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Abstract 

 

Accurate predictions of motor impairment after stroke are of cardinal importance for the patient, 

clinician, and health care system. More than ten years ago, the proportional recovery rule was 

introduced by promising just that: high-fidelity predictions of recovery following stroke based only 

on the initially lost motor function, at least for a specific fraction of patients. However, emerging 

evidence suggests that this recovery rule is subject to various confounds and may apply less 

universally than previously assumed. 

Here, we systematically revisited stroke outcome predictions by applying strategies to avoid 

confounds and fitting hierarchical Bayesian models. We jointly analyzed n=385 post-stroke 

trajectories from six separate studies – one of the currently largest overall datasets of upper limb 

motor recovery. We addressed confounding ceiling effects by introducing a subset approach and 

ensured correct model estimation through synthetic data simulations. Subsequently, we used model 

comparisons to assess the underlying nature of recovery within our empirical recovery data. 

The first model comparison, relying on the conventional fraction of patients called fitters, pointed 

to a combination of proportional to lost function and constant recovery. Proportional to lost here 

describes the original notion of proportionality, indicating greater recovery in case of a more severe 

initial impairment. This combination explained only 32% of the variance in recovery, which is in 

stark contrast to previous reports of >80%. When instead analyzing the complete spectrum of 

subjects, fitters and non-fitters, a combination of proportional to spared function and constant 

recovery was favoured, implying a more significant improvement in case of more preserved 

function. Explained variance was at 53%. 

Therefore, our quantitative findings suggest that motor recovery post-stroke may exhibit some 

characteristics of proportionality. However, the variance explained was substantially reduced 

compared to what has previously been reported. This finding motivates future research moving 

beyond solely behavior scores to explain stroke recovery and establish robust and discriminating 

single-subject predictions.  
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Introduction  

 

The science of clinical recovery after stroke, began with comprehensive yet mainly anecdotal 

descriptions of patients’ trajectories (Twitchell, 1951; Newman, 1972; G. Broeks, et al., 1999). It 

then moved to increasingly larger studies aiming to create robust prediction models for individual 

outcome. Initial impairment status crystallized as one of the most predictive features, providing 

the foundation of the proportional recovery rule (Prabhakaran et al., 2008). According to this 

widespread rule, the majority of stroke patients, considered fitters to the rule, recover about 70% 

of the initially lost function1 within the first few months after the initial event. Fitters and non-

fitters to this proportional (to lost function) recovery rule have been defined in several ways in 

previous studies. For example, by choosing a discrete initial cut-off score, clustering initial and 

follow-up scores, or utilizing measures of corticospinal tract integrity. The proportional recovery 

rule, developed initially for Fugl-Meyer (FM) assessment scores of the upper limb (Kundert et al., 

2019), has since been extended to various functional domains. Numerous studies on recovery post-

stroke claim to confirm proportional (to lost function) recovery of the upper limb (Zahran et al., 

2011; Byblow et al., 2015), the lower limb (Smith et al., 2017), language (Marchi et al., 2017), 

and neglect (Winters et al., 2017). Collectively, these studies consistently report high values of 

                                                 
1 “Function” here refers to the term “body function” defined as “physiological functions of body systems” in the 

International Classification of Functioning, Disability and Health (ICF) (Organization, 2001).  ”Lost function” 

therefore describes the motor impairment on a scale such as the Fugl-Meyer, with decreasing body function implying 

increasing impairment. 
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explained variance in cumulatively more than 500 participants, even as high as 94% (Winters et 

al., 2015). 

Very recently, doubt has been placed on these estimates for explaining the variance observed in 

recovery post-stroke (Hawe et al., 2019a; Hope et al., 2019). The concerns relate to the problem 

of mathematical coupling, when correlating an initial score and the amount of change (Lord, 1956; 

Hayes, 1988; Chiolero et al., 2013). This coupling confound may occur when the second (End) 

measurement has considerably less variability than the first (Initial) measurement, leading to a 

small ratio of End to Initial variabilities. Such small variability ratios of End to Initial 

measurements arise naturally in stroke recovery data based on the Fugl-Meyer assessment 

(Gladstone et al., 2002), as ceiling effects predominantly occur at the End time-point and cause a 

reduction in variability.  

Importantly, if this variability ratio of End to Initial measurements is small, the true relationship 

between Initial and End is irrelevant – we will, without question, find overwhelming evidence for 

a strong correlation between Initial and change measurements (Figure 1[A]). More concretely, 

correlations between the Initial measurement and the corresponding change score will 

automatically be high, as the change score is dominated by the Initial measurement in case of low 

variability of the End measurement due to ceiling effects. For example, let us assume three patients 

with Initial FM scores of 10, 35 and 50. All of them recover completely and we measure End FM 

scores of 66 in the chronic phase. Thus, there is no variability in their End score. Their change 

between End minus Initial measurements equals 56, 31 and 16 and correlates perfectly (r=-1.0) 

with the Initial measurement. Hence, this implies that testing proportional (to lost function) 

recovery in case of small variability ratios is tautological; it will always hold. Because it is central 

to our argument, we name the two confounds of mathematical coupling and ceiling effects, induced 

by small variability ratios and the impact of concentration of data towards ceiling, compression 

enhanced coupling. 

Having identified this compression enhanced coupling confound, it is essential to consider whether 

it can be circumvented to enable an accurate assessment of the proportional recovery question. 

This is what we aimed to do in this article. Our logic was as follows. 

1) The nature of recovery post-stroke cannot be meaningfully evaluated when there is a 

substantial ceiling effect at the second time-point (causing compression enhanced 

coupling). 



5 

 

2) By reducing data at ceiling, we can increase the variability ratio and address 

compression enhanced coupling. We additionally make sure that we do not incur any new 

confounds, when decreasing ceiling. 

3) Once this confound has been handled, we can fit various recovery models and determine 

which one explains the data best, in order to assess the underlying mechanisms of stroke 

recovery. 

 

Specifically, we first showed that estimates of explained variance for recovery were inflated, when 

models were fit to the entire sample of fitters (Figure 1[B]). This is the approach currently used 

in the literature. This inflation was expected on the basis of Hawe et al. (2019a) and Hope et al. 

(2019). We then reduced ceiling effects and compression enhanced coupling by creating subsets, 

i.e., we excluded a varying range of stroke participants with the highest scores at the Initial time-

point (Figure 1[C,D]). This procedure reduced the ceiling effect at the End time-point and 

therefore also increased the variability ratio. Critically, we validated this subset procedure in 

synthetic data experiments (Gelman and Hill, 2006). That is, we generated data with known ground 

truth and simulated three candidate explanations of recovery post-stroke: A) proportional to lost 

function; B) proportional to spared function; and C) constant recovery (Figure 2[A,B,C]). 

