Citation for published version

DOI

https://doi.org/10.1021/acsaem.9b01870

Link to record in KAR

https://kar.kent.ac.uk/80393/

Document Version

Author's Accepted Manuscript

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Predicting Atom-Level Models of Layered-Spinel Heterostructured Li-Mn-O Nanoparticles

R. S. Ledwabaa, D. C. Sayleb and P. E. Ngoepea

aMaterials Modelling Centre, University of Limpopo, Private Bag X1106, Sovenga, 0727, SA
bSchool of Physical Sciences, University of Kent, Canterbury, CT2 7NZ, UK.

\textbf{ABSTRACT:} Li-Mn-O heterostructured composite nanomaterials show promise as potential electrodes in energy storage devices. However, the structures of these materials are complex, which hinders understanding of their operation and future exploitation. Here, we capture such complexity, within atom-level models, by using simulated amorphization and recrystallization method on LiMn\textsubscript{2}O\textsubscript{4}. Analysis of the resulting Li-Mn-O nanoparticle models reveal that they comprise domains of defect-rich spinel, Mn\textsubscript{3}O\textsubscript{4}, layered Li\textsubscript{2}MnO\textsubscript{3} and lithium-rich spinel Li\textsubscript{1+x}Mn\textsubscript{2-x}O\textsubscript{4} phases, which emanate from high temperature structural transformations. In addition, we observe grain-boundaries and intrinsic defects within the model structures. The discharge process was modelled by inserting surplus lithium atoms into the nanoparticles. This resulted in a decrease of both the Mn\textsubscript{3}O\textsubscript{4} phase and the layered Li\textsubscript{2}MnO\textsubscript{3}-type structure concentration and the retention of the spinel Li\textsubscript{1+x}Mn\textsubscript{2-x}O\textsubscript{4} phases. Such models will help experiments unravel the hierarchical structural complexity of these composite materials. We also find that microstructural features, such as microtwinning and intrinsic dopants (vacancies, substitutionals and interstitials) result in a network of Li transport pathways, enabling Li mobility in all three spatial directions.
The current application scope of LIBs has been expanded from consumer devices such as laptops and phones to transportation applications including electric vehicles (EVs) [1]. NMC is among the best cathode materials for the electrification of automobile vehicles given its advantages in high capacity, electrochemical stability, and cost effectiveness. [2-3], and much progress has been made in enhancing its performance, especially the nickel rich NMCs [4]. Although it is estimated that nickel has sufficient supply, the extent of deploying electro-mobility in the future could lead to its shortages [5]. Consequently, for long term sustainability of EVs on roads it is important to consider cathodes that use more abundant materials, such as manganese. Consideration of LMO cathodes means a compromise on energy density but a pronounced gain in rate capability, better low temperature performance, cost and high round energy efficiency per cycle [6].

It has been further reported that LiMn$_2$O$_4$ achieves an excellent cycle performance by blending with LiMO$_2$ (M: Mn, Co, Ni etc.) [7-10] which has been recently embedded in commercialized EVs. An understanding of the electrochemical behaviour of LiMn$_2$O$_4$ could be also extended to the analysis of related high-voltage electrodes such as LiNi$_{0.5}$Mn$_{1.5}$O$_4$.[11,12]. In Li-rich NMCs, the composite layered spinel structures have played a significant role in enhancing capacity and suppressing voltage fade [13]. Nanoparticle-aggregated microspheres (primary and secondary) of Li-rich “layered (R-3m)–layered (C2/m)–spinel (Fd-3m)” materials showed simultaneously great reversible capacity (302 mAh•g$^{-1}$ at 0.2 C), higher initial Coulombic efficiency and superior rate capability, when compared to pure layered Li-rich material [14-17]. In addition, the increase in the cyclability and rate capability were attributed to the flexibility of smaller particles and their exposed large surface areas allowed faster charge/discharge because of the shortened electron and lithium ion diffusion distances [18,19]. Also all Mn – NMC (Johnson and Thackeray 2005) [20] .

The presence of the spinel and layered structures in NMC cathodes, is inherent/typical of the spinel LiMn$_2$O$_4$, owing to its varied high temperature behaviour. The study by Thackeray al [21, 22] revealed that on heating this compound from ambient
temperature, a (rock-salt) Li₂MnO₃ phase is formed at approximately 800K, which is followed by a high temperature spinel Mn₃O₄ phase that emerges around 1120°C (1393.15 K). The study has also shown that the spinel phase comprises a high concentration of manganese occupying tetrahedral sites and attributed this to the loss of oxygen and lithium (as Li₂O) [23].

In principle, the spinel-Mn₂O₄ framework can deliver a capacity of ~297 mAhg⁻¹ when a Li⁺ ion is inserted/extracted into/from each of the 8a tetrahedral and 16c octahedral sites. However, the strong Jahn–Teller distortion of MnO₆ octahedra that occurs due to Mn³⁺ formation, leads to a partly reversible phase transition that is associated with the 2.7 V plateau. An increase in the axial ratio c/a of the unit cell from 1.0 in the cubic phase to 1.6 in the distorted tetragonal phase is induced by the lithiation of Li₁+δMn₂O₄ (0 ≤ δ ≤ 1). Such anisotropic strain causes fracture of large particles and thus internal contact loss upon cycling [25-27]. Accordingly, NPD and first principles calculations proposed a comprehensive understanding on the reaction mechanisms involving the solid-solution regions within both cubic and tetragonal symmetries in addition to the two-phase transition between them [28].

