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Abstract 

 

A quintessential challenge for any perceptual system is the need to focus on task-relevant 

information without being blindsided by unexpected, yet important information. The human 

visual system incorporates several solutions to this challenge, one of which is a reflexive covert 

attention system that is rapidly responsive to both the physical salience and the task-relevance of 

new information. This paper presents a model that simulates behavioral and neural correlates of 

reflexive attention as the product of brief neural attractor states that are formed across the visual 

hierarchy when attention is engaged. Such attractors emerge from an attentional gradient 

distributed over a population of topographically organized neurons and serve to focus processing 

at one or more locations in the visual field, while inhibiting the processing of lower priority 

information. The model moves towards a resolution of key debates about the nature of reflexive 

attention, such as whether it is parallel or serial, and whether suppression effects are distributed 

in a spatial surround, or selectively at the location of distractors. Most importantly, the model 

develops a framework for understanding the neural mechanisms of visual attention as a 

spatiotopic decision process within a hierarchy and links them to observable correlates such as 

accuracy, reaction time, and the N2pc and PD components of the EEG. This last contribution is 

the most crucial for repairing the disconnect that exists between our understanding of behavioral 

and neural correlates of attention.  

 

 

Keywords: Visual Attention, EEG, Distractor Suppression, N2pc, PD, Cueing, Attentional 

Capture 
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1 Introduction 

A quintessential challenge for any perceptual system is the need to focus on task-relevant 

information without being blindsided by unexpected information that is also important. For 

example, a driver must be able to stop in response to an unexpected obstacle even while 

searching intensely for a specific landmark. Understanding how perception meets this ubiquitous 

challenge is crucial for understanding how the brain balances the prioritization of sensory 

information according to its relevance.  

This challenge is matched by a multitude of attentional systems operating across different senses 

and time scales. For example in vision there are overt and covert forms of spatial attention, and 

within covert attention, there is a further distinction between a rapid transient/reflexive form of 

spatial attention and a slower sustained/volitional form (Jonides 1981; Muller & Rabbit 1992; 

Hopfinger & Mangun 1998; Nakayama & Mackeben 1989). There are also non-spatial forms of 

attention that allow us to select among spatially overlapping visual inputs (Neisser & Becklen 

1975). Decades of research have provided a multitude of data types that define the properties of 

visual attention, such as accuracy, reaction time and neural correlates such as Event Related 

Potentials (ERPs). These data have driven the development of many theories, but the great 

majority of them are linked to specific paradigms (e.g. a model of visual search, or a model of 

the attentional blink). Such models are a useful starting point, but their focus on tasks makes it 

difficult to generalize across experimental paradigms, and also makes it easy to inadvertently 

overfit a theory to a specific kind of finding. Newell (1973) argued that instead of focusing on 

individual kinds of results as a way to attack or defend a theoretical edifice, we can use a 

collection of results most productively if we build a comprehensive model that addresses all of 

them. The approach used here is to build a model that is close to the algorithmic level of 

implementation (Marr 1982) and that maximizes the number of empirical constraints that can be 

applied (Love 2015) with a minimum of parameter adjustment. 

 

The model described here, termed RAGNAROC, which is short for Reflexive Attention Gradient 

through Neural AttRactOr Competition, is intended as a theoretical and computational 

framework for understanding how the visual system implements a reflexive form of attention. 

This model addresses data in different forms (e.g. accuracy, reaction time and EEG), and from a 

diversity of paradigms with a goal of building a formalized understanding of how the visual 

system rapidly makes decisions about which stimuli to enhance and suppress. Moreover, these 

mechanisms will be linked to observable neural correlates such as the N2pc and PD components. 

The model also provides suggested resolutions for ongoing debates in the literature by showing 
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how one model is able to account for seemingly contradictory patterns of data (e.g. simultaneous 

attention to two stimuli but also suppression of competing representations). For the reader who is 

more interested in the conclusions than the model methods, there is a section in the discussion 

that focuses on the lessons that have been learned through the construction of the model.  

   

1.1  Scientific philosophy of this account and intended audience 

This paper is written with the perspective of the experimental scientist in mind.  Equations will 

be kept to a minimum, except for the appendix, and figures will be used to explain the model’s 

dynamics. RAGNAROC was developed according to abductive principles of theory design 

(Haig 2005) in which existing data are used to abduce a causal explanation. Thus the neural 

mechanisms proposed here are intended to represent the simplest possible solution to explaining 

such data that are relevant to the mechanisms of reflexive attention, while adhering to constraints 

of neural plausibility. The goal of abduction is to distill a likely explanation for an existing set of 

data, and this explanation can then be tested through further empirical work. 

 

In terms of validation, we consider the problem to exist in the M-open class (Clarke, Clarke & 

Yu 2013), which is to say that it is impossible to exactly specify  the biological system in this 

context. Nevertheless, abstract neural models such as this one are a powerful way to distill 

insights and predictions to guide future research. The paper concludes with a set of lessons and 

predictions that should be of interest to anyone who studies visual cognition..  

 

1.2 Model scope.  

This model is not to be taken as a complete model of visual attention, which would be beyond 

the scope of any single paper. RAGNAROC does not address, for example, how attentional 

control affects eye movements (Rao, Zelinsky Hayhoe, & Ballard 2002; Zelinksy 2008) or 

slower forms of covert attention that are more firmly under volitional control and can be 

maintained for a prolonged duration (e.g. multiple object tracking Pyslyshyn & Storm 1988). 

The model includes a mechanism for the enhancement of information processing, but this is 

intended only as a proxy for more comprehensive explanations that would interface more 

directly with single-unit data (e.g. Reynolds & Heeger 2009; Beuth & Hamker 2015). Another 

variety of attentional mechanisms not addressed here are those that track object features rather 

than spatial locations (e.g. Neisser & Becklen 1975; Blaser, Pylyshyn & Holcombe 2000). Also, 

the model explains the initial deployment of attention at the onset of a display which presumably 

plays a role in visual search. However, the model does not address the goal-driven iterative 
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attention processes that occur over a longer time scale and would be required during many visual 

search tasks. 

 

In terms of anatomy, we describe the reflexive attentional system in terms of a hierarchy of 

multiple maps that is inspired by work on the macaque posterior cortex and reinforced by the 

fact that the lateralized EEG components associated with attention discussed here are also 

primarily posterior in origin. However it is likely that a combination of frontal and subcortical 

areas are involved in these processes, and it is not our intent to suggest that reflexive attention is 

exclusively mediated by posterior areas. Moreover, the model is focused on attention effects at 

approximately the time scale of one fixation, and thus is not directly applicable to tasks that 

require multiple cycles of attentional engagement.  

 

1.3 The complexity of understanding attention 

In broad strokes, attention is perhaps best summarized as privileging certain representations at 

the expense of others and this prioritization takes many forms throughout the nervous system, 

ranging from internal control signals within the brain all the way down to active sensing by 

orienting concentrated receptor clusters, such as the finger tips and fovea, toward relevant 

stimuli. In terms of visual attention, a distinction is often drawn between voluntary attention, 

wherein volitional control mechanisms configure the spatial deployment of attention over an 

extended period of time and reflexive attention, wherein the visual system reacts rapidly to 

stimulus onsets in order to attend them before the stimulus display changes or the eye moves 

(Jonides 1981; Muller & Rabbit 1992; Hopfinger & Mangun 1998; Nakayama & Mackeben 

1989). The term reflexive invokes an analogy with muscle reflexes that are deployed rapidly in 

response to a stimulus, and without waiting for slower, deliberative processes. 

This reflexive form of attention presumably plays a key role in selecting important information 

for further processing when the eyes are making saccades frequently.  Moreover, it is known to 

be responsive to higher levels of cognitive control, such that goals, expectations and rewards 

moderate how strongly stimuli can trigger or capture attention (Folk, Remington & Johnston, 

1992). What we do not yet understand is how such a rapid form of attention would function at 

the level of neural mechanisms.  

The earliest theories of such attentional effects described how attention can be distinguished into 

a series of operations including a generalized alerting function, localizing a target, engaging 
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attention with a stimulus, disengaging attention and finally inhibiting that attended location 

(Posner, Inhoff, Friedrich & Cohen 1987). Later theories elaborated these mechanisms by 

proposing that attention involves a combination of target enhancement (Eimer 1996), and 

suppression of distractors (Cepeda, Cave, Bichot & Kim 1998, Gaspelin Leonard & Luck 2015). 

However, while it seems straightforward to postulate such attentional effects, these operations 

are non-trivial to implement in a visual system that is distributed across cortical regions. In such 

a system, it is not immediately obvious how neural representations could be tagged as belonging 

to a target or distractor.  Furthermore, how does the brain implement such a coordinated 

attentional process across this network of interconnected maps without requiring an exhaustively 

large number of intra-cortical connections? Limitations on white matter density imply that it is 

not feasible for all neurons to communicate directly with all other neurons, which makes 

seemingly straightforward decision-making approaches such as winner-take-all (i.e. the 

strongest representation suppresses all others) impractical.  

 

An additional complication arises when we consider that the attentional system cannot afford to 

implement a crisp categorical distinction between targets and distractors. No matter how 

strongly a person is engaged on a task, there must always be a possibility for task-irrelevant 

information to trigger attention so that the system remains responsive to unexpected dangers. 

Thus, it must be the case that all stimuli, whether designated as targets or distractors by the 

experimental paradigm, are evaluated to some degree. One might be tempted to argue that 

inattentional blindness experiments (Rock, Linnett, Grant & Mack 1992;  Neisser & Becklen 

1975; Simons, & Chabris 1999) demonstrate effective suppression of unexpected information. 

However, many subjects do notice the unexpected stimulus in such experiments. Moreover, the 

proportion of participants who noticed, for example, the black gorilla in Simons & Chabris 

(1999), was influenced by the attentional set of the observer. Furthermore, some studies found 

that the unreportable stimuli in inattentional blindness could influence perception (e.g., Moore & 

Egeth, 1997). 

 

 

1.4  Behavioral evidence for covert attentional control mechanisms in vision 

1.4.1 Reflexive Attention.  Reflexive attention is likely to play a role in many visual tasks, and its 

effects can be observed in paradigms that produce attentional cueing (Posner 1980; Chen & 

Wyble 2018) attentional capture (Theeuwes 1991, Folk, Remington & Johnston 1992; Yantis 

1996) and the early lags of the attentional blink (Shapiro, Raymond & Arnell 1992; Chun & 
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Potter 1995) (Figure 1). In these paradigms, the effect of attention varies according to the nature 

of the stimuli and the required response. For example, a visual cue increases the accuracy and 

decreases reaction times for a subsequent target at the cued location, while having the opposite 

effect for targets at uncued locations. In attentional capture paradigms, a highly salient distractor 

causes slower and/or less accurate report of a target presented at a different location and 

enhanced report of a target at the same location as the salient singleton (Folk, et al. 1992). In 

attentional blink paradigms, when two targets  (T1 and T2) are presented sequentially at a 

Stimulus Onset Asynchrony (SOA) of about 100ms or less, the second target is easy to see but 

only when the two targets are presented at the same location (Visser Bischof & DiLollo 1999; 

Wyble & Swan 2015).  

 

1.4.2 Reflexive attention as semi-autonomous control. During normal visual function, the brief 

duration of eye movements requires a form of attentional control that makes rapid decisions 

without waiting for confirmation from slower, volitional forms of cognitive control. In this view, 

reflexive attention is a solution to the demands of the saccadic visual system in that it provides a 

semi-autonomous decision-making process for selecting information from prioritized locations 

Figure 1. Paradigms that measure attentional effects often present two 
simultaneous or sequential stimuli and measure the influence of one on the other 
(e.g. a cue followed by a target, or a T1 followed by a T2). The blue bars indicate the 
inter-stimulus temporal separations that are most typically studied for three 
common paradigms. The red portion on the left is the temporal interval over which 
we consider reflexive attention to play a dominant role in the effect of one stimulus 
on the other.  Attentional effects that involve more volitional forms of processing are 
dominant at longer synchronies.  
. .  
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in the visual field. Reflexive attention is semi-autonomous in the sense that the decision process 

obeys a configuring attentional set that modifies how readily different stimulus attributes will 

trigger attention. Such attention is strongly driven by salient singletons despite efforts of the 

subject to ignore those stimuli 1 (Remington, Johnston, & Yantis 1992) but the likelihood of a 

stimulus to capture attention is also strongly affected by the similarity between a stimulus and 

the current goals of the subject (Folk, Remington & Johnston, 1992; Woodman & Luck 1999; 

Egeth, Leonard & Leber 2011), and to some degree the amount of reward a stimulus has 

received  (Anderson, Laurent & Yantis 2011).  

 

This task-based configuration is even responsive to categorical signifiers such as letters among 

digits (Wyble, Potter, Bowman 2009; Nako, Wu & Eimer 2014), and superordinate concepts 

(e.g. "marine animal"; Wyble, Folk, Potter 2013). Likewise, neural data from EEG reflect what 

are thought to be rapid attentional responses to task relevant colors (Eimer 1996); letters/words 

(Eimer 1996; Tan & Wyble 2015; Nako, Wu & Eimer 2014; Callahan-Flintoft & Wyble 2017) 

and line drawings (Nako, Wu, Smith & Eimer 2014). Therefore, this system provides a tight 

coupling between bottom-up (i.e. attention as driven by physical characteristics of the stimulus)  

and top-down (i.e. attention as driven by expectations, goals and rapid learning) determinants of 

attentional control. This task-defined specificity coupled with the rapidity of reflexive attention 

provides a potent way for attention to select task-relevant information even when stimuli are 

changing rapidly (e.g. Potter 1976; Schneider & Shiffrin 1977).  

 

Despite the fact that reflexive attention can be configured by top down signals, the partial 

autonomy of this system is evident in the phenomenon of attentional capture,  in which attention 

is deployed to stimuli that appear in locations of the visual field that are known to always be 

task-irrelevant(Remington, Johnston & Yantis 1992; Theeuwes 1992; Wyble, Folk & Potter 

2013; Folk, Leber & Egeth 2002). If reflexive attention were not semi-autonomous, top down 

control signals would be able to ensure that stimuli presented in locations known to be irrelevant 

would have no effect on behavior. Note that there are some cases in which top down control 

settings seem to eliminate salience-based capture (Bacon & Egeth 1994).  

                                                        
1 There is an ongoing debate concerning the ability of top-down goal settings to mediate 

attentional capture  (Awh, Belopolsky & Theeuwes 2012; Failing & Theeuwes 2018), 

with positions ranging from attention being entirely driven by Top-down factors, to the 

opposite extreme in which the first stage of attention is entirely driven by physical 

characteristics of stimuli.  
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Another indication of automaticity comes from Krose & Julesz (1989) who demonstrated that 

cueing effects were localized to the specific location of a cue in a ring of stimuli, even when 

subjects were informed that the location of the target would typically be opposite to the location 

of the cue on the ring (see also Jonides 1981). Thus, expectation induced by both task 

instructions and experience with the task were unable to eliminate the immediate, reflexive 

deployment of attention to the specific location of cues at Cue-Target SOAs up to 260ms2. 

Along similar lines, a finding in electrophysiology by Ansorge, Kiss, Worschech & Eimer 

(2011) showed that spatial cues that are never in the target’s position will nevertheless generate 

an N2pc component, with an amplitude that is weighted by top-down feature settings. 

 

A further line of evidence for automaticity is found in a series of experiments in which the cue (a 

pair of lines) was much larger than the target, and the subject could, in principle, learn how the 

cue’s properties (e.g. color or shape) determined which part of the cue indicated the likely 

location of the target (Kristjansson & Nakayama 2003; Kristjansson, Mackeben & Nakayama 

2001). It was found that subjects could learn simple relationships, such as that part of a cue (e.g. 

its left or right half) was more likely to cue a target’s location if that relationship remained 

consistent across trials. However their attentional allocation was unable to accommodate very 

simple alteration sequences.  

 

Reflexive attention is also limited in terms of its duration, which is limited, even when it would 

be advantageous for attention to remain engaged for a longer time period. A good example of 

this is the transient attention demonstration of Nakayama & Mackeben, (1989) in which, a cue 

appeared, and stayed on the screen to indicate the location of the target. Even though this cue 

stayed on the screen and was perfectly predictive of the target location, targets that occurred in 

the 200ms window after cue onset were reported more accurately than targets appearing at later 

time points. This effect was replicated by Wilschut, Theeuwes & Olivers (2011) though with a 

smaller magnitude. This transient effect is not merely an alerting effect since it is spatially 

selective (Müller & Rabbitt 1989).  

 

 

                                                        
2 CTSOAs were only evaluated in the range of 100-260ms.  
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1.4.3 Processing enhancement at a cued or target location.  Several independent lines of 

research suggest that deploying reflexive attention enhances the processing of targets in the same 

location. For example, spatial cueing paradigms find that relative to an uncued condition, a cue 

will reduce the reaction time to respond to a probe at that location (Eriksen & Yeh 1985) or 

increase the accuracy of responding to a masked target at that location within about 100ms 

(Nakayama & Mackeben 1989; Cheal, Lyon & Gottlob 1994; Wyble, Bowman, Potter 2009). 

The key defining characteristic of the rapid onset of attentional enhancement seems to be that the 

cue and target appear at the same location, which dovetails with the semi-autonomous nature of 

reflexive attention. Another case of reflexive attention occurs when two targets are presented in 

close succession. If they are at the same location and at an SOA of ~100ms, the second target 

report is enhanced. Wyble Bowman & Potter (2009). This spatially localized enhancement of 

processing is also consistent with the finding that lag-1 sparing effects in the attentional blink are 

strongly linked to spatial congruence between T1 and T2 (Visser Bischof & DiLollo 1999). 

