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This paper describes a static verification framework for the message-passing fragment of the Go
programming language. Our framework extracts models that over-approximate the message-passing
behaviour of a program. These models, or behavioural types, are encoded in Promela, hence can
be efficiently verified with Spin. We improve on previous works by verifying programs that include
communication-related parameters that are unknown at compile-time, i.e., programs that spawn a pa-
rameterised number of threads or that create channels with a parameterised capacity. These programs
are checked via a bounded verification approach with bounds provided by the user.

1 Introduction

Go is an increasingly popular programming language that is known for its lightweight threads (called
goroutines) and native support for message-passing concurrency. Go programmers are encouraged to
coordinate threads by exchanging messages over channels, rather than using shared memory protected
by mutexes [13]. In a recent empirical survey [3], we have discovered that more than 70% of the most
popular Go projects on GitHub use message-passing primitives. Additionally, Tu et al. [18] showed that
message-passing based software is as liable to errors as other concurrent programming techniques. They
also showed that Go concurrency bugs are hard to detect and have a long life time. This is reflected in
a recent survey amongst Go programmers reporting that programmers often do not feel they are able to
effectively repair bugs related to Go’s concurrency features [17]. Concretely, message-passing concur-
rency bugs in Go fall in two categories: (i) blocking errors, where a goroutine is permanently waiting for
a matching send/receive action and (ii) channel errors, where a goroutine attempts to close or send to a
channel that is already closed.

The Go ecosystem provides little support for users to detect concurrency bugs. Its type system only
ensures that each channel instance carries a single specified data type. While a run-time global dead-
lock detector is available, it is silently disabled by some libraries. To help programmers produce correct
concurrent software, several authors have proposed techniques to verify Go programs both statically (at
compile-time) [7, 8, 10, 12, 14] and dynamically (at run-time) [15, 16]. One of the more mature tech-
niques for statically verifying Go programs is Godel [8] which relies on the similarity of Go’s message-
passing aspect to CCS [11]. Godel follows an approach based on behavioural types where Go programs
are over-approximated by CCS-like processes, which in turns are model-checked, using mCRL2 [2] for
safety and liveness properties. Because mCRL2 only deals with finite-state models, Godel has one key
limitation: it does not support programs that spawn new threads in for-loops, e.g., the program in Fig-
ure 1 is not supported. This restriction limits the applicability of Godel to real-world code-bases. Indeed,
58% of the Go projects we studied in [3] feature thread-spawning in for-loops.

Figure 1 shows a typical Go program where several worker threads are concurrently sending data to
the parent thread via channel a. Note that this program spawns |files| threads and creates a channel
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1 func main() {

2 files := getFiles () // decl. of getFiles () omitted

3 a := make(chan string , len(files)) // create bounded buffer ’a’

4 for i := 0; i < len(files); i++ {

5 go worker(a, files[i], i) //spawn worker ()

6 }

7 for i := 0; i < len(files); i++ {

8 <-a // receive from ’a’

9 }

10 }

11 func worker(a chan int , f string , i int) {

12 a <- parseFile(f, i) // send data on ’a’ (decl. of parseFile () omitted)

13 }

Figure 1: File processing example

whose capacity is |files|. The length of files is unknown at compile-time, hence this program cannot
be checked for concurrency errors with existing static verification techniques for Go [7, 8, 10, 12, 14].

Our approach Our short-term objective is to improve the approach from [8] so that we can detect bugs in
programs that feature communication-related parameters that are unknown at compile-time. We focus on
two kinds of communication-related parameters: (i) those that determine the number of threads a program
may spawn at run-time and (ii) those that determine the capacity of channels. For example, the number of
threads and the capacity of channel a are unknown at compile-time in Figure 1. To fulfil our objective, we
augment the behavioural types technique of [8] with (i) an intra-procedural analysis to identify unknown
communication-related parameters, and (ii) a bounded verification wrt. these parameters. Concretely,
we infer behavioural types from Go programs which may feature (undefined) communication-related
parameters. If so, we ask the users to instantiate these parameters with bounds so that we can model-
check the inferred behavioural types. The main challenges are to ask for user-provided bounds only when
necessary and to ensure that these bounds are used consistently. We address these challenges by keeping
track of variables that may be used in channel creation statements or for-loops that spawn threads.

