recognised (Harrison, Tong 2009) and the neural signature unique 

to the processing of the Kanizsa was present in both those who were 

inattentionally blind and those who were not. This is argued to indicate what has 

been claimed by some for a while, that during inattentional blindness the 

unreported stimuli are perceived, but are simply not accessed (Vandenbroucke, 

Fahrenfort et al. 2014). Bronfman et al. (Bronfman, Brezis et al. 2014) 
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demonstrate that participants in another modified Sperling experiment still retain 

some information about unattended rows. Specifically, the researchers found that 

participants could still accurately report on a high/low colour variance of 

separately cued rows.  

This large body of literature debates whether phenomenological consciousness 

is a necessary condition for access consciousness. The dual question, whether 

access consciousness is a necessary condition for phenomenological experience 

has been less discussed. The existence of such a phenomenon is debatably less 

intuitive – it implies that we can somehow access and report stimuli that we at 

no point subjectively experienced. Despite this, there is a small body of literature 

that has probed the subject.  

An example (Block 1995) from the original paper that spawned the Phenomenal-

Access consciousness distinction that attempts to show that such a 

phenomenon is plausible is a thought experiment around an extreme form of 

blindsight. Patients with blindsight have a damaged visual cortex and are 

consciously blind in part of their visual fields, but under some circumstances will 

respond to visual stimuli that they cannot “see” (Humphrey 1974). We are asked 

to consider the possibility of a “Superblindsight” patient that, unlike a normal 

Blindsight patient, can prompt themselves to what is in their blind field and 

evaluate it. Such a Blindsight patient would have two different experiences of a 

view item: the experience of knowing through experience and “Just knowing” 

what is in their blind field – thus access consciousness without 

phenomenological consciousness. (Lamme 2001) also discusses blindsight as 

an indication that conscious awareness and conscious access are separable. 

Block himself admits that this idea is only a thought experiment, but others (e.g. 

(Bogen 1997)) have proposed a case that is potentially more realisable, the case 

of split brained patients. Split brain patients are those literally with a split brain – 

their right hemisphere is separated from the left. (Bogen 1997) enumerates 

several facts about such patients:  

“(1) in most of these patients speech is produced only by the left hemisphere, (2) 

the speech is evidence that P [Phenomenal] and A [Access] coexist in that 

hemisphere, and (3) verbal denial of information that has been delivered only to 

the right hemisphere (and rationally acted upon) reflects the existence of an 
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independent capacity in the right hemisphere, that is, an A-consciousness 

different from the A-consciousness of the left hemisphere.” 

Since the right hemisphere has its own independent access consciousness, this 

begs the question: does it also have its own independent phenomenal 

consciousness? If it does, it would be a very persuasive and replicable argument 

for access consciousness without phenomenal consciousness.  

Further to this, there are also several other paradigms that would seem to show 

some kind of access to stimuli for which there has been no phenomenal 

experience. For example, flash suppression (Hsieh, Colas et al. 2011), visual 

masking (Van den Bussche, Hughes et al. 2010), or episodic face recognition 

(Heathcote, Freeman et al. 2009). However, we would argue that these paradigms 

provide evidence for a weaker claim: that of influence without experience. In every 

case, the identity of the un-experienced stimulus is not directly reportable, it 

merely influences the report of, or response to, something else. One result that 

does seem to demonstrate a direct report is a study by (Pincham, Bowman et al. 

2016), which demonstrates (among other results) an apparent free recall of 

stimuli in the absence of conscious awareness. The authors find that participants 

report stimuli at high level even when reporting zero subjective experience (Note, 

this result is found in the appendix of the paper, not the main body). A somewhat 

similar result also arises from studies by (Soto, Silvanto 2014) and (Trübutschek, 

Marti et al. 2017), which explores the possibility of stimuli being maintained in 

working memory in the absence of any subjective experience.  However, we note 

that while these results are compelling, they are about a slightly different 

question – working memory maintenance, rather than encoding. 

Measuring subjective and objective report 

So our discussion has been in abstract terms such as the easy/hard problems, 

phenomenal/access consciousness and working memory encoding/subjective 

experience. While these are useful tools for thinking about the problems of 

consciousness, in order to apply the scientific method we need these to be 

relatable to some measurable phenomena.  

Describing a measure for working memory encoding is simple. To draw upon the 

easy/hard dichotomy, working memory encoding is an easy problem. It is directly 

amenable to the traditional methods of cognitive neuroscience. Assessing 
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whether a stimulus has been encoded into working memory can be done by 

simply asking a participant to report on the result, and comparing this report to 

the stimulus that was presented. We term these types of measures objective, as 

in contrast to measures of the harder problems such as internal experience that 

are by definition subjective measures.  

In contrast, measuring subjective experience is significantly more difficult. To 

borrow the easy/hard dichotomy again, Overgaard (Dienes, Z. 2015) writes about 

the search for such measures as the equivalently hard problems of empirical 

consciousness research. It is difficult to attempt to evaluate the “best” third party 

measure of an internal state that is, by definition, only available to the participant 

themselves. One approach is simply to ask participants to report on their own 

state. This report might be on a dichotomous scale (Lamy, Salti et al. 2009) to 

maximise statistical power, a larger scale with more than 2 bins (Overgaard, Rote 

et al. 2006) or a more continuous scale (Sergent, Dehaene 2004). Regardless of 

the method, this must be done carefully as participants often have difficulty using 

poorly designed scales, or those with many options (Sandberg, Timmermans et 

al. 2010).  

Such measures often run into difficulties, but are still widely used. On one hand, 

given that the measure is fundamentally introspective, asking participants about 

their percept is potentially the most effective approach. On the other hand, it has 

been argued as far back as (James 1898) that any such subjective measure must 

be retrospective - and therefore subject to memory effects. Furthermore, 

subjective report scales can also be subject to response bias (Timmermans, 

Cleeremans 2015). In particular, subjects may withhold reports simply because 

they are not confident about them instead of because they have zero subjective 

experience (Garner, Hake et al. 1956), or make up responses when questioned 

(Nisbett, Wilson 1977). Subjective report is also known to be subject to changes 

in instruction (Overgaard, Sorensen 2004). An alternative that has been proposed 

is to probe subjective experience by asking participants to wager on the 

correctness of their response (Persaud, McLeod et al. 2007). This is proposed to 

be a more direct measure of subjective report. However, its effectiveness has 

been debated. It has been argued that it is no more effective than questioning 
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participants directly, and is known to be subject to participants risk aversion 

(Dienes, Zoltán, Seth 2010).  

We have now covered some of the literature behind the working memory 

encoding/subjective experience dichotomy presented in the introduction, and 

some methods by which these might be evaluated. In terms of the research 

question of this thesis however, we now need to go one step further: despite 

introducing and discussing many phenomena that seem to show a separation of 

subjective experience and working memory encoding, we have not yet discussed 

a formal mechanism by which this can be demonstrated. These separations have 

canonically been explored by trying to find functional dissociations (though 

recent literature has proposed improvements), a concept we now cover in more 

detail. 

Dissociating of Cognitive Processes 

The question of “modularity of mind” - that is, to what degree the mind is made 

up of functionally independent components - has been of great importance in the 

fields of philosophy, psychology and neuroscience. While there are many diverse 

views, e.g. (Fodor 1983), (Carruthers, P. 2006) and (Prinz 2006), a large number of 

contemporary models and theories incorporate modularity in some way. This 

makes the ability to separate functionally independent mental processes and 

thus to be able to demonstrate this modularity - or lack thereof – critical to 

modern cognitive neuroscience. As we saw in the previous section, one of the 

areas over which the independence of processes is particularly contested is the 

one posed by this, particularly whether subjective experience of the character of a 

stimulus (the “phenomenological awareness” of it) and the ability to encode it 

into working memory for retrieval (the “access consciousness” of it) are distinct. 

Tackling such problems is usually performed by looking for functional 

dissociations. When we say two mental processes are functionally dissociated, 

we specifically mean that they are in some way functionally independent from 

one another. To put it another way, there is no complete relationship of 

dependency between the two. i.e. neither is both a necessary and sufficient 

condition for the other to occur. Evidence for such a dissociation is seen to arise 

when we find variables that allow us to independently modify performance on two 

separate tasks, providing putative evidence that the cognitive processes 
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embodied by the tasks are in some way separate (Dunn, Kirsner 1988). Such 

dissociation logic has been widely applied, and made an important contribution 

to the investigation of functional independence in the mind in such diverse sub-

fields as short term memory (encompassing working memory as one part of this) 

and long term memory (Warrington 2014), word comprehension (Cousins, York et 

al. 2016) and consciousness (Cohen, Cavanagh et al. 2012). Despite their merits, 

some authors have argued that functional dissociations can be improved upon 

(Bogartz 1976, Dunn, Kirsner 1988, Henson 2006, Davis-Stober, Morey et al. 

2016), and we will discuss these results and proposed alternatives extensively 

further below.  

Functional Dissociations 

The functional dissociation is a technique that has been widely implemented 

across the fields of psychology and neuroscience as a marker of the functional 

distinctness of mental processes. There are several types of functional 

dissociations, but all arise when one is able to independently modify performance 

on a set of one or more tasks in a set without affecting performance on other 

tasks in the set. The ability to differentially affect behaviours on different tasks is 

seen as evidence that the mental processes underlying them are in some way 

functionally separate. There exist three types of dissociations widely used in the 

literature (Shallice 1988): single dissociations, uncrossed double dissociations 

and crossed double dissociations. 

A single dissociation is the simplest example. In this instance, we have a 

manipulation in which one independent variable is modified, and there are two 

different tasks over which performance is assessed. In a single dissociation, we 

find that it is possible to increase performance on one task without affecting 

performance on the other. This is seen to provide evidence that the two cognitive 

processes underlying the tasks in question are functionally dissociated. However, 

it has long been known (Teuber 1955) that single dissociations only constitute 

weak evidence of a functional dissociation. Indeed, the strongest conclusion that 

it is possible to come to from a single dissociation is that the cognitive processes 

underlying the task are not the same. The possibility still exists that one is either 

a necessary or sufficient condition for the other to occur. 
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The problem is that there is no reason to believe that increased (or decreased) 

cognitive function translates well, or at all, to increased or decreased task 

performance (Loftus 1978); classic examples of how this might occur are floor or 

ceiling effects. Floor or ceiling effects occur when experimental limitations 

prevent performance from getting better or worse respectively (Krantz, Tversky 

1971). For example, we may ask participants to identify a stimulus in a stream of 

distractors. Depending how rapidly the stream is presented, we would expect 

performance to increase or decrease, with faster streams resulting in worse 

performance. However, beyond a certain point, performance will either be at nil or 

perfect, and changes in the presentation rate will no longer affect performance. 

This is a classic floor (or ceiling) effect. Because of these issues, it is generally 

proposed that authors should not attempt to use single dissociations as a marker 

of functional dissociation, but should instead use a double dissociation (Shallice 

1988). There are two kinds of these dissociations we discuss, crossed and 

uncrossed double dissociations. 

An uncrossed double dissociation is simply the occurrence of two, opposite 

single dissociations (Dunn, Kirsner 1988). Instead of finding a single 

manipulation over which we modify one independent variable, we find two 

different manipulations. Once again, we have two tasks over which performance 

is assessed, say task A and task B. An uncrossed double dissociation arises 

when modifying the independent variable of one of the manipulations changes 

performance on task A while performance on task B stays the same, while doing 

the same to the other independent variable does the opposite – performance on 

task B changes while task A performance is static. Strictly, a double dissociation 

does not remove the issues that a single dissociation demonstrates, but in 

practice, with good experimental design, it makes them much less likely (Dunn, 

Kirsner 1988). However, there is no way to preclude effects of this kind entirely, 

therefore despite the merits of an uncrossed double dissociation, where possible 

a crossed double dissociation is often preferred (Shallice 1988).  

Crossed double dissociations is a special case of the uncrossed double 

dissociation in which it is possible to increase performance on one task while 

simultaneously decreasing performance on the other through modifying the 

levels of only a single manipulation. This results in a crossover interaction of the 
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levels of this variable and the two task performances. Since there is no static task 

performance, a dissociation of this kind is not vulnerable to claims of floor or 

ceiling effects, though it is still subject to the generalised problem that the 

existence of these effects demonstrates (Newell, Dunn 2008), which we will now 

discuss in more detail. 

Dissociations – Failure Conditions 

In order to properly discuss the problems with dissociation logic, we will 

formalise slightly (for an extensive theoretical treatment, see (Bamber 1979)). Let 

our experimental manipulations be the set of independent input variables   . 

These are then related to cognitive function, our latent variables     through 

functions   . This cognitive function is then related to our task performance, our 

dependent output variables    through functions   . See Figure 2 for an example. 

Inside this framework, the problem of demonstrating functional dissociations 

comes down to determining whether a single latent variable is sufficient to 

explain how the pattern of independent input variables relates to the levels of the 

dependent output variables. If a single variable is sufficient then we may 

conclude that there is no dissociation (Figure 2A), but if it is not, a dissociation is 

required (Figure 2B)). 

Framed in this way, our floor and ceiling effects from the last section are simply 

regions of the functions    where the output function does not change. Figure 3 

shows why this is problematic, with a slightly more complicated example of the 

general result that floor effects demonstrate. The models are polar opposite in 

terms of the dependency of the output variables, in A) they are mutually 

dependent and in B) they are independent. However, because of the nonlinearity 

of B that somewhat resembles a floor effect, A) and B) are almost 

indistinguishable for almost any range of inputs. The levels of the second 

dependent variable may equally be changing because they are functions of two 

independent variables, or because they are functions of the same independent 

variable that is not responsive over this range for the second output. This is 

problematic because dissociation logic would always come to the conclusion 

that a dissociation existed. 
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Figure 2) Examples of two different systems under the framework described above.    are our 

independent input variables,    our set of latent cognitive functions and    our set of dependent 

output variables.    are the functions relating our input variables to our latent variables and    our 

functions relating our latent variables to our output variables. A) A potential system in which no 

dissociation exists. Both of our dependent variables are reliant on the same underlying latent 

cognitive process and so no functional dissociation between the two exists. B) One potential 

system in which a dissociation does exist. In this instance the level of our output variables is 

determined by two different cognitive processes. 

This brings us to an interesting problem of the dissociation logic we discussed in 

the previous section. These methods are actually making quite a strong implicit 

assumption within the framework we have created here – that the functions    

are approximately uniform in their behaviour. Floor or ceiling effects are one 

example of behaviour that contradicts this but many have asserted that there is 

no reason to believe that more subtle behaviours cannot occur (Dunn, Kirsner 

1988, Bamber 1979, Prince, Brown et al. 2012). (Prince, Brown et al. 2012) 

describe these effects as scale dependent interactions, in which nonlinearity in 

the translation between latent and dependant variable can occur and (Loftus 

1978) details several accounts of the effects of different kinds of response 

functions that account for bounds on the dependant variables. For these reasons, 

despite their wide use in the literature, it has been argued that while functional 

dissociations are certainly indicative, they do not strictly provide either a 

necessary or sufficient basis for determining the separation of mental processes 

(Bogartz 1976, Dunn, Kirsner 1988, Henson 2006, Davis-Stober, Morey et al. 

2016). As we have seen in Figure 3, it is possible to construct cases in which we 

can create the types of dissociations we have discussed without separate mental 

processes, and it is easy to see that similarly it is possible to do the opposite. The 

question that of course arises in light of this is, if not through dissociation logic, 

how can we separate the cases in which a single latent variable is required from 
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Figure 3) Example of how the scale dependent interactions described by (Prince, Brown et al. 

2012) can cause traditional dissociation logic to reach erroneous conclusions. In this instance, we 

have two systems – A) in which a dissociation does not exist and B) in which one does. In A) the 

output variables are reliant on the same underlying cognitive process, but in different ways. In B), 

the output    is completely unrelated to the input    even indirectly, no change in    can affect it. 

Conversely,    is directly related to    through the latent variable   – this gives us a classical 

dissociation. The problem arises because    in A) is highly insensitive over most of the range of    
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that we are sampling. For almost the entire range of sampled    values, the behaviour of A), a 

system without a dissociation and B) a system with a strong dissociation will be almost entirely 

indistinguishable based on the behaviour of    and   . Despite this, dissociation logic would 

conclude B) – that a dissociation exists.  

the ones in which multiple are required. Fortunately, this question has been 

tackled, through a tool known as state-trace analysis. 

State-Trace analysis 

State-trace analysis is a tool for testing the validity of a number of different 

theoretical models for how a system of latent variables modulates the observed 

relationship between the independent variables and dependent variables. This is 

quite a powerful tool with broader applications than we specifically use here 

(Loftus 2002). We are interested in one facet of state-trace analysis in particular 

– distinguishing whether a single latent variable is sufficient to explain the 

difference between two different dependent variables. This case is known as 

dependent variable state-trace analysis (Prince, Brown et al. 2012). This explores 

the specific hypothesis that a single latent variable is sufficient to explain our 

pattern of results. We have described previously the difficulties associated with 

dissociation logic, scale dependent interactions. Our problem arises because 

these “scale dependent interaction” functions    are effectively unconstrained. 

Though there may be choices of    that are theoretically unpalatable, we have not 

set any explicit bounds on then. Because of this, it is impossible for us to know 

whether any behaviour that we see is arising, for example, as the result of one or 

many latent variables or simply as a result of a particular   . 

State-trace analysis solves this by constraining the relationship between latent 

cognitive functions of dependant variables    to be at least monotonic. Given this 

assumption, then for a model containing only a single latent variable, the 

relationship between our two task performances cannot fail but to be monotonic. 

Any violation of this in the observed data makes the data logically inconsistent 

with a single latent process model, and thus demonstrates a functional 

dissociation. See Figure 4 for an example of this monotonicity, and how non-

monotonicity might arise with more than one process. Note that the opposite is 

not true; a model that contains two latent variables does not necessarily cause a 

non-monotonic relationship between task performances. A monotonic model is  
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Figure 4) Example of how both monotonic and non-monotonic results can occur in state-trace 

analysis. A) An example of how a monotonic state-trace may arise with one single latent process. 

Notably in this instance, because all functions    are functions of the same latent variable and 

monotonic, the relationship between our    and    must also be monotonic. B) An example of 

how a non-monotonic state-trace might arise, even though all functions    are monotonic. In this 

instance we have also notably kept our functions    monotonic (and simple). Even despite, this 

we are able to demonstrate a non-monotonic relationship between    and   . 
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therefore potentially consistent with either outcome. This criterion of 

monotonicity is not selected randomly. Monotonicity of this translation is at least 

an assumption that, implicitly or explicitly, is very widely relied upon (Krantz, 

Tversky 1971) and indeed, violations of this assumed monotonicity are likely to 

make constructive inference almost as hard as no assumption at all (Loftus 

1978). Ultimately, without the assumption of monotonicity, we are left with two 

choices – translations of cognitive function to task performance    are either 

non-unique in the sense that multiple levels of cognitive function may equally 

translate to the same task performance, or non-continuous in the sense that 

translation of cognitive function to task performance occurs in sudden jumps 

instead of a smooth continuous fashion. Overall, this provides a material 

improvement over dissociation logic. In Figure 3, for example, dissociation logic 

would, potentially incorrectly, assert a dissociation exists over most of the range 

of inputs. State-trace analysis on the other hand, would (correctly) identify that 

there is not enough information to distinguish whether a dissociation exists over 

the same inputs. The more general case of uncrossed double dissociations 

incurs a similar fallacy to the one proposed in Figure 3, as it is simply the 

conjunction of two single dissociations (Dunn, Kirsner 1988). Crossed double 

dissociations are also similarly confounded, but would require any single process 

model to have at least one “negative” relationship in the sense of increasing 

cognitive function leading to decreased task performance (Dunn, Kirsner 1988). 

For an extensive discussion of this, see (Dunn, Kirsner 1988). 

We describe state-trace analysis informally in terms of a state-trace plot, see 

Figure 5. We have a state factor consisting of our two tasks, with the performance 

on each task forming an axis on our graph. We then plot on this graph each level 

of our dimension factor, the variable that we are varying across our tasks. If we 

can draw a monotonically increasing (or decreasing) curve joining all the levels of 

our dimension factor, the relationship between our task performances across our 

variable is monotonic. In all other cases, it is non-monotonic. In the context of 

our attentional blink experiment, identity report and judging visibility are our two 

tasks so they give us our state factor, and the lags are the measure that we are 

varying across both tasks, so they give us our dimension factor. Plotting report 

accuracy on one axis and visibility on the other, we are trying to determine 
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whether it is possible to draw a monotonic curve joining the data across each of 

our lags. 

 

Figure 5) A) Example of a monotonic state-trace plot across 4 levels of a dimension factor D. It is 

possible to draw a monotonic (increasing) curve joining all points, therefore the relationship 

between the levels of our state factor is monotonic. B) Example of a non-monotonic state-trace 

plot across 4 levels of a dimension factor D. The point furthest to the right makes drawing either a 

monotonically increasing or monotonically decreasing curve impossible, therefore the 

relationship between the levels of our state factor is non-monotonic. 

Often, we also include a “trace” factor in analysis of this type. While our current 

description of “traceless” state-trace analysis sets out a clear criterion for 

evaluation of a dissociation, actually eliciting such a dissociation is another 

matter. Often, it is desirable to introduce another manipulation into ones analysis 

to sweep out this behaviour, a trace factor (Prince, Brown et al. 2012). Notably, 

further than merely being desirable, a trace factor is required when one would 

otherwise only examine two points on a state-trace plot, since it is impossible to 

demonstrate a non-monotonic relationship from only two data points (Bamber 

1979). 

While adding a trace factor can be very helpful, it does come with complications. 

Since the trace factor is a convenience designed to sweep out the behaviour in 

the underlying system instead of the measure of interest itself, one must be 

careful that it does not compromise their analysis. It is therefore important to set 

the trace factor such that it is monotonic across the levels of the measure of 

interest, such that the non-monotonicity from the trace factor is not confused 

with non-monotonicity of the question of interest (Prince, Brown et al. 2012) (See 

(Davis-Stober, Morey et al. 2016) for an example of how this information can be 

taken advantage of). Similarly, potential interactions between the trace factor and 
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other factors must also be considered. One must also be careful that the trace 

factor we introduce is constructive. When the levels of the trace factor do not 

overlap on either of the dimensions, the state-trace plot is ineffective at 

diagnosing dimensionality (Prince, Brown et al. 2012). Instead, one effectively has 

two separate two dimensional state-trace plots, which could be consistent with 

either a multi-dimensional or unidimensional model. 

Statistical methods 

A long term challenge that state-trace analysis has faced is statistical 

quantification. Historically, there have been several attempts to make use of 

various methods of null hypothesis testing (Loftus, Oberg et al. 2004, Bamber 

1979) in order to quantify the evidence for non-monotonicity. However, all of 

these methods suffer from the same problem – they can only quantify evidence 

against the null hypothesis (usually the monotonic ordering). Even if the 

underlying data is entirely consistent with the null hypothesis, noise in the data 

will almost surely (in the mathematical sense) lead to deviations from this in a 

data sample. Since evidence cannot be gathered for the null, only against it, this 

will (potentially) lead to bias. The fallacy of classical inference is an example of 

why this might be problematic. The fallacy of classical inference states in broad 

terms, that as the number of samples increases, so too will the effect size 

required to reject the null at a given alpha decrease, and that ultimately with 

enough samples we will reject the null even if the difference between conditions 

is trivially small (Friston 2012). Furthermore, one of the strong points of state-

trace analysis on its own is that it can help assess when complex patterns of 

behaviour can be modulated by a simple underlying structure. When one makes 

use of null hypothesis testing, there is no benefit to choosing simple models of 

the data, and indeed, a more complex model will fit often the data better; as such, 

null hypothesis methods are effectively discarding this advantage. Additionally, 

these methods all rely to a greater or lesser degree on parametric assumptions of 

the data. One of the beauties of the original state-trace analysis was that it was 

essentially assumption free, and an ideal statistical test will allow this to 

continue. 

As a solution to these problems, several more recent pieces of work advocate the 

usage of a Bayesian approach (Sense, Morey et al. 2016, Davis-Stober, Morey et 
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al. 2016, Prince, Brown et al. 2012). The Bayesian approach allows evidence to be 

compared for both possible hypotheses, monotonic or non-monotonic. 

Furthermore, Bayesian statistics does not necessarily rely on any parametric 

assumptions, allowing the non-parametric nature of the analysis to be preserved. 

That is not to say that Bayesian analysis is perfect. Firstly, it requires the 

specification of a prior, and it is not always clear what a suitable prior may be. 

That said, the prior can also often be a chance to take advantage of prior 

knowledge (Davis-Stober, Morey et al. 2016), so if this uncertainty is overcome 

this can become an advantage rather than a disadvantage. Secondly, 

computation of the posterior often either requires a method such as Gibbs 

sampling that is highly computationally expensive (Prince, Brown et al. 2012), or 

special parametric assumptions that allow it to be computed analytically (Davis-

Stober, Morey et al. 2016).  

All of the statistical methods we have discussed so far are about analysis at the 

single subject level. However, we will almost always have more than one subject 

in a study. Unfortunately, state-trace analysis at the group level presents some 

difficulty. Primarily, it is not possible to apply summary statistical methods like 

averaging to state-trace data (Newell, Dunn 2008, Prince, Brown et al. 2012). It is 

possible both to average multiple non-monotonic datasets into a monotonic 

dataset, and vice versa. On the basis of the Bayesian method, there are several 

approaches that allow evidence to be assessed across a group of participants. 

The simplest method is the Grouped Bayes factor (Prince, Brown et al. 2012). 

This method assumes that the Bayes factors from each participant are 

independent from one another. The Grouped Bayes factor is then the product of 

all individual Bayes factors, effectively quantifying the evidence that the whole 

group is monotonic versus the whole group being non-monotonic. This method 

has the advantage of being very simple but aside from the (perhaps strong) 

assumption of independence, also relies on the implicit assumption that 

participants’ results are approximately homogenous.  

If all participants are either monotonic or non-monotonic, it is a very sensible 

measure of the group level effect. However, if there are participants in each 

direction, particularly if the results of some participants are very strong compared 

to others, it rapidly becomes less useful. Imagine a case in which we have nine 
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participants, 8 of which evaluate a Bayes factor of 10, and 2 of which evaluate a 

Bayes factor of 0.002. The grouped Bayes factor would be 0.32, indicating 

marginal evidence in favour of the effect that the two are showing at the group 

level, but this would not be a sufficient summary of the behaviour. A recent 

proposal by (Davis-Stober, Morey et al. 2016) attempts to solve this by 

supplementing the grouped Bayes factor with another Bayesian analysis that 

assesses the homogeneity of the Bayes factors which the authors label the 

aggregated Bayes factor (ABF). While this method provides a very valuable tool, it 

suffers from several limitations. It can only unambiguously demonstrate the 

dangerous case of heterogeneity, but cannot entirely support homogeneity. When 

homogeneity is supported, individual level tests need to be examined. For this 

reason, the authors advocate its usage alongside the grouped Bayes factor 

already introduced.   

RSVP and the Attentional Blink 

We have so far discussed some of the literature background to working memory 

encoding and subjective experience and given some techniques by which we 

might separate the two. However, in order to provide any such separation with the 

best possible opportunity to manifest we must choose an appropriate 

experimental paradigm. A paradigm that is well placed to shed light on this topic, 

and has been used previously (Sergent, Dehaene 2004) to explore the all-or-none 

nature of subjective experience, is the attentional blink (AB). The attentional blink 

is a phenomenon seen during RSVP (Rapid Serial Visual Presentation) in which 

participants frequently fail to detect a second target for a short time after the 

presentation of an encoded first target; see T2|T1 accuracy in Figure 6 (Raymond, 

Shapiro et al. 1992, Bowman, H., Wyble 2007). We propose that the attentional 

limitations causing this impairment are potentially informative: such impairment 

may help distinguish the results of failed accessibility from other characteristics 

of perception such as subjective experience. Others have argued similarly (Cohen, 

Cavanagh et al. 2012), but few attempts have been made to empirically explore 

this question, with (Pincham, Bowman et al. 2016) being an exception. Another 

advantage of the attentional blink is that the paradigm has been so extensively 

modelled. While experiments and dissociations can tell us about specific effects, 

placing findings in larger theoretical context is pivotal to the forward progress of 
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science, and one of the most powerful tools for achieving this is modelling. The 

large number of models, including many with computational implementations, 

makes this a potentially fruitful direction to take our research question.  

In this section, we introduce the RSVP and attentional blink paradigms as well as 

looking at how subjective experience has been explored in the context of the 

attentional blink up until now. We also take the opportunity to introduce several 

models of the attentional blink. 

The Attentional Blink 

Rapid serial visual presentation (RSVP) is a presentation technique in which 

multiple stimuli are presented rapidly (usually 6-20 items per second (Raymond, 

Shapiro et al. 1992)) one after the other in a fixed location. The stream of stimuli 

is typically composed of targets to be identified and distractors to be ignored that 

are distinguished by some feature - for example the colour or type. As items are 

presented in the same spatial location, each item acts as a mask for the previous 

item. Between this masking and the rapid presentation rate, it becomes difficult 

to identify any single item in the stream, and this makes it ideal for testing the 

limits of the attentional and perceptual systems.  

When more than one target is presented in an RSVP stream, both targets cannot 

always be processed to the same level. The attentional blink (AB) is a “blink of the 

mind’s eye” that presents as a deficit in performance on a second target when 

more than one target is to be identified in an RSVP stream. It arises 

approximately 100-500ms after the presentation of the first target. It is a 

particularly robust finding that has been demonstrated over a large number of 

studies over a wide range of task conditions (Martens, Wyble 2010). Typically, the 

AB is elicited using alphanumeric stimuli, but images, letters, digits or words will 

all elicit the blink. For an example of a typical attentional blink RSVP stream and 

the associated results, see Figure 6. 

In the context of the attentional blink, there are several terms of particular 

importance: targets, lag, and Stimulus Onset Asynchrony, as well as several 

findings that bear discussion – particularly lag 1 sparing. The attentional blink 

paradigm is typically performed over two targets which are labelled T1 and T2 for 

the first and second target respectively, though sometimes more targets are 
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used. These targets are labelled as T3, T4, etc. for the third and fourth and so on. 

The main parameter of the attentional blink is the relative serial positions at 

which the two targets are presented, known as Lag. For example, at Lag 1 there 

are no intervening distractors between the targets, while at Lag 2, the two targets 

are separated by one intervening stimulus. Also relevant is the presentation rate 

of stimuli is known as Stimulus Onset Asynchrony (SOA). SOA specifically refers 

to the number of milliseconds between the onset of one stimulus and the onset of 

the next. Finally, the classic attentional blink finding (Figure 6), arises when lag is 

plotted against T2|T1 accuracy (second target accuracy, given the first target was 

correct). Excluding Lag 1, typically, as the two targets approach one another, 

accuracy is significantly reduced compared to recovery baseline (lags 7 and 8). A 

typical blink is shown in Figure 6. Performance at Lag 1 however is often at and 

sometimes even above recovery level. This is known as Lag-1 sparing, and is 

itself a common finding of the attentional blink (Wyble, Brad, Bowman et al. 

2009). Interestingly, when multiple targets are presented with no intervening 

distractors, this sparing can be “spread” to up to 4 further targets (Olivers, Van 

Der Stigchel et al. 2007) in a finding that is often called “spreading the sparing”. 

 

Figure 6) A) A typical attentional blink RSVP stream. Participants are instructed to report the two letters at 

the end of the stream. B) Illustration of expected accuracy for T1 and T2|T1 at each lag during a typical 

attentional blink study with an SOA of approximately 80-120ms. 

Incorporating Subjective Experience - The Experiential Blink 

The attentional blink has been extensively studied with respect to report accuracy 

and working memory encoding; however, for the purposes of our research 

question we are interested in it as a tool for distinguishing these measures from 

subjective experience. Up until recently however, subjective experience during the 

attentional blink has largely been explored obliquely through studies attempting 
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to determine the all-or-none nature of subjective experience. The question of the 

all-or-none nature of subjective experience considers whether a subjective 

experience of a stimulus can be graded, or whether subjective experience is a 

binary phenomenon – either on or off. 

One of the most widely cited papers providing evidence for bifurcation of 

subjective experience is presented by (Sergent, Dehaene 2004). Importantly for 

the research question of this thesis, it achieves this by analysing subjective 

report during the attentional blink. In this instance, subjective report is seen to 

behave very similarly to the classical pattern of behaviour report accuracy shows 

during the attentional blink (See Figure 7). There has though, been debate about 

the interpretation of these results. Notably, the 21 point response scale used for 

subjective report has been discussed (Overgaard, Rote et al. 2006, Nieuwenhuis, 

de Kleijn 2011), and it has been argued that participants have difficulty using 

scales with a large number of response points (Sandberg, Timmermans et al. 

2010).  

A more recent study (Nieuwenhuis, de Kleijn 2011) changed to a 7 point scale, 

and made use of a more traditional character identification task. The authors also 

perform experiments using both direct subjective report, and a post decision 

wagering method that requires participants to bet on the certainty of their 

outcome. With these changes, the authors find graded responses for both direct 

subjective report and post decision wagering. In terms of how subjective 

experience behaves during the attentional blink, the authors find a remarkable 

contrast to report accuracy. While report accuracy demonstrates an attentional 

blink with lag 1 sparing, the subjective report in both instances had considerable 

less lag 1 sparing. This can be seen in experiments 3 and 4 in Figure 7(B), which 

uses both the revised experimental paradigm and improved scale.  

Both of these articles have only studied subjective experience during the 

attentional blink as a method of assessing the all-or-none nature of subjective 

report. One article that has directly studied how subjective experience and 

working memory encoding differ during the attentional blink is a study by 

(Pincham, Bowman et al. 2016). In this article, the authors perform two 

experiments, one assessing the behaviour of subjective report during the 

attentional blink by sampling a large number of lags, and another additionally 
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assessing electrophysiological behaviour with the same experimental paradigm, 

but over a smaller number of lags in order to concentrate data in a few conditions 

in order to obtain robust ERPs. 

The authors of this work find the behaviour of subjective report during the 

attentional blink to be very similar to the results of (Nieuwenhuis, de Kleijn 2011) 

(See Figure 7(C)). One notable difference is that where the subjective visibility 

results from (Nieuwenhuis, de Kleijn 2011) did show a minimal level of lag 1 

sparing, the data from (Pincham, Bowman et al. 2016) shows none. Nonetheless, 

the authors did observe a second blink of the mind’s eye for subjective report. 

They call this the experiential blink, a term that we will use. This experiential blink 

is distinct from the attentional blink, as it occurs over a different measure 

(subjective visibility versus report accuracy), and significant because it exhibits 

different behaviour (absence or reduction of sparing at earlier lags). Interestingly, 

exploring this finding in more detail, the authors also raise the possibility that 

they have found evidence for a case in which participants are encoding targets 

into working memory without experiencing them (Pincham, Bowman et al. 2016) 

in a phenomenon they call sight-blind recall, a term we will also adopt. In terms of 

electrophysiological results, the authors find the P3 component differentially 

affecting report accuracy and subjective report, specifically that the P3 indexes 

subjective report more closely than report accuracy. Specifically, the authors 

suggest that that when reporting poor subjective visibility on the second target, 

participants show a weakened and shortened P3 compared to when reporting 

high subjective report. 

Taking these three studies together, there is significant evidence that the 

attentional blink is indeed a good paradigm with which to distinguish working 

memory encoding and subjective experience. In particular, there is a significant 

difference in the pattern at Lag 1. Additionally, a goal we discussed in the 

introduction was not just to empirically explore the relationship between working 

memory encoding and subjective experience, but additionally to provide a 

simulation model of any results. In light of this, we now turn to providing a brief 

overview of some contemporary models of the attentional blink.  
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Figure 7) Subjective Report during the Attentional Blink across 3 experiments. A) (Sergent, 

Dehaene 2004) In the dual task participants were required to identify the first target, while in the 

single task they were not. In all conditions participants were required to make a subjective 

visibility judgement on the T2. B) (Nieuwenhuis, de Kleijn 2011). Experiment 1 replicates (Sergent, 

Dehaene 2004) without a single task condition and with a 7 point response scale. Experiment 2 is 
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the same as Experiment 1, but substitutes subjective report with post decision wagering. 

Experiment 3 changes the word presentation task used in (Sergent, Dehaene 2004) to a character 

identification task that is more representative of typical attentional blink research. Experiment 4 is 

as experiment 3, but substitutes subjective report with post decision wagering.  C) (Pincham, 

Bowman et al. 2016) behavioural results from Experiment 1. In this experiment, participants were 

required to report the identity of both targets, but only the subjective experience of the second. 

Subjective report was on a 6 point scale. 