Simulated amorphisation and recrystallisation method, based on molecular dynamics methods, has been successfully employed to ‘synthesis’ various nano-architectures (nano-spheres, sheets, porous) of the binary CeO₂ [29] and Li-ion battery electrodes such as MnO₂ [30,31] and TiO₂ [32]. In addition, the method yielded heterostructured or composite compounds with ramsdellite-pyrolusite and rutile-brookite polymorphs for MnO₂ and TiO₂ respectively. A model ternary Li₂MnO₃ nanosphere, has also been synthesised using this approach [33]. The A+R method allows for ‘spontaneous’ nucleation and growth of crystals with microstructural features, such as grain-boundaries, dislocations and point defects occurs exothermically. Microstructures are consistent with those observed from the high resolution transmission microscope. In-depth understanding of such microstructural features and active sites of ions can aid in the design and modification of high energy density electrode materials [34, 35].

In the present study, we use the simulated amorphization and recrystallization method to generate atom-level models of LiₓMn₂O₄ (1 ≤ x ≤ 2) nanoparticles, often referred to as primary particles. This will be followed by simulation of the charge/discharge
process, conducted by subsequently inserting lithiurns into the nanoparticles whilst closely monitoring the effect of lithiation on the structural integrity of the host electrode material. The conditions for simulation will be guided by high temperature molecular dynamics simulation data reported in our previous work [26]. Proper harvesting and analysis of the microstructures for nanoparticles with different lithium concentrations can help to elevate understanding of the cubic to tetragonal spinel transition so crucial for the performance of this cathode.

New References:

5. To be added

20. Johnson C. S., Li N., Vaughey J. T., Hackney S. A. and Thackeray M. M., "Lithium–Manganese Oxide Electrodes with Layered–Spinel Composite Structures xLi$_2$MnO$_3$·(1−x) Li$_{1+x}$Mn$_{2−y}$O$_4$ (0< x< 1, 0⩽ y⩽ 0.33) for Lithium Batteries," *Electrochemistry Communications*, 7, 528-536, 2005

24. Looking for a relevant reference, if possible.

25. Tarascon, J. M.; Guyomard, D. Li Metal-Free Rechargeable Batteries Based on Li$_{1+x}$Mn$_2$O$_4$ Cathodes (0⩽x⩽1) and Carbon Anodes. J. Electrochem. Soc. 1991, 138, 2864–2868.

2. Method

In this section we discuss briefly, the potential models used to describe the interactions between Li–Mn-O ions, the codes used to perform the dynamical simulations, the construction of atomistic models, their amorphization and recrystallization as well as the discharge process.

Potential models: Simulations in this work are based on interatomic potentials that were previously generated and reported for the Born model of the ionic solids, in which the Mn$^{4+}$, Mn$^{3+}$, Li$^+$ and O$^{2-}$ ions interact via long-range Coulombic interactions coupled with short-range parameterized interactions [24].

Simulation code: The DL_POLY [27] code was used to perform all the molecular dynamics (MD) simulations. This code utilizes three-dimensional periodic boundary conditions to represent the model infinitely in space. All simulations were performed within the NVE and NVT ensembles, for amorphization and recrystallization, respectively.

Generating atomistic models: The nanoparticle was generated by cleaving a sphere with desired radius from the parent bulk. Stoichiometry was assured by removing either Mn/O/Li atoms from the outer surface to facilitate charge neutrality resulting in a nanoparticle with 26 642 atoms (8nm in diameter). A spinel structured crystalline seed in the form of a cube (morphology) was fixed at the centre of the nanoparticle during amorphization.

Amorphization and recrystallization: The nanoparticle was amorphized at 1700K, while enclosed in a 100 Å box, which limits interaction with neighbouring nanoparticles and has dimensions sufficiently large in order for it not to interact with its images. The system was then allowed to recrystallize, during which time the ions had sufficiently
high mobilities to allow them to move into low-energy configurations within the timescales (typically nanoseconds) accessible to the simulation allowing evolution of microstructural features, such as: grain-boundaries, dislocations, point defects, as observed experimentally [28].

Lithium intercalation: Lithium atoms were introduced into the spinel nanoparticle, specifically, four models were generated: Li_{1.25}Mn_2O_4, Li_{1.5}Mn_2O_4, Li_{1.75}Mn_2O_4 and Li_{2.0}Mn_2O_4 i.e. three nanospheres with different concentrations were obtained containing 4758, 5709, 6661 and 7360 lithium atoms, respectively. The program uploaded the insertion sites from the structure file, randomly selected a tunnel site and inserted a lithium ion at its vacant co-ordinates. Charge neutrality was maintained by reducing an Mn^{4+} ion, closest to the (inserted) lithium cation, to Mn^{3+}. This process was repeated for all the lithium ions inserted in the structure.