Our long-term objective is to study automated repair of message-passing errors in Go. To anticipate
for this next step, we deviate from [8] in several ways. (1) We infer behavioural types directly from
Go source code instead of its lower-level (SSA) representation. (2) We use Promela and Spin instead of
mCRL2 to encode and verify behavioural types. Promela has the advantage of being much closer to Go.
It has an imperative Go-like syntax and natively supports synchronous and asynchronous channels. As
a consequence, it will be easier to syntactically map an error in a Promela model to its source program.
(3) We divide Go programs into independent partitions. This allows us to detect partial deadlocks and to
identify the location of defects more precisely, while making our tool faster. Figure 2 gives an overview
of our approach, which we have implemented in a tool called GOMELA [4].

Synopsis In § 2, we present a core subset of Go, called MiniGo, as well as typical bugs that we want to
rule out. In § 3, we give a detailed algorithm to extract Promela models from Go programs, while keeping
track of communication-related parameters. In § 4 we present our implementation and its empirical
evaluation. We discuss related work and conclude in § 5.

2 MiniGo and message-passing concurrency errors

For the sake of presentation, we use a fragment of Go that is focused on its message-passing features
and call it MiniGo — we describe how our tool deals with a larger subset of Go in Section 4. The syntax
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Figure 2: GOMELA workflow.

of MiniGo is given in Figure 3. We only discuss its semantics informally and refer to [7] for a formal
account of the semantics of a variation of our language.

We use v to range over non-channel variables, ch to range over channel variables, x to range over any
variables, e to range over expressions (excluding channel variables), a to range over expressions (possibly
including channel variables), id to range over function names, and n to range over integer literals. We
use r to range over mutators of for-loop indices. We use ã to range over a list of expressions and overload
the notation for lists of statements (s̃), etc. We write s̃1s̃2 for the concatenation of s̃1 and s̃2. We write
chans(ã) (resp. chans(x̃)) for the maximal sub-list of ã (resp. x̃) that contains only channel variables.

A MiniGo program p consists of a list of function declarations d̃, possibly including a main function
(the program’s entry point). Each function declaration specifies a list of parameters x̃ (possibly including
channel variables) and a function body s̃.

Statement ch := make(chan,e) creates a new channel of capacity n, when e evaluates to n. If n = 0
then the channel is synchronous, otherwise it is asynchronous. Communication statements α interact
with channels: v← ch receives a value from channel ch and binds it to variable v; while ch← e sends the
evaluation of expression e on channel ch. Send actions are blocking when the channel is synchronous or
has reached its maximal capacity. A channel can be closed with a close(ch) operation. Any send or close
action on a closed channel triggers a run-time error. Any receive action on a closed channel succeeds, if
the channel is empty a default value is returned. Select statements select{c̃} are guarded choices: they
block until one of the guarding communication operations succeeds; after which the corresponding case
is executed. If multiple operations are available, one is chosen non-deterministically. Select statements
may include a unique default branch, which is taken if all other branches are blocking.

A statement go id(ã) spawns a new goroutine, i.e., an instance of function id(ã) which is executed
concurrently with its parent thread. MiniGo also includes standard constructs such as general sequencing,
conditionals, for-loops, and assignment. For the sake of simplicity we model only the relevant parts of
the language of expression (see definition of e). We assume that variable names are pairwise distinct.
Additionally, as in [8], we assume that channel are not in e, that variables are immutable, and that
recursive functions do not spawn goroutines (for-loops are more common than recursion in Go).

