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Abstract: In the reliability literature, there are studies that jointly study maintenance and production and that is 22 

typically restricted to one failure mode, and fail to address the case where multiple failure modes exist. This study 23 

investigates the problem of joint optimization of lot sizing and maintenance policy for a multi-product production 24 

system subject to two failure modes. The failure of the first mode refers to the soft failure that occurs after defects arrive. 25 

The failure of the second mode is a hard failure that occurs without any early warning signals. Products are sequentially 26 

produced by the system and a complete run of all products forms a production cycle. The system needs to be re-set up 27 

before producing a different product. Both the production cycle and the set-up point depend on the lot sizes of products. 28 

Models are proposed for two maintenance policies: 1) arranging the maintenance to be at the end of each production 29 

cycle; 2) arranging the maintenance to be at set-up points. The expected profit per unit time is formulated to obtain the 30 

optimal lot sizing and maintenance policy. Some properties of proposed models are proved, which show that the op-31 

timal lot sizing and maintenance policy can be obtained under certain conditions. Case studies and sensitivity analyses 32 

are presented to illustrate the proposed models of two maintenance policies. Basically, the results show that the pro-33 

ducer will gain the most profit if the optimal lot sizing and maintenance policy are adopted. The results of comparing 34 

both maintenance policies reveal that the excessive maintenance is not economic. The sensitivity analyses illustrate 35 

that reducing the cost caused by failures and improving system reliability are effective ways to increase the expected 36 

profit per unit time. 37 

Keywords: Maintenance; Production; Failure modes; Lot sizing; Reliability 38 

 39 

1. Introduction 40 

In the manufacturing industry, small lots of items may be produced so that inventory cost can be reduced, which, 41 

however, may incidentally increase set-up cost. This raises a challenge on how the lot size can be optimised to improve 42 

the economic benefit of the manufacturer, which has been widely studied for a long time (Ben-Daya et al., 2008; Lamas 43 

& Chevalier, 2018; Kilic & Tunc, 2019; Ou & Feng, 2019; Taş et al., 2019). In most cases, the optimal lot sizing is 44 

obtained by minimising the sum of inventory holding and set-up costs (Liu et al., 2019). In practice, a production 45 

system may fail and maintenance may therefore be carried out (Barata et al., 2002; Garbatov & Soares, 2001;Xiao & 46 

Peng, 2014; Levitin & Lisnianski, 2000; Cha et al., 2017; Cha et al., 2018; Yang, et al., 2018; Yang et al., 2019; Zhang 47 

et al., 2014; Li et al., 2016). This raises another challenge on how the maintenance can be optimally scheduled to 48 

reduce the possibility of system’s future failures. 49 

Rising production costs and efficiency requirements are challenges for manufacturers (Schreiber et al., 2019). One 50 

important way to cope with these challenges is to improve maintenance effectiveness, on which there are many 51 

publications (Rivera-Gómez et al., 2020; Zhou & Yu 2020; Nguyen, 2019; Zhou et al., 2018; Cheng et al., 2018). For a 52 

multi-product system, it may need to be re-set up before producing a new lot of product items. In this case, the set-up 53 

epoch can be utilized as a maintenance window to reduce the interruption caused by the maintenance actions.  54 



 

3 

 

Herein, some studies optimized maintenance policies in conjunction with lot-size determination (Liu et al., 2015; Lu 55 

et al., 2013; Ben-Daya & Noman, 2006). Particularly, Ben-Daya & Noman (2006) developed an integrated model that 56 

considers simultaneously inventory production decisions, preventive maintenance (PM) schedule, and warranty policy. 57 

With this integrated model, it is illustrated through numerical examples that investment in PM can lead to savings in 58 

warranty claims for repairable products. As a result, the overall profit per unit, in certain cases, may be higher with PM 59 

than without PM. Lu et al. (2013) proposed a joint model for integrating run-based preventive maintenance (PM) into 60 

the capacitated lot sizing problem. They assumed that both production and PM operations are restricted by the system's 61 

maximum capacity and that the system reliability has to be maintained above a threshold value throughout the planning 62 

horizon. Liu et al. (2015) constructed an integrated production, inventory and preventive maintenance model. They 63 

concluded that the product lot sizes and the PM policy should be jointly optimised since they influence each other in 64 

terms of cost and profit. 65 

All the above-mentioned studies are restricted to a limitation that there is only one failure mode in such systems, which is 66 

normally not the case in practice, especially given that fact that a modern production system is composed of many 67 

components. For example, Ben-Daya & Noman (2006) presented a deteriorating system that experiences shifts to an out 68 

of control state. Lu et al. (2013) assumed that the production system is subject to deterioration with usage.  Liu et al. 69 

(2015) just considered the case where the failure of components is a two-stage process. However, many systems may fail 70 

due to both hard failures and soft failures in practice (Peng et al., 2019; Peng et al., 2010; Wang & Wu, 2014). Hard 71 

failures are self-announcing failures with instantaneous occurrence (Ye et al., 2014), while soft failures are failures with 72 

early warning signals, which can be detected by inspection or monitoring (Zhao et al., 2015). Modern production systems 73 

usually consist of both mechanical and electrical components. Mechanical components usually suffer soft failures such as 74 

wears whose failure may only be exposed by inspection, whereas electronic components usually suffer hard failure and 75 

may fail without any early warning. Motivated by this fact, this paper jointly determine the optimal lot sizing and 76 

maintenance policy for a production system that produces multiple products considering two different failure modes: 77 

failure modes I and II. Failure mode I represents the soft failure whose failure process is characterized with the delay-time 78 

concept, i.e., the failure process consists of two stages, the normal stage from normal to defective and the delay time stage 79 

from defective to failure, as shown in Fig. 1 (Mahmodi et al., 2017; Christer & Wang, 1995). Failure mode II is the hard 80 

failure whose failure happens without early symptoms and the failure rate increases with operating time. PM are 81 

conducted to detect and repair the possible defects of failure mode I in the system (Wu & Zuo, 2010; Wu & 82 

Clements-Croome, 2005; Cheng et al., 2018). In order to prevent the system from unexpected interruptions due to failure 83 

mode II, overhaul (OH) is implemented to restore the system to be the good as new status. In order to reduce the 84 

interruption to the production process, it is assumed that PM and OH are scheduled to be at the set-up epoch for different 85 

products during the production. Herein, the maintenance policy depends on the lot sizing and thus, the objective of this 86 

paper is to maximise the expected profit while jointly optimizing the lot sizing and the maintenance policy. 87 

 88 
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 89 

Fig. 1. Delay time concept. 90 

This study extends two prior papers: Liu et al. (2015) and Peng et al. (2019). The former considers joint optimisation 91 

of maintenance policy and production planning for the production system having only soft failure, whereas the latter 92 

considers merely the maintenance policy and does not consider production planning. Jointly considering the two types 93 

of failure in optimisation of maintenance policy and production strategy is a challenging task for three reasons. First, 94 

the two failure modes are different in terms of what/which increases the complexity in analyzing the failure process of 95 

the system. Second, multiple maintenance actions for different failure modes are used and therefore their combinations. 96 

