
Reducing Bit-Vector Polynomials to SAT using
Gröbner Bases?

Thomas Seed1, Andy King1, and Neil Evans2

1 University of Kent, Canterbury, CT2 7NF, UK
2 AWE Aldermaston, Reading, RG7 4PR, UK

Abstract. We address the satisfiability of systems of polynomial equa-
tions over bit-vectors. Instead of conventional bit-blasting, we exploit
word-level inference to translate these systems into non-linear pseudo-
boolean constraints. We derive the pseudo-booleans by simulating bit
assignments through the addition of (linear) polynomials and applying
a strong form of propagation by computing Gröbner bases. By handling
bit assignments symbolically, the number of Gröbner basis calculations,
along with the number of assignments, is reduced. The final Gröbner ba-
sis yields expressions for the bit-vectors in terms of the symbolic bits, to-
gether with non-linear pseudo-boolean constraints on the symbolic vari-
ables, modulo a power of two. The pseudo-booleans can be solved by
translation into classical linear pseudo-boolean constraints (without a
modulo) or by encoding them as propositional formulae, for which a
novel translation process is described.

Keywords: Gröbner Bases · Bit-Vectors · Modulo Arithmetic · SMT

1 Introduction

Some of the most influential algorithms in algebraic computation, such as Buch-
berger’s algorithm [7] and Collin’s Cylindrical Algebraic Decomposition algo-
rithm [8], were invented long before the advent of SMT. SMT itself has evolved
from its origins in SAT into a largely independently branch of symbolic compu-
tation. Yet the potential of cross-fertilising one branch with the other has been
repeatedly observed [1, 6, 10], and a new class of SMT solvers is beginning to
emerge that apply both algebraic and satisfiability techniques in tandem [15, 16,
23]. The problem, however, is that algebraic algorithms do not readily fit into
the standard SMT architecture [22] because they are not normally incremental
or backtrackable, and rarely support learning [1].

For application to software verification, the SMT background theory of bit-
vectors is of central interest. Solvers for bit-vectors conventionally translate
bit-vector constraints into propositional formulae by replacing constraints with
propositional circuits that realise them, a technique evocatively called bit-blasting.

? Supported by an AWE grant on the verification of AVR microcontroller code.

However, particularly for constraints involving multiplication, the resulting for-
mulae can be prohibitively large. Moreover, bit-blasting foregoes the advantages
afforded by reasoning at the level of bit-vectors [3, 14].

In this paper we present a new architecture for solving systems of polynomial
equalities over bit-vectors. Rather than converting to SAT and bit-blasting, the
method sets bits in order of least significance through the addition of certain
polynomials to the system. Computing a Gröbner basis [5] for the resulting
system effects a kind of high-level propagation, which we have called bit-sequence
propagation, in which the values of other bits can be automatically inferred.
Furthermore, we show how the procedure can be carried out with symbolic truth
values without giving up bit-sequence propagation, thus unifying Gröbner basis
calculations that would otherwise be separate.

Once all bits are assigned truth values (symbolic or otherwise), the resulting
Gröbner basis prescribes an assignment to the bit-vectors which is a function
of the symbolic truth values. The remaining polynomials in the basis relate the
symbolic truth values and correspond to non-linear pseudo-boolean constraints
modulo a power of two. These constraints can be solved either by translation
into classical linear pseudo-boolean constraints (without a modulo) or else by
encoding them as propositional formulae, for which a novel translation process is
described. Either way, the algebraic Gröbner basis computation is encapsulated
in the phase that emits the pseudo-boolean constraints, hence the Gröbner basis
engine [5] does not need to be backtrackable, incremental or support learning.
The approach can be extended naturally to handle polynomial disequalities since
the bit-vectors in the disequalities can be reformulated in terms of the symbolic
variables of the equalities, and the disequalities forced to hold as well by virtue of
a Tseytin transform [24]. Overall, the architecture provides a principled method
for compiling high-level polynomials to low-level pseudo-boolean constraints.

In summary, this paper makes the following contributions:

– We specialise a Gröbner basis algorithm for integers modulo 2ω [5], using
the concept of rank [21], introducing an algorithmic modification to ease the
computational burden of computing Gröbner bases;

– We introduce bit-sequence propagation, in which an individual bit is set to
a truth value 0 or 1 by adding a suitable (linear) polynomial to the system
and then the effect on other bits is inferred by computing a Gröbner basis;

– We show how bit assignments can be handled symbolically in order to unify
distinct Gröbner basis computations, eventually yielding a residue system of
non-linear pseudo-boolean constraints;

– We show how the resulting pseudo-boolean systems can be solved by em-
ploying a novel rewrite procedure for converting non-linear modulo pseudo-
booleans to propositional formulae.

The paper is structured as follows: Section 2 illustrates bit-sequence propagation
through a concrete example. The supporting concepts of Gröbner bases for mod-
ulo integers and pseudo-boolean encoding are detailed in Section 3. Experimental
results are given in Section 4 and Section 5 surveys related work.

2

B

B0

B00

B000

B0000 B0001

B001

B0010 B0011

B01

B010

B0100 B0101

B011

B0110 B0111

B1

x0

x2

x7

y7 y7

x7

y7 y7

x2

x7

y7 y7

x7

y7 y7

x0

B

PB1

PB2

PB3

PB4

x0 = b1

x2 = b2

x7 = b3

y7 = b4

Fig. 1. Bit-assignments and word-level propagation: 0/1 bits and symbolic bits

2 Bit-sequence Propagation in a Nutshell

Classically, that is for polynomials over algebraically closed fields, unsatisfiabil-
ity can be decided by Hilbert’s Nullstellensatz [9]. This equates unsatisfiability
with the existence of a non-zero constant polynomial in a Gröbner basis for the
polynomials. The concept of Gröbner basis is inextricably linked with that of an
ideal [9]. The ideal for a given system (set) of polynomials is the least set closed
under the addition of polynomials drawn from the set and multiplication of an
arbitrary polynomial with a polynomial from the set; an ideal shares the same
zeros as the system from which it is derived, but is not finite. A Gröbner basis
is merely a finite representation of an ideal, convenient because, among other
things, it enables satisfiability to be detected, at least over a field.