Message-passing errors in MiniGo In this work, we are interested in message-passing related bugs
that MiniGo programs may encounter at run-time. We distinguish three types of such bugs. A global
deadlock is a situation where at least one goroutine is waiting for a send or receive action to succeed,
while all the other goroutines are either blocked or terminated. A partial deadlock is a situation where
at least one goroutine is permanently stuck while waiting for a send or receive action to succeed. Go
developers refer to partial deadlocks as goroutine leaks because such stuck goroutines never reach the
end of their scope, and thus are never garbage-collected. A channel safety error is a situation where a
send or close operation is triggered on a closed channel.
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p := d̃
s := ch := make(chan,e)

| α | select{c̃} | close(ch)
| id(ã) | go id(ã) | {s̃}
| if e then s̃1 else s̃2 | for v:=e1;e2;r{s̃3}

α := v← ch | ch← e

c := case α : s̃ | default : s̃
e := true | false | n | v | . . .
a := ch | e
x := ch | v
d := func id(x̃){s̃}
r := v++ | v-- | . . .

Figure 3: Syntax of MiniGo (ch ranges over channel variables and v stands for non-channel variables).

3 Extracting Promela models from MiniGo programs

We adopt an approach based on behavioural types to produce a sound analysis of MiniGo for channel
safety and global deadlock errors, following [7, 8]. Note that this approach is generally unsound wrt.
liveness properties such as partial deadlock freedom without a termination checker, see [7, Section 5].
In this context, behavioural types are an over-approximation of the interactions between goroutines, i.e.,
they record send and receive actions, while abstracting away from the computational aspects. Typically,
conditional statements are assigned behavioural types that correspond to non-deterministic choices in
process calculi. In our work, behavioural types take the form of Promela models, which we extract from
MiniGo source code. Remarkably, we keep track of some computational aspects when they affect the
structure of the communication of the program, e.g., in Figure 1 we need to keep track of len(files).

Given a MiniGo program p, we extract Promela models as follows. For each function declaration
func id(x̃){s̃} where x̃ does not contain any channel variables, we generate a model which consists of
three parts: (1) a model entry point (init process in Promela) that contains the translation of s̃; (2) a
list of process declarations (proctype in Promela), one for each distinct function call occurring (inter-
procedurally) in s̃; (3) a set of monitor processes, one for each channel created in s̃. Each of these
models correspond to a partition of a MiniGo program. Because these partitions do not have free channel
variables, they are effectively independent. Hence, we can verify them independently by considering
each function declaration without channel parameters as a program entry point. As a consequence, we
obtain a more precise and wider analysis of code-bases, while reducing the computational cost of our
analysis, comparing to [8]. In particular, we can detect some partial deadlocks in the program under
considering by identifying global deadlocks in some of its partitions.

Hereafter, we take the following conventions: Promela strings generated by our algorithm are written
in typewriter blue. MiniGo code is written in italic. Our approach is formalised through functions
(in typewriter black) and algorithms (in bold-red) that manipulate MiniGo programs. Each identifier
in MiniGo is translated to the equivalent string in Promela, e.g., ch1 in MiniGo is translated to ch1. For
the sake of readability, we omit the concatenation operator between literal Promela strings and strings
generated by translation functions.

Function declarations Given a function body s̃, for each distinct (blocking) function call id(ã) occurring
inter-procedurally in s̃ such that chans(ã) 6= [], we define a Promela process (proctype) as follows:

proctype id(chanParams(id),ch){TransStmts(∅,body(id));ch!0}
where ch is a channel used to signal the termination of the function call (with ch!0}).
For each distinct non-blocking function call go id(ã), such that chans(ã) 6= [], we define the process:

proctype go id(chanParams(id)){TransStmts(∅,body(id))}
where chanParams(id) (resp. body(id)) returns the channel parameters (resp. body) of function id
and ∅ denotes the empty map. Observe that the non-channel parameters are abstracted away. We use
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function TransStmts(∆,ss̃)
switch s :

case ch← e : ch.in!0;ch.sending?state;TransStmts(∆, s̃)
case v← ch : ch.in?0;TransStmts(∆, s̃)
case close(ch) : ch.closing?state;TransStmts(∆, s̃)
case if e then s̃1 else s̃2 :

if
:: true -> TransStmts(∆, s̃1)
:: true -> TransStmts(∆, s̃2)

fi; TransStmts(∆, s̃)