Theories and Models of the Attentional Blink 

When the attentional blink was first discovered (Raymond, Shapiro et al. 1992), 

there was much focus on explaining why it was occurring. In particular, there is 

evidence that missed targets during the attentional blink are processed quite 

extensively, both from behavioural and neurophysiological studies (Martens, 

Wyble 2010). On this basis, many of the dominant theories of the attentional blink 

were initially based on central capacity limitations. That is, that the attentional 

blink was arising as a limitation in capacity of some central attentional 

mechanism. The specifics of these models varied, but were generally united in 

assuming that all stimuli in a stream were fully processed up to the point of 

conceptual representation (Martens, Wyble 2010). Given that the attentional blink 

cannot be “trained out” (Braun 1998, Taatgen, Juvina et al. 2009), these central 

processing accounts that assume that the attentional blink is the result of a 

fundamental cognitive limitation seem reasonable. However, some more recent 

findings called these assumptions into question.  

Firstly, it is possible to reduce the attentional blink by redirecting the participant’s 

focus away from target identification. This has been done by adding task 

irrelevant visual motion or flicker (Arend, Johnston et al. 2006), changes in task 

instruction (Ferlazzo, Lucido et al. 2007), and most compellingly, the introduction 

of a second irrelevant task (Taatgen, Juvina et al. 2009). It is also possible to 

identify multiple targets in a row, as long as there are no intervening distractors, 

an effect called “spreading the sparing” (Olivers, Van Der Stigchel et al. 2007). All 

of these results present some difficulty for accounts that propose that the 

attentional blink emerges due to a fundamental information processing limitation 

of the brain. It is hard for any model that relies on an information processing 

limitation to explain why performance increases with the addition of a second 
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task. As a response to these findings, further accounts have been proposed, of 

which we review a selection here.  

Locus Coeruleus Model 

One model is the Locus Coeruleus Model (Nieuwenhuis, Gilzenrat et al. 2005). The 

locus coeruleus is a small nucleus in the brainstem that is widely connected 

(Figure 8), known to be critical for the regulation of cognitive performance 

through norandrenergic projection to the cortical mantle , and that has been 

argued to be central to the deployment of attention. In monkeys, the neurons of 

the LC fire a powerful burst in response to visually presented targets 

(Nieuwenhuis, Gilzenrat et al. 2005). Following this burst of activity is the 

widespread release of norepinephrine (NE) to cortical areas, providing an 

attentional enhancement that allows the target to be encoded into working 

memory (Nieuwenhuis, Gilzenrat et al. 2005). Although NE release potentiates 

processing in cortical areas, it is also thought to be locally autoinhibitive. For this 

reason, following the burst of activity in the LC is a refractory period in which 

further LC discharge is rarely observed (Martens, Wyble 2010, Bowman, Howard, 

Wyble et al. 2008). 

 

Figure 8) Noradrenergic projections from the locus coeruleus. Adapted from (Feinstein, Kalinin et al. 2016). 

The LC-NE model arises from noting that this behaviour is remarkably similar to 

the timescale of the attentional blink. Since the locus coeruleus is so involved in 
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attention and cognition, it is no stretch to consider that the refractory period of 

the LC system is what mediates the attentional blink. The explanation for lag 1 

sparing in this instance would be that the presence of the second target is close 

enough to the first target to benefit from the initial release, but targets at later 

lags are not. Though it does provide a potential explanation of the attentional 

blink (though see (Bowman, Howard, Wyble et al. 2008)), it is noted that if the AB 

is mediated by noradrenergic mechanisms, the application of an adrenergic agent 

should directly affect the refractory period of the blink. (Nieuwenhuis, Van 

Nieuwpoort et al. 2007) failed to find this effect, suggesting that if the adrenergic 

system does modulate the attentional blink, it does so indirectly. 

Boost and bounce model 

Another model is the boost and bounce model (Olivers, Meeter 2008), see Figure 

9. It proposes that the inhibition seen during the attentional blink has a functional 

role in working memory encoding, as a way to keep non-targets from intruding 

upon working memory encoding.  Broadly, a seen target triggers an attentional 

“boost” that helps the target reach working memory. In order to prevent items 

other than the intended target from being encoded into working memory, this 

boost is followed by a “bounce”. This bounce inhibits attention and blocks further 

processing. It is proposed that this dynamic is what causes the attentional blink. 

Second targets that fall into this bounce window are inhibited and are less likely 

to be encoded. Lag 1 sparing arises because two targets next to one another end 

up both benefiting from the boost – the inhibitory process is not triggered by the 

presence of a target. While the simplicity of this model is a major virtue, it is also 

something of a challenge; it has been speculated whether it is capable of fully 

accounting for the attentional blink (Martens, Wyble 2010). Furthermore, it is 

noted that the attentional blink can be found in the absence of a distractor 

following the second target (Nieuwenstein, Potter et al. 2009). This is a problem 

for the boost and bounce model, as a distractor would be necessary to generate 

the “bounce” required for the blink. This said, it does explain many key attentional 

blink findings. Notably, it is consistent both with the presence of a secondary task 

improving attentional blink performance (Olivers, Meeter 2008, Taatgen, Juvina et 

al. 2009), as well as the spreading the sparing findings in which multiple targets 
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are presented (Olivers, Meeter 2008).

 

Figure 9) The boost and bounce model of attention, adapted from (Olivers, Meeter 2008). A demonstration of 
how the boost and bounce model would work in an RSVP paradigm. The boost and bounce are delivered by 
excitatory and inhibitory gate neurons. When a target arrives, a strong attention enhancement is triggered by 
an excitatory gate that remains open until a distractor hits. This distractor triggers a strong response from 
an inhibitory gate, which causes the blink.  

Threaded cognition model 

The threaded cognition account (Taatgen, Juvina et al. 2009) is similar to the 

boost and bounce model discussed above in that it predicts the attentional blink 

to be the result of an overzealous attentional control mechanism, but proposes a 

significantly different mechanism. Broadly, it is proposed that many individual 

cognitive resources can be used in parallel but any one resource can only be used 

for one given single task (thread). Different threads compete for resources, and in 

the absence of cognitive control, once a resource is freed up, the first thread that 

requires it will take it up. The attentional blink arises because inside this system, 

a rule has been set up to protect target consolidation. This rule suspends further 

target detection in order to prevent targets and distractors from being 

consolidated into one percept. Importantly, such a rule is clearly overzealous – it 

is an overexertion of cognitive control because T1 consolidation occurs even 

without such a mechanism. The model is able to replicate distraction reducing 

the AB, and findings that some people do not show the blink (Martens, Munneke 

et al. 2006, Taatgen, Juvina et al. 2009). One difficulty of the model from the point 

of view of the research question of this thesis is that it is not a neural network. 
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This makes it unclear how to relate it to electrophysiological findings, something 

we will do extensively later in the thesis. 

Global Workspace Model 

The Global workspace model was first suggested by Baars (Baars 1997). The 

core idea of global workspace theory is that conscious content is globally 

available to diverse conscious mechanisms without any need for further 

processing. This has been expanded on by several sets of researchers (Franklin, 

Graesser 1999, Shanahan 2006), but by far the most dominant model is by 

Dehane et al. (Dehaene, Kerszberg et al. 1998), who provide a neural 

implementation – the “Neuronal global workspace” (Dehaene, Changeux 2011). 

This model assumes that many different, highly specialised information 

processors are joined via long range connections. This network of connections 

forms a higher level unified space in which information is broadly shared and 

broadcasted back to lower level processes. In this model, a piece of information 

becomes conscious by being shared across this global network. At any given 

moment, many pieces of information are being processed unconsciously in 

parallel by these modular processors. The piece of information that is conscious 

is decided by a winner-takes-all competition (aided by top down attention) 

between the neural populations representing each piece of information.  

The Neuronal Global Workspace model has been developed in great detail. Much 

of the model has been shown to have strong physiological plausibility (Dehaene 

2014, Dehaene, Changeux 2011, Dehaene, Kerszberg et al. 1998), and it correctly 

predicts a range of behaviours in, for example, Conscious perception (Dehaene, 

Changeux 2011) Inattentional Blindness (Dehaene, Changeux 2005) and (most 

importantly for us) the Attentional Blink (Dehaene, Sergent et al. 2003). In this 

model, the attentional blink arises as the result of this winner-takes-all 

competition for global workspace activation. The act of a piece of information 

becoming conscious is what makes it available for report. The widespread 

pattern of activation that arises as the result of the T1 blocks the entry of the T2 

into the global workspace for a window of about 200ms. At early lags, this 

inhibits T2 performance, but at later lags, this becomes less relevant. While a 

computational version of the model exists and the model does explain why 

stimuli presented closely together are both processed to a high level, it struggles  
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.  

Figure 10) The Global Neuronal Workspace model (adapted from (Dehaene, Kerszberg et al. 1998). 
(Upper), A schematic of the 5 main types of processor proposed to be linked by the global 
workspace. (Lower) A link between two processors is established through the activation of 
distributed workspace neurons.  
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to explain the lag 1 sparing effect, and the “spreading the sparing” findings 

(Martens, Wyble 2010). Currently, there is no immediate explanation for the 

behaviour at the lag 1 data point, though the presentation of two concurrent 

targets shows similar results (Taatgen, Juvina et al. 2009). 

The Simultaneous Type/Serial Token model 

The Simultaneous Type/Serial Token (STST) (Bowman, H., Wyble 2007) and its 

extension, the episodic Simultaneous Type/Serial Token models (eSTST) (Wyble, 

Brad, Bowman et al. 2009) are a pair of neural network models of the attentional 

blink. Both models propose a two stage account of the blink that bears some 

resemblance to the two stage model by (Chun, Potter 1995). The (e)STST models 

build on a type/token distinction to simulate how items are bound into temporal 

contexts. In this definition, the type of a stimulus encompasses all of its instance 

invariant properties, the features that do not change between occurrences. Take 

the letter K for example; parts of its type are its semantic features (e.g. it is a 

letter, it is after J in the alphabet) and its visual features (e.g. its shape and 

colour). Conversely, a token represents a specific episodic occurrence of a type 

and particularly, where it occurred in time relative to other items. In the STST 

model, in the first stage, types are processed in parallel with many types 

simultaneously but fleetingly represented, and it is the act of sequentially binding 

a type to a token (tokenisation) in the second stage that creates a solidified 

representation in working memory. This binding is achieved using a resource 

called the binding pool, which provides a neutrally plausible mechanism by which 

types can be bound to tokens.  

In the (e)STST models, a component of the model called the blaster provides a 

boost to highly salient items from the first stage that allows them to reach the 

threshold for binding in the second stage. Similarly, in order to provide protection 

to the tokenisation process and to prevent it from being corrupted, after having 

fired, the blaster receives a powerful inhibitory signal which prevents it from firing 

again for a short period. In this context, lag 1 sparing arises when the two targets 

end up both benefitting from the same blaster firing and potentially end up being 

bound into overlapping temporal contexts (i.e. to the same token). Since the two 

targets are bound to these overlapping temporal contexts, this account predicts 

an increase in order errors at early lags, something which is seen in human data 
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(Chun, Potter 1995). The blaster is also where the main difference between the 

STST model and the eSTST model arises. Since the firing of the blaster is time 

limited, the original STST model struggles to provide an account for the 

“spreading the sparing” findings that occur over a comparatively long period. In 

the eSTST, model the model dynamics have been changed such that multiple 

target items in sequence allow the blaster to remain active. This allows an 

account of the blink that is not strictly time limited, and therefore accounts for the 

spreading the sparing finding.  

Through these mechanisms, the Simultaneous Type/Serial Token model creates 

an account of working memory encoding that is consistent with many attentional 

blink findings. The original model struggled to account for the spreading the 

sparing effect in which multiple targets not separated by distractors would be 

encoded accurately. With the additional enhancements provided by the eSTST 

model, though, this is no longer a problem. Of note for our research question, 

there also exists a computational model of STST from which it is possible to 

generate both behavioural data, and also “virtual” ERP’s (Wyble, Bradley, Bowman 

2005, Craston, Wyble et al. 2009) that closely mimic the results from human 

participants.  

Metacognition 

The core research question of this thesis concerned with the relationship of 

working memory encoding and subjective experience. So far, in this literature 

review, we have discussed these processes in the context of the literature on 

consciousness, reviewed techniques by which they (working memory encoding 

and subjective experience) might be separated and discussed an appropriate 

experimental paradigm over which to do so. One interesting facet of the analysis 

we have discussed so far, however, is that they are based on averaged behaviour.  

For example, in the last chapter, we discussed the experiential blink paradigm, 

and in particular the lag 1 data point at which report accuracy is high, and 

subjective experience is low. While this is an interesting finding in its own right, 

based on just this averaged behaviour, it is difficult to interpret the results. We are 

unable to distinguish whether this result is because participants are losing the 

ability to accurately reflect on their experience, or whether their criteria for 

reporting subjective experience simply is changing at lag 1.  
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If participants are losing their ability to accurately reflect on their experience, we 

may see more low subjective reports attached to correct trials (and vice versa for 

high subjective report and incorrect trials), and given the fairly high accuracy rate 

of correct report, it would not be surprising if this resulted in worse subjective 

report despite high report accuracy. This would indicate that participants are 

suffering from a failure of self-reflection. Conversely, though, it could simply be 

that at Lag 1, the view of two targets with no distractor is an odd percept instead 

of a poor percept, and this uncertainty causes participants to shift their criteria 

for reporting subjective experience of targets to be more conservative. This would 

also result in a worsening of subjective report despite high report accuracy, but 

lends itself to a completely different theoretical interpretation than the first 

example. 

What we are searching for to distinguish these behaviours is a measure of 

discriminability. In this case, how well our high and low subjective reports 

distinguish between correct and incorrect trials. Such a measure has been 

quantified in the field of signal detection theory (SDT), and has been widely 

applied in examining how objective performance matches up to confidence in the 

study of metacognition. In this section, we provide a (very) brief overview of Type 

1 and Type 2 SDT for unfamiliar readers, and discuss how these techniques have 

been applied in the field of metacognition. Note that, as we discussed in the 

introduction, when applying such methods to our own data in which we collected 

subjective report instead of confidence, the same theory is applicable, but we will 

refer to such measures as meta-experience. 

Signal Detection Theory 

To begin our brief introduction to SDT in the context of metacognition, we first set 

out some nomenclature. Metacognition is about thoughts that are about other 

thoughts, a multileveled concept. We therefore distinguish the “Type 1” measures 

as the first level measures, those that are attempting to objectively evaluate the 

world. In contrast to this, we have our “Type 2” measures that are those about 

these first level thoughts. To tie this back to a concrete example, in our 

experimental data, our Type 1 measure is objective task performance, while our 

Type 2 measure is the confidence in the results of the Type 1 Task. To evaluate 
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metacognition from this, we are asking the question “How well do our Type 2 

results distinguish the levels of our Type 1 performance?” 

There are several approaches one might take to solve this problem. The simplest 

approach would be to somehow evaluate the accuracy of our Type 2 reports, 

either directly (Persaud, McLeod et al. 2007) or through a correlation (Kornell, Son 

et al. 2007, Nelson 1984): how often does a correct response correspond to high 

confidence, and an incorrect response correspond to low confidence? While this 

does give a simple and intuitive measure of parity between Type 1 responses and 

confidence, it also demonstrates the problem that many potential measures 

suffer from – that these measures are contaminated by bias. In terms of our later 

SDT framework (e.g. Figure 12), changing   may lead to a change in correlation, 

even for a constant    (Nelson 1984). Say, for example, a change in our reporting 

criterion shifts out true positive and false positives rates from 70% and 30% to 

60% and 40%. This is very likely to lead to a change in correlation, but does not 

necessitate a change in discriminability. Our problem specification is to 

determine how well the levels of our Type 2 measure discriminate between the 

levels of our Type 1 measure, a measure we will from now on refer to as 

metacognitive sensitivity. While these proposed measures do evaluate this, they 

are also affected by the overall propensity for correctness or incorrectness, what 

we will refer to from now on as metacognitive bias. Take for example, two 

participants who are asked to perform a detection task, and rate their confidence 

in their response. What we are interested in is how well their confidence ratings 

discriminate correctness or incorrectness – metacognitive sensitivity. If one 

participant has a propensity for overconfidence that is reflected in consistently 

high confidence ratings, while another has a similar propensity for under 

confidence, this (metacognitive) bias should not affect our measure of 

discriminability as long as their confidence ratings equally distinguish type 1 

correctness. An alternative class of approaches that does distinguish between 

the metacognitive bias and metacognitive sensitivity, and can provide a measure 

that is metacognitive bias free, are those based on Signal Detection Theory. 

SDT attempts to evaluate the discriminability of our measure independent of any 

individual level of bias. The basic SDT framework is as follows. Take a task for 

which there are two different possible trial outcomes Signal (S) in which a 
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stimulus is present and Noise (N) in which it is not. Participants are attempting to 

evaluate these outcomes, and produce one of two different responses, Respond 

Signal (RS) if they believe the signal to be present, and Respond Noise (RN) if they 

believe the signal was not present. When either a signal or a noise trial is 

presented, it produces evidence according to normal distributions with equal 

variance on a one dimensional internal decision axis. A criterion   is set on this 

axis and when evidence is above this criterion, the participant reports Signal, and 

when it is below they report Noise. See Figure 12 for an illustration.  

 

Figure 11) Different outcomes from the Type 1 signal/noise identification task, and the Type 2 

confidence task.TP = True positive, FP = False Positive, TN = True Negative, FN = False Negative. 

In the Type 1 task, trials either have signal (S) or noise (N) present, and participants respond with 

either signal present (RS) or noise present (RN). In the Type 2 task, participants are judging the 

correctness of their type one response with either High Confidence (H) or Low Confidence (L). 

Correct trials (C) are those for which the presence or absence of the target was correctly judged 

(TP and TN) and incorrect trials (I) are those where the presence or absence of the target was 

judged incorrectly (FP or FN). 

Given this setup, there are four different possible outcomes from any trial. A 

signal is present (S) and the participant reports a signal (RS), a True Positive (TP); 

a signal is absent (N) and the participant reports a signal (RS); a False Positive 

(FP); a signal is present (S) and the participant reports noise (RN), a False 

Negative (TN); and a signal is absent (N) and the participant reports noise (RN), a 

True Negative (TP). This is illustrated in Figure 12A). From this model we can 

observe two things. Firstly, that since         and        , we need 

only consider two of these measures at any time. We will stick with the TP and FP 
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rate for consistency. Next, while our ideal case is one in which our TP rate is 

maximal, and our FP rate is minimal, we can trade these measures off against 

one another by shifting our criterion  . In this model, bias is simply the overall 

propensity to give one type of response or another – the positioning of the   

criterion. How well we can discriminate between S and N depends not on the 

choice of   at all, but how close together our   and   distributions are, which can 

be quantified by the measure of discriminability   : 

    
     

   
 

That is, the difference in the means of the two normal distributions in units of 

their mutual standard deviation. This    can be calculated empirically from TP 

and FP rates gathered from human data. This general framework can be applied 

both to Type 1 data and Type 2 data, and a Type 2    calculated empirically in the 

same way. In Type 2 data, Type 2 TP and Type 2 FP rates are calculated 

analogously, see Figure 11. 

One problem with this framework is the assumption that the data is normally 

distributed across the decision axis described. When the data is not normally 

distributed, the d’ measure described can be contaminated by bias. One 

resolution is the use of Receiver Operating Characteristic (ROC) curves. ROC 

curves plot the True Positive/False Positive trade-off across a range of 

conditions. These conditions should be set up such that they reflect a range of 

different metacognitive biases, while maintaining the same metacognitive 

sensitivity. The ROC curve as a whole then embodies, in a sense, metacognitive 

sensitivity independent of any individual bias. In fact, when the assumption of 

normality holds, the SDT framework and ROC curves are equivalent. In order to 

extract a measure of discriminability of these ROC curves when these 

assumptions do not hold, it is common to use the area under the ROC curve. This 

effectively captures the sensitivity given by the curves, and provides a good 

statistic of the overall TP/FP trade-off. 

Metacognition and SDT 

With this introduction to SDT in mind, we now discuss how measures of 

metacognition have evolved. In the previous section, one approach we put 

forward for evaluating metacognition is to examine the correlation between Type 
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1 performance and confidence, say, for example, with Pearson’s  . Intuitively, this 

would seem to provide an excellent method of evaluating how well confidence 

ratings discriminate Type 1 performance. Unfortunately, as we have discussed, 

such methods are known to be subject to bias. Subjects with a different overall 

propensity to report high or low confidence (type 2  ) will have necessarily 

different correlation coefficients  , even if the ability to discriminate between 

Type 1 performances remains constant (type 2   ) (Nelson 1984). An alternative 

to the   measure (Nelson 1984) that some have advocated for solving these 

problems is the Goodman-Kruskal coefficient  , which provides a similar 

measure of correlation. This   measure has the advantage of not making any 

assumptions about the distributions of the data, and can be easily extended to 

use a rating scale rather than a high/low design. Unfortunately, despite these 

merits, it has ultimately been shown (Masson, Rotello 2009) that, similarly to      

is sensitive to changes in metacognitive bias. 

In light of these problems, another class of methods has been proposed. These 

methods are based upon comparing observed metacognitive sensitivity with a 

theoretical metacognitive sensitivity given under some condition. One proposed 

method of doing this (Galvin, Podd et al. 2003) is to compare the observed type 2 

sensitivity to expected type 2 sensitivity for an ideal observer, which can be 

calculated from the type 1 data. This method is theoretically sound, but the 

computation of both required sensitivities is difficult (Maniscalco, Lau 2012), 

making implementation impractical. An alternative is the meta d’ approach that 

has been proposed by (Fleming, Lau 2014). The meta d’ method attempts to solve 

the same problem, but avoids running into the difficulties of Galvin et al’s solution 

by specifying observed Type 2 sensitivity in terms of the Type 1 sensitivity that 

would have led to (metacognitively) ideal observer to reach the type 2 

performance demonstrated. This gives us a meta d’ that is then directly 

comparable to the actual d’, the Type 1 sensitivity. Since the two measures are in 

the same units, they are highly interpretable. Meta d’ = d’ for example indicates 

that a participant is making use of all the information available to them from the 

Type 1 task, while Meta d’ < d’ (the typical case) would indicate that they are 

making use of less information than an ideal observer has available, and (in 

theory) Meta d’ > d’ would indicate using more information than an ideal observer 

has available (Fleming, Lau 2014). 
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Figure 12) A) An illustration of the classic SDT framework demonstrating how each of the four 

possible outcomes arise. B&C) Examples of tasks with high and low discriminability respectively. 
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In B) the distributions for the two tasks are far apart, thus it is easy to distinguish the outcomes 

and d’ is high. Conversely, in C), the distributions for the two tasks are close together, it is difficult 

to distinguish the two outcomes and d’ is low. D&E) Examples of tasks with high and low bias. In 

D), the criterion is placed in such a way relative to the distributions that almost all responses are 

negative – as such there is a negative bias to responses. Conversely in E), the criterion is set up 

such that almost all responses are positive and there is a positive bias to responses. 
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3. Methods 

In the previous chapter, we provided a literature background for the proposed 

research question. In this chapter, we cover in more detail the specific methods 

we will make use of. In particular, the previous chapter was about placing the 

research in a broader theoretical context, but in this chapter we attempt to 

provide more details about the methods that we will directly use throughout the 

thesis. 

Data acquisition 

Electroencephalography 

The general attentional blink paradigm and behavioural measures that might be 

taken from it have already been introduced, but a method that we will be making 

use of that bears brief introduction is electroencephalography (EEG). EEG 

measures brain activity through electrodes placed on the scalp. The signal is a 

sum of the activity of various neural sources, though since there is no reason to 

believe that the dipoles of each source line up, the respective orientations of 

these dipoles may determine the signal as much as the strength of activation. 

Despite this, the method is very effective in identifying large groups of neurons 

firing at the same time in the same direction. 

Unfortunately, neural sources are not the only sources that make up EEG signal. 

Neuronal activity inside the brain is often dominated by noise from muscle 

artefacts, especially those from the muscles around the eyes (Teplan 2002). In 

order to observe the neuronal signal among that noise, researchers often make 

use of filtering and averaging techniques to improve the signal-to-noise ratio of 

the data.  In particular, to observe the signal from a certain stimulus, we average 

many trials with activity time locked to a certain event related to the stimulus. 

Assuming noise is distributed with zero mean, the noise in these trials will cancel 

out, improving the signal. The resulting signal after this filtering and averaging is 

called an Event Related Potential (ERP), and reflects neural activity related to the 

presentation of a certain stimulus.  

Different components of these ERPs have been identified to relate to different 

stimuli or tasks. One that is particularly pertinent to this thesis is the P300 (P3) 

component. The P3 is a positive deflection peaking around 400ms after stimulus 
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presentation in a range of tasks. It has long been thought to represent higher 

cognitive functions and has been linked to working memory encoding, conscious 

access, and subjective experience (Vogel, Luck et al. 1998, Kranczioch, Debener 

et al. 2007, Pincham, Bowman et al. 2016). Notably, in the dataset we will make 

extensive use of throughout this thesis, from (Pincham, Bowman et al. 2016), the 

P3 was sampled both for working memory encoding and subjective experience, 

and it was found that the P3 was modulated by both, though to different degrees. 

Datasets 

Two dataset we extensively make use of throughout this thesis are the set of 

experiments first published in (Pincham, Bowman et al. 2016). This work as a 

whole attempts to explore the relationship between working memory encoding 

and subjective experience during the attentional blink. In order to do this, the 

authors conduct two experiments in which both working memory encoding and 

subjective experience are measured during the attentional blink. The first 

experiment attempted to examine behaviour, and purposely assessed a larger 

number of lags with fewer trials each in order to sample the full attentional blink 

curve. In contrast, the second collected both EEG and behavioural data, with only 

lags 1 and 3 sampled for 80% of trials in order to enhance the EEG signal strength 

at these lags. Here, we provide an overview of the experimental procedure. Since 

the data acquisition methods have already been published, we only provide an 

overview of experimental procedure here. A full treatment can be found in 

Appendix A – Detailed Experimental Procedure. 

Materials and Methods 

Targets were uppercase letters and distractors were single digits, each trial 

contained one or two targets - T1 occurred on every trial and was always 

presented in red, and T2 (if it occurred) was presented in white. Each RSVP 

stream contained 15 items. T1 randomly appeared as the fourth, fifth or sixth 

item in the RSVP stream. Stimulus Onset Asynchrony (SOA), the amount of time 

between the onset of each stimulus, was 90ms. At the end of each RSVP stream, 

participants were asked to rate the subjective visibility of T2 using a 6 point self-

report scale.  The numbers 1 2 3 4 5 6 were presented in a horizontal line on the 

screen, with the description ``not seen'' presented beneath the number 1 and the 

description “maximal visibility” presented beneath the number 6. Participants 
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then reported the identity of T1 and T2 (even if a second target did not occur). 

Participants were required to guess if they were unsure of the target identities. 

All participants completed two experiments, spaced at least one week apart. 

Experiment 1 exclusively collected behavioural data and Experiment 2 collected 

both behavioural and EEG data. Experiment 1 consisted of four blocks, each with 

a different target/mask duration combination. The mask, if it occurred, was 

always the hash (#) symbol. In Block 1, targets appeared for 90msec with no 

mask. In Blocks 2, 3 and 4, the target/mask durations were 70msec/20msec, 

60msec/30msec and 50msec/40msec respectively. In Experiment 1, T2 appeared 

at lags 1, 2, 3, 4, 6 or 8 with equal frequency. Experiment 1 deliberately sampled a 

large number of lags in order to examine the relationship between T2 accuracy 

and subjective visibility across the entire AB curve. Trials that did not present a 

second target (no-T2 trials) were also included with equal frequency (hence, one 

in seven trials did not contain a second target). Experiment 1 contained 4 blocks 

of 49 trials, totalling 196 experimental trials. 

For each participant (of the 18 analysed), data from Experiment 1 were analysed 

to determine which of the four target/mask durations resulted in T2 being 

correctly reported on approximately 50% of lag 3 trials. Each participant’s optimal 

target/mask duration was then employed in Experiment 2. As a result, 28% of 

participants received the 70msec/20msec target/mask duration in Experiment 2, 

50% of participants received the 60msec/30msec duration and the remaining 

participants received the 50msec/40msec duration. Experiment 2 contained 5 

blocks of 100 trials, totalling 500 trials. To maximise ERP signal strength in 

Experiment 2, T2 appeared at lag 1 on 200 trials, at lag 3 on 200 trials, at lag 6 on 

50 trials and was absent on 50 trials. 

State-trace analysis 

Statistical methods for State-Trace Analysis 

Classically, the challenge of state-trace analysis has been quantification. The 

state-trace framework creates an excellent tool for comparing the validity of 

different theoretical models of data, but practically applying it for the purpose of 

testing hypotheses has proved challenging (Loftus 2002, Newell, Dunn 2008, 

Bamber 1979). However, several authors have recently demonstrated the viability 
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of Bayesian statistical methods for solving state-trace problems (Prince, Brown 

et al. 2012, Davis-Stober, Morey et al. 2016), particularly for the dependent 

variable state-trace upon which this thesis is focused. Here, we provide an 

overview of those methods. 

We have some state factor (our dependent variable) with two levels   *     +, 

forming the state space over which we examine our question of interest, and 

some dimension factor (our independent variables)   *       +  a 

manipulation we are performing across it. We are attempting to diagnose the 

monotonicity of this relationship, that is, whether the ordering of the levels of our 

dimension factor are either the same (or the reverse) of one another across each 

of the two axes of our state factor. If this is possible, we diagnose monotonicity, 

and if it is not possible we do not. As discussed, often we also introduce a trace 

  *       + factor, another independent variable. Overall, we must consider 

each combination of         orderings for each axis and    joint orderings. 

For reference, we previously gave a visual example of both monotonic and non-

monotonic state-trace plots in Figure 5A) and Figure 5B) respectively. 

At this point, the set of    joint orderings corresponds to the whole space of 

possible configurations of the state-trace graph, and currently it can be divided 

into two different partitions. These are the non-monotonic orderings and the 

monotonic orderings. With respect to our Bayesian statistics, we are attempting 

to choose between the monotonic model consisting of all monotonic orderings, 

and our non-monotonic model consisting of all other (non-monotonic) orderings. 

To do this, we calculate a Bayes factor expressing how much the data has 

changed our preference between our two models. This is the measure of the ratio 

of evidence for each model. Explicitly, denoting our data as  , the prior 

probabilities ( ( )                ) as    and     for the monotonic and 

non-monotonic models respectively, and the posterior probabilities 

( ( | )                ) as   
( )

 and    
( )

, we calculate the Bayes factor as:  

       
  

( )

   
( )

  

   
⁄  

We follow (Davis-Stober, Morey et al. 2016) in referring to this calculation 

as       , the bayes factor comparing the monotonic versus non-monotonic 

models.  
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Implicitly so far, we have been making use of a completely uniform prior, 

effectively assuming all possible orderings of all combinations     across the 

levels of the state factor are equally likely. In many data sets, this is clearly not 

true, for example we may have strong prior expectations about the behaviour of 

the attentional blink. Previous work has approached this problem by using the 

prior to assert a-priori that certain constraints on the behaviour in the data are 

true. For example, in (Davis-Stober, Morey et al. 2016) the authors pre-suppose 

that dual task performance will always be worse than single task performance in 

their analysis of a data set from (Sense, Morey et al. 2017). Such constraints take 

the form of setting the prior belief of any orderings that contradict them to zero. 

Typically, these constraints are discussed with respect to the trace factor which, 

if introduced, is typically selected to be a factor independent of the question of 

interest, selected to sweep out the behaviours of the system and whose 

behaviour is known in advance. We denote the Bayes factor monotonicity vs non-

monotonicity with a prior set such that some given set of constraints on the trace 

factor are true as   (    )| . Though constraints on our trace factor are often 

selected for their theoretical merits, their validity in practice, must be quantified. 

For this, we introduce the measure      ( ): the Bayes factor comparing the 

“trace true” models for which the constraints on the trace factor are true versus 

the “trace false” models in which they are not (Davis-Stober, Morey et al. 2016). A 

similar measure can be defined for “dimension true” models that assume some 

constraints on the dimension factor are true (     ( )), and, if constraints exist 

for both the trace and dimension factor, their intersection  (       (   )) (Davis-

Stober, Morey et al. 2016). 

We must also consider how to apply this type of analysis across a group of 

participants. As we have discussed, state-trace analysis does not work well with 

approaches based on averaging. In particular, it is possible both to average 

multiple non-monotonic datasets into a monotonic dataset, and multiple 

monotonic datasets into a non-monotonic one. A simple alternative analysis is 

the grouped Bayes factor introduced by (Prince, Brown et al. 2012). This method 

treats each of our participants (of which there are  ) as independent from one 

another and calculates the group Bayes factor as the product of each individual 

Bayes factor: 
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     ∏   

 

   

 

As long as participants are independent samples and the results are reasonably 

homogeneous (all monotonic or non-monotonic), this grouped Bayes factor is a 

good measure of the group level effect. In the literature review, we also 

introduced the aggregated Bayes factor method as a method for analysing the 

homogeneity of the data. Though we will not end up using this in forthcoming 

analysis because the data is so strongly homogeneous and the method can only 

effectively quantify non-homogeneity, we discuss it briefly here for 

completeness. As we have said, approaches based on averaging do not work well 

with state-trace analysis because it is possible to average sets of completely 

monotonic results into a non-monotonic average, and vice-versa. (Davis-Stober, 

Morey et al. 2016) find a solution by observing that while the average of multiple 

monotonic datasets will not necessarily lie within the union of all possible 

monotonic datasets, it will with certainty lie within the convex hull of those 

orderings. The opposite is not true, lying within the convex hull is not sufficient 

support to demonstrate that the data is uniformly monotonic. This method then, 

is useful for demonstrating when monotonicity has been violated, but cannot be 

used as evidence to support monotonicity. In this instance, the authors propose 

individual level inspection of the data.  

The Simultaneous Type/Serial Token model 

In a previous chapter, we introduced the Simultaneous Type/Serial Token model 

of Attention. Later chapters will make extensive use of this model as well as the 

virtual ERPs it can produce; we therefore now briefly describe the models 

architecture and function in more detail. 

Architecture 

So far, we have described an STST model based on a type/token distinction that 

consists of two stages, a blaster that provides attentional enhancement, and a 

binding pool that allows types to be bound to tokens. Here we discuss some 

more detail about the architecture of these components, and how they relate to 

one another. 
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The first stage of the model manages the types (see Figure 13) and consists of 

four layers supporting different aspects of visual processing: the input layer, the 

masking layer, the item layer and the task-filtered layers. The second stage of the 

model governs the tokenisation process, and consists of the binding pool and the 

tokens. Items first arise in the input layer, and then pass through the masking 

layer, which implements masking through lateral inhibition. From here, items 

enter the item layer, which creates a brief, self-sustained representation. Then, 

the final layer of the stage: the task filtered layer, provides a salience filter that 

excites task relevant nodes while inhibiting others. From the task filtered layer, 

sufficiently active items can activate tokens through the binding pool, and 

become bound to them through a tokenisation process. This tokenisation 

process takes several hundred milliseconds, though it is shorter for more active 

items. In order to reach sufficient activation to achieve this binding however, 

most stimuli will need to benefit from the blaster. When an item becomes 

sufficiently active in the task filtered layer, the blaster provides a brief, powerful 

enhancement to the entire task filtered and item layers that allows items to reach 

the threshold for tokenisation more easily. During this process, a powerful 

inhibitory signal holds the blaster low to prevent it from re-firing and corrupting 

the tokenisation process: it is this inhibition of the blaster that generates the 

attentional blink. A walk through of how an individual item becomes encoded into 

working memory can be seen in Figure 13. 

Virtual ERPs 

The STST model can also be used to simulate virtual ERPs. Virtual ERPs are 

calculated from a computational implementation of the STST model, neural-STST 

(Bowman, H., Wyble 2007, Craston, Wyble et al. 2009). Of particular interest to us 

is the Virtual P3 that the model can calculate. As in the STST model described 

above, the neural STST model is organised as layers of nodes, connected via 

weighted connections. These connections are the analogue of synaptic 

projections in the brain. To calculate these virtual ERPs, we introduce the concept 

of excitatory post synaptic potential to these virtual nodes.  
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Figure 13) The Simultaneous Type/Serial Token model. A) Input Layer. Stimuli enter the system 
through this layer. As well as providing input, this layer implements backward masking through 
inhibitory connections to all other stimuli in the masking layer. B) Masking Layer. Simulates 
further masking dynamically through lateral inhibitory connections to all other stimuli. These 
lateral inhibitory connections are weaker than the forward ones from the input layer, such that 
backward masking is stronger than forward masking. C) Item Layer. Creates a temporary 
representation of a stimulus through self-reinforcing connections. D) Task Filtered Layer. 
Implements a “salience filter” to filter out task irrelevant stimuli, by enhancing task relevant 
stimuli, and suppressing others. E) Tokenisation. When a stimulus has reached an appropriate 
level of activation, it excites the currently ready token through the binding pool. In a process that 
takes several hundred ms, the token is bound to the type. Once this binding has occurred, the 
type-token connection can be maintained without any further input. F) The Binding Pool. Contains 
the binding resources that enable stimuli to bind to tokens. G) The Blaster. Provides a short, 
powerful enhancement to items in the item and task filtered layers when there is sufficient 
activation in the task filtered layer to begin the tokenisation process. While the tokenisation 
process is ongoing, a powerful inhibitory signal from the binding pool prevents the blaster firing 
again. H) Virtual P3. A virtual P3 can be generated from the STST model from the excitatory post 
synaptic potentials of the item layer, the task filtered layer, and a subset of the tokens and binding 
pool (the token gates and the binder gates). 