3. Results

Recrystallisation: MD simulation, performed at 1700 K for 5 ns, led to the complete crystallization of the nanoparticle - nucleated by the crystalline seed, at the centre of the nanoparticle. A low energy structure was achieved by reducing the temperature to 1 K; the MD acts as a pseudo energy minimization. The initial crystalline nanoparticle model, is shown in Figure 1 (a) with atoms occupying Wyckoff positions depicted in (b), followed by the amorphous system in (c) and SEM image of nanoparticle synthesized experimentally via the ultrasonic spray pyrolysis method(d) [28], the polycrystalline nanosphere obtained after recrystallization is shown in (e) with lithiums occupying 16c sites, in (f, g).
Figure 1: Spinel LiMn$_2$O$_4$ (a) crystalline nanosphere cleaved from the parent bulk, (b) atomic Li-Mn-O sites from crystalline model, (c) amorphous Li-Mn-O nanoparticles (d) SEM images of the LiMn$_2$O$_4$ nanoparticle [28], (e) recrystallized nanospheres of Li-Mn-O and (f, g) slice cut from recrystallized sphere depicting atomic Li-Mn-O sites.

Figure 2 illustrates the steps-by-step recrystallization of the Li-Mn-O nanoparticle. The initial amorphous Li-Mn-O structure is shown at time $t=0$ ns. Crystallisation started around 0.3 ns, nucleated by the crystalline seed at the centre of the nanoparticle – and was complete after 0.6 ns. Crystallization was observed to propagate along different directions, resulting in the formation of a polycrystalline material with grain boundaries.
Figure 2: Atomistic structure of the Li-Mn-O nanoparticle with 26 642 atoms during crystallization at 0 ns, 0.3 ns, 0.6 ns, 1.5 ns, 3.0 ns and after cooling.

Amorphous RDFs: The radial distribution function (rdfs) plots for amorphized nanosphere are shown in figure 3 (a). They depict the first peak at ~1.95 Å for Mn-O, ~2.5 for O-O and ~3 Å for Mn-Mn, which represent the bond lengths between the relative atom species. These are followed by broader peaks beyond 5 Å radial distance, indicating that the nanosphere is in a disordered state and that the probability of locating the nearest neighbouring atom in relation to the reference atom is minimal.

Recrystallised RDFs: In figure 3 (b) below, there is an increase in peak quantity and sharpness of the rdfs. The peaks attributable to Mn-O, Mn-Mn and O-O interactions occur between 2 and 4 Å. Sharper peaks emanate beyond 4 Å, for Mn-O, Mn-Mn and O-O interactions, indicating long-range order and therefore confirming that the spinel nanosphere has recrystallized.
Figure 3: RDFs of the Li-Mn-O nanosphere (a) before crystallization and (b) after crystallization at 1700 K.

Cooled RDFs: The recrystallized structure was then cooled by performing MD simulations for: 500 ps at 1200 K, 250 ps at 800 K, 250 ps at 400 K and lastly 500 ps at 0 K. This helps remove thermal noise from the structure and makes characterisation easier. The total RDFs of the nanosphere at different temperatures are shown in figure 4. Lowering of temperature increases peak sharpness and this is particularly distinct in the enlarged portion, in (b) where narrowing of peaks at different temperatures is clearly depicted, implying that the system is more crystalline.
Figure 4: Total RDFs of the Li-Mn-O nanosphere at different temperatures (a) and its magnified portion in (b).

Characterization: In figure 5, a snapshot of the Li-Mn-O nanosphere is shown. A portion from this nanosphere is magnified in (b) to clearly show the occupancy of manganese (Mn) atoms on tetrahedral sites. Some atomic arrangements in this portion are similar to those of spinel Mn$_3$O$_4$. As such, the conventional unit cell of spinel Mn$_3$O$_4$ structure was captured in (c) and compared with a similar segment magnified from (b). The compatibility thereof suggested the presence of spinel Mn$_3$O$_4$ within the recrystallized Li-Mn-O nanosphere (a).

Figure 5: (a) Recrystallized Li-Mn-O nanosphere, (b) magnified portion of the nanosphere with tetrahedral Mn, (c) conventional unit cell of perfect spinel Mn$_3$O$_4$ showing structural arrangement and (d) magnified portion of (b) where an Mn$_3$O$_4$-type of arrangement is observed within the recrystallized Li-Mn-O nanosphere.
Detailed analysis was carried out by cutting through the nanosphere in the area enclosed with a white box in figure 6 (a). A snapshot of the slice is shown in (b), illustrating the atomic arrangement of Li, Mn and O atoms, which conform to a defective (layered) Li$_2$MnO$_3$ crystal structure. The model of perfect Li$_2$MnO$_3$ in (c) was compared with the magnified portion of (b) denoted as (d). Although the magnified portion in (d) is defective with vacancies and substitutions, the atomic arrangements comparable to those observed in (c).