Proportional to lost function is the familiar pattern (referred to simply as proportional recovery in 

the literature), where a more severe initial impairment implies a more significant recovery. 

Proportional to spared function is the opposite pattern, in which individuals recover more if they 

have more preserved function at the Initial time-point. Constant recovery formalizes the idea that 

initial severity has no impact on recovery, which is the same size, whatever the initial impairment. 

These three patterns are different in all but one case, which is when there is no recovery (i.e., 

Y=X). We, then, imposed a ceiling in our synthetic data simulations and successively created 

subsets by excluding subjects with the highest Initial scores. Since the ground truth was available 

in these simulations, we were able to ensure our subset approach really reduced compression 

enhanced coupling (Figure 1[A]).  

 

Subsequently, we assessed recovery patterns in empirical stroke data. Therefore, we aggregated a 

substantial body of data, i.e., 385 individual post-stroke recoveries, across a range of representative 

studies focused on upper limb deficits measured as Fugl-Meyer scores (Buch et al., 2016; Byblow 
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et al., 2015; Feng et al., 2015; Guggisberg et al., 2017; Winters et al., 2015; Zarahn et al., 2011). 

We employed state-of-the-art hierarchical Bayesian models, enabling us to incorporate data from 

these various sources, while accounting for inter-study variability and fully modelling the 

uncertainty in the data. Crucially, these models also permitted conducting overall model 

comparisons, enabling us to assess the evidence in the data for each model. We considered the 

three change models mentioned before and shown in Figure 2[A,B,C] – proportional to lost, 

proportional to spared, and constant recovery. We also included a completely unconstrained 

standard-form regression, the most general of the models, which determined whether linear 

relationships outside our three candidate models explained the data any better (Figure 2[G,H,I]). 

While we first only considered patients who adhere to the conventional proportional recovery rule, 

i.e., fitters, we later extended the analyses to the full spectrum of fitters & non-fitters (Figure 

1[C,D]). 

 

Consequently, the core objective of this paper was to respond to the confounded nature of 

assessments of behavioral recovery from stroke, particularly from upper-limb impairments. We 

did so by applying a subset approach to reduce confounding effects. We then employed Bayesian 

models and model comparisons to answer the substantive scientific question: what mechanisms 

best explain the data on recovery of upper-limb impairment after stroke and with what explained 

variance? 

 

 

Material & Methods 

 

Participants and clinical data 

The analyses of post-stroke upper limb impairment were based on a sample of 385 acute stroke 

participants originating from six different studies on stroke recovery (Buch et al., 2016; Byblow 

et al., 2015; Feng et al., 2015; Guggisberg et al., 2017; Zarahn et al. 2011). Details on data 

acquisition are given in the supplementary material, section 3. In brief, we used anonymized 

data available from Zarahn et al. (2011) and Guggisberg et al. (2017) and combined it with 

secondary data from (Hawe et al., 2019a). Therefore, we had individual-level information on Fugl-

Meyer (FM) scores assessing upper limb motor impairment in the acute as well as chronic stage 
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(three to six months after the event; Nakayama et al., 1994). A minimum score of 0 implies no 

preserved and 66 maximal body function (Fugl-Meyer et al., 1975). In line with previous research 

(Feng et al., 2015), we split the stroke subject samples into fitters and non-fitters to the classic 

proportional recovery rule (Prabhakaran et al., 2008) based on their initial scores (Non-Fitters: 

FM-Initial≤10 points, Fitters: FM-Initial>10 points, Figure 1[B]). The first set of analyses were 

focused exclusively on fitters (n=243), and subsequent analyses highlighted findings on the entire 

sample, i.e., fitters and non-fitters (n=385). As all of the data has been published previously, ethics 

approvals had been granted for all individual primary studies. 

 

Bayesian hierarchical modelling of motor stroke outcome 

A hierarchical Bayesian framework was employed to allow for the balanced incorporation of data 

from various sources and facilitate model comparisons. More precisely, we built Bayesian 

multilevel (hierarchical) linear regression models with varying intercepts and slopes (Gelman, 

2006). Therefore, each of the six considered studies was characterized by estimated full probability 

distributions of intercept and slope parameters – rather than simple best-fit, maximum likelihood 

parameter estimates as usually employed in recovery studies. Retaining study-specific information 

in this statistical way was essential to addressing potential differences between studies. These 

differences could arise from independent data collection, involving study sites in different 

countries, and likely minor variations in therapy regimens. Nonetheless, given that each of the 

included studies considered similar measures at similar time points from broadly similar 

participants, information was also pooled across the various studies and a set of hyperparameters, 

i.e., across-study intercept and slope, was derived (Bzdok et al., 2020). Thus, intercepts and slopes 

had two levels that carefully captured across-study versus individual variation in the eligible stroke 

studies.   

 

The outcome variables that we sought to predict were either the raw FM-end score or Change (i.e., 

FM-end – FM-initial). We thus created a likelihood function for the outcome and linked it to the 

priors of our predictor variables, i.e., either the unaltered FM-initial score or Potential (FM-

maximum – FM-initial), through one of five different models: 
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The (classical) standard-form regression model: FM-end = b.FM-initial + a (with intercept a 

and slope b) 

The change model: Change = Potential.B + A, with Change = FM-end – FM-initial and Potential 

= FM-maximum – FM-initial, with FM-maximum = 66. 

The change model was more precisely framed in three different ways expressing various 

conceivable recovery models, which we highlighted in the Introduction (c.f. panels [A,B,C] of 

Figure 2): The classical proportional to lost function recovery model: Change = Potential.B, 

a proportional to spared function recovery model: Change = FM-initial.B (which takes the raw 

initial score), and a constant recovery model: Change = A. Once fitted, we determined whether 

the obtained models were truly proportional to lost, spared, or constant recovery by assessing the 

parameter settings, where 0 ≤ 𝐵 < 1 for the proportional to lost or spared function recovery and 

where 0 ≤ 𝐴 < 𝑀𝑎𝑥 ∧  𝑀𝑎𝑥 = 66 for the constant recovery model. We used lower case a and b 

to denote intercepts and slopes in standard-form regression models, which featured FM-end as 

outcome. Conversely, upper case A and B represented intercept and slope in change models, which 

had Change (FM-end – FM-initial) as outcome.  

 

A critical step in any Bayesian analysis is the specification of prior beliefs. We attenuated the 

effects of priors and simultaneously increased the influence of the actual data by choosing simple, 

weakly informative Gaussian priors (i.e., with large standard deviations) for slope and intercept 

(hyper-)parameters and half-Cauchy priors for corresponding variance terms.  