The virtual P3 is then calculated as the sum of these excitatory post synaptic 

potentials across a subset of the layers. In this thesis, we follow previous work in 

using the 3rd, 4th, 6th and 8th layers of the neural-STST model, corresponding to 

the item layer, the task filtered layer, the binder gates and the token gates. These 

are the layers highlighted in red in Figure 13. As in previous work (Craston, Wyble 

et al. 2009), we also implement a retinal delay of a model equivalent of 70ms. 

Compared to previous works using virtual ERPs from the STST model, we 

selected a slightly different stimulus range over which to calculate this virtual P3 

in order to provide a thorough exploration of our hypothesis. Specifically, we 
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sample a range of stimulus strengths with greater variability (-0.078 to +0.078 -> 

-0.1625 to +0.1625), at a slightly higher average stimulus and distractor strength 

(0.520 -> 0.570). This approach is consistent with previous simulations with the 

STST model, where we allow input strength ranges to vary reflecting the fact that 

different experiments being modelled might have quite different stimulus types 

and sensitivities. 
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4. State-Trace Analysis of the Attentional Blink 

Abstract 

The core thesis of this work concerns the relationship of dependency between 

working memory encoding and subjective experience and to what extent it is 

possible to dissociate these processes. Of particular interest to us is whether 

working memory encoding is a necessary but not sufficient condition for 

subjective experience or, whether a working memory encoding can occur in the 

absence of subjective experience. Previously, we have introduced several 

paradigms that show some form of working memory encoding in the absence of 

subjective experience. One paradigm that is particularly notable in this respect is 

the Experiential Blink as demonstrated in (Pincham, Bowman et al. 2016), which 

appears to demonstrate (among other significant results) free recall of stimuli in 

the absence of subjective awareness. 

Demonstrating that it is possible for participants to report stimuli significantly 

above chance level in the absence of subjective report is a significant theoretical 

finding, however it does not necessarily demonstrate that subjective experience 

and working memory are dissociated. Without knowledge of how internal 

subjective experience translates into subjective report on our scale, it is difficult 

to come to any firm conclusions of this nature. In this chapter, we therefore make 

use of the State-Trace methodology introduced previously that is capable of 

more fully assessing these questions, and apply it to assessing the evidence for a 

dissociation of working memory encoding and subjective experience in the 

Experiential Blink paradigm. In the process, we find evidence for a dissociation 

that is driven by working memory encoding being a necessary, but not sufficient 

condition for subjective experience. 

Introduction 

The core thesis of this work is concerned with examining to what degree it is 

possible to separate subjective experience and working memory encoding, and 

what kind of relationship of dependency exists between the two. In particular, we 

are interested in the possibility that working memory encoding is a necessary 

(but perhaps not sufficient) condition for subjective experience. That is to say, 
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that it is possible to encode stimuli into working memory that have not been 

subjectively experienced. While we introduced several paradigms in the literature 

review that show this pattern of behaviour to some degree, most of these 

paradigms showed evidence for a weaker hypothesis, i.e. providing evidence for 

the influence of unexperienced stimuli on report. One exception to this is recent 

work on the Experiential Blink paradigm (Pincham, Bowman et al. 2016), an 

attentional blink experiment measuring subjective report, which (among other 

results) appears to show free recall of stimuli with minimal subjective report, a 

phenomenon the authors call Sight-blind Recall. 

While it is tempting to put forward this sight-blind recall effect as evidence of a 

dissociation, as our literature review on functional dissociation logic has 

discussed, such a conclusion would likely be premature. This evidence would 

constitute at most a single dissociation which, as we discussed in the literature 

review, has the potential to be misleading (Teuber 1955). Furthermore, even if we 

were able to obtain the type of double dissociation typically preferred in these 

instances, the same discussion puts forward evidence that these may also be 

insufficient. In this chapter, we follow up on these findings that may amount to a 

demonstration of sight-blind recall to try and determine whether the results 

constitute a sufficient basis to believe that working memory and subjective 

experience are dissociated, by using the state-trace logic introduced in the 

literature review as an alternative. However, implementing this state-trace 

analysis over our dataset requires some unique considerations, which we will 

now discuss. 

The State-Trace Method 

In previous chapters, we reviewed the theoretical framework of state-trace 

analysis, and the statistical methods by which one can quantify its effects. 

However, our data does not quite neatly fit this framework. One notable difference 

to previous analysis in the literature is that our experiment lacks a trace factor. 

Theoretically there is nothing wrong with this, in fact in many ways it simplifies 

the analysis. Typically, the trace factor is introduced to sweep out underlying 

behaviours of the system in question, but in our case, we already have the 

attentional blink to achieve this. Furthermore, dimensionality is not an issue – the 

number of levels of our dimension factor (6) already matches or exceeds the 



62 
 

number of combined Dimension   Trace factor levels in other analyses (Tulving 

1981, Sense, Morey et al. 2016, Heathcote, Freeman et al. 2009). 

Accounting for this difference and submitting the data to a cursory examination, 

it appears on the face of it that our data has quite a strongly non-monotonic 

relationship between accuracy and subjective report Figure 14. The behaviour at 

early lags (Lag 1, 2 and 3) is completely different from that of late lags (Lags 4, 6 

and 8); at early lags accuracy increases while subjective report decreases, but at 

late lags they increase together (with the exception of lag 8, which is something 

of a serial position outlier, as we discuss later). However, this cursory analysis is 

not statistical quantification, and for this we need to turn our attention to how our 

prior probabilities are defined. 

 

Figure 14. A) Results from (Pincham, Bowman et al. 2016), comparing accuracy and subjective visibility 

across lags in the attentional blink. The T2 visibility curve demonstrates what Pincham and Bowman term 

the Experiential blink of subjective report. B) State-trace plot comparing T2|T1 accuracy and T2 visibility 

from A). Note the apparent non-monotonicity of the relationship between accuracy and visibility. (Note, the 

T2|T1 blink curve here shows some very minor differences to that presented in (Pincham, Bowman et al. 

2016). This is because T2 accuracy in the original paper was in fact presented as the accuracy of the 

conjunction of T2 and T1, whereas here we display the conditional probability of T2 given T1. None of our 

findings are impacted by the difference. 

Previously, we discussed the general method for taking advantage of prior 

information about, for example, a trace factor. However, while we have 

expectations about the behaviour in the attentional blink, our situation is more 

complicated than previous examples in the literature. Previously, authors have 

been in the position to make simple statements in the prior, such as one of two 

levels being higher than another, or an effect being monotonic. This is not the 

case for the attentional blink, and setting specific ordinal qualifications of 

behaviour across lags in a similar manner is non-trivial. While we wish to take 
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advantage of as much prior knowledge as possible, the behaviour of the 

attentional blink is variable, and it is well established that setting a poor prior can 

compromise the integrity of results (Lindley 1957).  

In order to make a fair analysis of the data, we therefore set the prior of our 

Bayesian analysis from previous literature, specifically based on the results from 

(Nieuwenhuis, de Kleijn 2011). This paper presents both a classic attentional 

blink with lag 1 sparing of report accuracy, and a similar “experiential” blink of 

subjective report in which lag 1 is spared a great deal less. Due to the well-

established evidence for the pattern of behaviour in the attentional blink, we 

encoded strong expectations of behaviour, including lag 1 sparing, of the report 

accuracy in our data. Comparatively, the evidence for the behaviour of subjective 

report during the blink is less well established, so we refrained from imposing 

such strong constraints about it, particularly at the important lag 1 data point. We 

also recognise some uncertainty about the deepest point in the attentional blink: 

given the SOA of 90ms, we could reasonably expect either of lags 2 or 3 to be the 

deepest point in the blink1. We therefore set our prior to be consistent with 

several potential deepest points. Finally, lag 8 is a serial position outlier2 in our 

experiment and was therefore removed from our analysis. These considerations 

resulted in a uniform prior subject to the following constraints across our data: 

for report accuracy, Lags 1, 6 and 4 would be held to be larger than Lags 2 and 3, 

with Lag 1 additionally being held to also be larger than Lag 4. For subjective 

report, lag 6 would be held to be higher than Lag 4, lag 4 higher than Lag 3, and 

Lag 3 higher than Lag 2. The validity of these constraints was determined by 

a      ( ) calculated analogously to the      ( ) discussed previously. 

We calculate our posterior using the library provided in (Davis-Stober, Morey et 

al. 2016) that makes use of Laplace’s method (Stigler 1986). While an analysis 

without a trace factor is perfectly theoretically valid, the code provided required 

modification to support this type of analysis. Further modification was also 

required to fully encode the more detailed type of priors we wished to support. A 

full list of changes made to the original code can be found in Appendix B – 

                                                             
1
 see, for example (Chun, Potter 1995, Bowman, H., Wyble 2007) in which lag 2 is the deepest point in the 

blink, in contrast to (Raymond, Shapiro et al. 1992) in which it is lag 3 that is the deepest point 
2
 A common finding in attentional blink experiments is that in a last lag that is a serial position outlier, e.g. if there is no 

lag 7 and most lags in the experiment are short, participants will come to learn this regularity and optimize the 
allocation of attentional resources to short lags, causing lag 8 performance to be relatively low across the experiment. 
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Changelog to State-Trace Code Provided By Davis-Stober et al. As our results are 

reasonably homogeneous (all monotonic or non-monotonic) with one clear 

exception, we made use of the grouped Bayes factor as a measure of the group 

level effect.  

Distribution of data 

The state-trace method we are applying, based on the work of (Davis-Stober, 

Morey et al. 2016, Prince, Brown et al. 2012), assumes a binomial distribution of 

the data. This is suitable for our accuracy data which is a dichotomous variable, 

but not for our visibility scale that forms a multinomial distribution over 6 values. 

Furthermore, it is well known that asking participants to report subjective 

visibility on scales with more than 4 bins may lead to participants ignoring the 

middle bins on the scale (Sandberg, Timmermans et al. 2010). Consequently, we 

grouped our visibility results into two bins, a high visibility bin and a low visibility 

bin. To decide the fairest way of applying this split, we calculated the grouped 

Bayes factor comparing the validity of the constraints for each possible method 

of splitting the data. The results (Figure 15) clearly show that the “best” split is 

that of assigning the top 50% of visibility ratings to the high visibility bin and the 

bottom 50% to the low visibility bin.  

Post-Hoc Testing for State-Trace 

One facet of our state-trace analysis is that in a strict sense, it is non-

constructive. Even if we should be able to conclusively provide evidence for a 

non-monotonic relationship, all we can infer from this is that some kind of 

dissociation exists - we are not able to directly infer what is driving it. However, 

our state-trace analysis does not exist in isolation. Figure 14 shows potential 

non-monotonicity is driven by differing behaviour of subjective visibility and 

report accuracy at early versus late lags. 



65 
 

 

Figure 15) Grouped Bayes factor for validity across each potential binning method for high and 

low visibility using the set of constraints based on the data from (Nieuwenhuis, de Kleijn 2011). 

At early lags, subjective visibility decreases while report accuracy increases, but 

from lag 3 onward, they both increase together. This would predict any 

dissociation as a result of working memory encoding potentially being a 

necessary condition for subjective experience, but not a sufficient one. We can 

quantify this effect by evaluating how much this differing behaviour at early lags 

to late lags is contributing to any overall monotonicity calculated, by rerunning 

the state-trace analysis with these lags left out, one at a time. This gives a 

measure of how much the lags are contributing to the overall non-monotonicity 

calculated. This method necessarily requires a change of the definition of the 

prior used in the Bayesian analysis. In this case, we simply exclude any 

conditions we placed on the prior that are no longer valid. 

State-Trace Results 

We first present the results of the state-trace analysis with all lags included. 
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State-trace results 

 

Figure 16) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

across participants. Note that participants are in the same order in all graphs to facilitate comparison. Lines 

overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

 

Figure 17) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) across participants. Note that participants are in the same order in all 

graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 

100 respectively. 
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Figure 17 shows validity for each participant for the set of prior constraints 

derived from (Nieuwenhuis, de Kleijn 2011). At the group level, the evidence is 

strongly in favour of the constraints fitting the data with grouped (not 

log)      ( )           . However, we note that while the group validity is 

strong, four participants show the opposite pattern. Figure 16 shows the 

respective non-monotonicity for this set of constraints. Results are strongly and 

almost homogenously in favour of the non-monotonic model, with grouped (not 

log)       |( )             . 

Post Hoc Testing 

In order to establish the effect of each lag on the final calculation of monotonicity, 

we reran the state-trace analysis with each of the lags excluded in turn, as well as 

lags 1 and 2 removed together. We note that in our first case our data is 

completely heterogeneous, rendering our GBF measure redundant, however this 

does not affect any of our conclusions 

Lag 1 

 

Figure 18) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

across participants with lag 1 excluded. Note that participants are in the same order in all graphs to facilitate 

comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Figure 19) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) across participants with lag 1 excluded. Note that participants are in 

the same order in all graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors 

of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Lag 2 

 

Figure 20) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

across participants with lag 2 excluded. Note that participants are in the same order in all graphs to facilitate 

comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

. 
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Figure 21) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) across participants with lag 2 excluded. Note that participants are in 

the same order in all graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors 

of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Lag 3 

 

Figure 22) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

across participants with lag 3 excluded. Note that participants are in the same order in all graphs to facilitate 

comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Figure 23) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) across participants with lag 3 excluded. Note that participants are in 

the same order in all graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors 

of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Lag 1&2 

 

Figure 24) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

for empirical priors across participants with lags 1&2 excluded. Note that participants are in the same order 

in all graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 

20 and 100 respectively. 
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Figure 25) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) for empirical priors across participants with lags 1&2 excluded. Note 

that participants are in the same order in all graphs to facilitate comparison. Lines overlaying the figure 

correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Figure 19 shows validity for each participant for the set of prior constraints 

derived from (Nieuwenhuis, de Kleijn 2011) with lag 1 removed. At the group level, 

the evidence is strongly in favour of the constraints fitting the data with grouped 

(not log)      ( )            . Group validity is stronger than previously, but 

with more participants showing no evidence either way. Figure 18 shows the 

respective non-monotonicity for this set of constraints. The results show no 

strong preference for monotonicity or non-monotonicity and are almost 

completely heterogeneous, with grouped (not log)       |( )            . 

Figure 21 shows validity for each participant for the set of prior constraints 

derived from (Nieuwenhuis, de Kleijn 2011) with lag 2 removed. At the group level, 

the evidence is strongly in favour of the constraints fitting the data with grouped 

(not log)      ( )           . Figure 20 shows the respective non-monotonicity 

for this set of constraints. The results show a strong preference for non-

monotonicity and are almost completely homogenous, with grouped (not log) 

      |( )              

Figure 23 shows validity for each participant for the set of prior constraints 

derived from (Nieuwenhuis, de Kleijn 2011) with lag 3 removed. At the group level, 
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the evidence is strongly in favour of the constraints fitting the data with grouped 

(not log)      ( )           . Figure 22 shows the respective non-monotonicity 

for this set of constraints. The results show a strong preference for non-

monotonicity and are almost completely homogenous, with grouped (not log) 

      |( )             . 

Figure 25 shows validity for each participant for the set of prior constraints 

derived from (Nieuwenhuis, de Kleijn 2011) with lags 1&2 removed. At the group 

level, the evidence is strongly in favour of the constraints fitting the data with 

grouped (not log)      ( )            . Figure 24 shows the respective non-

monotonicity for this set of constraints. Results show a preference for non-

monotonicity and are almost completely homogenous, with grouped (not log) 

      |( )            . 

Discussion 

Monotonicity versus Non-monotonicity 

Our state-trace analysis, comparing the measures of accuracy and subjective 

report in the attentional blink, found strong evidence for a non-monotonic model 

of the relationship between these two measures at both the individual participant 

and group level. Previous literature (Davis-Stober, Morey et al. 2016) has 

advocated the use of both the Grouped Bayes Factor (GBF) that we have 

calculated, as well as an Aggregated Bayes Factor (ABF) to confirm the 

homogeneity of the results, something we have not done. There seems little need 

to apply the ABF since its results are clear from the outset, especially since the 

ABF would require us to examine the individual level data to confirm homogeneity 

anyway (Davis-Stober, Morey et al. 2016). Our data always falls into one of two 

categories: complete heterogeneity (No lag 1       |( )) or substantial 

homogeneity (All other conditions). 

One aspect of our analysis that is notable is the lack of a trace factor. However, 

the introduction of a trace factor is only required in the case in which there are 

only two levels of the dimension factor; in other cases, the introduction of a trace 

factor is a convenience designed to sweep out the behaviour of a system. In our 

case, we have 5 levels of our dimension factor, which is very close to, or exceeds 

the combined total trace   dimension factors in other state-trace experiments 
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(Tulving 1981, Sense, Morey et al. 2016, Heathcote, Freeman et al. 2009). There is 

also no need to introduce a trace factor to help sweep out behaviour; the 

attentional blink paradigm has already been introduced to do this with clear 

results. 

Working Memory encoding without Subjective Experience? 

Our results suggest some kind of dissociation between working memory 

encoding and subjective experience. Despite this, based on our initial results, we 

have only demonstrated that a dissociation exists and have not definitively 

characterised it: of itself, this finding does not enable us to say what relationship 

of dependency exists between working memory encoding and subjective 

experience, if any. 

Earlier in this chapter, we hypothesised that any non-monotonicity we found 

would be the result of differing behaviours at early lags versus late lags. Further, 

we noted that this pattern of behaviour at our early lags (low subjective report, 

high accuracy) is consistent with working memory encoding being a necessary 

but not a sufficient condition for subjective experience. We therefore propose that 

if early lags were a substantial contributor to overall non-monotonicity, this 

would be indicative of a dissociation of this type. We find strong evidence for this 

pattern of results in the data. Removing either of lags 2 or 3 resulted in a 

substantial reduction of the total effect of non-monotonicity by 3-4 orders of 

magnitude. However, most compellingly, the removal of the lag 1 data point at 

which the difference between accuracy and subjective visibility is most strong 

causes a total breakdown of any non-monotonic effect in the data resulting in no 

significant non-monotonicity at all. 

On the basis of these results, and the sight-recall idea that we discuss in the 

literature review, we propose that these findings provide evidence for a 

dissociation between working memory encoding that is the result of working 

memory encoding being a necessary condition for subjective experience, but not 

a sufficient one3. Specifically, it suggests that it may be possible to have working 

memory encoding in the absence of subjective experience. We follow (Pincham, 

Bowman et al. 2016) in referring to this phenomenon as sight-blind recall. 

                                                             
3
 Although the existence of phenomenological awareness would mean working memory encoding was also not 

necessary for conscious perception 
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However, we do note that while our results are strongly indicative, this 

assessment is created on the basis of the average behaviours of accuracy and 

visibility by subject. Strictly, to establish with certainty the relationship of 

dependency between working memory encoding and subjective experience, we 

need to assess not their respective average behaviours, but the coupling of these 

two measures by lag. This is addressed in a later chapter, but for now we simply 

note that it is difficult to imagine on the basis of our current results, a plausible 

pattern of coupling that is inconsistent with our current conclusions.  

Importantly, sight-blind recall is different from more familiar notions of 

preconscious processing such as subliminal priming, implicit perceptual learning 

as well as related findings demonstrated with continuous flash suppression 

(Hsieh, Colas et al. 2011) and phenomena such as blindsight (Marshall, Halligan 

1988), or episodic face recognition (Heathcote, Freeman et al. 2009). These 

experiments demonstrate only an indirect effect on a later test; in no case is the 

“invisible” stimulus that is not consciously perceived directly reportable. We 

would argue that these results are not strong enough to demonstrate the “sight-

blind recall” that we have described, indicating instead influence without 

experience. In contrast to this, our results suggest the potential for free recall of a 

stimulus that has not been consciously perceived, a much stronger result that we 

would argue, if justified, does constitute enough evidence for “sight-blind recall” 

and working memory encoding without subjective experience.  

There are several pieces of work that present findings consistent with our results. 

Firstly, evidence of working memory maintenance without conscious awareness 

(Soto, Silvanto 2014) sits very nicely with our results, and this is even more the 

case for such a demonstration with the attentional blink (Bergstrm, Eriksson 

2014). Our results may help explain how these pre-conscious working memory 

traces arise by giving them a mechanism through which they can be encoded 

without subjective experience. 

(Lau, Passingham 2006) also present experimental conditions in which they are 

able to use metacontrast masking to vary the subjective report of consciousness, 

while stimulus discriminability is maintained. Further, the authors find that as 

SOA decreases (down to around 50ms, at which point the effect reverses) shorter 

SOA’s result in lower subjective report, consistent with our finding that subjective 
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report drops as T1 and T2 become closer. (Lau, Passingham 2006) is a landmark 

study; our results, though, move beyond their work by applying state-trace 

analysis rather than single dissociations, and by considering identification with 

free recall, rather than two alternative forced choice decisions. In this sense, our 

objective behaviour relies upon a significantly more complex cognitive process. 

Taking our results along with those from (Block 1995, Bronfman, Brezis et al. 

2014, Vandenbroucke, Fahrenfort et al. 2014) that indicate some degree of 

perception without reportability, it is tempting to conclude that working memory 

encoding and perception are highly correlated but mutually dissociable 

processes. However, all of the studies above provide their evidence in the form of 

the single dissociation, evidence that we have thus far held up as neither strictly 

necessary nor sufficient to conclude a separation of mental processes. Overall, 

the dual question to the one studied in this paper remains debated, perhaps 

further state-trace analysis could benefit this debate. 

From a theoretical point of view, it is interesting that perception is most taxed at 

Lag 1. As we have discussed, (Pincham, Bowman et al. 2016) note that this 

pattern of behaviour is consistent with a model of the attentional/experiential 

blink in which stimuli are consciously perceived in a serial manner, but encoded 

in a simultaneous manner. This is discussed in further detail below.  

Integrated Percepts 

Another potential criticism of our results is that the low subjective report at Lag 1 

is caused by the rather unique nature of the Lag 1 data point. Lag 1 is the only 

data point without any intervening distractors, and is, notably, by far the most 

vulnerable point to order errors (Wyble, Brad, Bowman et al. 2009), or integration 

of both targets into one perceptual episode (Simione, Akyrek et al. 2017). In this 

case, the poor report of subjective experience of T2 might be confounded by the 

presence of T1. Participants might report poor T2 visibility not because T2 was 

not vividly experienced, but because the experience of T1 in the same perceptual 

episode causes confusion. Part of the reason we introduced our state-trace 

analysis was to remove confounds of this type, however to remove any doubt or 

ambiguity of our results, we argue as follows. 
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The most compelling reason to believe this is not the case is recent results 

indicating that fully integrated percepts, in which T1 and T2 are perceived as one 

episode, show comparable subjective visibility to those in which T1 and T2 are 

perceived separately, and in the right order (Simione, Akyrek et al. 2017), while 

reversals and partial order errors score below this. This is likely to be the case 

even more strongly in the experimental procedure in (Pincham, Bowman et al. 

2016), because it purposely gave T1 and T2 distinguishing features (by colour 

marking T1), and identifies the targets by these. Given this, as long as the data 

containing order errors is excluded from our analysis (as it has been), it is unlikely 

that integrated percepts can explain away our effect. 

We additionally note that there are an unusually small number of integrated 

percepts in the experiment of (Pincham, Bowman et al. 2016). The colour marking 

of T1 in this experiment reduced the classical indicator of integrated percepts, 

order errors, from 30% in classic letters/digits tasks (Chun, Potter 1995)  to 

approximately 10% in the task from (Pincham, Bowman et al. 2016). Further, we 

note that the pattern of behaviour we see at lag 1, with low subjective report and 

high accuracy is also visible to a lesser extent at lags 2 and 3, in which there are 

intervening distractors. 

Conclusion 

In this chapter we examined the evidence for a dissociation between working 

memory encoding and subjective experience, by making use of the tools of state-

trace analysis to quantify evidence for this dissociation during the 

Attentional/Experiential Blink. Our data stands for the existence of this 

dissociation, and points toward this occurring as a result of working memory 

encoding as a necessary but not a sufficient condition for subjective experience, 

providing further evidence to support the hypothesis of Sight-Blind recall 

proposed previously. 
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5. Methods in State-Trace Analysis 

Abstract 

In our previous chapter, we made use of state-trace analysis to provide evidence 

for a dissociation between working memory encoding and subjective experience 

during the attentional blink (AB). However, the statistical quantification for our 

state-trace analysis was entirely based on Bayesian statistics, the validity of 

which can be strongly affected by the choice of prior. Notably, our prior was set 

based on the average results from previous experiments, but it is known that 

there is significant variance from this average among individual subjects during 

the AB. By asserting this prior, we are both in danger of precluding patterns of 

behaviour that would be present for an individual subject, as well as including 

behaviours that are not necessarily reflected by our data. 

While setting a prior based on previous literature was in all likelihood a 

reasonable approach, which we took care to validate in the previous chapter, for 

the above reasons, we also explore a better method for the prior selection 

problem. For this, we develop a new method by which a prior extracted from 

previous literature can be improved to fit the data more accurately. This is 

achieved by using a data driven approach that makes use of a contrast 

independent to the question of interest to remove constraints on the prior that do 

not match the data. In this chapter, we define our new approach, demonstrate its 

good behaviour and reapply the analysis from the previous chapter based on the 

constraints it gives us. 

Introduction 

In the previous chapter, we evaluated the validity of our state-trace analysis 

through Bayesian statistics. However, it is well known that Bayesian statistics 

can be compromised by poor choices of prior (Lindley 1957). In the previous 

chapter, we attempted to avoid this problem by selected a prior based on 

constraints derived from the results from previous literature (Nieuwenhuis, de 

Kleijn 2011), validated by our measure of validity       . We found that across 

the group, the validity of our constraints was high and quite strongly 

homogeneous, indicating that the prior used in the previous chapter – and thus 

the conclusions based on it – were reasonable. 
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However, despite this positive evidence for the prior, there are clear exceptions to 

its validity in the data, with some subjects showing more than marginal evidence 

that the constraints do not fit. There are also theoretical reasons we may be 

uncertain about the fit of the constraints – our constraints are based on an 

average behaviour, however individual subjects can and do vary from this 

average considerably. This variation is not necessarily problematic, but 

constraining our data on the assumption that this average behaviour is uniformly 

true may be a poor choice for a prior. 

While, given the positive evidence for the prior used in the previous chapter, we 

remain confident that its results are valid, it is reasonable that we may also wish 

to find a better method. If we wish to improve the fit of the prior for our specific 

data set, then the only way to do this is with reference to the data itself. This 

causes several problems. Firstly, we must be careful that our method is 

independent from our final measure of interest, and does not bias our final result. 

Secondly, we must also be careful to not “overfit” and end up setting a prior that 

fits the noise present in the data as well as the signal. In this chapter, we discuss 

these problems, and develop a new approach to address them within these 

bounds. We then go on to demonstrate the good behaviour of our new empirically 

derived prior, and reapply the state-trace analysis from the previous chapter 

using it.  

The Problem 

When approaching the Bayesian analysis of our state-trace experiments, we are 

required to set a prior, denoting our expectation of behaviour before we have 

examined the data. While Bayesian statistics are in general quite robust to 

variations in the prior (Liu, Aitkin 2008), it is well known that setting a sufficiently 

“poor” prior can influence the results. The canonical demonstration of this is 

Lindley’s Paradox (Lindley 1957) in which it is possible to cause the Bayesian and 

frequentist approaches to hypothesis testing to disagree by choosing a suitable 

prior (LaMont, Wiggins 2016). One approach that is often taken in the absence of 

any conclusive prior beliefs is to set a type of prior known as an uninformative 

prior. Such a prior makes no strong statements about our variables, and assigns 

equal, or close to equal, probabilities to each of our possible outcomes. Such an 

approach has been proposed for state-trace analysis, on the basis that it is 
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simple to compute, and as long as all possible orders are assigned some non-

negligible probability then the Bayes-factor estimates will be insensitive to the 

choice of prior (Prince, Brown et al. 2012). 

However, when there do exist concrete prior beliefs about the data, this approach 

is suboptimal. We may for example, a-priori, believe that some orderings of 

variables in our state-trace analysis may only be the result of a measurement 

error. In this case, the only appropriate prior probability is one that precludes this 

ordering entirely, an exemption that will significantly affect the Bayes Factor 

calculated. In state-trace analysis, this has been demonstrated, for example, by 

(Davis-Stober, Morey et al. 2015) in their analysis of data from (Sense, Morey et 

al. 2017). The data from (Sense, Morey et al. 2017) examines visual working 

memory, and it is asserted that no theorist would believe that performance would 

increase alongside the number of items to be remembered. The authors therefore 

entirely preclude orderings that violate this by setting their prior probability to 

zero, and note a significant change in their calculated Bayes factors with this 

prior vs the uniform prior as a result. 

This approach of constraining orderings is clearly effective, and in many cases 

justified but presents some problems in the data we analyse. In contrast to, for 

example, our previous example from (Sense, Morey et al. 2017), the Attentional 

Blink paradigm does not lend itself so well to precise ordinal assertions about our 

variables. There is significant subject-by-subject variation in the attentional blink 

to the extent that some subjects (non-blinkers) do not demonstrate the effect 

(Martens, Wyble 2010). Naturally, we wish to take advantage of as much prior 

information available to us as possible, but given this variation, we wish to do so 

without negatively affecting our results. Our approach previously was to set 

constraints on orderings based on the results from prior literature. While this is 

likely to be, in practice, quite a good way of setting prior expectations, the strict 

nature of walling off an entire set of potential orderings based on the average 

behaviour of previous work is likely to be an overly strong assertion. This is 

particularly so for our attentional blink, which we have noted exhibits variability at 

the subject level. 

Clearly, it is desirable to seek a way to improve this situation. One approach to 

this is to use our own data to improve an existing set of constraints. However, 
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such an approach comes with potential problems. Since our data is also used to 

derive our contrast of interest, we must be careful that our method of improving 

constraints is independent from this contrast of interest and therefore does not 

bias the end results. This is a significant constraint. Furthermore, while we wish 

to benefit from having constraints that more closely match our data, we do not 

want to “overfit” these constraints. A set of constraints that perfectly reflects the 

pattern of behaviour in our data is likely to not only capture the signal in the data, 

but the noise as well. Whatever method we select must somehow constrain our 

prior selection in such a way as to preclude this problem. In light of these 

requirements, we propose the following approach. 

The Proposed Method 

We propose a method that starts with a (relatively) strict set of constraints 

derived from prior literature, and removes constraints (and therefore increases 

the space of valid orderings) based on an independent measure of validity on the 

data. In order to counter overfitting and the creation of models that are 

theoretically unsubstantiated but just happen to fit this set of data well, a certain 

set of constraints can be held to be “irrevocable”, and as such they will never be 

changed regardless of the data – any violation of these can only be considered a 

measurement error. 

Our independent measure of choice is the “trace and dimension true” measure we 

discuss in our literature review,   (   )  (   ) which is equivalent in our case 

(since we lack a trace factor) to the      ( ) factor used in the previous chapter 

as a measure of constraint validity. This measure quantifies the evidence that the 

data is consistent with the trace and dimension factors versus the evidence that 

it is not. It is a suitable measure because our contrast of interest is entirely 

contained inside the trace and dimension true model. Specifically,        (   ) is 

an independent measure from the       |(   ), since  |(   )    |(   )  

   , that is, the union of the monotonic and non-monotonic orderings that are 

permissible given some set of constraints is contained inside the set of all 

possible orderings that are permissible given those constraints. This implies that 

the changes in the balance of probabilities of the monotonic and non-monotonic 

orderings that are permissible given some constraints (calculated as 

      |(   )) has no effect on the balance of probabilities of all orderings that 



81 
 

are permissible given some constraints versus all those that are not (calculated 

as        (   )).        (   ) is therefore suitable as a measure by which to 

select our constraints, because not only is it measuring the validity of our 

constraints (as per our literature review), but we can be certain that it is 

independent of the balance of probabilities       |(   ). 

Our method is then as follows. We first pick a set of order constraints on the state 

and dimension axes from prior data,   *         +. This set of constraints 

should be the fullest set that can be reasonably expected to fit the data, but 

should not contain constraints that contradict one another. We then divide this 

set   into two subsets, those constraints in C for which violation can only 

constitute a measurement error (the irrevocable set), and those about which we 

might expect variation between experiments (the free set). We label these 

  *       + and    *       + respectively. Next, we introduce the concept of 

group validity for a given set of constraints, denoted GE. This is the product of 

       (   ) across all our   participants for the set of constraints C, specifically 

  ( )   ∏       (   ) 

 

   

 

 

For each item in  , we denote the “leave one out” subset of constraints   ̅ as: 

  ̅    *                   +   

We then calculate   (  ̅) for all        . For the largest evaluated   (  ̅) 

with   (  ̅)    (   ), we then remove    from  . This procedure is repeated on 

the new   with    removed until there does not exist a set such that   (  ̅)  

   (   ), or until   *+. The resulting     is the “empirical prior”.  

Our method is justified as follows. Firstly, it is clear that setting our empirical 

prior based on        (   ) will, on its own, converge to a prior set of constraints 

that best fit the data. Secondly, since we are starting from the fullest (strictest) 

set of constraints that are theoretically grounded and pruning from this set, it is 

impossible for us to introduce spurious constraints that fit the data by chance, 

but are incompatible with our theoretical understanding. Equally, because we 
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hold some constraints “irrevocable”, we are protected from removing constraints 

that are highly likely a-priori, based on measurement errors. Finally, our condition 

of independence is fulfilled since        (   ) and therefore grouped evidence    

is independent from our measure of interest. 

Validation 

To validate the method, we apply the empirical method to simulated data, with a 

known ground truth. Random data is simulated for two separate cases, either 

such that it is strongly monotonic or such that it is strongly non-monotonic. For 

each set of data, a random set of constraints is generated, with the property that 

it is at least partially inconsistent with the data. The constraints are chosen to be 

inconsistent with the data in order to provide the empirical method with the fair 

opportunity to demonstrate its improvement of them. For the monotonic case, the 

initial set of constraints is non-monotonic, and visa-versa. We then evaluate 

       and      ( ) for both this original set of constraints, and the constraints 

after our empirical priors method has been applied to them. If our method of 

empirical priors is functioning correctly, it should push        toward more 

extremely monotonic or non-monotonic patterns that match the underlying 

pattern of behaviour in the data. Simultaneously, it should also increase      ( ), 

since      ( ) is the metric by which we improve constraints. We repeat this 

process 1000 times for each of the monotonic and non-monotonic cases, and 

plot the improvement in              from the original set of constraints to the 

empirically derived set. Results can be seen in Figure 26 and Figure 27. 

We note that despite the strong overall improvement that the empirical method 

demonstrates, there are counterexamples that we will call reversals in which the 

empirical method makes things worse instead of better. We analyse this finding 

more in the discussion of this chapter, but broadly we believe it is natural to 

expect a small number of reversals arising as a limitation of our simulation 

methodology. For now, we note that these reversals occur when the Bayes Factor 

of the initial set of randomly generated constraints provides strong evidence for 

the hypothesis in question already. In the non-monotonic case, this can be seen 

as the average log10 evidence over 1000 samples for the initial set of constraints 

for reversals is -8.31, versus -3.73 for non-reversals. In the monotonic case, we 

see a similar pattern of behaviour with the average log10 evidence for the initial 
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set of constraints for reversals is 7.67, versus 0.01 for non-reversals. We also 

note that this effect significantly decreases as we force our simulated data to 

less strongly reflect out hypothesis. Allowing one order of magnitude more 

evidence in the generation of our initial set of monotonic or non-monotonic data 

(and thereby increasing the potential available evidence for the other hypothesis) 

reduces these values to -3.46 and -1.22 in the non-monotonic case and 3.11 and 

0.25 in the monotonic case. 

Results 

Validation 

 

Figure 26) Difference in Bayes factors (      ) for randomly selected constraints before and after 

the empirical constraints method has been applied for monotonic data. 
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Figure 27) Difference in Bayes factors (      ) for randomly selected constraints before and after 

the empirical constraints method has been applied for non-monotonic data. 

Prior 

We apply our method to the constraints used from the previous chapter. As 

previously, Lag 8 is excluded as a serial position outlier. Previously, our 

constraints were: for report accuracy, Lags 1, 6 and 4 would be held to be larger 

than Lags 2 and 3, with Lag 1 additionally being held to also be larger than Lag 4. 

