
Downloaded from
https://kar.kent.ac.uk/8141/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.2991/jnmp.2002.9.s1.18

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
"This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited."

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).
A List of 1 + 1 Dimensional Integrable Equations and Their Properties

Jing Ping WANG

Division of Mathematics & Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
E-mail: wang@cs.vu.nl

Received August 29, 2001; Revised October 26, 2001; Accepted 1 November, 2001

Abstract

This paper contains a list of known integrable systems. It gives their recursion-, Hamiltonian-, symplectic- and cosymplectic operator, roots of their symmetries and their scaling symmetry.

1 Introduction

In this paper we give a list of known integrable systems. This list is far from being complete, even if we restrict ourselves to

• What is known today,

• Systems with less than four components, and

• Systems referred to in the literature with a name.

Originally this list was part of the author’s thesis [Wan98]. Since this thesis only has a limited distribution and the reactions to this list were very favorable, we decided to publish it in a more accessible way.

The theoretical background for our list can be found in [Olv93, Dor93]. A more encyclopedic approach to this subject is taken in [Ibr96], where lists of integrable equations with their properties, mainly special solutions, Lie symmetries and conservation laws, are given. For every equation we aim to give a table containing:

• the equation itself,

• its cosymplectic operator (Hamiltonian operator, cf. [Mag78]),

• its Hamiltonian function corresponding to the cosymplectic operator,

• its symplectic operator,

• its recursion operator (possibly resulting from the cosymplectic and symplectic operators, cf. [FF80, FF81]), or its master symmetry,
• roots of its symmetries,
• its scaling symmetry.

There are also other important properties such as Miura transformations between the systems and Lax pair (cf. [Lax68]), but these are mainly ignored here. We refer to the source where we learned about each system; no attempt has been made to track the historical origins. At this point, we do not claim any new results though we did put in an effort to compute all the subjects in the list; the decomposition of the recursion operator in symplectic and cosymplectic operators mainly relies on the theory of recursion operators (cf. [SW01a]).

We hope that this material can serve as a source of motivation for future research, since it allows one to quickly formulate or dismiss general statements.

First we give the definitions of the subjects in our lists.

Definition 1. Given an evolution equation
\[u_t = K(x,t,u,\ldots,u_n) \]
where \(u_i = \frac{\partial^i u}{\partial x^i} \), we define

- \(h \) is a symmetry if
 \[\mathcal{L}_K h = \frac{\partial h}{\partial t} + D_h[K] - D_K[h] = 0, \]
- \(\mathcal{S} \) is a cosymplectic operator if
 \[\mathcal{L}_K \mathcal{S} = \frac{\partial \mathcal{S}}{\partial t} + D_{\mathcal{S}}[K] - D_K[\mathcal{S}] - \mathcal{S}D_K^* = 0, \]
- \(\mathcal{I} \) is a symplectic operator if
 \[\mathcal{L}_K \mathcal{I} = \frac{\partial \mathcal{I}}{\partial t} + D_{\mathcal{I}}[K] + \mathcal{I}D_K + D_K^* \mathcal{I} = 0, \]
- \(\mathcal{R} \) is a recursion operator if
 \[\mathcal{L}_K \mathcal{R} = \frac{\partial \mathcal{R}}{\partial t} + D_{\mathcal{R}}[K] - D_K[\mathcal{R}] + \mathcal{R}D_K = 0, \]

where \(\mathcal{L}_K \) denotes the Lie derivative and \(* \) means conjugation. Moreover, for the operators, the formulae are only valid on the domain of the left hand sides of the identities. A symmetry is called a root of a hierarchy if it is in the domain, but not in the image, of the recursion operator. A vectorfield \(\Sigma = f(t)\partial_t + S\partial_u \) is called a scaling symmetry of the equation if \(\mathcal{L}_\Sigma K = \lambda K, \lambda \in \mathbb{C} \).

Remark 2. Here we still use the standard definition of recursion operator in the literature. We refer the reader to [SW01b], where the term weak recursion operator is coined, for a discussion of the problems with this definition.

Acknowledgement. The author would like to thank Dr. Jan Sanders, Vrije Universiteit Amsterdam, for his strong encouragement to carry out this work and Prof. A.G. Meshkov, Oryol State University, Russia, for correcting several typographical errors.

2 List of integrable systems and some of their properties

2.1 Burgers’ equation

Reference: [Olv93, p. 315], [Oev84, p. 38];

<table>
<thead>
<tr>
<th>Equation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_t = u_2 + uu_1)</td>
<td>[Fuc79]</td>
</tr>
<tr>
<td>Hamiltonian</td>
<td>None</td>
</tr>
<tr>
<td>Cosymplectic</td>
<td>None</td>
</tr>
<tr>
<td>Symplectic</td>
<td>None</td>
</tr>
<tr>
<td>Recursion</td>
<td>(\mathcal{R}_1 = D_x + \frac{1}{2}u + \frac{1}{2}u_1D_x^{-1})</td>
</tr>
<tr>
<td></td>
<td>(\mathcal{R}_2 = tD_x + \frac{1}{2}(tu + x) + \frac{1}{2}(tu_1 + 1)D_x^{-1})</td>
</tr>
</tbody>
</table>
| Root | \(u_1, tu_1 + 1 \) *
| Scaling | \(-2t\partial_t + (xu_1 + u)\partial_u \) |
Since \(R_1 \) and \(R_2 \) are both recursion operators of the equation, we obtain a double infinity of the symmetries, by applying \(R_1 \) or \(R_2 \) successively to \(u_1 \) and \(tu_1 + 1 \). Note that since \(R_1 R_2 = R_2 R_1 + \frac{1}{2} \) and \(R_1(tu_1 + 1) = R_2(u_1) \), if we are only interested in independent symmetries, it does not matter in which order \(R_1 \) and \(R_2 \) are applied.

Notice that there is a difference between the root of an operator and the root of symmetries for an equation. For \(R_1 \), we can take \(tu_1 + 1 \) as a root of symmetries for Burgers’ equation since \(R_1 = D_x + \frac{1}{2} D_x(uD_x^{-1}) \), but it is not a root of \(R_1 \) since it is not its symmetry.

We refer to [Ma93] for coupled Burgers systems.

2.2 Potential Burgers’ equation

Reference: [Olv93, pp. 311, 317];

<table>
<thead>
<tr>
<th>Equation</th>
<th>(u_t = u_2 + u_1^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian</td>
<td>None [Fuc79]</td>
</tr>
<tr>
<td>Cosymplectic</td>
<td>None [FF81]</td>
</tr>
<tr>
<td>Symplectic</td>
<td>None [FF81]</td>
</tr>
<tr>
<td>Recursion</td>
<td>(R_1 = D_x + u_1)</td>
</tr>
<tr>
<td>(R_2 = tD_x + tu_1 + \frac{1}{2}x) [Olv93]</td>
<td></td>
</tr>
<tr>
<td>Root</td>
<td>1</td>
</tr>
<tr>
<td>Scaling</td>
<td>(xu_1) [Olv93]</td>
</tr>
</tbody>
</table>

The same arguments hold here as Burgers’ equation since \(R_1 R_2 = R_2 R_1 + \frac{1}{2} \).