 

The full Bayesian model is specified below: Dependencies between variables are indicated with 

arrows, observed variables are in grey boxes, and the distributions defining variables are shown 

on the right. M denotes the number of studies analyzed and N(i) the number of subjects in each 

study. 
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Inference: The analytical derivation of posterior distributions is either computationally very 

expensive and challenging or not possible, as it requires the integration over thousands of unknown 

parameters. We thus deployed a recent Monte Carlo Markov Chain algorithm, the No U-Turn 

Sampler (NUTS), that does not compute the posterior distribution directly, yet draws samples from 

it in a stochastic way (Hoffman & Gelman, 2014, setting: draws=2000, n_init=1000; for quality 

assurance and to check for convergence: initially 4 chains, then 1 chain for final analyses). 

Marginal posteriors are given as mean and 95%-credible intervals. Posterior predictive checks 

were run to analyze the model performance, i.e., we predicted FM-end or Change scores based on 

parameter drawings from the posterior. In this way, we could assess whether data originating from 

our fitted hierarchical model resembled data from the true underlying distribution. We compare 

predicted means to the actual sample means and finally compute R-squared values as a measure 

of explained variance. 
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Synthetic data simulation experiments 

Before performing Bayesian model comparisons, we first conducted data simulations (Gelman & 

Hill, 2006, Chapter 8, p. 155) and synthetically generated data based on ground truth models. 

These simulations enabled us to test strategies to ensure correct model estimation despite the 

effects of noise and ceiling. 

We proceeded in the following way: We selected proportional to lost, proportional to spared 

function and constant recovery as “true” models. These models were re-arranged to obtain the 

standard-form classical regression, directly linking X and Y (Figure 2[D,E,F]). 

The transformation to standard-form enabled us to generate Y-values from those of X. To consider 

different degrees of recovery, we assessed these in 10% steps from 10–90% of the proportional 

recoveries and in steps of 5 from 5–50 points for constant recovery (Figure 2[D,E,F]). We then 

entered the empirical FM-initial scores of all fitters (n=243) in one of the “true” models, added 

noise, and enforced ceiling (for details on these procedures, c.f., supplementary materials, 

section 4). The final and critical step then was to fit a new linear regression model to the simulated 

data and compare the estimated parameters for intercept and slope to the given “true” parameters 

to answer whether it was still possible to estimate the “true” model after alterations by noise and 

ceiling. Also, we tracked the ratio of the standard deviations FM-end/FM-initial, Pearson 

correlations of FM-initial & FM-end, as well as FM-initial & Change and the number of simulated 

subjects at absolute ceiling, i.e., at an FM of 66 (maximum score). 

Aiming to reduce ceiling and thus its confounding effect, we implemented a subset approach by 

limiting the data simulations to specific FM-initial ranges, i.e., subset 1) FM-initial 10–60 

including subjects with initial scores between 10 and 60 (n=206), 2) FM-initial 10–50 (n=153), 3) 

FM-initial 10–45 (n=118), and 4) FM-initial 10–40 (n=92)2, and evaluated its effect on subsequent 

model estimation. This enabled us to assess in synthetic data, which subset approach gave us the 

best trade-off between retrieval of correct model and parameter settings, and size of the remaining 

data. For each of the described scenarios, simulations were repeated 1000 times. A typical 

simulation process is illustrated as the black annotations in Figure 1[A]. We refer to 

                                                 
2 In case of FM-initial 10-45 and FM-initial 10-40, we additionally excluded studies that had less than 10 subjects in 

the respective range (FM-initial 10-45: Zarahn et al. (2011), Buch et al. (2016); FM-initial 10-40: Zarahn et al. 

(2011), Buch et al. (2016), Byblow et al. (2015)).  
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supplementary materials, sections 5 and 7 for further details on these simulation experiments 

and intuitive examples. 

 

Final model comparisons 

Fitters only 

We initially focused on the fitters (FM-initial>10) portion of the data. Relying on the simulation 

results, we constructed Bayesian hierarchical models for the standard-form regression, the 

proportional to lost function, and proportional to spared function as well as the constant recovery 

models in the subset FM-initial 10–45 and conducted a Bayesian model comparison. We focused 

on this subset, as it represented an optimal compromise between mitigating ceiling effects and 

retaining as many subjects in the analysis as possible (FM-initial 10-45: n=118 out of 385 subjects, 

31%. Please note that we excluded the data originating from Zarahn et al. (2011) and Buch et al. 

(2016), as both datasets had less than 10 subjects within the range of FM-initial 10-45). Results 

for the subsets FM-initial 10–40 and FM-initial 10–50 are provided in supplementary materials, 

section 10. 

 

Despite our dataset being as large as currently possible, a potential limitation is that, for some of 

the studies included, we relied upon values extracted from published figures. This process missed 

68 subjects because multiple points sat on top of one another in scatter plots. To account for these 

missing values and determine an upper bound of R-squared for the winning model in our model 

comparison, we repeatedly (1000 times) took 68 random draws from the available FM-initial 

distribution. We excluded values not in the range 10–45 and placed the remaining values on the 

predicted linear fit (i.e., assuming perfect prediction by the standard-form model). By these means, 

we obtained an average R-squared value, which can be considered an upper bound when correcting 

for missing values. 

 

Fitters and non-fitters 

In the final analyses, we jointly investigated data on fitters (FM-initial>10) and non-fitters (FM-

initial≤10) by fitting the four competing models outlined before. Once again, we ran analyses using 

the subset approach, employing a decreased upper limit for FM-initial scores to prevent 

confounding by ceiling (FM-initial 0-45:  n=270 out of 385 subjects, 70%). 
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Statistical analyses 

The main analyses were conducted in a Bayesian hierarchical framework. The central inferential 

question is a model comparison. Specifically, we determined the models best describing the data 

based on their Leave-One-Out-Cross-Validation (LOOCV) (Vehtari et al., 2017), with LOOCV 

being a critical out-of-sample test of model fit – indicating whether our findings are likely to hold 

up in future studies. Model comparisons based on the widely applicable information criterion 

(WAIC) are also given in supplementary materials, section 8. The WAIC represents a principled 

means of weighing goodness-of-fit against model complexity (i.e., number of effective 

parameters) (Watanabe, 2013). Additionally, we report R-squared values, the standard measure of 

the effectiveness of models at explaining within-sample variability. 

 

Data availability 

The recovery data as well as jupyter notebooks (python 3.7, primarily software package pymc3, 

(Salvatier et al., 2016)) employed in this study are available from the authors on reasonable 

request.  