For subjective report, Lag 6 would be held to be higher than Lag 4, lag 4 higher 

than Lag 3, and Lag 3 higher than Lag 2. We held the following constraints 

irrevocable for report accuracy: Lag 1 > Lag 2, Lag 1 > Lag 3, Lag 1 > Lag 4, and 

none for subjective visibility. This resulted in the removal of the constraints that 

Lag 4 > Lag 3 and Lag 4 > Lag 2. The final constraints after applying the empirical 

priors method were therefore: For report accuracy, Lags 1 and 6 would be held to 

be larger than Lags 2 and 3, and Lag 1 additionally would be held to be larger than 

Lag 4. The constraints for subjective report remained unchanged. Interestingly, 

we note that, had we not held the constraints concerning lag 1 irrevocable, they 

would have been pruned. This would have left us with the constraints for 
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accuracy as only Lag 6 being held larger than Lags 2 and 3, while the constraints 

for visibility would have remained unchanged.  

State-Trace analysis 

We re-ran our previous analysis using the new set of constraints. When data 

points have been removed and constraints are no longer applicable, the same 

process has been applied as in the previous chapter – relevant constraints have 

been removed. 

 

Figure 28) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity 

(negative, red) for empirical priors across participants. Note that participants are in the same 

order in all graphs to facilitate comparison. Lines overlaying the figure correspond to Bayes 

factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Figure 29) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus 

negative evidence for constraints (negative, red) for empirical priors across participants. Note that 

participants are in the same order in all graphs to facilitate comparison. Lines overlaying the 

figure correspond to Bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Figure 29 shows validity for each participant for the empirically derived set of 

prior constraints. At the group level, the evidence is strongly in favour of the 

constraints fitting the data with grouped (not log)      ( )            . 

However, we note that while the group validity is strong, four participants show 

the opposite pattern. Figure 28 shows the respective non-monotonicity for this 

set of constraints. Results are strongly and almost homogenously in favour of the 

non-monotonic model, with grouped (not log)       |( )             . 

Post Hoc Testing 

As in the previous chapter, in order to establish the effect of each lag on the final 

calculation of monotonicity, we reran the state-trace analysis with each of the 

lags excluded in turn.  

Lag 1 
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Figure 30) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

for empirical priors across participants with lag 1 excluded. Note that participants are in the same order in all 

graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 

100 respectively. 

 

Figure 31) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus 

negative evidence for constraints (negative, red) for empirical priors across participants with lag 1 

excluded. Note that participants are in the same order in all graphs to facilitate comparison. Lines 

overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 

Lag 2 
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Figure 32) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

for empirical priors across participants with lag 2 excluded. Note that participants are in the same order in all 

graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 

100 respectively. 

 

Figure 33) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) for empirical priors across participants with lag 2 excluded. Note that 

participants are in the same order in all graphs to facilitate comparison. Lines overlaying the figure 

correspond to Bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Lag 3 

 

Figure 34) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

for empirical priors across participants with lag 2 excluded. Note that participants are in the same order in all 

graphs to facilitate comparison. Lines overlaying the figure correspond to Bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 

100 respectively. 

 

Figure 35) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) for empirical priors across participants with lag 2 excluded. Note that 

participants are in the same order in all graphs to facilitate comparison. Lines overlaying the figure 

correspond to Bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Lags 1&2 

 

Figure 36) Log10 Bayes factors for monotonicity (positive, green) versus non-monotonicity (negative, red) 

for empirical priors across participants with lags 1&2 excluded. Note that participants are in the same order 

in all graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 

20 and 100 respectively. 

 

Figure 37) Log10 Bayes factors for positive evidence for the constraints (positive, green) versus negative 

evidence for constraints (negative, red) for empirical priors across participants with lags 1&2 excluded. Note 

that participants are in the same order in all graphs to facilitate comparison. Lines overlaying the figure 

correspond to bayes factors of 
 

   
, 

 

  
, 
 

 
, 3, 20 and 100 respectively. 
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Figure 31 shows validity for each participant for the empirically derived set of 

prior constraints. At the group level, the evidence is strongly in favour of the 

constraints fitting the data with grouped (not log)      ( )            . Group 

validity is stronger than previously, but with more participants showing no 

evidence either way. Figure 30 shows the respective non-monotonicity for this 

set of constraints. Results show no strong preference for monotonicity or non-

monotonicity and are almost completely heterogeneous, with grouped (not log) 

      |( )            . 

Figure 33 shows validity for the empirically derived set of prior constraints. At the 

group level, the evidence is strongly in favour of the constraints fitting the data 

with grouped (not log)      ( )            . Figure 32 shows the respective 

non-monotonicity for this set of constraints. Results show a strong preference 

for non-monotonicity and are almost completely homogenous, with grouped (not 

log)       |( )             . 

Figure 35 shows validity for each participant for the empirically derived set of 

prior constraints. At the group level, the evidence is strongly in favour of the 

constraints fitting the data with grouped (not log)      ( )            . Figure 

34 shows the respective non-monotonicity for this set of constraints. Results 

show a strong preference for non-monotonicity and are almost completely 

homogenous, with grouped (not log)       |( )             .Lags 1&2 

Figure 37 shows validity for each participant for the empirically derived set of 

prior constraints. At the group level, the evidence is strongly in favour of the 

constraints fitting the data with grouped (not log)      ( )           . Figure 

36 shows the respective non-monotonicity for this set of constraints. Results 

show a strong preference for non-monotonicity and are almost completely 

homogenous, with grouped (not log)       |( )            . 
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Discussion 

Validity of Empirical Prior 

The validation of our empirical priors’ method shows exactly the behaviour we 

predicted. When the data is strongly monotonic, the estimate of        is pushed 

towards a more monotonic result (Figure 26), and when the estimate of        is 

strongly non-monotonic,        is pushed toward a more non-monotonic result 

(Figure 27). It is interesting to note however that this improvement does not seem 

to be guaranteed, there are clearly a number of instances in which the empirical 

priors method pushes        a small amount in the opposite direction. That is, in 

the monotonic case, the empirical constraints are less monotonic than the 

original set, and vice-versa for the non-monotonic set.  

However, we note that it is to be expected that a small number of cases 

demonstrate this reversal effect. In order to be able to calculate        

constructively, we require that the evidences for both outcomes (Monotonic and 

Non monotonic) are non-zero. In other words, the highly monotonic datasets 

must allow some small evidence for non-monotonicity in order for us to 

demonstrate that the balance of this evidence is improved by our method (and 

vice versa for non-monotonicity). However, in allowing non-zero evidence for 

both hypothesis there exists a small but not infinitesimal chance that the analysis 

subject to the randomly chosen constraints constitute more evidence than is 

warranted by the data on its own. In these instances, the removal of the 

constraints will reduce the evidence down to a level that more accurately reflects 

the underlying data. This can be verified by the two observations we make at the 

end of our validation section. Firstly, all instances in which these reversals occur 

are when the belief in the randomly generated constraints is already 

overwhelmingly strong. Secondly, the rate of these reversals can be increased by 

increasing the average evidence for the “alternative” hypothesis: increasing the 

average strength of the evidence for non-monotonicity when the data is 

generated as monotonic increases the rate of reversals (and vice versa if the data 

is generated as non-monotonic). 
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Monotonicity versus Non-Monotonicity 

The results from this chapter further strengthen the analysis performed in the 

previous chapter. Evidence is qualitatively similar, and evidence for non-

monotonicity has increased almost uniformly by 2-3 orders of magnitude across 

all conditions we tested. The presence of outliers has significantly decreased too: 

previously 3 subjects showed significant (>3) evidence for monotonicity in the full 

dataset, but with the empirical set of constraints this is reduced to none. Given 

that the validity of our priors      ( ) is the measure that guides the creation of 

our empirical prior, it is no surprise that we see it increase after the application of 

our method. However, in this instance it is compelling that the evidence has 

improved so significantly. For this measure too, we find the presence of outliers 

decreased. 

Lag 1 

One outlier in terms of behaviour is the lag 1 data point. Both in the original set of 

constraints and the empirical set, the removal of the lag 1 data point increases 

the validity of the constraints. Furthermore, we note that had we not held several 

of our constraints involving lag 1 as irrevocable, that these constraints would 

have been removed – contrary to what we know about the attentional blink. In 

retrospect however, this behaviour is exactly why we specify certain constraints 

as irrevocable in the first place. In the attention blink, it is known that some 

participants are “non-blinkers” who simply do not experience any kind of “blink of 

the mind’s eye” as the two targets approach one another in time (Martens, Wyble 

2010). Indeed, we note in the data that this increase in constraints validity is the 

result not of a systematic change in evidence, but the sharp reversal of several 

participants changing from weak evidence against the constraints to strong 

evidence for the constraints (See Figure 29 and Figure 31). Furthermore, the lag 1 

data point is by far the most constrained data point in our prior. Given the 

significant participant-by-participant variation in the attentional blink, it is not 

surprising to see an improvement in grouped evidence with its removal simply on 

account of natural variation. We therefore hold this behaviour up not as evidence 

that our empirical method is flawed, but that it is functioning exactly as intended. 

In this instance, despite an increase in grouped evidence, it would have been 
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premature to consider removing constraints on the lag 1 data point despite the 

pattern of behaviour in the data; we would have very likely been overfitting. 

Hierarchical modelling 

Another way of looking at our method is that it is an approximation of a 

hierarchical Bayesian model, in a manner very similar to the methods of empirical 

priors. Interestingly, this is not the first time that hierarchical methods (or 

approximations thereof) have been proposed for this type of analysis, but 

previous works have focused on them as achieving a better measure of the group 

level effect (Morey, Pratte et al. 2008, Pratte, Rouder et al. 2010, Rouder, Lu 2005) 

that is not subject to the averaging problem. In contrast, our method uses (a 

weak approximation of) hierarchical modelling in order to achieve a better fit of 

the prior to the original analysis. However, we note that true hierarchical models 

of this kind are difficult to build because of the non-parametric nature of state-

trace analysis, and must be careful not to fall into the same averaging trap that 

normal models suffer from (Davis-Stober, Morey et al. 2016). Furthermore, 

without making use of Laplace’s method to easily calculate posteriors (Davis-

Stober, Morey et al. 2016), Bayesian analysis of state-trace problems require the 

use of Gibbs sampling or other computationally expensive methods to calculate 

the posterior (Prince, Brown et al. 2012, Davis-Stober, Morey et al. 2016). Using 

hierarchical models, there is a strong possibility that we will be required to use 

these computationally expensive methods to calculate the posterior once again.  

Interestingly, though slightly different in their conception and application, both 

the existing proposals for hierarchical models and our new method are very 

similar. They are both effectively attempting to address the same problem – that 

the averaged behaviour across all subjects is not necessarily a good 

approximation of the individual level effect. This proposes some interesting 

directions for further research. One technique that may be well suited for 

assisting the derivation of a prior for the state-trace analysis for example is to 

borrow the Aggregated Bayes Factor method discussed in the literature review. 

This is a measure that can be used to confirm the heterogeneity of the data, and 

may be a useful basis on which to exclude a prior. Conversely, many of the 

difficulties of true hierarchical models for the group level effects might be 

subverted by using an empirical approximation instead. Overall, our empirical 
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method is computationally cheap and, as we have demonstrated, behaves well. 

This allows much of the benefit and flexibility of a hierarchical Bayesian analysis, 

without the computational drawbacks. 

Conclusion 

In our previous chapter, we used a Bayesian state-trace analysis in order to 

demonstrate evidence for a dissociation between working memory encoding and 

subjective experience. In this chapter, we re-examined the method we used in the 

previous chapter, and proposed some improvements to create a fairer test on our 

data, as well as validating these improvements empirically. We then applied this 

new method to the analysis in our previous chapter, and found that the results 

support the conclusions from the last chapter even more strongly. 
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6. Modelling Subjective Experience 

Abstract 

In previous chapters, we have taken advantage of state-trace analysis to provide 

evidence that working memory encoding and subjective experience may be 

dissociated in the attentional blink. However, while dissociations can tell us about 

specific effects, placing findings in larger theoretical context is pivotal to the 

forward progress of science, especially when the theory is encapsulated in a 

computational model. In this chapter, we therefore explore one particular 

interpretation of the data from (Pincham, Bowman et al. 2016) through 

computational modelling, that items are encoded into working memory 

simultaneously, but are only experienced in series. In combination with our state-

trace analysis, this allows us to explore not only the existence of the effect, but 

some plausible mechanisms by which it may arise. 

Our computational model of choice for implementing this hypothesis is the 

Simultaneous Type/Serial Token (STST) model of attention: it models data in the 

relevant context (the attentional blink), and naturally deals with the difference 

between simultaneity and seriality. However, currently the model has no 

mechanism by which to index subjective report, and one of the contributions of 

this chapter is to provide such a mechanism. In order to validate the model, we 

compare the behavioural predictions of the model and the virtual ERPs it 

generates to human data.  

Introduction 

In the previous chapters, we examined the relationship between working memory 

encoding and subjective experience during the attentional blink and found 

evidence that a dissociation existed between the two. However, as we have 

previously discussed, dissociations can only tell us so much. Even with our post 

hoc test, we have only demonstrated that a dissociation exists, and which lags 

contribute to the effect most strongly. Given the separating between working 

memory encoding and subjective experience seems to be largest at lag 1 when 

subjective report is low and report accuracy is high, we posited working memory 

encoding as a necessary but not sufficient condition for subjective experience. 

We have so far only touched upon plausible mechanisms for this result however, 
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hypothesising in our discussion that this could be the result of working memory 

encoding of stimuli occurring simultaneously, while the subjective experience of 

the same stimuli occurs in serial. While this does not take away from our existing 

findings, to fully develop this research, it is important to be able to place it in a 

broader theoretical context. 

In this chapter, we test this hypothesis through modelling, by embodying our 

hypothesis in a computational model from which we can make quantifiable and 

falsifiable predictions, which can then be compared to our human data. To align 

with our goal of placing our findings in a broader theoretical context, we must 

consider the merits of different ways by which our model might be created. One 

way to do this is to integrate with an existing model. Indeed, our model may prove 

more compelling if it arises not out of a fresh model specifically designed to 

accommodate our hypothesis, but out of an existing model, or as the result of a 

small set of changes to one. 

To be specific, our hypothesis in this case is that working memory encoding of 

targets occurs simultaneously and continues to function typically during the 

blink, but that experience of the targets occurs in serial, resulting in a decreased 

percept of the second target as the temporal proximity of the two targets 

increases. In terms of incorporating with existing models, we have previously 

discussed many different potential models of the attentional blink, but one model 

that is mature and sophisticated enough to enable us to explore this hypothesis 

is the Simultaneous Type/Serial Token (STST) model of attention. Of all the 

discussed models, only the global workspace model potentially provides any 

readout of subjective experience (Dehaene, Sergent et al. 2003), but STST 

provides a strong possibility of naturally incorporating this in a manner 

consistent with our hypothesis because it already deals with the difference 

between simultaneity and seriality. Additionally, the Global Workspace model has 

some difficulties accounting for some attentional blink findings, notably lag 1 

sparing and spreading the sparing (Martens, Wyble 2010). Given the importance 

of the lag 1 data point in our existing findings, this is potentially a substantial 

obstacle. Furthermore, the STST model has a robust computational 

implementation and is capable of simulating not just predicted behavioural 

results, but virtual ERPs. Since the data we use in the previous chapters also has 



98 
 

both behavioural and EEG results, this allows us two avenues of verifying the 

correctness of our model. For all of these reasons, we choose the STST model 

over the previous models listed in the literature review. One choice we must make 

with respect to the STST model is which implementation to use, the original or 

the more recent eSTST model. For our initial exploration, we opt for the slightly 

simpler original model, but we propose that applying the same techniques to the 

eSTST model may be a fruitful area of future research.  

In terms of accommodating our hypothesis in the model, we note that many, and 

often any, behaviours can be obtained from a model with sufficient modification 

and parameter adjustments (Roberts, Pashler 2000). In order to make the fairest 

possible assessment of the hypothesis in question, we therefore limited 

ourselves in two ways with respect to our modelling. Firstly, we would make no 

changes to the functionality or structure of the existing model, we would only 

build on top of it to provide a new “readout” from the model. Secondly, this 

readout must be simple; ideally arising from one or two principles. On this basis, 

we are able to generate a model for both attention and subjective report from the 

STST model.  

Serial Experience, Simultaneous Encoding 

Our proposition is that the differences in behaviour of subjective experience and 

working memory encoding during the attentional blink are the result of the 

working memory encoding of multiple stimuli occurring simultaneously, but their 

experiences occurring in serial. This would result in a situation in which working 

memory encoding proceeds as in the classical attentional blink as the two targets 

approach one another (i.e. lag decreases), while subjective report monotonically 

worsens because of the proximity of the second target to the first. We give an 

intuition of how this may work as follows. Suppose we have some idealised 

correlate of experience, a hypothetical readout from some late stage of the brain 

that indexes subjective experience. We say that when we receive a signal above 

some threshold from this readout (the threshold of subjectivity) that a stimulus is 

being experienced, and in all other cases it is not. We then, as per our hypothesis, 

assume a seriality of this readout, a second stimulus after the first cannot begin 

to be experienced until the first stimulus falls back below threshold.  
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When two targets are presented close together - say at Lag 1 – this results in a 

typically poor experience of the second target because, despite a reasonably 

strong readout, most of its readout is subsumed by its proximity to the first 

target. Conversely, if the two targets are far apart – say at Lag 8 – a second 

target with the same readout strength as before will be experienced much more 

strongly because its experience is no longer dominated by the proximity of the 

first target. An illustration of this contrasting behaviour can be seen in Figure 38. 

Under such a system, average visibility will increase as the proximity of the two 

targets decreases, up to an upper limit at which the two targets are sufficiently 

far apart that the second is not materially affected by its proximity to the first. 

This is exactly what we see in the human data (Pincham, Bowman et al. 2016). 

This explains the average trend of our results, but we need to provide an 

explanation not only of this averaged behaviour, but in addition to be able to 

incorporate the significant trial-by-trial variance in subjective report seen in the 

human data. Over the course of an experiment, participants will make use of a 

large portion of the range of possible subjective reports regardless of the total 

averaged behaviour. Fortunately, the same system can also explain the 

significant variance in subjective visibility rating we see. Over the course of an 

experiment, participants generally make use of almost the entire visibility scale at 

some point regardless of report accuracy. Even in the case in which the two 

targets are closely presented together, a sufficiently elongated activation trace of 

the second target allows the visibilities of both targets to be the same. An 

example of this can be seen in Figure 39. 
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Figure 38) Seriality of experience in the modified STST model. In A), though the P3 amplitude of both stimuli 

is the same, the duration of the experience of the second stimulus is greatly reduced because it cannot be 

experienced until the first stimulus falls below the threshold. Comparatively, in B), the P3 amplitude of both 

stimuli remains the same, but the proximity of the second target to the first is reduced, and consequently 

they are both experienced for similar durations. 

 

Figure 39) Seriality of experience in the modified STST model. In A), though the P3 amplitude of both stimuli 

is the same, the duration of the experience of the second stimulus is greatly reduced because it cannot be 

experienced until the first stimulus falls below the threshold. Comparatively, in B), the P3 amplitude of both 

stimuli is the same, although the T2’s P3 is longer with a slightly delayed onset, consequently they are once 

again both experienced for similar durations. 

These principles must be somehow encoded into the STST model. As we have 

previously specified, in order to make the fairest possible assessment of the 

hypothesis in question, this set of changes must also be minimal and must not 

change the functionality of the existing model. The result of these conditions is 

the following model to encapsulate serial experience: Subjective visibility is 

indexed by the strength of the P3 ERP component. This is justified as the P3 

component is known to be a strong correlate of subjective experience (Lamy, 

Salti et al. 2009, Salti, Bar-Haim et al. 2012). Furthermore, the P3 has already 
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been extracted from the STST model with good results (Craston, Wyble et al. 

2009). When an item is above a given amplitude (the threshold of subjectivity), it 

is being “subjectively experienced” and when it is below, it is not. Additionally, 

this experience is serial. If the individual P3’s for two items are both above the 

threshold, then the second item cannot be experienced until the P3 for the first 

one falls below the threshold. The strength of an item’s subjective experience is 

linearly related to the duration for which its P3 exceeds the threshold of 

subjectivity, subject to no other stimulus already being above the threshold. In 

this manner, a system allowing a subjective experience that is exclusively serial 

in manner is created, with only one addition on top of the existing model. In order 

to evaluate the success of this modified STST model, we will compare its 

behavioural output to that of human participants and the virtual ERPs it 

generates to human EEGs in the data from (Pincham, Bowman et al. 2016). We 

call our model the Simultaneous Encoding/Serial Experience (SESE) model. 

Methods 

Implementation 

Previously, we have described the broad approach to adding subjective report to 

the STST model, here we detail specifically how the STST model is used to 

simulate ERPs, the setup of the STST model used to extract a visibility rating, and 

how the visibility rating was calculated. Our virtual ERPs are calculated from a 

computational implementation of the STST model, neural-STST. Recall that 

compared to previous works using virtual ERPs from the STST model, we 

selected a slightly different stimulus range over which to calculate this virtual P3 

in order to provide a thorough exploration of our hypothesis. Specifically, we 

sample (uniformly) a range of stimulus strengths with greater variability (-0.078 

to +0.078 -> -0.1625 to +0.1625), at a slightly higher average stimulus and 

distractor strength (0.520 -> 0.570). This approach is consistent with previous 

simulations with the STST model, where we allow input strength ranges to vary 

reflecting the fact that different experiments being modelled might have quite 

different stimulus types and sensitivities. For completeness, a full list of change 

to the original code can be found in Appendix C – Changelog to Neural STST. 

In order to calculate subjective report from these virtual P3’s, we calculate the 

number of time steps that a stimulus spends above a given threshold. For the 
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results given in this paper, this threshold is 0.01. It is necessary to normalise 

these time step counts into visibility ratings that can be compared to the human 

data. In the spirit of the simplicity that has driven the creation of the model so far, 

we normalise the time steps by a linear factor. To keep the range plausible and 

data driven, the value we selected was the most visible stimulus in the entire 

experiment, and divided each visibility rating by this in order to give a “percentage 

visibility”. Additionally, although this method gives us a continuous subjective 

report, for the purposes of comparison with the human data from (Pincham, 

Bowman et al. 2016), it is necessary to be able to divide these subjective reports 

into the discrete cases of high/low visibility. Unfortunately, we are unable to be 

sure that each lag contains the full range of possible subjective reports, making 

setting a universal splitting point for high and low visibility across all lags 

potentially problematic. Fortunately, what we are interested in is only the 

respective behaviour of higher and lower visibility trials – for these purposes, it 

does not especially matter where we make this split, as long as this comparison 

can be robustly made. In order to facilitate this, we therefore split our data into 

high and low visibility for each lag separately by splitting around the mean 

average visibility by lag. This does mean that the meaning of high and low 

visibility bins changes by lag, but since our comparison of interest is a qualitative 

comparison with the behaviour of the human EEG data, this is acceptable. In this 

way, we provide a simple index of both continuous and binned subjective report 

that requires no changes to the original model. 

Gaussian noise 

The model, as we have described it so far, assumes that subjective experience is 

deterministically defined by the number of time steps – a given number of time 

steps always corresponds to the same subjective visibility report. For the 

purposes of testing our hypothesis about the respective behaviour of high and 

low visibility ERPs, this is suitable because it provides the best possible contrast 

of these behaviours. However, the brain is a noisy biological system; 

consequently, we add noise to the visibility report of the model. Specifically, we 

set the visibility rating of the model to be additionally dependent on a Gaussian 

distributed error term. This error is initially set by randomly sampling from a 

Gaussian distribution with mean of zero time steps and a standard deviation of 
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30 time steps. Since adding such an error may potentially lead to post-noise 

visibility ratings that are negative or exceed the unnoisy maximum visibility, we 

set a floor and ceiling on post-noise values. Any data point that would have its 

visibility reduced below 0 will be set to 0, and any that would have its post-noise 

visibility increased above the unnoisy maximum will be set to that maximum. 

This is a sensible constraint: whatever uncertainty one maintains about their 

percept, their report will never fall short of an unseen report, or exceed a maximal 

report. 

A significant advantage of adding this noise is that we also no longer need to 

worry about each of our lags containing the full range of visibility bins – this is 

almost assured. For this noisy model, we therefore attempt to provide a universal 

definition of high and low visibility across all lags, allowing the results to be more 

directly comparable with one another. In order to keep the data driven nature of 

the point, we once again choose it from the data. Since we must now account for 

variation in visibility across lags as well as within lags, we instead define it as half 

of maximal visibility (pre-noise). 

Results 

In order to validate the model, we compare with data from two human 

experiments. The first is the behavioural data we have analysed in previous 

chapters. We wish to see if the pattern of behaviour in the virtual data resembles 

that of the human data. For this purpose, we will compare the behaviours of raw 

T1 Accuracy, T2|T1 Accuracy and visibility rating across the two. The second 

experiment is an EEG dataset, for which we will compare the virtual ERPs 

generated from the model to ERPs from the human data for high and low visibility 

results. Human EEG results are taken from the second experiment from (Pincham, 

Bowman et al. 2016), the follow-up to the behavioural data set we have used in 

the previous chapters. If our hypothesis is correct, then the pattern of behaviour 

that is seen in the human data, a reduced amplitude, shortened P3 for low 

visibility targets versus high visibility targets, should also be seen in the virtual 

ERPs. 
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Deterministic 

 

Figure 40) A comparison of T1 Accuracy, T2|T1 Accuracy and T2 subjective visibility from human 

data (left), and virtual, simulated results (right), for the direct readout. In this case, the length of 

the P3 is proportional to subjective report. (Note, the T1 Accuracy and T2|T1 accuracy show some 

very minor differences to that presented in (Pincham, Bowman et al. 2016). This is because T2 

accuracy in the original paper was in fact presented as the accuracy of the conjunction of T2 and 

T1, whereas here we display the conditional probability of T2 given T1. None of our findings are 

impacted by the difference. 

 

Figure 41) A comparison of human ERPs and virtual ERPs generated from the model for high and 

low visibility, at Lag 1 for the direct readout model. On the left, we make the comparison of human 

Lag 1 vs Virtual Lag 1 and on the right we compare human Lag 1 versus Virtual Lag 2. Note that 

the human data seems to best fit a combination of the virtual Lag 1 and Lag 2. 
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Figure 42) A comparison of human ERPs and virtual ERPs generated from the model for high and 

low visibility, at Lag 3 for the direct readout model. On the left, we make the comparison of human 

Lag 3 vs Virtual Lag 3 and on the right we compare human Lag 3 versus Virtual Lag 4.  

Stochastic 

 

Figure 43) A comparison of T1 Accuracy, T2|T1 Accuracy and T2 subjective visibility from human 

data (left), and virtual, simulated results (right), for the noisy readout. In this case, the length of 

the P3 is not perfectly proportional to subjective report, and subject to a noise term. (Note, the T1 

Accuracy and T2|T1 accuracy show some very minor differences to that presented in (Pincham, 

Bowman et al. 2016). This is because T2 accuracy in the original paper was in fact presented as 

the accuracy of the conjunction of T2 and T1, whereas here we display the conditional probability 

of T2 given T1. None of our findings are impacted by the difference. 
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Figure 44) A comparison of human ERPs and virtual ERPs generated from the model for high and 

low visibility, at Lag 1 for the noisy readout model. On the left, we make the comparison of human 

Lag 1 vs Virtual Lag 1 and on the right we compare human Lag 1 versus Virtual Lag 2. Note that 

the human data seems to best fit a combination of the virtual Lag 1 and Lag 2. 

 

Figure 45) A comparison of human ERPs and virtual ERPs generated from the model for high and 

low visibility, at Lag 3 for the noisy readout model. On the left, we make the comparison of human 

Lag 3 vs Virtual Lag 3 and on the right we compare human Lag 3 versus Virtual Lag 4.  

Discussion 

Behavioural Data 

The first comparison we make is between the behavioural results, specifically, we 

compare the respective report accuracies and subjective visibilities predicted by 

the read-out enhanced STST model to those from the human data. The results 

from this can be seen in Figure 40 and Figure 43. Overall, there is a strong 

similarity between the two. Though the model demonstrates more extreme 

behaviour than the human data, the qualitative pattern of results is very similar – 

the ordering of all points is almost identical. One notable difference is that the 

STST model is simulating a slightly more difficult task than the human data – 
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report accuracy lower by around 10%. Perhaps because of this, the STST model 

also demonstrates a more marked downturn in subjective report at earlier lags 

than the human data. Another difference is the behaviour of T1 accuracy between 

the two models. In the model data, T1 accuracy decreases below the level of 

T2|T1 accuracy, while in the human data it stays constant at Laasdasdg 1. For 

this, we note that the experimental paradigm employed in (Pincham, Bowman et 

al. 2016) is somewhat different to that modelled by STST in 2007. In particular, 

the Pincham et al. experiment contains a colour-marked T1, making identification 

of the first target an easier task than the second. In contrast, the STST model is 

set up so that identification of T1 and T2 are both equally difficult tasks. 

EEG Data 

We also compared the virtual ERPs generated by the STST model with the human 

ERP data for both of the lags sampled in the human data, Lags 1 and 3. For each 

of these, we present two sets of model ERPs, comparing the human ERPs to the 

model ERPs at the same lag (left) and the subsequent lag (right). The most 

significant difference between the two is the respective late dynamics of STST 

compared to the human data, with the STST ERPs showing differences to the 

human data from approximately 600ms onward. This occurs more distinctly at 

lag 1. This appears to be because of a fixed timing offset of the human data 

versus the EEG data. The human data best reflects a combination of the two 

model lags – features of both the identical lag and the offset lag are present in 

each case. 

One thing we do note is the (relatively) poor match of the model at lag 1 to the 

human data at lag 1 compared to other results, which we argue is likely to be 

occurring as a result of a limitation of the STST model. In the STST model, it is 

the blaster that provides the strong enhancement that allows items to be bound 

into a temporal context (i.e. to a token). After this initial enhancement, the blaster 

is shut off by a strong inhibitory signal to prevent multiple items being bound to 

the same temporal context. Unfortunately, this shut down also has the effect of 

creating a hard limit on the length of the P3. In this sense, the STST model 

provides strong constraints on the upper limit of the length of the P3, and the 

effect is most noticeable at lag 1 because of the close proximity of the two 

targets. An interesting future direction to take this research may be to implement 
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the same measure in the eSTST model, which, due to differing blaster 

functionality, may not be constrained in the same way.  

Regardless of this, there is still a strong qualitative fit between the STST data and 

the human data. It is also important to note that we have taken the STST model 

exactly as it was formulated 10 years ago, i.e. in Bowman & Wyble, 2007. Most 

notably, we have not refitted the parameters of the model in order to improve the 

match to the experimental data presented in this paper. This surely means that 

the match between model and experimental data is not going to be quantitatively 

perfect. In this respect, it is perhaps only reasonable to just expect a qualitative 

match between model and experimental results. In this context, the quality of 

match to the empirical data is, we would argue, impressive. Most importantly, the 

simulations we have run with STST have provided a proof of principle that the 

explanation presented in Figure 38 and Figure 39 for why report accuracy and 

subjective visibility diverge at lag-1 is tenable. This explanation rests on the 

concept that encoding into working memory can proceed in parallel, but 

subjective experience cannot. The natural electrophysiological correlate of this is 

a time-extended P3 when both T1 and T2 are consciously perceived, as opposed 

to just T1. This is what we observe in our data (See, e.g. Figure 41 and Figure 42). 

There is also the question of the use of the P3(b) as a correlate of subjective 

experience. This has been addressed quite extensively (especially with respect to 

this dataset) in (Pincham, Bowman et al. 2016), however we replicate the 

argument here (albeit largely quoting the original) because of its importance. 

Overall, in our specific dataset, there seems little evidence that the P3 is 

responding to report accuracy (Pincham, Bowman et al. 2016). However, there are 

a wide range of findings that would dispute this conclusion in the literature (Pitts, 

Padwal et al. 2014, Shafto, Pitts 2015, Squires, Hillyard et al. 1973). Our 

experiment though has a number of differences to these previous studies, which 

presumably explain the difference in findings. We discuss these in turn. 

1) The stimuli that were being assessed for perceptual experience in these 

previous studies were typically drawn from a very small set, e.g., a 

detection task in Squires et al. and two shapes in Pitts et al. Consequently, 
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the perceptual judgement/encoding into WM processes were much more 

informationally rich in our study (i.e., identify a letter). 

2) The elegant demonstration by Pitts and colleagues (Pitts, Padwal et al. 

2014, Shafto, Pitts 2015) that the P3 in their experiment was modulated by 

task set, does not naturally carry over to our setting. This is because task 

set, certainly in respect of instruction, is constant throughout our 

experiment. What modulates the P3 in the current study is behaviour 

(specifically High vs Low visibility). 

3) (Pitts, Padwal et al. 2014) highlighted a number of confounds associated 

with studies of conscious experience that mean that post-perceptual 

processes are not equated across conditions. These confounds are, at 

least to a large extent, resolved in our experiment. In particular, our key P3 

comparison contrasts subjective visibility levels, while report accuracy is 

controlled, i.e., the “same” identity report (although not, of course, the 

same subjective visibility report) is made for both High and Low subjective 

visibilities.  

Additionally, the P3 in RSVP may present differently to theP3 in paradigms 

without a rapid sequence of repeated onsets. Importantly, the key P3 finding in 

RSVP previous to this paper was that a P3 is present when an item breaks 

through into awareness, and is reported. But to all intents and purposes, the P3 is 

not present at all when it is not correctly reported in the current study. Our 

specific claim in this paper is about the P3 as it manifests in this “fringe of 

awareness” context. 

Stochastic vs Deterministic 

We created two different interpretations of readouts from the model, one in which 

the number of time steps corresponds directly to visibility, and one which 

subjects this readout to noise. The direct readout from the model provides the 

clearest possible examination of the high vs low visibility hypothesis, while the 

noisy readout creates a potentially more realistic situation. As expected, the 

direct readout does provide a much clearer contrast between high and low 

visibility ERPs. The noisy readout, in comparison, has this sharp distinction 

reduced. This is entirely expected; not only does the noisy model reduce 

discriminability between high and low visibility trials through the added noise, but 
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the direct readout model benefits from setting a high/low visibility split for each 

lag individually. Perhaps slightly less expected, the noisy readout does however 

produce behavioural results that more strongly resemble the human data. 

Though both readout methods show much more polarised results than that of the 

human data, this effect is less severe in the noisy readout model. 

While the direct readout was a useful model for informing our hypothesis, in 

general, we advocate the use of the noisy model. Specifically, the choice to set 

different thresholds for the high/low visibility for the direct readout at each lag 

was informative in this specific instance, but it makes any generalisation of the 

results difficult. Furthermore, the deterministic, perfect translation of P3 length to 

subjective report is a strong assumption that may not fit well into a wider 

theoretical context. The noisy readout model fixes both of these issues, and 

displays similar behaviour. 

Dissociations and sight-blind recall 

In the previous chapters, we demonstrated evidence for a dissociation between 

working memory encoding and subjective experience during the attentional blink. 

Here, we have provided one theoretical interpretation of the results, which we 

have attempted to validate through computational modelling. It is easy to see 

that the model results are consistent with the sight-blind recall hypothesis. One 

only needs T2 to be entirely subsumed by the presence of a large T1 for a report 

of zero subjective visibility to occur for an item that the model has encoded into 

working memory. In terms of dissociations, the same result implies that a 

dissociation exists, and that it is of working memory encoding as a necessary, but 

not a sufficient condition for subjective experience. We are able to come to this 

conclusion more strongly because the relationship between internal cognition 

and report in the model is not subject to uncertainty in the same way as it is for 

human data. Instead, it is a parameter under our control, not an uncertainty to be 

accounted for. 

Interestingly, the model as described would also seem to be able to theoretically 

accommodate the dual effect, high subjective experience in the absence of 

working memory encoding. This effect is unlikely to be large, but so far as it is 

possible for the model to generate a P3 for targets that are not encoded into 

working memory, so too is it possible to generate a subjective report of them, and 
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so too is it possible to generate a subjective experience of an unencoded target. 

Though we have not examined it specifically in this chapter, a theoretical 

situation that might cause this to arise in the model would be a strongly active 

target that somehow fails to make it into working memory. This may arise if a 

highly active target occurred while the blaster was being held low. This target 

would have to be sufficiently active to cause a significant and elongated P3, but 

not active enough to push through the blaster. Such a situation may arise at a 

very short SOA with closely placed targets. This is an interesting prediction of our 

model that bears further study. 

Though there is no direct evidence in our own data that encoding-absent 

experience can occur, such a finding would sit very well with the phenomenal 

consciousness and associated findings that we discussed in the literature review. 

If one were able to find evidence of working memory encoding absent experience 

alongside sight-blind recall, this would indicate that as well as working memory 

encoding being an insufficient condition for subjective experience, it is also an 

unnecessary condition. Put another way, this would be evidence working memory 

encoding and subjective experience would be highly correlated but mutually 

independent processes. 