case select{c̃} :
if

TransStmts(∆, c̃)
fi; TransStmts(∆, s̃)

case case α : s̃1 : :: TransStmts(∆,α) -> TransStmts(∆, s̃1)
case default : {s̃1} : :: true -> TransStmts(∆, s̃1)
case id(ã) :

if chans(ã) 6= [] then
ch = [0] of {int}; run id(chans(ã), ch);ch?0; TransStmts(∆, s̃)

otherwise TransStmts(∆, s̃)

case go id(ã) :
if chans(ã) 6= [] then

run go id (chans(ã)); TransStmts(∆, s̃)

otherwise TransStmts(∆, s̃)

case for v:=e1;e2;r{s̃3} :
let (∆′,x,y) = lookup∆(v:=e;e;r) in
if spawns(s̃3) ∨ ∆ == ∆′ then
for (i: x ..y ){TransStmts(∆′, s̃3)}; TransStmts(∆′, s̃)
otherwise
do :: true -> TransStmts(∆, s̃3)

:: true -> break;

od;

TransStmts(∆, s̃)

case ch := make(chan,e) :
let (∆′, ,y) = lookup∆(i := 0; i < e; i++) in
Chandef ch;
chan ch.in = [y] of {int};
run chanmonitor(ch);
TransStmts(∆′, s̃)

Algorithm 1: Extracting Promela from MiniGo statements. We assume that TransStmts(∆, []) re-
turns the empty string.

proctype instead of inline definition as the latter cannot include declarations of new channels. Next,
we define function TransStmts which translates MiniGo statements to Promela.

Algorithm 1 specifies how we extract a model from a list of MiniGo statements. We use b to range
over the control statements of a for-loop, i.e., b ranges over triples of the form (v:=e1;e2;r).

Function TransStmts takes two parameters: (1) ∆ maps expressions (corresponding to communication-
related parameters) to Promela strings, and (2) a list of MiniGo statements.

Channel primitives For each MiniGo channel we generate a custom Promela structure, called Chandef,
which contains three channels: in carries the exchanged messages, while sending (resp. closing) is
used to monitor send (resp. closing) actions. A send statement is translated to a send statement in Promela
(on channel in), followed by a receive statement on the corresponding channel monitor (on the sending
channel, see below). A receive statement is translated to a Promela receive (on channel in). A close
statement is translated to a Promela receive on channel closing.



6 Bounded verification of message-passing concurrency in Go using Promela and Spin

↓ b =


e1 if b is v := e1; v < e2; v++
e2 if b is v := e1; v > e2; v--
⊥ otherwise

↑ b =


e2 if b is v := e1; v < e2; v++
e1 if b is v := e1; v > e2; v--
⊥ otherwise

lookup∆(b) =

{
(∆,x,y) if ↓ (b) =⊥ or ↑ (b) =⊥, with x and y fresh
(∆′,∆′(↓ b),∆′(↑ b)) otherwise, where ∆′ = ∆ [e 7→ x | e ∈ {↓ (b),↑ (b)}\dom(∆) with x fresh]

Figure 4: Auxiliary functions for Algorithm 1, where we assume ∆(n) = n for each integer n.

Conditionals An if-then-else statement is translated to an if block in Promela. It behaves as a non-
deterministic internal choice (true is an always-enabled guard). A select statement is translated to a
non-deterministic choice, using an if block where each non-default branch is guarded by a send or
receive action. Default branches are translated to a branch that is always available.

Control statements A blocking function call is translated to Promela code that spawns an instantiation
of the corresponding Promela process (using the run keyword), then waits for it to terminate by waiting
on fresh channel ch. For spawning function calls, i.e., go id(ã), there are two cases. If the parameters
include channels, the algorithm returns Promela code that spawns the corresponding process. Otherwise
it omits the call entirely — as it will be checked in the model of an independent partition.