Unary bit-vectors constitute a field, but Nullstellensatz does not hold for
bit-vectors with multiple bits. To see this, consider the polynomial equation
x2 + 2 = 0 where the arithmetic is 3-bit (modulo 8). Any solution x to this
equation must be even. But, 02+2 = 2, 22+2 = 6, 42+2 = 2 and 62+2 = 6. Hence
x2 + 2 = 0 has no solutions, yet the Gröbner basis {x2 + 2} does not contain a
non-zero constant polynomial. Moreover, even for a Gröbner basis of a satisfiable
system, such as {x2+4}, the solutions to the system cannot be immediately read
off from the basis. The force of these observations is that Gröbner bases need to
be augmented with search to test satisfiability and discover models. To illustrate
this we consider a more complicated system:

B =

y2 + 120x2 + 123x+ 48 = 0, yx+ 65x2 + 50x+ 32 = 0,
2y + 63x2 + 59x+ 128 = 0, x3 + 135x2 + 100x+ 64 = 0,

64x2 + 192x = 0

where x, y ∈ Z256. Henceforth we follow convention and omit = 0 from systems.

3

2.1 Solving using 0/1 truth values

Since Z256 is finite, this system can be solved by viewing the problem [20] as
a finite domain constraint satisfaction problem. In this setting, each bit-vector
is associated with a set of values that is progressively pruned using word-level
constraint propagation rules. The search tree in the left-hand side of Fig 1 il-
lustrates how pruning is achieved by setting and inferring bits in the order of
least-significance, starting with the bits of x then those of y. On a left branch
of the tree one bit, xi or yj , is set to 0; on a right branch the bit is set to 1
(indicated in bold). Each node is labelled with a Gröbner basis that encodes
the impact of setting a bit on all other bits. Gröbner bases are indexed by their
position in the tree. Grey nodes correspond to the solutions of B.

Computing B0 Setting the least significant bit of x to 0 can be achieved by
imposing x = 2w for some otherwise unconstrained variable w. Hence, we add
2w − x to B and compute a Gröbner basis with respect to the lexicographical
ordering on variables w � y � x, yielding:{

wx+ 86x+ 96, 2w + 255x, y2 + 219x+ 48,
yx+ 134x+ 96, 2y + 231x+ 64, x2 + 172x+ 192, 64x

}
To eliminate dependence on w, polynomials involving w are removed, giving:

B0 =

{
y2 + 219x+ 48, yx+ 134x+ 96, 2y + 231x+ 64,
x2 + 172x+ 192, 64x

}
Note that B0 contains 64x (representing 64x = 0) which indicates that x is a
multiple of 4. Thus bit 1 is also 0, although we did not actively impose it.

Now, observe the constraint 64x = 0 implies 0 = 26(x−0) hence x−0 = 22w′

for some w′. To set the next bit to 0, put w′ = 2w which gives x−0 = 8w yielding
the polynomial 8w − x. Otherwise, to set the next bit put w′ = 2w + 1 giving
the polynomial 8w − x+ 4.

Computing B00 Augmenting B0 with 8w − x, calculating a Gröbner basis, and
then eliminating w gives:

B00 =

{
y2 + 219x+ 48, yx+ 128, 2y + 231x+ 64,

x2, 2x+ 160

}
Since B00 includes 2x+160 (representing 2x+160 = 0) it follows that only bit 7
is undetermined. To constrain it, observe 0 = 2(x − 48) thus x − 48 = 27w′ for
some w′. Putting w′ = 2w gives x−48 = 256w = 0 hence the polynomial x−48.
Conversely, putting w′ = 2w+ 1 gives x− 48 = 256w+ 128 = 128 thus x− 176.

Computing B000 and B001 Adding x − 48 and x − 176 to B00, computing a
Gröbner basis, and eliminating w (a vacuous step), respectively yields:

B000 =
{
y2 + 64, 2y + 144, x+ 208

}
B001 =

{
y2 + 192, 2y + 16, x+ 80

}
4

Both systems contain a single constraint on x which uniquely determines its
value, hence we move attention to y. Both B000 and B001 contain equations with
leading terms 2y and thus only bit 7 of y must be constrained. Following the
same procedure as before, we obtain:

B0000 =

y + 200,
x+ 208,

128

B0001 =

 y + 72,
x+ 208,

128

B0010 =

{
y + 136,
x+ 80

}
B0011 =

{
y + 8,
x+ 80

}
These Gröbner bases all completely constrain x and y, hence are leaf nodes. Note
that B0000 and B0001 contain the non-zero, constant polynomial 128, indicating
unsatisfiability. Hence, only B0010 and B0011 actually yield solutions (highlighted
in grey), namely x 7→ 176, y 7→ 120 and x 7→ 176, y 7→ 248 respectively.