Last but not least, because there are multiple decision variables regarding lot sizing and maintenance policy for this 97 

optimization problem, the analytic solution is difficult to be obtained. These challenges require us to model more 98 

complex situations and to propose more complex mathematical propositions. 99 

The remainder of this paper is arranged as follows. Section 2 gives system description and assumptions. Section 3 100 

introduces a model for the case where the system is maintained at the end of the production cycle. Section 4 extends the 101 

model to the case where the system is maintained at the set-up point. Section 5 studies the properties of optimal policy 102 

and an approach to obtaining it. Section 6 presents case studies and sensitivity analyses to illustrate the applications. 103 

Section 7 concludes this study and suggests future research. 104 

 105 

Nomenclature 106 

Abbreviations and Acronyms 

PM Preventive maintenance 

OH Overhaul 

MR Minimal repair 

HPP Homogeneous Poisson process 

pdf Probability density function 

cdf Cumulative density function 

Notations 

k  Total different number of product types 

i  Index of the type of product 

Failure process

time

Normal state Defective state

FailureDefect arrival
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iD  Total demand of the ith product during the period of concern 

id  Total consumption rate of the ith product 

ip  Total production rate of the ith product 

n  Total number of the production cycles in the study period 

iT  Nominal production time of the ith product in one production cycle 

S  Number of PMs until a following OH is carried out 

u  Time point of a defect arrival 

  Rate of the defect occurrence 

1t  Delay-time of defect in failure mode I 

1 1( )f t  pdf of 
1t  

1 1( )F t  cdf of 
1t  

2t  Time of mode II failure 

2 2( )f t  pdf of 
2t  

2 2( )F t  cdf of 
2t  

2( )t  Hazard rate of 
2t  

i

hC  Average inventory holding cost per unit product per unit time for the ith product 

i

sC  Average cost per set-up for the ith product 

dC  
Average cost of repairing a defective component including the additional cost due to unavail-

ability 

pC  Average cost of an inspection at PM 

oC  Average cost of an OH 

fC 
 

Average cost of repairing a failure, which contains the cost for repairing or replacing the failed 

component and the additional cost of unavailability, where 1 and 2  , indicating failure 

modes I and II respectively 

FC
 

Total cost of repairing failures within the period of concern, where 1 and 2   indicating 

failure modes I and II respectively 

iR  
The gross profit per unit product i, which is equal to the unit sale price minus the unit produc-

tion costs excluding the maintenance, set-up and inventory costs 

( ; )E C   Expected cost of set-up (s), holding (h), and maintenance (m) within the period of concern 
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where ,  and s h m  , respectively 

( ; ; )E C m   
Expected cost of OH (o), PM (p), and failure (f) which constitute the expected maintenance cost 

within the period of concern where ,  and o p f , respectively 

( ; , )E C n S  Expected total cost of the period of concern with n and S as the decision variables 

( ; , )E P n S  Expected profit per unit time with n and S as the decision variables 

 107 

2. System Description and Assumptions 108 

2.1. System description 109 

In this study, we consider a system that produces multiple products. The fixed demands of different products within 110 

a certain period are divided into small lot sizes and the products are produced in sequence. Here a production cycle is a 111 

complete run of all products during the production process, as shown in Fig.2. Each product is produced exactly once 112 

within a production cycle and the cycle is repeated over time. Each time when the system turns to produce a different 113 

product, the system needs to be re-set up. These set-up time epochs can be utilized for maintenance to avoid inter-114 

rupting the production process. 115 

The production system under consideration is subjected to two different and statistically independent failure modes. 116 

Failure mode I is modeled based on the delay-time concept and its failure process includes two stages: a normal stage 117 

and a defective stage. The defective stage can be detected by inspection. For a multi-component system, the arrival of 118 

defects is assumed to follow a homogeneous Poisson process (HPP) (Christer & Wang, 1995). In contrast, failure mode 119 

II corresponds to the failure occurrence without any early warning. 120 

Three types of maintenance, PM, OH and minimal repair (MR), are applied. PM is used to inspect possible defects 121 

and then fix them. PM is assumed to be able to fix all the defects due to failure mode I but it does not affect the failure 122 

rate of mode II. OH, however, can fix defects and further restore the system to be good as new. In particular, OH can 123 

not only fix defects due to mode I but also reduce the failure rate of mode II to the level as it was at the beginning of the 124 

production. In case where the system fails between two successive preventive actions (PM or OH), MR is used to 125 

restore the system to work without changing the occurrence process of either failure mode. 126 

For the sake of practical implementation convenience, we assume that an OH is carried out after every S  consecutive 127 

PMs. Hence, we introduce the concept of maintenance cycle and define it as a complete run of S  PMs and one OH. Two 128 

different maintenance policies are studied, where the first policy arranges PMs and OHs to be at the end of the production 129 

cycles and the second policy arranges PMs and OHs to be at set-up periods. The production process under consideration 130 

are under infinite time horizon, and the excepted total profit per unit time is used as the objective to be maximized, where 131 

n  (the total number of the production cycles) and S  are two decision variables. The models under the two policies are 132 

constructed in Section 3 and Section 4, which are referred to as “Model of Case 1” and “Model of Case 2”, respectively. 133 
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 134 

Fig. 2. A typical example of a production cycle with four products. 135 

 136 

2.2. Assumptions 137 

1) The demands of all products are fixed. For each type of product, its demand can be divided into n  small lot sizes 138 

that are produced according to a preset and fixed sequence. The production process is within an infinite time horizon.  139 

2) Each product is produced once in a production cycle, and the production cycle is a complete run of all products 140 

according to their lot sizes. 141 

3) The production system is subject to two different, independent failure modes. 142 

4) The failure process of mode I is divided into two stages, normal and delay time stages, where the arrival of defects 143 

follows an HPP with occurrence rate  . The delay time of all defects is independently and identically distributed. 144 

5) The failure rate of failure mode II increases with the operating time and the failure of this mode occurs without 145 

early warning symptoms. 146 

6) PMs and OHs are carried out at set-up points to reduce interruption to the production. A PM only detects and fixes 147 

all defects with respect to failure mode I, whereas OH renews the whole system to prevent both two failure modes.  148 