Conclusion 

In this chapter we have attempted to explore one possible interpretation of the 

data from the previous two chapters – that working memory encoding of targets 

occurs in serial, while their subjective experience occurs simultaneously. Our tool 

of choice for this exploration is computational modelling, and we achieved this by 

building on top of an existing model of the attentional blink, the Simultaneous 

Type/Serial Token model. The results from our model strongly match those from 

the human data, indicating that there may be some truth to the hypothesis we 

have put forward. 
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7. Meta-Experience in the Attentional Blink 

Abstract 

In previous chapters, we made use of state-trace analysis to demonstrate 

evidence for a dissociation between working memory encoding and subjective 

experience in the attentional blink, and explored one theory of these results 

through computational modelling. However, all of the work we have so far is 

based upon an implicit assumption that the averaged behaviour of our data is 

representative of the trial-by-trial behaviour in the data. That is, it has been 

assumed that the general trends of the data and the proposed sight-blind recall 

effect have been the result of a more generalised “metacognitive” (or “meta-

experiential” in our case) failure than the statement of sight-blind recall we have 

currently. This would amount to participants at early lags becoming 

systematically worse at subjective report when they correctly identified stimuli. 

To avoid confusion of nomenclature, since our data measures “subjective 

experience” instead of “confidence” of the second target, which a metacognitive 

measure would normally make use of, we refer to metacognition measures 

calculated over our data as “meta-experience”, and “metacognitive” effects as 

“meta-experiential”. 

In this chapter, we examine this assumption of a “meta-experiential” failure, both 

because it is theoretically interesting in its own right, and because it is an 

opportunity to critically appraise the computational model of subjective report we 

developed in the previous chapter. One of the tools we use to achieve this is a 

measure of metacognition that allows us to quantify the accuracy/subjective 

visibility coupling across lags. While there exist several methods for this 

calculation, none are applicable outside of detection tasks. One of the 

contributions of this chapter is therefore the development of a general method by 

which metacognition can be indexed for a more general class of identification 

tasks. Further,  

Introduction 

Previously, we have studied the possibility of a dissociation between working 

memory encoding and subjective experience during the attentional blink. In 
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previous chapters, we concluded that there was evidence that such a dissociation 

exists, and that it potentially arises from a phenomenon we call sight-blind recall, 

in which participants report minimal subjective visibility despite correctly 

reporting targets at a rate significantly above chance. Furthermore, based on 

these results, we built a computational model of subjective experience during the 

attentional blink that predicted the behaviour of the human data. However, our 

current analysis is not conclusive. Implicitly, so far, we have been making the 

assumption that the general trend of subjective report decreasing at early lags 

while report accuracy increases implies that the coupling between report 

accuracy and subjective report is worse at early lags. Further, consistent with the 

sight-blind recall interpretation, we have also been assuming a direction for this 

effect – items in correct trials are experienced less well as lag decreases.  

Discarding briefly our prior expectations, our results are not necessarily logically 

consistent with this conclusion. An equally valid (if perhaps unlikely) alternative 

hypothesis on the basis of our evidence is that, despite a shift in average 

behaviour, subjective reports actually match better with objective reports at early 

lags, and are completely decoupled at late lags. This may also produce a 

dissociation that could be identified by state-trace analysis, and would not 

necessarily be distinguishable at the level of average behaviour. Few would argue 

this probable, but this thought experiment demonstrates that we have been 

making assumptions about how our data is behaving without first confirming 

them.  

Theoretically, this behaviour is also of interest. It is potentially highly informative 

for theories of the attentional blink and indeed, a generalised meta-experiential 

failure of the type we have been implicitly assuming exists in the attentional blink 

would be a compelling finding. We may also find, for example, a meta-experiential 

impairment occurring not just as an impairment of subjectively experience 

correctly identified stimuli, but also as a consistently high visibility report of 

stimuli that are incorrectly identified. Depending on the results, such behaviour 

might be argued to indicate either some kind of illusory percepts (Maniscalco, 

Lau 2012), or the sight blind recall previously discussed. This also provides us an 

excellent opportunity to test the computational model that we developed in the 

previous chapter. If the model is valid, then it should be able to predict all the 
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subsequent meta-experiential behaviours that we observe in this chapter as well 

as the results in the previous chapter, with no further additions or modifications 

to its code. 

One of the problems we have described as causing our uncertainty about the 

parity between accuracy and subjective report is the problem of averaging – 

based on averages we only know the mean behaviour, we do not know how 

accuracy and subjective report correspond on a trial-to-trial basis. One simple 

approach that responds to this problem is to assess the average visibility ratings 

for correct and incorrect trials separately. If our assumptions about generalised 

“meta-experiential” failure existed along the lines of sight-blind recall, we would 

expect to find that correct trials have lower visibility ratings as targets approach 

one another, while the average visibility rating for incorrect trials might remain 

unchanged. Equivalently, we might look at accuracy for high and low visibilities 

across lags. If the same hypothesis is true, we would expect the rate of 

correctness for low visibility trials to increase as lag decreases.  

Ideally, we would like a measure that quantifies coupling, and can be examined 

across lags. Fortunately, what we are describing has already been studied, and 

corresponds to the measures of metacognition described in the metacognition 

section of our literature review. In the literature review, we discussed several 

different approaches to the calculation of metacognition that are prominent in the 

literature, and they are (almost) ideally suited to being applied in our case. 

Unfortunately, despite the strength of these approaches, they are near uniformly 

united by having a basis in Signal Detection Theory (SDT) (Fleming, Lau 2014, 

Maniscalco, Lau 2012). This is problematic; SDT based approaches are only 

suitable when the Type 1 task is either currently a detection task, or can be 

broken down into an analogous binary choice. This is not the case in our 

attentional blink paradigm, which is an identification task with 21 different stimuli 

and 21 different outcomes. We therefore develop our own approach to the 

calculation of metacognitive sensitivity that captures the benefits of these 

existing approaches, but without the limitation to detection (binary choice) tasks. 

Metacognition – A General Approach 

As discussed, while existing SDT-based approaches work well for tasks to which 

they are applicable, they are difficult to generalise. A large part of this problem is 
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that the SDT framework is so dependent on the true-positive/false-positive rates 

that are calculable in a binary task in order to evaluate sensitivity. Generalising 

these measures to     outcomes is theoretically possible inside the SDT 

framework (Ashby, Soto 2015), but rapidly loses its intuitive meaning (Thomas 

1999). Furthermore, it causes the problem to explode in complexity – 

discriminability becomes dependent on 
 (   )

 
 different quantities and most 

importantly this causes us to lose any simple analogy to the key    measure that 

embodies sensitivity (Thomas 1999). It also calls into question the key 

assumptions underlying a simple SDT model – is it really plausible to model 21 

different letter stimuli as choices along a single decision axis? If not, our problem 

rapidly becomes yet more complicated. 

In light of this, we propose that whatever measure we use for discriminability, it 

must fundamentally be simple - the complexity of calculation cannot grow in the 

way described above. Equally, it must be a measure of discriminability 

uncontaminated by bias. Our method of choice is Discrete Mutual Information 

(MI). MI calculates sensitivity (or discriminability), in a sense, bias free; it is clear 

that MI is not concerned with the criteria participants use to distinguish stimuli or 

how well responses correctly correspond to stimuli, rather it assesses how well 

participants’ responses discriminate between the stimuli presented. Even further, 

it measures it in units with intuitive meaning and high interpretability – bits of 

information. 

Mutual Information 

Unless otherwise specified, we will use the term mutual information to refer to 

discrete mutual information, which is an information theoretic measure that 

quantifies the amount of information that one (discrete) probability distribution  , 

tells us about another (discrete) probability distribution  . In this section, we will 

describe, from the ground up, what information means in this context, and how 

this measure of mutual information can be constructed from this definition. 

We begin with the concept of self-information or information content, which 

defines the amount of information gained from any particular outcome    from 

the discrete probability distribution  . More formally, let   be a discrete 
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probability distribution with    a result of sampling   with  (  )      with 

           , then the self information of    is: 

 (  )          

Intuitively, the rarer the chance of    occurring, the more information is conveyed 

by its appearance. Self-information quantifies this, in units of information. The 

specific unit of information used depends on the base of the logarithm chosen in 

the calculation. In this paper, we opt for the use of bits of information based on a 

logarithm of base 2. For an event with two equally likely alternatives    (      ),  

 (  )    . This means that one bit of information corresponds to the ability to 

distinguish two equally likely alternatives.  

This defines the amount of information from a single event, but what we are 

interested in in mutual information is the amount of information a system of 

events carries about another system of events. In order to progress toward this, 

we next define the amount of information transmitted from not just a single event, 

but across sets of events. This measure is known as entropy. To formalise, given 

a set of events  , the entropy of this set of events is the expected value of the self 

information across all events, i.e. 

 ( )   ∑       

  

 

An interesting facet of entropy is that while it is, by construction, a measure of 

expected information transfer, it can also be thought of as a measure of disorder. 

In particular, entropy is maximal when the underlying distribution of    is uniform, 

and minimal when it is concentrated into one single point. It is also worth noting 

that entropy can be defined for joint probability distributions, and is defined 

identically in this case. 

With the definition of the information carried not just by a single event, but by a 

set of events as a whole, we can now go on to define the mutual information that 

one set of events carries about another. Let   and   be discrete probability 

distributions with joint distribution (   ), then the mutual information of   and    

is defined as: 

 (   )   ( )   ( )   (   ) 
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That is, the amount of information carried by each distribution on its own, less the 

information that can be gathered from the joint distribution of the two on its own.  

For example, consider a participant presented with one of four letters chosen 

uniformly at random, with the task of identifying them. We wish to calculate the 

information carried by the responses (R) about the stimuli (S),  (   ).There are 

four letters that are all equally likely to be presented, so the stimulus distribution 

carries 2 bits of information(∑              (            )   ). If the 

participant correctly identifies every letter, the response and joint distributions 

will also carry 2 bits of information, so  (   )          bits. This is an 

intuitive result – if responses perfectly match stimuli then by knowing 2 bits of 

information about the responses, we know 2 bits of information about the stimuli. 

Consider the converse, our participant responds completely at random. In this 

instance, our stimulus and response distributions would still carry 2 bits of 

information, but this time the joint distribution will carry 4 bits of 

information ∑               .
 

  
    

 

  
/    . Mutual information will then be 

 (   )          – another intuitive result. If responses are completely 

uncorrelated with stimuli, then knowing the responses gives us no information 

about the stimuli. We could also construct examples in which participants 

correctly identify the solution some of the time and in this case  (   ) would lie 

proportionally between these values. 

From Mutual Information to Metacognition 

In the context of our experiment, we apply mutual information to 

stimulus/response correspondence. However, it is unclear how to go from mutual 

information as we have set it out now to a true measure of metacognitive 

sensitivity. Somehow visibility must be brought into the equation. We could 

approach this in a similar way to the SDT methods discussed previously, for 

example calculating a “Meta MI” analogous to the “Meta d’” we reviewed in the 

literature review. However, we feel that such methods are likely to be 

overcomplicated; while such methods were justified in the Meta d’ case, it only 

came to using these complex measures as an alternative to simple measures 

because of complicated facets of SDT itself (Barrett, Dienes et al. 2013), 

particularly the violations of the strong assumptions that SDT makes (Fleming, 

Lau 2014); for example the normality of data. We have no reason to believe any 
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similar problems apply to our measure of MI, so we therefore opt for the simplest 

option possible; we divide our visibility report into high/low bins (NB: there are 

other good reasons for wanting to do this, see below) and take our Type 2 

metacognitive measure for any given condition as the difference in Type 1 mutual 

information between the two. 

Metacognition - Challenges 

Challenge 1 – Accurate Mutual Information Estimation 

The application of this Mutual Information measure is not without its challenges. 

A problem with our analysis as it stands is that it relies on an estimation of 

mutual information based on (biased) estimated entropy calculations. The 

calculation of true, unbiased discrete entropy and therefore mutual information 

between two variables is simple, assuming that one has perfect knowledge of the 

probability distributions of those variables. In practice, we can rarely claim such 

knowledge and must instead rely on approximating these probability distributions 

by repeatedly taking a finite number of samples of them (Paninski 2003). 

Consider our case of stimuli and responses. In order to calculate the mutual 

information between these two measures perfectly we would have to have perfect 

knowledge of the probabilities of giving each response to each stimulus. Clearly 

we do not have this, and must estimate these imperfectly from the data we 

collect, leading to our estimate of the entropy or mutual information of this 

distribution to be imperfect. To quantify this imperfection, we introduce the 

measures of bias ( ) and variance ( ). Bias measures how far our entropy 

estimate is from the true value, it is the expectation of the deviation of our 

entropy estimate from the true value. Variance measures how much our entropy 

estimate varies, and is defined as the expectation of the squared deviation of the 

entropy estimate from its mean. 

Clearly, by the law of large numbers, one way we can improve our estimate of 

entropy (and decrease these measures) is to improve our estimate of the 

probability distribution from which it is calculated by basing it on a larger number 

of samples from the true distribution. In this instance, we could simply set some 

acceptable bias and variance levels for our entropy calculation, say    and   , and 

increase   until both      and     . However, in practice,   is often fixed, so if 
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we wish to approach some specific level of acceptable deviation, we must rely on 

other approaches to reduce the bias and variance. 

Before we discuss these approaches however, we need to establish a practical 

method of testing them. We’ve established the metrics we’ll use to compare our 

different approaches,   and  , but need to be able to calculate and compare these 

between methods. In order to do this, we need a distribution   that we can create 

random samples  ̂ 
  from, and whose entropy  ( ) can be calculated analytically. 

From this, we can calculate the deviation of our entropy estimator  ̂( ̂ 
 ) from the 

true entropy as  ̂( ̂ 
 )    ( ), from which we can calculate estimates of our   

and   by looking at the expectation for over all samples. For our  , the normal 

distribution suits this role perfectly: creating random samples from the normal 

distribution is trivial, and both entropy and mutual information can be calculated 

for normal distributions knowing only their mean and variance (Misra, Singh et al. 

2005). There is a small obstacle for this method, in that these calculations strictly 

only apply for the calculation of entropy over the continuous normal distribution, 

and our interest is in discrete entropy over discrete distributions. However with a 

discrete distribution defined over a reasonable number of bins, the difference is 

acceptably small (Beirlant, Dudewicz et al. 1997). In our testing we set the 

number of bins to be the same number of bins we use in our analysis – 21. 

Our testing procedure for a given approximation method  ̂( ̂ 
 ) is then as follows. 

We start with two normal distributions   and   with known            , and 

correlation  . We then calculate our known marginal and joint entropies for 

normal distributions, as well as our MI as follows (Misra, Singh et al. 2005): 

 ( )     (  √   ) 

 ( )     (  √   ) 

 (   )       (  )  
 

 
   (|   |)  

  (   )    
 

 
   (    ) 

|   |                                                                                 
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We then set a range of sample sizes   *       + over which we will evaluate 

our bias, and for each   , we take 10 random samples of size    from our   and   

for each of 10 different correlations   *                 +. This range of   is 

selected to provide a range of conditions under which to evaluate MI. 

Conspicuously, it is missing large values of  , but this is a requirement borne of 

our use of a continuous estimator of discrete mutual information: a large value 

of   demands that a support size of the joint distribution is proportionally shrunk 

across one diagonal axis. With a finite support size, this means that increasing   

will eventually force the joint distribution to such a small support on one diagonal 

that it is no longer a good approximation of a normal distribution. An illustration 

of this can be seen in Figure 46. Empirically, we find   exceeding 0.6 begins to 

cause this, and thus restricted our   a commensurate amount. From these values, 

we create our estimated discrete distributions for   and  ,    
̂  { ̂  

     ̂  

  } 

   
̂  { ̂  

     ̂  

  } and evaluate the following: 

  ( )     ̂( ̂  
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  ̂  
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We can then create scatter plots out these errors for each of our sample sizes, for 

each of our calculations, and examine how the pattern of behaviour changes 

between our methods. We can also estimate the bias and variance for each of our 

sample sizes, for each of our comparisons.  However, since we do not have any 

information about any underlying distributions of errors for entropy we favour 

scatter plots for visual presentation. 
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Figure 46) A) A normal distribution with        , B) An (uncorrelated) normal distribution with 
   . Notice that in A), the support size of the distribution across the red diagonal is effectively 
shrunk compared to B). With a discrete and finite number of bins, as ρ increases and the support 
size shrinks, the joint distribution will eventually be supported on so few points on the red 
diagonal that it is no longer a good approximation of a continuous normal distribution. 

The first method for which we perform this examination is the so-called plugin 

estimator of entropy. For this, we simply assume our estimates of   and   are 

accurate, and simply “plug in” the values from our estimated distributions to the 

entropy formula i.e.: 

 ̂      ( ̂ 
 )   ( ̂ 

 )    ∑     (  )

  

 

Applying our testing procedure to this, results in the following: 

 

Figure 47) Error of the plugin estimator of stimulus, response and joint entropy, and mutual 

information for a range of different sample sizes from 1 to 1000. Response and stimulus 

A) B) 
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entropies are effectively identical, and so stimulus entropy (orange) overlays response entropy 

(red) on the plot. 

This brings us to the demonstration of the fundamental problem we have been 

discussing in this section. Entropy estimation based on finite samples is not only 

biased, but badly so for small sample sizes. In this case, we are evaluating 

samples of between size 8 and size 1200, and in the worst case of our joint 

probability distribution with 441 bins, even at the limit of 1200 samples, our joint 

distribution and MI estimators are still noticeably biased.  

If we consider the practical applications of this for our own work, it is clear we 

have a problem: we have a maximum of 196 trials per participant, that are spread 

across 7 lag   6 visibility bin combinations. Even worse, our trial counts and 

therefore our bias will not be evenly distributed just as trials are not evenly 

distributed across lag   visibility combinations. It is clear that if we were to use 

this naïve estimator in our own work, then our results would suffer from 

noticeable bias.  

One step we can take to improve the situation is to reduce the number of bins the 

data will be distributed across. In the previous chapter, we, for various reasons, 

merged our 6 visibility bins into 2 bins – high and low. Doing this improves our 

situation slightly, averaging around 14 data points per lag   visibility 

combination. However, it is clear from our previous plot, and our next, that 

examines our testing procedure across a more realistic set of sample sizes for 

our data, that our plug-in estimator is still not viable. 
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Figure 48) Error of the plugin estimator of stimulus, response and joint entropy, and mutual 

information for a range of different sample sizes from 1 to 100. Response and stimulus entropies 

are effectively identical, and so stimulus entropy (orange) overlays response entropy (red) on the 

plot. 

In fact, previous results quantify this problem for us. Let   be our number of 

discrete bins and let   be our sample size, then for our plugin estimator, bias 

is     (
 

 
), and variance    (

   ( ) 

 
)  (Paninski 2003). 

One approach to improve our estimator, is simply to subtract this bias out. This is 

called the Miller-Madow correction (Miller 1955). Bias is more precisely 

   

  
  (   ) 

And so the formula for Miller-Madow corrected entropy is (Paninski 2003): 

 ̂  ( ̂ 
 )    ̂      ( ̂ 

 )   
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Figure 49) Error of the Miller-Madow estimator of stimulus, response and joint entropy, and 

mutual information for a range of different sample sizes from 1 to 100. Response and stimulus 

entropies are effectively identical, and so stimulus entropy (orange) overlays response entropy 

(red) on the plot. 

Unfortunately, while this correction might, empirically, provide a small 

improvement over the plugin estimator (Figure 49 vs. Figure 48), bias is still far too 

high to be useful, and analytically, bias and variance still remain  (
 

 
) 

and  (
   ( ) 

 
). A very large class of estimators of entropy suffer from the same 

problem, and have the same asymptotic behaviour. We provide some more 

examples in the appendix, but suffice to say that we need a substantial 

improvement to make any kind of analysis based on entropy viable. 

One result that bears mention at this point is that however we try to improve our 

estimator; there is no “best” estimator of entropy (Paninski 2003). For any 

entropy estimator we may design, there is no universal rate at which the errors go 

to 0; there always exists at least one “bad” distribution for which the convergence 

rate is infinitely worse than our general convergence rate (Antos, Kontoyiannis 

2001). In terms of bias, this places a bound on the bias of any entropy estimator 

we might design:  (
 

√    ( )
)  (Valiant, Valiant 2011, Han, Jiao et al. 2015, Jiao, 

Venkat et al. 2017). 
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When it comes to selecting an alternative entropy estimator that reduces bias to 

acceptable levels, we must also bear in mind that despite merging our visibility 

bins, we are still under-sampled. Specifically, for us,      – even after merging 

bins: in the worst cases, we have considerably less samples than we do bins. 

This is known to make accurate entropy estimation particularly difficult (Valiant, 

Valiant 2011, Han, Jiao et al. 2015, Jiao, Venkat et al. 2017) and limits our choices 

of viable algorithm.  

Given that there is no best estimator, and that we are working in a regime that is 

known to be difficult, in order to evaluate the best estimator, we opt to test 

several estimators that are known to estimate entropy well (particularly for    

 ). For this, we consider three different estimators: the JVHW estimator (Jiao, 

Venkat et al. 2017), the NSB estimator (Nemenman, Shafee et al. 2002) and the 

HS estimator (Hausser, Strimmer 2009). 

The JVHW (Jiao-Venkat-Han-Weissman) is the closest to a minimax estimator 

that exists for entropy. It has been shown that a generalised minimax estimator 

for entropy does not exist (Paninski 2003) for entropy, but the JVHW algorithm 

avoids conflicting with this result by breaking the problem down into two 

domains: an easy “minimax solvable” domain and a hard “minimax unsolvable” 

domain.  When the problem is solvable, optimal minimax rates are achieved, and 

when it is not, results are as close to minimax as possible (Jiao, Venkat et al. 

2017). 

The NSB and HS estimators take another approach, and are based on very similar 

ideas. Classically, entropy estimators are biased downward because, with fewer 

data points, it is difficult to capture the underlying “smoothness” of the 

probability distributions from which entropy is being estimated. Both of these 

methods attempt to counter this by performing “shrinkage” toward a uniform 

distribution, and decreasing this shrinkage as   grows relative to   and estimates 

of the probability distribution become more accurate. Both also estimate the 

diversity of the underlying probability distribution based on “coincidence 

counting” instead of raw bin counts. That is, they count the number of 

occurrences of multiple samples in the same bin, versus the number that would 

be expected. This is particularly advantageous in the under-sampled regime 

because of the “birthday paradox”. The birthday paradox is a counterintuitive 
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result in which the number of people in a room who are expected to share a 

birthday is unexpectedly high for even a small number of people. Similarly, we 

might expect datapoints to share a bin after a relatively small number of samples: 

we can expect coincidences will begin occurring after approximately √  or fewer 

samples, allowing the capture of the diversity of the distribution with far fewer 

data points (Nemenman 2011). 

The only real differences between the methods are how they achieve this. The 

NSB method approaches this in a Bayesian manner: it defines a mixture prior that 

is approximately uninformative over the distribution of entropy. Conversely, the 

HS method takes a frequentist approach to the problem, using James-Stein 

shrinkage to pull the estimate of the underlying distribution toward the uniform 

one. It works by taking a linear combination of the plug-in probability distribution 

and the uniform probability distribution, based on a shrinkage intensity that 

decreases as sample size increases. Let   ,   - be shrinkage intensity,     
 

 
 

the probability of any bin in the uniform distribution of size  , and  ̂  
  the 

estimator of the probability of bin       for the HS entropy estimation method, 

then: 

 ̂  
      (   ) ̂      

  

And  

 ̂    ∑ ̂  
    ( ̂  

 )

 

   

 

With optimal shrinkage intensity calculable proportional to the variance of  ̂      
 . 

An advantage of this method is that it not only calculates an estimate of entropy, 

but also calculates a fairly accurate estimate of the underlying distribution form 

which it is being calculated.  
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Figure 50) Error of the JVHW estimator of stimulus, response and joint entropy, and mutual 

information for a range of different sample sizes from 1 to 100. Response and stimulus entropies 

are effectively identical, and so stimulus entropy (orange) overlays response entropy (red) on the 

plot. 

 

Figure 51) Error of the NSB estimator of stimulus, response and joint entropy, and mutual 

information for a range of different sample sizes from 1 to 100. Response and stimulus entropies 

are effectively identical, and so stimulus entropy (orange) overlays response entropy (red) on the 

plot. 
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Figure 52) Error of the HS estimator of stimulus, response and joint entropy, and mutual 

information for a range of different sample sizes from 1 to 100. Response and stimulus entropies 

are effectively identical, and so stimulus entropy (orange) overlays response entropy (red) on the 

plot. 

Overall, despite its favourable properties, the JVHW (Figure 50) estimator is clearly 

the worst at the sample sizes we are using. Of the other two, one might argue that 

the NSB estimator (Figure 51) performs slightly better as the HS estimator (Figure 

52) seems to underestimate entropy consistently, but the difference is marginal. 

As a tiebreak, there is at least one theoretically compelling reasons to pick NSB 

over HS for our particular experiment: between the NSB and HS estimators, HS 

provides a much stronger shrinkage. This makes HS ideal in the case in which 

our true underlying distribution is approaching uniform and entropy is high but, 

given that given that our average accuracy is at least 50% at each lag, this is 

demonstrably not the case in our data. Furthermore, with visual similarity 

between the letters that are our targets (Conrad 1964, Gilmore, Hersh et al. 1979) 

it is likely that there will be significant orderliness between our stimuli and 

responses even when participants answer incorrectly. For this reason, HS is likely 

to overestimate entropy compared to NSB for our data, and NSB will likely prove 

the superior estimator for us in practice. 
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Challenge 2 – Statistical Methods 

Having calculated mutual information, we turn to the statistical methods we will 

apply to it. Despite the strong improvements that our NSB entropy estimation 

methods demonstrated over our original plug-in method, there is both a strong 

empirical and analytical reason to believe it is still biased, particularly at the 

sample sizes we are using. This is something that we must account for in 

whatever statistical methods we apply to the data. Another consideration is that, 

for a sample size of 0, mutual information is not meaningfully defined. Depending 

on the situation, one might argue that either 0 or maximum mutual information 

may be a suitable stand-in, but neither is appropriate in our case. Furthermore, 

the missing data is not completely random; it is a result of, e.g. early lags being 

more difficult. This makes any potential data imputation highly complicated. For 

this reason, whatever analysis method we select, it must either be robust to 

missing data, or able to somehow manage this complicated imputation problem. 

With respect to the error of our entropy estimator, there is one saving grace: We 

have, from the previous section, a very good idea of how the bias changes with 

sample size. In particular, we are aware that in the worst case,     (
 

 
) 

(Paninski 2003) or, since our S is fixed at 21,     (
  

 
). With this knowledge, we 

can simply calculate an estimation of the error of  (
  

 
) for each of our samples 

and add this into the model as a covariate of no interest.  

With this in mind and in light of these considerations, we adopt the following 

model; a mixed effects model in which the dependent variable of Mutual 

Information is dependent on the fixed effects of Lag and Visibility and Entropy 

Estimation Error (Referred to as Count), and the random effect of subject. This 

allows us to capture variance between subjects and entropy estimation error as 

covariates of no interest Furthermore, mixed effects is also known to be robust to 

missing data (Krueger, Tian 2004), allowing us to avoid complicated imputation 

methods or the drastic measure of removing subjects who lack data in a bin. To 

make mutual information calculation fairly comparable to report accuracy, we 

only considered trials with T1 correct. 

Previously, it has been discussed that, for this analysis, it is beneficial to merge 

our visibility that is split across 6 bins into 2 bins. Performing either type of 
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analysis provides other compelling reasons to support this action. Since visibility 

is, strictly, a discrete measure instead of a continuous one, in this analysis it is 

dummy coded, and measured with respect to a reference bin. If our data consists 

of only 2 bins, then we can set our reference bin to be the lower of the two, and 

our visibility/lag interaction becomes how our meta-experience measure (High 

visibility – low visibility) varies across lags, allowing us a quick and easy way to 

determine whether our meta-experience measure is significant. 

SESE Model predictions 

In the previous chapter, we examined how the mean average accuracy and 

visibility from the model, and the virtual ERPs in the high/low conditions match 

those from the human data. Though the model tended to produce more extreme 

predictions than the human data displayed, our model results have a strong 

qualitative alignment with the human data. The core thesis of this chapter 

however, is not about the grand average accuracy and visibility across conditions 

changes, but how the correspondence between the two measures varies across 

conditions. In this section, we propose four measures to evaluate this. To provide 

the fairest test of these measures, we evaluate them over the more general 

“noisy” model discussed in the last chapter.  

The first measure is of how mean visibility ratings change separately for correct 

and incorrect trials across lags. Similarly, we also propose to measure how mean 

accuracy changes between high and low visibility ratings, by lag. Though these 

two measures are different ways to look at the same data, it is helpful to display 

both. In particular, our mutual information measure is amenable to comparison 

with accuracy ratings plotted for high and low visibility separately. For the core 

hypothesis of this chapter though, it is more intuitive to compare how visibility 

changes for high and low accuracy separately. In this case, if our sight-blind 

recall hypothesis is borne out by the model, we expect the model to predict that 

incorrect trials will be rated with uniformly low visibility, while correct trials will be 

rated at higher visibility, but less visible as the two targets approach one another 

in time (i.e. lag decreases).  

Our final measure is meta-experience. This presents a challenge as the SESE 

model does not have a concept of target identity; creating a stimulus response 

matrix as described in previous sections is therefore not possible. To work 
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around this, we create a loose approximation of our proposed meta-experience 

measure by substituting in accuracy for mutual information, so our models’ 

meta-experience measure is High Visibility Accuracy minus Low Visibility 

Accuracy. Though only an approximation to our true meta-experience measure, 

we note that since mutual information and raw report accuracy are somewhat 

related, with this method, we can at least establish a loose prediction from the 

model. 

Methods 

Our dataset is the same one as discussed previously. As in previous chapters, 

data was grouped into high/low visibility bins in an identical manner to 

previously, both for the reasons discussed in the previous section, and to make it 

comparable to previous results. 

In order to determine the effects of our factors on Mutual Information, we fitted a 

linear regression mixed models (using the R lme4 package (Bates, Sarkar et al. 

2007)). The dependent measure in all of these models was Mutual Information 

(MI), calculated according to 

  (   )    ̂   ( )    ̂   ( )    ̂   (   ) 

With  ̂    is the NSB estimator of entropy. Any calculations for which it was not 

possible to calculate MI (for example, there was no data) were excluded from the 

analysis. Independent measures, where applicable, were Lag (Lag), Visibility Bin 

(Vis), the Lag/Visibility interaction (Lag Vis), Bin Count (Count, our estimator of 

bias based on sample size – a covariate of no interest), and Subject (Subject). 

Lag and visibility were both categorical variables, and were dummy coded with 

respect to Lag 1 and Low visibility respectively. Lag, Visibility Bin, Lag/Visibility 

interaction and Bin Count were fixed effects; Subject was a random effect on the 

intercept. We wished to perform three analyses: the effect of Lag, the effect of 

Visibility, and the effect of the interaction between the two. This necessitated the 

creation of 5 models, which we denote using the notation from the lme4 package: 

                ( |       ) 

                   ( |       ) 

                    ( |       ) 
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                         ( |       ) 

                                 ( |       ) 

Models were compared using a chi-square test. For the effect of Lag, we 

compared the Lag model with the Null model. For the effect of Visibility, we 

compared the Vis model with the Null model. For the interaction, we compared 

the Full model with both the Main model and the Null model separately. 

Results 

Meta-Experience 

We evaluated three different effects, the effect of Lag, the effect of Visibility, and 

the effect of their interaction. For illustrative purposes, as we measure meta-

experience by lag as the difference between mutual information for high and low 

visibility by lag, we also plot a similar difference in accuracy rates by lag for high 

and low visibility (which we refer to as meta-experienceA ). 

Our Lag model explained only 15% of the Mutual Information variance, and was 

not better than the null model containing only the Bin Count and a random 

subject effect.   ( )                     . The Visibility model on the other 

hand explained 49% of Mutual information variance, and was significantly better 

than the null model containing only the Bin Count and a random subject effect 

  ( )                 . Finally, the Full model explained 63% of the Mutual 

information variance, and was better than both the null model containing only the 

Bin Count and a random subject effect   ( )                 , and a model 

containing only the main effects of Visibility and Lag, the Bin Count and the 

random subject effect   ( )                    . We provide illustrations of 

each of these main effects in Figure 53, Figure 54, Figure 55, Figure 56, and Figure 

57, with a z scored comparison provided in Figure 58 to allow a more direct 

comparison.  
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Figure 53) The effect of Visibility on Mutual Information. To illustrate this as clearly as possible, 

subject has been removed as a factor; MI is calculated based on a stimulus response matrix that 

is constructed across all Subjects. 

 

Figure 54) The effect of Lag on Mutual Information. For illustrative purposes, subject has been 

removed as a factor; MI is calculated based on a stimulus response matrix that is constructed 

across all Subjects. 
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Figure 55) The effect of Lag on Meta-Experience, the difference between MI at high and low 

visibility ratings. For illustrative purposes,, subject has been removed as a factor; MI is calculated 

based on a stimulus response matrix that is constructed across all Subjects. 

 

Figure 56) The effect of Lag on Mutual Information, separately for high visibility trials and low 

visibility trials. The difference between these two is what constitutes our meta-experience by lag. 

For illustrative purposes, subject has been removed as a factor; MI is calculated based on a 

stimulus response matrix that is constructed across all Subjects. 
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Figure 57) The effect of Lag on accuracy, separately for high visibility trials and low visibility trials. 

The difference between these two is what constitutes our meta-experience
A
 measure in Figure 58. 

For illustrative purposes, subject has been removed as a factor; MI is calculated based on a 

stimulus response matrix that is constructed across all Subjects. 

 

Figure 58) A comparison of Accuracy, Mutual Information, Visibility, Meta-Experience and the 

measure we refer to here as Meta-Experience
A
, the difference between high and low accuracy by 

lag. 
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Model 

In this section, we compare the predictions that the (noisy) SESE model from the 

previous chapter makes about accuracy, visibility and meta-experience, to those 

from human data. In the last section, we examined how report accuracy changes 

separately for high and low visibility trials because it bore a strong resemblance 

to our meta-experience measure, but for the purposes of our research questions, 

it is more convenient to examine a different but equivalent question: how visibility 

changes for correct and incorrect trials separately. We therefore present both. 

Correct vs Incorrect 

 

Figure 59) Mean average visibility for correct trials vs mean average visibility for incorrect trials in 

human behavioural data. Mean average visibility for correct trials vs mean average visibility for 

incorrect trials in virtual data generated by the STST model. 

High Visibility vs Low Visibility 

 

 

Figure 60) Mean average accuracy for high visibility trials vs mean average accuracy for low 

visibility trials in human behavioural data. Mean average accuracy for high visibility trials vs mean 

average accuracy for low visibility trials in virtual data generated by the STST model. 
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Meta-Experience 

 

Figure 61) Comparison of Meta-Experience measures for the human data and virtual data. 

Discussion 

Mutual Information  

Our proposed mutual information measure seems to have performed well. As a 

first test by which to examine our mutual information measure, it was reassuring 

to see that mutual information evaluates to be higher on average for high 

visibility trials than low visibility trials with strong significance        , with a 

model that explained a large amount of the data’s variance (49%). This showed 

our proposed mutual information measure is behaving as we would expect, and 

that our meta-experiential measure comparing high and low visibility trials was 

likely to produce a sensible output. 

With respect to the effect of lag on mutual information, a priori, we had a strong 

expectation that our mutual information results would correspond quite closely to 

accuracy results – since improved report accuracy typically leads to improved 

mutual information. In terms of statistical models, we would likely have expected 

the effect of lag on mutual information to be statistically significantly different 

from the null model (since the effect of lag on accuracy is found to be significant 

in (Pincham, Bowman et al. 2016). Statistically, our expectations are not borne 

out, with Lag only approaching significance (         ), and the lag model only 

explaining 15% of the variance in mutual information, though we do note our 

statistical methodology is somewhat different to the approach in (Pincham, 

Bowman et al. 2016).  
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In terms of a qualitative pattern however, in mutual information, we see exactly 

the correspondence with the accuracy results we expected, in a blink of bits that 

strongly resembles the classical attentional blink of accuracy (Figure 54). In fact, 

this similarity goes even further than we might have expected, as the direct z-

scored comparison between the two shows. Interestingly, despite the high 

similarity for the total MI and total accuracy, we observe quite a noticeable 

difference between MI and accuracy for the high and low visibilities separately 

(Figure 56 vs Figure 57). We propose this is the result of accuracy being subject 

to a ceiling effect, whereas mutual information is not limited in the same way. 

A Meta-Experiential Blink 

Although our meta-experience cannot strictly be called “metacognition” because 

our subjective measure is about the vividness of a percept instead of confidence 

(Fleming, Lau 2014), in the context of our research question, it is essentially 

providing the same function: quantifying the coupling between our Type 1 

performance, and subjective report. Examining our results, we find that meta-

experience decreases monotonically with decreasing lag all the way down to lag 

1, at which it shows a particularly sharp turn downwards. This suggests the 

general meta-experiential failure we proposed: regardless of accuracy, 

performance on the second target during the attentional blink, there is a 

generalised and increasing failure to assess this performance as the two targets 

get closer together. 

Our generalised sight-blind recall hypothesis would predict that this is the result 

of participants systematically reporting poor visibility despite high Type 1 

performance. However, meta-experiential results themselves are actually 

consistent with a range of different patterns of behaviour – they themselves only 

entail that there is a difference between MI and high and low visiblities. Purely on 

the basis of this meta-experiential measure it could, for example, be that this 

difference is the result of (1) correct trials being reported with low visibility while 

incorrect trial visibility remains constant, (2) incorrect trials being reported with 

high visibility while correct visibility remains constant, or (3) some mixture of the 

two.  