The author of [Fok80] found the 2nd-order equations of the form \(u_t = u_2 + f(u, u_1) \), which possess a 3rd-order symmetry and obtained the following equations:

\[
\begin{align*}
\frac{du}{dt} &= u_2 + \frac{f''(u)}{f'(u)} u_1^2 + \alpha f(u)u_1, \quad (2.1) \\
\frac{du}{dt} &= u_2 + \frac{\gamma - f'(u)}{f(u)} u_1^2 + \alpha f(u), \quad (2.2)
\end{align*}
\]

where \(\alpha \) is constant and \(f(u) \) is an arbitrary function, with the recursion operator \(D_x + \frac{f''(u)}{f'(u)} u_1 + \frac{1}{2} \alpha f(u) + \frac{1}{2} \alpha u_1 D_x^{-1} f'(u) \).

\[
\begin{align*}
\frac{du}{dt} &= u_2 + \frac{\gamma - f'(u)}{f(u)} u_1^2 + \alpha f(u), \quad (2.2)
\end{align*}
\]

where \(f(u) \) is an arbitrary function and \(\alpha, \gamma \) are constant, with the recursion operator \(D_x + \frac{\gamma - f'(u)}{f(u)} u_1 \).

Notice that the (potential) Burgers’ equation is a particular case of (2.1). If we take \(\alpha = 1 \) and \(\frac{\gamma - f'(u)}{f(u)} = 1 \), i.e., \(f(u) = \beta \exp(-u) + \gamma \), it leads to the nontrivial equation:

\[
\begin{align*}
\frac{du}{dt} &= u_2 + u_1^2 + \beta \exp(-u) + \gamma.
\end{align*}
\]

2.3 Diffusion equation

Reference: [Oev84, p. 39];
Equation $u_t = u^2 u_2$
Hamiltonian None
Cosymplectic None
Symplectic None
Recursion $u D_x + u^2 u_2 D_x^{-1} \frac{1}{u^2}$
Root $u^2 u_2$
Scaling $\alpha x u_1 + \beta u, \alpha, \beta \in \mathbb{C}$.

2.4 Nonlinear diffusion equation

Reference: [Olv93, Ex. 5.10];

Equation $u_t = D_x (\frac{u_1}{u^2})$
Hamiltonian None
Cosymplectic None
Symplectic None
Recursion $D_x^2 \frac{1}{u} D_x^{-1} = \frac{1}{u} D_x - \frac{2u_1}{u^2} - u_t D_x^{-1}$
Root u_t
Scaling $\alpha x u_1 + \beta u, \alpha, \beta \in \mathbb{C}$.

2.5 Korteweg–de Vries equation

Reference: [Olv93, p. 312], [Oev84, pp. 18, 67, 78, 84, 97], [Dor93, pp. 85, 151, 158, 162], [Oev90, pp. 27, 60];

Equation $u_t = u_3 + uu_1$ [KdV95]
Hamiltonian u^2
Cosymplectic $D_x^3 + \frac{1}{3} (u D_x + D_x u)$
Symplectic D_x^{-1}
Recursion $D_x^2 + \frac{2}{3} u + \frac{1}{3} u_1 D_x^{-1}$ [Olv77]
Root u_1
Scaling $x u_1 + 2u$

2.6 Potential Korteweg–de Vries equation

Reference: [Dor93, p. 125];

Equation $u_t = u_3 + 3u_1^2$
Hamiltonian $\frac{1}{2} uu_4 + 2uu_1 u_2$
Cosymplectic D_x^{-1}
Symplectic $D_x^2 + 2(u_1 D_x + D_x u_1)$
Recursion $D_x^2 + 4u_1 - 2D_x^{-1} u_2$
Root 1
Scaling $x u_1 + u$

2.7 Modified Korteweg–de Vries equation

Reference: [Olv93, Ex. 5.11], [Oev84, p. 97], [Oev90, pp. 29, 60];
Equation \(u_t = u_3 + u^2 u_1 \)
Hamiltonian \(\frac{u^2}{2} \)
Cosymplectic \(D_x^3 + \frac{2}{3} D_x u D_x^{-1} u D_x \)
Symplectic \(D_x^{-1} \)
Recursion \(D_x^2 + \frac{2}{3} u^2 + \frac{2}{3} u_1 D_x^{-1} u \) \([Olv77]\)
Root \(u_1 \)
Scaling \(xu_1 + u \)

2.8 Potential modified Korteweg–de Vries equation

Reference: [Olv93, Ex.5.11];
Equation \(u_t = u_3 + \frac{1}{3} u_1^3 \)
Hamiltonian \(\frac{1}{3} uu_1 + \frac{1}{3} uu_1^2 u_2 \)
Cosymplectic \(D_x^{-1} \)
Symplectic \(D_x^3 + \frac{2}{3} D_x u_1 D_x^{-1} u_1 D_x \)
Recursion \(D_x^2 + \frac{2}{3} u_1^2 - \frac{2}{3} u_1 D_x^{-1} u_2 \)
Root \(u_1 \)
Scaling \(\alpha xu_1 + \beta u, \alpha, \beta \in \mathbb{C} \).

In the paper [Fok80], the author found the 3rd-order equations, not involving 2nd-order derivatives, i.e., of the form \(u_t = u_3 + f(u, u_1) \), which possess a 5th-order symmetry and obtained the following equations:

\[
\begin{align*}
u_t &= u_3 + \alpha u_1^3 + \beta u_1^2 + \gamma u_1, \\
&= u_3 + \alpha u_1^3 + f(u)u_1,
\end{align*}
\]

where \(\alpha, \beta, \gamma \) are constant, with the recursion operator \(D_x^2 + 2\alpha u_1^2 + \frac{4}{3} \beta u_1 - \frac{2}{3} (3\alpha u_1 + \beta) D_x^{-1} u_2 + \gamma \).

where \(f(u) \) satisfies \(f''' + 8\alpha f' = 0 \), with the recursion operator \(D_x^2 + 2\alpha u_1^2 + \frac{4}{3} f(u) - \frac{1}{3} u_1 D_x^{-1} (6\alpha u_2 - f') \).

pKdV (\(\alpha = 0 \)) and pmKdV (\(\beta = 0 \)) are particular cases of (2.3). pmKdV (\(f(u) = 0 \)), KdV (\(\alpha = 0 \) and \(f(u) = u \)) and mKdV (\(\alpha = 0 \) and \(f(u) = u^2 \)) are particular cases of (2.4) including Calogero–Degasperis–Fokas equation [CD81]:

\[
u_t = u_3 - \frac{1}{8} u_1^3 + (a \exp(u) + b \exp(-u) + c) u_1.
\]

2.9 Cylindrical Korteweg–de Vries equation

Reference: [OF84, ZC86, Cho87a];
Equation \(u_t = u_3 + uu_1 - \frac{u}{27} \)
Hamiltonian None
Cosymplectic \(D_x^3 + \frac{1}{6} (u D_x + D_x u) + \frac{1}{6} (x D_x + D_x x) \)
Symplectic \(t D_x^{-1} \)
Recursion \(t(D_x^2 + \frac{2}{3} u + \frac{1}{3} u_1 D_x^{-1}) + \frac{1}{3} x + \frac{1}{6} D_x^{-1} \)
Root \(\sqrt{\frac{2u}{3} + \frac{1}{6} t} \)
Scaling \(-3t \partial_t + (2u + xu_1) \partial_u \)
Consider the generalized Korteweg–de Vries equation

\[u_t + u_3 + 6u u_1 + 6f(t)u - x(f'_t + 12f^2) = 0, \]

where \(f \) is an arbitrary function of \(t \). It possesses recursion operator:

\[\mathcal{R} = \frac{1}{g(t)} (D_x^2 + 4(u - x f(t)) + 2(u_1 - f(t))D_x^{-1}) \]

with the root \(\frac{1}{\sqrt{g}}(u_1 - f) \), where \(g(t) = \exp(- \int 12f dt) \), cf. [Cho87a] (the author also studied generalized mKdV in the same way [Cho87b]).