 

 

Results 

 

Descriptive statistics 

Individual studies as well as the joint distributions of Initial and End FM scores, median values, 

and quartiles, are illustrated in Figure 3. With regard to subtle differences between studies: Feng 

et al. (2015) only considered stroke subjects with FM-initial scores lower than 60. Guggisberg et 

al., (2017) included more subjects with lower Initial scores and scheduled the second assessment 

sooner on average, which likely underlies the more widespread and less skewed distribution of 

FM-end scores. Further characteristics, such as size, mean age, and sex of each study are 

summarized in Supplementary table 1. 
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Bayesian posterior distributions for stroke recovery prediction 

The hierarchical standard-form regression and change models built on the entirety of fitters 

(n=243) could be well estimated, as indicated by the convergence of four independently sampled 

(Monte Carlo Markov) chains for the posterior estimates of model parameters. Additionally, the 

predicted posterior mean was evenly distributed around the actual sample mean, indicating that 

the model can reproduce patterns occurring in the real data (Supplementary Figure 2). Figure 4 

illustrates the marginal posteriors for the across-study and study-specific intercept and slope 

parameters, arising from one final chain. Furthermore, Figure 5 highlights the joint posterior 

densities for intercept and slope parameters. A striking finding for both models was the dispersion 

of the individual studies’ intercepts and slopes. For the change model, the across-study mean for 

the slope was 0.64, thus specifying a proportional recovery of 64% for all six studies combined. 

However, the individual posterior means for slopes fell in the range between 54% (Guggisberg et 

al., 2017) and 70% (Feng et al., 2015), reflecting different patient mixes and evaluation time 

points. The six slopes also followed two general patterns, with three studies featuring lower and 

three studies higher proportional recovery amounts. As expected, the explained variance of the 

change model markedly surpassed that of the standard-form regression model (Predictive posterior 

check (PPC): R-squared: 70.8% vs. 42.7%), demonstrating the problematic inflation due to 

mathematical coupling highlighted in Hawe et al. (2019a) and Hope et al. (2019). Also, this 

inflation of explained variance coincided with a small ratio of standard deviations FM-end/FM-

initial, totaling 0.57. This small ratio at least partially resulted from the number of subjects 

reaching absolute ceiling at follow-up: 37 (15.2%). In sum, these are the canonical properties of 

compression enhanced coupling.  

 

Synthetic data simulation experiments 

Synthetic data simulations in the sample of fitters (Gelman and Hill, 2006) facilitated the detailed 

study of confounding effects of noise and ceiling as well as hypothetical conclusions when 

assuming three conceivable ground truth models: proportional to lost function, proportional to 

spared function, as well as constant recovery. 

 

Detailed descriptions as well as tables of the data simulations are given in supplementary 

materials section 7. In sum, the inclusion of noise did not impede the correct model and parameter 
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estimation. The situation changed markedly with the introduction of a ceiling: correct estimation 

deteriorated in parallel to the increase of subjects at absolute ceiling and with growing amounts of 

recovery (e.g., going from 10% of proportional recovery to 20%). This scenario also demonstrated 

the effects of compression enhanced coupling, since tracked Pearson correlations of FM-initial & 

Change increasingly became more extreme than those of FM-initial & FM-end after enforcing 

ceiling (Figure 6[A]). Importantly, the variability ratio, computed as σ(FM-end)/σ(FM-initial), 

decreased in parallel (Figure 6[B]). Figure 6[A] visualizes these courses: In case of proportional 

to spared function and constant recovery, the tracked Pearson correlations of FM-initial & Change 

before and after enforcing ceiling diverged dramatically (c.f., yellow and green lines, before and 

after ceiling). Crucially, trajectories after introducing ceiling closely resembled those of 

proportional to lost function recovery. Hence, when considering all fitters and disregarding any 

potential ceiling effects, there was only one possible conclusion: Data would follow a proportional 

to lost function recovery regardless of the real mechanism driving recovery. 

 

However, estimation performance gradually improved again, when running the simulations in 

subsets of fitters, i.e., considering only those below a certain cut-off of FM-initial. The most 

stringent subset of FM-initial 10–40 (92 subjects, out of 385, 24%) performed the best in terms of 

estimating the true intercepts and slopes for all models. However, in order to choose an appropriate 

subset range for the intended model comparisons, we tried to find the optimal balance of reducing 

possible confounds, while also retaining as many subjects in the analysis as possible. The subset 

FM-initial 10–50, containing 153 subjects (out of 385 in all studies, 40%), was only capable of 

retrieving proportional to spared function up to a proportion of 30% and 15 points of constant 

recovery, which we did not judge to be sufficient. On the other hand, we could only keep three 

studies and 24% of all subjects in the subset FM-initial 10–40, which seemed an inefficient use of 

hard-won empirical data and reduction to too few patients. Therefore, we established a further 

subset FM-initial 10–45 to combine the advantages of FM-initial 10–50 and 10–40. Based on the 

subset FM-initial 10–45 (118 subjects, out of 385, 31%), we were able to estimate the entire range 

of proportional to lost function; up to 40% of proportional to spared function, and up to 20 points 

of constant recovery. Besides, we were able to recover the true “space” of the generating model 

for all proportional to spared function models (section 5 of supplementary material). Hence, we 



15 

 

decided to focus upon the subset FM-initial 10–45 for model comparisons on the human data 

(results for FM-initial 10–50 and 10–40 are presented in section 10 of supplementary materials). 

 

Final model comparisons (on human data)  

 

Fitters in the subset of FM-initial 10 – 45 

The studies by Zarahn et al. (2011) and Buch et al. (2016) were excluded from these analyses since 

they had fewer than ten subjects in the range of FM-initial 10–45, which would lead to a substantial 

deterioration in accuracy when sampling from the posterior. Relying on the remaining 118 subjects 

(out of 385, 31%; 6 subjects were at absolute ceiling, 5%; variability ratio was 1.12), we 

successfully sampled posteriors for the (unconstrained) standard-form regression model, and 

change-form versions of proportional to lost function, proportional to spared function, and 

constant-recovery models. Resulting distributions for the marginal posteriors are displayed in 

Figure 7.  

 

The mean of the across-study slope-parameter in the proportional to lost function model equaled 

0.65 (95% credibility interval 0.39–0.90), thus indicating an across-cohort recovery of a little less 

than 70%. In contrast to the model on the entire dataset, the explained variance came to just 21.3%. 

Notably, this value was lower than the explained variance based on the (unconstrained) standard-

form regression model (PPC: R-squared: 31.5%). Across studies, subjects had a marginal posterior 

constant recovery of 26 points, ranging from 25 for Byblow et al. (2015) and Guggisberg et al. 