 

1.4.4 Suppression at the location of distractors.  Because distractors are, by definition, not 

explicitly reported or responded to, it has been more difficult to understand how they are 

affected by attention. One source of information has been to record directly from neurons within 

the visual system and there are indications in neurophysiology that representations elicited by 

distractors are suppressed. In single-unit data from monkeys, neurons responsive to a distractor 

exhibit a sharp reduction in firing rate after about 100 ms when presented alongside a target in 

the visual field (Chelazzi, Miller, Duncan & Desimone 1993). This finding has been taken as 

evidence that targets and distractors engage in a competition that is biased towards the target 

(Desimone & Duncan 1995).  

 

In human behavior, evidence of distractor inhibition in response to a target takes two forms. 

First, information is suppressed in the surrounding vicinity of a target, as demonstrated when 

subjects report two targets presented in rapid sequence. These methods reveal an effect termed 

Localized Attentional Interference (LAI), such that the second target is reported most accurately 

when in the same position as the first target, much less accurately in the area surrounding the 

first target (~3 degrees) and more accurately again at farther separations (Mounts 2000). Bahcall 

& Kowler (1999) presented a similar finding in which two simultaneous targets were presented 

at various separations. Cutzu & Tsotsos (2003) also reported a similar finding using a cue and a 

single target.  
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In addition to spatial inhibition in the surrounding vicinity of a target, suppression is also 

centered at the spatial location of distractors. Cepeda, Cave, Bichot & Kim (1998) found that 

when distractors were presented concurrently with a to-be-reported target, a subsequent probe 

would be reported more slowly at the location of that distractor, compared to a previously blank 

location. The implication is that the distractors in the display were suppressed and this 

suppression carried forward in time to impede the processing of probes presented at the same 

location. Hickey & Theeuwes (2011) showed that the effect of a distractor that captures attention 

is greater when spatially proximal to a target, which also implicates a proximity based form of 

inhibition, centered at the location of a highly-salient distractor. Similarly, Gaspelin, et al. 

(2015) found that probe letters in a spatial array following or coincident with a search display 

were harder to report if there had previously been a salient distractor at the location of that letter 

(although it is crucial to note that this only occurred when participants knew which specific 

feature to look for; this point will be discussed later). Thus there are two lines of evidence for 

active inhibition, one locked to the region surrounding a target, and the other centered at the 

location of distractors. The model presented below will attempt to reconcile these two forms of 

evidence.  

 

1.5 Electrophysiological correlates of visual attention  

An important complement to the behavioral evidence of reflexive attention are studies that use 

Event Related Potential (ERPs) extracted from the EEG, and likewise Event Related Fields 

(ERFs) from the MEG. ERPs and ERFs provide a measure that is precisely timed to underlying 

neural events and thus provides crucial information about the relative timing of attentional 

processes. 

 

1.5.1 ERPs reflecting the current location of spatial attention. When spatial attention has been 

directed to a specific location prior to the onset of a stimulus, the ERPs evoked by that stimulus 

will differ according to whether it is inside or outside of the attended location. For example, 

components elicited by the onset of a visual stimulus such as the N1/P1 complex, are larger in 

amplitude for a stimulus that appears in an attended location (Mangun 1995; Hillyard & Anllo-

Vento 1998) and presumably reflects increased neural activity evoked by stimuli at those 

locations. Likewise, increased amplitude of the Steady State Visual Evoked Potential (SSVEP) 

for a flickering stimulus has served as a robust indicator of the location of attention and can last 

multiple seconds (Müller & Hillyard 2000). These effects indicate that ongoing spatial attention 

affects the processing of stimuli at the earliest levels of cortical processing. Moreover, they are 
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also useful for demonstrating when shifts of attention have occurred, as in Hopf, Boehler, Luck, 

Tsotsos, Heinze & Schoenfeld (2006), who demonstrated a neural correlate of the spatial 

distribution of surround suppression evoked by an attended stimulus (Mounts 2000).  

 

1.5.2 ERPs indicating a change in the spatial distribution of attention. Another class of EEG 

component is thought to indicate the neural mechanisms involved in the initiation of attention. 

These potentials, termed the N2pc and the PD, occur later in time than the modulations of the 

N1/P1, which is consistent with the idea that they reflect changes in attention evoked by new 

stimuli.  

 

1.5.2.1 The N2pc component. The N2pc is a brief negativity elicited by a laterally presented 

target stimulus, and with an analog that can be recorded for stimuli along the midline (Doro, 

Bellini, Brigadoi, Eimer & Dell’Acqua 2019). The evoked potential is small in amplitude and 

occurs on posterior areas of the scalp contralateral to the target, approximately 200-300ms after 

the onset of the target, and is typically less than 100ms in duration. The original theories 

proposed by the seminal publications on the N2pc suggested that it reflects either the 

suppression of distractors (Luck & Hillyard, 1994) or the enhancement of the target (Eimer, 

1996). The N2pc has also been referred to as a Posterior Contralateral Negativity or PCN 

(Töllner, Rangelov & Müller 2012).  

 

Newer findings have provided different perspectives. For example, it has been suggested that the 

N2pc reflects the process of individuating the target from surrounding stimuli, as its amplitude 

increases with the number of presented targets, but only when target numerosity is task relevant 

(Pagano & Mazza 2012). Also, Hickey, Di Lollo, & McDonald, (2009) suggested that when a 

target is paired with a contralateral distractor, the N2pc to the target is composed of two 

dissociable components: a negativity evoked by the target (the Nt) and a positivity evoked by the 

distractor (the PD). Since the N2pc is measured as a difference wave between target-contralateral 

and target-ipsilateral sides of the scalp, the PD would be measured as a negativity relative to the 

target, thus contributing to the N2pc amplitude. The Nt and PD components were isolated by 

presenting the distractor or the target, respectively, in the middle of the display, which eliminates 

their contributions to the ERP and reveals the neural signature evoked by the other stimulus. 

 

Another perspective on the N2pc stems from a finding in which two sequential targets are 

presented at either the same or different locations on the screen (Tan & Wyble 2015). In the 
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same-location condition, subjects could easily see the second target, however it elicited no 

additional N2pc beyond the N2pc evoked by the first target. In contrast, when the second target 

was on the opposite side of the display, a strong second N2pc was evoked by that second target. 

In terms of behavior, subjects were better at reporting the same-location target, which did not 

evoke an N2pc, compared to the different-location target which did evoke an N2pc. It was 

concluded  that the N2pc indicates the process of locating a to-be-attended stimulus, rather than 

enhancement or suppression. This explains the finding that the N2pc was missing for same-

location targets, since the second target inherits the attention deployed by the first target, and no 

additional N2pc is evoked. This effect was subsequently replicated in a series of experiments 

(Callahan-Flintoft, Chen & Wyble 2018) with the caveat that the second T2 could evoke a very 

small N2pc, although it was accelerated in time relative to the T1’s N2pc and much smaller in 

amplitude than that evoked by the T1.  This was found to be a consistent with the model of Tan 

& Wyble (2015) with a small parameter change.      

 

Importantly, this diminished-N2pc phenomenon occurs only when T1 and T2 are presented 

closely in time. At longer temporal separations (e.g. 600 ms), the T2 elicits a second N2pc, even 

if subjects have a clear expectation that the target will occur in that location (Callahan-Flintoft, 

Chen, & Wyble 2018). This finding is crucial because it underscores that reflexive attention is 

driven by a stimulus, and cannot be maintained for an extended period of time without stimuli to 

keep attention engaged.  

 

Thus, apart from being related to attention there is little consensus as to the underlying cause of 

the N2pc. Moreover, a crucial complexity of the N2pc literature is that distractors evoke an 

N2pc in certain cases (Hickey McDonald & Theeuwes 2006; Burra & Kerzel 2013; Kiss, 

Grubert, Petersen, & Eimer, 2012; McDonald, Green, Jannati, & Di Lollo, 2012; Liesefeld, 

Liesefeld, Töllner, & Müller 2017). Such findings highlight the complexity of attentional 

mechanisms and the difficulty of ascribing unitary functions to neural correlates.  

 

1.5.2.2 The PD Component. Another ERP related to attentional control is the PD; a positivity 

evoked in posterior scalp regions that are contralateral to a distractor (Hickey, McDonald & 

Theeuwes 2009). The fact that distractors selectively elicit a PD is additional evidence that 

inhibition is selectively deployed at the location of distractors and reinforces the idea that 

attention has mechanisms for both enhancing and suppressing information in a spatially selective 

format.  
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However, when target search is made extremely easy by re-using the same target-defining 

feature on each trial and using many repeated trials, salient distractors can be ignored entirely, 

without producing a PD, or an observable behavioral cost (Barras & Kerzel 2016) suggesting that 

in some cases distractors can be simply ignored rather than suppressed. In other cases salient 

distractors elicit a PD in the EEG and a minimal cost on the speed of finding the target (Burra & 

Kerzel 2013) with a concomitant suppression of the distractor’s location as measured by 

behavioral probes (Gaspelin, Leonard & Luck 2015; Gaspelin & Luck 2018). These results 

suggest that sometimes the distractor has the potential to interfere, and is inhibited to reduce its 

influence. Finally, if the search task is made sufficiently difficult by varying the target’s defining 

feature from trial to trial, then the distractor evokes an N2pc, while also eliciting a strong 

behavioral capture cost (Burra & Kerzel 2013) suggesting that in such cases there was a 

consistent failure to inhibit the distractor. This distractor-induced N2pc also supports the 

suggestion that distractors have an inherent salience which must be inhibited (Sawaki & Luck 

2010).  

 

These findings can be summarized as follows. When search is made extremely easy by using 

many trials and highly prescriptive visual targets, the visual system learns to exclude some kinds 

of distracting information without reflexive attention. When the task becomes more difficult, 

distractors are suppressed by spatial inhibition mechanisms, eliciting a PD but no behavioral cost 

on target response. With a further increase in difficulty by using unpredictable singleton targets, 

distractors are not as effectively suppressed, allowing them to produce an N2pc and a sizeable 

behavioral capture effect. Such findings complicate the straightforward attribution of the PD as a 

correlate of distractor suppression but also underscore the importance of building integrative 

theories that combine behavioral and neural forms of evidence. As we will argue below, these 

divergent findings can be explained as a range of outcomes that arise from the competition for 

attention between putative targets and distractors in a spatially topographic attentional priority 

map. 

 

2. Computational architectures for reflexive attention 

Moving to a discussion of how reflexive attentional control might be implemented in the brain, 

we begin by considering several architectures that could support the ability to selectivity 

enhance and suppress information acquisition from different locations of a visual display.   
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2.1  Assumptions 

This discussion is predicated on several assumptions that are implicit in existing models of 

attention. An anatomical assumption is that the visual system is hierarchically organized, 

beginning with low level feature extraction in cortical area V1 that projects to various cortical 

areas specialized for more specific kinds of information, such as color, and various forms (Van 

Essen & Maunsell 1983, Kravitz, Saleem, Baker, Ungerleider, & Mishkin, M. 2013; Konkle & 

Caramazza 2013). These higher-level representations are assumed to maintain the spatial 

topography of V1 albeit with larger receptive fields (DiCarlo & Maunsell 2003; Silver, Ress & 

Heeger 2005). Another crucial assumption is that there is no indicator that definitively 

determines which stimuli should be attended. Instead, the attentional system perceives stimuli 

with varying combinations of intrinsic salience and task relevance. It then decides which stimuli 

to attend according to the broader goals of the organism, which may sometimes transcend the 

specific task imposed by the experimenter (i.e. if there was a visible fire in the laboratory, the 

subject would presumably notice). In other words, the notional distinction between targets and 

distractors as imposed by any specific task is not the ultimate designation of stimulus priority as 

far as the visual system is concerned. The system  must decide what will be attended and what 

will be suppressed on each trial and this decision is not pre-ordained by other systems, except 

perhaps in cases where the visual search is highly prescriptive and repeated many times 

(Theeuwes 2012; Burra & Kerzel 2013) 

 

A final crucial assumption is that there are no a-priori labels as to which neurons are 

processing to-be-attended vs to-be-ignored stimuli. When a decision has been made to attend to 

a stimulus, there must exist an efficient means to rapidly distribute the consequence of that 

decision across a diverse set of cortical areas. For example, a given neuron in early visual cortex 

may be firing in response to a stimulus that downstream areas of the visual system have 

determined should be attended, but how is credit assigned back to that neuron?   

 

Given these assumptions, a candidate model of reflexive attention must include mechanisms for 

making rapid decisions about where to attend, and also mechanisms that rapidly implement that 

decision by routing information between different portions of the visual system.  

 

2.2 Four potential architectures:  

It is helpful to understand the advantages and drawbacks of various architectures by which 

attentional decisions could be communicated in a hierarchically organized visual system. This 
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section outlines four possibilities with a particular emphasis on understanding how they scale up 

to a brain-sized implementation with many levels of processing and many areas within each 

level). 

 

2.2.1 Local Attentional Control. The simplest method of reflexive attention is implemented at 

the local circuit level. In such a model, stimuli are processed separately within different maps 

(Figure 2a). Representations of each stimulus compete within these cortical areas, and one or 

more winners of that local competition would be attended. While simple, this architecture has 

difficulty explaining how stimuli of different kinds can affect one another. For example, 

attentional capture by a color singleton affects processing of a shape singleton target (e.g. 

Theeuwes 1991) which requires that decision consequences propagate between maps selective 

for different kinds of information.  

 

2.2.2 Peer to Peer attentional control. Figure 2b illustrates a model in which any map that 

resolves a competition between stimuli projects enhancement and suppression to other maps by 

exploiting the spatiotopic correspondence between feature maps, thus ensuring that the correct 

locations are excited or inhibited across maps. The disadvantage of this architecture is that it 

would require an enormous number of intracortical projections at brain scale. Each feature map 

within the visual system must send dense projections to every other map so that targets in one 

map can enhance or suppress representations in all other maps. Thus, the number of intra-areal 

connections grows as M*N2, where M is the number of neurons within each cortical area and N 

is the number of areas.  However it has been estimated that only about 30% of the total 

proportion of possible intra-areal connections exists within the macaque visual system (Felleman 

& Van Essen 1991) which argues against strong peer-to-peer attentional control.  

 

2.2.3 Feedback Attentional Control. The third architecture is more efficient in terms of 

intracortical projection (Figure 2c) because it exploits the hierarchical nature of the visual 

system. Once a stimulus has won a local competition in any map, it projects a combination of 

enhancement and inhibition back down to the earliest levels of processing in the visual hierarchy 

(i.e. perhaps V1 or even LGN). These effects then propagate forward to the descendent visual 

processing areas. 

 

This approach requires fewer inter-areal connections than the peer-to-peer model, growing 

linearly with the number of feature maps. The selective tuning model of Tsotsos (2011) et al 
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provides a thorough formalization of such a system.  The sSoTS model of Mavritsaki, Heinke, 

Allen, Deco & Humphreys (2011) provides an even more direct example of how stimuli can 

compete across maps with reference to a master location map in order to determine the most 

appropriate location to deploy attention.  

 

The disadvantage of this approach is that resolving a competition between two stimuli 

represented in distinct feature maps requires iterations of feedforward and feedback processing 

through the hierarchy since the higher level maps do not directly communicate with one another. 

Furthermore the suppressed information is cut off at the earliest level, which precludes it from 

analysis by higher levels of the visual system. This makes it difficult for deeper levels of 

meaning to be computed from stimuli that are not attended.  

 

2.2.4 Inhibition at a superordinate map in a hierarchy. The final architecture that we consider, 

and the one that is used in RAGNAROC and shared by other algorithms such as SAIM (Heinke 

& Humphreys 2005; Itti, Koch & Niebur 1998), confines the competition to a single cortical 

Figure 2.  Illustration of four architectures for mediating the competition between 
two stimuli for which the most salient attributes are processed in different maps 
(e.g. color singleton vs a form singleton). The illustrations indicate how attentional 
enhancement and suppression effects elicited by a highly salient color singleton can 
propagate between areas.  
.  
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area: an attention map that is hierarchically superordinate to the spatiotopic maps that comprise 

the ventral visual system (Figure 2d)3. The attention map provides a compact method to make 

rapid decisions about where to deploy attention in the visual field, since it accumulates 

information about the priority of different stimuli from many subordinate topographic maps into 

a single brain region.  See Rougier (2005) for a similar argument about the advantages of 

keeping computations local.  

 

Once a spatial region within the attention map has been sufficiently activated by input from 

subordinate maps, those neurons enhance the processing of information at the corresponding 

region of the earliest processing level, and that enhancement then carries forward through the 

ventral hierarchy. In this framework, there is no direct suppression of information in the 

subordinate layers. Instead, suppression is achieved indirectly by reducing the availability of 

attention at particular locations in the visual field. Thus, attention is represented as a gradient 

field of activation levels distributed across the spatial extent of the visual field (LaBerge & 

Brown 1989, Cheal Lyon & Gottlob 1994). Changes in these activation levels provides a 

convenient way to throttle the processing of information through all of the feature maps that are 

descended from the early visual area with a relative minimum of intracortical projections. This 

approach mitigates the disadvantages of the preceding architectures as follows. Attentional 

decisions can be made rapidly even between stimuli with distinct representations, since the 

competition occurs within a single map. Also, suppressing attentional priority, rather than 

representations in the subordinate layers, preserves the information at the earliest levels of 

processing, which allows a stimulus in an unattended region the chance to make contact with 

deeper levels of processing should it be required (i.e. no information is lost).  