If we take \(f(t) = \frac{1}{12t} \) and then do transformation \(\tilde{u} = \frac{1}{6}u \) and \(\tilde{t} = -t \), we get the cylindrical Korteweg–de Vries equation.

2.10 Ibragimov–Shabat equation

Reference: [IŠ80, Cal87];

- **Equation:** \(u_t = u_3 + 3u^2 u_2 + 9u u_1^2 + 3u^4 u_1 \)
- **Hamiltonian:** None
- **Cosymplectic:** None
- **Symplectic:** None
- **Root:** \(u_1 \)
- **Scaling:** \(xu_1 + \frac{1}{2}u \)
- **Master Symmetries:** \(xu_t + \frac{3}{2}u_2 + 5u_1 u^2 + \frac{1}{2}u^5 \)

No recursion operator seems to be known for this equation.

We should mention that this equation possesses infinitely many symmetries [IŠ80], but only one local conserved density \(u^2 \) [Kap82]. The transformation \(u = \sqrt{\frac{w_1}{2w}} \) [Cal87] transforms it into \(w_t = w_3 - \frac{3}{4} \frac{w_2^2}{2w_1} \) and the master symmetry becomes \(xw_t + \frac{1}{2}w_2 \), which is the master symmetry for this new equation. Notice that the new equation has a recursion operator \(\mathcal{R} = D_x^2 - \frac{w_2}{w_1} D_x + \frac{w_3}{2w_1} - \frac{w_2^2}{4w_1} - D_x^{-1}(\frac{w_4}{2w_1} - \frac{w_2 w_3}{w_1^2} + \frac{w_3^2}{2w_1^2}) = \left(D_x - D_x^{-1} \frac{w_2}{2w_1} D_x \right)^2 \)

with the root \(w_1 \).

2.11 Harry Dym equation

Reference: [Olv93, Ex.5.15], [Oev84, p. 107];

- **Equation:** \(u_t = u^3 u_3 \)
- **Hamiltonian:** \(-\frac{1}{u} \)
- **Cosymplectic:** \(u^3 D_x^2 u^3 \)
- **Symplectic:** \(\frac{1}{u^4} D_x^{-1} \frac{1}{u^2} \)
- **Recursion:** \(u^3 D_x^2 u D_x^{-1} \frac{1}{u^2} \) [LLS+83]

\[= u^2 D_x^2 - uu_1 D_x + uu_2 + u^3 u_3 D_x^{-1} \frac{1}{u^2} \]

- **Root:** \(u^3 u_3 \)
- **Scaling:** \(\alpha xu_1 + \beta u, \alpha, \beta \in \mathbb{C} \).

Sometimes the equation is written as \(u_t = D_x^3(\frac{1}{\sqrt{u}}) \), cf. [Dor93, p. 85].
2.12 Schwarzian KdV equation

Reference: [Dor93, p. 121];

Equation \(u_t = u_3 - \frac{3}{2} \frac{u_2^2}{u_1} \)

Hamiltonian \(\frac{u_2^2}{2u_1^2} \)

Cosymplectic
\[2 \left(\frac{1}{u_1^2} D_x + D_x \frac{1}{u_1^2} \right)^{-1} \]

Symplectic
\[\frac{1}{2} \left(\frac{1}{u_1^2} D_x^3 + D_x^2 \frac{1}{u_1^2} \right) + \left(\frac{u_2}{u_1^4} - \frac{3u_2^2}{u_1^4} \right) D_x + D_x \left(\frac{u_2}{u_1^4} - \frac{3u_2^2}{u_1^4} \right) \]

Recursion
\[\left\{ \begin{array}{l}
 D_x^2 - 2u_2 D_x + \left(\frac{u_3}{u_1} - \frac{u_2^2}{u_1} \right) - u_1 D_x^{-1} \xi, \\
 \xi = \frac{3u_2^3}{u_1^6} - \frac{4u_3 u_3}{u_1^4} + \frac{u_4}{u_1^4}
 \end{array} \right. \]

Root
\(u_1 \)

Scaling \(\alpha x u_1 + \beta u, \alpha, \beta \in \mathbb{C} \).

2.13 Cavalcante–Tenenblat equation

Reference: [CT88];

Equation \(u_t = D_x^2 \left(u_1^{-\frac{3}{2}} \right) + u_1^{\frac{3}{2}} \)

Hamiltonian \(-2\sqrt{u}_1\)

Cosymplectic \(D_x - u_1 D_x^{-1} u_1 \)

Symplectic \(u_1^{-\frac{1}{2}} D_x u_1^{-\frac{1}{2}} - \frac{1}{3} u_1^{-\frac{2}{3}} u_2 D_x^{-1} u_1^{-\frac{2}{3}} \)

Recursion \(\frac{1}{u_1^2} D_x^2 - \frac{3u_2}{2u_1^3} D_x - \frac{u_3}{2u_1^3} + \frac{3u_2^2}{4u_1^3} - u_1 + \frac{u_2}{2} D_x^{-1} u_1^{-\frac{3}{2}} u_2 \)

Root \(u_t \)

Scaling \(x u_1 \)

2.14 Liouville equation

Reference: [Dor93, pp. 134, 164];

Equation \(u_{xt} = \exp(u) \)

Hamiltonian \(\exp(u) \)

Cosymplectic \(D_x^{-1} \)

Symplectic \(D_x^3 - D_x u_1 D_x^{-1} u_1 D_x \)

Recursion \(D_x^2 - u_1^2 + u_1 D_x^{-1} u_2 \)

Root \(u_1 \)

Scaling \(\alpha x u_1 + \beta u, \alpha, \beta \in \mathbb{C} \).

* Actually, the equation is treated as an evolution equation \(u_t = D_x^{-1} \exp(u) \).

The **Sinh–Gordon equation** \(u_{xt} = \sinh u \) has exactly the same geometric structure, cf. [AC91].

We refer to [ZS01] for recent developments in integrable hyperbolic equations of Liouville type.

2.15 Sine–Gordon equation

Reference: [Olv93, Ex.5.12], [Dor93, pp. 133, 163];
2.16 Klein–Gordon equations

Reference: [AC91, p. 366], [Kon87, p. 41], [FG80];

Equation \(u_{xt} = \alpha \exp(-2u) + \beta \exp(u) \)

Hamiltonian \(-\frac{\partial}{\partial t} \exp(-2u) + \beta \exp(u)\)

Cosymplectic \(D_{x}^{-1} \)

Symplectic \(D_{x}^{5} + D_{x}^{-1}u_{1}D_{x} \)

Recursion \(D_{x}^{2} + u_{1}^{2}u_{1}D_{x}^{-1}u_{2} \) [Olv77]

Root \(u_{1} \)

Scaling \(\alpha xu_{1} + \beta u, \alpha, \beta \in \mathbb{C}. \)

As we mentioned for the Liouville equation, this equation is also treated as an evolution equation \(u_{t} = D_{x}^{-1}\sin u \).