To translate for v:=e1;e2;r{s̃3}, we need to first check (i) whether we can extract well-identified
bounds that we consider as communication-related parameters and (ii) whether the loop contains (inter-
procedurally) spawning function calls, i.e., spawns(s̃3) holds (whose straightforward definition is omit-
ted). If spawns(s̃3) holds then the range of the loop needs to be finite. Hence, either we set-up Promela
variables (that the user will instantiate) to define a range; or we are able to identify a static range (integer
literal bounds). When the loop does not spawn new threads, we only use a finite Promela for-loop if all in-
volved variables have been seen before (∆==∆′, see below). In all other cases, we use a non-deterministic
loop using a Promela do block which can be exited at any iteration with a break operation.

We keep track of re-usable communication-related parameters with the map ∆ and use the function
lookup, defined in Figure 4, to query it. Functions ↓ (b) and ↑ (b) respectively return the lower and
upper bounds of for-loop control statement b. When the control statements of a for-loop are well-formed
(they obey a recognisable pattern, i.e., ↓ b 6= ⊥∧ ↑ b 6= ⊥), the lookup function returns a new map ∆′

and the lower ( ∆′(↓ b)) and upper (∆′(↑ b)) bounds of the for-loop. Map ∆′ augments ∆ with mappings
from newly identified expressions to fresh Promela variables.

Channel creation A channel creation statement is translated to the instantiation of a Chandef structure
and the spawning of its chanmonitor process. We initialise the in channel of the Chandef structure
with a capacity corresponding to its MiniGo equivalent. If the capacity is not a integer literal, the lookup
function ensures that we either re-use Promela variables, or generate fresh ones. Note that channels
sending and closing in Chandef are always synchronous.

open closed error

ch.sending!

ch.closing!

ch.closing!

ch.sending!

ch.in!

Channel monitors To detect channel safety errors, we keep
track of the state of MiniGo channels. We use Promela pro-
cesses to monitor channel actions, i.e., send, receive, and
close. As an optimisation, we only create such monitors
when a close primitive appears in the program. Processes
corresponding to goroutines interact with channel monitors
via an instance ch of a ChanDef structure which contains
three channels (in, sending, and closing). The automa-
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1 #define len_files_0 15

2

3 typedef Chandef {

4 chan in = [0] of {int};

5 chan sending = [0] of {int};

6 chan closing = [0] of {bool};

7 }

8 init {

9 chan _ch0_in = [len_files_0] of {int};

10 Chandef _ch0;

11 _ch0.in = _ch0_in;

12 run chanMonitor(_ch0)

13

14 for(i : 1.. len_files_0) {

15 run mainworker(_ch0)

16 };

17 for(i : 1.. len_files_0) {

18 _ch0.in?0

19 };

20 }

21 proctype mainworker(Chandef a) {

22 a.in!0;

23 a.sending ?0

24 }

25

26 proctype chanMonitor(Chandef ch) {

27 bool open = true;

28 do

29 :: true ->

30 if

31 :: open ->

32 if

33 :: ch.sending!open;

34 :: ch.closing!true ->

35 open = false

36 fi

37 :: else ->

38 if

39 :: ch.sending!open ->

40 assert(false)

41 :: ch.closing!true ->

42 assert(false)

43 :: ch.in!0;

44 fi

45 fi

46 od

47 }

Figure 5: Model extracted from Listing 1 with Algorithm 1

ton on the right represents the behaviour of this monitor (chanMonitor). Figure 5 (lines 26- 47) gives
the corresponding Promela code. In MiniGo and Go, when a channel is closed, sending on it or closing
it will raise an error, hence the transitions from state closed to state error in the automaton. Also, receive
actions on closed channels always succeed, hence the self-loop on state closed.

Example 1. The model extracted from Figure 1 with Algorithm 1 is given in Figure 5. Lines 8-20
contain the translation of the main function. Note that a chanMonitor is spawned at line 12. The
definition of this process is given in lines 26-47. The translation of the worker function is in lines 21-24.