(2017) to 30 points for Winters et al. (2015). The explained variance amounted to only 5.8%. 

Explained variance dropped even further in case of proportional to spared function (PPC: R-

squared: -0.153, slope=0.85), with the negative value signaling the unsuitability of this model. 

Since these fittings put us on the boundary of correct parameter retrieval for proportional to spared 

and constant recovery, we provide further justification for our conclusions in the supplementary 

materials section 9. 

As the reported R-squared values are only comparable to a certain extent, since a model’s inherent 

degrees of freedom (i.e., flexibility) are not quantified in this measure, we performed a Bayesian 

model comparison based upon leave-one-out-cross-validated deviance values. The standard-form 

regression model, as well as the proportional to lost change model, had the lowest deviance and 
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were thus top-ranked. The standard-form regression model gave a fit that can be seen as a 

combination of proportional to lost function and constant recovery and could thus be viewed as 

liberal proportional to lost (Supplementary Materials, section 1). The constant recovery model 

followed these two models. Proportional to spared function performed the worst. Non-

overlapping confidence intervals for the differences in deviance increased confidence in the two 

winning models (Figure 7[E]; c.f., McElreath, 2018, Chapter 6.5, for a more in depth discussion 

on model comparisons). We refer to Supplementary Figure 3 for WAIC-based results, which 

yielded similar results and indicated equidistant differences between in-sample and out-of-sample 

estimates (horizontal distance between filled and unfilled circles in results panels), rendering a 

pronounced overfitting of the LOOCV-based models unlikely. Results for the additional subsets 

FM-initial 10–40 and 10–50 are broadly comparable to the subset FM-initial 10–45 

(Supplementary Figures 4 & 5).  

 

When adjusting for missing values in our dataset in additional analysis, we determined the upper 

bound of the R-squared value for the winning, standard-form regression model to be 44.7%. 

 

Fitters & Non-Fitters in the subset of FM-initial 0 – 45 

Merging non-fitters and fitters increased the total sample size to 385 subjects, out of which 39 

reached maximum values of 66 at follow-up (10%). Further characteristics, such as the ratio of 

standard deviations, are given in Supplementary table 1. Once again, we employed our subset 

approach and only considered subjects with FM-initial scores lower than 45, restricting our 

analysis to 270 subjects (out of 385, 70%; eight at absolute ceiling at follow-up, 3.0%). Posteriors 

of the various models’ parameters could be reliably sampled, as indicated by converging chains. 

Evaluating the standard-form regression model first: All of the individual slopes’ marginal 

posterior distributions had a mean in between 1.17 and 1.34, yet included 1 in their credibility 

intervals (across-cohort slope: 1.24; 95% credibility interval 0.99 – 1.52, Figure 8[D]). Therefore, 

they indicated a mixture of constant and proportional to spared function recovery (PPC: R-

squared: 52.8%), which is similar to the pattern in Figure 2[I]. Two of the change models, i.e., 

proportional to lost function and proportional to spared function, provided a very poor (negative) 

in-sample explained variance (PPC: R-squared: -0.13 and –0.51 for proportional to lost and 

proportional to spared function recovery, respectively, Figure 8[A,B]). Only the constant 



17 

 

recovery model could capture some positive variance (PPC: R-squared: 7.4%, Figure 8[C]). The 

final model comparison revealed the (unconstrained) standard-form regression model, indicating 

a mixture of proportional to spared function and constant recovery, and constant recovery as the 

winning models (Figure 8[E]).  

 

 

Discussion 

Current analyses of proportional recovery after stroke are subject to various confounds. We here 

proposed a subset approach to minimize a key confound, compression enhanced coupling, which 

we validated in synthetic data experiments. We furthermore employed hierarchical Bayesian 

models to analyze one of the largest, compiled dataset of upper limb recovery post-stroke (n=385) 

and evaluate various conceivable patterns of stroke recovery in overall model comparisons.  

 

We first carried out the subset approach focussing on those patients considered to be fitters to the 

proportional recovery rule. Thus, we considered all 118 participants with an Initial Fugl-Meyer 

(FM) score of at least ten to exclude non-fitters (Feng et al., 2015) and a score of less than 45 to 

decrease compression enhanced coupling (Figure 1[C]). In this case, model comparison pointed 

in the direction of either proportional to lost function, with a recovery proportion of 65%, or a 

combination of proportional to lost function and constant recovery (Figure 2[H]) as the 

underlying relationships. These findings were, therefore, generally in line with previous 

assumptions of proportional to lost function recovery post-stroke (Prabhakaran et al., 2008). 

However, the pure proportional to lost function recovery model could only explain 21% of the 

variance in recovery, a value drastically reduced in comparison to earlier studies, reporting up to 

94% (Winters et al., 2015). Given the likely confounds by compression enhanced coupling in these 

earlier studies, the current estimate of explained variance may be considered more accurate. As 

the standard-form regression directly linked initial and follow-up FM scores, it is important to note 

that this model was not prone to the confounds due to mathematical coupling.  

 

Of note, these conclusions substantially depended on the exclusion of patients with very low FM-

initial scores, so-called non-fitters: a completely different picture arose when employing the subset 

approach to the entire spectrum of subjects, i.e., fitters and non-fitters combined (FM-initial 0-45 
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to decrease compression enhanced coupling, n=270, Figure 1[D]). The model comparison led to 

the selection of a composite of proportional to spared function and constant recovery as the 

winning model (Figure 2[I]); the explained variance was 53%. In contrast to proportional to lost 

function, proportional to spared function recovery suggests that patients with greater preservation 

of function have a higher capacity to improve, presumably because basic abilities to move limbs 

could enable the re-acquisition of more sophisticated movement patterns more easily. Indeed, 

functional neuroimaging data have shown that a higher degree of residual motor function is 

associated with a more physiological and thus lateralized motor network architecture (Rehme et 

al., 2011). This lateralized architecture in turn has been shown to constitute a strong predictor for 

good motor recovery (Grefkes and Fink, 2014). Altogether, considering this recovery pattern could 

have important implications for the conceptualization of recovery trajectories. 

 

The pressing questions currently are: Are we in need of more studies jointly analyzing fitters and 

non-fitters, particularly given the higher explained variance for the whole sample? Are 32% or 

even 53% explained variance sufficient to justify a recovery rule that may guide individual 

predictions in a future of precision neurology?  