Comparison between Li-Mn-O atomic arrangements calculated in this work and measured experimentally by Long et al [6], are shown in figure 7. The atomic arrangement is similar to that of Li$_4$Mn$_5$O$_{12}$ (lithium-rich phase of Li$_{1+x}$Mn$_{2-x}$O$_4$) in which lithium atoms occupy 16d positions. Conversely, in LiMn$_2$O$_4$ Mn atoms are located on these sites. This lithium-rich phase is advantageous because it suppresses Jahn-Teller distortions due to its oxidation state of Mn$^{4+}$ [14] unlike LiMn$_2$O$_4$ which experiences domination of Mn$^{3+}$ during redox reactions of the charge and discharge process. In addition to this phase, another slice showed the presence of Li$_2$MnO$_3$ within the nanosphere in (d). This layered structure accords with the HRTEM image of diffraction spots for layered Li$_2$MnO$_3$ characterized experimentally by Long et al in (e) [6].

Figure 6: (a) Schematic representation of recrystallized spinel, (b) slice cut through the nanoparticle, (c) slice cut through a perfect bulk model of Li$_2$MnO$_3$ and (d) magnified portion of the slice in (b) showing the presence of Li$_2$MnO$_3$.

Figure 7: (a) HRTEM image of defective spinel Li$_4$Mn$_5$O$_{12}$ [6] (b) simulated spinel component (this work) in Li-Mn-O nanosphere, (c) Experimental co-existing spinel and layered composite [3], (d) simulated Li$_2$MnO$_3$ phase in Li-Mn-O nanosphere and (e) experimental diffraction spots of Li$_2$MnO$_3$ structure [6].

Discharge Process: Nanospheres with various lithium concentrations are illustrated by the snapshots in figure 8. The structures illustrate crystallization along different directions from Li$_{1.00}$Mn$_2$O$_4$ to Li$_{1.50}$Mn$_2$O$_4$. The Li$_{1.75}$Mn$_2$O$_4$ nanoparticle, exhibits extensive multiple grains, and it subsequently transforms into a single crystalline phase after full lithiation, at Li$_{2.00}$Mn$_2$O$_4$. The structural variations observed in snapshots correspond to changes in the voltage profile across the concentration range. In order to understand the effect of lithiation on the structural integrity of the host Li-Mn-O material, the nanospheres were characterised using graphical techniques, particularly for composition Li$_{1.75}$Mn$_2$O$_4$ and Li$_{2.00}$Mn$_2$O$_4$ as shown in figure 9 (1) and (2), respectively. In segment (1), a slice (b), depicting the co-existence of magnified layered (c) and spinel (e) components within the lithiated Li-Mn-O nanosphere, was cut through (a). The simulated layered component was compared to the atomic arrangement of perfect (bulk) Li$_2$MnO$_3$ in (d) and similarities were observed in terms of atomic arrangements. Furthermore, a larger portion on the same slice (e), conforms to the spinel crystal structure; a model of the perfect (bulk) spinel Li$_{1+x}$Mn$_2$O$_4$ unit cell is shown in (f). Segment 2 illustrates dominance of the spinel component on the microstructures cut across slices 1-3. This may imply that after transformation from
Li$_{1.75}$Mn$_2$O$_4$, predominance of spinel phase occurs unlike composites observed at lower Li concentrations.

Figure 8: (i) Nanospherical Li$_x$Mn$_2$O$_4$ with various lithium concentrations where: (a) Li$_{1.00}$Mn$_2$O$_4$, (b) Li$_{1.25}$Mn$_2$O$_4$, (c) Li$_{1.25}$Mn$_2$O$_4$, (d) Li$_{1.75}$Mn$_2$O$_4$ and (e) Li$_{2.00}$Mn$_2$O$_4$.
Figure 9: [1] (a) Slice cut through Li$_{1.75}$Mn$_2$O$_4$ nanosphere depicting (b) slight Li$_2$MnO$_3$–type arrangement, (c) model Li$_2$MnO$_3$, (d) spinel component in Li$_{1.75}$Mn$_2$O$_4$ and (e) model of spinel Li$_4$Mn$_5$O$_{12}$. (i) Recrystallized nanosphere of Li$_{2.00}$Mn$_2$O$_4$ cut across 3 segments illustrating predominance of spinel components in the microstructures.

Figure 10 demonstrates the intermediate phases identified during lithiation of Li$_{1.5}$Mn$_2$O$_4$ at atomistic level (i, iii) compared with similar findings from first-principles calculations (ii, iv) [29]. The Mn–O bond lengths from nanospherical Li$_{1.5}$Mn$_2$O$_4$, illustrate both Mn$^{3+}$O$_6$ and Mn$^{4+}$O$_6$ octahedra with characteristic features of the (a) cubic-Li$_{1.5}$Mn$_2$O$_4$ (b) and tetragonal-Li$_{1.5}$Mn$_2$O$_4$ intermediate phases. The bond length of Mn$^{3+}$O$_6$ along the c-axis follows the increase trend from by a factor of 0.08 in this work which with agrees well with the 0.07 factor observed in first principle calculations [29]. This implies similar observations of structural transitions in the spinel structure.
Figure 10: (a) The Mn–O bond lengths of Mn$^{3+}$O$_6$ and Mn$^{4+}$O$_6$ octahedra in the cubic-Li$_{1.5}$Mn$_2$O$_4$ calculated with (i) atomistic simulations and (ii) first principle calculations. (b) tetragonal-Li$_{1.5}$Mn$_2$O$_4$ based on (iii) atomistic simulations and (iv) first principle calculations.