 

 

3. RAGNAROC specification 

 

3.1  Inspiration from existing models 

There is a substantial literature on computational models of attention that collectively addresses 

a broad set of mechanisms and processes. RAGNAROC is informed by many of these models. 

Starting from the very earliest cueing paradigms, there is the idea that attention has a number of 

                                                        
3 For simplicity we assume that there is only a single cortical area that computes 
attentional priority, although the functionality would be essentially similar if there 
is a small family of interconnected cortical areas that mediate attention.    
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stages, and even independent systems for alerting and spatial attention (Posner et al. 1987).  

RAGNAROC is inspired by this idea in several respects, firstly that attention involves a number 

of different mechanisms, and secondly that spatial attention must be localized before it can be 

engaged.  The brief “lock-on” attractor state that emerges from the dynamics of RAGNAROC 

(more on this below) are akin to LOCALIZE and ENGAGE portions of the Posner et al.  model. 

The DISENGAGE operation also has an analog in the inhibitory Interneurons (more on this 

below) that help attention to re-allocate to new stimuli.  

 

Another of the formative models for our approach is the Theory of Visual Attention (TVA; 

Bundesen 1990; Bundesen, Habekost, & Kyllingsbæk, 2011), which provides a mathematical 

formulation for how goals adjust the pertinence of certain kinds of information (i.e. when one is 

looking for red digits, the pertinence of red is upweighted to increase the rate at which stimuli 

with that color are processed). This pertinence weighting applies across the entire visual field, 

which explains how stimuli are able to capture attention when they match top-down settings 

despite being located in a to-be-ignored location. TVA also formalizes the understanding of 

stimulus-driven attention as a decision making process. In terms of implementing a hierarchical 

architecture for attention, the Koch & Ulman (1985) and Itti, Koch & Niebur (1998) models of 

salience were crucial for establishing the utility of a shared salience map, which accumulates 

information from subordinate layers of processing and allows them to compete in a compact 

neural field. Li (2002) helped to establish the idea of salience being a product primarily of 

anatomically early levels of processing. Zehetleitner, Koch, Goschy & Müller (2013) elaborated 

the circuitry of competition at the top of this hierarchy, to provide an illustration of how 

attention decisions can be considered a race between competing selection operations.  

 

In terms of implementing selection, the Selective Tuning (ST) model of Tsotsos (1995) 

illustrates how recurrent signals, propagating backwards through the visual hierarchy could 

implement the selection process at the earliest levels of the hierarchy. However, another class of 

models has been even more influential in highlighting the importance of recurrence in iteratively 

shaping the spatial profile of attention.  One of the clearest examples of this process is SAIM 

(Heinke & Humphreys 2003; Heinke & Backhaus 2011) in which a pool of selection neurons 

interacts with incoming information to create a spatially localized selection and routing of 

information to a different group of neurons that represent the focus of attention. In SAIM, the 

selection process is an emergent property of the shared topographic connectivity between the 

selection system and the retinal input. Input of a given stimulus shape at a given location creates 
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a transient increase in energy that can drive a gradient descent process to ultimately select the 

stimulus and select the most likely template.  This core mechanism of SAIM has recently been 

shown to approximate the minimization of variational free energy in a Bayesian formulation 

(Abadi, Yahya, Amini, Friston & Heinke 2018).   

 

In SAIM, a series of top-down connections provides an additional form of resonance that selects 

for coherent stimuli that match the visual search template. This idea is also present in adaptive 

resonance models by Grossberg and colleagues, and in particular the attentional shroud model of 

(Fazl, Grossberg & Mingolla 2009), which describes a process to delineate the boundaries for 

the purpose of learning. 

 

The idea of reflexive attention, as a brief burst of enhancement to increase processing at a 

particular moment in time was simulated in the STST (Bowman & Wyble 2007), eSTST 

(Wyble, Bowman & Nieuwenstein 2009); and Boost Bounce (Olivers & Meeter 2008) models.  

Those models, especially STST and eSTST, focused more on the time course of encoding of 

information into memory, whereas RAGNAROC could be conceived as a spatial attention front-

end to such models, replacing the simpler “blaster” mechanism that they employed. There has 

also been work on exploring the specific mechanism of how attention operates at the level of 

information processing, for example by showing that peripheral cues result in a combination of 

stimulus enhancement and noise reduction (Lu & Dosher 2000). The mechanisms used here 

would be consistent with both stimulus enhancement and noise reduction  

 

3.2  How it works 

RAGNAROC simulates the consequences of attentional decisions rippling through the visual 

hierarchy, creating transient attractor dynamics that allow attention to lock-on (Tan & Wyble 

2015; Callahan-Flintoft, Chen & Wyble 2018) to one or more locations. In this context, the term 

lock-on refers to a state in which feedback attentional enhancement from higher-order to lower-

order layers of the visual system amplifies feed-forward projections to create a temporary 

attractor state that anchors attention at a given location for a brief window of time. These lock-

on states are similar in some respects to what was originally conceived of as attentional 

engagement (Posner et al. 1987), in that attention is strongly attached to the location of one (or 

more) stimuli.  Importantly, there needs to be something for attention to lock-on to, since the 

attractor state that drives the lock-on is dependent on feed-forward input. The model also 
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simulates a natural process of disengagement from a given location due to the buildup of 

inhibition for specific representations at attended locations.   

 

 

Model outputs. The model simulates both the behavioral consequences of reflexive attentional 

deployment, measured in terms of accuracy and reaction time, while also simulating key ERP 

correlates of attention, such as the N2pc and the PD components.  

 

Stimulus Processing and Differentiation. In order to provide a theory of attention that can be 

applied to many different experimental contexts, we do not commit to the decoding of pixelwise 

representations. Instead, simulated neurons in each spatiotopic map represent the presence of 

attributes at locations with a granularity of 0.5 degrees of visual angle. These representations are 

segregated into distinct maps that are each specialized for particular kinds of stimuli, as in Itti et 

al. (1998).  

 

Localizing and attending important stimuli. RAGNAROC assumes that attention must  

determine the precise location of a to-be-attended stimulus from the coarse-grained location 

information carried by higher levels of the visual hierarchy(DiCarlo & Maunsell 2003), and then 

deploy attention to the corresponding location.   

 

The distinction between Targets and Distractors. RAGNAROC assumes that targets and 

distractors are distinguished by reflexive attention based on differences in priority(defined 

below), since a decision must be made to commit attention before input from slower, more 

deliberate stimulus evaluations are completed. In this framework, targets (to the extent that the 

visual system perceives them as such) are successful at triggering attention because they elicit a 

stronger priority signal at their location in the attention map. The decision process is, in effect, a 

race between competing representations, and the top-down attentional set plays a key role in 

helping task-relevant stimuli to win that race. However, the outcome of this race-based decision 

process is not pre-ordained and the attention system is prone to deploying attention to highly 

salient distractors in some cases.  

 

Priority value. Each stimulus in the visual field receives a priority value, which is a valuation of 

its likely importance according to a combination of physical salience, and top-down 

contributions from attentional set (Figure 3). Physical salience is parameterized to reflect the 
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degree to which a given stimulus stands out from other nearby stimuli in terms of low-level 

features  (e.g. color, orientation, luminance). Priority is also affected by the degree to which a 

stimulus matches the top-down attentional control settings  (Saenz, Buracas & Boynton 2002; 

Zhang & Luck 2009; Bundesen 1990).  These attentional control settings prioritize simple 

features like color, or more complex attributes such as conceptual categories (e.g. dinner food, 

animal, etc) by upweighting feedforward activity from some maps and downweighting 

feedforward processing from other maps. We assume that the ability to select certain stimulus 

attributes for task-relevant weighting is governed by pre-learned stimulus categories (e.g. 

contrasting letters vs. digits), but cannot easily be accomplished for arbitrary distinctions (e.g. 

select letters A, B, C from other letters). This follows from the work of Shiffrin & Schneider 

(1977) who demonstrated the ability to efficiently attend to previously learned categories, but 

not to arbitrary subsets of a category. Based on work suggesting that even conceptually defined 

target sets can be used to select information from RSVP (Potter 1976; Barnard, Scott, Taylor, 

May & Knightley 2004) or capture attention (Wyble, Folk & Potter 2013), it is assumed that 

prioritization can happen even at a conceptual level. 

 

Other potential contributions to priority that will not be explicitly modelled here could involve 

whether stimulus attributes have been associated with reward (Anderson, Laurent & Yantis 

2011), have been recently presented (Awh, Beloposky & Theeuwes 2012), were recently task 

relevant (Kadel, Feldmann-Wüstefeld &  Schubö 2017) or are relatively novel in time (i.e. an 

oddball). Thus, a strength of the attention-map framework is to allow a broad variety of 

influences to affect how stimuli are prioritized. 

 

Attentional Disengagement.  Disengagement from a given location occurs rapidly when a 

location is no longer occupied by a high priority stimulus. Moreover, when a stimulus remains at 

a given location, an inhibitory process that is stimulus specific leads to a reduction in the 

strength of attention at that location, such that attention can more easily be attracted by a new 

stimulus with increasing onset asynchrony.  This is caused by inhibitory interneurons (see II 

neurons in section 3.3.1 below).   
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3.2 RAGNAROC Architecture  

3.2.1 A Hierarchy of Visual maps 

RAGNAROC assumes that the visual system is composed of a hierarchy of maps that each 

represent the visual field and are connected so as to preserve a spatiotopic organization that is 

rooted in a retinotopic representation at the earliest level (Figure 4). No claims about the number 

and complexity of this hierarchy are necessary here. Information propagates through the layers 

via feedforward excitation. The first layer of the model is termed Early Vision (EV) and 

simulates the earliest cortical regions in the visual hierarchy, which contains neurons with small 

receptive fields, such as V1. The second tier of layers is collectively termed Late Vision (maps 

LV1 and LV2) and contains neurons with larger receptive fields, corresponding to anatomical 

areas in the ventral visual stream that are thought to be specialized for different kinds of stimuli, 

such as V4 (color), FFA (faces), the EBA (body parts), the PPA (places), as well as distinctions 

between animate and inanimate stimuli, canonical size (Konkle & Carmazza 2013) and other 

distinctions that are as yet undiscovered. In our simulations, EV neurons have a simulated 

receptive field size of .5 degrees, while LV neurons have receptive fields of 3.5 degrees width.  

Figure 3. Illustration of how physical salience and top-down relevance can be 
mapped onto a single priority dimension using canonical attention capture 
paradigms. A) A highly salient color singleton produces priority values that are 
competitive with the less-salient target.  B) When the target and distractor 
dimensions are switched, the shape singleton is not competitive with the color-
singleton target. 
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The third layer of the model’s hierarchy is the attention map (AM), which receives convergent 

input from all of the subordinate LV maps4 and has the same diameter of receptive fields as LV 

neurons. Thus their receptive fields are extremely broad, because their input from the LV is 

already enlarged. The role of the AM is essentially to implement decision making across the 

visual field and to enact the consequences of that decision by sending modulatory projections 

down to the earliest level of the hierarchy. It does this by accumulating spatially imprecise 

                                                        
4 Direct projections from the EV to the AM could exist but they are not represented 
for simplicity.  

Figure 4. Illustration of the model’s macro architecture (A) and the microcircuitry 
(B) of the attention map.  Figure 5 depicts the same architecture with greater 
specificity. In the hierarchy of visual areas, the cones reflect the set of neurons at a 
subordinate layer that excite a given neuron in the superordinate layer. Only two LV 
maps are shown here, but this architecture generalizes to additional maps. 
Differences in salience are implemented as stimulus-specific differences in feed-
forward excitation between EV and LV. Top-down selection is implemented as 
feature-specific but spatially non-selective modulation of feed-forward weights for 
an entire LV map. The Attention Map returns location-specific gain enhancement to 
given locations in the EV. The grey II layer represents feedback inhibition for each LV 
node. The inset in B shows how neurons are interconnected within the AM. The 
small grey circles are Inhibitory Gating (IG) neurons, each of which has a 
competitive inhibitory relationship with a principle neuron of the AM. The principle 
neurons excite one another with a spatial distribution defined by a Difference of 
Gaussians (DoG). This connection corresponds to the black curved arrows in panel 
B.  
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activity from the subordinate LVs and then computing the spatiotopic location of the originating 

stimulus in the EV by summation. Convergent input from the LV maps initially forms an 

activation bump, centered at the location of each stimulus in the visual field. The correct 

localization of this bump follows naturally from the activation dynamics of the model since the 

AM neuron that resides at the corresponding topographic locus of the centroid of LV activity 

will receive the largest amount of input from the LV.  

 

When AM neurons are stimulated above threshold, a multiplicative attentional enhancement is 

applied to feed-forward connections from  neurons in the EV at the corresponding spatiotopic 

location. This modulation increases the strength of the feedforward input from that region of the 

visual field, which in turn increases the excitatory input to the AM. This dynamic creates a brief 

attractor state that resonates between different levels of the hierarchy.  The activated peak in the 

attention map is amplifying its own input by enhancing the feedforward projections from the 

same corresponding spatial location in the EV. This condition we term a lock-on state and allows 

a precise, stable localization of attention despite the relatively coarse-grained spatiotopy in the 

receptive field of the neurons. The stabilized bump of activation results from satisfying parallel 

constraints imposed by the recurrent excitation between AM and EV, and the inhibitory gating 

circuitry within the AM which narrows the spatial focus of the lock-on state.  

 

Thus, the attention map integrates information from the subordinate feature maps to localize one 

or more targets and then projects an enhancement signal back down to earlier areas at the 

appropriate location(s). There have been a number of proposals for where such an AM might 

reside in the brain, including frontal cortex, parietal cortex and portions of the pulvinar nucleus 

(Shipp 2004). We note that a lateral, parietal location would be broadly consistent with the scalp 

topography of attention-related ERPs, which are typically larger above parietal cortex than 

directly over occipital, central or frontal areas (Tan & Wyble 2015) and has a posterior 

topography (Kiss, Van Velzen & Eimer 2008).  It is also possible that this functionality is 

distributed over several cortical areas, although that would come at the expense of intracortical 

white matter to mediate the competition.  

 

3.2.2 Attentional gating circuitry 

One of the key innovations in this model is the inhibitory control circuitry within the AM (the IG 

nodes in Figure 4B), which has been developed according to pivotal findings in the literature. It 
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allows attention to rapidly focus at one location, while also selectively inhibiting regions of the 

visual field that contain other visual stimuli (Gaspelin et al 2015; Cepeda et al. 1998). 

 

To do this, gating neurons ( IG in Figure 4b) ensure that inhibition is only delivered to neurons 

receiving excitatory input from the visual field. Each IG neuron is paired with one principal 

neuron in the AM. An IG only becomes activated  when it receives lateral excitation from 

another AM neuron (i.e. the curved arrows at the top of Figure 4B) and concurrent excitation 

from any LV neuron at its own spatial location (i.e. the rising arrow from LV to AM in Figure 

4B). As a consequence, inhibition is routed selectively to spatial locations that have information 

to suppress.  

 

Another key part of the gating circuitry is the disinhibitory component, which increases the 

stability of lock-on states, such that once a decision to attend to a given location is reached, it is 

less likely that other stimuli will cause it to disengage. This also allows multiple locations to be 

attended in parallel, when stimuli are of similar priority.  This is accomplished by allowing any 

strongly active AM neuron to inhibit its paired IG neuron, a form of competitive inhibition that 

has been determined to have a similar stabilizing function in well-charted nervous systems such 

as the drosophila larva (Jovanic et al. 2016).  

 

The rationale for using this circuit is two-fold.  First, the simpler approaches to attentional 

suppression that are typically used in such models (either winner take-all, or surround inhibition) 

are unable to selectively route suppression to a specific location that contains a stimulus while 

leaving other locations relatively uninhibited. Selective inhibition requires a conjunction of two 

signals (lateral excitation within the AM and feedforward excitation from the LV) onto the IG 

neurons in order to generate the targeted suppression.  

 

The disinhibitory component of this circuit (i.e. each AM inhibiting its IG neuron) is crucial for 

allowing several AM nodes to remain strongly active at the same time once the competition has 

been resolved.  Without this implementation, it was unclear how to obtain an attentional 

configuration that remained stable when multiple locations were co-active. Moreover, the 

attention mechanism must be able to both selectively enhance and suppress multiple locations.  

In the model simulations below, we will illustrate the importance of this circuit by showing how 

attention to two locations is impaired in the absence of this circuit. Other circuits could 

potentially achieve the same ends with radically different architectures but this particular 
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configuration achieves a compromise of a robust match to the empirical constraints and 

simplicity. For other examples of gradient architectures through connected networks see 

implementations and analyses of dynamic neural fields (Amari 1977; Rougier 2006; Strauss & 

Heinke 2012) and the MORSEL model (Mozer, & Behrmann 1990) 

 

3.2.3  Free and fixed parameters 

The model uses predominantly fixed-parameters according to a set of empirical constraints, 

which are listed below in section 4. These parameter values are invariant for all of the 

simulations provided below, except for a subset that vary in order to implement the experimental 

paradigm of each simulation (e.g. timing and location). There are also two partially-fixed 

parameters that specify the physical salience and task-relevance (i.e. bottom-up and top-down) 

weightings of each stimulus type. The term partially-fixed reflects the fact that their relative 

values are determined by the experimental paradigms. E.g. in simulations of the additional–

singleton paradigm (Theeuwes 1991), we allow the specific value of the distractor's salience to 

vary, but it has to remain higher than the salience of the target. Finally, there is one additional 

free parameter that defines the accumulator threshold for a behavioral response for each 

experiment. This parameter is constrained to have a single value for all conditions of a given 

experiment and prevents behavioral accuracy values from being at ceiling or floor. The specific 

values of all parameters are provided for each simulation in the appendix and a full set of code is 

available here (https://osf.io/rwynp/) 

 

3.3 Mechanisms of the model: 

3.3.1 Equations 

The model uses rate-coded neurons, governed by the activation equations of O'Reilly & 

Munakata (2001) as shown in the Appendix. In these equations the activation level of each 

neuron is governed by three currents: excitatory, inhibitory and leak. This level of abstraction is 

a compromise that captures the properties of synaptic interactions in broad strokes, while 

allowing rapid exploration of different model architectures. Moreover, the distinction between 

excitatory and inhibitory currents provides a mapping to current flows underlying EEG 

components. This set of equations has been used effectively in previous simulations of 

attentional processes at similar time scales (e.g. Bowman & Wyble 2007).The only exceptions to 
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strict neural plausibility are the use of maximum functions at several points, in order to simplify 

the neural implementation5.  