It shares its recursion operator [Bil93] with the Potential Kupershmidt equation, i.e.,

\[u_{t} = u_{5} + 5u_{2}u_{3} - 5u_{1}u_{2}^{2} + u_{1}^{5} \]

It shares its recursion operator [Bil93] with the Potential Kupershmidt equation, i.e.,

\[u_{t} = u_{5} + 5u_{2}u_{3} - 5u_{1}u_{2}^{2} + u_{1}^{5} \] (equation (4.2.7) in [MSS91]).

Klein–Gordon equations \(u_{xt} = f(u) \) possess a nontrivial symmetry if and only if \(f(u) = \alpha \exp(-\lambda u) + \beta \exp(\lambda u) \) or \(f(u) = \alpha \exp(-2\lambda u) + \beta \exp(\lambda u) \), cf. [ZS79].

2.17 Kupershmidt equation

Reference: [MSS91, Eq. (4.2.6)], [FG80, Bil93];
2.18 Sawada–Kotera equation

Reference: [SK74, CDG76, FOS2, FOW87, Bil93], [Oev84, p. 105], [Oev90, p. 30], [MSS91, Eq. (4.2.2)];

<table>
<thead>
<tr>
<th>Equation</th>
<th>$u_t = u_5 + 5u_1u_3 + 5u_2^2 - 5u_2u_3 - 20uu_1u_2 - 5u_1^3 + 5u_4u_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian</td>
<td>$\frac{u_1^2}{2} - \frac{5u_3^3}{6} + \frac{5u_2u_1^2}{2} + \frac{u_6^2}{6}$</td>
</tr>
<tr>
<td>Cosymplectic</td>
<td>D_x</td>
</tr>
<tr>
<td>Symplectic</td>
<td>\mathcal{J}</td>
</tr>
<tr>
<td>Recursion</td>
<td>\mathcal{R}</td>
</tr>
<tr>
<td>Root</td>
<td>u_1, u_t</td>
</tr>
<tr>
<td>Scaling</td>
<td>$xu_1 + u$</td>
</tr>
</tbody>
</table>

\[
\mathcal{J} = D_x^5 + 3(u_1D_x^2 + D_x^3u_1) - 3(u_2^2D_x^2 + D_x^3u_2) - 3(u_1u_2^2D_x + D_xu_1^2u_2) \\
\quad + \frac{5}{2}(u_3^2D_x + D_xu_3^2) - 2(u_3D_x + D_xu_3) + \frac{9}{2}(u_4^2D_x + D_xu_4^2) \\
- 2(uu_2D_x + D_xuu_2) - 2(u_4 - 5u_2^2u_2 - 5uu_1^2 + 5u_1u_2 + u_5^5)D_x^{-1}u \\
- 2uD_x^{-1}(u_4 - 5u_2^2u_2 - 5uu_1^2 + 5u_1u_2 + u_5^5) \\
\mathcal{R} = D_x^6 + 6u_1D_x^4 - 6u_2^2D_x^4 - 30uu_1D_x^3 + 15u_2D_x^3 + 9u_4^2D_x^3 - 6u_2^2u_1D_x^2 \\
- 40uu_2D_x^2 - 31u_2^2D_x^2 + 14u_3D_x^2 - 9u_2^2u_2D_x + 54u_3u_1D_x - 18uu_1^2D_x \\
- 30uu_3D_x - 63uu_1u_2D_x + 6u_4D_x - 4u_6^2 + 38uu_1u_2 + 74u_2^2u_1^2 \\
- 3u_2^2u_3 - 12uu_4 - 38uu_1u_2 + u_5 - 6u_3^2 - 23u_1u_3 - 15u_2^2 \\
- 2u_4D_x^{-1}u - 2u_1D_x^{-1}(u_4 - 5u_2^2u_2 - 5uu_1^2 + 5u_1u_2 + u_5^5)
\]

2.19 Potential Sawada–Kotera equation

Reference: [MSS91, Eq. (4.2.4)], [Bil93];

<table>
<thead>
<tr>
<th>Equation</th>
<th>$u_t = u_5 + 5u_1u_3 + 5u_1u_2 + 5u_2^2u_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian</td>
<td>$\frac{u_1^2}{2} - \frac{u_3^2}{6}$</td>
</tr>
<tr>
<td>Cosymplectic</td>
<td>$D_x + 2(u_1D_x^{-1} + D_x^{-1}u_1)$</td>
</tr>
<tr>
<td>Symplectic</td>
<td>$(D_x + u_1D_x^{-1}) D_x (D_x + D_x^{-1}u_1)$</td>
</tr>
<tr>
<td>Recursion</td>
<td>\mathcal{R}</td>
</tr>
<tr>
<td>Root</td>
<td>$u_1, 1$</td>
</tr>
<tr>
<td>Scaling</td>
<td>$xu_1 + u$</td>
</tr>
</tbody>
</table>

\[
\mathcal{R} = D_x^6 + 6u_1D_x^4 + 9u_1D_x^3 + 9u_2D_x^2 + 11u_2D_x^2 + 10u_3D_x + 21uu_1D_x \\
+ 4u_4^3 + 16uu_2 + 6u_1^2 + 5u_4 + u_1D_x^{-1}(2u_2 + u_2^2) + u_4D_x^{-1}
\]
\[+3u_5 + 13u_3u_1 + 3u_2^2 + 4u_1^3 - 2u_1D_x^{-1}(u_4 + u_2u_1) \]
\[-2D_x^{-1}(u_6 + 3u_4u_1 + 6u_3u_2 + 2u_2u_1^2) \]

2.20 Kaup–Kupershmidt equation

Reference: [Kau80, FO82, FOW87, Bil93], [MSS91, Eq. (4.2.3)];

Equation
\[u_t = u_5 + 5uu_3 + \frac{25}{2}u_1u_2 + 5u^2u_1 \]

Hamiltonian
\[\frac{2u^3}{3} - \frac{u^2}{2} \]

Cosymplectic
\[D_x \left(D_x^2 + \frac{1}{2}(uD_x^{-1} + D_x^{-1}u) \right) D_x \]

Symplectic
\[D_x^2 + \frac{3}{2}(uD_x + D_xu) + D_x^2uD_x^{-1} + D_x^{-1}uD_x^2 + 2(u^2D_x^{-1} + D_x^{-1}u^2) \]

Recursion \(R \)

Root \(u_1, u_t \)

Scaling \(xu_1 + 2u \)

\[R = D_x^6 + 6uD_x^4 + 18u_1D_x^3 + 9u^2D_x^2 + \frac{49}{2}u_2D_x^2 + 30uu_1D_x + \frac{35}{2}u_3D_x + 4u_3^3 + \frac{41}{2}uu_2 + 6\frac{9}{4}u_1^2 + \frac{13}{2}u_4 + \frac{1}{2}u_1D_x^{-1}(u_2 + 2u^2) + u_tD_x^{-1} \]

2.21 Potential Kaup–Kupershmidt equation

Reference: [MSS91, Eq. (4.2.5)], [Bil93];

Equation
\[u_t = u_5 + 10u_1u_3 + \frac{15}{2}u_2^2 + \frac{20}{3}u_1^3 \]

Hamiltonian
\[\frac{u^3}{2} - \frac{4u^3}{3} \]

Cosymplectic
\[D_x + u_1D_x^{-1} + D_x^{-1}u_1 \]