 

Clinical importance and prediction of recovery post-stroke 

Overestimation of the proportional recovery rule becomes particularly problematic when it impacts 

clinical practice, e.g., prompts the assumption of a spontaneous recovery process that exclusively 

depends on initial motor impairment. In particular, such a conclusion may limit the allocation of 

valuable therapy sessions to some stroke subjects and generate a negative prior expectation 

towards tailored therapies (Byblow et al., 2015;  Hawe et al., 2019b). Putting its suitability for 

single-participant prediction aside, Byblow and Stinear (2019) and Kundert et al. (2019) recently 

underscored the proportional recovery rule’s purpose for explaining the recovery process in stroke 

populations in general. From this perspective, it may be that proportional to lost function recovery 

explains fitters’ trajectories better than other change models, but the low level of explained 

variance suggests a need for further and better predictors. 

 

Because of the increase in the explained variance of motor recovery when jointly considering 

fitters and non-fitters – from 32% to 53% – we may also need to rethink conventional analysis 
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approaches and increasingly shift the focus on severely affected subjects by including non-fitters 

more often. This might be particularly important in view of the number of severely affected 

patients, e.g., 37% of non-fitters in our study and generally increasing numbers of patients with 

severe arm impairments (Hayward et al., 2017). Additionally, recent studies have provided 

evidence that certain practices to classify subjects into fitters and non-fitters may be biased, as they 

lead to increased estimates of explained variance and potentially erroneous conclusions. This 

situation may particularly arise when dividing patients into fitters and non-fitters on results based 

on clustering Initial and change scores (Hawe et al., 2019; Kundert et al., 2019). Nevertheless, 

even 53% of explained variance can be considered rather low, suggesting that recovery is 

influenced by more factors than mere initial motor impairment as measured by the Fugl-Meyer 

scale. In this respect, our finding of higher explained variance when estimating parameters for 

fitters and non-fitters combined does not stand against the observation that there are grossly 

different recovery patterns across patients, which may necessitate differing therapeutic 

(rehabilitative) approaches for differently impaired patient subgroups.  

 

Likert-like scales and ceiling effects 

It is also essential to be aware of a particular score’s characteristics. The FM score is a Likert-like 

scale, thus a summary of multiple Likert-like items, comprising ordinal data (Likert, 1932). It is 

this combination of multiple items that renders the parametric statistical approaches applied here  

feasible (Norman, 2010; Harpe, 2015). Positively, reported test-retest and inter-rater reliabilities 

for FM scores are r>0.95 over repeated measurements (Gladstone et al., 2002). However, as 

previously emphasized, the FM assessment is highly susceptible to ceiling effects (Gladstone et 

al., 2002). We here further dissected these ceiling effects and highlighted the induction of 

compression enhanced coupling with change formulation models that link initial scores and 

recovery (Lord, 1956; Hawe et al., 2019a; Hope et al., 2019). Amongst our total sample size of 

385 subjects, 39 (10%) reached maximum scores at follow-up, and many more were likely 

compressed towards, but not at ceiling. Our synthetic data experiments showed that this degree of 

ceiling effect was sufficient to impede correct conclusions: Independent of the simulated ground 

truth mechanism, we would always discover proportional to lost function recovery. 

Here, we relied upon the logic of subsets to decrease confounding effects by ceiling. That is, we 

focused on lower ranges of initial motor performance scores, which are less likely to lead to 



20 

 

maximum End motor performance scores. The relationships identified in the ceiling-reduced 

subsets could then be extended to the entire sample, as generalization was ensured by the assumed 

constant relationship between Initial and End scores inherent to linear regression. Importantly, our 

synthetic data experiments additionally demonstrated that we did not incur any new confounds, 

which would affect conclusions when defining subsets on initial scores.   

 

Bayesian hierarchical models 

Potentially insufficient numbers of subjects could endanger successful subset analyses relying on 

the data of just one study. This may be particularly the case as it may not be feasible to increase 

the size of individual studies, as high-quality data acquisition is time-consuming and costly. Here, 

the subset approach was only rendered possible due to our Bayesian hierarchical framework that 

facilitated the fusion of multiple datasets with individual-level data (Gelman and Hill, 2006). In 

this way, we could maximize the number of included subjects, while retaining as much information 

on each study’s characteristics as possible and modelling uncertainty explicitly (McElreath, 2018). 

This combination of merging studies and preserving individual features was particularly appealing, 

since it addressed both similarities and dissimilarities between individual studies. On the one hand, 

we had similar scores from similar patients at similar time-points and yet considered various study 

sites and likely minor variations in therapies on the other hand. Also, our Bayesian hierarchical 

models were capable of effectively handling diverging sample sizes in the six studies considered 

(McElreath, 2018). Lastly, as anticipated in (Hope et al., 2019), they allowed for the evaluation of 

various generative models on the nature of recovery – proportional to lost function, proportional 

to spared function, and constant recovery – through model comparisons.  

 

Limitations and future directions 

We decreased distorting ceiling effects by limiting analyses to subsets of initial scores. However, 

we acknowledge that there are drawbacks to this approach, such as the exclusion of substantial 

portions of the entire sample. Also, it does not represent definitive handling of the ceiling problem. 

The FM assessment is based on several single items. For example, it asks whether a patient is able, 

partially able or unable to move the hand from the ipsilateral ear to the contralateral knee. This 

multitude of items could potentially result in multiple sub-ceilings. These may remain present even 

in case of excluding data at the scale’s maximum. Therefore, one viable strategy to circumvent 
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these kinds of ceiling effects could be the increased use of behavioral and clinical assessments 

with continuous scales, for example, muscle forces, movement speeds or other kinematic 

parameters. Another strategy could be the construction of more elaborate scoring systems that 

allow for the detection of even very subtle variation, especially at the top of the scale. Nevertheless, 

motor impairment may be maximally recovered and effectively indistinguishable from a healthy 

pre-stroke level in some cases. As a result, some natural ceiling would occur and require special 

attention, primarily concerning statistical procedures. Future research may thus utilize our subset 

analysis or further approaches for censored data, such as frequentist Tobit models (Tobin, 1958) 

and Bayesian counterparts (Gelman and Hill, 2006).  

Furthermore, we did not attempt to differentiate between potential non-linearities of the FM scale, 

e.g. is a ten-point gain from 0 to 10 the same as a ten point gain from 50 to 60? Especially when 

considering the involvement of different functional domains and their interactions, a linear 

recovery pattern seems rather unlikely. For example, motor recovery might also be influenced by 

recovery from visuospatial neglect. Such non-linearities might thus not be detectable by the linear 

regression models we, and the majority of the field, have so far focused on. Therefore, our results 

encourage research into other model types, for example, non-linear models, such as decision tree-

like algorithms (Stinear et al., 2012) and exponential recovery functions (van der Vliet et al., 

2020). Additionally, we may need to refocus on a variety and multivariate combination of 

indicators of stroke recovery, such as behavioral, physiological, and imaging biomarkers, which 

have already shown promise (Stinear, 2017;  Ward, 2017; Findlater et al., 2019).  