 

Each connection within the model is enumerated in Figure 5 and their properties are described 

below. This is a different visualization of the same information shown in Figure 4, but with 

greater specificity should a reader want to understand the model precisely.   

 

For simplicity, all maps have the same dimensionality. Furthermore only two pathways are 

depicted here though these mechanisms generalize to more complex architectures with more 

layers and more pathways. All connections between or within layers are assumed to have either 

an identity projection (i.e. strictly topographic), a Gaussian spread, or a Difference of Gaussians 

(DoG). 

 

The following numbers indicate connections specified in Figure 5. 

 

1. Input to EV neurons: The EV represents the earliest stage of cortical visual 

processing in which neurons have extremely small receptive fields and 

color/orientation/frequency specific firing preferences. For the sake of simplicity, 

EV nodes are separated into different areas according to the kinds of stimuli 

presented, although in the brain these different neurons occupy the same cortical 

map (i.e. V1). Input to a specific EV node is specified as a step function, since the 

simulations are of suprathreshold stimuli (i.e. a value changing from 0 to 1 while the 

stimulus is visible), which causes the corresponding EV node's membrane potential 

(MP) to charge up according to equations 1.1,1.2 and 1.3, see appendix.  

                                                        
5 These uses are described in detail in the appendix. One such use is to implement a 
logical AND operation within a single neuron, such that it can only be activated if 
two of its inputs are coactive, which is supported by compartmental simulations of 
dendritic spines (Shepherd & Brayton, 1987). 
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2. Projection from EV to LV: When an EV node's membrane potential crosses 

threshold, it sends a feedforward excitation to an array of nodes in the corresponding 

LV maps. This projection is spatially weighted according to a Gaussian centered at 

the location of that EV node. The magnitude of this projection is the salience of the 

stimulus, and indicates its physical dissimilarity to other stimuli in the visual field 

according to the specific LV it projects to (e.g. a shape singleton would have a high 

salience in an LV map that is specific for form). Other accounts have shown how to 

compute salience for some classes of features such as color, orientation and 

luminance (Zelinsky 2008; Itti et al. 1998; Bruce & Tsotsos 2006). In RAGNAROC, 

we abstract over the process of computing salience to accommodate the broad 

Figure 5. Illustration of the complete architecture for two distinct pathways during 
perception of two stimuli S1 and S2 with highly distinct dimensions (e.g. form vs 
color). The left and the right side represent the same connections but for different 
kinds of stimuli. The bubbles indicate the spatial distribution and character of each 
connection. The traces above each layer illustrate a typical activation profile for that 
map in response to a stimulus. Note that attention affects both pathways, regardless 
of which stimulus triggered it. The numbers correspond to descriptors in the text. 
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diversity of tasks. Computing LV activation corresponds to equations 1.4-1.6 in the 

appendix. 

 

3. Inhibitory feedback nodes in the LV: Each LV node has a dedicated inhibitory 

interneuron (labelled II), that provides feedback inhibition. This inhibitory feedback 

is crucial for emphasizing the onset of new information by causing the activity of 

any given LV neuron to drop after approximately 100ms, which is characteristic of 

single units in the visual system (e.g. Fig 9 of Chelazzi, Duncan, Miller & Desimone 

1998). Moreover, these II neurons can cause attention to naturally disengage from a 

stimulus that remains constant on the retinal field. Computing II activation 

corresponds to equations 1.8 to 1.10 in the appendix. 

 

4. Projection from LV to AM: When an LV node crosses threshold, it projects 

feedforward excitation to an array of nodes in the AM according to a Gaussian 

profile centered at the location of the active LV node. LV nodes also excite IG 

nodes (see below) with the same Gaussian profile. The projections to both the AM 

and IG nodes include a parameter that represents the task-relevance (i.e. "top-

down") weighting of each stimulus type, and is fixed for each LV map. (e.g. to 

represent an attentional set for a specific color, all LV nodes for that color have an 

increased feedforward strength to the AM). Computing AM activation corresponds 

to equations 1.11 to 1.14 in the appendix.  These connections are depicted as the two 

ascending black arrows in Figure 4B.   

 

 

5. Inhibitory Gating Nodes (IG):  The IG nodes ensure that inhibition within the 

attention map only occurs at locations receiving input from an LV (see also Beuth & 

Hamker 2015). Each IG node is paired with a single AM node that it can inhibit. An 

IG node is excited by neighboring AM nodes according to a Difference Of 

Gaussians (DoG) activation profile. IG nodes are also excited by LV nodes. The 

total excitation of each IG node from these two sources (AM and LV) is capped 

such that concurrent AM and LV activity is required to raise an IG node above 

threshold. Thus, IG neurons exhibit the equivalent of a logical AND gate in that they 

require concurrent activation from two pathways in order to fire. Computing AM 
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activation corresponds to equations 1.16 to 1.21 in the appendix. This connection is 

depicted as the laterally connecting black arrows in Figure 4B.  

 

6. IG inhibiting the Attention Map: When activated by convergent AM and LV input, 

an IG node inhibits its corresponding AM node. This is the basis of inhibitory 

suppression of attention within the model and corresponds to equation 1.12 in the 

appendix. This connection is depicted as the inhibition from IG to AM in Figure 4B. 

 

7. Attention Map inhibiting IG: This disinhibitory circuit increases the stability of an 

AM lock-on state, since AM neurons can protect themselves from inhibition 

generated by neighboring AM nodes. The inhibition from AM->IG has a high 

threshold of activation, so that an AM node protects itself from inhibition only once 

a lock-on state has formed at a given location. This inhibition corresponds to 

equation 1.19 in the appendix. This connection is depicted as the inhibition from 

AM to IG in Figure 4B. 

 

8. Attentional Enhancement: Each AM node provides a gain modulation of synaptic 

transmission from EV to LV for all EV nodes at the same location. It is this 

modulation that creates the lock-on attractor between EV and AM since it allows an 

AM node to increase the gain on its own input. Note that enhancement of a given 

location in the EV occurs for the entire Gaussian spread of an EV neuron's 

feedforward projection, unselectively across all feedforward pathways. This 

enhancement corresponds to equations 1.4 and 1.15 in the appendix. 

    

9. AM excitatory Bias: There is a uniform level of bias input to the entire AM, keeping 

these neurons slightly active in the absence of input. This enhancement corresponds 

to equation 1.11 in the appendix.  

 

10.  Noise input: Intertrial variability is added to the model as modulations of the 

weights between the LV and AM, which represents fluctuations in attentional 

control. The variability is constant for a given trial and varies between trials as 

samples from a Gaussian distribution.  
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3.4 Example Simulations 

The following examples illustrate the model’s dynamics in response to several stimulus 

scenarios.  

 

3.4.1 The simplest case: Single stimulus 

When a single stimulus of sufficient priority is presented to the EV, it triggers a lock-on of 

attention at its spatiotopic location, which is a self-excitatory attractor state resonating between 

EV and the AM through the LV. Figure 6a illustrates the impulse response function in the AM 

elicited by a single stimulus. Figure 6b illustrates the time course of activation of each of the 

layers of the model centered at the location of the stimulus. 

 

3.4.2  Transition to the lock-on state 

We demonstrate that the lock-on state has the characteristics of an attractor by illustrating that a 

broad range of stimulus values evoke a bump in the AM of similar size and duration (Figure 7a). 

The rapid growth of this neuron’s activation is due to the attentional enhancement of 

Figure 6. A. Evolution of a lock-on state across time and layers for a single stimulus. An 

initial feedforward wave of excitation from a single location in the EV triggers activation in 

the LV, which carries forward to a peak in the AM. Once the central peak of the AM 

activation crosses threshold, the surrounding IG neurons are activated producing surrounding 

inhibition in the AM.  B. Illustration of the time course of activation for each kind of node 

within the model in response to a stimulus. Subscripts x,y indicate the location of the stimulus 

while x+2,y+2 indicate nodes at a neighboring location, 1.4 degree away. Notable inflection 

points are when the AMx,y node crosses its lower threshold, which triggers enhancement of 

the LV activation. This drives the AMx,y node more strongly such that it passes its second 

threshold, allowing it to suppress the IGx,y node. At this point attention is fully locked on to 

location x,y, since processing is enhanced at that location, and the IG has been inhibited. 
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feedforward activity from the EV after the corresponding node in the AM crosses the threshold 

value.  

 

 

3.4.3 Two or more simultaneous stimuli 

Figure 8 depicts a comparison of AM activity for either one(A), two stimuli(B,C) or six stimuli 

(D). In the case of two or more stimuli, if one of them is of substantially higher priority, it will 

inhibit the AM at the locations of the others (B,D). However if both stimuli are of similar 

priority and nearly simultaneous, they will enter lock-on states simultaneously leading to a fully 

parallel deployment of attention (C). In such a case, each AM inhibits its paired IG (not shown 

in this figure), and the lock-on states protect themselves from inhibition by the other. 

 

3.4.4 Two sequential stimuli 

When stimuli onset sequentially, the first stimulus will typically be able to activate its lock-on 

state and suppress activity of the second. In this way, a first target (T1) with a relatively low 

priority value can suppress attention to a second target (T2) since the temporal advantage of T1 

allows it to establish a lock-on state before the T2 has a chance to establish one. To demonstrate 

the temporal dynamics of how lock-on states interact for two stimuli with varying SOA and 

priority, Figure 9 illustrates graphically the relative robustness of such states. In the bottom right, 

the U shaped function illustrates that a T2 can more easily establish a lock-on state if it is 

presented either simultaneously with, or at least 100ms after a T1. At SOAs near 50ms, the T2 

lock-on state is not established unless the T2’s priority is sufficient to countermand the 

inhibition caused by T1. The bottom left quadrant shows that T1 is not greatly affected by T2’s 

lock-on state.  The top two panels will be discussed in the next section.   

 

3.5 Competitive Inhibition helps to stabilize attentional focus 
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Competitive inhibition improves the functionality of attention by increasing the stability of one 

Figure 7:  Illustration of the time course of activation of a neuron in the AM centered 
at the location of a stimulus as  the BU parameter is varied from .01 to .6 in 
increments of .03. The inset plots peak amplitude as a function of activation 
strength. The takeaway point is that a lock-on state is an attractor, such that many 
different values of strength map onto the same amplitude of activation.  
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or more lock-on states, allowing attention to be simultaneously deployed more easily, in accord 

with empirical findings such as Bay & Wyble (2014) and Goodbourn & Holcombe (2015). To 

illustrate the effect of competitive inhibition on the attentional state, Figure 9 compares the intact 

model (bottom two panels) to one in which the AM->IG inhibition has been removed (top two 

panels). This change preserves the center-surround inhibition, and the selective inhibition but 

does not allow AM nodes to competitively block their own inhibition.  

With the inhibition intact (bottom two panels), it is much easier for simultaneously (or nearly so) 

stimuli to evoke robust lock-on states because each protects itself from interference by the other. 

However within about 50ms, the window of attentional simultaneity has expired because the T1 

lock-on starts to inhibit nearby activity in the AM. This makes it difficult for T2 to establish its 

own lock-on state if it onsets between 50 and 100ms after the T1. The time course of this 

transition from simultaneous to sequential attention is in agreement with behavioral data 

showing the onset of attentional inhibition following a T1 onset (Mounts 2000, Experiment 2). 

The advantage of protecting the lock-on state of the T1 at the expense of the T2 is to reduce the 

volatility of attentional decisions in the case of dynamic or rapidly changing stimuli.  

In contrast, when the competitive inhibition is removed (top two panels), the AM activations 

evoked by two stimuli always compete against one another, such that only T1 or T2 can be fully 

attended.  This also allows a delayed onset T2 to interfere strongly with T1, in contrast to typical 

findings of attention paradigms in which the T1 has strong priority over T2 (Duncan, Ward & 

Shapiro 1994). 

3.6 Mapping model activity onto measurable data 

In order to compare the model against empirical benchmarks, it is necessary to map model 

activity to behavioral measures of accuracy and reaction time, as well as EEG correlates of 

attention such as the N2pc and PD. Figure 10 illustrates which activity states in the RAGNAROC 

model are used for generating data. 

 

3.6.1 Model configuration 

For each experiment, physical salience values and task-relevance weightings are configured for 

different kinds of stimuli in the task. To provide variability, task-relevance weightings are varied 

at random over repeated simulations, while the physical salience values remain fixed. Task-

relevance weights are initially varied according to a uniform distribution of possible values for 

each kind of stimulus in the task. For example in a salient-singleton attentional capture paradigm 

(Theeuwes 1992), the target stimulus has a physical  salience value of .15 and a range of task-
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relevance weightings from .17 to .37 in 12 steps of .018. The singleton distractor has a physical 

salience of .3 and a range of relevance weightings from .07 to .27 in 12 steps of .018. The model 

is run for all possible combinations of these weightings, (e.g. 144 total simulations in this 

example). The simulations are then bootstrapped to form the simulated data set of an entire 

experiment. The bootstrap involves resampling the model output 1,000 times according to a 

normal distribution projected onto the 12 TD weight parameter values for each feature 

dimension, with endpoints of +4/-4 standard deviations  under the assumption that there is trial 

to trial variability in the attentional set of the observers that is normally distributed.  This 

Figure 9 Illustration of the robustness of lock on states to each of two stimuli where the 
second stimulus varies in the strength of bottom-up activation parameter of the T2 
(horizontal axis) and temporal latency (vertical axis). Each point represents the total 
duration for which the AM neuron at the location of the stimulus (T1 or T2) is above 
threshold. The key takeaway is that without competitive inhibition (CI), T1 and T2 
compete destructively at short SOAs such that neither elicits a robust lock-on state. With 
inhibition intact, both stimuli can achieve a lock-on state if presented with nearly 
identical onsets. However at longer SOAs T1 suppresses T2 enforcing a serialized 
deployment of attention. In this simulation, T1 and T2 were presented 4 degrees apart 
and have a duration of 120ms. Note that the T1 bottom-up weighting is fixed for all 
simulations and only the T2 weighting is varied. The distinction between T1 and T2 
becomes notional when they are simultaneous. 
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bootstrapping determines both the 

simulated behavior (accuracy and 

RT, as appropriate) and the EEG 

traces for a given experiment. This 

is the only source of variability in 

the model when simulating EEG. 

For simulations of behavior, an 

additional source of noise is added 

during the bootstrapping, as 

described below.  

 

3.6.2 Simulating Behavior 

RAGNAROC simulates the 

successful detection or response to 

a target with a thresholded 

accumulator. The accumulator 

sums the time course of activation 

of all LV neurons that are activated over baseline (.5) for the target. For every trial, the area 

under the curve (AUC) is calculated for the entire time course of activation. A trial is considered 

accurate if this AUC exceeds a threshold value that is calibrated for each task. This threshold is a 

free parameter fit for a given task to achieve a particular accuracy value in one baseline 

condition chosen for each task. In order to introduce more variability and make simulations less 

sensitive to the particular threshold value, each simulated trial is jittered with random noise. This 

is done by adding 15% of the baseline condition’s average AUC times a random scalar (ranging 

from 0 to 1 from a uniform distribution) for each trial. Reaction times are calculated as the time 

step at which the accumulator crossed threshold.  

 

3.6.3 Simulating EEG 

To translate from simulated neurons to EEG correlates is a hard problem that, in its most exact 

form, would require compartmental-level modeling of cortical neurons including all of the 

synapses in each layer, a fairly complete understanding of the neuroanatomy for each individual 

subject, and a model of the electrical properties of the tissue layers above the cortex (dura, fluid, 

skull, muscle, skin).  

 

Figure 10 Activity within the RAGNAROC model 
is used to construct simulations of data in the 
form of behavioral accuracy, behavioral reaction 
time and EEG components. Behavioral data are 
extracted from the late vision area, which is 
assumed to drive the formation of memory 
representations and response decisions through 
mechanisms that are outside of the scope of the 
model. Simultaneously, synaptic currents within 
the attention map are measured to generate 
simulated ERPs such as the N2pc and the PD.  
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However, it is possible to make effective progress with a much simpler model, given some 

starting assumptions to simplify the forward model for generating scalp potentials. Here, these 

assumptions are (1) that the attention map exists over a region of cortex situated in posterior-

lateral parietal areas (2) that EEG potentials are largely driven by excitatory synaptic input on 

pyramidal neurons oriented perpendicular to the scalp (Nunez & Cutillo 1995) (3) that an 

increase in this synaptic current within the attention map produces (on average) a negative 

voltage at the scalp and (4) that there is an additional weighting parameter that determines the 

relative contribution of excitatory and inhibitory synaptic currents for all simulations. The 

advantage of such a simple model is that it provides fewer opportunities to overfit the observed 

EEG.  

 

Given these assumptions, RAGNAROC simulates lateralized EEG components associated with 

attention by summing synaptic currents across each half of the AM, and taking the difference of 

those sums relative to the side of the visual field that a particular stimulus was presented on. 