Symplectic
\[D_x^5 + 5(uD_x^3 + 3u_1D_x^3u_1) - 3(u_3D_x + D_xu_3) + 8(u_3^2D_x - D_xu_1^2) \]

Recursion \(R \)

Root \(u_1, 1 \)

Scaling \(xu_1 + u \)

\[R = D_x^6 + 12u_1D_x^4 + 24u_2D_x^3 + 25u_3D_x^2 + 36u_4D_x^2 + 10u_1u_4 + 48u_1u_2D_x + 3u_5 + 21u_2^2 + 34u_1u_3 + 32u_1^3 - 2u_1D_x^{-1}(u_2 + 8u_1u_2) + D_x^{-1}(u_6 + 12u_1u_4 + 24u_2u_3 + 32u_1^2u_2) \]

2.22 Diffusion system

Reference: [Oev84, p. 41];

Equation
\[\begin{align*}
 u_t & = u_2 + v^2 \\
 v_t & = v_2
\end{align*} \]

Hamiltonian None

Cosymplectic None

Symplectic None

Recursion
\[\begin{pmatrix}
 D_x & vD_x^{-1} \\
 0 & D_x
\end{pmatrix} \]

Root
\[\begin{pmatrix}
 v \\
 0
\end{pmatrix}, \begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix} \]
Scaling \(\left(\frac{xu_1 + 2u}{xv_1 + 2v} \right) + \alpha \left(\begin{array}{c} 2u \\ v \end{array} \right), \alpha \in \mathbb{C} \)

2.23 Dispersiveless Long Wave system

Reference: [AC91, Gök98];

Equation
\[
\begin{align*}
 u_t &= u_1 v + u v_1 \\
 v_t &= u_1 + v v_1
\end{align*}
\]

Hamiltonian
\[
\frac{u^2}{2} + uv^2
\]

Cosymplectic
\[
\begin{pmatrix}
 0 & D_x \\
 D_x & 0
\end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
 2D_x^{-1} v D_x^{-1} \\
 D_x^{-1} v & u D_x^{-1} + D_x^{-1} u
\end{pmatrix}
\]

Recursion
\[
\begin{pmatrix}
 v & 2u + u_1 D_x^{-1} \\
 2 & v + v_1 D_x^{-1}
\end{pmatrix}
\]

Root
\[
\begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix}
\]

Scaling
\[
\left(\frac{xu_1}{xv_1} \right) + \alpha \left(\begin{array}{c} 2u \\ v \end{array} \right), \alpha \in \mathbb{C}
\]

2.24 Sine–Gordon equation in the laboratory coordinates

Reference: [CLL87];

Equation
\[
\begin{align*}
 u_t &= v \\
 v_t &= u_2 - \sin(u)
\end{align*}
\]

Hamiltonian
\[
\frac{1}{2}(u_1^2 + v^2) - \cos(u)
\]

Cosymplectic
\[
\begin{pmatrix}
 0 & 1 \\
 -1 & 0
\end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
 -R_{21} & -R_{22} \\
 R_{11} & R_{12}
\end{pmatrix}
\]

Recursion
\[
\mathcal{R} = \begin{pmatrix}
 R_{11} & R_{12} \\
 R_{21} & R_{22}
\end{pmatrix}
\]

Root
\[
\begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix}
\]

Scaling None

\[
\begin{align*}
 R_{11} &= 4D_x^2 - 2 \cos(u) + (u_1 + v)^2 - (u_1 + v)D_x^{-1}(u_2 + v_1 - \sin(u)), \\
 R_{12} &= 4D_x + (u_1 + v)D_x^{-1}(u_1 + v), \\
 R_{21} &= 4D_x^3 + (u_1 + v)^2 D_x - 4 \cos(u)D_x + 2u_1 \sin(u) + (u_2 + v_1)(u_1 + v) \\
 &\quad - (u_2 + v_1 - \sin(u))D_x^{-1}(u_2 + v_1 - \sin(u)), \\
 R_{22} &= 4D_x^2 + (u_1 + v)^2 - 2 \cos(u) + (u_2 + v_1 - \sin(u))D_x^{-1}(u_1 + v).
\end{align*}
\]

2.25 AKNS equation

Reference: [Oev84, p. 100];
Equation
\[
\begin{cases}
u_t = -u_2 + 2u^2v \\v_t = v_2 - 2v^2u
\end{cases}
\]

Hamiltonian
\[
\frac{1}{2}(uv_1 - uv_1)
\]

Cosymplectic
\[
\begin{pmatrix}
2uD_x^{-1}u & D_x - 2uD_x^{-1}v \\
D_x - 2vD_x^{-1}u & 2vD_x^{-1}v
\end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]

Recursion
\[
\begin{pmatrix}
-D_x + 2uD_x^{-1}v & 2uD_x^{-1}u \\
-2vD_x^{-1}v & D_x - 2vD_x^{-1}u
\end{pmatrix}
\]

Root
\[
\begin{pmatrix}
-u \\
v
\end{pmatrix}
\]

Scaling
\[
\begin{pmatrix}
xu_1 + u \\
xv_1 + v
\end{pmatrix}
\]

2.26 Nonlinear Schrödinger equation

Reference: [Oev84, p. 102], [Dor93, p. 135], [Oev90, pp. 31, 61];

Equation
\[
\begin{cases}
u_t = -u_2 + v(u^2 + v^2) \\v_t = -u_2 \pm u(u^2 + v^2)
\end{cases}
\]

Hamiltonian
\[
\frac{1}{2}(uv_1 - uv_1)
\]

Cosymplectic
\[
\begin{pmatrix}
2uD_x^{-1}v & \pm 2vD_x^{-1}u \\
\pm 2uD_x^{-1}v & D_x \mp 2uD_x^{-1}u
\end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]

Recursion
\[
\begin{pmatrix}
\mp 2vD_x^{-1}u & D_x \mp 2vD_x^{-1}v \\
-D_x \pm 2uD_x^{-1}u & \pm 2uD_x^{-1}v
\end{pmatrix}
\]

Root
\[
\begin{pmatrix}
-v \\
u
\end{pmatrix}
\]

Scaling
\[
\begin{pmatrix}
xu_1 + u \\
xv_1 + v
\end{pmatrix}
\]

The system can be written as \(i\dot{q} = q_2 \mp q^2q^*\), where \(i^2 = -1\), cf. [AC91].

2.27 Derivative Schrödinger system

Reference: [Oev84, p. 103];

Equation
\[
\begin{cases}
u_t = -v_2 - (u^2 + v^2)u_1 \\v_t = u_2 - (u^2 + v^2)v_1
\end{cases}
\]

Hamiltonian
\[
\frac{1}{2}(uv_1 - uv_1)
\]

Cosymplectic
\[
\begin{pmatrix}
-D_x & \frac{u^2 + u^2}{2} \\
-\frac{u^2 + v^2}{2} & -D_x
\end{pmatrix} - \begin{pmatrix} v \\ -u \end{pmatrix} D_x^{-1} \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]
A list of $1+1$ dimensional integrable equations and their properties

Recursion
\[\left(\begin{array}{cc} -\frac{u^2+v^2}{2} & -D_x \\ \frac{D_x}{u^2+v^2} \end{array} \right) \] + \left(\begin{array}{c} v \\ -u \end{array} \right) D_x^{-1} \left(\begin{array}{c} v_1 \\ -u_1 \end{array} \right)^\dagger \\
- \left(\begin{array}{c} u_1 \\ v_1 \end{array} \right) D_x^{-1} \left(\begin{array}{c} u \\ v \end{array} \right)