Our study highlights the opportunity for novel insights to be gleaned by Bayesian hierarchical 

modelling, as it facilitates model comparisons and the creation of large datasets, thereby increasing 

the generalizability of obtained inferences. Therefore, they are likely to become common in stroke 

research, as well as in other clinical fields. Indeed, the strategies outlined here may inspire and 

guide future studies, raise awareness of the better handling of ceiling and change models, as well 

as the pernicious nature of compression enhanced coupling; especially, as these effects may 

frequently occur in biomedical data.  

In this present study, we relied on a relatively large number of 385 subjects. Nonetheless, we are 

still in need of larger stroke recovery datasets. The individual studies, that we here combined, all 

specified upper limb motor impairment as inclusion criterion and primarily recorded FM scores. 

Some studies even explicitly excluded patients with communication or memory deficits (Winters 
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et al., 2015) or patients with concomitant posterior or cerebellar artery stroke (Byblow et al., 2015). 

To further explore the influence of non-motor impairments on the recovery of motor impairments 

and vice versa, more ambitious data-rich studies in future research (c.f., Bzdok et al., 2019) will 

need to simultaneously record a multitude of stroke symptoms, such as motor impairments of upper 

and lower limbs, aphasia, neglect, apraxia and hemianopia. In particular, the field needs to take 

advantage of collaborative data collection and move beyond behavioral scores for both predictor 

and outcome variables. In this way, a range of potential explanatory and predictive variables could 

be incorporated to reliably increase explained variance and accuracy of out-of-sample prediction 

of stroke recovery - in case of fitters and also non-fitters (Grefkes and Fink, 2016; Boyd et al., 

2017;  Bernhardt et al., 2017).  

 

Conclusion 

Our Bayesian approach to systematically revisit post-stroke motor performance revealed only 

weak signs of proportional to lost function recovery for those defined to be fitters to the 

proportional recovery rule. Variance in recovery could only be explained by up to 32%, which is 

less than 50% of that previously reported. Additionally, a combination of proportional to spared 

function and constant recovery emerged as a likely relationship for the recovery of the entirety of 

stroke subjects – at a higher explained variance of 53%. Importantly, these estimates were obtained 

after de-confounding effects of mathematical coupling and ceiling by means of subset analyses 

(Hawe et al., 2019a; Hope et al., 2019). In summary, these lower levels of explained variance may 

motivate research moving beyond behavioral measures and the consideration of combinations of 

various biomarkers, such as demographic, clinical, imaging, and physiological. Ultimately, our 

findings may also pave the way for more common use of Bayesian hierarchical analyses. In this 

way, we may distill and accumulate evidence resting upon merged clinical datasets and efficiently 

ensure reliable generalization performance and modelling of uncertainty. 
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Figure captions  

 

Figure 1. The confounded nature of proportional (to lost function) recovery assessments and 

investigated subgroups. [A] Surface plot: Depiction of the relationships between correlations of 

Initial and End measurements, r(X,Y), correlations of Initial and Change measurements, r(X,(Y-

X)), and the (log) ratio of End to Initial standard deviations. The logic of synthetic data simulations 

is also shown (black text, arrows, and symbols on surface plot, for additional intuitions c.f., 

supplementary materials, section 5). Figure modified from (Hope et al., 2019). [B, C & D] 

Subgroup analyses. Recovery data are presented as Initial Fugl-Meyer scores in the acute phase 

against End Fugl-Meyer scores in the chronic phase after stroke. [B] Conventional subgroups of 

fitters and non-fitters based on a cut-off of FM-initial=10. [C] Subset approach for fitters only: 

Only patients with an FM-initial between 10 and 45 are considered in order to control for ceiling 

effects. [D] Subset approach considering both fitters and non-fitters using an FM range between 0 

and 45.  Excluded data are indicated by lighter colour. 

 

Figure 2. Various representations of recovery patterns: Proportional to lost function [A,D], 

proportional to spared function [B, E], constant recovery [C,F], and unconstrained standard-

form [G,H,I]. 

Performance is inspired by the Fugl Meyer (FM) assessment of the upper limb, where 66 is the 

maximum value, providing a ceiling. However, the depictions here show the “true” underlying 

recovery pattern that one would obtain if there was no ceiling (thus, we extended the scales beyond 

the maximum). We show a range of linear regression lines. For a more realistic visualization, 

simulated recovery data points are also shown, with a red line showing the best fit to them. Top 

row panels [A, B & C] depict proportional to lost function, proportional to spared function, and 

constant recovery to varying amounts (i.e., 10%, 20%, 30% etc. proportional recovery, each 

generating a different regression line) under the typical change formulations. The horizontal axis 

presents Initial scores, X, while the vertical axis stands for the change between Initial and End 

scores, (Y-X). Middle row panels [D, E & F] depict the same linear relationships, but re-

expressed as classical standard-form regressions, by merely moving the X variable to the right-

hand side of the equation, and then, rearranging. In contrast to the top row, the vertical axis here 

represents the raw End score, Y. Bottom row panels [G, H & I] illustrate unconstrained standard-
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form regression between Initial, X, and End, Y, scores. This is the most general of all models, as 

it fits an intercept, as well as a slope that can take any numerical values (i.e., they are 

unconstrained). [G] presents a range of possible linear relationships that can be fit. [H] and [I] 

visualize specific mixtures. Importantly, neither of the linear relationships in [H] and [I] is directly 

in the space of the basic proportional to lost function, proportional to spared function and constant 

recovery models, i.e., panels [D, E & F]. Notation: Upper case A and B represent intercept and 

slope in change models, while lower case a and b represent intercept and slope in standard-form 

regression models.  

 

 

Figure 3. Initial and follow-up upper limb motor performance, individually for each of the 

six studies included and aggregated across studies. [A] Raincloud plots of the Initial and End 

Fugl-Meyer (FM) assessment scores. These measured the upper limb impairment post-stroke of 

all fitters, i.e., those with FM-initial > 10 (n=243). Each of the six studies included is displayed 

separately and uniquely color-coded. The upper row within each study’s plot visualizes the 

distribution of scores. The second row summarizes the same data in a boxplot (i.e., median, upper 

and lower quartiles, whiskers extending to the entire range of data, outliers indicated as separate 

dots). Lastly, the third row displays raw individual data points. While initial FM score distributions 

are more homogeneous across the entire range (i.e., more uniform), distributions at the second 

time point are narrower and – to varying degrees – more pronounced at the upper end of the FM 

assessment scale, i.e., skewed. The code for raincloud plots relies on (Allen et al., 2019).  [B] 

Entirety of aggregated individual FM assessment scores of all stroke subjects defined as 

fitters (FM-initial > 10). Scores are jittered on the vertical axis for visualization only. Left: FM-

initial vs. FM-end, clearly depicting the increased density for follow-up scores close to and at 

ceiling, i.e., FM-end = 66. Right: FM-initial vs Change (FM-end – FM-initial). Included studies 

are color-coded as before, c.f. legend. 