This is analogous to the measure of potentials such as the N2pc and PD, which are calculated as 

the difference in voltage between electrodes contralateral and ipsilateral to the side of the display 

containing a target (or a distractor in some cases).  Simulations with multiple trials in a block 

compute the EEG as an average across the trials, and a Gaussian smoothing operation is then 

applied with a 50ms window.    

 

The synaptic currents are computed separately for each neuron as its excitatory current, minus its 

inhibitory current, with a floor of zero. The intuition behind this implementation is that 

excitatory currents are the primary drivers of the large dipoles that are observable at the scalp, 

and inhibitory inputs often shunt those excitatory currents by creating high conductance areas of 

the cell membrane closer to the soma (Koch, Douglas & Wehmeier 1990). 

 

The AM receives a uniform input to elevate all of the neurons above their resting potential. This 

provides a baseline level of excitatory current that is uniformly distributed across the attention 

map and therefore drops out during the subtraction of ipsilateral from contralateral. Activation or 

inhibition of nodes within the AM causes deviation away from this baseline level of current. 

When this current is summed across the halves of the attention map, laterally asymmetric 
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differences in activation produce 

changes that are comparable to the 

N2pc and PD components 6. Note that 

using the sum of currents across a 

hemifield to simulate voltage means 

that increases in current for some 

neurons might be effectively invisible 

to the simulated EEG signal if there 

are also corresponding decreases in 

current for other neurons in the same 

half of the attention map (Figure 11). 

Furthermore, any negativity in the 

simulated voltage difference between 

the contralateral and ipsilateral sides 

of the map could be caused either by 

an increase in activity in the 

contralateral side, or a decrease in 

activity on the ipsilateral side. It is 

important to remember that there are 

only two possible polarities of a 

component, positive or negative, but there are (many!) more than two neural processes that 

could result in a scalp potential at a given latency. Therefore one cannot uniquely ascribe a given 

functional property to an ERP on the basis of a given polarity/latency. 

 

This ambiguity in the interpretation of simulated EEGs is not a shortcoming of the model, but 

rather reveals a complication inherent in the interpretation of all ERPs. This complication 

underscores the importance of understanding EEG signals at the level of their neural sources and  

the role of computational models in understanding those sources.  

 

3.6.4 Simulation of the N2pc 

                                                        
6 For the sake of simplicity, we assume here that there is a constant level of 
resistance across the AM, such that voltage is directly proportional to current.  

Figure 11 Illustration of how different patterns 
of activity on ipsi and contralateral sides of 
simulated cortex can summate to produce either 
positive, negative or nil voltage differentials. 
Note that in F, the currents generated by the 
activity in the peak is effectively cancelled out 
by the surrounding inhibitory surround 
producing an effective Nil in the contralateral 
side. Note that “Nil” in this context doesn’t 
necessarily mean exactly 0, but sufficiently small 
that it is not detectable at a given level of 
experimental power.  
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In RAGNAROC, any lateralized stimulus that has the highest priority produces a simulated ERP 

that resembles an N2pc (Figure 12a). The onset and peak of the N2pc is caused by the initial 

activation bump in the AM. When the lock-on state is established, the AM activates its 

neighboring IG neurons, which adds an inhibitory region in the immediate surround. When the 

central peak is surrounded by inhibition, the sum total of synaptic currents on the contralateral 

side of the AM nearly cancel out and sometimes even reverse briefly producing a positivity. 

Thus, while RAGNAROC is in general agreement with the theory that the N2pc reflects 

processes associated with spatial attention, it suggests a more specific temporal relationship, 

which is that the N2pc reflects, in large part, the processes of localizing a target prior to 

attentional deployment, as in the CGF model (Tan & Wyble 2015; Callahan-Flintoft, Chen, & 

Wyble 2018). 

Thus, the model explains that the end of the N2pc does not indicate the termination of attention, 

but rather the onset of surround suppression. This simulation provides a straightforward 

explanation for the duration of the N2pc, which is typically brief and followed by a positive 

rebound (Brisson & Jolicouer 2006)  

 

3.6.5 Simulation of the PD 

The PD is an EEG component thought to reflect inhibition of distracting information in the visual 

field. In RAGNAROC, a PD can emerge whenever there is sufficient inhibition of activity in the 

attention map and this occurs in at least two ways. First, whenever two stimuli compete for 

attentional control and one of them loses, the AM is suppressed at the location of the loser 

(Figure 12b). This suppression reduces synaptic currents in the hemifield containing that 

stimulus and results in a net positivity in contralateral scalp electrodes. However, a PD also 

occurs when the surround suppression encircling an attended stimulus is large enough that it 

causes a net reduction in current for that half of the visual field. This imbalance would be 

reflected as a PD trailing an N2pc, and could occur even in the absence of a suppressed distractor 

(Figure 12a, see also Töllner, Zehetleitner, Gramann, & Müller 2011).  

 

These are the essential aspects of simulating behavioral effects as well as lateralized EEG 

components in the early time range following the onset of a stimulus array. In the next section 

we illustrate how specific empirical effects emerge in specific experimental contexts through 

these mechanisms.  

 

4. Simulations of Empirical Constraints 
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4.1. Constraints in model development 

As in previous papers (Tan & Wyble 2015; Swan & Wyble 2014), the model is parameterized 

according to a set of extant findings in the literature. Once the model is able to simultaneously 

accommodate those findings with one set of fixed parameters, it can be used to generate insights 

about the underlying system and testable predictions for future work. The philosophy of this 

approach is to allow a large number of empirical constraints to inform the model's design, with 

as little parametric flexibility as possible. Here we list a series of behavioral and 

electrophysiological findings that we consider to be crucial for defining the functionality of 

reflexive attention. Each of these findings is simulated with the same set of parameters, except 

for the configural parameters described in 3.2.3. The supplemental describes the exact set of 

parameters for each simulation. Given the large diversity of experimental paradigms that provide 

the constraints, the fits are evaluated for their qualitative similarity to the data.  

 

4.2 Behavioral constraints: 

Figure 12 Illustration of how activation levels within the attention map 
produce simulations of N2pc and Pd components for commonly used 
experimental paradigms with targets (T) and distractors (D). Note that this is 
not intended to predict that distractors always elicit an N2pc.  
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1. Covert spatial attention is triggered rapidly in response to a target or highly salient stimulus. 

This effect is measurable as an enhancement of accuracy and reduced reaction time for stimuli 

presented just after a cue, at that same location. The time course of this enhancement  peaks at 

about 100ms SOA (Nakayama & Mackeben 1989). Note that this transient form of attention is 

short lived even when the cue stays on the screen. It is difficult to precisely estimate the duration 

of this effect because it is followed by slower, more volitional forms of attention that sustains the 

attentional effect to differing degrees in differing paradigms. However, there have been 

consistent findings of enhanced perception at brief cue-target (Yeshurun & Carrasco 1999; 

Müller & Rabbitt 1989; Cheal &  Lyon 1991) or target-target intervals that attenuate at longer 

cue-target intervals. Targets elicit such attention as well (Wyble, Potter, Bowman 2009). 

RAGNAROC simulates the transient attention effect of Nakayama and Mackeben (1989) as a 

Figure 13  Behavioral constraints and 
simulations. (a) Accuracy of 
reporting a target indicates the 
transient nature of reflexive 
attention (N = 2, Nakayama & 
Mackeben 1987). (b) Reaction time 
to report a shape singleton target is 
increased in the presence of a salient 
color  distractor (Theeuwes 1992; 
Experiment 3). (c) A singleton affects 
the reaction time to report a target 
only if it matches the type of target 
(Folk Remington & Johnston 1992; 
Experiment 3). (d) The benefit of a 
valid cue, relative to a no-cue 
condition, is not diminished when 
two cues are used, suggesting 
simultaneous deployment of 
attention to two locations with 
minimal cost (Bay & Wyble 2014). 
(e) Accuracy of reporting a second 
target is affected by proximity to a 
preceding target with a spatial 
gradient (Mounts 2000). Note that 
the empirical data is reported as d’, 
but model accuracy is reported as 
accuracy since it lacks a mechanism 
for guessing. 
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brief window of elevated accuracy in reporting a target when it follows another stimulus at the 

same location because the second stimulus benefits from the lingering lock-on state created by 

the first stimulus. (Figure 13a, the two traces in the data plot indicate different subjects) 

 

2. This rapid deployment of attention is reflexive, which means that it is vulnerable to capture by 

a non-target stimulus that is either highly salient (Theeuwes 1992) or contains a target-defining 

attribute (Remington, Folk & Johnston 1992). This reflexive form of attention occurs even to 

locations that are known to always be task irrelevant (Lamy, Leber & Egeth 2004; Krose & 

Julesz 1989). Also, highly-salient distractors will trigger this form of attention regardless of 

instruction, or lengthy practice sessions (Theeuwes 1992; but see Kim & Cave 1999 for a 

counter example). RAGNAROC simulates the attentional capture effect of Theeuwes (1992) as a 

longer reaction time for a target in the presence of a distractor (Figure 13b). See the discussion 

section for an in depth discussion of precisely what causes the slower RTs in a capture paradigm.  

 

3. Reflexive attention can be biased towards stimuli containing certain features or attributes, 

provided that there exist well-learned, cognitively accessible distinctions between target-

defining features and other stimuli (e.g. letters can be selected among digits but an arbitrary 

subset of letters cannot be efficiently selected from other letters without substantial training, 

Schneider & Shiffrin 1977). This target-defining attentional set is implemented across the entire 

visual field such that, for example, establishing a control setting for red at one location 

prioritizes red at all locations (Zhang & Luck 2009). RAGNAROC simulates attentional set as 

capture costs that are mediated by task-set from Folk, Remington & Johnston (1992). See Figure 

13c. 

 

4. Reflexive attention can be deployed to two or more locations at the same time when stimuli 

are presented in parallel, but behaves more like a spotlight when targets are presented 

sequentially (Bichot et al. 1999; Dubois Hamker & VanRullen 2009; Bay & Wyble 2014). 

RAGNAROC simulates divided attention as an attentional benefit that is similar in size 

regardless of whether one or two locations are cued (Bay & Wyble 2014). See Figure 13d. 

 

5. Presenting a cue or target at one location causes subsequent targets presented at spatially 

proximal locations to be harder to perceive. This suppression is diminished with increasing 

spatial distance (Mounts 2000; Dubois et al. 2009). RAGNAROC simulates attentional 
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suppression surrounding an attended region using two sequential targets as in Mounts (2000). 

See Figure 13e.  

 

6. In the presence of a target, inhibition is localized at the spatiotopic position of non-target 

stimuli, in comparison to empty locations in the visual field. Thus, probe stimuli will be harder 

to perceive when they occur in the locations of singleton distractors in comparison with blank 

areas (Cepeda et al. 1998) or non-singleton distractors (Gaspelin, et al. 2015; Figure 2c). 

Moreover, this effect is dependent on the attentional set of the subject. It is present only when 

targets are defined by specific features, rather than by being a form singleton. RAGNAROC 

simulates increased suppression of attention at locations containing salient distractors when the 

top-down weightings from LV->AM for the target are increased (Figure 14 bottom two panels). 

When these weightings are weaker, the reverse pattern is obtained such that salient distractors 

evoke attentional enhancement rather than suppression (Figure 14, top two panels).  
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4.3 EEG Constraints 

Select data concerning the N2pc (also referred to as the PCN by Tollner, Muller & Zehetleitner 

2012) and PD components will be taken as constraints on the model as well.  

 

4.3.3 Specific EEG Constraints:  

1. Presenting a target in either hemifield produces a brief negativity in EEG recorded on 

the contralateral, posterior side of the scalp called the N2pc (Luck & Hillyard 1994; Eimer 1996) 

or PCN (Töllner, Zehetleitner, Gramann & Müller 2011). This negativity typically peaks at 

about 250ms after target onset and is observed even in the absence of distractors on the same 

side of the display (Tan & Wyble 2015). RAGNAROC simulates this effect as a contralateral 

negative voltage for a target on one side of the visual field (Eimer 1996). See Figure 15a.  

 

Figure 14. Experimental data from Gaspelin, Leonard & Luck (2015) 
alongside simulations. In panel A the target was a shape singleton 
And report of the probe at the singleton color distractor was 
elevated, compared to the nonsingleton distractor. The model 
simulates this effect (B) as the result of weaker top-down attention 
which allows the salient distractor to trigger attention. In panel C, 
the participant knows exactly what shape will contain the target. 
This is simulated (D) by adopting stronger top-down settings, which 
allows the target to inhibit the distractor on nearly every trial. 
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2. Multiple targets in the same location in immediate succession will produce a standard 

N2pc only to the first target in the sequence, even for trials in which both targets were reported. 

(Tan & Wyble 2015; Callahan-Flintoft et al. & Wyble 2017; Callahan-Flintoft, Chen, & Wyble 

2018). When the two targets are presented in different locations of the visual field, there will be 

an N2pc to each of them in turn (Tan & Wyble 2015). This single-N2pc effect is only present 

when the two targets are presented within roughly 150ms and at exactly the same location. 

When the duration between targets is extended, a second N2pc is observed for the second target, 

even when it is in the same location as the first and also regardless of whether subjects know that 

the second target will appear in the same location as the first (Callahan-Flintoft, Chen, & Wyble 

2018; See Figure 15c). 

 

3. Multiple N2pcs can be evoked in rapid succession (e.g. at 10-100ms intervals), with no 

delay when targets are presented at different locations. When presenting a lateral target at 

intervals of 10, 20, 50 and 100ms relative to a preceding target, an N2pc is evoked with a target-

relative latency that is very similar (i.e. within 10ms) to that evoked by the first target. This 

finding indicates that deploying attention to one target does not affect the time course of 

attentional engagement to a second target within this short time frame (Grubert, Eimer 2014, 

Experiment 1). At longer separations, an attentional blink may be observed but the blink is not 

within the scope of the mechanisms of RAGNAROC See Figure 15d.  

 

4. The N2pc/PCN is often followed by a positive contralateral potential called the PD 

(Hickey et al. 2009; McDonald, Green, Jannati & DiLollo 2012) or Ptc (Hilimire, Mounts, Parks 

& Corballis 2010). This positivity has been particularly associated with the occurrence of a 

highly salient lateral distractor, although this positivity can occur without such a distractor 

(Töllner et al. 2011;  Hilimire, Hickey & Corballis 2011). RAGNAROC simulates this effect as 

a positive voltage after the N2pc for a lateralized target (Töllner, et al. 2011). See Figure 15e.  

 

5. A laterally presented salient distractor can produce an N2pc, and this N2pc will be larger 

if the distractor is presented without an accompanying target (Kiss, Grubert, Petersen, & Eimer 

2012; Hilimire, Hickey  & Corballis 2012; McDonald, et al. 2012). RAGNAROC simulates this 

effect as a negative contralateral voltage after a lateralized distractor (McDonald et al. 2012). 

See Figure 15f.  
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6. Specificity of the attentional set affects the degree to which targets and distractors 
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produce N2pcs. When the task set does not predict a specific stimulus (e.g. when the task is to 

find the shape singleton), the distractor can elicit an N2pc (Hickey, et al. 2006; Burra & Kerzel 

2013) because the top down weighting is less efficient, which allows a salient distractor to have 

higher relative priority. Furthermore, a target presented on the midline will reduce the distractor 

induced N2pc by competing with it for attention (Hilimire, et al. 2011; Hilimire & Corballis 

2014; Figure 3c). Similarly, in the same condition an N2pc induced by a lateral target is reduced 

by a centrally presented distractor (Hilimire & Corballis 2014). When the task set is a 

predictable singleton, then distractors produce a much weaker N2pc and the target induced N2pc 

is barely affected by the presence of a salient distractor. RAGNAROC simulates this effect as a 

specific ordering of N2pc amplitudes for different stimulus configurations across two different 

specificity manipulations (Hilimire & Corballis 2014). A similar result is obtained when the task 

is manipulated such that the distractor is of higher or lower salience than the target. For example, 

when the task is to detect a form singleton, a highly salient color singleton will reduce the 

target’s N2pc, but this is not true when the task is to detect a color singleton, and the distractor is 

a form singleton (Schubö,  2009). See Figure 15g.  

 

 

5.0 Discussion: what have we learned? 

The RAGNAROC model describes a set of neural mechanisms that explicates how attention 

reflexively responds to new visual input, and makes rapid decisions about which locations in the 

visual field to enhance and which to suppress. The decisions are mediated by attractor states and 

Figure 15.  EEG constraints and simulations. Note that polarity is oriented 
according to the original source and thus switches between panels (a) A laterally 
presented target causes a brief contralateral negativity, even if it has a long 
duration (Eimer 1996; green window added to emphasize the time frame of the 
N2pc). (b) The N2pc to a second target is muted if it occurs very soon after and in 
the same location as a preceding target (Tan & Wyble 2014). (c) The second N2pc 
is of normal size if the two targets are far apart in time (Callahan-Flintoft, Chen, & 
Wyble 2018). (d) When two highly-salient, unmasked targets are presented in 
rapid sequence at different locations, the N2pc to the second target is not much 
delayed (Grubert, Eimer 2014). (e) The N2pc is often followed by a deflection in 
the positive direction, when the target is highly salient (Töllner, et al. 2011). (f) A 
laterally presented distractor can trigger an N2pc (McDonald et al. 2012). (g) With 
a highly predictable or salient target, the distractor produces a minimal N2pc and 
has little effect on the target’s N2pc (Exp 2). When the target set is less specific the 
distractor has a greater effect on the target N2pc (Exp 1, Hilimire & Corballis 
2014). 
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competitive inhibition that help to ensure that the decisions are stable and accurately targeted at 

the correct location. It is argued that this reflexive attentional system plays a key role in many 

experimental paradigms, and constitutes the first form of decisive filtering of visual information 

after it enters the brain.  