Figure 5 contains one (unknown) communication-related parameter: len(files) which is used in
the capacity of channel a, and in the loops at lines 4 and 7 of Figure 1. Observe that the communication-
related parameter len(files) is set to 15 here (see line 1). Our implementation also allows user to
specify such parameters as program (command line) arguments. Expression len(files) is first seen
by Algorithm 1 in a channel creation statement. At this point, it adds len(files) 7→ ‘len files 0’

in map ∆. When the algorithm processes both loops, it invokes lookup∆(i:=0;i<len(files);i++)
to obtain lower and upper bounds (0 and ‘len files 0’, respectively). Note that the loop in line 4 is a
spawning loop, hence it must be translated to a finite loop in Promela to obtain a finite model. The loop
in line 7 is not spawning, but it is still translated to a finite loop because all its bounds are already in ∆.

4 Implementation and evaluation

Implementation We have implemented our approach in a tool called GOMELA [4]. Given a Go program,
our tool extracts Promela models (as described in Section 3). If necessary, the user enters values (bounds)
for the statically unknown communication-related parameters produced by Algorithm 1 (i.e., the Promela
variables). For instance, the user provides a bound to instantiate len(files) in Figure 1. This value is
then used as a bound in the for-loops at lines 4 and 7 as well as the capacity of channel a.



8 Bounded verification of message-passing concurrency in Go using Promela and Spin

Table 1: Go programs verified by GOMELA and comparison with Godel [8]. All programs are available online [4].

GOMELA Godel Manual analysis
# Programs & Partitions |States| CS GD Infer (ms) Spin (ms) Time ψs ψg CS GD

1 file processing (|files|=15) 376880 3 3 85 1666 ⊥ ⊥ ⊥ 3 3
2 file processing v1 (|files|=15) 109 3 7 86 1057 ⊥ ⊥ ⊥ 3 7
3 file processing v2 (|files|=15) 110 3 7 85 1027 ⊥ ⊥ ⊥ 3 7
4 prod-cons (k=5,n=10,m=10) 4802785 3 3 85 31239 ⊥ ⊥ ⊥ 3 3
5 alt-bit 35 3 3 956 1391 460 3 3 3 3
6 concsys 96 - - 768 8194 588 3 3 - -

- ConcurrentSearch() 49 3 3 - 1126 - - - 3 3
- ConcurrentSearchWC() 26 3 7 - 1335 - - - 3 7
- First() 3 3 3 - 1183 - - - 3 3
- ReplicaSearch() 9 3 7 - 1326 - - - 3 7
- SequentialSearch() 3 3 3 - 1073 - - - 3 3
- FakeSearch() 3 3 3 - 1083 - - - 3 3
- main() 3 3 3 - 1068 - - - 3 3

7 cond-recur 13 3 3 84 1278 623 3 3 3 3
8 dinephil 968 3 3 804 1478 859 3 3 3 3
9 dinephil5 71439 3 3 835 1801 8681 3 3 3 3

10 double-close 18 7 - 85 1486 463 7 3 7 3
11 fanin-alt 34 3 7 769 1686 786 3 3 3 7
12 fanin 15 3 3 681 1495 621 3 3 3 3
13 fixed 14 - - 740 2379 656 3 3 - -

- Work() 2 3 3 - 1117 - - - 3 3
- main() 12 3 3 - 1262 - - - 3 3

14 forselect 21 3 3 755 1507 813 3 3 3 3
15 jobsched 48 - - 781 2745 589 3 3 - -

- main() 45 3 3 - 1532 - - - 3 3
- morejob() 3 3 3 - 1213 - - - 3 3

16 mismatch 12 - - 714 2316 603 3 7 - -
- Work() 2 3 3 - 1044 - - - 3 3
- main() 10 3 7 - 1272 - - - 3 7

17 sel 21 3 7 84 1719 326 3 7 3 7
18 selFixed 19 3 3 82 1330 572 3 3 3 3
19 philo 18 3 7 85 1362 537 3 7 3 7
20 starvephil 67 3 7 759 1343 836 3 7 3 7
21 nonlive 7 3 3 850 1194 550 3 3 3 3
22 nonlive v1 7 3 7† 850 1152 366 3 7† 3 3
23 prod-cons 61 3 3 87 1390 508 3 3 3 3
24 prod3-cons3 5746 3 3 643 1534 19963 3 3 3 3
25 prodconsclose 12185424 3 3 163 18672 25348 3 3 3 3
26 stuckmsg 5 3 3 86 1109 790 3 3 3 3
27 data-dependent 12 3 7† 86 1170 694 3 7† 3 3