7) An OH is carried out after every S  consecutive PMs. S  consecutive PMs and a following OH constitutes a 149 

maintenance cycle. 150 

8) When a failure occurs, a minimal repair is always performed. The minimal repair resumes the system from the 151 

failure without changing the failure process. 152 

9) Maintenance time on PM, OH, set-up and failures are negligible. 153 

Assumption (1) is directly abstracted from the lot production when its demand is fixed. Assumptions (2) and (3) have 154 

already been explained in Section 2.1. Assumption (4) was used in previous studies based on delay-time models (Liu et 155 

al., 2013). However, it should be noted that even though the defect arrival follows an HPP, the failure process of the 156 

defect is a Non-Homogeneous Poisson Process (NHPP). Assumption (5) is an approximation from the industry practice, 157 

because failure mode II is an outcome of many unobserved and unpredictable factors so that the failure rate and the 158 

failure process due to this mode can only be described with operating time. The failure rate is assumed to increase as 159 

Product 1

T1

In
v
en

to
ry

Production cycle

T2 T3 T4

Product 2

Product 3

Product 4

Production process
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time, as most systems are degrading with time. For example, the failure time is usually described by the Weibull dis-160 

tribution with shape parameter bigger than 1. Assumption (6) is a fact observed in the industry of typical lot production: 161 

the set-up epoch is usually used for PM and OH in case of system failure. This is particularly true for continuous lot 162 

production, such as steel production, where the interruption cost of production caused by maintenance or failure is 163 

high. Assumption (7) is mathematically an expression for the maintenance cycle according to assumption (6) and 164 

system description. Compared with PM, OH is a thorough repair, so it is usually more costly. Herein, OH should be 165 

conducted less frequently than PM. Assumption (8) is widely used in maintenance modeling (Liao, 2012). In the in-166 

dustry of typical continuous lot production, resuming the production from its failure is usually urgent so that the repair 167 

time is limited. In this case, the most cost-effective way is to detect and further repair or replace only the failed com-168 

ponent, which is called minimal repair. As a result, this repair mode basically cannot influence the overall system 169 

defect rate and failure intensities. Assumption (9) is an approximation which is used to simplify the modeling process. 170 

In fact, compared with the production time (usually calculated by month or year), the downtimes caused by PM, OH, 171 

set-up and system failure(usually calculated by hour) are much shorter. 172 

 173 

3. Model of Case 1: maintaining the system at the end of each production cycle 174 

In this case, a maintenance cycle contains 1S   consecutive production cycles. For a maintenance cycle, PM is 175 

carried out at the end of each of the first S  production cycles, whereas OH is carried out at the end of the  1S  th 176 

production cycle. Since the maintenance cycle repeats during production in terms of both lot sizing and maintenance 177 

policy, we only need to consider one maintenance cycle as the study period. The duration of a production cycle is 178 

1

k

ii
T

 , where iT  is the nominal production time of the ith product in one production cycle. Accordingly, the duration 179 

of a maintenance cycle is  
1

1
k

ii
S T


  . 180 

To calculate the gross profit, we first estimate the total cost of a maintenance cycle. This total consists of maintenance 181 

costs, inventory holding cost and set-up cost. Then the expected total profit of a maintenance cycle can be obtained by 182 

subtracting the total cost from the total gross profit. Finally, the expected profit per unit time is calculated by dividing the 183 

total profit with the duration of a maintenance cycle. 184 

 185 

3.1. Maintenance costs 186 

The maintenance costs incur due to OH, PM and failure repair. In a maintenance cycle, OH is only carried out once, so 187 

the OH cost is ( ; ; ) oE C m o C . Now we model the PM cost and failure repair cost in a maintenance cycle, which are 188 

shown as follows. 189 

 190 

3.1.1. PM cost 191 



 

9 

 

The cost of PM has two parts: inspection and defect repair. Assume that the average cost of a PM is pC , then the cost of 192 

inspection for all PMs is pC S . 193 

To calculate the repair cost of defects, we need to determine the expected number of defects presented at PM. Consider 194 

the event that a defect arising in  ,u u du still exists at time t . As the arrival of defects follows an HPP with occurrence 195 

rate  , the probability of this event is 196 

   1
0

1 .
t u

duP h t u f h dh du 
    

  
                                                 

(1) 197 

Thus, the expected number of defects identified by the inspection at a PM is the number of defects that arise in a 198 

production cycle and still present at the end of this cycle, that is 199 

   
11 1 1

1 1 1 1 1
0 0 0

1 1

k k k

i i ii i i
T T t T

f h dh dt F t dt   
   

       
 

   . 200 

Then, the cost of fixing defects during a maintenance cycle is  1

1 1 1
0

1

k

ii
T

dC S F t dt
    . It should be noted that the 201 

defects arising in the last production cycle in a maintenance cycle are directly removed by the OH at the end of the 202 

maintenance cycle. By adding up the two parts together, we have the expected PM cost as 203 

 1

1 1 1
0

( ; ; ) 1 .

k

ii
T

d pE C m p C S F t dt C S
                                                       (2) 204 

 205 

3.1.2. Repair cost 206 

Repair cost incurs due to two failure modes. For mode I, the probability that a defect arriving within  ,u u du  leads 207 

to a failure before time t  is 208 

   1
0

.
t u

duP h t u du f h dh 


                                                           (3) 209 

Then, the expected number of failures caused by defects in a production cycle is 210 

   
11 1 1

1 1 1 1 1
0 0 0

k k k

i i ii i i
T T t T

f h dhdt F t dt   
  

   . If the cost of repairing a failure of mode I is 
1

fC , we obtain the expected 211 

cost due to repairing failures of mode I 212 

   11 1

1 1 1
0

1 .

k

ii
T

F fC C S F t dt
                                                           (4) 213 

For failure mode II, the pdf ofthe failure occurrence at time t  for a renewed system is  2f t . Since the minimal repair 214 

does not change the failure process of failure mode II, the expected number of failures during  ,u u du  is  2 u du , 215 

where       2 2 21u f u F u    is the hazard rate. Thus, the expected number of failures in a maintenance cycle is 216 
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1
1

2 2 2
0

k

ii
S T

t dt
 

 . Then if the cost of repairing a failure due to mode II is 
2

fC , we obtain the expected cost due to 217 

repairing failures of mode II 218 

 
 

1
1

2 2

2 2 2
0

.

k

ii
S T

F fC C t dt
 

                                                                (5) 219 

Finally, by adding up the repair costs from the two failure modes, the expected total cost of repairing failure in a 220 

maintenance cycle can be obtained, as 221 

     
 

1 1
1

1 2 1 2

1 1 1 2 2 2
0 0

( ; ; ) 1 .

k k

i ii i
T S T

F F f fE C m f C C C S F t dt C t dt  
 

                              (6) 222 

 223 

3.1.3. Total maintenance costs 224 

Now we have the expected, total maintenance costs in a maintenance cycle which is the sum of OH cost, PM cost and 225 

failure repair cost, as 226 

 

       
 

1 1 1
1

1 2

1 1 1 1 1 1 2 2 2
0 0 0

; ( ; ; ) ( ; ; ) ( ; ; )

1 1 .

k k k

i i ii i i
T T S T

o d p f f

E C m E C m o E C m p E C m f

C C S F t dt C S C S F t dt C t dt    


  