 

As a model, RAGNOROC is both an architecture, as well as a specific set of parameters that are 

calibrated against several decades of data that specify the time course of reflexive attention. 

Presumably, this time course reflects an adaptation imposed by other constraints of the visual 

system. For example, the operation of reflexive attention has to occur within the time span of a 

visual fixation, while the eye’s position is relatively stationary. During the time window of a 

single fixation, the representations throughout the visual hieararchy would be roughly in 

spatiotopic register, making it easy to determine which information is associated with the same 

object across different maps. 

 

 With the model developed and parameterized, the next steps are to use it as a tool to learn more 

about the visual attention system, and to assert a series of testable predictions that can measure 

the validity of the model relative to the human system. We begin with a series of lessons that 

were learned through the model’s development and then proceed to some more specific 

predictions. These lessons are points that are largely implicit in many findings, theories and 

models that have come over the years, and are described here to make the implications of such 

ideas explicit for the benefit of readers.   

 

Lesson 1. Attention does not draw a clear distinction between targets and distractors. 

Experimental paradigms in psychology often designate stimuli as targets or distractors and it is 

tempting to assume that the mind of the participant adopts the same crisp distinction. However, 

the visual system is presumably maintaining vigilance for all possible kinds of stimuli (e.g. 

consider whether the participant would react to an unexpected flash of light in an experimental 

context). To accomplish this feat of general vigilance, even during a highly explicit visual 

attention experiment, the visual system must evaluate all stimuli to determine which, if any, 

should be attended.  This idea was critical in two-stage models of attention (Treisman & Gelade 

1980, Hoffman 1979), which posited explicitly that stimuli had to be evaluated in sequence to 

determine whether they were targets. RAGNAROC extends this idea to reflexive attention 

mechanisms such that, within the confines of the attention map, for at least the first two hundred 

milliseconds of processing, there is no categorical distinction between targets and distractors. 
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Rather, all stimuli compete, and attention is deployed to the winners, and the losers are 

suppressed (though priority is biased towards stimuli that bear target-defining attributes). The 

implications of this idea become more interesting when we think about tasks with multiple 

targets of varying priority.  

 

Lesson 2: Visual Attention as a decision process 

In RAGNAROC, the lock-on dynamics (including the enhancement at the attended location, the 

surround suppression and the suppression of the IG neurons) all serve to generate a commitment 

to attend to one or more locations for at least a brief window of time (roughly 100ms or so). 

These bursts of attentional lock-on provide stability to reflexive attention over the time span of 

typical visual fixations, and allow the entire visual stream to momentarily synchronize 

representations across the multitude of maps distributed throughout the ventral and dorsal 

streams.  This is one means to address the classic notion of binding (Treisman 1996). Without 

the extra circuitry of the AM, reflexive attention would be prone to jumping rapidly from one 

stimulus to another, leading to jumbled and mismatched representations in the various maps of 

the ventral stream.  

Even more interesting, however is that RAGNAROC is able to implement these decisions over 

many possible spatial configurations. In contrast to more standardized approaches in which 

decisions occur between a fixed set of discrete alternatives, a lock-on state in the AM could be 

confined to a single point, spread across multiple points, or be distributed across one or more 

large regions of indeterminate shape. 

 

 

Lesson 3:  What does the N2pc/ PD complex reflect? 

A typical approach in theoretical work is to assign specific roles to particular EEG components. 

For example the N2pc is thought to reflect attention evoked by a target in some form, while the 

PD reflects inhibition evoked by a distractor. However, as we note above, there are cases in 

which targets elicit a PD component and distractors elicit an N2pc. This modeling approach 

illustrates why it is important to consider the many-to-one mapping between current sources and 

ERPs. The neutrality of a scalp potential at a given latency could indicate a period of neural 

inactivity, but it could also be the case that there are strong underlying dipoles that happen to 

cancel one another out at that particular moment in time. It is therefore crucial to ultimately 

understand ERPs at their source. In a similar fashion, there are several ways in which neural 

activity evoked by a stimulus could lead to a negativity or positivity. For example, RAGNAROC 
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illustrates why the N2pc is often followed by a positive rebound after about 100ms, even though 

the stimulus stays on the screen (Brisson & Jolicouer 2007). Furthermore, the model explains 

why this rebound can increase to the point of producing a trailing positivity as target salience is 

increased (e.g. Tollner et al. 2011) despite there being no specific distractor. 

 

Lesson 4. Experiment outcomes are a mixture of different trial outcomes 

In RAGNAROC, trial-to-trial variability in the simulations accounts for uncontrolled sources of 

variability (e.g. spontaneous fluctuations in attentional focus on the part of the subject) and is 

essential for simulating different levels of accuracy. More importantly, the model clarifies how 

differences in the magnitude of an effect could reflect variation in the frequency of a given 

outcome, rather than differences in the size of the effect within each trial, a point that was also 

emphasized by Zehetleitner et al. (2013). For example, a given experiment that exhibits a weak 

attentional capture effect by a salient distractor, may in fact have a very strong capture effect, 

but only on a minority of trials. Likewise, a manipulation that produces a stronger N2pc in one 

condition may be altering the proportion of trials that contain an N2pc rather than the amplitude  

of the N2pc itself.  This occurs with eye movements as well.  For example, van Zoest, Donk, & 

Theeuwes (2004) demonstrated that the proportion of eye movements towards a target vs a 

distractor varies proportionately across different viewing conditions.  

 

Lesson 5. Understanding reaction time costs in attentional capture 

The term attentional capture typically refers to a behavioral phenomenon of slowed responses to 

a target due to the presence of a distractor, but what exactly causes the reduced performance?  In 

RAGNAROC, there are three possible patterns of attentional allocation when a target and at 

least one distractor are presented together. First, the target might trigger attention and suppress 

attention to the distractor(s); second, the target and distractor might trigger attention together; 

and third a distractor might trigger attention and suppress attention to the target. Each of these 

three possibilities produces a different RT for the target.  

 

RAGNAROC predicts that RTs would be fastest when the target is attended and the distractor is 

suppressed because this reduces interference caused by distractor processing. When both the 

target and at least one distractor are attended (i.e. simultaneous attention), RTs to the target 

would be slightly slowed because simultaneous lock-on states, while stable, are often slightly 

smaller compared to a case in which the target is dominant. The final case produces the slowest 
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RTs because the target is not enhanced by attention which reduces the strength of evidence for 

that target. 

 

RAGNAROC also predicts that any given experimental block of an attentional 

capture experiment is composed of a combination of these three outcomes, with 

proportions determined by the relative priority of the targets and distractors. Thus, even in a 

paradigm that has minimal evidence of attentional capture at the group level, the distractor may 

nevertheless trigger the deployment of attention on a subset of trials depending on variation in 

the subject’s attentional focus. 

 

Lesson 6. Architectural answers to the bottom-up/top-down attentional capture debate 

One of the most enduring discussions in the attentional literature is whether bottom-up stimuli 

are always able to capture attention, or are top-down attentional control signals able to override 

bottom-up salience. Driving this debate are classic findings that some kinds of distractors elicit 

capture costs consistently, even though they are never task relevant (Theeuwes 1991). In others 

studies, capture effects seem to be entirely contingent on top-down settings (Folk, Remington & 

Johnston 1992). This debate has continued without a clear resolution.  

 

In the model, there is a sense to which 

bottom-up selection occurs prior to top-

down guidance because of the anatomical 

ordering of early vs later stages of 

processing. Differences in physical salience 

are represented at the junction between EV 

and LV, and differences in task-related 

attentional set are represented between the 

LV and AM. This means that a difference in 

physical salience will often manifest in the 

AM prior to a difference in task relevance 

simply because the EV neurons are earlier 

in the processing hierarchy, which allows 

them to determine which stimuli in the LV 

will cross threshold first. Figure 16 

compares the time course of activation 

Figure 16. Simulation of the time 
course of attention map activation for 
two stimuli that have similar 
attentional priority, except that one 
has high salience and a low bottom-up 
weighting (BU: .2, TD: .15) while the 
other has the reverse (BU: .15, TD: .2). 
Despite the higher peak of the high-TD 
stimulus, the high-BU stimulus has an 
earlier peak. This is an overlay of two 
traces; the two stimuli were simulated 
separately and had the same onset. 
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bumps generated by highly-salient, irrelevant stimuli, to less-salient but task relevant stimuli. 

Thus, the model exhibits a form of precedence that is in general agreement with Theeuwes 

Atchley & Kramer (2000). Moreover, this result is not due to specific parameter values, but 

rather is an outcome of the model's feedforward architecture. Since salience differences are 

thought to be processed earlier in the hierarchy (Zhaoping 2002), highly salient stimuli will tend 

to activate their corresponding LV nodes earlier than less salient stimuli. However, this temporal 

advantage does not mandate that salient stimuli will always be attended first, since a strong top-

down weighting can allow a task-relevant, but lower-salience stimulus to establish a lock-on 

state more quickly than an irrelevant, higher-salience stimulus. 

 

Lesson 7. Architectural answers to the singleton-detection mode debate 

Another crucial issue in the attentional capture debate has been the idea that the singleton 

detection mode allows the system to select unique information for any attribute dimension (e.g. 

the red item among green items). The advantage of such a mode is that it does not need to be 

configured in advance for a specific value, preferring equally a red among green items or a green 

among red items. It has been suggested that subjects use singleton detection when looking for a 

target that has a unique property, such as a color or form singleton(Bacon & Egeth 1994). 

However, a limitation of singleton detection mode is that it cannot be directed towards a specific 

dimension. Thus, using singleton mode to detect an oddball shape will also prioritize an oddball 

color.  

 

Models like RAGNAROC make singleton-detection mode straightforward; it is the lack of a 

strong top-down set, which thereby allows stimuli with high physical salience to dominate the 

computation of attentional priority. This explains the observation that singleton detection mode 

cannot be specific for a given dimension. Moreover, since singleton mode is effectively the 

absence of a top-down set, it is the default search policy (Bacon & Egeth 1994; Lamy & Egeth 

2003). 

 

Lesson 8: Architectural answers to the distractor suppression debate 

Competing accounts of inhibitory control in reflexive attention pit the notion of a suppressive 

surround (Mounts 2000; Cutzu & Tsotsos 2003; Tsotsos 2011) against accounts in which 

inhibition is selectively deployed to distractor locations (Cepeda et al. 1998; Gaspelin et al. 

2015). RAGNAROC illustrates how readily a single model can exhibit both behaviors 

depending on the paradigm that is being used. A spatial gradient in AM->IG connectivity 
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simulates the surround inhibition effect of Mounts (2000). However, within that surround field, 

inhibition is selectively applied to the locations of stimuli as a function of their spatiotopic 

distance to the lock-on state.  

 

RAGNAROC thus explains why the Mounts 

paradigm and other paradigms which also 

surround the initial target with distractors 

such as Cutzu & Tsotsos (2003) were so 

successful in eliciting the inhibitory surround, 

while other paradigms have no clear pattern 

of inhibitory surround (e.g. Wyble & Swan 

2015). In the Mounts paradigm, the first 

target is surrounded by a large number of 

simultaneously presented distractors. This 

display is followed immediately by a second 

display that is used to probe the state of 

attention. According to RAGNAROC, the dense field of distractors in the first display of Mounts 

(2000) plays a key role in revealing the shape and size of the inhibitory gradient, since each of 

those distractors will elicit inhibition in their location, and this inhibition will affect the 

following target. For paradigms in which the initial target is not surrounded by a dense field of 

distractors (e.g. Wyble & Swan 2015), the IG neurons in the large area surrounding the target are 

not stimulated by input from the LV and therefore the only inhibition that is actually expressed 

in the AM is that immediately surrounding the target's lock-on state. Figure 17 illustrates a 

comparison between cases where a target is surrounded by distractors and when it is not. 

  

Lesson 9. The Competition for attention can result in a tie.  

The conventional notion of spatial attention is that it behaves like a spotlight, focusing on only 

one location at a time. This explanation provides a ready explanation for cueing costs and 

attentional capture effects, since attention directed at one location can therefore not be at 

another. However there is also mounting evidence that attention can be deployed simultaneously 

at two distinct locations (Bay & Wyble 2014; Bichot Cave & Pashler 1999; Kyllingsbaek & 

Bundesen 2007; Kawahara & Yamada 2012; Goodbourn & Holcombe 2015; see also the 

possibility of having multiple attention pointers or FINSTs; Pylyshyn & Storm 1988). Of these, 

Goodbourn & Holcombe provide what is arguably the most compelling evidence of the 

Figure 17. Simulation of the surround 
inhibition effect of Mounts, showing 
that the strength of the inhibitory 
surround is dramatically enhanced by 
the presence of surround distractors 
as in the original Mounts (2000) 
paradigm.  A target presented by itself 
elicits a much weaker inhibitory 
surround.   
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simultaneity of attentional deployment by measuring the time course of selection at two discrete 

locations and finding essentially no lag for one vs two simultaneously cued locations. The 

RAGNAROC model provides an explanation for these seemingly incompatible sets of findings. 

The circuitry in the attention map elicits a competition for attention between nearly concurrent 

stimuli, however it is a competition in which there can be multiple winners, which allows 

simultaneous attention for two stimuli of approximately equal priority.  

 

Lesson 10. Reflexive attention may have almost unlimited capacity.  

A common assumption of cognitive theories is that attentional limitations play a key role in 

determining performance in complex tasks. However, attention is a broad concept and it is often 

difficult to understand exactly what forms such limits take. In many cases, attention is equated 

with the ability to "process" information, which includes some mixture of identification, 

decision making, response generation, and memory encoding.  

 

RAGNAROC embodies a specific definition of attention, which is the reflexive enhancement of 

feedforward excitation at a given location in the visual field deployed reflexively in response to 

a stimulus. In the model, this form of attention has no clearly defined limit in terms of the 

number of attended locations, since the increase in gain could occur at nearly any number of 

locations. Thus, the model proposes that the earliest stage of attentional selection may operate 

without strict capacity limits. Of course, subsequent stages of processing are surely limited. For 

example, even if four stimuli produced simultaneous lock-on states, encoding them all into 

memory at the same time would produce interference. Parallel selection at early stages does not 

necessarily entail parallel processing at later stages.  

 

Lesson 11. Attention can be suppressed without suppressing the representations 

It is often suggested that distractors are inhibited during the selection of target information but 

RAGNAROC elucidates an important distinction between suppressing the representation of a 

stimulus itself vs suppressing attention at the stimulus’ location. Suppressing a stimulus 

representation entails direct inhibition of the neurons that represent the attributes and features 

activated by that particular stimulus (e.g. Reynolds & Heeger 2009; Beuth & Hamker 2011) with 

the potential to eliminate the active representation of that information from the nervous system. 

On the other hand, suppressing attention at the location of a stimulus, as in RAGNAROC, 

preserves the original information of the stimulus at the earliest layers of the visual system.  
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It is difficult to clearly distinguish between the two implementations of suppression using 

observations of accuracy or reaction time, since both will reduce the ability to respond to a 

stimulus. However this difficulty illustrates an advantage of the modeling approach, since 

models are able to clarify distinctions of implementation that are not otherwise obvious (see also 

Lu & Dosher 1998 for an illustration of how models of noise exclusion can provide a more 

specific inference about the mechanisms of attention with the use of psychometric curves). 

Moreover, the model illustrates why it would be advantageous to suppress attention, rather than 

the representation. Suppressing the representation of a stimulus would require an enormous 

number of long-range connections to deliver inhibition to the appropriate neurons throughout the 

set of LV maps. Suppression of attention is much simpler to implement, since the inhibitory 

circuitry is entirely self-contained within the AM. 

 

6:  Review of other theories 

There is an enormous literature of theories and models of visual attention and the mechanisms in 

RAGNAROC are inspired by this work. To this base of knowledge, the model contributes the 

following: 

 

o A mechanism for making rapid decisions regarding which spatial locations of 

the visual field should be selectively suppressed  

o An explanation for the N2pc/ PD complex as a neural correlate of this decision 

process 

o Broad contact with the empirical literature for behavioral and 

electrophysiological correlates of reflexive attention7 

. What follows is a comparison and contrast with other existing models of spatial attention. 

 

6.1 Models inspired by neurophysiology. There is a family of models and theories of visual 

attention inspired by single unit neurophysiology in monkeys. Some of the research in this 

domain explores the properties of attention in spatial and feature domains. For example, the 

normalization model of Reynolds & Heeger (2009) proposes that the neural response to any 

given stimulus is downweighted by the activity of nearby stimuli. Thus, when one stimulus is 

attended, other stimuli in the vicinity will evoke less activity, all else being equal. The 

                                                        
7 Other models have touched on the idea of simulating the N2pc (Fragopanagos, Kockelkoren, & 

Taylor 2005) but have not provided a clear link between spatiotopic representations that would 

produce a lateralized potential 
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normalization model provides a straightforward, neurally plausible mechanism for the effects of 

attention at the level of single-unit data. Beuth & Hamker (2015) provide a more detailed 

account of how attention can be mediated at the level of cortical representations. Such models 

interface directly with single-unit data from a variety of cortical areas, although they do not 

explain the decision-making aspect of spatial attention that is the focus of RAGNAROC. 

Instead, attention is directed by mechanisms that are outside the scope of those models, making 

them complementary to this model. However, we consider it an open question whether the 

suppression of attention is best explained with computations at  the local circuit level within 

earlier cortical areas, as in Reynolds & Heeger (2009) and Beuth & Hamker (2015) or at a 

superordinate level as in RAGNAROC.  