Computing B∗ The general principle is that if 2k(x− `) is in the basis and ω is
the bit width, then the linear polynomial 2ω−k+1w−x+` is added for some fresh
w to set the next undermined bit to 0. Conversely, to set the next bit to 1, the
polynomial 2ω−k+1w− x+ 2ω−k + ` is added. We name this tactic bit-sequence
propagation. Using this tactic to flesh out the rest of the tree gives the following
satisfiable bases (also marked in grey in the figure):

B1 =
{
y + 183, x+ 91

}
B0110 =

{
y + 158, x+ 92

}
B0111 =

{
y + 30, x+ 92

}
yielding x 7→ 165, y 7→ 73, x 7→ 164, y 7→ 98 and x 7→ 164, y 7→ 226 respectively.

2.2 Solving using symbolic truth values

To reduce the total number of Gröbner basis calculations, we observe that it is
sufficient to work with symbolic bits. The right-hand side of Figure 1 illustrates
how this reduces the number of bases calculated to 4, albeit at the cost of carrying
symbolic bits in the basis. Bit-sequence propagation generalises via the single
rule: if 2k(x − `) is in the basis and ω is the bit width, then the polynomials
2ω−k+1w − x + 2ω−kb + ` and b2 − b are added to the basis. This sets the next
undermined bit to the symbolic value b; the polynomial b2 − b merely asserts
that each symbolic b can only be 0 or 1. This construction gives:

PB1 =

 y2 + 219x+ 216b1 + 48, yx+ 6x+ 181b1 + 96, yb1 + 183b1,
2y + 103x+ 203b1 + 64, x2 + 44x+ 139b1 + 192, xb1 + 91b1,

64x+ 192b1, b21 + 255b1

...

PB4 =

 y + 128b4 + 192b3 + 214b2 + 153b1 + 200, x+ 12b2 + 255b1 + 80,
b24 + 255b4, 128b4b1 + 128b1, b23 + 255b3, 64b3b1,

128b3 + 128b2 + 128, b22 + 255b2, 2b2b1 + 254b1, b21 + 255b1

The final PB4 expresses x and y as combinations of b4, b3, b2 and b1:

y ≡256 −128b4 − 192b3 − 214b2 − 153b1 − 200 x ≡256 −12b2 − 255b1 − 80

Observe that the remaining polynomials are non-linear pseudo-boolean con-
straints over b4, b3, b2 and b1 modulo 256. The polynomials b2i + 255bi, which
assert that each bi is binary, are subsequently ignored.

5

2.3 Solving using SAT

These pseudo-booleans can be simplified by observing that when all coefficients
in the constraint are divisible by a power of 2 then the modulo can be lowered:

128b4b1 + 128b1 ≡256 0 ⇐⇒ b4b1 + b1 ≡2 0
64b3b1 ≡256 0 ⇐⇒ b3b1 ≡4 0

128b3 + 128b2 + 128 ≡256 0 ⇐⇒ b3 + b2 + 1 ≡2 0
2b2b1 + 254b1 ≡256 0 ⇐⇒ b2b1 + 127b1 ≡128 0

Since the reduced versions of the first and third constaints are modulo 2 they
can be mapped immediately to the propositional formulae:

b4b1 + b1 ≡2 0 ⇐⇒ (b4 ∧ b1)⊕ b1
b3 + b2 + 1 ≡2 0 ⇐⇒ ¬(b3 ⊕ b2)

where the negation is introduced because of the constant 1. The second and
fourth constraints cannot be handled so directly because the modulus is not 2.
However, for the second, we can use the fact that the left-hand side is a single
term to infer either b3 or b1 must be 0, yielding the formula ¬b3 ∨ ¬b1. Finally,
for the fourth constraint, we do a case split on b2. Setting b2 = 0 simplifies the
constraint to 127b1 ≡128 0, from which b1 = 0 is inferred. Conversely, setting
b2 = 1 simplifies the constraint to 128b1 ≡128 0 which is vacuous. Overall, we
derive the formula (¬b2 ∧ ¬b1) ∨ b2 for the fourth constraint. There are 5 truth
assignments for the formula assembled from the above 4 sub-formulae, yielding
5 assignments to x and y that concur with those given previously.

The reasoning exemplified here has been distilled into a series of rules, pre-
sented in Section 3.8, for encoding non–linear modulo pseudo-booleans into SAT.
An alternative approach finds the values for b4, b3, b2 and b1 using a cutting-
plane pseudo-boolean solver [19] alongside a modulo elimination transformation
[13, Section 3]. Regardless of the particular method employed to solve this sys-
tem, observe that search has been isolated in the SAT/pseudo-boolean solver;
the Gröbner bases are calculated in an entirely deterministic fashion.

3 Theoretical underpinnings

In its classical form, Buchberger’s algorithm for computing Gröbner bases is
only applicable to polynomials over fields [18], such as rationals and complex
numbers, where every non-zero element has a multiplicative inverse. However,
integers modulo 2ω only have this property for ω = 1, as even numbers do not
have multiplicative inverses for ω > 1. Nevertheless, a variant of Buchberger’s
algorithm has been reported that is applicable to modulo integers with respect to
arbitrary moduli [5]. This section specialises this variant to integers modulo 2ω,
exploting the concept of rank [21] to efficiently determine divisibility over modulo
integers. An algorithmic refinement is also reported that reduces the number of
calculated S-polynomials, the key to improving efficiency. The section concludes
with a formalisation of the rules for encoding non-linear modulo pseudo-booleans
into propositional formulae, first introduced in Section 2.3.

6

3.1 Modulo Integers

Let N (resp., N+), denote the non-negative (resp., positive) integers, ω ∈ N+ be
the bit-width, m = 2ω and Zm = {0, 1, . . . ,m − 1} denote the integers modulo
m. The rank of x ∈ Zm [21] is defined: rankω(x) = max{j ∈ N | 2j divides x}
if x > 0 and ω otherwise. Rank can be computed by counting the number of
trailing zeros in an integer’s binary representation [26].