Root
\[\left(\begin{array}{c} u \\ v \end{array} \right) \]

Scaling
\[\left(\begin{array}{c} xu_1 + \frac{u}{2} \\ xv_1 + \frac{v}{2} \end{array} \right) \]

2.28 Modified derivative Schrödinger system

Reference: [WHV95];
Equation
\[
\begin{align*}
u_t &= D_x (u^3 + uv^2 + \beta u - v_1) \\
v_t &= D_x (vu^2 + v^3 + u_1)
\end{align*}
\]
Hamiltonian
\[\frac{1}{2} (u^2 + v^2) \]
Cosymplectic
\[\begin{pmatrix} \beta D_x + 2u D_x u & -D_x^2 + 2v D_x u \\ D_x^2 + 2u D_x v & 2v D_x v \end{pmatrix} \]
\[-2 \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} D_x^{-1} \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \]
Symplectic
\[\begin{pmatrix} D_x^{-1} & 0 \\ 0 & D_x^{-1} \end{pmatrix} \]
Recursion
\[\begin{pmatrix} \beta + 2u^2 & -D_x + 2uv \\ D_x + 2uv & 2v^2 \end{pmatrix} \]
\[+ 2 \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} D_x^{-1} \begin{pmatrix} u \\ v \end{pmatrix}^\dagger \]
Root
\[\begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \]
Scaling
\[\left(\begin{array}{c} xu_1 + \frac{u}{2} \\ xv_1 + \frac{v}{2} \end{array} \right) \]

2.29 Boussinesq system

Reference: [Olv93, p. 459];
Equation
\[
\begin{align*}
u_t &= v_1 \\
v_t &= \frac{1}{3} u_3 + \frac{8}{3} uv_1
\end{align*}
\]
Hamiltonian
\[\frac{1}{2} u \]
Cosymplectic
\[\begin{pmatrix} D_x^3 + 2u D_x + u_1 & 3v D_x + 2v_1 \\ 3v D_x + v_1 & \delta_{22} \end{pmatrix} \]
Symplectic
\[\begin{pmatrix} 0 & D_x^{-1} \\ D_x^{-1} & 0 \end{pmatrix} \]
Recursion
\[\begin{pmatrix} 3v + 2v_1 D_x^{-1} & D_x^2 + 2u + u_1 D_x^{-1} \\ \mathcal{H}_{21} & 3v + v_1 D_x^{-1} \end{pmatrix} \]
Root
\[\begin{pmatrix} u_t \\ v_t \end{pmatrix} \]

Scaling \(\begin{pmatrix} xu_1 + 2u \\ xv_1 + 3v \end{pmatrix} \)

\(\mathfrak{H}_{22} = \frac{1}{3} D_2^5 + \frac{5}{3} (u D_2^3 + D_2^3 u) - (u_2 D_x + D_x u_2) + \frac{16}{3} u D_x u \)

\(\mathfrak{H}_{21} = \frac{1}{3} D_2^4 + \frac{10}{3} u D_2^2 + 5u_1 D_x + 3u_2 + \frac{16}{3} u^2 + 2v_1 D_x^{-1} \)

2.30 Modified Boussinesq system

Reference: [FG81];

Equation
\[
\begin{align*}
 u_t &= 3v_2 + 6u v_1 + 6u_1 v \\
 v_t &= -u_2 - 6u v_1 + 2u u_1
\end{align*}
\]

Hamiltonian
\[
\frac{1}{2} (u v_1 - u_1 v - 2u^3 + 2v u^2)
\]

Cosymplectic
\[
\begin{pmatrix}
 3D_x & 0 \\
 0 & D_x
\end{pmatrix}
\]

Symplectic
\[
\begin{pmatrix}
 \frac{1}{3} D_x^{-1} \mathfrak{H}_{11} & \frac{1}{3} D_x^{-1} \mathfrak{H}_{12} \\
 D_x^{-1} \mathfrak{H}_{21} & D_x^{-1} \mathfrak{H}_{22}
\end{pmatrix}
\]

Recursion
\[
\begin{pmatrix}
 \mathfrak{H}_{11} & \mathfrak{H}_{12} \\
 \mathfrak{H}_{21} & \mathfrak{H}_{22}
\end{pmatrix}
\]

Root
\[
\begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix}, \quad
\begin{pmatrix}
 u_t \\
 v_t
\end{pmatrix}
\]

Scaling
\[
\begin{pmatrix}
 xu_1 + u \\
 xv_1 + v
\end{pmatrix}
\]

\(\mathfrak{H}_{11} = 6v D_x^2 + 9v_1 D_x + 3v_2 - 12u v_1 - 24u^2 v - 2u_1 D_x^{-1} u - 6u_1 D_x^{-1} (2u v + v_1) \),

\(\mathfrak{H}_{12} = 3D_x^2 + 6u D_x + 9u_1 D_x - 3u_2 D_x - 9v^2 D_x + 3u_2 - 6u^3 - 36u v_1
- 18u v^2 - 6u_1 D_x^{-1} v + 6u_1 D_x^{-1} (u_1 - u^2 + 3v^2) ,
\]

\(\mathfrak{H}_{21} = -D_x^3 + 2u D_x^2 + u^2 D_x + 3u_1 D_x + 3v^2 D_x + u_2 - 6u v^2 - 2u^3 + 4u u_1
- 2v_1 D_x^{-1} u - 6v_1 D_x^{-1} (v_1 + 2uv) ,
\]

\(\mathfrak{H}_{22} = -6v D_x^2 - 9v_1 D_x - 12u^2 v + 12u_1 v - 3v_2 + 36u v_1
- 6v_1 D_x^{-1} v + 6v_1 D_x^{-1} (u_1 - u^2 + 3v^2) .
\)

2.31 Landau–Lifshitz system

Reference: [vBK91];

Equation
\[
\begin{align*}
 u_t &= -\sin(u) v_2 - 2 \cos(u) u_1 v_1 + (J_1 - J_2) \sin(u) \cos(v) \sin(v) \\
 v_t &= \frac{u_2 \sin(u)}{\sin(u)} - \cos(u) v_1^2 + \cos(u) (J_1 \cos^2(v) + J_2 \sin^2(v) - J_3)
\end{align*}
\]

Hamiltonian
\[
\frac{1}{2} \sin^2(u) (J_1 \cos^2(v) + J_2 \sin^2(v) - J_3) + J_3 - u_1^2 - \sin^2(u) v_1^2
\]

Cosymplectic
\[
\frac{1}{\sin(u)} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]