 

Another well-known theory of attention is biased competition, in which stimuli compete with 

one another for representation in a neural field with overlapping receptive fields.  The 

competition is biased in favor of neurons that respond preferentially to task-relevant information 

(Moran & Desimone 1985; Desimone & Duncan 1995). There is an important point of 

correspondence between  biased competition (BC) and RAGNAROC, which is that both 

incorporate an initial period of non-selective processing before the deployment of spatial 

attention. However, the RAGNAROC and 

BC models differ in the specific mechanism 

of attentional enhancement, since BC 

implements attention as a contraction of 

receptive fields around the target stimulus 

while RAGNAROC uses spatially selective 

multiplicative enhancement. The difference 

is key because at the core of BC is the idea 

that representational space is a limited 

resource, which strongly limits the ability to 

attend to multiple locations at once. In 

RAGNAROC, this reflexive form of 

attention has fewer limits and thus can be 

deployed to large regions or multiple 

locations. With that being said, the effect of 

attention in RAGNAROC appears similar to 

the single-unit data that inspired the BC 

Figure 18. Simulation of the biased 
competition effects in Desimone & 
Duncan (1995) in which the activity of a 
neuron selective for the unattended 
stimulus of a pair becomes dramatically 
less responsive to that stimulus after an 
initial period of processing, but only for 
stimuli that are spatially  proximal.  
Simulated membrane potential is used as 
a proxy for spiking rate since RAGNAROC 
is not a spiking model.  
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model, since an attended stimulus in our model would cause inhibition of attention to nearby 

stimuli in the attention map. Consequently, activity in LV for an unattended stimulus drops 

sharply after the initial burst of activity compared to an attended stimulus because the increasing 

inhibitory feedback from II is not countered by an increase in attentional enhancement. 

Therefore the model replicates a similar effect in neural activity as BC (Figure 18), but the cause 

is a suppression of attention, rather than shift in receptive fields. . As in biased competition this 

suppression would not occur for stimuli that were spaced farther apart since there is a limit to the 

spatial extent of inhibition in the AM (Figure 18, right panel).   

 

6.2 Theory of Visual Attention. The Theory of Visual attention (Bundesen 1990) is a 

mathematical abstraction of the process of attending to and perceiving one or more stimuli in a 

single display.  In TVA, there are two ways to prioritize certain kinds of information selection: 

filtering, and pigeonholing. Filtering involves upweighting the priority for certain features, 

which increases the rate at which stimuli possessing those features attract attention. This is 

similar to attentional control settings in RAGNAROC. The pigeonholing mechanism relates to 

how efficiently certain kinds of information are categorized, which allows them to be reported 

and remembered. The TVA model thus represents two distinct types of attentional control 

setting, which might also be described as key feature and response feature (Botella, Barriopedro, 

& Suero 2001). RAGNAROC differs from TVA in that it provides a more complete model of 

the neural mechanisms associated with the computation and use of priority to direct spatial 

attention. The TVA model, on the other hand, provides a concise mathematical formulation of 

how two different kinds of filters interact to facilitate perception. A neural implementation of 

TVA has been proposed (Bundesen et al. 2011), however it is less clear how such a model would 

scale up to a full working specification, since it requires a large scale winner-take-all 

implementation to complete attentional selection, which is likely to be incompatible with white 

matter constraints. Given the similar role of priority within the two models, it could be fruitful to 

consider RAGNAROC as a neurophysiologically plausible front-end for computing the priority-

based competitive selection process and the TVA as a specification of subsequent processing.  

 

6.3 Guided Search. To better understand the complexites of the visual search literature, the 

Guided Search model (GS; Wolfe 1994) simulates how top down goals interact with bottom up 

salience signals to determine likely target locations. Like RAGNAROC, this model attempts to 

explain how the visual system mediates the balance between salience and task relevance. Its 

focus is on a longer time scale than reflexive attention, and incorporates both overt and covert 
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forms of attention. RAGNAROC is complementary to this model, by explaining attentional 

dynamics at a short time scale, and with a greater emphasis on decisions, selective inhibition and 

neural correlates.  

 

6.4 Feature Map Models. Another class of models simulates spatial attentional effects across 

sheets of neurons corresponding to different visual features. Perhaps the most canonical of such 

models is the salience model of Koch & Ulman (1985), which is architecturally similar to 

RAGNAROC. A descendent of this model is often invoked as a benchmark in computer vision 

algorithms (Itti, Koch & Niebur 1998). 

 

In such models, feature detectors in multiple channels (e.g. luminance, color, motion flicker) 

project to a master salience map that ultimately makes decisions about where attention will be 

deployed using a simple winner take-all mechanism, coupled with a form of memory that erases 

salience values at recently-visited locations. Like RAGNAROC, this model uses salience as a 

common currency across all stimuli in the visual field, and would be able to simulate capture 

effects. The Itti, Koch & Niebur (1998) model has been foundational in understanding how 

simple mechanisms can reproduce complex gaze behavior when iterated over many distinct 

feature dimensions and levels of scale. Also, because the Itti et al. model simulates responses to 

pixelwise visual data, and can be compared against visual fixation data from human subjects, it 

set the stage for a generation of computer vision research.  

 

Itti et al.(1998) and RAGNAROC address phenomena at different time scales. The former is 

intended as a model of gaze behavior on time scales of a second or more, involving multiple 

fixations. RAGNAROC is developed to understand how covert attention deployment is 

computed anew with each visual fixation or significant change to the visual display. Moreover, 

the salience map in Itti et al.(1998) lacks the decision mechanisms to suppress distractors 

without first generating an overt gaze response to the distractor. The two models are thus 

complementary; they operate at distinct time scales, emphasize different kinds of processes and 

simulate fundamentally different kinds of data.  

 

Other models provide more direct simulations of the neural processes of enhancement in neural 

sheets. The Selective Tuning model by Tsotsos (1995; 2011) implements a form of inhibition in 

which detection at an upper level of the hierarchy produces surround inhibition at earlier layers 

of the hierarchy. This model is perhaps the most well-formulated attention model that has ever 



RAGNAROC, a model of reflexive visual attention 
 

61 
 

been proposed since it proposes a gating control circuitry that allows information to be 

effectively linked across differences in spatial invariance. Selective Tuning would reach several 

of the benchmarks described here, but does not propose a means to selectively inhibit distractors. 

It applies inhibition in a region surrounding a target, irrespective of the presence of distractors. 

Moreover, decisions to deploy attention are made independently for different stimulus 

dimensions and it is not precisely formulated how cross-dimensional competition between 

stimuli would be implemented at the time scale of reflexive attention (see p121, Tsotsos 2011).  

 

6.5 Resonance models. Another variety of models uses excitatory resonance to determine the 

boundaries of a region that should be attended. Amari (1971) described a general framework for 

simulating neural field dynamics in densely interconnected networks having a single layer. 

These ideas have been adapted to simulations of visual attention by assuming that the neural 

field has shared spatial topography with the visual system. For example the attentional shroud 

(Fazl, Grossberg & Mingolla 2009), is a means to delineate the boundaries of an object and then 

ensure consistent focus on that object during learning. Similarly, models such as MORSEL 

(Mozer & Behrmann 1990) and SAIM (Heinke  & Humphreys 2003; Heinke, Humphreys & 

Tweed 2006) use iterative processing between interconnected neurons to discover the region that 

satisfies competing constraints from a variety of sources, such as visual input, templates and top-

down goals. Other examples include Zirnsak, Beuth & Hamker (2011) that simulate the temporal 

dynamics of attentional competition in response to one or more stimuli; and Lanyon & Denham 

(2004) which simulate eyegaze during visual search as a product of interacting attentional 

systems. 

 

These resonance theories are similar to the lock-on states, which also emerge through iterative 

processing of interconnected, topographic neural fields.  What RAGNAROC contributes to these 

models, apart from the more explicit link to EEG components, is a mechanism for selective 

suppression that complements the mechanism for selective enhancement.   

 

7. Predictions: 

RAGNAROC is part of an ongoing investigation that involves a cyclic iteration between theory 

and experiment. Driving this cycle are a-priori predictions, that provide a roadmap for future 

experimental work to diagnose the model’s validity. By publishing these predictions in advance 

of testing them, we minimize the file drawer problem, which occurs when model tests are 

selected for publication after the results are known. Furthermore, our goal here is to specify an 
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ambitious set of predictions, with the expectation that some of them should be inaccurate. Since 

all models, being abstractions of the real system, are wrong by definition (Box 1976), the 

prediction/testing cycle should be most efficient when there is a mix of true and false 

predictions. True predictions give evidence that the model has at least some resemblance to the 

underlying system. However, it is the false predictions that are truly valuable, for they indicate 

where the model is inaccurate, and thereby guide further development of the theory. These 

predictions are divided into three categories below.   

 

7.1 Competition within the attention map 

These  predictions concern the essential architecture of the model. Failure to validate them 

would require at a minimum, significant parameter or architectural changes. In RAGNAROC, 

the competition for attention exists between all stimuli, and the priority values of the stimuli are 

the common currency with which they compete. Since the attention map does not represent the 

distinction between targets and distractors, the following predictions should obtain: 

 

Prediction 1. Lower priority targets will elicit AM suppression 

In RAGNAROC, input to the attention map does not distinguish between targets and distractors. 

A counterintuitive prediction of this assumption is that when a display contains two targets with 

sufficiently different priority values, the lower priority target will lose the competition and be 

treated as a distractor by the very first pass of reflexive attention.  This would mean that the 

weaker target will elicit a weak N2pc when presented laterally, followed by a clear PD 

component as if it had been a distractor. In terms of behavior, the location of the low-priority 

target should exhibit the same lower probability of probe letter reporting as the salient distractors 

of Gaspelin et al. (2015). If the high-priority target were omitted from the display in other trials, 

the weaker target would now elicit an N2pc and increase, rather than decrease behavioral 

responses to a probe at its location. Target priority could be manipulated either by varying the 

salience of targets or their proximity to the task-defined attentional set in some feature 

dimension, such as color (Becker, Folk & Remington 2013).  

 

Prediction 2. Higher priority distractors will more often elicit a lock-on state 

A similar kind of prediction can be made for distractors of varying priority. If a display consists 

of only distractors of three or more clearly discernable levels of salience (e.g. by adjusting their 

relative luminance), the distractors will elicit N2pc and PD components as if the most salient 

distractor were a target and the next most salient distractor were the key distractor in the 
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additional singleton paradigm. The most salient distractor will also capture attention resulting in 

improved accuracy and reduced reaction times for probes (e.g. Gaspelin et al. 2015) at its 

location. Conversely, probes at the second-most salient distractor location will be less well 

perceived than distractors at the location of the least salient distractor. This prediction stems 

from the fact that the amount of inhibition delivered to the location of a lower-priority stimulus 

in the AM is proportional to its priority. Testing this prediction would require embedding 

distractor-only trials within a larger set of trials that contain targets as well. Some of these trials 

would contain probe letters as in Gaspelin et al. (2015) 

 

Note that that there is conflicting evidence about the ability of distractors to elicit an N2pc. 

Distractors that are highly salient on a different dimension than the target (e.g. color singleton 

distractors with shape singleton targets) elicit an N2pc, while a difference in salience along the 

same dimension (color) does not (Gaspar & McDonald 2014).  

 

Prediction 3. PD amplitude is modulated by spatiotopic distance between target and distractor 

The selective inhibition of distractors in the AM is driven by a pattern of localized excitatory 

connectivity between AM neurons and IG neurons. This means that competition between 

different stimuli tapers off at large inter-stimulus distances. Thus, all else being equal, when a 

salient distractor is placed very far from a target, the PD will be reduced in size relative to when 

the target is proximal.  It is difficult to make a specific prediction about the spatial scale of the 

falloff without more data to constrain the model at this point, but it should be on the order of 10 

degrees or more according to the spatial extent of LAI as found in Mounts (2000). 

 

 

7.2 Unified Attentional Map: 

A central theme of the RAGNAROC architecture is that the competition for reflexive attention is 

confined to a small region of neural tissue this is sensitive only to stimulus priority. This allows 

the entirety of the visual system to participate in scene analysis, and yet make rapid, efficient 

and stable decisions about the allocation of attention. The attention map allows the priority 

signals generated by different stimuli to compete, taking into account their salience, task 

relevance, emotional/reward history, or any other potential factor that influences how a given 

stimulus should be prioritized. This idea of a single, superordinate attention map is shared by 

many models of visual attention (Itti Koch et al 1998; Zelinsky 2008) but not others (Tsotsos 

2011). 
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Prediction 4. Salient Distractors can sustain an existing lock on state 

One of the most counterintuitive predictions of RAGNAROC is that once an attentional lock-on 

state has been established by a target, it can be sustained by a distractor because the attention 

map is agnostic about target/distractor categories. Attentional control settings bias attention 

towards the target, but distractors also have excitatory connections to the AM; they just have 

reduced priority. Thus, in a similar manner as two sequential targets can maintain a lock-on state 

(Tan & Wyble 2015), a target followed by a distractor should also maintain the lock-on state. 

The prediction can be tested by presenting either three targets in sequence (i.e. letters among 

digits), at an SOA of about 120ms, or two targets separated by a single distractor that is similar 

to other distractors (i.e. a black digit), or two targets separated by a highly salient distractor (i.e. 

a red digit). It should be observed that for three targets in a row, the second and third targets 

elicit small-amplitude N2pcs that peak early  (roughly 30ms earlier than the relative latency of 

the T1’s N2pc). If the middle of the three targets is replaced by a highly salient distractor, the 

last target’s N2pc should still be early and small in amplitude. However in the case of two 

targets separated by a non-salient distractor, that last target should evoke an N2pc of normal 

amplitude and latency since the lock-on state will have partially dissipated during the 240ms lag 

between the onset of the two targets. In behavior, the salient intervening distractor should result 

in more accurate report of the following target relative to the non-salient distractor condition, 

since the highly salient distractor sustains the lock-on state across the temporal gap between the 

targets.  

 

Prediction 5: EEG correlates of lock-on occur regardless of stimulus type 

A core finding of the lock-on state presents a straightforward means to test this architectural 

prediction. In Tan & Wyble(2015), it was found that two targets in the same location produced 

only an N2pc to the first target, which RAGNAROC explains as a carryover of the attentional 

lock-on state from one target to the next in the attention map.  

 

However, in that study, both targets were of the same kind (letters among digit distractors). If 

there is a single attention map, the carryover of lock-on from one stimulus to the next should 

occur even when T1 and T2 are of different types. Callahan-Flintoft, Chen, & Wyble (2018) 

provided support for this prediction already by showing that targets could be defined by 

combinations of shape or color without disrupting the lock-on effect. It is nevertheless possible 

that the prediction may be falsified if the two targets were even more distinct. For example, 
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RAGNAROC predicts that even if subjects are simultaneously looking for letters and faces of a 

particular gender, then two sequential targets (either letter-face or face-letter) should produce a 

clear N2pc only for the first of the two targets. Letters and faces should provide a strong test for 

the hypothesis since previous work has suggested that they are processed through sufficiently 

distinct channels in the visual system that the attentional blink evoked by a digit T1 has little 

effect on a face T2 (Awh et al. 2004). A failure to confirm this prediction would suggest that 

there are subdivisions of the attention map for stimuli that are highly distinct.  

 

7.3  Lock-on states in visual cueing: 

The RAGNAROC model implements a reflexive form of attention that should be common 

across many paradigms, including visual cueing. Thus, we should be able to predict behavioral 

and ERP effects for cueing experiments as well. Ansorge, Kiss, Worschech & Eimer (2011) 

have demonstrated that cues evoke clear N2pcs at moderate cue-target SOAs (200ms), as we 

would expect. However shorter Cue-Target SOAs should reveal correlates of the lock-on state.   

 

Prediction 6. Lock-on states in visual cueing, valid trials 

RAGNAROC predicts that a lock-on state is sustained from one stimulus to the next if they are 

at the same location and the SOA is on the order of 100ms. Thus, from a behavioral perspective, 

RAGNAROC explains cueing benefits at short SOAs, if one assumes that a cue initiates a lock-

on state that carries forward in time to enhance the target. The model also generates EEG 

predictions for cueing experiments. Since the N2pc is caused by the formation of a new lock on 

state, then a validly cued trial with a short SOA (i.e. 100ms or less) should result in a N2pc 

appearing for the cue, and a dwarfed, early N2pc appearing for the target (c.f. Callahan-Flintoft, 

Chen & Wyble 2018). 

 

At longer SOAs (e.g. 500ms or more) between the cue and target, the lock-on state elicited by 

the cue would have disintegrated before the target appeared, with the result that both the cue and 

the target would produce a typical N2pc.   

 

Prediction 7. Spatial separation modulates selective suppression 

When a cue and target are not in the same location, then the cue and target will each elicit an 

N2pc at all SOAs, since the lock-on state elicited by a cue is spatially specific. Thus, a target in 

an invalid trial always needs to build a new lock on state, which elicits a new N2pc. A failure to 

confirm these predictions would undercut the applicability of RAGNAROC’s simulation of 
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attention related EEG components to cueing studies and suggest that there are unappreciated 

differences between the way that targets and cues are processed by the reflexive attentional 

system.  