Crystallographic Defects: In figure 11, the recrystallized nanoparticle is depicted in (a) and consists of ~10 nm scale similar to that shown by the TEM in (b). High resolution of simulated spinel LiMn$_2$O$_4$ is shown in magnification of (a) below, highlighting the polycrystallinity of the nanoparticle during synthesis as it was found in experiments and depicted in the high resolution TEM (b) below. The yellow boxes in magnifications of (a) and (b) represent the spinel tunnels on the nanomaterials. Further analysis was carried out by cutting a slice through the nanosphere and changing the atomic display into spheres as shown in figure 10. Snapshot (1) depicts grain boundaries denoted by pink dots. A segment from the middle of the slice was enlarged on the right of image (1) illustrating Li-Mn-O atomic arrangements and is shown using polyhedral rendering (2) and CPK (3) format. Point defects, such as substitution of Mn atoms by Li atoms at some atomic sites (green rectangle), were observed together
with Mn vacancies (green circles). Substitution of Mn by Li enables Li mobility within the material; possible pathways are indicated by the red arrows in (2). The CPK format in (3) helps to show that atoms within the system are well ordered despite the complex defect microstructure. The nanoparticle consists of grain boundaries as shown in (1) and the upper grain boundary region is indicated on the slice cut through the nanosphere in (4) by stick representation. Magnification of the grain boundary region in (4) is illustrated by a black oval on the right depicting atoms ordered along different directions at approximately 45 degrees angle.

The recrystallized nanosphere (6661 lithium atoms), with a structural composition of Li$_{1.75}$Mn$_2$O$_4$, is depicted in figure 12 (a). The sphere contains ordered patterns of Li, Mn and O atoms along different directions. A portion of this nanosphere was sliced along the white dotted lines and the slice is shown in (b) below. The same slice is presented in (c) for oxygen layers, with CPK representation to showing grain boundaries in regions labelled 1-6 and lastly a segment was magnified in (d), depicting several point defects such as interstitials (blue box) and vacancies (light orange box) that occur within the nanosphere. This indicates the presence of Frenkel defects in the Li$_{1.75}$Mn$_2$O$_4$ nanosphere system.

Figure 11: (a) Snapshot of recrystallized Li-Mn-O nanosphere (this work) with 26 642 atoms and its magnified resolution showing tunnels in yellow boxes and (b) TEM images of the LiMn$_2$O$_4$ nanoparticle with high resolution TEM image of the LiMn$_2$O$_4$
powder [19]. (c) (1) Slice cut through the Li-Mn-O nanosphere with 26 642 atoms revealing crystallographic defects such as (2, 3) point defects and (4) grain-boundary structure that has evolved during recrystallization and enlarged segment of the grain boundary (black oval).

![Image](image_url)

Figure 12: (a) Recrystallized L$_{1.75}$Mn$_2$O$_4$ nanosphere, (b) slice cut through nanosphere (c) grain boundary region and (d) point defects in the nanosphere.

X-ray Diffraction Patterns: Analysis of the model structures for mono-, intermediate and di-lithiated Li-Mn-O nanoparticles, with different lithium concentrations, have indicated the presence of co-existing spinel and layered domains. To further characterise the nanoparticles, calculated XRDs of the model systems are compared with experiments in fig 13. The diffraction pattern for simulated Li-Mn-O nanospheres with various concentrations is illustrated in figure 13 (a) and compared with (b) spinel Li$_4$Mn$_5$O$_{12}$ [29], (c) spinel LiMn$_2$O$_4$ [30], (d) spinel Li$_2$Mn$_2$O$_4$ [30], (e) layered Li$_2$MnO$_3$ [30], (f) spinel Mn$_3$O$_4$ [31], (g) pure layered Li-Mn-O [9] and (h) layered/spinel Li-Mn-O.