  
           

     (7) 227 

 228 

3.2. Inventory holding cost 229 

To estimate the inventory holding cost during a maintenance cycle, firstly we need to quantify the inventory of a 230 

production cycle, since the production, consumption and inventory are the same in each production cycle. 231 

According to the notation and assumptions, iD  is the total demand of the ith product and n  is the number of production 232 

cycles. Then, we know that the lot size of product i  for each production cycle is /iD n  and the consumption rate is 233 

 1
/

k

i i ii
d D n T


   .  234 

Now the maximum inventory quantity of product i  can be obtained by multiplying the difference between the 235 

production rate and the consumption rate with the production time, which is  i i ip d T .  If both the production rate and 236 

the consumption rate are fixed, the total inventory holding of product i  in a production cycle is 237 

   
1

1/ 2
k

i i i ii
T p d T


 . Then, we have the expected inventory holding cost in a maintenance cycle, which is 238 

            1 1 1 1 1
; 1 2 1 2.

k k k k kj j

i j j j h i j j i j hi j i j i
E C h S T p d T C S T p D n T T C

    

        
    

      (8) 239 

 240 

3.3. Set-up cost 241 

It is obvious that the set-up cost of a production cycle is
1

k i

si
C

 .  Then, we have the set-up cost of a maintenance cycle  242 
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1

; 1 .
k i

si
E C s S C


                                                                  (9) 243 

 244 

3.4. Expected profit per unit time 245 

Now the expected total cost during a maintenance cycle can be calculated, which is the sum of maintenance costs, 246 

inventory holding cost and set-up cost,  247 

( ; , ) ( ; ) ( ; ) ( ; ).E C n S E C m E C h E C s                                                (10) 248 

Assume that 
iR  is the gross profit per unit product i , which is equal to the unit sale price subtracting the unit 249 

production costs that exclude the maintenance, set-up and inventory costs. Then the expected total gross profit in a 250 

maintenance cycle is 
1

k

i ii
R D

 . Thus, the total profit can be obtained by excluding the maintenance, set-up and 251 

inventory costs from the total gross profit, which is    
1

1 ( ; , )
k

i ii
S D R n E C n S


  . Finally, we have the expected 252 

profit per unit time, 253 

     

         

 
 

      
 

1 1

1

1 1

1

1 1 1 1 1 11 0 0

1
2

2 2 2 1 1 10

1

( ; , ) 1 ( ; , ) 1

1 1 1

1 2

1

k k

i ii i

k

ii

k k

i i ii i

T Tk

i i o d p fi

S T k k k j

f i j j i j hi j i

i

si

E P n S S D R n E C n S S T

S D R n C C S F t dt C S C S F t dt

C H t dt S T p D n T T C

S C

  



 





  



    
 

   
            



        

 

 

  

  

   
1

1 ,
k k

ii
S T


 
  

(11) 254 

where  /i i iT D np  is the production time of product i  within a production cycle,  
1

k

ii
T

 is the duration of a 255 

production cycle  and  
1

1
k

ii
S T


 
 

 
is the duration of a maintenance cycle. One can maximize ( ; , )E P n S  to obtain 256 

the optimal n  and S . 257 

 258 

4. Model of Case 2: maintaining the system at each set-up point 259 

In this case, a maintenance cycle contains 1S   consecutive set-ups, where a PM is carried out at each of the first S260 

set-up points and an OH is carried out at  1S  th set-up point. There are k  set-ups in a production cycle. It should be 261 

noted that the time between two consecutive set-ups is iT , which is the production time of product i  in a production 262 

cycle. 263 

In practice, S  and k  may not be an integral multiple of each other, so neither the production cycle nor the 264 

maintenance cycle forms a system renewal cycle. Thus, we need to use a combined cycle including  1S k  set-ups as 265 

the study period in this case. In this way, we can ensure that the study period is completely and repeatedly conducted 266 
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during the production process. A combined cycle can be divided into  1S   production cycles or k  maintenance 267 

cycles, and the duration of a combined cycle is  
1

1
k

ii
S T


  . We also start with the maintenance costs in this case. 268 

 269 

4.1. Maintenance costs 270 

The maintenance costs in this case are also calculated for three parts: OH, PM and failure repair. Since a combined 271 

cycle contains k  maintenance cycles, the total OH cost of a combined cycle is ( ; ; ) oE C m o C k . In addition, it should be 272 

noted that OH is carried out at set-up points of fixed positions with respect to a production cycle, i.e. 273 

      1 % ,2 1 % ,..., 1 %S k S k k S k   , where % is the modulo operator. Now we model the PM cost and failure 274 

repair cost in a combined cycle, which are shown as follows. 275 

 276 

4.1.1. PM cost 277 

The cost of PM has two parts: inspection and defect repair. The inspection cost is directly obtained according to the 278 

number of PMs in a combined cycle, which is pC Sk . 279 

According to Eq. (1), the expected total number of defects presented at set-up points during a maintenance cycle is 280 

   1 1 11 0
1 1

iTk

i
S F t dt


      . Among these defects, the expected number of defects detected and fixed by OH is 281 

 
 1 %

1 1 11 0
1

i S kTk

i
F t dt




     . Consequently, we obtain the expected number of defects repaired by PM. Then, we have 282 

the expected PM cost, 283 

     
 1 %

1 1 1 1 1 11 10 0
( ; ; ) 1 1 1 .

i i S kT Tk k

p d di i
E C m p C Sk C S F t dt C F t dt 



 
               (12) 284 

 285 

4.1.2. Cost of repair upon failures 286 

Failures are due to two failure modes. For failure mode I, according to (3), the expected number of failures occur 287 

between the ith and  1i  th set-up points is    
1

1 1 1 1 1 1
0 0 0

i iT t T

f t u dudt F t dt     . Thus, the repair cost for failures of 288 

mode I in a combined cycle is 289 

 1 1

1 1 11 0
( 1) .

iTk

F f i
C C S F t dt


                                                             (13) 290 

For failure mode II, since the maintenance cycle may not synchronize with the production cycle, the time between two 291 

OHs may be different. Thus, the expected number of failures of failure mode II is changed for different maintenance cycle 292 

so that the expected number of failures in each maintenance cycle should be calculated separately. Then we have the 293 

repair cost for failures of mode II is given by  294 
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     (15) 297 

where  1 1x   if x  is true;  1 0x   otherwise; and x    is the integer part of x . 298 

Finally, by adding up the repair costs for failure modes I and II, the expected total cost of repairing failures that occur in 299 

a combined cycle can obtained by 300 

1 2( ; ; ) .F FE C m f C C                                                                     (16) 301 

 302 

4.1.3. Maintenance costs 303 

Now we obtain the expected total maintenance cost in a combined cycle,  ;E C m , which is the sum of OH cost, PM 304 

cost and failure repair cost,  305 

 ; ( ; ; ) ( ; ; ) ( ; ; ).E C m E C m o E C m p E C m f                                                  (17) 306 