 

7.4  Lock-On to naturalistic stimuli 

 

Prediction 8.  Regional deployment of attention 

The collective understanding of reflexive attention, as reviewed here, stems almost entirely from 

studies that use discrete stimuli, such as shapes, characters, images or sketches. While these 

methods are ideal for experimental control, it is important to apply our theories to stimuli that 

more closely resemble what the visual system typically encounters, which can be approximated 

with digital video. Given some assumptions about the computation of salience, RAGNAROC 

can predict how the spatial and temporal distribution of reflexive attention responds to the 

physical salience of a series of video frames. Given a time series of salience outputs from a 

model such as Graph-Based Visual Salience (Harel, Koch & Perona, 2007) RAGNAROC  

predicts that the competitive inhibitory circuitry of the AM allows attention to flow dynamically 

across large regions to fill-in gaps in the interior of an object (Figure 19), in a similar manner as 

attention shrouds (e.g. Fazl et al 2009). This  is consistent with what would be construed as 

object-based attention (Duncan 1984) in that the spatial scope of reflexive attention extends to 

the boundaries of a clearly defined object and also fills in the interior area, even if that interior is 

not particularly salient. Moreover, the amplitude of activity at various points in the shroud will 

be relatively constant, which means that attention would be distributed equally across the entire 

attended area rather than remaining focused at highly salient points. This uniform distribution 

across an attended region is due to several factors: 1.  lock-on states rise rapidly to a ceiling (see 

Figure 7), 2. the tiled competitive inhibitory circuits within the AM allows lock-on states to exist 

at many locations simultaneously, and 3. the large receptive fields of the AM  encourages causes 

attention to spread within a salient region..  
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The key point to take from these simulations is that while attentional cueing and capture effects 

are typically construed as being anchored to a specific locus and then released to move to the 

next stimulus (Duncan Ward & Shapiro 1994), the more typical behavior of reflexive attention 

may be to attend to large regions of space in patterns that shift rapidly to track changes in a 

dynamic input. The simulations that produce these dynamic shrouds in Figure 19 use the same 

fixed parameters as the rest of the simulations reported here8. Thus, while cognitive experiments 

demonstrate attentional deployment to discrete locations when stimuli appear and disappear 

abruptly, these simulations from RAGNAROC show that these effects may be a consequence of 

the kinds of stimuli that are used in experiments. As we move forward in our understanding of 

the mechanisms and functions of visuospatial attention it is imperative that we shift our 

empirical and theoretical focii towards stimuli that have more realistic temporal dynamics.    

 

 

                                                        
8 BU and TD were set at .15 and .25 respectively. Higher values of BU allow larger regions to 

be selected and vice versa, but the selection of regions is a general property.   

Figure 19. Simulation of AM activity across 99ms of time in response to salience 
computed by GBVS for three video frames for two different movies.  Simulation 

results for longer videos are provided at the OSF repository for the model.    
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In this discussion, it is important to emphasize that reflexive attention is only a fragment of the 

visual attention system, and RAGNAROC lacks, for example, higher-level mechanisms for 

temporal segmentation that would cause an attentional blink (Raymond Shapiro & Arnell 1992), 

or explicit object-based attention mechanisms that are driven by border ownership, Gestalt 

properties and other higher-order visual statistics.  Moreover, RAGNAROC  is not building 

event models, meaningful interpretations or computing inference. These other mechanisms 

would further augment the ability to segment incoming information in a way that allows 

meaningful representations to be extracted.    

 

To generate this prediction, salience maps were computed for short sequences of frames from 

two 30 frame-per-second movies from the Moments in Time database (Monfort et al. 2019) 

using Graph-Based-Visual-Salience (Harel, Koch & Perona, 2007)9.  These salience maps were 

provided as input to one LV of RAGNAROC to simulate how attention would evolve over time 

given such input. The salience input was updated every 33 ms, but the model’s activation was 

computed at each millisecond.  

 

This is a prediction for which there is currently no clear path to test experimentally and it is 

provided to inspire the development of new methods. Overt attentional models can easily be 

tested by tracking eye movements, but here the prediction is of large scale shifts in the shape of 

covert attention.  Probe tasks, such as that of Cepeda et al. (1998) and Gaspelin et al (2015) may 

be able to chart the evolution of such dynamic covert attentional dynamics.   

 

8.0 Conclusions and future directions 

Reflexive visual attention is a cornerstone of our visual system’s ability to meet the challenge of 

rapidly choosing which information to selectively process. A variety of experimental paradigms 

have provided a wealth of data that we have distilled into a common architecture for controlling 

the selection and suppression of information. The goal of the RAGNAROC model is to build a 

theoretical bridge between different paradigms (e.g. visual cueing and capture), and also 

between different kinds of data (e.g. behavior and EEG). While designing the model to hit its 

empirical benchmarks, we have developed circuits that use competing attractor states to briefly 

stabilize the deployment of attention, and to selective inhibit attention at the location of 

distracting information.  

                                                        
9 This algorithm was chosen for its combination of computational speed, and success in 

predicting eye-gaze behavior to natural images.   
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Moving forward, the model’s predictions are intended as a roadmap for further empirical 

investigation of reflexive attention and for creating links across paradigmatic boundaries. 

Testing these predictions will provide diagnostic data regarding the model’s validity, but more 

importantly, will drive further development of the model. For example, it would be useful to 

provide a more rigorous account of the specific regions of the brain that are responsible for 

generating these ERPs so as to match not just the time course, but also the scalp topography of 

the N2pc/ PD complex. Another crucial limitation of RAGNAROC is that it does not reflect the 

fact that receptive fields of the visual system are weighted towards the fovea and lose spatial 

selectively in a roughly logarithmic fashion with increasing eccentricity.  

 

While RAGNAROC is intended as a model of reflexive attention that can be deployed covertly, 

future work could extend these mechanisms as a partial explanation of the time course of eye 

movements in visual displays. Doing this would require an additional set of assumptions 

regarding how activity in the attention map drives the decision to commit visual saccades. 

Recent work that explores the time course and spatial distribution of initial saccades in visual 

search paradigms (e.g. Gaspelin, Leonard & Luck 2017) indicates that initial saccades are 

directed towards the location of salient distractors when the distractor’s location is not 

suppressed, but are directed away from salient distractors when that location is suppressed. 

These findings suggest that activity in the attention map contributes to the initial decision of 

where to commit an overt attentional response.  

 

The neural attractor mechanism of RAGNAROC could be incorporated as a front-end onto 

models of higher order cognitive phenomena. For example, in models of the attentional blink, 

the time course of target processing is often the central question, and such models have little to 

say about the time course of reflexive attention. Combining models such as RAGNAROC with 

models of the attentional blink (e.g. Olivers, & Meeter 2008; Wyble Bowman & Nieuwenstein 

2009; Taatgen, et al. 2009) has the potential for expanding our understanding of the spatial and 

temporal dynamics of attention out to the order of multiple seconds.  

 

Another crucial area of application will be to simulate how attention is deployed to stimuli that 

change in real-time, such as movies. Presumably, the time course of attentional engagement and 

disengagement that are simulated here has relevance to the typical temporal dynamics of 

movement by objects and people in the kinds of settings that are informative for human vision.   
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Appendix 

 

MATLAB Code for running the simulations is available on the OSF at https://osf.io/rwynp/ 

 

Appendix 1, Equations 

In simulation, these equations are simulated using Euler integration with time steps of 1ms.  A 

floor function (implemented here as Max in eqs 1.14 and 1.21 is used to prevent currents from 

going negative, which adds stability to the simulation at discrete time steps.  The Max function 

is also used in equation 1.15 to ensure that attention modulation of the EV->LV pathway can 

only be excitatory.  The Max function also plays a role in limiting the input from the two sources 

to the IG neurons to ensure that neither the AM, nor the LV excitation is sufficient to allow them 

to cross threshold (in other words, a dendritic AND gate (Shepherd & Brayton 1983). These uses 

of Max functions are not intended as a statement of biological plausibility of synaptic 

processing, but rather as simplifications to permit a slightly simpler architecture and coarser time 

steps.   

 

 

Early Visual layer: 

These are the activation equations for each neuron in the EV layer, and note we represent each 

possible stimulus (T1 and T2) as having distinct EV neurons to reflect the fact that two distinct 

stimuli will activate distinct groups of neurons in V1 even if presented at the same location. 

These equations match those specified by O’Reilly & Munakata (2001) where Input, represents 

the presence of an input stimulus at a given location and time point (either 1 or 0) and EV 

represents the activation level of that neuron. dtVM is a time constant that dictates the rate of 

change of a neuron by scaling the excitatory, and leak currents. EE and EL are the reversal 

potentials for excitatory and leak currents.  

 

   

       , ,    * , , * , ,excite VMEV x y t dt EE EV x y t Input x y t    (1.1) 

     , ,    * , ,leak VMEV x y t dt EL EV x y t    (1.2) 

        , , 1    , , , , , ,excite leakEV x y t EV x y t EV x y t EV x y t      (1.3) 

 

Late Visual layer: 

The LV neurons have essentially the same dynamics except that they receive input from a region 

of EV neurons and the value of the input is scaled by a square-masked Gaussian profile, (GRF) 

for computational efficiency.   

The variable Attn is the current value of attention as determined by activity at the corresponding 

location in the AM. EI is the reversal potential of the inhibitory current. IItoIT is a parameter 

that determines the strength of the feedback inhibition interneurons for each neuron. BUtype is a 

parameter that reflects the physical salience of a given stimulus type.  
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0

( , , ) * ( ( , , )) * *

( , ) * ( , , ) * ( ( , , ) )

excite VM type

mask mask

EV

x mask y mask

LV x y t dt EE LV x y t BU

GRF x y Attn x x y y t EV x x y y t Thresh
  

 

          
 

 (1.4) 

        
0

, ,    * , , * * , ,inhib VM ThreshLV x y t dt EI LV x y t IItoIT II x y t II     (1.5) 

     , ,    * , ,leak VMLV x y t dt EL LV x y t    (1.6) 

𝐿𝑉(𝑥, 𝑦, 𝑡 + 1)  = 𝐸𝐼, 𝐿𝑉(𝑥, 𝑦, 𝑡) + 𝐿𝑉𝑒𝑥𝑐𝑖𝑡𝑒(𝑥, 𝑦, 𝑡) + 𝐿𝑉𝑖𝑛ℎ𝑖𝑏(𝑥, 𝑦, 𝑡) + 𝐿𝑉𝑙𝑒𝑎𝑘(𝑥, 𝑦, 𝑡) (1.7) 

The II neurons govern the feedback inhibition of the LV neurons following a similar dynamic as 

the EV.  

     _ 0
, ,  * , , *excite VM II threshII x y t dt LV x y t LV ITtoII    (1.8) 

     _, ,    * , ,leak VM IIII x y t dt EL II x y t    (1.9) 

  , , 1   ( , , ) ( , , ) ( , , )Excite LeakII x y t II x y t II x y t II x y t      (1.10) 

  

Attention Map: 

The AM neurons receive input from all LV maps (1-n) scaled by the same masked Gaussian 

profile GRF. LAI is a parameter that controls the magnitude of inhibitory suppression from the 

IG to the AM neurons. TDtype is a parameter that determines the top-down task relevance for a 

given stimulus.  

 
0

1

( , , ) * ( ( , , )) *

( , ) * ( ( , , ) ) *

excite VM

n mask mask

type LV type

type x mask y mask

AM x y t dt EE AM x y t

GRF x y LV x x y y t Thresh TD
   

 

       
 +𝐴𝑀𝐵𝑖𝑎𝑠 

(1.11) 

        
0

  , , * , , * , , *inhib VM threshAM x y t dt EI AM x y t IG x y t IG LAI   

 (1.12) 

     , ,    * , ,leak VMAM x y t dt EL AM x y t    (1.13) 
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          , , 1 , , , , , , , , ,excite inhib leakAM x y t max EI AM x y t AM x y t AM x y t AM x y t      

 (1.14) 

      
0

, ,    1, , , 1 *threshLowAttn x y t max log AM x y t AM Attnweight     (1.15) 

 

The IG neurons within the Attention Map receive joint input from the LV and the AM. For each 

IG neuron, the input from each of those two sources has a ceiling value  (MaxInputtoIG). Thus, 

the input from the LV and the AM to each IG neuron is computed separately.  

 

 0

1

( , , ) ( ,

( , ) * ( ( , , ) ) *

exciteLV

n mask mask

type LV type

type x mask y mask

IG x y t max MaxInputtoIG

GRF x y LV x x y y t Thresh TD
   



         

 (1.16) 

dimdim

0

' 1 ' 1

( , , ) ( * ( ( ', ', ) ) * ( ', ')*
yx

exciteAM AMLow

x y

IG x y t max MaxInputtoIG AM x y t Thresh DoG x y AMtoIG
 

    

 (1.17) 

DoG is the difference of two Gaussians as specified below.  

 

     
0

, ,   ( ( , , ) ( , , ))*  * , ,excite ExciteLV ExciteAM IGIG x y t IG x y t IG x y t dtVM EE IG x y t    

 (1.18) 

 

     _ 0
, ,     * , , *inhib VM IG AMHighIG x y t dt AM x y t Thresh AMtoIGinhib   

 (1.19) 

  

     _, ,    * , ,leak VM IGIG x y t dt EL IG x y t    (1.20) 

           , , 1    , , , , , , , , ,excite inhib leakIG x y t max EI IG x y t IG x y t IG x y t IG x y t      

 (1.21) 

 

Gaussian Profile 

  
 2 20.5

,  
x y

GRF x y e
 

   (1.22) 
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   2 2 2 20.5 0.5

0

,    1* 2  -
x y outerGaussian x y innerGaussian

DoG x y e e
    

  
  (1.23) 

EEG Scalp Voltage  

 
dimdim

_ 0
1 1

( ) ( , , ) ( , , )
yx

excite EEG inhib

x y

EEGVoltage t AM x y t AM x y t
 

 
  
 
    (1.24) 

 

_

0

1

( , , ) * ( ( , , )) *

( , ) * ( ( *, , ) )

excite EEG VM EEG

n mask mask

type LV type

type x mask y mask

AM x y t dt EE AM x y t

GRF x y LV x x y y t Thresh TD
   

 

       
 

  (1.25) 

Fixed Parameters: 

 

AMBias = .2 

dt_vm = .015 

dt_vm_II = .0025 

dt_vm_IG = .04 

EE = 30 

EL = 0; 

EI = -10; 

EEEEG = 65; 

 

Weights 

TDtype  = Free Parameter 

BUtype = Free Parameter 

 

ITtoII = .02 

IItoIT = 6.5 

AMtoIG = .4 

AMtoIGinhib = .25 

LAI = .45 

Attnweight = 2 

AMexcitebias = .2 

MaxInputtoIG = .35 

 

Thresholds 

ThreshEV = 7 

ThreshIT = 5 

ThreshII = 0 

ThreshIG = 8 

ThreshAMLow = 14 

ThreshAMHight = 22 

 

Misc 
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outerGaussian = .07 

innerGaussian = .2 
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Appendix 2, Fitted Parameters 

Sim Name Type1BU Type2BU Type3BU Type1TD Type2TD Type3TD Range 

Bay & Wyble 0.3 0.3 N/A 0.17 0.12 N/A 0.1 

Nakayama 0.15 0.15 N/A 0.18 0.18 N/A 0.1 

Theeuwes (with salient D) 0.15 0.3 N/A 0.27 0.17 N/A 0.1 

Theeuwes (without salient 

D) 0.15 0.05 N/A 0.27 0.17 N/A 0.1 

Mounts 0.3 0.3 N/A 0.24 0.24 N/A 0.1 

Gaspelin exp 1 (singleton 

search) 0.15 0.19 0.15 0.2 0.15 0.2 0.1 

Gaspelin exp 2 (feature 

search) 0.15 0.19 0.15 0.4 0.15 0.2 0.1 

LatDMidlineT 0.15 0.17 N/A 0.5 0.2 N/A 0.1 

Tan & Wyble 0.15 0.15 N/A 0.2 0.2 N/A 0.1 

Tollner (low) 0.17 0 N/A 0.15 0 N/A 0.1 

Tollner (med) 0.2 0 N/A 0.15 0 N/A 0.1 

Tollner (high) 0.23 0 N/A 0.15 0 N/A 0.1 

Hillimire (unpredictable) 0.15 0.15 N/A 0.22 0.22 N/A 0.1 

Hillimire (predictable) 0.15 0.15 N/A 0.4 0.25 N/A 0.1 

Eimer Grubert 0.6 0.6 N/A 0.7 0.7 N/A 0.1 

High TD, Figure 16 0.15 0 N/A 0.2 0 N/A N/A 

High BU, Figure 16 0.2 0 N/A 0.15 0 N/A N/A 

Target, Figure 18 0.2 0 0 0.25 0 N/A  

Non-Target, Figure 18 0 0.2 0 0 0.18 N/A  

 

Sim Name Mean SD  Threshold  

Bay & Wyble 3 0.75           10,891  

Nakayama 3 0.75             6,997  

Theeuwes (with salient D) 3 0.75           19,522  

Theeuwes (without salient 

D) 3 0.75           19,522  

Mounts 3 0.75           11,493  

Gaspelin exp 1 (singleton 

search) 3 0.75             8,667  

Gaspelin exp 2 (feature 

search) 3 0.75             8,667  

LatDMidlineT 3 0.75 N/A 

Tan & Wyble 3 0.75 N/A 

Tollner (low) 3 0.75 N/A 

Tollner (med) 3 0.75 N/A 

Tollner (high) 3 0.75 N/A 

Hillimire (unpredictable) 3 0.75 N/A 

Hillimire (predictable) 3 0.75 N/A 

Eimer Grubert 3 0.75 N/A 
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High TD, Figure 16 N/A N/A N/A 

High BU, Figure 16 N/A N/A N/A 

Target, Figure 18 N/A N/A N/A 

Non-target, Figure 18 N/A N/A N/A 

 