The first peak emerging on the diffraction patterns of the simulated nanospheres in (a), is a shoulder peak, around 2θ=20–25° which was identified as (020) and (110) peaks of monoclinic Li$_2$MnO$_3$ (C2/m). It is said to correspond with the ordering of Li and Mn atoms in the transition metal layers [9]. The simulated XRD has four other distinct peaks (2θ ~ 29, 39, 45 and 66°). This growth of the [220] peak at 2θ ~ 29° is due to occupancy of a significant number of manganese ions in the tetrahedral sites of the spinel structure, forming Mn$_3$O$_4$ as a result of high temperature synthesis [32].
Figure 13: XRD patterns for (a) simulated layered/spinel nanospheres (this work), (b) spinel Li$_4$Mn$_{5}$O$_{12}$, [29] (c) spinel LiMn$_2$O$_4$ [30], (d) spinel Li$_2$Mn$_2$O$_4$ [30] (e) layered Li$_2$MnO$_3$ [30], (f) spinel Mn$_3$O$_4$ [31], (g) pure-layered Li-Mn-O [9] and (h) layered-spinel Li$_3$Mn-O [9].
The third peak appears between 37° and 38° for all reference systems though not exactly at the same point as it seems to have shifted slightly towards 38 in other plots. This is followed by a very strong peak observed around 45° in the simulated diffraction pattern and corresponds to all reference XRDs from experiments. The last peak (2θ~66°) appears to be a combination of peaks between 65 and 70 in the reference layered spinel and pure layered XRDs. Figure 14 represents diffraction plots for lithiated nanospheres (Li$_{1.00}$Mn$_2$O$_4$, Li$_{1.25}$Mn$_2$O$_4$, Li$_{1.5}$Mn$_2$O$_4$, Li$_{1.75}$Mn$_2$O$_4$ and Li$_{2.00}$Mn$_2$O$_4$) with magnified peaks in order to interrogate the effect of lithiation on the significant differences in peak intensity. The Li$_2$MnO$_3$ peak (Peak A) around 2θ = 20–25° has an almost constant peak intensity between Li$_{1.00}$Mn$_2$O$_4$ and Li$_{1.5}$Mn$_2$O$_4$. The peak then increases for the Li$_{1.75}$Mn$_2$O$_4$ nanosphere and flattens after complete lithiation at Li$_{2.00}$Mn$_2$O$_4$. Peak B at 2θ=29° (220) decreases with an increase in lithium concentration in the system, indicating reduction in tetragonally co-ordinated Mn$^{2+}$ atoms and flattens drastically for the fully lithiated Li$_{2.00}$Mn$_2$O$_4$. Peak C emerges at

Figure 14: Superimposed X-Ray Diffraction (XRD) patterns of the simulated nanospherical models of: LiMn$_2$O$_4$ (red), Li$_{1.25}$Mn$_2$O$_4$ (royal blue), Li$_{1.5}$Mn$_2$O$_4$ (pink), Li$_{1.75}$Mn$_2$O$_4$ (cyan) and Li$_{2.00}$Mn$_2$O$_4$ (green). Magnification of the characteristic peaks for (A) Li$_2$MnO$_3$, (B) Mn$_3$O$_4$, (C) and (D) LiMn$_2$O$_4$.
2θ~39, as a characteristic spinel peak and shift more towards LiMn$_2$O$_4$ (2θ~37.8°) as the Li concentration increases in the nanosphere. The broad peak at 2θ~66° narrows with an increase in lithium concentration.

4. Discussions

Nucleation and growth of primary and secondary LMO and Li-rich manganese based NMC particles, with optimum tap density and well-rounded morphologies, is of great importance in providing good performance in Li-ion batteries; hence models that could contribute to these ideal properties are of essence. The current study has successfully synthesised LiMn$_2$O$_4$ nanoparticles, with an aid of crystalline seed, using simulated amorphization and recrystallization techniques. The amorphous nanoparticles were allowed to evolve, leading to crystallization, and a wide variety of structural features such as grain-boundaries and defects (interstitial, vacancies and substitutions), were captured within a single simulation cell. Such simulated particles are consistent with the widely reported cathode primary nanoparticles, which normally aggregate to form porous secondary particles [9, 33]. Furthermore, their dimensions (8nm) are within an order of magnitude of experimentally synthesised primary particles with diameters commencing from 20 nm. Simulated synthesis of larger systems and their aggregation, though computationally demanding, are currently underway and will provide valuable insights to the cracking and degradation of secondary particles during charging and discharging processes.

Another important aspect of the study is the generation of simulated composite or heterostructured cathode primary nanoparticles. Careful inspection of Li-Mn-O microstructural features, captured in structural snapshots and simulated XRDs, reveals that the nanoparticles crystallize into interconnected patterns with the presence of layered Li$_2$MnO$_3$-type and spinel domains, including Li$_4$Mn$_5$O$_{12}$ and Mn$_3$O$_4$. Such layered-spinel composites have been reported experimentally in Mn based ternaries [3]. In particular, surface post modification on Li-rich materials to form spinel membrane which encapsulated layered particles, has enhanced related rate capability and cycling stability [9, 11]. More significantly, layered layered composites of NMC, which yielded high specific capacity (~250 mAh/g), were partly corrected for voltage fade by controlled insertion of a spinel component [6] or by formation of platelets [7]
We now provide a rationale for the presence of several phases which are constituents of heterostructured nanoparticle, in the current study, where the amorphisation recrystallization method, which is a high temperature process, was applied on the spinel LiMn$_2$O$_4$. The occupancy of manganese atoms within some 3D tunnels of the recrystallized nanoparticles and lithium ions moving to the outer surface, instead of occupying 8a tetrahedral sites as expected in the pure spinel LiMn$_2$O$_4$, has been explained in a study by Thackeray al [32]. The formation of various high temperature structures, such as Li$_2$MnO$_3$ and Mn$_3$O$_4$, on heating the parent spinel Li[Mn]$_2$O$_4$ from ambient temperature, has been discussed in the introduction. In the current study, a mixture of seeds of such phases co-exist in the high temperature amorphous phase and leads to the formation of a heterostructure during the re-crystallisation of the nanoparticle, which is retained on annealing to 0K. On the contrary, a similar high temperature simulation study on a parent Li$_2$MnO$_3$ tends to yield nanoparticles without spinel components, since the layered phase is dominant both at low and high temperatures [23].