Example 1. In Z256 when ω = 8, rank8(0) = 8, rank8(15) = 0 and rank8(56) = 3.

If x ∈ Zm, x 6= 0 then x = 2rankω(x)d where d = x/2rankω(x) is odd. This is referred
to as the rank decomposition of x. If x ∈ Zm then x is said to be invertible if
there exists x−1 ∈ Zm, necessarily unique, such that xx−1 = 1. This occurs iff
x is odd, in which case x−1 can be found as a stationary point of the sequence
y1 = 1, yn+1 = yn(2−xyn) [21]. For x1, x2 ∈ Zm, x1 is said to be divisible by x2 if
x1 = yx2 for some y ∈ Zm. This occurs iff rankω(x1) ≥ rankω(x2), in which case,
letting xi = 2kidi be the rank decomposition of xi, it follows y = 2k1−k2d1d2

−1.

3.2 Polynomials and Ideals

A monomial is an expression xα = xα1
1 · · ·xαn

n where x = 〈x1, . . . , xn〉 is a
vector of variables and α = 〈α1, . . . , αn〉 ∈ Nn. A term is an expression cxα

where c ∈ Zm. A polynomial is either 0 or an expression t1 + · · ·+ ts where each
ti is a term. In this expression, we assume all ti have non-zero coefficients and
distinct monomials, since terms with 0 coefficients can be removed and terms
with the same monomial can be collected by summing their coefficients. The set
of all polynomials over Zm is denoted Zm[x]. For p ∈ Zm[x] and a ∈ Znm, JpK(a)
denotes the result of substituting ai for each xi in p and evaluating the result.

An ideal is a set I ⊆ Zm[x] such that Σs
i=1uipi ∈ I for all s ∈ N, pi ∈ I and

ui ∈ Zm[x]. If P ⊆ Zm[x] then 〈P 〉 = {
∑s
i=1 uipi | s ≥ 0, pi ∈ P, ui ∈ Zm[x]} is

the ideal generated by P ; if I = 〈P 〉 then P is said to be a basis for I. The solution
(zero) set of P ⊆ Zm[x] is defined: γ(P) = {a ∈ Znm | ∀p ∈ P. JpK(a) = 0}. Note
that γ(〈P 〉) = γ(P), hence if P1, P2 are both bases for the same ideal I, then
γ(P1) = γ(I) = γ(P2). Given a set P1 ⊆ Zm[x], it is thus desirable to find a
basis P2 for 〈P1〉 which exposes information about the zeros of P1. The concept
of Gröbner basis makes this idea concrete.

3.3 Leading Terms

Let ≺ denote the lexicographical ordering over monomials defined by xα ≺ xβ
if α 6= β and αi < βi at the first index i where αi 6= βi. Note that this ordering
depends on the order of the variables in x. If p ∈ Zm[x] then either p = 0 or else
p = cxα + q for some polynomial q, where all terms dxβ appearing in q satisfy
xβ ≺ xα. In the latter case, the leading term, coefficient and monomial of p are
defined lt(p) = cxα, lc(p) = c and lm(p) = xα respectively.

Example 2. Let p1 = y2 + 3yx ∈ Z256[y, x] and p2 = 3xy + y2 ∈ Z256[x, y].
Note that p1 and p2 consist of the same terms, yet lt(p1) = y2, lc(p1) = 1 and
lm(p1) = y2 and lt(p2) = 3xy, lc(p2) = 3 and lm(p2) = xy.

7

3.4 Reduction

Leading terms give a rewrite procedure over polynomials. First, note that if
t1 = c1x

α1 , t2 = c2x
α2 are terms then there exists a term t such that t1 = tt2 iff

α1 ≥ α2 component-wise and c1 is divisible by c2; in this case, t = dxβ where
c1 = dc2 and β = α1−α2. With divisibility in place, reducibility can be defined:

Definition 1. Let p, q, r ∈ Zm[x], p, q 6= 0. Then, p is said to be reducible by q
to r, denoted p→q r, if lt(p) = cxα lt(q) and p = cxαq + r for some term cxα.

Reducibility lifts to sets P ⊆ Zm[x] by →P =
⋃
p∈P →p and →+

P (resp. →∗P) is

the transitive (resp. transitive, reflexive) closure of →P . If p →+
P r for some r

then p is said to be reducible by P , otherwise irreducible by P , denoted p 6→P .

Example 3. Let p = yx2 + 2yx + 5y + x and P = {p1, p2} ⊆ Z256[y, x] where
p1 = yx+3y and p2 = 4y+x. Then, lt(p) = yx2 = x lt(p1) and p = xp1+r1 where
r1 = 255yx+ 5y + x. Similarly, lt(r1) = 255yx = 255 lt(p1) and r1 = 255p1 + r2
where r2 = 8y + x. Finally, lt(r2) = 8y = 2 lt(p2) and r2 = 2(4y + x) + r3 where
r3 = 255x. Thus, p→p1 r1 →p1 r2 →p2 r3 = 255x hence p→+

P 255x.

Note if p →+
P r then r has a strictly smaller leading term than p. Moreover, if

p ∈ Zm[x], P ⊆ Zm[x] and p→∗P 0 then p ∈ 〈P 〉. The converse of this does not
hold in general, as the following example shows:

Example 4. If p = x and P = {p1, p2} ⊆ Z256[y, x] where p1 = 2yx2 + 2x2 +
6yx + x and p2 = 4y + 4 then p is irreducible by P , yet p = (154yx + 206y +
154x+ 1)p1 + (179yx3 + 50yx2 + 75yx+ 179x3 + 25x2)p2 ∈ 〈P 〉.