 307 

4.2. Inventory holding cost and set-up cost 308 

Since the production process in this case is consistent with Case 1, the calculations for inventory holding cost and 309 

set-up cost are the same as the model in Section 3, which are given in (8) and (9).  310 

 311 

4.3. Expected profit per unit time 312 

According to (10), we have the expected total cost during a combined cycle. Finally, based on the same gross profit in 313 

the mode of Case 1, the expected profit per unit time is obtained, as shown below 314 
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where  /i i iT D np  is the production time needed for product i  within a production cycle, 
1

k

ii
T

  
is the time of a 316 

production cycle  and  
1

1
k

ii
S T


 
 

 
is the time of a combined cycle. Maximizing ( ; , )E P n S , we can obtain the 317 

optimal n  and S . 318 

 319 

5. Property of the models  320 

Since this paper aims to seek both the optimal n  and S  that maximize ( ; , )E P n S  in equations (11) and (18), we need 321 

to know whether the optimal n and S exist or on what conditions they exist. If the optimal solution exists, one can seek it 322 

by maximizing ( ; , )E P n S  in equations (11) and (18). Moreover, the optimal solution can also be obtained according to 323 

these properties. However, the production period may last a long time period while the production cycle and maintenance 324 

cycle are just counted by a shorter time period in practice. As a result, n and S may be triple digits at most. In addition, n 325 

and S are discrete variables. Thus, the search space is usually small. Enumeration is a direct and reliable method to obtain 326 

the optimal result. Herein, the recommended solutions of optimization can be constructed based on the enumeration of the 327 

search space and the variation trend. 328 

In this section, focusing on the existence of the two decision variables, we discuss their properties. We first study the 329 

property of optimal S  for fixed n  and then study the property of optimal n  for fixed S . Since the properties and search 330 

algorithms for the models of two cases are similar, we just take the model of Case 1 as an example here.  331 

 332 

5.1. Optimal S  333 

Proposition 1. The optimal S , S , can be obtained in three situations:  334 

1). If  1

1 1 11 1 0
lim ( ; ) 1 ( ;2)

k

ii
Tk k

S o i d i pi i
L P S C T C T F t dt C L P

  


          , there exists a finite and unique S  335 

which can be obtained by satisfying the inequalities 336 
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where  
 

 1 1

1

1
2

2 2 2 2 2 21 0
( ; )

k k

i ii i

k

ii

S T S Tk

f ii S T
L P S C T S t dt t dt  







  
   

   ; 338 

2). If  1

1 1 11 1 0
1 ( ;2)

k

ii
Tk k

o i d i pi i
C T C T F t dt C L P

 


         , 1S  ; 339 

3). If  1

1 1 11 1 0
1 lim ( ; )

k

ii
Tk k

o i d i p Si i
C T C T F t dt C L P S

 


         , there is no need to conduct OH and the S  340 

does not exist. 341 
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The proof process of Proposition 1 is presented in Appendix. According to Proposition 1, we can give the following 342 

Proposition straightforwardly. 343 

Proposition 2. There exists a unique S , that maximizes ( ; , )E P n S if  
2 2 2limt t   , for any fixed 1n  . 344 

The proof process of Proposition 2 is presented in Appendix. According to Proposition 2, if the occurrence of 345 

failure mode II follows a Weibull Distribution       2
1

2 2 2

bb t a
f t b a t a e

 
  with 1b  , there exists a unique S  that 346 

maximizes ( ; , )E P n S  since 347 
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              (20) 348 

 349 

5.2. Optimal n  350 

Proposition 3. ( ; , )E P n S  is a strictly concave function of n  for any fixed 1S  , so there exists a unique optimal n , 351 

n , that maximizes ( ; , )E P n S . n  can be obtained by satisfying 352 

    
-1

1 1
( ; , ) 1 ( ; ) 1 0,

k k i

i o p si i
E P n S n S T M P n C C S S C

 
          
                         (21) 353 

where 354 

1 2 3( ; ) ( ; ) ( ; ) ( ; ),M P n M P n M P n M P n                                                    (22) 355 

and 356 
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                        (23) 357 

where  /i i iT D np . 358 

The proof process of Proposition 3 is presented in Appendix. In practice, n  should be an integer. Since ( ; , )E P n S  359 

is a strictly concave function of n  for any 0S  , we just need to compare 1( ; , )E P n S  and 2( ; , )E P n S  to obtain the 360 

optimal n , where  1 =intn n   and  2 =int 1n n   . Specifically, 2n  is straightforwardly the optimal n  if 1 0n   and 361 

2 =1n
, since ( ;0, )E P S  does not exist. There is a small possibility that 1 2( ; , ) ( ; , )E P n S E P n S  , so we may potentially 362 

have two optimal values. 363 

 364 
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6. Numerical examples 365 

In this section, two examples are presented to illustrate the models of Case 1 and Case 2, respectively.  We now 366 

choose two probability distributions for two failure modes, respectively. Exponential distributions have been used for 367 

delay-time modelling for many years (Christer and Wang, 1995). In addition, previous simulations have illustrated that 368 

for a complex system with many components, the pooled delay-time approximately follows an exponential distribution 369 

(Wang, 2012). Thus, we assume that the pdf of the delay-time of defects in failure mode I is an exponential distribution 370 

with parameter  . Besides, a Weibull distribution with scale parameter a  and shape parameter b  is used as the pdf of 371 

the failure time of failure mode II. Assume there is a centrifugal system where six different sizes of cast iron pipes are 372 

produced alternately. In this production process, the time unit is day and the production quantity unit is ton. Parameters 373 

used for two examples are shown in Table 1 and Table 2. 374 

Table 1. The values of parameters that are different for different products 375 

 Parameter 

Product 
iD  ip  

i

hC  
i

sC  
iR  

1 4500 50 0.31 200 380 
2 2500 50 0.33 210 410 
3 4000 80 0.32 205 400 
4 3600 60 0.31 200 380 
5 2000 50 0.34 220 420 
6 3500 50 0.32 208 400 

 376 

Table 2. The values of parameters that are same for different products 377 

dC  pC  oC  
1

fC  
2

fC      a  b  

600 200 15000 1500 3000 0.225 0.042 1.03 1.05 

 378 

It can be seen that only 6 products are produced by the system and the least demand of these products is 2000. Herein, 379 

the maximums of n and S are 2000 and 1999 respectively, which means that the search space for this case is less than 380 