Related composites or heterostructures were previously synthesised by simulations for binary MnO$_2$ [20, 24] and TiO$_2$ [22, 34] nanoparticles, together with experimental syntheses of lithium manganese oxides [35, 36]. In contrast to previously simulated binaries, the complexity of the current Li$_x$Mn$_2$O$_4$ heterostructured nanoparticle emanates from it being a ternary compound, compounded by the possibility of adopting several polymorphic crystal phases when synthesised at high temperatures. Here, we have captured such complexity by evolving the structures, starting from amorphous pre-cursors, rather than generating models using crystallographic symmetry operators. Consequently, the current study has paved a way for exploring performance optimisation of one of most promising cathodes, the Li-rich Mn based compound, by varying the content of its polymorphs.

We now consider how the simulated heterostructured nanoparticle is affected by lithiation, during discharge. The microstructural features deduced from crystallised nanoparticle are quite interesting. In the concentration range of LiMn$_2$O$_4$ to Li$_{1.50}$Mn$_2$O$_4$, large single crystalline and limited multigrained boundary regions are noted in each nanoparticle, and their location shifts with the Li content. However, at Li$_{1.75}$Mn$_2$O$_4$ the multigrained portion extends to the entire nanoparticle, which subsequently becomes single crystalline at Li$_2$Mn$_2$O$_4$ and depicts presence of the
tetragonal spinel phase. The microstructural images further show that whilst the lower Li concentration particles (Li$_{1.25}$ to Li$_{1.75}$) are clearly heterostructured, composed of the layered and spinel components, the one related to Li$_2$Mn$_2$O$_4$ is dominated by the spinel phase. Such features are consistent with the XRD patterns which are nearly superimposed in the range Li$_{1.0}$ to Li$_{1.50}$. However, distinct changes of XRD peaks are noted for the Li$_{1.75}$Mn$_2$O$_4$ concentration, where they are generally broadened. In case of the highest concentration, Li$_2$Mn$_2$O$_4$, the widths of the XRD peaks are suddenly reduced and significantly smaller than those of lower concentrations, Li$_{1.00}$ to Li$_{1.50}$. In addition, the peak height corresponding to the Li$_2$MnO$_3$ phase, at 2θ=20–25°, has been drastically reduced, together with that of the spinel Mn$_3$O$_4$ at 2θ=29° (220). The structural transition above Li$_{1.50}$ is somehow expected, since it is consistent with the reported marked reduction in voltage from 2.8 to 2.0V, depicted in Region III []. This is accompanied by a symmetry change from cubic spinel Fd-3m to tetragonal spinel I4$_1$/amd, where the occupation of 8a sites by Li is minimal and that of 16c is prevalent [30], which is clearly depicted in our simulated microstructures. Whilst previous work has extensively discussed structures and phenomena occurring at Li$_{1.50}$ and Li$_{2.0}$, the current study has explicitly highlighted the emergence, presence and disappearance of an intermediate phase Li$_{1.75}$Mn$_2$O$_4$.

In the study of thermal stability for spinel, the Li$_2$MnO$_3$-layered structure emerged as a result of lithium and oxygen loss to the surface thus later forming Mn$_3$O$_4$ at high temperatures. The study indicated internal redox reaction was responsible for generating a defected spinel phase in which Mn$^{2+}$ (d5) ions are stabilized in tetrahedral (8a) coordination in Mn$_3$O$_4$ as this is a high temperature spinel phase [37]. However, when surplus lithiums were intercalated into the nanoparticles, the concentration of Mn$^{2+}$ atoms in tetrahedral sites was reduced as evident in the microstructures (figure 9) and XRD patterns (figure 14, where the [211] peak at 2θ=29° decreased with increasing lithium concentration. This is in line with the prediction that 16c octahedral sites are more favourable than tetrahedral sites during cycling owing to less energy being required to remove lithium ions from the octahedral sites than the tetrahedral sites of the Li[Mn$_2$O$_4$ spinel. The XRD patterns also showed an increase in lithium concentration constituted to the formation of more spinel LiMn$_2$O$_4$ type structure within the nanoparticle.
The impact of layered components within the spinel-structured nanoparticles needs to be well understood to clarify the effect of its existence within the electrode material and how it would affect the electrochemical performance of the material. Several studies have been carried out in the past on the Li$_2$MnO$_3$ cathode in lithium cells, either in isolation or as a component in layered–spinel composite electrodes (M = Mn, Ni) in which the layered Li$_2$MnO$_3$ and LiMO$_2$ component oxide materials are structurally integrated, via a shared common oxygen sub-lattice, at the atomic level. Findings from the work of Johnson et al [3] during the investigation of electrochemical performance of spinel-layered composites indicated that Li$_2$O could be partially extracted from the Li$_2$MnO$_3$ component, whilst retaining an electrochemically active layered MnO$_2$ component in which lithium can be inserted and extracted. These findings advised that the layered-spinel composite electrodes are technologically important because of their high voltage (>4.5V) and high storage capacity (>250 mAh/g). Accordingly, the layered spinel component is important in achieving both high storage capacities and (three-dimensional) lithium transport pathways.