3.5 Gröbner Bases

Definition 2. Let I ⊆ Zm[x] be an ideal. A set P ⊆ I is a Gröbner basis for I
iff, for all p ∈ I, if p 6= 0 then p is reducible by some q ∈ P .

If P ⊆ Zm[x] is a Gröbner basis for the ideal I ⊆ Zm[x] and p ∈ I then p→∗P 0.
Hence, Gröbner bases allow ideal membership to be tested by reduction. In order
to compute Gröbner bases, an auxiliary definition is required:

Definition 3. The S-polynoimal of p1, p2 ∈ Zm[x] is defined:

spol(p1, p2) = d22k−k1xα−α1p1 − d12k−k2xα−α2p2

where, if pi = 0 then ki = ω, di = 1 and αi = 0, else 2kidi is the rank decom-
position of lc(pi) and xαi = lm(pi), k = max(k1, k2) and α = max(α1,α2).

Example 5. Let p1 = 2yx2 + 2x2 + 6yx + x and p2 = 4y + 4 in Z256[y, x].
Then, spol(p1, p2) = 2(2yx2 + 2x2 + 6yx + x) − x2(4y + 4) = 12yx + 2x and
spol(p1, 0) = 128(2yx2 + 2x2 + 6yx+ x)− yx2(0) = 128x.

The following theorem, adapted from [5], provides an effective criterion for de-
tecting that a finite basis is a Gröbner basis:

Theorem 1. Let P ⊆ Zm[x] and suppose for all p1, p2 ∈ P , spol(p1, p2) →∗P 0
and spol(p1, 0)→∗P 0. Then, P is a Gröbner basis for 〈P 〉.

Note that if |P | = ` then this criterion takes
(
`
2

)
+ ` reductions to verify.

8

function buchberger(F)
begin

G := F ; S := {{g1, g2} | g1 ∈ G, g2 ∈ G ∪ {0}, g1 6= g2}
while (S 6= ∅)
{g1, g2} := element(S)
S := S − {g1, g2}
r := reduce(spol(g1, g2), G)
if (r 6= 0)

G := G ∪ {r}
S := S ∪ {{r, g} | g ∈ G ∪ {0}}

end if
end while
return G

end

Fig. 2. Buchberger’s algorithm over integers modulo 2ω

3.6 Buchberger’s Algorithm

Theorem 1 also yields a strategy for converting a finite basis P ⊆ Zm[x] for an
ideal I ⊆ Zm[x] to a Gröbner basis for I. The strategy works by reducing each S-
polynomial of the basis in turn; if some S-polynomial does not reduce to 0 then its
reduced form is added to the basis and the procedure continues. Eventually, all S-
polynomials of basis elements reduce to 0, at which point the algorithm returns.
The algorithm determined by this strategy is called Buchberger’s algorithm.
Fig. 2 presents a version of Buchberger’s algorithm, adapted from [5], which
utilises a set S to record the set of S-polynomials that have yet to be reduced. It
requires an auxiliary function reduce which realises reduction. More specifically, if
p ∈ Zm[x] and P ⊆ Zm[x] is finite then p→∗P reduce(p, P) and reduce(p, P) 6→P .

Example 6. The table gives a trace of Buchberger’s algorithm on P = {p1, p2} ⊆
Z256[x, y] where p1 = 2yx2 + 2x2 + 6yx+ x and p2 = 4y+ 4. Step k displays the
values of G and S, and the next reduction, after k iterations of the main loop.

step G S reduction
0 {p1, p2} {{p2, 0}, {p1, p2}, {p1, 0}} 0→G 0
1 {p1, p2} {{p1, p2}, {p1, 0}} 12yx+ 2x→G 246x = p3
2 {p1, p2, p3} {{p3, 0}, {p2, p3}, {p1, p3},

{p1, 0}}
0→G 0

3 {p1, p2, p3} {{p2, p3}, {p1, p3}, {p1, 0}} 236x→G 0
4 {p1, p2, p3} {{p1, p3}, {p1, p0}} 226yx+ 246x2 + 123x

→G 123x = p4
5 {p1, p2, p3, p4} {{p4, 0}, {p3, p4}, {p2, p4},

{p1, p4}, {p1, 0}}
0→G 0

...
...

...
...

9 {p1, p2, p3, p4} {{p1, 0}} 128x→G 0
10 {p1, p2, p3, p4} ∅ −

9

function modifiedBuchberger(F)
begin

G := ∅; A := F ; S := ∅
while (A 6= ∅ ∨ S 6= ∅)

if (A 6= ∅)
p := element(A); A := A− {p}

else
{f1, f2} := element(S); S := S − {f1, f2}; p := spol(f1, f2)

end if
r := reduce(p,G)
if (r 6= 0)

H := {g ∈ G | g 6→r}; G := H ∪ {r}; A := A ∪ (G−H)
S := {{g1, g2} ∈ S | g1, g2 ∈ H ∪ {0}}) ∪ {(p, h) | h ∈ H ∪ {0}}

end if
end while
return G

end

Fig. 3. Modified Buchberger’s algorithm over integers modulo 2ω

3.7 Modified Buchberger’s Algorithm

Note that, for the Gröbner basis computed in Example 6, only p2 and p4 are
necessary to ensure the Gröbner property, since any polynomial reducible by p1
or p3 must be reducible by p4. This observation is formalised in the result:

Theorem 2. Let P ⊆ Zm[x] and P ′ = {p ∈ P | p 6→P−{p}}. Suppose for
all p ∈ P − P ′ that p →∗P ′ 0, and for all p1, p2 ∈ P ′, spol(p1, p2) →∗P ′ 0 and
spol(p1, 0)→∗P ′ 0. Then, P ′ is a Gröbner basis for 〈P 〉.