Symplectic
\[
\sin(u) \begin{pmatrix} \mathfrak{H}_{21} & \mathfrak{H}_{22} \\ -\mathfrak{H}_{11} & -\mathfrak{H}_{12} \end{pmatrix}
\]
Recursion \[
\begin{pmatrix}
\mathcal{R}_{11} & \mathcal{R}_{12} \\
\mathcal{R}_{21} & \mathcal{R}_{22}
\end{pmatrix}
\]
Root \[
\begin{pmatrix}
u_1 \\
v_t
\end{pmatrix}, \begin{pmatrix}
u_t \\
v_t
\end{pmatrix}
\]
Scaling \[
\begin{pmatrix}
xu_1 \\
xv_1 + 2J
\end{pmatrix}, \text{ where } J = (J_1, J_2, J_3).
\]
where
\[
\begin{align*}
\mathcal{R}_{11} &= -D_x^2 - 2 \sin^2(u)v_1^2 - u_1^2 + v_t^2 - (J_1 - J_2) \sin^2(u) \sin^2(v) \\
&+ (J_1 - J_3) \sin^2(u) + J_3 - J_2 + u_tD_x^{-1} \cdot (\sin(u)v_1) - u_1D_x^{-1} \cdot S_1 \\
\mathcal{R}_{12} &= 2 \cos(u) \sin(u)v_1D_x + \cos(u) \sin(v)v_2 - 3 \sin^2(u)u_1v_1 + 2u_1v_1 \\
&+ u_tD_x^{-1} \cdot (\sin(u)v_1) - u_1D_x^{-1} \cdot S_2 \\
\mathcal{R}_{21} &= -2 \cos(u)v_1D_x - \cos(u)v_2 + u_1v_1 \\
&+ v_tD_x^{-1} \cdot (\sin(u)v_1) - v_1D_x^{-1} \cdot S_1 \\
\mathcal{R}_{22} &= -D_x^2 - 2 \cos(u)u_1D_x - \cos(u)u_2 - (J_1 - J_2) \sin(u) \sin^2(v) \\
&- 2 \sin^2(u)v_1^2 + v_1^2 + (J_1 - J_3) \sin^2(u) + J_3 - J_2 \\
&+ v_tD_x^{-1} \cdot (\sin(u)v_1) - v_1D_x^{-1} \cdot S_2 \\
S_1 &= (J_1 - J_2) \cos(u) \sin(u) \sin^2(v) - (J_1 - J_3) \cos(u) \sin(u) \\
&+ \cos(u) \sin(u)v_1^2 - u_2, \\
S_2 &= (J_1 - J_2) \cos(v) \sin^2(u) \sin(v) - 2 \cos(u) \sin(u)u_1v_1 - \sin^2(u)v_2.
\end{align*}
\]

2.32 Wadati–Konno–Ichikawa system

Reference: [WKI79, BPT83], [Kon87, p. 88];

Equation \[
\begin{cases}
u_t = D_x^2 \left(\frac{u}{\sqrt{1+uv}} \right) \\
v_t = -D_x^2 \left(\frac{u}{\sqrt{1+uv}} \right)
\end{cases}
\]

Hamiltonian \[2\sqrt{1+uv}\]

Cosymplectic \[
\begin{pmatrix}
0 & D_x^2 \\
-2 & 0
\end{pmatrix}
\]

Symplectic \[
\begin{pmatrix}
0 & 2 \frac{v}{\sqrt{1+uv}} \\
-2 & 0
\end{pmatrix} \begin{pmatrix}
\frac{v}{\sqrt{1+uv}} \\
\frac{v}{\sqrt{1+uv}}
\end{pmatrix} \begin{pmatrix}
\frac{v}{\sqrt{1+uv}} \\
\frac{v}{\sqrt{1+uv}}
\end{pmatrix} \begin{pmatrix}
0 & 2 \frac{v}{\sqrt{1+uv}} \\
-2 & 0
\end{pmatrix} \\
\begin{pmatrix}
\frac{v_1}{(1+uv)^{\frac{3}{2}}} \\
\frac{v_1}{(1+uv)^{\frac{3}{2}}}
\end{pmatrix} \begin{pmatrix}
\frac{v_1}{(1+uv)^{\frac{3}{2}}} \\
\frac{v_1}{(1+uv)^{\frac{3}{2}}}
\end{pmatrix} \begin{pmatrix}
\frac{v_1}{(1+uv)^{\frac{3}{2}}} \\
\frac{v_1}{(1+uv)^{\frac{3}{2}}}
\end{pmatrix}
\]

Root \[
\begin{pmatrix}
u_t \\
v_t
\end{pmatrix}, \begin{pmatrix}
u_t \\
v_t
\end{pmatrix}
\]

Scaling \[
\begin{pmatrix}
xu_1 \\
xv_1
\end{pmatrix}
\]

2.33 Hirota–Satsuma system

Reference: [HS81, Fuc82], [Kon87, p. 207], [Oev90, pp. 32, 61], [Oev84, pp. 31, 84];
2.34 The Symmetrically–coupled Korteweg–de Vries system

Reference: [Fuc82];

Equation
\[\begin{align*}
 u_t &= \frac{1}{2} u_3 + 3 uu_1 - 6 vv_1 \\
 v_t &= -v_3 - 3 uv_1
\end{align*} \]

Hamiltonian
\[\frac{1}{2} (u^2 - v^2) \]

Cosymplectic
\[\begin{pmatrix}
 \frac{1}{2} D_x^3 + u D_x + D_x u & v D_x + D_x v \\
 v D_x + D_x v & \frac{1}{2} D_x^3 + u D_x + D_x u
\end{pmatrix} \]

Symplectic
\[\begin{pmatrix}
 \frac{1}{2} D_x + u D_x^{-1} + D_x^{-1} u & -2 D_x^{-1} v \\
 -2 v D_x^{-1} & -2 D_x
\end{pmatrix} \]

Recursion
\[R \]

Root
\[\begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix}, \quad \begin{pmatrix}
 u_t \\
 v_t
\end{pmatrix} \]

Scaling
\[\begin{pmatrix}
 xu_1 + 2u \\
 xv_1 + 2v
\end{pmatrix} \]

\[R(u, v) = \begin{pmatrix}
 \frac{1}{2} D_x^3 + D_x \cdot u + u D_x & D_x \cdot v + v D_x \\
 D_x \cdot v + v D_x & \frac{1}{2} D_x^3 + D_x \cdot u + u D_x
\end{pmatrix} \cdot
\begin{pmatrix}
 \frac{1}{2} D_x + D_x^{-1} \cdot u + u D_x^{-1} & -2 D_x^{-1} \cdot v \\
 -2 D_x^{-1} & -2 D_x
\end{pmatrix} \]

\[\sim \begin{pmatrix}
 \frac{1}{2} u_3 + 3 uu_1 - 6 vv_1 \\
 -v_3 - 3 uv_1
\end{pmatrix} \otimes D_x^{-1} \left(1, \quad 0 \right) + \begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix} \otimes D_x^{-1} \left(u, \quad -2v \right) \]

2.35 The Complexly–coupled Korteweg–de Vries system

Reference: [Fuc82];

Equation
\[\begin{align*}
 u_t &= u_3 + v_3 + 6 uu_1 + 4 uv_1 + 2u_1 v \\
 v_t &= u_3 + v_3 + 6 vv_1 + 4 vu_1 + 2v_1 u
\end{align*} \]

Hamiltonian
\[\frac{1}{2} (u + v)^2 \]

Cosymplectic
\[\begin{pmatrix}
 D_x^3 + 2(u D_x + D_x u) & 0 \\
 0 & D_x^3 + 2(v D_x + D_x v)
\end{pmatrix} \]

Symplectic
\[\begin{pmatrix}
 D_x^{-1} & D_x^{-1} \\
 D_x^{-1} & D_x^{-1}
\end{pmatrix} \]

Recursion
\[\begin{pmatrix}
 D_x^2 + 4u + 2u_1 D_x^{-1} & D_x^2 + 4u + 2u_1 D_x^{-1} \\
 2D_x + 4v + 2v_1 D_x^{-1} & 2D_x + 4v + 2v_1 D_x^{-1}
\end{pmatrix} \]