4,000,000. In fact, the number of lots (n) will be less than 100 in practice. Anyway, the search space is not large for this 381 

case. As we discussed in Section 5, the enumeration approach that compares all the results of concerned search space is 382 

appropriate for the solution of the optimization problem of small search space. Thus, enumeration approach is used here 383 

to obtain the optimal solution. 384 

 385 

6.1. Example 1: the example for the model of Case 1 386 

This example is presented to illustrate the model proposed for Case 1. Based on the proposed model and the values of 387 

parameters, the maximum expected profit per unit time is achieved when 29n   and 5S  , which is 17887.66. The 388 

results of the expected profit per unit time in terms of n  changing from 10 to 50 and S  changing from 2 to 20 are shown 389 
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in Fig. 3. To clearly detail the variation of the expected profit per unit time, the results are shown in four perspectives: (a) 390 

3 dimensions, (b)  contour, (c) 29n  , and (d) 5S  . 391 

 

(a) 3 dimensions 

 

(b) contour 

 

(c) n=29 

 

(d) S=5 

Fig. 3.  The expected profit per unit time as a function of n and S by the model in Case 1 392 

 393 

In Fig 3, it can be seen that the expected profit per unit time generally increases within small n  or S  and then 394 

decreases. The maximum value is 17887.66 at the point of 29n   and 5S  . The results suggest the production system 395 

to produce in 30 production cycles (lots), where the optimal lot sizes for the six products are 4500 29 155 , 396 

2500 29 86 , 4000 29 138 , 3600 29 124 , 2000 29 69 , 3500 29 121 . It is also recommended that the 397 

maintenance cycle contains 5 1=6  production cycles, where PM is carried out at the end of each of the first 5 cycles and 398 

OH is carried out at the end of the 6th cycle. Besides, according to the model, we can know the duration of a production 399 

cycle and a maintenance cycle are about 12.41 and 74.46 days respectively. 400 

The results can be explained in a managerial logic. Basically, PM and OH become more frequent as n increases 401 

(shorter production cycle).  Compared with abandoning maintenance, more frequent preventive actions can attenuate 402 
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the risk of system failure and thus reduce the cost caused by failure, which is more effective to achieve higher profit. 403 

However, the cost of preventive actions also increases with the maintenance becoming more frequent. As a result, the 404 

profit will reduce if the maintenance is excessive. Thus, optimal n is obtained to strike the balance between the cost of 405 

preventive actions and the cost caused by failures. In contrast, PM also becomes more frequent but OH becomes less 406 

frequent as S increases, which means that the optimal S determines the optimal balance between the frequencies of PM 407 

and OH. In addition, since inspection does not prevent the occurrence of failure mode II, an appropriate frequency of 408 

OH is needed to prevent the system from failures of mode II. However, since the cost of an OH is much higher than the 409 

cost of a PM, too intensive OH is also an excessive maintenance which brings extra expenditure and reduces the profit. 410 

Herein, both n and S should be optimized in practice. 411 

6.2. Example 2: the example for the model of Case 2 412 

This example is presented to illustrate the model proposed for Case 2. The parameters here are set as the same as in 413 

Example 1. Based on the proposed model, the maximum expected profit per unit time is achieved when 20n   and 414 

23S  , which is 17508.98. The results of the expected profit per unit time in terms of n  changing from 10 to 50 and S415 

changing from 15 to 40 are shown in Fig. 4. To clearly detail the variation of the expected profit per unit time, the results 416 

are shown in four perspectives: (a) 3 dimensions, (b) contour, (c) 20n  , (d) 23S  . 417 

 

(a) 3 dimensions 

 

(b) contour 
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(c) n=20 

 

(d) S=23 

Fig. 4.  The expected profit per unit time as a function of n and S by the model in Case 2 418 

 419 

It can be seen that the changing trend of the expected profit per unit time by n  and S  in example 2 is the same as in 420 

example 1. The maximum result is 17508.46 at the point of 20n   and 23S  . This means the production system is 421 

suggested to produce in 20 production cycles(lots), where the optimal lot sizes for the six products are  4500 20=225 , 422 

2500 20=125 , 4000 20=200 , 3600 20=180 , 2000 20=100 , 3500 20=175 . The maintenance cycle is suggested 423 

to include 23 1 24   set-ups, where PM is carried out at each of the first 23 set-up points and OH is carried out at the 424 

24th set-up point. Besides, according to the model, we can know the duration of a production cycle is 18 while the 425 

duration of a combined cycle is 18 24=432 . As the maintenance cycle is not constant in the model of Case 2, we 426 

calculate the mean duration of a maintenance cycle as a reference, which is 432/6=72 . 427 

Comparing the results of these two examples, we can see that the maximum expected profit per unit time calculated by 428 

the model of Case 1 is larger than that of Case 2. This is because that maintaining the system at each set-up point is an 429 

excessive maintenance policy, which largely increases the maintenance cost. Herein, in this case it is better to maintain 430 

the system at the end of the production cycle. Besides, we can also find that the length of a production cycle in example 2 431 

is longer than that that in example 1 (18 vs 12.41). The reason behind is that in case of excessive maintenance, the interval 432 

time between set-ups is prolonged in the optimal policy in example 2. In contrast, since PM does not affect the failure 433 

process of mode II, the difference in the intervals of OH in optimal solution for two maintenance policies is small. As a 434 

result, the duration of maintenance cycle is generally the same for two examples (72 vs 74.46). 435 

In addition, it should be noted that OH will not be carried out if S   . In this case, the maintenance policy can only 436 

prevent the failure mode I and thus will largely decrease the profit, which is illustrated by the trend of the results above. 437 

Although lot sizing and maintenance policy can be optimized only considering the soft failure (failure mode I), it cannot 438 

obtain the maximal profit if the system subjects to both the soft failure and the hard failure. In fact, only under some 439 

extreme conditions the optimization considering only soft failures can reach the same result as optimization considering 440 
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both soft failures and hard failures, which is discussed in the following sensitivity analyses. Herein, compared with the 441 

previous model where only the failure mode I was considered (Liu et al., 2015), the proposed model in this study is 442 

significantly improved to be applied widely. 443 

 444 

6.3. Sensitivity analyses 445 

Here, sensitivity analyses are performed to investigate the sensitivities of the optimal schedule and the corresponding 446 

expected profit per unit time with respect to the variations of the parameters used. For sensitivity analyses, we use the 447 

original values of parameters in Table 1 and Table 2 as base-case values to adjust these parameters, where high value 448 

is 1.5 times the base-case value and low value is 0.5 times the base-case value. Then, we obtain the optimal lot sizing 449 

and maintenance policy as well as the corresponding expected profit per unit time, based on the adjusted parameters 450 

one at a time. To present the variance, we calculate the difference between the results of high value and low value. The 451 

optimal lot sizing and maintenance policy as well as the corresponding expected profit per unit time obtained based on 452 

base-case value are also listed as a reference. To facilitate the comparison between different parameters, we further 453 

present the change ratio which is defined as the difference of the expected profit per unit time dividing by the difference 454 

between high value and low value of parameter. 455 

Since a production cycle is a complete run of all products, the parameters for different products in Table 1 are 456 