Proof. By Theorem 1, P ′ is a Gröbner basis for 〈P ′〉. However, since P ′ ⊆ P
and p→∗P ′ 0 for all p ∈ P − P ′ it follows that 〈P 〉 = 〈P ′〉. The result follows.

If |P | = `1 and |P ′| = `2 then this criterion takes
(
`2
2

)
+ `2 + (`1− `2) =

(
`2
2

)
+ `1

reductions to verify, as opposed to
(
`1
2

)
+ `1 reductions via the original criterion.

Moreover, as for the original criterion, it yields an algorithm for converting a
finite basis into a Gröbner basis. The algorithm operates as the original, except
whenever a basis element becomes reducible by a newly added element, it is re-
moved from, and then reduced by, the basis. If it reduces to 0 then it is discarded;
otherwise, its reduced form is added to the basis. All S-polynomials derived from
it are then discarded. Fig. 3 presents a modification to Buchberger’s algorithm
that implements this idea using a third set A to store elements that are removed
from the basis. Elements of A are reduced in preference to elements of S, and
the algorithm terminates when both A and S are empty. To handle the fact that
some elements of the input basis could be reducible by other elements of the
input basis, the set G is initialised to ∅ and the set A is initialised to P . Hence,
the first iterations of the loop effectively add the input polynomials to the basis.

10

Example 7. The following table summarises a trace of the modified Buchberger
algorithm on the same input as Example 6.

step G A S reduction
0 ∅ {p1, p2} ∅ p1 →G p1
1 {p1} {p2} {{p1, 0}} p2 →G p2
2 {p1, p2} ∅ {{p2, 0}, {p1, p2}, {p1, 0}} 0→G 0
3 {p1, p2} ∅ {{p1, p2}, {p1, 0}} 12yx+ 2x→G 246x = p3
4 {p2, p3} {p1} {{p3, 0}, {p2, p3}} p1 →G x = p4
5 {p2, p4} {p3} {{p4, 0}, {p2, p4}} p3 →G 0
6 {p2, p4} ∅ {{p4, 0}, {p2, p4}} 0→G 0
7 {p2, p4} ∅ {{p2, p4}} 4x→G 0
8 {p2, p4} ∅ ∅ −

As noted above, the first two steps of the trace simply add the two input poly-
nomials to the basis, which had already been performed in the original trace.
Removing these steps yields a trace length of 6 compared to 10 in the original
example. Moreover, by construction, neither p2 nor p4 is reducible by the other.

3.8 Encoding pseudo-boolean constraints

Figure 4 presents rules for translating a polynomial in the form c ·X ≡2r d to
a propositional formula such that c ∈ Z`m, d ∈ Zm and X ∈ ℘(∪x)`, where
x, recall, is the vector of variables and ` is the arity of the vectors c and X.
This form of constraint, although restrictive, is sufficient to express the pseudo-
booleans which arise in the final Gröbner basis, as illustrated below:

Example 8. Returning to PB4 of Section 2 the polynomials 128b4b1 + 128b1 and
128b3 + 128b2 + 128 can be written as 〈128, 128〉 · 〈{b1, b4}, {b1}〉 ≡256 0 and
〈128, 128〉 · 〈{b3}, {b2}〉 ≡256 128 since 128 = −128 (mod 256).

The rules of Figure 4 collectively reduce the problem of encoding a constraint to
that of encoding one or more strictly simpler constraints. For brevity, we limit
the commentary to the more subtle rules. The false rule handles constraints
which are unsatisfiable because the coefficients c are all even and d is odd. The
scale rule reduces the encoding problem to that for an equi-satisfiable constraint
obtained by dividing the modulo, coefficients and constant by a power of 2. The
set rule handles constraints where d is odd and there is a unique term ciXi for
which ci is odd. In this circumstance all the variables of Xi must be 1 for the
constraint to be satisfiable. Conversely, clear deals with constraints for which d is
even and there exists a unique ciXi for which ci is odd since then one variable of
Xi must be 0 for satisfiability. When none of above are applicable, split is applied
to reduce to encoding problem to that of two strictly smaller constraints.

4 Experimental results

Our aim is to apply high-level algebraic reasoning to systematically reduce poly-
nomials to compact systems of low-level constraints. Our experimental work thus

11

true
ε · ε ≡2r 0 → true

false
∀ci ∈ c. rank(ci) > 0 rank(d) = 0

c ·X ≡2r d → false

xor
1 ·X ≡2 1 →

⊕
X∈X (

∧
X)

iff
c ·X ≡2 1 → f

c ·X ≡2 0 → ¬f

scale
c ·X ≡2r d → f

(2sc) ·X ≡2r+s (2sd) → f
set

rank(d) = 0 ∃!ci ∈ c. rank(ci) = 0
(c ·X ≡2r d)[x 7→ 1 | x ∈ Xi] → f

c ·X ≡2r d → (
∧
Xi) ∧ f

clear

rank(d) > 0 ∃!ci ∈ c. rank(ci) = 0
∀x ∈ Xi. (c ·X ≡2r d)[x 7→ 0] → fx

c ·X ≡2r d →
∨

x∈Xi
(¬x ∧ fx)

split
x ∈

⋃
X (c ·X ≡2r d)[x 7→ 0] → f0 (c ·X ≡2r d)[x→ 1] → f1

c ·X ≡2r d → (¬x ∧ f0) ∨ (x ∧ f1)

Fig. 4. Reduction rules for pseudo-boolean polynomials modulo 2r

assesses how the complexity of the low-level constraints relate to that of the in-
put polynomials. Although we provide timings for our Buchberger algorithm,
which as far as we know is state-of-the-art, this is not our main concern. Indeed,
fast algorithms for calculating Gröbner bases over fields have emerged in the last
two decades [11, 12], and similar performance gains seem achievable for modulo
arithmetic. In light of this, our Buchberger algorithm is implemented in Scala
2.13.0 (compiled to JVM) using BigInt for complete generality. Experiments
were performed on a 2.7GHz Intel i5 Macbook with 16Gbyte of SDRAM.