Our sight-blind recall hypothesis corresponds to the first of these and, if correct, 

entails that mutual information for high visibility should increase at a lower rate 
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than mutual information for low visibility as lag decreases. We would also expect 

a similar effect for report accuracy, with report accuracy for high visibility 

increasing at a slower rate than report accuracy for low visibility as lag 

decreases. Effectively, another phrasing of this is that we would expect the 

average visibility for correct trials to decrease as lag decreases, while the average 

visibility for incorrect trials would decrease at a slower rate or not at all. Both 

these last two formulations are informative despite being very similar; one 

provides an interesting contrast to our meta-experience measure, while the other 

is more interpretable in the context of our putative sight-blind recall findings. 

All of these effects can be seen vividly in Figure 59, Figure 60, and Figure 61. 

Notably, it is compelling that the visibility for incorrect trials consistently stays at 

a low but non-zero value across lags, but the average visibility for correct trials 

decreases all the way down to lag 1. Conversely, we see accuracy performance 

for high visibility trials at ceiling, while the accuracy performance for low visibility 

trials increases. Interestingly, despite the similarities in behaviour between report 

accuracy and mutual information, their respective behaviours for high and low 

visibility are not identical (Figure 56 vs. Figure 57). This is particularly interesting 

in light of our previous discussion of the similarities between the overall mutual 

information and accuracy behaviour. We propose that this is the result of the 

ceiling effect which limits report accuracy, but does not necessarily limit mutual 

information in the same way. 

Odd perception, not poor perception 

Previously, when discussing our state-trace analysis, we have discussed order 

errors as a potential confound for our results. While we have discussed why this 

is unlikely to be a confound in our case, a potential criticism that is pertinent to 

our current results and highly related is that participants may be reporting low 

subjective visibility of the second target not because they perceived it poorly, but 

because their percept was odd or unusual in some way. In this case, it is likely 

that participants may “err on the side of caution”, and simply report low visibility. 

To some extent, this is exactly the kind of confound we attempt to avoid by using 

SDT based approaches, and the same goes for the extended method we discuss 

here. Further, one thing that stands against this in general terms, is the low rate 

of order errors in this data. If one is receiving confusing percepts, we would 
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expect this to be reflected in reports of accuracy as well, be it in complete failures 

of report in which targets are not correctly identified, or partial failures in which 

targets are bound to the wrong context. In our data, we see neither of these 

things.  

SE/SE model predictions 

As well as analysing meta-experience, an important contribution of this chapter 

was comparing how the predictions made for the measures proposed in this 

chapter based on the (noisy) SESE model correspond to the human data. Despite 

no changes having been made to the model, its predictions correspond well to the 

human data though we note the trend, as previously, of the model tending to 

predict more extreme behaviour than the human data ends up reflecting (Figure 

59, Figure 60 and Figure 61, virtual data vs. human data).  

One outlier in terms of behaviour is that the models’ mean accuracy for high and 

low visibility conditions does not match the human data quite so closely (Figure 

60). However, in this case, it is interesting to also compare the model to not just 

raw accuracy, but to mutual information by lag Figure 56. We find that the model 

more closely matches our human MI than it does the human accuracy. In 

retrospect this likely occurs because accuracy performance for high visibility 

trials in the human data is at ceiling, while the model, by design, is not. Since 

mutual information is strongly related to accuracy, but also not subject to a 

ceiling effect in the same way, it is perhaps not surprising that it matches the 

behaviour of the model better. Despite our model predictions not quite perfectly 

predicting the human data, the “meta-experience” predictor that results from it 

still matches the human data quite closely (Figure 61). Perhaps the only notable 

difference is that the model does not predict such a sharp down turn at lag 1 as is 

seen in the human data. Overall, considering that we made no modifications to 

the existing model in order to accommodate these new measures, it is highly 

encouraging that it still robustly predicts these new measures.  

Conclusion & Future Work 

In this chapter, we attempted to validate an implicit assumption that we had been 

making throughout this whole thesis – that the average behaviour of our 

experiments was approximately reflected in the trial-by trial data too. While there 

existed several valuable methods for quantifying this kind of correspondence, 
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none were suitable for our data and so we created our own method for evaluating 

this. Furthermore, through these experiments, we noted an opportunity to validate 

the model we had created in the previous chapter. 

Our results based on our new meta-experience measure showed that our 

previous implicit assumption that the averaged behaviour of our data is 

representative of the trial-by-trial behaviour in the data was not completely 

correct, but in a direction that further supported our previous conclusions. We 

found a generalised meta-experiential failure at early lags, especially at lag 1, 

stemming from correct trials being reported with a lower average subjective 

experience. In terms of validating our model, we found that without any further 

changes, our model predicted the results from this chapter as well as it had 

predicted those from the previous one. 
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8. Discussion and Future Direction 

Over the course of this thesis we have explored the possibility of a dissociation 

between working memory encoding and subjective report. Here, we review the 

results of the previous chapters and the contributions that this thesis makes. 

A Dissociation of Working Memory Encoding and Subjective 

Experience 

Contributions of Thesis 

The core research question of this thesis was to determine the relationship 

between working memory encoding and subjective experience, and what, if any, 

relationship of dependency exists between them. In the literature review, we 

identified the experiential blink (Pincham, Bowman et al. 2016) as an appropriate 

paradigm over which we might assess this question, noting both the contrasting 

behaviour of report accuracy and subjective report, and the possibility of a sight-

blind recall effect described by (Pincham, Bowman et al. 2016). We also examined 

various tools by which we might identify and quantify such a dissociation, and 

identified state-trace analysis as the most suitable method. 

Our first analysis applied this state-trace method to the data from (Pincham, 

Bowman et al. 2016) in order to quantify whether the difference in behaviour 

between report accuracy and subjective report was sufficient to conclude that 

working memory encoding and subjective experience are dissociated from one 

another. From the state-trace analysis, we found strong evidence that a 

dissociation did indeed exist. To inform ourselves about how this dissociation 

has manifested, we recalled the putative sight-blind recall effect described by 

(Pincham, Bowman et al. 2016) who identified a report accuracy that was very 

high even when minimal subjective experience was reported. Though not 

conclusive for the reasons we discussed in our literature review, this suggests 

that working memory encoding may be a necessary but not sufficient condition 

for subjective experience. Though we could not definitively decide this with our 

initial state-trace analysis, we performed a “post hoc” analysis that could identify 

which lags contributed the most evidence for the dissociation. The finding that 

the dissociation was largest at Lag 1 provides further evidence that working 

memory encoding is a necessary but insufficient condition for subjective 
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experience. We found this to be the case, as well as that removing both lags 1 

and 2 together not only eliminated evidence for non-monotonicity, but provided 

positive evidence for monotonicity. We also note that removing lags 2 and 3 

individually only contributed to reducing non-monotonicity to a small extent.  

One of the challenges that this analysis provided was setting a suitable prior for 

the Bayesian method upon which the statistical quantification for state-trace 

analysis is based. Unlike previous state-trace analyses that had been in a strong 

position to make ordinal assertions about their variables, the behaviour of the 

attentional blink proved more difficult to quantify. In the analysis above, we 

selected a prior from previous literature (Nieuwenhuis, de Kleijn 2011), and also 

followed previous literature in validating this prior using an independent contrast 

to our question of interest that quantified how well this prior was reflected in the 

data. While this was an acceptable solution to the immediate problem of setting a 

prior in this analysis, this difficulty motivated us to search for a better method of 

setting a prior in similar situations, both for the above analysis and any similar 

analysis in future. 

We achieved this by creating a method that converged to a new prior. We 

converged on this prior by using the same contrast we used in the previous 

chapter to validate our belief in the prior we had chosen from the literature. 

Theoretically, the method bears a resemblance to a simplified version of 

parametric empirical Bayes. We validated this method using simulated data 

before rerunning the analysis from the previous chapter using the new prior. This 

analysis reinforced the conclusions we had come to in the previous chapter, 

replicating the same results but with larger effects. 

One of the goals of our research questions was not just to explore the 

relationship between working memory encoding and subjective experience, but to 

provide, if possible, a working model of any relationship we found. One theory 

that we put forward was that working memory encoding of multiple targets could 

occur simultaneously, but that subjective experience of the two targets may only 

occur in serial. In order to validate this hypothesis, we decided to embody it in a 

computational model, whose behaviour could be quantitatively compared to the 

results from our human data. We discussed several possible avenues we might 

take to achieve this, but in the end we opted to build on top of an existing model. 
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Our model of choice was the Simultaneous Type/Serial Token model of attention. 

Not only did it model attention in the relevant context (The Attentional Blink), but 

it naturally dealt with the simultaneity/seriality dichotomy we posed here, as well 

as providing a readily available computational implementation that was capable 

of producing not just behavioural results, but virtual ERPs.  

To make our model the fairest examination of the hypothesis possible, we 

refrained from changing any model parameters of the existing STST model, only 

slightly modifying the input data stream to the model to be more appropriate, in a 

way consistent with how the model has been adapted to tasks in previous 

literature (Craston, Wyble et al. 2009). Instead, we built a new readout on top of 

the existing model. We compared the behavioural and electrophysiological 

results of this model to those from the human data examined in the previous 

chapters and found that there was a strong match between the two. We did 

observe that the human data best matched some combination of corresponding 

and subsequent lag from the model, but noted that this was likely to be a fixed 

timing offset. Interestingly, in terms of our overall research question, we found 

that the model as set up was consistent with both our existing hypothesis of 

working memory encoding in the absence of subjective report, but also subjective 

report in the absence of working memory encoding – though this would be likely 

to be a small effect.  

A problem that was not completely solved by any of our analyses up to this point 

was that the dissociation we find from our state-trace analysis was strictly non-

constructive. From our state-trace analysis, we only know that working memory 

encoding and subjective experience are not mutually dependent upon one 

another, and we must rely on other sources of information to determine any 

relationship beyond this. On the basis of average behaviour, the sight-blind recall 

effect noted by (Pincham, Bowman et al. 2016), and our post-hoc state-trace 

analysis, we concluded that it is possible that working memory encoding is a 

necessary, but not a sufficient condition for subjective experience. However, the 

strength of these conclusions rests on a tacit assumption that the average 

behaviour we have observed is also reflected on each individual trial. We 

described instances in which it may be possible for the general trends of our data 

to match up to our results but for our existing conclusions to be erroneous, 
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though we did reflect that such behaviour would be extremely unlikely. In order to 

resolve this issue we therefore attempted to quantify a measure of 

discriminability, capable of deciding this by determining the parity between our 

two measures. There is strong precedent for such a measure, which has been 

employed extensively in the field of metacognition with Signal Detection Theory. 

Unfortunately for us, these SDT based approaches are only applicable for binary 

detection tasks, while our task was a 21-way identification task. In light of this, 

we developed our own approach for calculating discriminability that captures the 

intent and spirit of the original measure but that is more widely applicable, by 

using Mutual Information. 

This measure of Mutual Information allowed us to calculate a measure of Type 1 

discriminability, which we were then able to compare for high and low visibility 

trials to quantify meta-experience. Though challenging to implement, this 

measure showed a decrease in the discriminability of correct and incorrect trials 

through subjective report as lag decreases. This indicated one of three situations 

– at earlier lags, trials were being reported with high accuracy despite low 

subjective report, trials were being reported with low accuracy despite good 

subjective report, or both. Examining the data, we determined that this was 

almost exclusively the first case, of high accuracy trials being rated with lower 

visibility at early lags. This provided evidence that, (1) our assumption that the 

average behaviour was reflected in individual trials was not quite supported, but 

that (2) our hypothesis that working memory encoding as a necessary but 

insufficient condition for subjective experience was correct. 

A potential overarching limitation of the thesis is that it occurs over just one 

dataset, and a potentially slightly odd one at that – other works collecting 

subjective report during the attentional blink tends to observe at least some lag 1 

sparing of visibility and we observe none. To solve this problem, we have 

replicated many of our findings over a novel dataset. The results of this can be 

found in Appendix E. 

Limitations 

A central limitation to this work is the restrictions of the state-trace analysis that 

we perform in the first chapter. As we have discussed at length, with state-trace 

analysis, we can only distinguish between “a dissociation exists” and “there is 
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insufficient evidence that a dissociation exists”. Indeed, demonstration of 

monotonicity does not definitively preclude a dissociation. In a sense, much of 

the subsequent work we perform on later chapters is attempting to make up for 

this limitation by elucidating potential explanations for this dissociation. 

As we discuss extensively in our literature review, the concept of 

phenomenological consciousness overflowing access consciousness is a topic 

that has been heavily debated in the literature. Though we must be careful not to 

over interpret our results in this context, as it is not entirely clear how our 

concrete measures translate to the abstract concepts, it is interesting that our 

results seem to point toward the dual hypothesis – access without awareness. 

In terms of our specific state-trace analysis, a limitation was the setting of the 

Bayesian prior upon which the analysis is based. We attempted to provide an 

alternative method that provides a prior that better fits the data as a whole, but 

this method relied upon us being able to set a single prior that is suitable for all 

participants at the same time. While this method behaves well and is 

computationally cheap, it is likely that better results could be achieved with more 

sophisticated methodology.  

While our seriality of experience hypothesis was supported well by our modelling, 

it will need further validation. The simplicity of the hypothesis is a strength but is 

is also potentially a limitation. We also note that while our choice to build on the 

STST model was beneficial in many respects, the mechanism of the blaster in the 

original STST model somewhat limits our model of subjective report by placing a 

hard, predetermined limitation on the maximum length of P3. 

In the end, we opted for the Simultaneous Type/Serial Token model, but our 

hypothesis would have also worked well inside the neuronal global workspace 

model (Dehaene, Kerszberg et al. 1998). Indeed, the competition between stimuli 

that the global workspace puts forward effectively creates seriality. Had we opted 

for this model, our challenge would have been the formulation of a mechanism by 

which an attentional blink occurs that affects report accuracy without affecting 

subjective visibility. 

Our meta-experience measure was excellent in theory, and because of the steps 

we took to secure our results against small sample sizes, we remain confident 
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that its conclusions are robust. However, there is no denying that despite the 

extensive steps we took in order to mitigate this effect as far as possible, the 

process was hampered by the quantity of data available in our dataset. With a 

bigger dataset, we could get a much finer grained picture of the 

accuracy/visibility correspondence. 

While our meta-experience measure was good at quantifying our report 

accuracy/subjective report correspondence, it is difficult to interpret the results in 

the context of the wider metacognition literature because we collected reports of 

subjective experience instead of the confidence measures typically used. Hence, 

we call our measure meta-experience. Since our mutual information gives a 

measure of discriminability, examining the difference between this measure at 

high and low visibility is a reasonable way of quantifying metacognition (or meta-

experience in our case). However, it is very possible that further exploration may 

yield better alternative measures. 

Future Directions 

Here, we follow previous authors in using what (Davis-Stober, Morey et al. 2016) 

refer to as dependent variable state-trace analysis that is the current state-of-

the-art (Davis-Stober, Morey et al. 2016). However, we note that the original 

state-trace analysis as it was conceived by (Bamber 1979) was much broader in 

scope than this. The original framework was conceived as a way of differentiating 

many different possible 3 stage models of the data, instead of the simplified 

binary monotonic or non-monotonic choice we make at the moment. 

Unfortunately, the problem with this original conception was that it was extremely 

difficult to provide statistical quantification for which model was most 

appropriate. The dependent variable state trace analysis we perform that 

compared monotonicity and non-monotonicity has a significant advantage in 

providing a clear criterion to distinguish the models that is directly amenable to 

statistical methods; it is understandable that it is so widely used. However, it 

would be an interesting direction for future research to explore further how 

possible it is to go further than this simple monotonic/non-monotonic distinction, 

and explore more detailed models of the data that could additionally evaluate, for 

example, the relationship of dependency between the two variables. 
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Our improvements to the current state-trace methodology are clearly beneficial, 

and have the advantage of being extremely simple to calculate, but also suffer 

from this same simplicity. Notably, they are currently not flexible enough to 

permit different models for each participant. A fruitful direction for further 

research in this area may be to explore further more complicated models that 

make use of a parametric empirical Bayes approach or even goes so far as to use 

a full multileveled Bayes design by setting a hyper prior on the prior distribution 

of the data. This would allow a more fine grained specification of priors, as well 

as different models for each participant. Such research would have to be 

approached carefully in order to keep the methods practically applicable and from 

exploding in computational complexity, but could prove a significant advance. 

Another more immediately implementable research direction for the method we 

outline in this thesis specifically would be to borrow from the convex hull solution 

that the Aggregated Bayes Factor makes use of as another way of eliminating 

priors that are only suitable for a selection of participants. 

While our simultaneous encoding/serial experience model of subjective 

experience and working memory encoding successfully explained our data, the 

most immediate need for future research in this area is a validation of the 

hypothesis with further datasets. Implementing these simultaneous 

encoding/serial experience findings in the eSTST model would be another 

excellent direction to take the research. Notably, the changes to the blaster may 

mitigate the effect we see comparing model lag 1 with human lag 1, where the 

difference is smaller than we would expect in the model data because P3 length 

is artificially constrained. 

An interesting facet of sight-blind recall, if it were true, is what it implies about the 

function of consciousness.  After all, if subjective experience isn’t strictly 

necessary for sight-blind recall, what function does it perform? Under the seriality 

of experience hypothesis, one interpretation might be that consciousness is 

about encoding order information. The theory after all explicitly holds the second 

item out such as to achieve a unitary percept. In this instance, even items end up 

bound into the wrong temporal context (an order error), subjective experience 

makes it unambiguous what is in the brain – such order errors are an illusory 
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percept. Such a theory however, is currently speculative, but may provide an 

interesting direction for future work. 

For our meta-experience measure, we would benefit a large amount from simply 

collecting more data. Given the amount of data that can be fruitfully collected 

from any given participant, this would likely involve collecting more trials for 

fewer lags and subjective visibility ratings. It would also be interesting to explore 

more directly how this measure matches up with classical SDT approaches. 

Though not so directly applicable to our research question, it may also be 

interesting to perform these same studies collecting confidence ratings instead 

of the subjective experience measures we made use of here. This would allow our 

measure to more directly translate into metacognition, allowing the results to be 

interpreted more broadly. 

Final Observations 

We set out to investigate the relationship between working memory encoding and 

subjective experience. At the start of the thesis, we laid out the following general 

research questions, which were addressed in the research chapters: 

1) Can working memory encoding and subjective experience be dissociated? 

In our state-trace analysis of the attentional blink data in which both 

subjective report and accuracy were recorded, we found strong evidence 

that working memory encoding and subjective experience were 

dissociated.  

2) If working memory encoding and subjective experience can be dissociated, 

what is the relationship of dependency between these two processes, if 

any? 

Based on a post-hoc analysis of our state-trace experiment that 

systematically excluded lags, we were able to discern that the lag 1 data 

point was contributing very strongly to this dissociation. Combined with 

the putative sight-blind recall effect observed by (Pincham, Bowman et al. 

2016), this seemed to provide evidence that the dissociation was arising 

as a result of working memory encoding perhaps being a necessary but 

not sufficient condition for subjective experience. This was further 

reinforced by our meta-experience measure, which showed that not only 
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was there a “meta-experiential” failure at early lags, especially lag 1, but 

that this failure was arising as a result of participants systematically 

reporting low subjective experience on correctly identified trials.  

3) If we can find evidence for a particular relationship of dependency between 

working memory encoding and subjective experience, can we provide a 

model of it? 

Based on the results of our state-trace analysis, we developed a theory to 

account for our results through the simultaneous encoding/serial 

experience hypothesis. We developed this hypothesis into a model built on 

top of the existing simultaneous type/serial token model of attention. We 

validated the behavioural and electrophysiological predictions of this 

model against results from human data, and found them to be a good 

match.  

In summary, we have investigated the relationship between working memory 

encoding and subjective experience. We have demonstrated that the two are 

dissociated in the attentional blink, examined what relationship of dependency 

the two measures have in light of this and explored the results in the context of a 

metacognitive failure. We have also provided a model of this relationship during 

the AB. While a full understanding of the relationship between these two 

measures remains a broad topic for further research, in this thesis we have made 

small steps toward a more complete understanding of how these two similar 

processes can be related.  
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Appendix Material 

Appendix A – Detailed Experimental Procedure 

Participants 

Initially, twenty-one young adults took part in the study. One participant was 

removed due to an inability to achieve 50% accuracy for T1. Two more 

participants were removed because more than 50% of the epochs extracted from 

their EEG data were rejected through the artifact detection criteria. Data from 18 

participants (15 females) were therefore analysed. Participants were 19-28 years 

old (mean age: 21.67 years, SD 2.93 years). Participants provided informed, 

written consent, had normal or corrected-to-normal vision and were fluent in 

English. The study was approved by the Psychology Research Ethics Committee 

at the University of Cambridge, UK. 

Stimuli and Procedure 

Stimuli were presented on a Sony Graphics Display CRT monitor with a 100Hz 

refresh rate. Targets were the uppercase letters excluding I, M, O, Q, W. These 

letters were excluded because of their physical similarity to digits (I, O and Q) or 

because their physical size meant that they were not adequately masked by digits 

(M and W). Each trial contained one or two targets – T1 occurred on every trial 

and was always presented in red, and T2 (if it occurred) was presented in white. 

Distractors were single digits excluding 0 and 1, presented in white. The rationale 

for presenting T1 in red and all other items in white was so that the visibility 

question (that is, “How visible was the white letter?”) would clearly refer to T2 and 

not T1. All alphanumeric stimuli appeared on a black screen. Stimuli subtended 

visual angles of 3.8˚ vertically and 2.9˚ horizontally, assuming a viewing distance 

of 57cm. On each trial, a fixation cue (a cross shape subtending 2˚×2˚) was 

presented in the centre of the monitor for 200msec. The RSVP stream began 

1000msec after the onset of the fixation cross. Each RSVP stream contained 15 

items that were presented one after the other in the centre of the monitor. The 

identities of the target letters and the digit distractors were randomly assigned on 

each trial with the restriction that successive items were not the same. 
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Distractors were presented for 90msec with no ISI. T1 randomly appeared as the 

fourth, fifth or sixth item in the RSVP stream. 

At the end of each RSVP stream, participants were asked to rate the subjective 

visibility of T2 using a self-report scale: “On a scale of 1-6, please indicate how 

well you have seen the white letter.” The numbers 1 2 3 4 5 6 were presented in a 

horizontal line on the screen, with the description “not seen” presented beneath 

the number 1 and the description “maximal visibility” presented beneath the 

number 6. Participants used the number keys (1-6) on the keyboard to indicate 

their subjective visibility ratings. Participants then reported the identity of T1 and 

T2 (even if a second target did not occur) using the keyboard letter keys. 

Participants were required to guess if they were unsure of the target identities. 

All participants completed two experiments, spaced at least one week apart. 

Experiment 1 exclusively collected behavioural data and Experiment 2 collected 

both behavioural and EEG data. Experiment 1 consisted of four blocks, each with 

a different target/mask duration combination. The mask, if it occurred, was 

always the hash (#) symbol. In Block 1, targets appeared for 90msec with no 

mask. In Blocks 2, 3 and 4, the target/mask durations were 70msec/20msec, 

60msec/30msec and 50msec/40msec respectively. In Experiment 1, T2 appeared 

at lags 1, 2, 3, 4, 6 or 8 with equal frequency. Experiment 1 deliberately sampled a 

large number of lags in order to examine the relationship between T2 accuracy 

and subjective visibility across the entire AB curve. Trials that did not present a 

second target (no-T2 trials) were also included with equal frequency (hence, one 

in seven trials did not contain a second target). Experiment 1 contained 4 blocks 

of 49 trials, totalling 196 experimental trials. 

For each participant, data from Experiment 1 were analysed to determine which of 

the four target/mask durations resulted in T2 being correctly reported on 

approximately 50% of lag 3 trials. Each participant’s optimal target/mask 

duration was then employed in Experiment 2. As a result, 28% of participants 

received the 70msec/20msec target/mask duration in Experiment 2, 50% of 

participants received the 60msec/30msec duration and the remaining 

participants received the 50msec/40msec duration. Experiment 2 contained 5 

blocks of 100 trials, totalling 500 trials. To maximise ERP signal strength in 
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Experiment 2, T2 appeared at lag 1 on 200 trials, at lag 3 on 200 trials, at lag 6 on 

50 trials and was absent on 50 trials. 

In Experiments 1 and 2, a distractor appeared in the place of T2 on no-T2 trials. 

However, the experimental program still assigned a target identity to T2, and 

participants were asked to report the subjective visibility and identity of T2 – 

even when a second target did not appear. In this manner, T2 ‘accuracy’ on no-T2 

trials (trials where T2 was correctly guessed by chance) could be calculated. The 

no-T2 trials were included for two reasons. First, subjective visibility for T2 could 

be determined for trials where the second target was not present. It was therefore 

possible to confirm that participants were accurately using the visibility scale, 

because subjective visibility should be very low on trials where T2 did not occur. 

Second, T2 report accuracy on no-T2 trials could be calculated and compared 

with theoretical (chance) levels of correct T2 report accuracy. 

The order of the trials within each block was randomised. Participants could take 

short breaks between blocks. Testing occurred individually in an acoustically and 

electrically shielded booth. 

EEG Acquisition and Pre-processing 

EEG was recorded using the Electrical Geodesics Inc. system and a 129-channel 

hydrocel geodesic sensor net. The sampling rate was 500Hz. An anti-aliasing 

lowpass filter of 100Hz was applied during data acquisition. Offline, the data were 

bandpass filtered between 0.01–30Hz and recomputed to an average reference. 

The continuous EEG was segmented into epochs between -200 to 1000msec 

relative to the onset of T1. Spline interpolation was carried out on individual 

channels if required. The mean percentage of interpolated channels was 4.60% 

(range: 0–8.59%). Epoched data were smoothed using a 50msec Gaussian filter. 

Epochs were excluded from analysis if they met any of the following artifact 

rejection criteria: voltage deviations exceeded ± 100μV relative to baseline, the 

maximum gradient exceeded 50μV, or activity was lower than 0.5μV. Across 

participants, 78.02% of trials were retained after artifact rejection. 
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Appendix B – Changelog to State-Trace Code Provided By Davis-

Stober et al. 

This appendix lists the changes we made to the code provided by (Davis-Stober, 

Morey et al. 2016) for our analysis, with a brief discussion of why the changes are 

required in each case.  

CHANGE[1] 

Added drop=F when sub-setting trace constraints with dimension constraints. 

This prevents a case in which matrix(order(x),ncol=ndim)[,D.order] is a 

dimensionless vector if trace has only one dim 

CHANGE[2] 

nolap defaults to TRUE in all cases if trace has only one dim. Added a check to 

enforce the opposite.  

CHANGE[3] 

Trace vs non-trace is meaningless with only one trace dim. However, we can 

apply the same logic used with trace vs nontrace to our dimension constraints. 

The changes mean that (hopefully) this new measure (d.nd reflects the strength 

of our belief in the dimension constraints. This was achieved by removing nolap 

(undefined for one trace dimension) and setting prior/post nontrace == 1 

CHANGE[4]  

Added the ability to set different constraints on each axis of the state-trace. This 

was achieved my defining two order vectors, D.orderX and D.orderY. 

It necessitates significant changes to the way the prior and post trace+dim are 

calculated. If the constraints on each axis are the different then we can no longer, 

for example, calculate the monotonic probability as the sum of the diagonal joint 

probabilities - because our matrix is no longer square. 

As a result of this, the monotonic effect is now calculated as the sum of the 

diagonal of the joint order probabilities that corresponds to the intersection of the 

two constraints, that is the all the ordering which are the same between the two. 

The non-monotonic effect is calculated as the sum of all probabilities in the joint 
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order probabilities that fit to the constraints, minus the sum of the diagonal of 

this union.  

NB: the labels orderX and orderY may be a little confusing. To be explicit, orderX 

indexes the jointOrderProb matrix rows(that correspond to accuracy in our 

experiment) and orderY indexes jointOrderProb matrix columns (that correspond 

to visibility in our experiment) 

CHANGE[5] 

Added the ability to specify multiple constraints for each axis. Constraints must 

be the same length Dx.c or Dy.c, and the number of such constraints must be 

specified as Dx.r or Dy.r. 

This is perhaps a little clumsy, but serves its purpose as any set of constraints 

can be specified in a series of, e.g. pairs. 

For simplicity, it is also requires that dim.increasing is manually specified by the 

user. Currently, dim.increasing is assumed to be the same for each axis, but this 

should not be difficult to work around. 

 

Minor changes: 

Added a BF3, which is the product of all BF2.n.m. Useful as a yardstick of total 

evidence 

Added a BF4, which is the product of all BF2.d.nd. Useful as a yardstick of total 

belief in the constraints 

m.nl measure removed as it was causing problems with only one trace dimension 

d.nd is now a part of BF2 

Appendix C – Changelog to Neural STST 

This appendix lists the changes made to the original STST code for the purposes 

of our simultaneous encoding/serial experience model. 

---- 

bigbattery.m 
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--- 

Added tracking for full excitatory postsynaptic potential by neuron (as opposed to 

collapsed across all neurons) 

global PresynapHistory ExPostsynHistory InhibPostsynHistory MembPotHistory 

-> 

global PresynapHistory ExPostsynHistory InhibPostsynHistory MembPotHistory 

ExPostsynFull 

save(erpfile,'MembPotBat_*', 'PresynapBat_*', 

'ExPostsynBat_*','InhibPostsynBat_*','BasicAccu'); 

-> 

save(erpfile,'MembPotBat_*', 'PresynapBat_*', 

'ExPostsynBat_*','InhibPostsynBat_*','BasicAccu', 'ExPostsynFull_*' , '-v7.3'); 

%excitatory postsynaptic output 

ExPostsynBat_basic(trialcounter,:,:,:) = ExPostsynHistory; 

-> 

%excitatory postsynaptic output 

ExPostsynBat_basic(trialcounter,:,:,:) = ExPostsynHistory; 

%excitatory postsynaptic output by neuron 

ExPostsynFull_basic(trialcounter,:,:,:,:) = ExPostsynFull; 

 

 

ExPostsynBat_basic = zeros(numTcombi,NUMSTREAMS,runlength,NUMLAYERS); 

-> 

ExPostsynBat_basic = zeros(numTcombi,NUMSTREAMS,runlength,NUMLAYERS); 

ExPostsynFull_basic = zeros(numTcombi,NUMSTREAMS,runlength,NUMLAYERS, 

40); 
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--- 

modified stimulus strength variability 

resolution = .012; 

-> 

resolution = .0125; 

varstart = floor(-.078/resolution) 

varstop = floor(.078/resolution) 

-> 

varstart = floor(0.1625/resolution) 

varstop = floor(0.1625/resolution) 

--- 

modified stimulus strength basevalue 

baseval = .526; 

-> 

baseval = .570; 

 

---- 

runRSVP.m 

--- 

Added ExPostsynFull as a global variable & initialised it 

global History MPHistory OutHistory InHistory BiasHistory HebbHistory 

PresynapHistory ExPostsynHistory InhibPostsynHistory MembPotHistory 

-> 

global History MPHistory OutHistory InHistory BiasHistory HebbHistory 

PresynapHistory ExPostsynHistory InhibPostsynHistory MembPotHistory 

ExPostsynFull 
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InhibPostsynHistory(lag,step,:) = TempInhib'; 

-> 

InhibPostsynHistory(lag,step,:) = TempInhib'; 

ExPostsynFull(lag,step,:,:) = ExPostsynAct; 

--- 

 

---- 

st2data2eeglab.m 

--- 

Updated so that upstream changes in bigbattery work with new format 

Appendix D – Other Entropy Estimators 

In the main chapter, we only present a few of the entropy estimation algorithms 

used in order to keep the discussion focused. Here, we examine the performance 

of several other contemporary algorithms that we might have used. 
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Figure 62) Error of the Jackknife entropy estimator described by (Paninski 2003) of stimulus, 

response and joint entropy, and mutual information for a range of different sample sizes from 1 to 

100. 

 

Figure 63) Error of the G estimator from (Grassberger 2003) of stimulus, response and join 

entropy, and mutual information for a range of different sample sizes from 1 to 100. 
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Figure 64) Error of the CS estimator from (Chao, Shen 2003) of stimulus, response and join 

entropy, and mutual information for a range of different sample sizes from 1 to 100. 

Appendix E – Replication of results with an additional dataset 
Further work has replicated many of the findings in this thesis with an additional 

dataset. We present these results here. Note that this section is largely separate 

from the main body of work and rather extensive, and as such has its own 

bibliography. 



Fleeting Perceptual Experience and the
Possibility of Recalling Without Seeing
William Jonesa,1, Hannah Pinchamb, Ellis Luise Gootjes-Dreesbachd, and
Howard Bowmana, c

aCentre for Cognitive Neuroscience and Cognitive Systems, University of Kent, Canterbury, UK
bSouth Eastern Sydney Local Health District, NSW, Australia
cDepartment of Psychology, University of Birmingham, Birmingham, UK
dPoint Estimate Limited, Ellesmere Port, Cheshire, UK

We explore an intensely debated problem in neuroscience, psychology and philosophy: the degree to which the
“phenomenological consciousness” of the experience of a stimulus is separable from the “access consciousness”
of its reportability. Specifically, it has been proposed that these two measures are dissociated from one another in
one, or both directions. However, even if it was agreed that reportability and experience were doubly dissociated,
the limits of dissociation logic mean we would not be able to conclusively separate the cognitive processes
underlying the two. We take advantage of computational modelling and recent advances in state-trace analysis
to assess this dissociation in an attentional/experiential blink paradigm. These advances in state-trace analysis
make use of Bayesian statistics to quantify the evidence for and against a dissociation. Further evidence is
obtained by linking our finding to a prominent model of the attentional blink – the Simultaneous Type/Serial Token
model. Our results show evidence for a dissociation between experience and reportability, whereby participants
appear able to encode stimuli into working memory with little, if any, conscious experience of them. This raises
the possibility of a phenomenon that might be called sight-blind recall, which we discuss in the context of the
current experience/reportability debate.

Introduction
The ability to seperate functionally independent mental processes, and to be able to describe this seperation – or
lack thereof – is critical to modern cognitive neuroscience. Of these problems of independence, the distinction
between the subjective experience of the character of a stimulus (the “phenomenological awareness” of it) and
the ability to objectively report on it (the “access consciousness” of it) has been one that has been particularly
hotly contested. Block1 is a notable proponent of a distinction between the two, arguing that it is possible to
experience stimuli without being able to access them, and thus report on that experience. The believed locus of
phenomenological awareness is iconic memory, initially, on the basis of the Sperling paradigm2, with others
supporting the concept of phenomenological awareness to varying degrees on the basis of experiments on Kanizsa
triangles3, other, modified versions of the Sperling paradigm4, and short term memory experiments5. However,
despite this large body of supporting literature, the theory is contested; for example, Dehaene and co-workers6

have challenged this theory on the basis of change blindness, while others have pointed out that certain changes
to the Sperling paradigm seem to compromise some key results7.

A paradigm that is well placed to shed light on this topic, and has been used previously8 to explore the
all-or-none nature of subjective experience, is the attentional blink. The attentional blink is a phenomenon seen
during RSVP (Rapid Serial Visual Presentation) in which participants frequently fail to detect a second target
for a short time after the presentation of an encoded first target; see T2|T1 accuracy in figure 19, 10. Recently,
Pincham et al11 noted that the temporal pattern of T2 visibility (which they called the experiential blink) is
dissimilar to that of report accuracy (i.e. the classical attentional blink) and raised the possibility that this finding
represents two distinct processes. However, having the tools to elicit dissimilar patterns of behaviour is not
the same as being able to determine whether the cognitive processes that underlie them are distinct. Tackling
such problems is usually performed by looking for functional dissociations. These arise when we find variables
that allow us to independently modify performance on two separate tasks, providing putative evidence that the
cognitive processes embodied by the tasks are in some way separate. Such dissociation logic has been widely
applied, and made an important contribution to the investigation of functional independence in the mind in such
diverse sub-fields as short and long term memory12, word comprehension13 and consciousness14.

In the context of our question, there are many who have claimed that the experience or awareness of a



Figure 1. A) Results from11, comparing accuracy and subjective visibility across lags in the attentional blink .
The T2 visibility curve demonstrates what Pincham and Bowman term the Experiential blink of subjective report.
B) State-trace plot comparing T2|T1 accuracy and T2 visibility from A). Note the apparent non-monotonicity of
the relationship between accuracy and visibility. (Note, the T2|T1 blink curve here shows some very minor
differences to that presented in11. This is because T2 accuracy in the original paper was mislabeled and in fact
presented the accuracy of the conjunction of T2 and T1, whereas here we display the conditional probability of
T2 given T1. None of the findings in11 are impacted by this difference).

stimulus and its reportability are doubly dissociated. As previously discussed, in the direction of awareness
without report, we have the “phenomenological consciousness” of Block. In the opposite direction, there exist
several paradigms that seem to provide evidence for modulation of behaviour without awareness, for example
continuous flash suppression15, visual masking16, blindsight17, or episodic face recognition18. However, we
would argue that these paradigms provide evidence for a weaker claim than reportability without awareness;
that of influence without experience. In every case, the identity of the unexperienced stimulus is not directly
reportable, it merely influences the report of, or response to, something else. In contrast, the criterion for a true
demonstration of reportability without awareness would be of free recall of a stimulus identity in the absence of
awareness, which, if definitively demonstrated, would be both striking and surprising.