Column number 1 2 3 4 5 6 7 8 9 10

GOMELA uses Spin to check whether each model is free from channel safety errors and global dead-
locks. Spin reports any global deadlock and any trace that leads to an assert(false) statements. We
use the former to check for global deadlocks (GD) in a program’s partitions, and the latter to check for
channel safety errors (CS). Spin detects when the main process (init) terminates while another process
is still running. We use this to detect some goroutine leaks, i.e., a particular case of partial deadlocks.

In addition to MiniGo statements, GOMELA deals with constants (used as communication-related pa-
rameters), anonymous functions, break statements, for range loops and switch statements. Occurrences
of integer constants are replaced with their actual values. To deal with anonymous functions, GOMELA

generates Promela corresponding function declarations (using fresh names) and its (unique) invoca-
tion. Go’s break statements are translated as Promela break statements. For-ranges loop (for range

list{s̃1}) are treated as for-loops with control statements of the form: to for i:=0;i < len(list);i++.
Finally, switch statements are translated into n-ary internal choices (similar to an if-then-else).

Evaluation To evaluate our tool, we ran it on several benchmarks, including some from [8, Table 1]. The
results of this evaluation are in Table 1. In Table 1, Column 1 gives the number of states in the model, as
given by Spin. In Column 2 (resp. 3) a 3-mark says that the corresponding program partition is channel-
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safe (resp. free of global deadlock); a 7-mark says that the property is violated. Column 4 (resp. 5)
shows the time (milliseconds) taken to extract (resp. verify) the Promela model of a partition. The timing
for programs are the sum of all of their partitions. Column 6 shows the time (milliseconds) taken by
Godel [8] to verify channel safety (ψs, Column 7) and global deadlock (ψg, Column 8) properties in. A
⊥-mark means that Godel does not support this program. A 3-mark in Column 9 (resp. 10) says that it
was not possible to find any channel errors (resp. global deadlocks) manually, 7† highlights false alarms.

In Table 1, Program 1 is the example in Figure 1 where the user has set len(files) to 15. Pro-
grams 2 and 3 are variations of Program 1 with a global deadlock and a goroutine leak, respectively.
Program 4 spawns n producers and m consumers that interact (repeatedly) over a channel with capacity
k. Observe that these are not supported by Godel because they include thread-spawning in a for-loop.
Programs 5 to 26 are taken from [8, Table 1]. We note that Godel runs marginally faster than GOMELA

on programs with small models. This is due to Spin’s start up time of ∼1s. For larger programs (more
than 5000 states) GOMELA performs much better than Godel, see, e.g., Programs 9, 24, and 25. This
suggests that our tool scales better than Godel on larger code-bases.

Below we comment on the errors identified in the programs from Table 1.

• Program 6 has two partitions that contain global deadlocks. In ConcurrentSearchWC, a func-
tion spawns three goroutines that send a message on a shared channel c. That function may
terminate silently (via timeout) hence leaving three unmatched send actions in the goroutines.
ReplicaSearch includes a similar pattern where the parent thread may terminate while leaving
some goroutines permanently blocked.

• Program 10 contains a channel safety error where a channel is closed twice by two different
threads. We note that Spin aborts the verification as soon as it finds such errors.

• Program 11 creates two producers and one consumer. The consumer may terminate silently in
which case both producers are blocked permanently. Program 12 is similar to Program 11 except
that the consumer never terminates, thus fixing the bug.

• Program 16 contains two partitions: Work consist of a non-terminating loop (without communica-
tions), while main contains a global deadlock due to a mismatch between the number of send and
receive actions. Note that if we were modelling this program with one monolithic partition, we
would not detect a global deadlock because Work never blocks.

• In Program 17 each goroutine may get stuck because of a mismatch between the number of send
and receive actions.