Datasets To exercise the symbolic method, polynomial systems were generated
for different numbers of bit-vectors n and different bit-widths ω. For each ω ∈
{2, 4, 8, 16, 32, 64} and n ∈ {2, 3, 4}, 100 polynomial systems were constructed
by randomly generating points in Zn2ω and deriving a system with these points as
their zeros. First, each point was described as a system of n (linear) polynomials.
Second, a single system was then formed with n points as its zeros through the
introduction of n−1 fresh variables [2]. Third, the fresh variables were eliminated
by calculating a Gröbner base to derive a basis constituting a single datapoint.

Symbolic variable and pseudo-boolean count Figure 5 presents box and whisker
diagrams that summarise the numbers of symbolic variables and pseudo-booleans
appearing in the derived pseudo-boolean systems. For each box and whisker, the
lower and upper limits of the box indicate the first and third quartiles, the
central line the median. The inter-quartile range (IQR) is the distance from the
top to the bottom of the box. By convention the whiskers extend to 1.5 times the
IQR above and below the median value; any point falling outside of this range
is considered to be an outlier and is plotted as an individual point. Figure 5
was derived from datapoints generated from 6 random points. Similar trends

12

Fig. 5. Top row: number of symbolic variables (y) against ω (x) for n = 2, 3 and 4;
Bottom row: number of pseudo-booleans (y) against ω (x) for n = 2, 3 and 4

are observed with fewer points and appear to be displayed for more points, but
variable elimination impedes dataset generation and large-scale evaluation.

For both the number of symbolic variables and the number of pseudo-booleans,
the medians level off after an initial increase and then appear to be relatively
independent of ω. This surprising result suggests that algebraic methods have
a role in reducing the complexity of polynomials for bit-vectors, which is sensi-
tive to ω for bit-blasting. This implication is that the number of Gröbner base
calculations also stablises with ω since this tallies with the number of symbolic
variables. We also observe that the number of symbolic bits employed is typically
only a fraction of the total number of bits occurring in the bit-vectors, hence
setting a single symbolic bit is often sufficient to infer values for many other bits.

Pseudo-boolean versus multiplication count The upper row of figure 6 presents
a fine-grained analysis of the number of pseudo-booleans, comparing this count
to the number of bit-vector multiplications in the datasets. Multiplications are
counted as follows: a monomial x3yz, say, in a polynomial system contributes
2 + 1 + 1 = 4 to its multiplication count, irrespective of whether it occurs
singly or multiply in the system. The term 42x3yz also contributes 4 to the
count, so simple multiplications with constants are ignored. Addition is also not
counted, the rationale being to compare the number of pseudo-booleans against
the number of bit-vector multiplications, assuming that different occurrences of
a monomial are detected and factored together. The x-axis of the histograms
of Figure 6 divides the different ratios into bins, the first column giving the
number of datasets for which the ratio falls within [0, 0.25). As n increases the
ratios bunch more tightly around the bin [0.5, 0.75) and, more significantly, the

13

Fig. 6. Histograms for the ratio of the number of pseudo-booleans (top row)/logical
connectives (bottom row) to the multiplication count for n = 2, 3, 4 and ω = 32

number of pseudo-booleans rarely exceed twice the multiplication count, at least
for ω = 32.

Logical connectives versus multiplication count The lower row of Figure 6 ex-
amines the complexity of the resulting pseudo-boolean systems from another
perspective: the number of logical connectives required to encode them. The
pseudo-boolean systems were translated to propositional formulae using the re-
duction rules of Figure 4 and their complexity measured by counting the num-
ber of logical connectives used within them. The histograms present a frequency
analysis of ratios of the number logical connectives to the multiplication count.
Remarkably, histograms show that typically no more than 25 logical connectives
are required per multiplication for ω = 32.

Timing Although the number of symbolic variables is a proxy for complexity,
it ignores that Gröbner basis computations increase in cost with the number of
symbolic variables. Fig. 7 is intended to add clarity, plotting the time in seconds
to calculate the pseudo-booleans against ω. As expected, the median runtimes
increase with ω for any given n, though not alarmingly so for an implementa-
tion based on Buchberger rather than a modern, fast engine such as F5 [12]. It
should be emphasised that the Gröbner basis computations are the dominating
overhead: the resulting SAT instances are almost trivial for our datapoints. By
way of an initial comparison, our approach is 23-fold slower on average than
CVC4 [4] on our 64 bit problems though, no doubt, deploying F5 rather than
Buchberger would significantly reduce this gap, as would recoding in C++.

14

Fig. 7. Timings for Buchberger in seconds (y) against ω (x) for n = 2, 3, 4

5 Related Work

Momentum may be growing [1, 6, 10] for combining algebraic and SMT tech-
niques but work at this intersection has mainly focused on CAD [16, 23]. Gröbner
bases have been used [3], however, for interpolating non-linear constraints over
bit-vectors by use of symbolic conversion predicates. These predicates are used
to lazily convert between bit-vectors and rationals, over which Gröbner bases
are computed. A closer integration of Gröbner bases and bit-vectors is offered
by modifying Buchberger’s algorithm [7] to handle modulo arithmetic [5], work
which is developed in this paper. This approach has found application in verifying
the equivalence of multiplication circuits [17], using signed and unsigned machine
arithmetic. Further afield, but also motivated by the desire to bypass bit-blasting,
efficient portfolio bit-vector solvers have been developed [25], combining learning
with word-level propagators [20] that iteratively restrict the values that can be
assigned to a bit-vector. In contrast to our work, the propagators are designed
to run in constant time and make use of low-level bit-twiddling operations [26].