Regardless, even if a double dissociation of the required kind between experience and reportability was
widely agreed to exist, there has been a long standing debate about the use of double dissociations as a measure
by which to assess functional differentiation19–21. In this work, we adopt an alternative method to traditional
dissociation logic. This alternative suggests that a dissociation arises, given certain assumptions, when it is not
possible to demonstrate a monotonic relationship between task performances. In the context of the attentional
blink, there is evidence that such non-monotonicity exists between accuracy and subjective visibility report11 (see
figure 1), and one of the main contributions of this paper is to provide quantitative evidence for such an effect.

In order to provide statistical quantification, a method called state-trace analysis is typically employed. State
trace analysis examines the monotonicity of data, across a state-trace plot in which our two task performances
form the axes. In this work, we follow Prince, Brown and Heathcote22 and Davis-Stober et al.21 in advocating
the use of a Bayesian approach to the analysis of these problems. The main reason for this is that we are solving a
model comparison problem: comparing whether a non-monotonic or monotonic model best fits our data. Strictly
speaking, a classical statistics approach would not enable us to find evidence for a non-monotonic outcome, since
it would naturally take the role of the null. For a more detailed discussion on the various potential choices of
statistical methods and their respective virtues, see22.

While dissociations can tell us about specific effects, placing findings in larger theoretical context is pivotal
to the forward progress of science, especially when the theory is encapsulated in a computational model. In
particular, a theoretical interpretation of the data from11 may be that items are encoded into working memory
simultaneously, but only experienced serially. In combination with state-trace analysis, this allows us to explore
not only the direction of the effect, but also some plausible mechanisms by which it may arise. In terms of
specific models, the Simultaneous Type/Serial Token10 model is well placed to explore this question: it models
data in the relevant context (the attentional blink), and naturally deals with the difference between simultaneity
and seriality.
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Figure 2. A) A typical attentional blink RSVP stream. Participants are instructed to report the two letters at the
end of the stream. B) Example illustration of expected accuracy for T1 and T2|T1 at each lag during a typical
attentional blink study with a Stimulus Onset Asynchrony (SOA), the amount of time between the onset of each
stimulus, of 80-120ms.

In this paper, we make two original contributions. We first apply Bayesian state-trace analysis to the results
of our attentional blink experiment in which we collected both report accuracy and subjective visibility (see
figure 1), and compare the respective evidence for a monotonic and a non-monotonic relationship between the
two measures. Secondly, we explore our results in the context of the Simultaneous Type/Serial Token (STST)
model. Since the STST model does not natively deal with subjective experience, one of the contributions of this
paper is development of a simple method by which this might be incorporated into the model. Given this method,
we then compare the behavioural and EEG data that the model predicts to the human data from11, and the results
from our state-trace analysis.

The Attentional Blink Paradigm
Rapid serial visual presentation (RSVP) is a technique in which multiple stimuli are presented rapidly, one after
the other in a fixed location. Typically, this stream of stimuli is composed of one or more targets to be detected or
identified and a number of distractor stimuli to be ignored. The attentional blink (AB) is a deficit in performance
on a second target when more than one target is to be identified9, 10. It arises approximately 100-500ms after the
presentation of the first target, when it is successfully encoded. Typically, the AB is elicited using alphanumeric
stimuli, but images, letters, digits or words will all elicit the blink. For an example of a typical attentional blink
RSVP stream, see figure 2.

The main parameter of the attentional blink is the relative serial positions at which the two targets are
presented, known as lag, for example, at Lag 1 there are no intervening distractors between the targets, while at
Lag 2, the two targets are separated by one intervening stimulus. The main attentional blink result is typically
plotted as T2|T1 accuracy (second target accuracy, given the first target was correct) against lag. Excluding Lag
1, typically, when the two targets are close, accuracy is significantly reduced compared to recovery baseline (lags
7 and 8). A typical blink is shown in figure 2(B). Performance at Lag 1 is above the deepest point in the blink.
This is known as Lag 1 sparing, and is itself a robust result of the attentional blink23.

There has been extensive exploration of the attentional blink with respect to accuracy of report, but much less
exploration of subjective visibility report in the attentional blink8, 11, 24, 25. As we have discussed, the attentional
limitations of the blink make it ideal for exploring dissociation between accuracy in reporting a stimulus and
the strength of its conscious experience. Indeed,11 mapped subjective report to lag, finding a blink of subjective
experience, the so called Experiential Blink, akin to that of reportability, but without Lag 1 sparing. The results
of this experiment are shown in figure 1.

Functional dissociations and reversed associations
As mentioned previously, the functional dissociation is a technique that has been widely implemented across the
fields of psychology and neuroscience as a marker of the functional distinctness of mental processes. There are
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Figure 3. A) Example of a monotonic state-trace plot across 4 levels of a dimension factor D. It is possible to
draw a monotonic (increasing) curve joining all points, therefore the relationship between the levels of the state
factor is monotonic. B) Example of a non-monotonic state-trace plot across 4 levels of a dimension factor D. The
point furthest to the right makes drawing either a monotonically increasing or monotonically decreasing curve
impossible, therefore the relationship between the levels of the state factor is non-monotonic.

several types of functional dissociations, but all arise when one is able to independently modify performance on a
set of one or more tasks without affecting performance on other tasks in the set. The ability to differentially affect
behaviours on different tasks is seen as evidence that the mental processes underlying them are in some way
functionally separate. However, despite their wide use in the literature, it has been argued that while dissociations
are certainly indicative, they do not strictly provide either a necessary or sufficient basis for determining the
separation of mental processes19–21. Broadly, it has been proposed that it is possible to construct cases in which
dissociations exist but separate mental processes do not19–21, and to create cases in which there are separate
mental processes without dissociations. For an overview of these arguments, and a demonstration of how such
behaviours can be constructed, see26.

Regardless which side of this debate one stands, an alternative measure exists for which it is certain these
issues will not arise: the reversed association proposed by20. The reversed association models the cognitive
function that dissociations are trying to evaluate as a latent variable determining the relationship between a given
task and task performance. It then assumes that, while the relationship between this latent cognitive function
and task performance may not be proportional, it may at least be assumed to be monotonic in some direction27.
Given this assumption of monotonicity between cognitive function and task performance, any tasks that share a
single underlying cognitive process must then, by necessity, also share a monotonic relationship between their
respective task performances. Therefore, under these assumptions, a non-monotonic relationship between task
performances is sufficient to demonstrate a dissociation, this is our reversed association. Note that the opposite
does not apply, a monotonic relationship is not sufficient to demonstrate that the cognitive functions underlying
the two lack a dissociation. In order to undertake statistical inference for a reversed association, we turn to
Bayesian statistics.

Quantifying the results – the Bayesian method
We describe state-trace analysis informally in terms of a state-trace plot, e.g. figure 3. We have a state factor
consisting of our two tasks, with the performance on each task forming an axis on our graph. We then plot on
this graph each level of our dimension factor, the variable that we are varying across our tasks. If we can draw a
monotonically increasing (or decreasing) curve joining all the levels of our dimension factor, the relationship
between our task performances across our variable is monotonic. In all other cases, it is non-monotonic. In the
context of our attentional blink experiment, identity report and judging visibility are our two tasks so they give us
our state factor, and the lags are the measure that we are varying across both tasks, so they give us our dimension
factor. Plotting report accuracy on one axis and visibility on the other, we are trying to determine whether it is
possible to draw a monotonic curve joining the data across each of our lags.

More formally, we have some state factor with two levels S = {S1,S2}, forming the state space over which we
examine our question of interest, and some dimension space D = {D1, . . . ,Dn}, a manipulation we are performing
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across it. When concerned with monotonicity versus non-monotonicity, we wish to see if the ordering of the
levels of our dimension factor are either the same or the reverse of one another across each of the two axes of
our state factor. If this is possible, we diagnose monotonicity, and if it is not possible we do not. Often, we also
introduce a trace T = {T1, . . . ,Tn} factor, but in our case, a trace factor is not required and we therefore exclude
it from further discussion. Overall, we must consider each combination of Q = D! orderings for each axis and
Q2 joint orderings. A visual example of both monotonic and non-monotonic state-trace plots can be found in
figure 3.

At this point, the set of Q2 joint orderings corresponds to the whole space of possible configurations of the
state-trace graph, and currently it can be divided into two different partitions. These are the non-monotonic
orderings and the monotonic orderings. With respect to our Bayesian statistics, we are attempting to choose
between the monotonic model consisting of all monotonic orderings, and our non-monotonic model consisting
of all other (non-monotonic) orderings. To do this, we calculate a Bayes factor expressing how much the data
has changed our preference between our two models. This is the measure of the ratio of evidence for each
model. Explicitly, denoting our data as y, the prior probabilities P(x) where x = M or NM as πM and πNM for the
monotonic and non-monotonic models respectively, and the posterior probabilities P(x|y) where x = M or NM
as π

(y)
M and π

(y)
NM , we calculate the Bayes factor as:

BFM/NM =
π
(y)
M

π
(y)
NM

/ πM
πNM

We calculate our posterior using the library provided in21. We follow21 in referring to this calculation as
BFM/NM , the bayes factor comparing the monotonic versus non-monotonic models.

Currently, we make use of a completely uniform prior, effectively assuming all possible orderings of the lags
across the levels of the state factor are equally likely. In many data sets, including our own, this is clearly not
true – we, for example, have strong prior expectations about the behaviour of the attentional blink. Previous
work has approached this problem by using the prior to assert that certain constraints on the behaviour in the
data are true. For example, in21 the authors pre-suppose that dual task performance will always be worse than
single task performance in their analysis of a data set from28. However, while we have expectations about the
behaviour in the attentional blink, setting specific ordinal qualifications of behaviour across lags in a similar
manner is non-trivial. While we wish to take advantage of as much prior knowledge as possible, the behaviour of
the attentional blink is variable, and it is well established that setting a poor prior can compromise the integrity
of results29. As well as setting a prior based on previous literature, we also therefore make use of an empirical
prior method to derive a suitable prior. This method takes the set of constraints on the prior identified from the
literature, and reduces the set to one that accurately fits the data, using a measure of the validity of constraints
orthogonal to the contrast of interest. Details of this method can be found in supplementary material. We denote
the validity of a prior calculated using this method as BFD/N(D), and similarly any Bayes factor calculated from a
prior that accounts for information on our dimension axis (whether generated from our empirical priors method
or not) as BF(M/NM)|D.

We must also consider how to apply this type of analysis across a group of participants. Notably, state-trace
analysis does not work well with approaches based on averaging. In particular, it is possible both to average
multiple non-monotonic datasets into a monotonic dataset, and multiple monotonic datasets into a non-monotonic
one. A simple alternative analysis is the grouped Bayes factor introduced by22. This method treats each of our
participants (of which there are M) as independent from one another and calculates the group Bayes factor as the
product of each individual Bayes factor:

GBF = ∏
M
i=1 BFi

As long as participants are independent samples and the results are reasonably homogeneous (not, for
example, being driven by a single outlier), this grouped Bayes factor is a good summary of the group level effect.
This will be the case in the data we analyse with one exception that will be discussed seperately.

STST model
In addition to the methods of state-trace analysis, we explore the potential dissociation of subjective experience
and report accuracy through modelling. Specifically, we investigate the hypothesis that the differences in be-
haviour in the data from11 that we analyse in this paper are the result of the systems of subjective experience
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and working memory encoding being dissociated. We suggest that stimuli are experienced in a serial manner
(reflecting the unitary nature of consciousness), but simultaneously encoded into working memory. The Simulta-
neous Type/Serial Token (STST) model10 is in a uniquely strong position to explore this, though the model does
not natively deal with subjective experience. In this section, we explore a simple set of additions to the STST
model that allow it to read out a measure of subjective experience in addition to reporting accuracy. Before this
however, we briefly summarise the workings of the Simultaneous Type/Serial Token model.

The STST model, see figure 4, is a two stage model that builds on a type/token distinction to simulate how
items are bound into temporal contexts. In this definition, the type of a stimulus encompasses all of its instance
invariant properties: the features that do not change between occurrences. Take the letter K for example; parts of
its type are its semantic features (e.g. it’s a letter, it’s after J in the alphabet) and its visual features (e.g. its shape
and colour). Conversely, a token represents a specific episodic occurrence of a type e.g. where it occurred in
time relative to other items. In the STST model, types are processed in parallel, with many types simultaneously
but fleetingly represented, and it is the act of sequentially binding a type to a token that creates a solidified
representation in working memory.

The first stage of the model concerns the types and consists of four layers supporting different aspects of
visual processing: the input layer, the masking layer, the item layer and the task-filtered layers. The second stage
of the model governs the tokenisation process, and consists of the binding pool and the tokens. Items first arise in
the input layer, and then pass through the masking layer, which implements masking, and would most naturally
be associated with iconic memory2. From here, items enter the item layer, which creates a brief, self-sustained
representation. Then, the final layer of the stage: the task filtered layer, provides a salience filter that excites
task relevant nodes while inhibiting others. From the task filtered layer, sufficiently active items can activate
tokens through the binding pool, and become bound to them through a tokenisation process. This tokenisation
process takes several hundred milliseconds, though it is shorter for more active items. In order to reach sufficient
activation to achieve this binding however, most stimuli will need to benefit from the blaster. When an item
becomes sufficiently active in the task filtered layer, the blaster provides a brief, powerful enhancement to the
entire task filtered and item layers that allows items to reach the threshold for tokenisation. During this process,
a powerful inhibitory signal holds the blaster low to prevent it from re-firing and corrupting the tokenisation
process: it is this inhibition of the blaster that generates the attentional blink. A walk through of how an individual
item becomes encoded into working memory can be seen in figure 4.

Through these mechanisms, the Simultaneous Type/Serial Token model creates an account of working
memory encoding in which types are processed simultaneously, but due to the way the blaster and the tokenisation
process work, types can only be bound in serial. There exists a computational model of STST from which it
is possible to generate both behavioural data, and also “virtual” ERP’s30, 31 that closely mimic the results from
human participants. It is an ideal choice for modelling the data which we are exploring, because it is specific
to the paradigm we are using (the attentional blink), and it already deals naturally with the difference between
simultaneity and seriality.

As discussed, the published STST model does not however, deal with subjective experience, and one of
the contributions of this paper is to propose and implement a system by which this can be obtained. However,
very many, and often any behaviours can be obtained from a model with sufficient modification and parameter
adjustments32. In order to make the fairest possible assessment of the hypothesis in question, the dissociability of
subjective experience and report accuracy during the attentional blink, we therefore limited ourselves in two
ways in our modelling. Firstly, we would attempt to build on top of the existing model to provide a new “readout”
without changing the existing model in any way. Secondly, this readout must be simple; ideally arising from one
or two principles.

The result of these conditions is the following model to encapsulate serial experience: Subjective visibility is
indexed by the strength of the P3 ERP component. When an item is above a given amplitude (the threshold of
subjectivity), it is being “subjectively experienced” and when it is below, it is not. Additionally, this experience is
serial. If the individual activation traces for two items are both above the threshold, then the second item cannot
be experienced until the first one falls below the threshold. For an illustration of this, see figure 5. Specifically,
the strength of an item’s subjective experience is the duration for which its activation trace exceeds the threshold
of subjectivity, subject to no other stimulus already being above the threshold. In this manner, a system allowing
a subjective experience that is exclusively serial in manner is created, with only one addition on top of the
existing model. We call this readout-enhanced STST model, the Simultaneous Encoding, Serial Experience
model (SESE). In order to evaluate the success of this modified STST model, we will compare its behavioural
output to that of human participants and the virtual ERPs it generates to human EEGs in the data from11. This
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Figure 4. A) Input Layer. Stimuli enter the system through this layer. As well as providing input, this layer
implements backward masking through inhibitory connections to all other stimuli in the masking layer. B)
Masking Layer. Simulates further masking dynamically through lateral inhibitory connections to all other
stimuli. These lateral inhibitory connections are weaker than the forward ones from the input layer, such that
backward masking is stronger than forward masking. C) Item Layer. Creates a temporary representation of a
stimulus through self-reinforcing connections. D) Task Filtered Layer. Implements a “salience filter” to filter out
task irrelevant stimuli, by enhancing task relevant stimuli, and suppressing others. E) Tokenisation. When a
stimulus has reached an appropriate level of activation, it excites the currently ready token through the binding
pool. In a process that takes several hundred ms, the token is bound to the type. Once this binding has occurred,
the type-token connection can be maintained without any further input. F) The Binding Pool. Contains the
binding resources that enable stimuli to bind to tokens. G) The Blaster. Provides a short, powerful enhancement
to items in the item and task filtered layers when there is sufficient activation in the task filtered layer to indicate
the ‘detection’ of a target and warrant the onset of tokenisation. While the tokenisation process is ongoing, a
powerful inhibitory signal from the binding pool prevents the blaster firing again. H) Virtual P3. A virtual P3 can
be generated from the STST model from the excitatory post synaptic potentials of the item layer, the task filtered
layer, and a subset of the tokens and binding pool (the token gates and the binder gates).
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specification of subjective experience mandates a change to how we calculate the grand P3 ERPs from the model.
The ERPs generated from the model in31 are calculated by summing all components together. In this model,
when a first target’s activation trace crosses the threshold, it starts contributing to the P3, however, the activation
traces of other targets do not contribute to the P3. A more detailed desciption of how virtual ERPs can be obtained
from the model is available in supplementary material section D.

Figure 5. A) Seriality of experience in the SESE model. In A), though the amplitude of the response of both
stimuli is the same, the duration of the experience of the second stimulus is greatly reduced because it cannot be
experienced until the first stimulus falls below the threshold. Comparatively, in B), the response amplitude of
both stimuli is the same, although the T2’s activation trace is longer with a slightly delayed onset, consequently
they are both experienced for similar durations.

Predictions and Validation
Our current model makes some strong predictions, some of which cannot be immediately validated through the
analysis of our first, dataset which we distinguish by referring to it as the colour-marked task (since in the task,
the T1 is colour marked, which is not the case in the letters-in-digits task that we introduce shortly). In this
section, we discuss these analyses and propose several further analyses to support our hypothesis.

One critiscism of an analysis based on the colour-marked data we present in figure 1 is that the the very
substantial differences in report accuracy and subjective visibility at Lag 1 may be due to the use of a colour-
marked T1. Previous experiments that have examined subjective report in the attentional blink often find
some degree of sparing of subjective visibility at lag 1 (see, for example8, 24), which is not observed in the
colour-marked T1 data. In light of this, we propose a replication without a colour marked T1, giving a pure
letters-in-digits paradigm. Details of the experimental procedure will be given in our materials and methods
section, but the behavioural results can be seen in figure 6, and interestingly, we do see sparing for subjective
visibility at Lag 1, although we will still be able to show the dissociation between report accuracy and visibility
at Lag 1 that is central to our argument.

We also need to buttress ourselves against the possibility that we are observing a dissociation between report
accuracy and subjective experience for reasons that do not entail the sight-blind recall effect we are considering.
This might occur if there is a different mechanism modulating visibility at Lag 1, than at other data points. This
is a very pertinent concern, since the Lag 1 data-point is often argued to be unique in respect of attentional
blink lags; it is, for example, by far the most vulnerable to order errors23, or integration of both targets into one
perceptual episode25. We take two routes to addressing this potential concern. Firstly, and most directly, we show
that with the removal of the Lag 1 data-point in the replication (pure letters-in-digits) experiment just discussed,
the effect still remains non-monotonic.

Secondly, contrary to a temporal integration explanation, a clear prediction of our proposal is that “if the
individual P3s for two items are above the (conscious awareness) threshold, then the second item cannot be
experienced until the P3 for the first one falls below threshold”. As a result, the visibility (relative to accuracy)
for T1 should remain intact at Lag 1 compared to other lags, since it will be experienced to completion, or,
in other words, the co-active T2 cannot interrupt the ongoing experience of T1. According to a temporal
integration account, visibility of T1 should be impaired at Lag 1, since integration fundamentally suggests a
T1-T2 “composite” is constructed, which would surely imply an impact of T2 onto T1. In contrast, we predict
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Figure 6. Behaviour of replication (pure letters in digits) data, comparing accuracy and subjective visibility
across lags in the attentional blink. A) A comparison of report accuracy and visibility ratings for T1. B) A
comparison of report accuracy and visibility ratings for T2. C) A state-trace plot comparing accuracy and
visibility for T1. D) A state-trace plot comparing accuracy and visibility for T2. What we show as T2|T1
visibility is the visibility rating of T2 on all trials in which T1 was correctly reported. Note that compared to the
analysis in11, T2 visibility shows a level of Lag 1 sparing. This dataset also measures visibility of the first target,
which was not collected in the (colour-marked AB) study of11. Importantly, however, the basic dissociation of
report accuracy and subjective visibility at short lags that underlies our hypothesis is qualitatively present for T2;
see panel B). For example, Lag 1 sparing is substantially higher for report accuracy than subjective visibility
relative to other lags. This is illustrated by the black arrows, which indicate a constant distance for each graph.
This can also be seen by noticing that, for T2 report accuracy, Lag 1 is considerably higher than Lag 7, while for
subjective visibility it is marginally lower. Notice that the T1 curves do not seem to show the dissociation at early
lags between report accuracy and subjective visibility that we see for T2. In particular, the differences in vertical
distance across lag that are present in panel A) may just be a facet of the small dip in T1 accuracy at later lags, a
feature that we have not observed previously and which may just reflect “sampling error”.
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that T1 is isolated from the interference of a proximal T2. To address this concern, we propose a state-trace
analysis of the T1 data of the replication (letters-in-digits) experiment. This has several advantages. First, it
allows us to robustly examine whether visibility is changing differently with respect to accuracy across lags,
when compared to our first (colour-marked) experiment. Second, a monotonic finding for T1 in the replication
experiment would provide evidence directly against target integration.

One further analysis we perform is to examine report accuracy when participants indicate an absence of
subjective visibility at Lags 1 and 3. This is a key analysis for the idea of sight-blind recall. That is, being able
to show above chance report accuracy for T2, when participants select the bottom subjective visibility bin, i.e.
nothing seen, suggests recall without experience. Showing that this phenomenon is larger at lag-1 than lag-3
further supports our position that co-activation (although not co-experience) of T1 and T2 particularly drives
the dissociation of visibility from report accuracy. A preliminary version of this analysis was reported in the
supplementary material of11. To maximise the available data for this analysis, we perform it on the second set of
data from11, which sampled fewer lags with more trials, compared to the first set of data from11, which we have
examined thus far in this paper. Focusing on this higher-powered data set enabled us to more robustly measure
this effect.

Materials and methods

Original colour-marked RSVP Data
Ethics
All experiments were performed in accordance with the relevant guidelines and regulations. The study was
approved by the Psychology Research Ethics Committee at the University of Cambridge, UK and participants
provided informed, written consent.

Data
Our set of data is a behavioural attentional blink dataset previously presented in11. Full details of the experimental
procedure is given in the original paper, we summarize this here for clarity. Data was collected for two
experiments, a behavioural set that sampled a large number of lags over fewer trials per lag (Experiment 1), and
an electrophysiological set that additionally collected EEG data, and sampled fewer lags (Experiment 2).

Targets were uppercase letters and distractors were single digits, each trial contained one or two targets - T1
occurred on every trial and was always presented in red, and T2 (if it occurred) was presented in white. Targets
could be any one of 21 letters, with 5 letters excluded because of similarity to numbers. Each RSVP stream
contained 15 items. T1 randomly appeared as the fourth, fifth or sixth item in the RSVP stream. Stimulus Onset
Asynchrony (SOA), the amount of time between the onset of each stimulus, was 90ms. At the end of each
RSVP stream, participants were asked to rate the subjective visibility of T2 using a 6 point self-report scale. The
numbers 1 2 3 4 5 6 were presented in a horizontal line on the screen, with the description “not seen” presented
beneath the number 1 and the description “maximal visibility” presented beneath the number 6. Participants then
reported the identity of T1 and T2 (even if a second target did not occur). Participants were required to guess
if they were unsure of the target identities. In Experiment 1, T2 appeared at lags 1, 2, 3, 4, 6, 8, or not at all
with equal frequency. Results of this experiment for 18 participants were presented in figure 1. In Experiment
2, targets appeared at Lag 1 (40% of trials), Lag 3 (40% of trials), Lag 6 (10% of trials) and not at all (10% of
trials). Experiment 1 deliberately sampled a large number of lags in order to examine the relationship between
T2 accuracy and subjective visibility across the entire AB curve, while Experiment 2 sampled fewer in order to
facilitate the creation of robust EEG data. Note that in contrast to the original study, for our state-trace analysis
of second targets (T2s), we only include trials in which T1 is present and T1 and T2 are reported in the correct
order in order to avoid order errors as a confound. This applies for both our accuracy and visibility ratings.

Implementation specifics
Setting the prior

We set the prior of our Bayesian analysis from prior literature, specifically based on the results from24. This
paper presents both a classic attentional blink with lag 1 sparing of report accuracy, and a similar “experiential”
blink of subjective report in which lag 1 is spared a great deal less. Due to the well-established evidence for the
pattern of behaviour in the attentional blink, we encoded strong expectations of behaviour, including lag 1 sparing,
of the report accuracy in our data. Comparatively, the evidence for the behaviour of subjective report during the
blink is less well established, so we refrained from imposing such strong constraints about it, particularly at the
important lag 1 data point. We also recognise some uncertainty about the deepest point in the attentional blink:
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given the SOA of 90ms, we could reasonably expect either of lags 2 or 3 to be the deepest point in the blink. We
therefore set our prior to be consistent with several potential deepest points. Finally, Lag 8 is a serial position
outlier (A common finding in attentional blink experiments is that a last lag that is a serial position outlier, e.g.
if there is no Lag 7 and most lags in the experiment are short, participants will come to learn this regularity
and optimize the allocation of attentional resources to short lags, causing lag 8 performance to be relatively low
across the experiment.) in our experiment and was therefore removed from our analysis. These considerations
resulted in a uniform prior subject to the following constraints across our data: for report accuracy, Lags 1, 4
and 6 would be held to be larger than Lags 2 and 3, with Lag 1 additionally being held to also be larger than
Lag 4. For subjective report, Lag 6 would be held to be higher than Lag 4, Lag 4 higher than Lag 3, and Lag 3
higher than Lag 2. The validity of these constraints, as determined by our empirical priors method discussed in
the supplementary material section A was strong, but not completely homogenous. We therefore applied our
method of empirical priors to reduce them to a set with a better fit. After application of our method, our prior
was still uniform, subject to constraints as follows: For report accuracy, Lags 1 and 6 would be held to be larger
than lags 2 and 3, and Lag 1 additionally would be held to be larger than Lag 4. The constraints for subjective
report remained unchanged.
Distribution of data

The state-trace method we are applying, based on the work of21, 22, assumes a binomial distribution of the
data. This is suitable for our accuracy data, which is a dichotomous variable, but not for our visibility scale that
forms a multinomial distribution over 6 values. Consequently, we grouped our visibility results into two bins, a
high visibility bin and a low visibility bin. To decide the fairest way of applying this split, we calculated the
grouped bayes factor comparing the validity of the constraints for each possible method of splitting the data, for
both the full and empirically determined prior. The results (see supplementary material section C) clearly show
that the “best” split is that of assigning the top 50% of visibility ratings to the high visibility bin and the bottom
50% to the low visibility bin.

Replication pure letters-in-digits RSVP Data
Ethics
All experiments were performed in accordance with the relevant guidelines and regulations. The study was
approved by the Faculty of Sciences Ethics Committee at the University of Kent, UK and participants provided
informed, written consent.

Data
Our data is a set previously presented in33, collected by Ellis Luise Gootjes-Dreesbach as part of her doctoral
research at the University of Kent. 12 young adults took part in this study, aged 18-30 with a mean age of 21.83
years. Targets were upper case letter and distractors single digits. Targets could be any one of 21 letters, with
5 letters excluded because of similarity to numbers. Each trial contained two targets, with no colour marking
for either target. Each RSVP steam contained 20 items. T1 randomly appeared as the 7th, 8th or 9th item in
the steam. T2 was pseudorandomly presented at Lags 1, 2, 3, 5 or 7, ensuring an equal number of trials in each
condition. Stimulus Onset Asynchrony (SOA), the amount of time between the onset of each stimulus, was
83ms. At the end of the stream, participants were asked to respond (via the keyboard) to four questions about
the visibiltiy and identity of T1 and T2. The query for target visibility (‘On a scale of 1-6, please indicate how
well you saw the first [second] letter’) was paired with an ASCII representation of a 6-point scale with the low
end labelled as “not seen” and the high end labelled “maximal visibility”. Target identity was queried by asking
“What was the first [second] letter you saw? If you are not sure, give your best guess.”. We analysed all trials
whatever the report order. The whole experiment consisted of 4 blocks of 45 trials, each randomised with respect
to lag and T1 position.

Implementation specifics
Setting the prior

This experiment sampled slightly different lags to the original colour-marked experiment, but we attempted to
replicate the constraints used in the previous experiments as closely as possible for the analysis of T2. Specifically,
we substituted all constraints in the previous experiment, with Lag 5 replacing Lag 4, and Lag 7 replacing Lag 6.
For T1, lacking any precedent in the literature for the behaviour of T1 visibility, we placed no constraints on
the possible orderings of our data. For this replication experiment, in order that constraints did not change from
those in the original data set, we did not make use of our method of deriving empirical constriants.
Distribution of data
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To provide the fairest comparison to our original (colour-marked) analysis, we maintained the previous split
of visibility ratings into high and low bins.

Availability of data
All of the code used in this project has been open sourced on Github, subject to an MIT liscence. See
https://github.com/william-r-jones/StateTrace for the modified state-trace code, and https://github.com/william-r-
jones/SESE for the modified STST model. All of the data used in this paper is also available alongside this code
where possible, though some datasets (notably the EEG data) are too large for this to be possible and have instead
been made available using the Dataverse Project. See https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FU9DFFI.

Results
Original Colour-Marked Data
State-Trace Results (T2)
Figure 7(A) shows validity for each participant for the original set of prior constraints derived from24. At the
group level, the evidence is strongly in favour of the constraints fitting the data with grouped (not log) BFD/N(D) =

1.22×109. However, we note that while the group validity is strong, four participants show the opposite pattern.
Figure 7(B) shows the respective non-monotonicity for this set of constraints. Results are strongly and almost
homogenously in favour of the non-monotonic model, with grouped (not log) BF(M/NM)|D = 2.25×10−14.

Figure 7(C) shows validity for each participant for the set of prior constraints derived from the original using
our empirical prior method. At the group level, the evidence is strongly in favour of the constraints fitting the
data, with grouped (not log) BFD/N(D) = 1.07×1013. However, we note that while the group validity is strong,
there remains some variability across participants, though this situation has noticeably improved compared
to 7(A). Figure 7(D) shows the respective non-monotonicity for this set of prior constraints. Results here are
strongly and almost completely homogenously in favour of the non-monotonic model, with grouped (not log)
BF(M/NM)|D = 1.17×10−17.

Replication Letters-in-Digits Data
T2
Figure 8(A) shows validity for each participant for the prior adapted from the original colour-marked T1 data
analysis. At the group level, the evidence is strongly in favour of the constraints fitting the data with grouped
(not log) BFD/N(D) = 1.46×1011. Figure 8(B) shows the respective non-monotonicity for this set of constraints.
Results are in favour of the non-monotonic model, with grouped (not log) BF(M/NM)|D = 1.14×10−2.

T2 No Lag 1
Figure 9(A) shows validity for each participant for the prior adapted from the original colour-marked T1 data
analysis, with Lag 1 removed. At the group level, the evidence is strongly in favour of the constraints fitting
the data with grouped (not log) BFD/N(D) = 2.5×109. Figure 9(B) shows the respective non-monotonicity for
this set of constraints. Results are in favour of the non-monotonic model, with grouped (not log) BF(M/NM)|D =

5.75×10−4.

T1
Figure 10 shows the respective non-monotonicity test for T1. Results are in favour of the monotonic model, with
grouped (not log) BF(M/NM)|D = 7.36×104.

Simultaneous Type/Serial Token Model Results
Our first comparison is the behavioural results of the STST model and those from11; see figure 11. Note the
qualitative similarity in behaviour. Such a high similarity between empirical and model findings is rare without a
fitting of model parameters to the data.

We also compared the human ERPs with the virtual ERPs generated by the STST model, see figure 12. For
full details on how these are obtained, see the supplementary information. We present two sets of model ERPs,
comparing each of them to the same human ERPs, i.e. Lag 1. Panel A) compares to model Lag 1 and B) to model
Lag 2. It should be clear from this that there are features of both the models Lag 1 and Lag 2 that are similar to
the human Lag 1. This is perhaps not surprising and suggests a fixed offset timing difference between model
and human data. Additionally, there are further reasons why it is unrealistic to expect a more perfect fit between
simulations and empirical findings. Firstly, the task modelled by STST does not have a colour marked T1, which
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Figure 7. Log10 Bayes factors for each participant across 4 different tests, for T2 in the original (colour-marked
T1) experiment. Note that participants are in the same order in all graphs to facilitate comparison. Lines
overlaying the figure correspond to bayes factors of 1

10000 , 1
1000 , 1

100 , 1
20 , 1

3 , 3, 20, 100, and 1000 respectively. A)
Evidence for validity of the prior by participant for the original prior based on24. B) Evidence for monotonicity
(positive) vs non-monotonicity (negative) by participant for the original prior. C) Evidence for validity of the
empirically derived prior. D) Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant
for empirically derived prior.

Figure 8. Log10 Bayes factors for each participant for monotonicity and validity of constraints for T2 in the
replication (pure letters-in-digits) experiment. Note that participants are in the same order in all graphs to
facilitate comparison. Lines overlaying the figure correspond to bayes factors of 1

10000 , 1
1000 , 1

100 , 1
20 , 1

3 , 3, 20,
100, and 1000 respectively. A) Evidence for validity of the prior adapted from the original (colour-marked T1)
analysis. B) Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant for this prior.
Although the effect here is not as strong as it is for the original (colour-marked T1) experiment, the data does not
exhibit the pattern in which the grouped Bayes Factor becomes a problematic measure, which arises, for
example, if there is a single outlier subject driving the effect.
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Figure 9. Log10 Bayes factors for each participant for monotonicity and validity of constraints for T2 in the
replication (pure letters-in-digits) experiment with no Lag 1. Note that participants are in the same order in all
graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 1

10000 , 1
1000 , 1

100 , 1
20 , 1

3 ,
3, 20, 100, and 1000 respectively. A) Evidence for validity of the prior from the (colour-marked T1) analysis. B)
Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant for this prior.

Figure 10. Log10 Bayes factors for each participant for monotonicity for T1 in the replication (pure
letters-in-digits) experiment. Note that participants are in the same order in all graphs to facilitate comparison.
Lines overlaying the figure correspond to bayes factors of 1

10000 , 1
1000 , 1

100 , 1
20 , 1

3 , 3, 20, 100, and 1000.
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is likely to explain why the transient around 200ms in the human data is not replicated by STST. Secondly, we
are comparing scalp EEG directly to model deflections, without recourse to a forward (lead field) model of how
brain sources are projected into sensor space. Critically though, the key property that a clear conscious percept of
T2 (i.e. the high visibility condition) coincides with a longer P3 is qualitatively present in both sets of virtual
ERPs. This pattern resonates with the notion that conscious perception imposes a seriality constraint that is not
required for encoding into working memory. Some further results are available in Supplementary Section E,
where we compare human and virtual ERPs at later lags.

For illustrative purposes, we also present the activation traces for high and low visibility, for each of the T1,
T2 and distractors seperately. We do this for each lag separately. This can be seen in figures 13(A) and 13(B)
(Lag 1) and figures 13(C) and 13(D) (Lag 2). This clarifies how the Virtual ERPs in figure 12 emerge from
the underlying STST activation traces. An STST virtual ERP, as presented in31, is a summation of the traces
in a panel of figure 13, including the low amplitude responses to distractors, which contribute to the “rougher”
contours of the figure 12 model time series compared to the figure 13 target time series. Critically, the experience
read-out mechanism we are proposing here means that the T1 and T2 traces are not simply summed when they
are co-active. Rather, the T2 trace only starts contributing to the virtual P3 once the T1 trace has fallen below
the visibility threshold, as shown in figure 5. Accordingly, only the the back-end of the T2 trace in figure 13(A)
contributes, almost none of it in figure 13(B) and a much larger proportion in figure 13(C).