Root
\[\begin{pmatrix}
 u_1 \\
 v_1
\end{pmatrix} \]

Scaling
\[\begin{pmatrix}
 xu_1 + 2u \\
 xv_1 + 2v
\end{pmatrix} \]

Equation
\[\begin{align*}
 u_t &= u_3 + 6 uu_1 + 6 vv_1 \\
 v_t &= v_3 + 6 vv_1 + 6 vu_1
\end{align*} \]

Hamiltonian
\[\frac{1}{2} (u^2 + v^2) \]

Cosymplectic
\[\begin{pmatrix}
 D_x^3 + 2(u D_x + D_x u) & 2 D_x v + 2v D_x \\
 2D_x v + 2v D_x & D_x^3 + 2(u D_x + D_x u)
\end{pmatrix} \]
Symplectic \(\begin{pmatrix} D_x^{-1} & 0 \\ 0 & D_x^{-1} \end{pmatrix} \)

Recursion \(\begin{pmatrix} 4v + 2u_1 D_x^{-1} & 4v + 2v_1 D_x^{-1} \\ D_x^2 + 4u + 2u_1 D_x^{-1} & D_x^2 + 4u + 2u_1 D_x^{-1} \end{pmatrix} \)

Root \(\begin{pmatrix} u_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ u_1 \end{pmatrix} \)

Scaling \(\begin{pmatrix} xu_1 + 2u \\ xv_1 + 2v \end{pmatrix} \)

2.36 Coupled nonlinear wave system (Ito system)

Reference: [Ito82, AF87], [Dor93, p. 94];

Equation \(\begin{cases} u_t = u_3 + 6uu_1 + 2v_1 \\ v_t = 2uv_1 + 2u_1v \end{cases} \)

Hamiltonian \(\frac{u^2 + v^2}{2} \)

Cosymplectic \(\begin{pmatrix} D_x^3 + 4uD_x + 2u_1 & 2vD_x \\ 2vD_x + 2v_1 & 0 \end{pmatrix} \)

Symplectic \(\begin{pmatrix} D_x^{-1} & 0 \\ 0 & D_x^{-1} \end{pmatrix} \)

Recursion \(\begin{pmatrix} 2v + 2v_1 D_x^{-1} & 0 \\ D_x^{-1} & 0 \end{pmatrix} \)

Root \(\begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \)

Scaling \(\begin{pmatrix} xu_1 + 2u \\ xv_1 + 2v \end{pmatrix} \)

2.37 Drinfel’d–Sokolov system

Reference: [Gök98];

Equation \(\begin{cases} u_t = 3uv_1 \\ v_t = 2v_3 + u_1v + 2uv_1 \end{cases} \)

Hamiltonian \(\frac{u^2}{2} \)

Cosymplectic \(\begin{pmatrix} 2D_x^3 + 2uD_x + u_1 & 2vD_x + v_1 \\ 2vD_x + v_1 & 2D_x^3 + 2uD_x + u_1 \end{pmatrix} \)

Symplectic \(\begin{pmatrix} D_x^3 + \frac{5}{2}(uD_x + D_x u) & -15vD_x + \frac{15}{2}v_1 \\ -15vD_x - \frac{45}{2}v_1 & -27D_x^3 - \frac{27}{2}(uD_x + D_x u) \end{pmatrix} \)

\(-\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^\dagger D_x^{-1} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}^\dagger + \left(\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \right)^\dagger D_x^{-1} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^\dagger \)

\(-18 \begin{pmatrix} 0 \\ v \end{pmatrix}^\dagger D_x^{-1} \begin{pmatrix} 0 \\ v \end{pmatrix}^\dagger, \)

Root \(\begin{pmatrix} u_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \)

Scaling \(\begin{pmatrix} xu_1 + 2u \\ xv_1 + 2v \end{pmatrix} \)

\(\eta_1 = -u_2 - 2u_2^2 + 3v^2; \)
\[\eta_2 = 9v_2 + 6uv, \]
\[h_1 = -2u_5 - 10uv_3 - 25u_1u_2 + 30v_3v_2 + 45v_1v_2 - 10u^2u_1 + 15v^2u_1 + 30uvv_1, \]
\[h_2 = 18v_5 + 10uv_3 + 35w_1v_1 + 45u_1v_2 + 30uv_3 + 10uu_1v + 10u^2v_1 + 15v^2v_1. \]

2.38 Benney system

Reference: [Ben73, AF87];

Equation
\[
\begin{align*}
 u_t &= vv_1 + 2D_x(uw) \\
 v_t &= 2u_1 + D_x(vw) \\
 w_t &= 2v_1 + 2ww_1
\end{align*}
\]

Hamiltonian
\[uu + \frac{v^2}{2} \]
Cosymplectic
\[
\begin{pmatrix}
 uD_x + D_xu & vD_x & wD_x \\
 D_xv & 0 & 2D_x \\
 D_xw & 2D_x & 0
\end{pmatrix}
\]
Symplectic
\[
\begin{pmatrix}
 0 & 0 & D_x^{-1} \\
 0 & D_x^{-1} & 0 \\
 D_x^{-1} & 0 & 0
\end{pmatrix}
\]
Recursion
\[
\begin{pmatrix}
 2 & 0 & v + v_1D_x^{-1} \\
 0 & 2 & w + w_1D_x^{-1}
\end{pmatrix}
\]
Root
\[
\begin{pmatrix}
 u_1 \\
 v_1 \\
 w_1
\end{pmatrix}
\]
Scaling
\[
\begin{pmatrix}
 xu_1 \\
 xv_1 + \alpha \begin{pmatrix} 3u \\ 2v \end{pmatrix} \\
 xw_1
\end{pmatrix}
\]

2.39 Dispersive water wave system

Reference: [AF87];

Equation
\[
\begin{align*}
 u_t &= D_x(uw) \\
 v_t &= -v_2 + 2D_x(vw) + uu_1 \\
 w_t &= w_2 - 2v_1 + 2ww_1
\end{align*}
\]

Hamiltonian
\[vv + \frac{u^2}{2} \]
Cosymplectic
\[
\begin{pmatrix}
 0 & D_xu & 0 \\
 uD_x & vD_x + D_xv & -D_x^2 + wD_x \\
 0 & D_x^2 + D_xw & -2D_x
\end{pmatrix}
\]
Symplectic
\[
\begin{pmatrix}
 D_x^{-1} & 0 & 0 \\
 0 & 0 & D_x^{-1} \\
 0 & D_x^{-1} & 0
\end{pmatrix}
\]
Recursion
\[
\begin{pmatrix}
 u & -D_x + w & 2v + v_1D_x^{-1} \\
 0 & -2 & D_x + w + w_1D_x^{-1}
\end{pmatrix}
\]
Root
\[
\begin{pmatrix}
 u_1 \\
 v_1 \\
 w_1
\end{pmatrix}
\]
A list of $1 + 1$ dimensional integrable equations and their properties

Scaling
\[
\begin{pmatrix}
x u_1 + \frac{3}{2} u \\
x v_1 + 2v \\
x w_1 + w
\end{pmatrix}
\]
If $u = 0$, this system reduces to the Broer–Kaup system studied in [Gök98].

References

[Dor93] Dorfman I, Dirac structures and integrability of nonlinear evolution equations, John Wiley & Sons Ltd., Chichester, 1993.

A list of 1 + 1 dimensional integrable equations and their properties 233