Our findings epitomise the need to have models, which capture the structural complexity of the real material. This includes: the atomistic structure and connectivity of the network of pores, the exit holes through which the Li ions intercalate and deintercalate from the material and the microstructure of the material (microtwinning and connectivity of the 1 x 1 tunnels, (point) defects, dislocations and more general grain-boundaries). Moreover, to simulate the diffusion process, where the mobility of Li is likely concerted, a high number of Li ions must be included within a single simulation cell to capture the diverse range of correlated mechanisms associated with Li mobility. At present, the number of atoms required to capture all these features within a single model is too large to be considered quantum mechanically (using for example, density functional theory) and therefore atomistic simulation, using pair potentials, continues to provide a valuable tool to be used in conjunction with quantum mechanical methods; together they provide unique insight for experiment.

5. Conclusion

Atom-level models, for Li-Mn-O composite/heterostructured nanoparticles, were synthesised by simulating the crystallisation of the system, starting from amorphous precursors. The presence of the layered (Li$_2$MnO$_3$) and spinel (Mn$_3$O$_4$, LiMn$_2$O$_4$, ...
Li$_4$Mn$_5$O$_{12}$) polymorphs were deduced from microstructural features and XRD patterns. The discharge of the nanoparticle by lithiation, in the range LiMn$_2$O$_4$ to Li$_{1.5}$Mn$_2$O$_4$ does not reflect much change in structure since it all corresponds to the cubic Fd-3m spinel. However, a significant change to a multigrained structure is noted at the intermediate phase, Li$_{1.75}$Mn$_2$O$_4$, which is confirmed by visualised nanoparticles and substantially broadened XRDs. Upon further discharge, a transition to a tetragonal spinel, with the symmetry I4$_1$/amd, is noted at Li$_2$Mn$_2$O$_4$ and the spinel phase appears to be dominant at such highest concentration. Contrary to most previous work, such deductions are drawn from a technique (simulated amorphisation recrystallization) that allows spontaneous generation of large nanoparticles (26 000 atoms) at various Li concentrations.

Specifically, we show how the layered components and microstructural features, are important in achieving both high storage capacities and (three-dimensional) lithium transport pathways. The microtwinning enables channels (for Li mobility) to traverse all three spatial directions. The Li$_2$MnO$_3$ component allows for extraction of Li$_2$O enabling charge cycling whilst retaining an (electrochemically active) MnO$_2$ layer. The intrinsic defects, including vacancies and substitutionals help facilitate mobility of Li through the lattice during charge cycling by providing additional pathways and increase three-dimensional connectivity of the pathways so that Li can move freely throughout the material.

Acknowledgements

We acknowledge support of the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation in Pretoria and the Centre for High Performance Computing in Cape Town.

References for previous draft.

References

[3] Johnson C. S., Li N., Vaughey J. T. , Hackney S. A. and Thackeray M. M., "Lithium–Manganese Oxide Electrodes with Layered–Spinel Composite Structures xLi_2MnO_3·(1-x) Li_1+yMn_2-yO_4 (0<x<1, 0≤y≤0.33) for Lithium Batteries," *Electrochemistry Communications*, 7, 528-536, 2005

[8] Lim J. M., Hwang T., Kim D., Park M. S., Cho K. and Cho M., "Intrinsic Origins Of Crack Generation in Ni-Rich LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2 Layered Oxide Cathode Material," *Scientific Reports*, 7, 39669 - 39669, 2017

[15] Wang S., Wu Y., Li Y., Zheng J., Yang J., And Yang Y., "Li [Li_0.2Mn_0.54Ni_0.13Co_0.13]O_2–LiMn_1.5Ti_0.5O_4 Composite Cathodes With Improved Electrochemical Performance For Lithium Ion Batteries," Electrochimica Acta, 133, 100-106, 2014

[16] Jeong S. K., Shin J. S., Nahm K. S., Kumar T. P. and Stephan A. M, "Electrochemical Studies on Cathode Blends Of LiMn_2O_4 and Li [Li_{1/15}Ni_{1/5}Co_{2/5}Mn_{1/3}O_2]," Materials Chemistry and Physics, 111, 213-217, 2008

[26] Ledwaba R. S., Matshaba M. G. And Ngoepe P. E., "Molecular Dynamics Simulations of Spinels: LiMn₂O₄ and Li₄Mn₅O₁₂ at High Temperatures," In *IOP

[29] Song B., Veith G. M., Park J., Yoon M., Whitfield P. S., Kirkham M. J., Liu J. and Huq A., "Metastable Li$_{1+\delta}$Mn$_2$O$_4$ (0 \leq \delta \leq 1) Spinel Phases Revealed by in Operando Neutron Diffraction and First-Principles Calculations," *Chemistry of Materials*, **31**, 124-134, 2018