Report accuracy at minimal subjective visibility
To further justify the term sight-blind-recall, we directly investigated T2|T1 accuracy at the lowest level of
subjective visibility. The question of interest is whether we can actually demonstrate that report accuracy is above
chance when subjects report zero visibility of the T2. To this end, T2|T1 accuracy was calculated only on trials
where participants selected a visibility rating of 1 (the lowest possible visibility rating, indicating ‘not seen’).
For each lag, T2|T1 accuracy was compared with the degree of accuracy expected due to chance (4.76%, one
out of 21 letters presented), using one-sample t-tests. In other words, we investigated whether T2|T1 accuracy
was greater than 4.76%, at relevant lags. As discussed, this analysis was conducted for lags 1 and 3 in the
(colour-marked T1) second experiment from11, as that is where the trial counts were sufficiently large to examine
a specific subjective visibility (200 trials for each of those lags). As expected, accuracy was significantly greater
than chance, despite participants indicating that the subjective visibility of the target was nil (lag 1: µ = 37.98%,
σ = 25.25%, t(1,17), p<.001, d=1.3156), (lag 3:µ = 15.03%, σ = 12.5%, t(1,17), p=.0014, d=0.8214). We also
examined the hypothesis that at minimum visibility report accuracy at lag 1 was greater than report accuracy at
lag 3. We found evidence for this hypothesis, (lag 1 > lag 3, t(1,17) = 5.2033, p<.001, d= 1.2264).

Discussion

Monotonicity verseus Non-Monotonicity
Our state-trace analysis, comparing the measures of accuracy and subjective experience in the attentional blink,
found strong evidence for a non-monotonic model of the relationship between these two measures at both the
individual participant and group level. This was further supported by the methods developed as part of our own
contributions to the current state-trace methodology. We would argue that our empirical priors approach identifies
a more accurate set of results across the data, however it is encouraging that our results are similar both with and
without our empirical priors.

Previous literature21 has advocated the use of both the Grouped Bayes Factor (GBF) that we have calculated,
as well as an Aggregated Bayes Factor (ABF) to confirm the homogeneity of the results, something we have not
done. There seems little need to apply the ABF, since our data shows substantial homogeneity in both contrasts
for which it is tested: for example, considering our main state-trace finding for our original colour-marked T1
data set, only three participants demonstrate even incidental evidence for a monotonic model (cf. figure 7B)
with the original prior, and only one with the empirical prior (cf. figure 7D). Additionally, we note that the ABF
cannot be used to confirm homogeneity, only identify heterogeneity.

There is one potential exception to this, figure 8B). In this instance, ignoring the absolute quantity of the
effect, exactly half the participants show one Bayes factor direction, and half the other. This is heterogeneous
in nature, which, as we have discussed, may be a problem case for the GBF. However, in this instance, we do
not believe that we need to be overly concerned. The dangerous case of heterogeneous results in respect of the
GBF is that it can potentially lead to a misleading summary of the overall effect. However, that is not the case
in figure 8B). While it is true that we have a substantial number of participants supporting both monotonic and
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Figure 11. A) Accuracy and subjective visibility by lag for the STST model. B) T2|T1 Accuracy and T2
subjective visibility by lag for the data from11, i.e. the original (colour-marked) task. Note that these results have
appeared in a different figure (figure 1(A)) above, but we present them reformatted here to better facilitate a
comparison. Importantly, as previously discussed, neither the function or the structure of the STST model, as
given in10 were changed when generating this fit.

Figure 12. A comparison, for both high and low T2 visibility, given correctly reported T1, of the human ERPs
from the original colour-marked T1 data analysis11. A) Lag 1 Human ERPs vs Lag 1 STST virtual ERPs. B) Lag
1 Human ERPs vs Lag 2 STST virtual ERPs. Importantly, as previously discussed, neither the function or the
structure of the STST model, as given in10 were changed when generating the virtual P3s. Note that the human
ERPs presented are slightly different to those from11, as ours exclude order errors to be consistent with previous
sections.
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Figure 13. Activation traces by target for virtual data presented in figure 12, split up by visibility and lag.
Unlabelled activation traces are from distractors. Each one of these activation traces corresponds to the sum of
the excitatory post synaptic potential of the neurons on the 3rd, 4th, 6th and 8th layers of the neural-STST model,
corresponding to the item layer, the task filtered layer, the binder gates and the token gates. This is illustrated in
figure 4. The ‘full’ activation traces that are presented in figure 12 are generated from the sum of each of these
individual traces at each timepoint, subject to the seriality of experience we have discussed previously; when one
target is being experienced, the activation trace of the other target (or indeed, distractors) makes no contribution
to the grand activation trace. A) individually depicted activation traces from the SESE model for each target, for
high visibility targets at Lag 1. B) individually depicted activation traces from the SESE model for each target,
for low visibility T2s at Lag 1. C) individually depicted activation traces from the SESE model for each target,
for high visibility targets at Lag 2. D) individually depicted activation traces from the SESE model for each
target, for low visibility T2s at Lag 2.
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non-monotonic directions, the only non-incidental Bayes Factors we have provide evidence for non-monotonicity.
In this case, the most natural interpretation of the data is non-monotonicity, which supports the calculated GBF.

One aspect of our analysis that is notable is the lack of a trace factor. However, the introduction of a trace
factor is only required in the case in which there are only two levels of the dimension factor; in other cases, the
introduction of a trace factor is a convenience designed to sweep out the behaviour of a system. In our case, we
have 5 levels of our dimension factor, which is very close to, or exceeds the combined total trace × dimension
factors in other state-trace experiments18, 28, 34.

Working Memory encoding without Subjective Experience
Our results suggest some kind of dissociation between working memory encoding and subjective report. Despite
this, we have only demonstrated that a dissociation exists and have not definitively characterised it: we would
claim that our findings are indicative of a particular relationship of dependency between working memory
encoding and conscious perception, but no more than that. However, our results do not exist in a vacuum. It is
clear that the dissociation we observe is a phenomenon of very short lags. In particular, it is largest at Lag 1.
For example, in the original (colour-marked T1) study, the series of interactions performed in11, in which lags
were systematically excluded, suggest a strong dissociation at Lag 1, with weakening dissociations from Lag 2 to
Lag 3 and nothing at higher lags, additionally, the state-trace analysis performed here on that same data showed
non-monotonicity when all lags were included, but the removal of Lag 1 from the state-trace analysis nullified
that effect, see supplementary material section B for details of this analysis. Furthermore, the state-trace analysis
we perform here on the replication (letters-in-digits) data set shows non-monotonic patterns with all lags in and
when Lag 1 is excluded, but the effect is lost when further lags are excluded.

A dissociation restricted to just very early lags, and particularly Lag 1, raises the possibility, but no more
than that, of working memory encoding being a necessary, but not sufficient, condition for conscious perception
(although, the existence of phenomenological awareness would mean WM encoding was also not necessary
for conscious perception). This is because it is at these lags that the activation of T1 and T2 is most strongly
simultaneous. Thus, we can say that it is specifically when T1 and T2 are active together that T2 is encoded into
WM, with a weakened, or absent, perceptual experience, suggesting a capacity to encode T1 and T2, while the
T2 conscious percept is impaired. In addition, our finding in subsection “Report accuracy at minimal subjective
visibility”, that there is above chance report accuracy when participants report zero visibility, an effect that
is substantially stronger at Lag 1 than Lag 3, provides probably the most direct evidence that on some trials
encoding into WM can occur without visibility.

We also view the P3s we have observed in the original (colour-marked-T1) experiment as consistent with this
interpretation although certainly not definitive verification of it. For example, in figure 12, it is clear that the
Lag 1 High Vis (human) is considerably longer than the Lag 1 Low Vis (human). Additionally, in11, figure 5
compares the ERPs for T2 correct with T2 high visibility (compare the green traces in panels A and F), again
the high visibility T2 has a substantially extended P3. This seems to suggest that consciously seeing the T2
dramatically extends the P3, while the curtailed P3 when T2 is just correct, but not necessarily vividly seen,
might be considered indicative of a T2 being encoded, with little, if any, conscious experience.

This profile of findings could suggest a phenomenon called “sight-blind recall”, however, further empirical
support from the RSVP domain and beyond is required to fully justify this interpretation. In particular, the critical
demonstration would be that when T2 is correctly reported but given a zero visibility response, the lag 1 P3 is the
same as that for a T1 alone. We do not though have sufficient trials in our ERP experiment to reliably construct
this average. This, then, is a key test that needs to be performed.

Importantly, this purported sight-blind recall is different from more familiar notions of preconscious pro-
cessing, such as subliminal priming, implicit perceptual learning as well as related findings demonstrated with
continuous flash suppression15 and phenomena such as blindsight17, or episodic face recognition18. These
experiments demonstrate only an indirect effect on a later test; in no case is the “invisible” stimulus that is not
consciously perceived directly reportable. We would argue that these results are not strong enough to demonstrate
the “sight-blind recall” that we have described, indicating instead influence without experience. In contrast to
this, our results suggest the potential for free recall of a stimulus that has not been conscious perceived, a much
stronger result that we would argue is far closer to constituting sufficient evidence for “sight-blind recall” and
working memory encoding without conscious experience.

The decoupling of subjective visibility from report accuracy at early lags is particularly striking in our original
(colour-marked-T1) data set, where there is no evidence of Lag 1 sparing for subjective visibility at all; see figure
11(B). However, it is important to realise that the decoupling effect we have identified is not dependent upon
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the complete absence of sparing for subjective visibility, and this is important, since other studies that collected
subjective visibility, e.g.8 and24, did see lag-1 sparing for subjective visibility. Importantly, the replication
(letters-in-digits) data set, indeed, has sparing of subjective-visibility; see figure 6. However, critically, this
kick-up at early lags is, in relative terms, considerably smaller for visibility than for report accuracy. Accordingly,
we are still able to demonstrate the state-trace non-monotonicity that is central to the argument in this paper, and,
in fact, the interaction that was central to11 can also be demonstrated, see33.

These findings though raise the question of why different lag-1 subjective visibility patterns have been
observed, i.e. why is it that the original (colour-marked-T1) data did not show lag-1 sparing for subjective
visibility, but24 and our replication (letters-in-digits) data set did? Considering our data sets, one factor that surely
impacts this is the T1 colour-mark in the original study. This, we believe, makes the T1 perceptually strong and,
also, more easily distinguishable from the T2. Indeed, in this data set, T1 report accuracy is considerably higher
than T2 report accuracy performance at all lags.

In contrast, the replication (letters-in-digits) study was a straight letters-in-digits task, with no colour marking.
This may have caused the T2 to be more strongly perceived, since the T1 is not as strong as it is in the original
(colour-marked-T1) study. It is less clear how to reconcile our findings with24, since they did have a colour-
marked T1. However, their colour-marking may not have been as salient as ours: cyan in theirs versus red in ours.
This could potentially mean that there is also increased relative strength for T2s in their experiment, increasing
its visibility. A definitive answer to these inconsistencies, though, awaits further empirical work.

Broadening out fron the attentional blink, there are several pieces of work that present findings consistent
with our results. Firstly, evidence of working memory maintenance without conscious awareness35 sits very
nicely with our results, and this is even more the case for such a demonstration with the attentional blink36. If we
have indeed found a case in which working memory representations can be formed, without awareness of their
formation then we would have identified an explanation for how items could enter working memory without
being experienced, which then could be maintained without experience. Our results may help explain how these
pre-conscious working memory traces arise by giving them a mechanism through which they can be encoded
without conscious experience.

37 also present experimental conditions in which they are able to use metacontrast masking to vary the
subjective report of consciousness, while stimulus discriminability is maintained. Further, the authors find
that as SOA decreases (down to around 50ms, at which point the effect reverses) shorter SOAs result in lower
subjective experience, consistent with our finding that subjective experience drops as T1 and T2 become closer.37

is a landmark study; our results, though, move beyond their work by applying state-trace analysis rather than
single dissociations, and by considering identification with free recall, rather than two alternative forced choice
decisions. In this sense, our objective behaviour relies upon a significantly more complex cognitive process.

Taking our results along with those from1, 3, 4 that indicate some degree of perception without reportability, it
may be tempting to conclude that working memory encoding and perception are highly correlated but mutually
dissociable processes. However, all of the studies above provide their evidence in the form of the single
dissociations. Further state-trace analysis could provide additional evidence for the dual question to that studied
in this paper.

From a theoretical point of view, it is interesting that perception is most taxed at Lag 1. As we have
discussed,11 note that this pattern of behaviour is consistent with a model of the attentional/experiential blink
in which stimuli are consciously perceived in a serial manner, but encoded in a simultaneous manner. This is
discussed in further detail below.

Integrated Percepts
One potential criticism of our results is that the low subjective experience at Lag 1 is caused by the rather unique
nature of the Lag 1 data point. Lag 1 is the only data point without any intervening distractors, and is, notably, by
far the most vulnerable point to order errors23, or integration of both targets into one perceptual episode25. In this
case, the poor report of subjective experience of T2 might be confounded by the presence of T1. Participants
might report poor T2 visibility not because T2 was not vividly experienced, but because the experience of T1 in
the same perceptual episode causes confusion. This issue was discussed at length in11, but we return to the point,
since it remains an important potential confound that is worth revisiting in the light of the new findings being
presented in this paper.

We additionally note that there are an unusually small number of putative integrated percepts in the experiment
of11. The colour marking of T1 in this experiment reduced the classical indicator of integrated percepts, order
errors, from 30% in classic letters/digits tasks38 to approximately 10% in the task from11. Further, we note that
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the pattern of behaviour we see at Lag 1, with low subjective experience and high accuracy is also visible to a
lesser extent at lags 2 and 3, in which there are intervening distractors.

Another important point that stands against an integrated percepts explanation is the evidence that the
reduction in relative subjective visibility can also be observed at Lag 2, and perhaps also weakly at Lag 3.
The interaction analysis in11 showed this, and the state-trace analysis we performed in this paper, suggested a
non-monotonic pattern was still found in the replication (letters-in-digits) task when Lag 1 was removed. The
integration argument is though classically ascribed specifically to Lag 1 and not later lags, in which there are
intervening distractors. A further reason for believing that perceptual integration is unlikely to explain our
findings is that it seems T1 is immune to the decoupling of report accuracy and subjective visibility, a point we
discuss next.

Target Specificity of Decoupling
Importantly, the replication (letters-in-digits) data set that we analyse in this paper strengthens the specificity
of the argument we are able to make. This further data set has enabled us to, firstly, replicate the decoupling
between report accuracy and subjective visibility for T2. This was done with the state-trace analysis of T2
reported in subsection “Replication (letters-in-digits) Data” of section “Results”. In addition,33 reports the classic
T2 interaction between Report Measure (report accuracy vs subjective visibility) and Lag for the letters-in-digits
data set, which we reported in11 for the original (colour-marked T1) data set.

Secondly, and perhaps most significantly, while subjective visibility ratings for T1 were not collected in the
original (colour-marked T1) data set, the replication data set has that data point. As a result, we have been able to
investigate whether there is a dissociation of report accuracy and subjective visibility for T1; and, importantly,
there does not seem to be one.33 failed to find an interaction between Report Measure (report accuracy vs
subjective visibility) and Lag, and, in this paper, we identified a monotonic state-trace pattern for T1 in the
replication data set; see subsection “Replication (letters-in-digits) Data” and figure 10.

The immunity of T1 to the report accuracy – subjective visibility dissociation suggests that the relationship
between working memory encoding and conscious perception is unchanged across lags, and, notably, that
co-activation of T1 with T2 (as occurs at very short lags) does not impair the conscious experience of T1, in
the way it does T2. This finding is wholly consistent with the serial experience interpretation we are arguing
for in this paper. That is, at very short lags, particularly Lag 1, T1 typically starts being perceived before T2
does, conferring it occupancy of the exclusive “focus of conscious experience”, and the, late coming, T2 is
excluded. This manifests in a, relative (to report accuracy), loss of visibility for T2, but not for T1, which is what
we observe. In other words, the T1 claims “the brain’s experiencer” before T2 arrives, and holds it until T2 has
decayed, but there is no such exclusivity to the encoding into working memory.

This T1 immunity to the report accuracy – visibility dissociation also stands against a perceptual/ event
integration interpretation. This is because, at its very heart, event integration suggests a composite of T1 and T2
is experienced. But, if that were the case, one would surely expect any impairment in T2 visibility associated
with that composite, to also impact T1, In other words, if one is going to argue that T2 subjective visibility being
low at Lag 1 is due to a confused “joint” binding, why would that decoupling of subjective visibility and report
accuracy not also impact T1?

Simultaneous Type/Serial Token Model
There is no certainty with regard to an explanation of data such as we are presenting in this paper, but a
computational account is as good a demonstration as one can have that a group of theoretical positions are
consistent with each other, since a computational model has to run and generate this range of phenomena.
Thus, we would argue that the STST computational account and the extension of it in the current paper is the
demonstration that the theoretical positions we are taking are reconcilable. In particular, this shows that the
subjective visibility findings we have named the Experiential Blink are reconcilable with the STST computation
model, in particular, additions to the simultaneous type/serial token (STST) model of temporal attention allow it
to index subjective experience as well as report accuracy, with the goal of providing a model that can explore
the dissociations we discuss in this paper. In order to verify this model, we compared its predictions with the
human data from11. The first comparison we made is between the behavioural results, specifically, we compare
the respective report accuracies and subjective visibilities predicted by the SESE model to those from the human
data. The results from this can be seen in figures 11(A) and 11(B). Overall, there is a strong similarity between
the two. One notable difference is that the SESE model is simulating a slightly more difficult task than the human
data – report accuracy lower by around 10%. Perhaps because of this, the SESE model also demonstrates a more
marked downturn in subjective report at earlier lags than the human data.
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We also compared the virtual ERPs generated by the SESE model with the human ERP data. The most
significant difference between the two is the respective late dynamics of SESE compared to the human data, with
the SESE data ERPs showing differences to the human data from approximately 600ms onward. Despite this,
there is still a strong qualitative fit between the SESE data and the human data. It is important to note that we
have taken the STST model exactly as it was formulated over 10 years ago, i.e. in10. Most notably, we have not
refitted the parameters of the model in order to improve the match to the experimental data presented in this
paper. This surely means that the match between model and experimental data is not going to be quantitatively
perfect. In this respect, it is perhaps only reasonable to just expect a qualitative match between model and
experimental results. In this context, the quality of match to the empirical data is, we would argue, impressive.
Most importantly, the simulations we have run with SESE have provided a proof of principle that the explanation
presented in figure 5 for why report accuracy and subjective visibility diverge is tenable. This explanation rests
on the concept that encoding into working memory can proceed in parallel, but conscious perception cannot,
a concept which we have noted suggests a theory called simultaneous encoding/serial experience. The natural
electrophysiological correlate of this is a time-extended P3 when both T1 and T2 are consciously perceived, as
opposed to just T1. This is what we observe in our data, and simulations in figure 12.

It is also important to observe that without a full investigation of the range of input strengths and parameter
values within the STST family of models, the full range of patterns of data that can be embraced by the SESE
model is not certain. For example, in its current configuration, the model generates very low visibility at lag-1
(see figure 11), which seems inconsistent with the observation that subjective visibility can exhibit sparing
at lag-1, just substantially less than observed for report accuracy; see figure 6B). However, within the STST
family of models, there may be a region of parameter settings that enable weak sparing for visibility at lag-1. In
particular, the model is on something of a “knife-edge” at lag-1 and small changes in input strength and parameter
settings can greatly change the model’s behaviour.

One possible way in which sparing could be obtained for visibility would be if the T1 activation trace were
high amplitude but short in duration, only excluding perception of T2 for a short period and thereby enabling it to
be seen relatively vividly. If this were accompanied by very weak activation traces for T2 during the blink, weak
lag-1 sparing of visibility may be obtainable. In this respect, aspects of the eSTST model23 could be relevant,
since they enable a more marked difference in dynamics between sparing and the blink. These aspects ensure
that it is hard to reactivate the blaster (STST’s attentional enhancement) once a blink has been initiated, naturally
leading to weak T2 activation traces at lags 2 and 3. This said, modelling sparing of visibility at lag-1 is likely, at
the least, to require retuning of STST’s parameters, a step we have avoided to date.

A potentially far-reaching claim of the SESE model is that the generation of P3s is more involved than
previously proposed (see31) for STST. We are not in a position to completely define this approach with full
neural detail; that has to await further work. However, the new interpretation is required in order to be consistent
with the results we present here and particularly in11. Specifically,11 suggests that the P3 indexes conscious
perception, not working memory encoding, so if we are proposing seriality of conscious perception, we have to
propose seriality of the P3. Although a definitive mechanistic explanation awaits further modelling work, the
intuition is that the activation traces currently generated by STST (which aggregate across a number of layers of
the model) are precursors to the actual P3 and are earlier in the processing pathway. These activation traces feed
into our “readout” mechanism, which is serial, excluding the second target from contributing to the P3 until the
first has completed being experienced, i.e. has dropped below threshold.

Thus, we are imagining that the activation traces for T1 and T2 that the original STST model generate remain
unchanged and can unfold in parallel, as they currently do at lag-1. Working memory encoding is still driven
from these traces, but conscious experience is driven by the traces read-out, a notion that could be related to
ideas of self-observation prominent in theories of conscious experience39–41. This readout enhancement can be
considered speculative at this point. However, we include the idea here, since one purpose of theory is to provide
strong claims that empirical work can attempt to disprove. This is a classic example of a scientific prediction that
would be considered unlikely unless one subscribes to the theoretical position associated with the SESE theory.
These are exactly the predictions that can carry the most evidence if experimentally investigated.

Indeed, it is central to scientific progress that testable predictions are made from models, in order that
formalised theories can be disproved, the key to scientific progress from a Popperian perspective. In this spirit,
the SESE model that we have presented in this paper makes two particularaly strong claims. The first being
that that the P3 at lag-1 does not have the form of a double-amplitude single-target P3. Note, the vanilla STST,
without readout-enhancement, does generate a double-amplitude P3 at lag-1, see figure 7 of31. Critically, it is
important to rule out the possibility that the observed lag-1 P3 is reduced in amplitude because it is at ceiling.
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That is, the specific prediction is that the lag-1 P3 is a similar amplitude to a single-target P3 and the distribution
of P3s observed is not skewed according to a ceiling effect. The second key prediction that the SESE P3 readout
mechanism predicts is that the steady state visual evoked potential (SSVEP) weakens or even de-synchromises
during the P3. This is because if one asserts that an ongoing P3 for a target excludes the activation trace for
another target, it should also exclude or dampen the activation traces of distractors (which drive the steady state
response). Clearly, the SSVEP is at least partially from generators substantially earlier in the processing pathway
than those that might directly drive the P3. Nonetheless, some sort of reduction in the power of the SSVEP may
be observable. Disproving the first of these predictions would be a major problem for the readout-enhanced
STST theory. Finding evidence for the second would provide converging evidence for the theory.

Seriality and STST
It is important to clarify the STST theory in the light of the findings and the serial experience ideas presented
here. The following are key points to consider.

1. The original STST theory already makes a seriality assertion10. This, though, is a seriality over a longer
time-frame than we are considering in this paper. That is, it proposes that the attentional blink has the role
of delaying the start of a second episode, in order that all the bindings associated with a first episode can be
completed before the next one starts. Thus, the seriality it focusses on is “across” the attentional blink, e.g.
between a T1 and a T2 at, say, lag 5. As currently framed, it is focussed on working memory encoding,
and does not explicitly speak to conscious experience.

2. The seriality considered in the current paper, is focussed on what happens when targets are very close
together in time, e.g. at Lag 1. The original STST theory presented in10 incorporated the notion of a
“joint encoding” at Lag 1, whereby both T1 and T2 can be encoded into WM, but with a loss of episodic
information, e.g. order and conjunction properties. The Experiential blink and the experience read-out
theory presented in this paper extends the “joint encoding” notion from the original STST model, by
arguing that there can be “joint encodings”, but for T2 to be experienced, it has to be sufficiently strong that
it can outlive the experiencing of T1. This is a new idea to the STST framework. The serialising considered
here is specifically about conscious experience (the serialising of point 1. above is about working memory
encoding), and it specifically occurs within a single episode, not across them.

Conclusion
We have examined the evidence for a dissociation between working memory encoding and subjective report in
the attentional blink, and developed our own additions to current state-trace methodology. Our data stands clearly
for a dissociation between working memory encoding and subjective report, and examining the data shows that
this is the result of an increase in accuracy and a decrease of subjective visibility at lags 1, 2 and 3. Overall, we
may have found evidence for a case in which it is possible to encode a stimulus into working memory without
consciously perceiving it, a phenomenon we call sight-blind recall; however, a good deal more evidence needs to
be acquired before this claim can be made with confidence. The SESE model is consistent with findings from
human participants, and the results of the state trace analysis of this current work. However, more work will be
required to determine the further predictions that the SESE model makes, and the sparseness of literature with
respect to the experiential blink will require further experimentation to validate the predictions presented in this
paper and those that will emerge. In particular, although there are a number of competing explanations of the
decoupling of report accuracy and subjective visibility we observe (see11 for a detailed consideration of many of
these), evidence for the capacity to encode in parallel and experience in sequence is accumulating.
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Supplementary Information
Section A - Extensions to the state-trace method
Previous state-trace analysis has generally been in a position to make strong statements about the ordinal
relationships of the variables for which the measures of interest (e.g., accuracy and visibility) are calculated,
allowing them to make strong statements with their priors. For example, in their experiment on short term
memory21 are able to a-priori assume in their data that accuracy in a change detection task is higher when
participants have the opportunity to verbalise the first target than when they did not. In comparison, while we
have strong expectations about some behaviours of the attentional blink such as lag 1 sparing in letters-in-digits
tasks10, 23, 38, the variability in, for example, depth of the blink between experiments, means we are not in a
position to make such strong ordinal statements as these previous works. We therefore propose a data driven
method that makes use of an orthogonal measure to the monotonicity contrast. This method takes two sets of
a-priori “constraints” on the data, restrictions on potential orderings in the prior entered into Bayesian inference.
These are an “irrevocable” set containing those constraints that no theorist would believe violable, and for which
any evidence against can only be considered a measurement error - for example, we would expect lag 1 accuracy
to be larger than lag 2 accuracy at the participant level in the letters-in-digits attentional blink - and a “free” set
encoding those behaviours that we might expect to change between experiments – for example, the lowest point
in the blink. Orderings of the dimension (or trace) factor that do not fit the constraints are considered a-priori to
have a prior probability of 0, with all other orderings equally likely. Our method then removes constraints from
the free set that do not fit the data on the basis of our orthogonal measure of validity. The result is a theoretically
grounded, empirically derived set of constraints on the data.

This orthogonal measure is a dimension vs non-dimension factor, analogous to and intersecting with, the
trace vs non-trace factor used in21. In the same way as this trace vs non-trace factor, this gives us a measure
of how accurately the data conforms to a given set of ordering constraints across both the dimension and trace
factors. We call this measure BF(D&T )/N(D&T ), or when no trace factor is present such as in the main body of this
paper, as BFD/N(D) in order to prevent confusion about the trace factor that does not exist in our analysis. In the
case in which the trace factor has only one level (such as in our data), this measure is also equivalent to how
well the data conforms to exclusively the dimension axis versus how well it does not. This measure specifically
quantifies the ratio of evidence for the intersection of both the trace and dimension constraints versus all other
points, thereby providing a measure of validity that the overall set of constraints we select fit our data.

In order to make use of this measure to derive a prior, we first pick a set of order constraints on the state and
dimension axes from prior data, C = {c1, . . . ,cn}. This set of constraints should be the fullest set that can be
reasonably expected to fit the data, but should not contain constraints that contradict one another. We then divide
this set C into two subsets, those constraints in C for which violation can only constitute a measurement error
(the irrevocable set), and those about which we might expect variation between experiments (the free set). We
label these E = {e1, . . . ,el} and F = { f1, . . . , fq} respectively. Next, we introduce the concept of group validity
for a given set of constraints, denoted GE. This is the product of BF(D&T )/N(D&T ) across all our M participants
for the set of constraints C, specifically:

GE(C) = ∏
M
i=1 BF(D&T )/N(D&T )i

For each item in F , we denote the “leave one out” subset of constraints (F j) as:

F j = E ∪{ f1, . . . , f j−1, f j+1, . . . , fq}

We then calculate GE(F j) for all j ∈ q. For the largest evaluated GE(F j) with GE(F j)> GE(E ∪F), we
then remove f j from F . This procedure is repeated on the new F with f j removed until there does not exist a set
such that GE(F j)> GE(E ∪F), or until F = {}. The resulting E ∪F is the “empirical prior”. We note that this
method is very similar in its essence to the parametric empirical Bayes (PEB) method42, however, we note that
the specifics of our application allow us to solve the problem in a greatly simplified manner.

Our method is justified as follows. Firstly, it is clear that setting our empirical prior based on BF(D&T )/N(D&T )
will, on its own, converge to a prior set of constraints that best fit the data. Secondly, since we are starting
from the fullest (strictest) set of constraints that are theoretically grounded and pruning from this set, it is
impossible for us to introduce spurious constraints that fit the data by chance, but are incompatible with our
theoretical understanding. Equally, because we hold some constraints “irrevocable” we are protected from
removing constraints that are highly likely a-priori, based on measurement errors. Finally, BF(D&T )/N(D&T )
is an orthogonal measure to the BF(M/MN)|/(D&T ). Since M|(D&T )∪NM|(D&T ) ⊆ D&T (the union of the
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monotonic and non-monotonic orderings given some set of constraints is contained inside the set of all possible
orderings given those constraints) the changes in the balance of probabilities between M|(D&T ) and NM|(D&T )
(calculated as BF(M/MN)|/(D&T ) have no effect on the respective probabilities of a given set of constraints D&T
versus their complement N(D&T ).

Section B - Lag 1 as a cause of non-monotonicity in the original colour-marked T1 task
In the main body of the paper, we find evidence for a strongly non-monotonic relationship between accuracy and
subjective report in the original colour-marked T1 task. As noted in11, this appears to be driven by differences in
the behaviour at early lags, particularly Lag 1. Here, we attempt to quantify this effect by removing Lag 1 from
the state-trace analysis, and examining how it changes. As well as removing the lag from the dataset, we must
also adjust our constraints. The strongest performance was on the empirically derived constraints, so for this
analysis we use these, minus any constraints on the lag 1 datapoint that are now no longer applicable. We find
that, despite the fact that grouped (not log) evidence is almost completely unchanged (BFD/N(D) = 1.07×1013

with lag 1, BFD/N(D) = 1.01×1013 without), our grouped (not log) bayes factor changes from extremely strong
evidence for non-monotonicity at BF(M/NM)|D = 1.17×10−17, to no strong evidence either way . The results for
each subject individually can be seen in figures 14 and 15. From this we conclude that Lag 1 is a strong driver
of the effect of non-monotonicity that we see in our state-trace analysis of the original colour-marked T1 task.
However, the situation changes for the replication letters-in-digits experiment.

Section C - Binning Method for high vs low visibility trials
In order to determine which binning method was appropriate for separating the data from11 into high and low
visibility trials, we evaluated the grouped validity for each potential binning method. This showed quite clearly
(see figure 16) that the split with the strongest validity was an even split with the 3 lowest visibility ratings
forming the low bin, and the 3 highest visibility ratings forming the high bin.

Section D - Subjective experience in the Simultaneous Type/Serial Token model
In this section, we detail how the STST model is used to simulate ERPs, the setup of the STST model used to
extract a visibility rating, and how the visibility rating was calculated. Our virtual ERPs are calculated from a
computational implementation of the STST model, neural-STST10, 31. As in the STST model described in the
STST model section, the neural STST model is organised as layers of nodes, connected via weighted connections.
These connections are the analogue of synaptic projections in the brain, and in order to calculate the P3, we
therefore introduce the concept of excitatory post synaptic potential to these virtual nodes. This is calculated as
the activation value of the node multiplied by the weight value of its connections to the subsequent layer. The
virtual P3 is then calculated as the sum of these excitatory post synaptic potentials across a subset of the layers.
We follow previous work in using the 3rd, 4th, 6th and 8th layers of the neural-STST model, corresponding to the
item layer, the task filtered layer, the binder gates and the token gates. As in previous work31, we also implement
a retinal delay of a model equivalent of 70ms. Compared to previous works using virtual ERPs from the STST
model, we selected a slightly different stimulus range over which to calculate this virtual P3. Specifically, we
sample a range of stimulus strengths with greater variability (-0.078 to +0.078 -> -0.1625 to +0.1625), at a slightly
higher average stimulus and distractor strength (0.520 -> 0.570). This approach is consistent with previous
simulations with the STST model, where we allow input strength ranges to vary reflecting the fact that different
experiments being modelled might have quite different stimulus types and sensitivities. Compared to previous
iterations of virtual P3 generation, we do not directly sum the components of each item in the stream to create
the P3. We instead only consider the contribution to the P3 of a target to the extent that it does not conflict with
the P3 of another, active target.

In order to calculate subjective report from these virtual P3’s we, as described in the main body of the paper,
calculate the number of time steps that a stimulus spends above a given threshold. For the results given in this
paper, this threshold is 0.05. Additionally, although this method gives us a continuous subjective report, for the
purposes of comparison with the human data from11, it is necessary to be able to divide these subjective reports
into the discrete cases of high/low visibility. Since we are unable to be sure that each lag contains the full range
of possible subjective reports, we do this by lag. Since we also do not know how the visibilities are distributed
across each lag, but wish to make a simple, even split as far as possible, we use the average as the splitting point
for high/low visibility. It is also necessary to normalise these time steps counts into visibility ratings that can
be compared to the human data. In the spirit of the simplicity that has driven the creation of the model so far,
we simply normalise the timesteps by a linear factor. To keep the range plausible and remain data driven, the
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value we selected was the most visible stimulus in the entire experiment, and divided each visibility rating by
this in order to give a “percentage visibility”. In this way, we provide a very simple index of both continuous and
binned subjective report that requires no changes to the original model.

Section E - Further SESE model ERPs
In figure 17 we provide some further results comparing human and SESE generated ERPs. This compares Human
lag 3 with SESE lag 3, and human lag 3 with SESE lag 4.

Section F - Justifying Non-Monotonic Pattern in Figure 6
It is interesting to note that in the replication (pure letters-in-digits) data set, non-monotonicity goes up when
lag-1 is removed: compare figures 8B and 9B. There are a number of points that can be made about this.

1. The identification of a non-monotonic pattern when lag-1 is excluded is not inconsistent with the attentional
and experiential blink curves we observe for this data set – see figure 6B, where the distance between T2
report accuracy and T2 subjective visibility are further apart at lag-2 than at higher lags.

2. Non-monotonicity with lag-1 excluded is not so obvious from figure 6D, although, there is a definite kink
for lag-2 relative to lags 3 and 5. Furthermore, small fluctuations in the lag-2 data point, which there
certainly are across participants, could create a non-monotonic pattern driven by lag-2.

3. The importance of Lag 1 in the averaged data is not necessarily accurately reflecting each individual.
Accordingly, removing the lag-1 point does not consistently effect each individual participant. Although
the overall trend is for more evidence for non-monotonicity, 4 of the 12 participants, for example, gain
evidence for monotonicity with the removal of the lag 1 data-point, compare figure 8B and figure 9B.

4. Finally, and perhaps most importantly, it is well attested that averaged state-trace curves can fail to be
representative of the across participant pattern. Indeed, it could be that the lag-2 point is only at the position
shown in figure 6D for the average and not for any of the participants.
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Figure 14. Respective monotonicity vs non-monotonicity for the original (colour-marked T1) dataset excluding
the lag 1 datapoint. Results are weak and strongly hetrogenous, with grouped (not log)
BF(M/NM)|D = 6.69×10−1. This essentially provides no evidence either way for monotonicity, a strong constrast
to the analysis with the Lag 1 datapoint included, which finds a strongly non-monotonic effect with grouped (not
log) BF(M/NM)|D = 1.17×10−17
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Figure 15. Validity for each participant for the set of prior constraints derived from the original using our
empirical prior method, for the original (colour-marked T1) task dataset excluding the Lag 1 datapoint. Any
constraints no longer valid without Lag 1 have been removed. At the group level, the evidence is strongly in
favour of the constraints fitting the data, with grouped (not log) BFD/N(D) = 1.01×1013, extremely close to the
grouped validity with Lag 1 included with grouped (not log) (BFD/N(D) = 1.07×1013.

Figure 16. A) Grouped Bayes factor for validity of the original (colour-marked T1) dataset across each
potential binning method for high and low visibility using the original set of constraints based on the data from
(Nieuwenhuis, de Kleijn 2011). B) Grouped Bayes factor for validity across each potential binning method for
the empirical prior constraints.
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Figure 17. A comparison, for both high and low T2 visibility, given correctly reported T1, of the human ERPs
from the original colour-marked T1 data analysis11. A) Lag 3 Human ERPs vs Lag 3 STST virtual ERPs. B) Lag
3 Human ERPs vs Lag 4 STST virtual ERPs. Importantly, as previously discussed, neither the function or the
structure of the STST model, as given in10 were changed when generating the virtual P3s. Note that the human
ERPs presented are slightly different to those from11, as ours exclude order errors to be consistent with previous
sections.
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