6 Concluding Discussion

This paper argues for translating polynomial equalities over bit-vectors into
pseudo-boolean constraints, the central idea being to use Gröbner bases to ex-
pose the consequences of setting an individual bit on the bit-vectors over which
a polynomial system is defined. The resulting technique, named bit-sequence
propagation, typically infers the values of many bits from setting a single bit,
even in the context of symbolic bit assignments. The symbolic bits enable the
Gröbner bases to be calculated in a deterministic fashion, with search encap-
sulated within the pseudo-boolean solver, whether one is employed directly or
a reduction to SAT is used. Furthermore, the technique extends to systems of
mixed polynomial equalities and disequalities. Disequalities can be handled by
expressing each disequality in terms of symbolic variables by rewriting the dise-
qualities using the final basis derived for the equalities. Each disequality can then
be converted to propositional formulae, as with an equality, and then a standard
transform [24] used to ensure that the negation of each of these formulae holds.

15

References

1. Ábráham, E.: Building Bridges between Symbolic Computation and Satisfiability
Checking. In: International Symposium on Symbolic and Algebraic Computation.
pp. 1–6. ACM Press (2015)

2. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. American Math-
ematical Society (1994)

3. Backeman, P., Rümmer, P., Zeljic, A.: Bit-Vector Interpolation and Quantifier
Elimination by Lazy Reduction. In: Formal Methods in Computer Aided Design.
pp. 1–10. IEEE (2018)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer-Aided Verification. Lecture Notes
in Computer Science, vol. 6806, pp. 171–177 (2011)

5. Brickenstein, M., Dreyer, A., Greuel, G., Wedler, M., Wienand, O.: New Develop-
ments in the Theory of Gröbner Bases and Applications to Formal Verification.
Journal of Pure and Applied Algebra 213, 1612–1635 (2009)

6. Brown, C.: Bridging Two Communities to Solve Real Problems. In: International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing. pp.
11–14. IEEE Press (2016)

7. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An Algorithm for Finding
the Basis Elements of the Residue Class ring of a Zero Dimensional Polynomial
Ideal. Journal of Symbolic Computation 41, 475–511 (2006)

8. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decompostion. In: Automata Theory and Formal Languages. pp. 134–183.
Springer (1975)

9. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate
Texts in Mathematics, Springer (1992)

10. Davenport, J.H., England, M., Griggio, A., Sturm, T., Tinelli, C.: Symbolic Com-
putation and Satisfiability Checking. Journal of Symbolic Computation (2019),
https://doi.org/10.1016/j.jsc.2019.07.017

11. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

12. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In: International Symposium on Symbolic and Algebraic
Computation. pp. 75–83 (2002)

13. Fekete, Y., Codish, M.: Simplifying Pseudo-Boolean Constraints in Residual Num-
ber Systems. In: SAT. Lecture Notes in Computer Science, vol. 8561, pp. 351–366.
Springer (2014)

14. Griggio, A.: Effective Word-Level Interpolation for Software Verification. In: For-
mal Methods in Computer-Aided Design. pp. 28–36. IEEE (2011)

15. Horácek, J., Burchard, J., Becker, B., Kreuzer, M.: Integrating Algebraic and SAT
Solvers. In: Mathematical Aspects of Computer and Information Sciences. vol.
10693, pp. 147–162. Springer (2017)

16. Jovanović, D., de Moura, L.: Solving Non-linear Arithmetic. In: International Joint
Conference on Automated Reasoning. vol. 7364, pp. 339–354. Springer (2012)

17. Kaufmann, D., Biere, A., Kauers, M.: Verifying Large Multipliers by Combining
SAT and Computer Algebra. In: Formal Methods in Computer-Aided Design. pp.
28–36 (2019)

18. Lang, S.: Graduate Texts in Mathematics: Algebra. Springer (2002)

16

19. Manquinhoand, V.M., Marques-Silva, J.: Using Cutting Planes in Pseudo-Boolean
Optimization. Journal on Satisability, Boolean Modeling and Computation 2, 199–
208 (2006)

20. Michel, L., Van Hentenryck, P.: Constraint Satisfaction over Bit-vectors. In: Con-
straint Programming. Lecture Notes in Computer Science, vol. 7514, pp. 527–543.
Springer (2012)

21. Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. In: European Sympo-
sium on Programming. Lecture Notes in Computer Science, vol. 3444, pp. 46–60.
Springer (2005)

22. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

23. T. Viehmann and G. Kremer and E. Ábráham: Comparing Different Projection
Operators in the Cylindrical Algebraic Decomposition for SMT Solving. In: Inter-
national Workshop on Satisfiability Checking and Symbolic Computation (2017),
http://www.sc-square.org/CSA/workshop2-papers/RP2-FinalVersion.pdf

24. Tseytin, G.S.: On the Complexity of Derivation in Propositional Calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic.
pp. 115–125. Steklov Mathematical Institute (1970), translated from Russian: Za-
piski Nauchnykh Seminarov LOMI 8 1968

25. Wang, W., Søndergaard, H., Stuckey, P.: Wombit: A Portfolio Bit-Vector Solver
Using Word-Level Propagation. Journal of Automated Reasoning 63(3), 723–762
(2019)

26. Warren, H.: Hacker’s Delight. Addison-Wesley (2012)

17