synchronously varied for all products. Because there are 6 different products for the same parameter, the change ratio 457 

of the parameters in Table 1 is calculated as the difference of the expected profit per unit time dividing by the mean 458 

difference between high value and low value of parameter. The results of sensitivity analysis for Example 1 and Ex-459 

ample 2 are shown in Table 3 and Table 4, respectively. 460 

 461 

Table 3. Sensitivity analysis for Example 1 462 

 Optimal schedule (n, S), the expected profit per unit time   
Parameters Low value Base-case value High value Difference Change ratio 

iD  (14, 5), 17887.44 (29, 5), 17887.66 (43, 5), 17887.65 (29, 0), 0.21 0.00006 

ip  (47, 4), 6907.07 (29, 5), 17887.66 (23, 6), 28877.57 (-24, 2), 21970.50 387.71471 

i

hC  (23, 4), 17938.97 (29, 5), 17887.66 (34, 6), 17845.71 (11, 2), -93.26 -289.92746 

i

sC  (38, 7), 17944.75 (29, 5), 17887.66 (24, 4), 17842.30 (-14, -3), -102.45 -0.494523 

iR  (29, 5), 6855.71 (29, 5), 17887.66 (29, 5), 28919.60 (0, 0), 22063.89 55.39052 

dC  (32, 6), 17932.42 (29, 5), 17887.66 (26, 4), 17844.98 (-6, -2), -84.74 -0.14123 

pC  (29, 5), 17894.37 (29, 5), 17887.66 (28, 5), 17880.96 (-1, 0), -13.41 -0.00671 

oC  (29, 2), 18030.77 (29, 5), 17887.66 (29, 8), 17807.02 (0, 6), -223.74 -0.01492 

1

fC
 

(25, 4), 17927.34 (29, 5), 17887.66 (33, 6), 17852.30 (8, 2), -75.04 -0.05003 

2

fC
 

(30, 11), 19718.64 (29, 5), 17887.66 (28, 3), 16101.93 (-2, -8), -3616.71 -1.20557 
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(28, 5), 17969.26 (29, 5), 17887.66 (30, 5), 17806.97 (2, 0), -16.23 -72.13333 


 
(25, 4), 17911.05 (29, 5), 17887.66 (30, 5), 17868.49 (5, 1), -42.56 -1013.33333 

a
 

(28, 2), 14098.82 (29, 5), 17887.66 (29, 8), 19150.65 (1, 6), 5051.84 -4904.69903 

b  (31, +Inf), 21676.97 (29, 5), 17887.66
 

(160,1), 11237.40 (129, -Inf), -10439.57 -9942.44762 

 463 

Table 4. Sensitivity analysis for Example 2 464 

 Optimal schedule (n, S), the expected profit per unit time   
Parameters Low value Base-case value High value Difference Change ratio 

iD  (10, 23), 17508.98 (20, 23), 17508.98 (30, 23), 17508.98 (20, 0), 0 0 

ip  (30, 17), 6552.86 (20, 23), 17508.98 (16, 29), 28481.79 (-14, 12), 21928.93 386.98111 

i

hC  (15, 17), 17584.80 (20, 23), 17508.98 (25, 29), 17449.94 (10, 12), -134.86 419.25389 

i

sC  (24, 29), 17546.44 (20, 23), 17508.98 (19, 23), 17475.49 (-5, -6), -70.96 0.34252 

iR  (20, 23), 6477.04 (20, 23), 17508.98 (20, 23), 28540.93 (0, 0), 22063.89 55.39052 

dC  (20, 23), 17569.08 (20, 23), 17508.98 (20, 23), 17448.89 (0, 0), -120.19 -0.20032 

pC  (24, 29), 17543.68 (20, 23), 17508.98 (19, 23), 17477.94 (-5, -6), -65.73 -0.32865 

oC  (20, 11), 17652.05 (20, 23), 17508.98 (20, 35), 17425.35 (0, 24), -226.70 -0.01511 
1

fC
 (20, 23), 17519.87 (20, 23), 17508.98 (20, 23), 17498.10 (0, 0), -21.77 -0.01451 

2

fC
 

(20, 47), 19508.89 (20, 23), 17508.98 (21, 17), 15557.88 (1, -30), -3951.01 -1.31700 


 

(20, 23), 17579.97 (20, 23), 17508.98 (20, 23), 17438.00 (0, 0), -141.97 -630.97778 


 
(20, 23), 17515.59 (20, 23), 17508.98 (20, 23), 17502.69 (0, 0), -12.89 -306.90476 

a
 

(20, 11), 13370.26 (20, 23), 17508.98 (20, 35), 18888.56 (0, 24), -5518.30 -5357.5728 

b  (20, +Inf), 21647.71 (20, 23), 17508.98
 

(56, 1), 2220.66 (36, -Inf), -19427.05 -18501.96 

 465 

Table 3 and Table 4 show that the optimal result is sensitive with respect to the changes in all the parameters re-466 

garding products. Particularly, when the demands of these products increase ( iD increase), the expected profit per unit 467 

time can remain unchanged if the number of lots, n, also increases. This is reflected as n increases but the expected 468 

profit per unit time is almost constant with the growth in demands. On the contrary, the variation of the gross profit per 469 

unit product ( iR ) cannot affect the optimal n and S, but can directly improve the expected profit per unit time. In-470 

creasing the production rate (increasing ip ) can also improve the expected per unit time but the production cycle needs 471 

to be prolonged (n decreases) simultaneously so that the production is interrupted less frequently. Increasing both 472 

inventory holding cost (
i

hC ) and set-up cost (
i

sC ) will reduce the expected profit per unit time. When the inventory 473 

holding cost rises, the production cycle needs to be shortened (n increases) to reduce the inventory holding in order to 474 

improve the profit. Oppositely, when the set-up cost rises, the production cycle needs to be prolonged (n decreases) to 475 

reduce the number of set-ups in order to improve the profit. 476 
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Since the proposed model aims to study how to integrate the maintenance policy with lot sizing, the  focus of the 477 

sensitivity analyses is the parameters regarding maintenance, which are shown in Table 2. From Table 3 and Table 4, 478 

we know that the variations of all the cost parameters (
dC , pC , 

oC , 
1

fC , 
2

fC ) can change the maximum of the ex-479 

pected profit per unit time. It is easy to see that the expected profit per unit time changes most significantly with respect 480 

to the variation of 
2

fC among the parameters related to cost. In particular, one cost unit increased in repairing a failure 481 

of mode II will decrease 1.20557 and 1.31700 expected profit per time unit under the optimal lot sizing and mainte-482 

nance policy obtained by models of Case 1 and Case 2, respectively, while this figure is less than 0.5 for other cost 483 

parameters. This implies us that reducing the cost of repairing failures is the effective way to increase profit.  484 

The optimal lot sizing and maintenance policy is also sensitive with respect to the changes in these cost parameters. 485 