• Program 19 is an encoding of the (starving) philosopher problem using only two philosophers,
taken from [14]. Program 20 is another encoding of the (starving) dining philosophers from [8].

• Programs 21 and 22 are two variants of a program that contain two goroutines: one is waiting
for a message, while the other contains a non-terminating for-loop. In Program 21, the non-
terminating for-loop is followed by a (unreachable) matching send action. These programs show
the limits of the behavioural types approach: they contain proper partial deadlocks. The problem
in Programs 21 is only detected in Godel by using an additional termination checker.

• Program 27 is given in Figure 6. This program gives a typical example of a false alarm raised
by our tool, and any existing approach based on behavioural types. Because if-then-else state-
ments are translated to non-deterministic choices, our approach is unable to determine that the two
conditional blocks are “synchronised” by the same invocation of function f().

Limitations Our approach is applicable to MiniGo, extended with the syntactic constructs discussed
above. Several key limitations need to be tackled to address the full Go language. We assume that
variables are immutable, as a consequence we cannot soundly analyse programs that, e.g., mutate a list
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1 func main() {

2 a := make(chan int)

3 go send(a)

4 if f() { // decl. of f() elided

5 a <- 0

6 } else {}

7 }

8

9 func send(a chan int) {

10 if f() {

11 <-a

12 } else {}

13 }

14 /* f() is a deterministic function

without side -effects */

Figure 6: Data-dependent choice (Program 27).

files in between using len(files) as a communication-related parameter. Go has object oriented-
like features, such as structs, methods, and interfaces which we currently do not support. Virtual method
calls (on interfaces) are particularly difficult to model. As in [7, 8, 10, 12, 14], we do not support channel
passing (since we abstract away the data sent over channels). We note that our empirical survey [3] found
that only 6% of projects used channels that carry channels.

5 Related work, conclusions and future work

Related work Spin and Promela have been used extensively in software verification. Notably Java
PathFinder [5] translates Java programs to Promela models which are then verified for deadlocks and
violations of user-provided assertions. Also, Zaks and Joshi [19] use Spin to verify multi-threaded C
programs using their LLVM representation and custom virtual machine.

Several works focus on the verification of message-passing concurrency in Go [7, 8, 10, 12, 14,
15, 16]. Four papers studied static verification using behavioural models. Ng and Yoshida [12] proposed
dingohunter, the first static global deadlock detection tool for Go. It relies on communicating finite-states
machines [1] and multiparty compatibility [9]. Their work does not support asynchronous channels nor
programs that spawn goroutines or create channels in loops or conditionals. Stadtmüller et al. introduced
gopherlyzer [14] which detects global deadlocks using forkable regular expressions. This work does not
support channel closures, asynchronous channels, nor goroutines spawned in loops. Lange et al. [7, 8]
proposed Gong and Godel, whose approach serves as a basis for this work. Gong uses an ad-hoc checker
which supports bounded verification of infinite-state models, but did not scale well. Instead, Godel uses
mCRL2 [2] as a back-end. Because mCRL2’s communication model is very different from Go’s the
encoding from behavioural types to mCRL2’s language is very intricate, see [6]. Promela is a more
convenient language for this purpose, but because Spin supports only LTL, while mCRL2 supports the
µ-calculus, it is not possible to check the liveness property specified in [7, 8]. However, we can still
identify some goroutine leaks by checking whether their corresponding models reach their end states.

Conclusions Our work builds on the approach in [8] and improves it to support statically unknown
communication-related parameters via a bounded analysis. Our approach allows us to support programs
that spawn a parameterised number of goroutines or channel capacities. Our evaluation shows that our
tool scales well and produces models that can be easily understood and adjusted by programmers.

Future work Our short term plans are to support additional concurrency-related Go features, e.g.,
barriers (WaitGroup). We will also improve our algorithms to support more complex for-loops control
statements, and to perform a fully inter-procedural analysis of communication-related parameters. In the
longer term, we plan to use our tool to detect concurrency errors and suggest repairs for large code-bases.
We plan to perform a large-scale empirical evaluation of this toolchain on the dataset identified in [3].
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