 

Figure 4. Bayesian hierarchical model of all fitters (n=243): Marginal posteriors of intercepts 

and slopes. The best parameter settings are the ones with the highest frequencies (c.f., black arrow) 

and the spread of the distributions indicate uncertainty associated with the parameter estimation. 

[A] Standard-form regression model. End FM scores are estimated according to FM-end = 
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b.FM-initial + a. Across-study intercept (“mu_a”) and slope (“mu_b”) are depicted in the upper 

two rows. The bottom two rows visualize the lower level of the hierarchy: Varying intercepts and 

slopes, individually per included study (c.f. legend for study-specific color coding). [B] “Classic” 

proportional to lost function change model. The outcome measure of interest here is the change 

between the Initial and End FM scores, estimated based on Change = B.Potential + A with Change 

= FM-end – FM-initial and Potential = 66 – FM-initial. The across-study slope indicates a 

proportional recovery of 64% (c.f., black arrow). The inflation of explained variance due to 

mathematical coupling and Ceiling enhanced Coupling is demonstrated by an R-squared value of 

70.8% for the change model that exceeds the one from the standard-form regression model by 

28%. Please note that unlike our presentations of proportional to lost function elsewhere, we 

include an intercept here to maximize fit, although, as can be seen, fitting generates an intercept 

very close to zero. 

 

Figure 5. Model estimated within- and between-study differences in motor recovery based 

on the standard-form regression model. [A] Aggregated motor studies: We display the joint 

distribution between the across-study intercept – which can be described as the average motor 

outcome for an FM-initial score of zero – and the across-study slope – equivalently framed as 

performance gain dependent on FM-initial. Therefore, the plot illustrates the joint posterior 

densities for the included hyperparameters, with the marginal posterior for the intercept ranging 

from 37.0 to 47.4 and from 0.28 to 0.44 for slopes (95% credibility intervals). [B] Individual 

motor studies: The figure pictures the joint density for combinations of intercepts and slopes that 

are plausible, given the visited data of the six included studies. It particularly highlights the 

relationship between sample size and width of credibility intervals, as larger studies present with 

narrower intervals. C.f. legend for study-specific color-coding.  

 

Figure 6. Synthetic data simulations of proportional to lost function (left column), proportional 

to spared function (middle column), and constant recovery (right column) based on 243 

simulated subjects. [A]. Trajectories of Pearson correlation between FM-initial (X) & FM-

end (Y) and FM-initial (X) & Change (Y-X). Proportional to lost function recovery: Starting at 

almost the maximum of 1, the correlation between FM-initial & FM-end decreases the higher the 

amount of proportional recovery, while the correlation for FM-initial & Change becomes more 
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negative and finally exceeds the one of FM-initial & FM-end in absolute terms, demonstrating the 

effect of mathematical coupling. Ceiling only exhibits a minor amplification of this effect. 

Proportional to spared function recovery: Without any ceiling, correlations of FM-initial & FM-

end, as well as FM-initial & Change, are close to 1. The latter changes dramatically after enforcing 

ceiling: The correlations of FM-initial & Change are now decreasing monotonically, become 

negative in sign and are reminiscent of proportional to lost function. Constant recovery: The 

correlation between FM-initial & FM-end is close to 1, while FM-initial and Change are not 

correlated. After ceiling is enforced, patterns closely resemble the ones for proportional to lost 

function: The correlation of FM-initial & FM-end decreases monotonically, yet stays positive, the 

one between FM-initial & Change decreases and becomes almost -1 for high levels of constant 

recovery. [B] Trajectories of variability ratios. Proportional to lost function recovery: Variability 

ratios are decreasing from approx. 1 to 0.2, ceiling exhibits only minor effects. Proportional to 

spared function recovery: Trajectories differ markedly depending upon ceiling: Ratios are greater 

than 1 and increase before ceiling and decrease to values smaller than 1 after ceiling is enforced. 

Constant recovery: Once again, the presence of a ceiling substantially alters the trajectories of 

variability ratios: While they remain close to 1 before enforcing ceiling, they show a steep decrease 

after enforcing ceiling. 

 

Figure 7. Alleviating confounds by ceiling effects and mathematical coupling: Bayesian 

hierarchical models in the subset of FM-initial 10-45 (n=118). Marginal posteriors for 

parameters of proportional to lost function recovery [A], proportional to spared function 

recovery [B], constant recovery [C], and (Unconstrained) Standard-form regression [D]. [E] 

Final Bayesian model comparison using leave-one-out-cross-validation (LOOCV). As 

deviance increases (rightward on x-axis), the accuracy of the fit goes down. Empty circles 

represent the LOOCV-corrected (out-of-sample) deviance, which is the key measure we use to 

compare models; black error bars indicate the corresponding standard error (i.e. uncertainty) in 

that deviance estimate. Grey triangles are the difference to the top-ranked model and grey bars the 

associated standard error. The lowest (i.e., best) LOOCV-deviance value is indicated by the 

vertical dashed grey line. Lastly, the filled black circles mark the models’ in-sample deviances, 

which are susceptible to overfitting and, thus, not appropriate measures of accuracy. The standard-

form regression model provided the best out-of-sample performance and was ranked first in the 
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model comparison, closely followed by the proportional to lost function recovery model. 

However, the explained variance was low at 31.5% (standard-form regression) and 21.3% 

(proportional to lost function recovery).   

 

Figure 8. Hierarchical Bayesian analysis of fitters and non-fitters combined for FM-initial 0-

45 (n=270). Recovery models: proportional to lost function recovery [A], proportional to 

spared function recovery [B], constant recovery [C], and unconstrained standard-form 

regression [D]. Marginal posterior distributions are presented on the left-hand side for A – C and 

in the upper part of D. Distribution of Initial against End scores in conjunction with an overlay of 

sampled fits are added on the right-hand sides for A – C and in the lower part of D (thick black 

line: mean, grey lines: 2000 sampled marginal posterior parameter fits). E. Final model 

comparison. Based on leave-one-out-cross-validation, model comparison selected the standard-

form regression model. Pure constant recovery was the best follow-up model. 
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