A larger 
dC and pC  will reduce the optimal n and S, which means that longer production cycle and shorter mainte-486 

nance cycle or combined cycle are recommended so that the frequency of PM is reduced if the costs of repairing a 487 

defective component and an inspection are higher. Oppositely, a larger oC  will increase optimal n and S, which means 488 

that shorter production cycle and longer maintenance cycle or combined cycle are recommended. In this case, OH is 489 

less frequent (larger S) to avoid high cost of overhaul, whereas the frequency of PM is increased (larger n) to maintain 490 

the production system. For failure cost parameters, the optimal n and S increase with 
1

fC  but decrease with 
2

fC . This 491 

paradox can be due to two reasons. On the one hand, a shorter production cycle (larger n) and a longer maintenance 492 

cycle or combined cycle (larger S) will increase the frequency of PM, which can avoid more failures of mode I if the 493 

cost of repairing a failure of this mode is larger (larger 
1

fC ). On the other hand, a shorter maintenance cycle or com-494 

bined cycle (smaller S) will increase the frequency of OH, which can avoid more failures of mode II if the cost of 495 

repairing a failure of this mode is higher (larger 
1

fC ). However, the results also prove that if the frequency of one 496 

preventive action is increased, the frequency of the other preventive action should be appropriately reduced in case of 497 

excessive maintenance. 498 

The results of the proposed models are also sensitive with respect to the changes in the values of the parameters about 499 

the failure modes (  ,  , a , b ) . It is obvious that the increases in the values of these parameters will reduce the 500 

expected profit per unit time. In fact, these increases lead to more possible failures so that a more intensive maintenance 501 

policy is needed to prevent the production system from these failures. In detail, the increase of   indicates the increase 502 

in the occurrence rate for the arrival of defects, and the increase of    indicates the decrease in the delay time for the 503 

arrival of failure in mode I. In this case, PM should be more frequent in case of failure mode I, which means a shorter 504 

production cycle (larger n) is recommended. Similarly, the decrease of a from 1.545 to 0.515 indicates that the hazard 505 

rate of failure in mode II is larger, as shown in Fig. 5 (a), and thus OH should be conducted more frequently (smaller S).  506 
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However, it is noted that the situation for b is different, as shown in Fig. 5 (b). If b<1, the failure rate decreases with 507 

operating time, which means that there is no need to carry out OH and S does not exist. This is consistent with Prop-508 

osition 2 in Section 5.1. Specifically, the failure rate is extremely large in the beginning if b is too small so that no 509 

matter how intensive OH is carried out, the failures of mode II still cannot be prevented. As a result, the optimal 510 

maintenance policy is to abandon OH in order to save the maintenance cost, as shown in two tables (S=+Inf means that 511 

the maintenance cycle is infinite). Oppositely, If b>1, the failure rate increases with operating time and the increasing 512 

rate is faster when b is larger. Thus, the OH should be carried out more intensive (larger n and smaller S) to renew the 513 

system in order to limit the increasing of the failure rate. It can be seen that only under the extreme conditions such as 514 

the concentration of hard failure risk at the beginning of the study period, it is unnecessary to consider both two failure 515 

modes. In this case, the effect of the proposed model is the same as the effect of previous models; otherwise, our model 516 

is better to handle the problem of the joint optimization of the lot sizing and maintenance policy. 517 

 518 

 

(a) Hazard rate of failure mode II with different a 

 

(b) Hazard rate of failure mode II with different b 

Fig. 5. Hazard rate of failure mode II with different a and b 519 

 520 

7. Conclusion 521 

In this paper, we studied the problem of joint optimization of lot sizing and maintenance policy for a multi-product 522 

production system subject to two failure modes. With some proposed propositions, we proved that the optimal solution 523 

exists under some certain conditions that are easy to be satisfied in practice. Numerical examples and sensitivity analyses 524 

are presented to illustrate the applications. The results of the examples show that lot sizing and maintenance policy need 525 

to be optimized in order to achieve the maximum of the profit. Both the shortage and the excess of maintenance will lead 526 

to the reduction of the expected profit per unit time. From the sensitivity analysis, it is found that reducing the cost caused 527 

by failures and improving the system reliability are effective ways to increase the expected profit per unit time. 528 
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Appendix 611 

A.1. Proof of Proposition 1 612 

To find the optimal *S  that maximises ( ; , )E P n S , we form the inequalities 613 
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that is, 617 
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The first inequality can be reformed as 619 
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According to equation (A4), equation (A5) implies 623 
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Similarly, from the second inequality in equation (A3), we have 625 
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Thus, let  
 

 1 1

1

1
2

2 2 2 2 2 21 0
( ; , ) , 0,1,2,...

k k

i ii i

k

ii

S T S Tk

f ii S T
L P n S C T S t dt t dt S  







  
    

    we have 627 

 

 

1

1

1 1 11 1 0

1 1 11 1 0

( ; , 1) 1 ,

( ; , ) 1 .

k

ii

k

ii

Tk k

o i d i pi i

Tk k

o i d i pi i

L P n S C T C T F t dt C

L P n S C T C T F t dt C









 

 

 
        


       

  

  

                         (A8) 628 

Then since  2 2t  is usually a monotonous increasing function in practice, we evidently have 629 
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Thus, we can obtain the optimal S  in the following three situations.  633 

The first one is the situation where 634 
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In this situation, there exists a finite and unique S
 which can be obtained by satisfying equation (A8) which is also 636 

equation (19). 637 

The second one is the situation where 638 
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In this situation, it is easy to know that ( ; , )E P n S decreases with S , so we have 1S  . 640 

The third one is the situation where 641 
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In this situation, ( ; , )E P n S  continuously increases with S  so S  , which means that there is no need to conduct 643 

overhaul and we do not have the S .  644 

This establishes Proposition 1. 645 

 646 

A.2. Proof  of Proposition 2 647 

If  
2 2 2limt t   , according to equation (A10) we have lim ( ; )S L P S  . Then the third situation in 648 

Proposition 1 cannot be satisfied. Thus, there exists a unique S  that maximizes ( ; , )E P n S . 649 
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A.3. Proof  of Proposition 3 651 

If we treat n  as a continuous variable, then ( ; , )E P n S  is a continuous function. To find an n  which maximizes 652 
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Then equation (A14) becomes 657 
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that is, 660 
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Simplifying equation (A17), we have 662 
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where  /i i iT D np . 668 
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and to its lower limit 0. Besides, as the cost for a 671 

failure is usually higher than the cost for a detected infect in practice, we assume 
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 1 1 0f dC S C S    . Therefore, 1( ; )M P n  generally decreases with n . Similarly, 2( ; )M P n  also strictly generally 673 
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strictly concave function of n for any 0S  . n  can be obtained by setting equation (A18) to be 0. 681 

This establishes Proposition 3. 682 


