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Abstract. Much of an interpolation engine for bit-vector (BV) arith-
metic can be constructed by observing that BV arithmetic can be mod-
eled with linear integer arithmetic (LIA). Two BV formulae can thus be
translated into two LIA formulae and then an interpolation engine for
LIA used to derive an interpolant, albeit one expressed in LIA. The con-
struction is completed by back-translating the LIA interpolant into a BV
formula whose models coincide with those of the LIA interpolant. This
paper develops a back-translation algorithm showing, for the first time,
how back-translation can be universally applied, whatever the LIA inter-
polant. This avoids the need for deriving a BV interpolant by bit-blasting
the BV formulae, as a backup process when back-translation fails. The
new back-translation process relies on a novel geometric technique, called
gapping, the correctness and practicality of which are demonstrated.

1 Introduction

Given two formulae A and B which are inconsistent, an interpolant for the
ordered pair 〈A,B〉 is a formula I over the variables common to both A and B
which is a relaxation of A that is still inconsistent with B. For example, when
working over the theory of linear inequalities, if A = (x = y + 1) ∧ (y = 0)
and B = (x = z + 2) ∧ (1 ≤ z) then interpolants for 〈A,B〉 are I1 = (x = 1),
I2 = (x ≤ 1) and I3 = (x < 3), ordering by increasing generality. The intuition
behind I1, I2 and I3 is that they are abstractions of A which concisely explain the
inconsistency between A and B. Interpolation has attracted growing attention
over the last decade [26], because of the crucial role it plays in model checking in
lazy [18] predicate abstraction [15] and lazy abstraction with interpolants [25],
as exemplified in BLAST [5] and IMPACT [25] respectively. In lazy predicate
abstraction [25], interpolation is used to synthesise predicates which describe
program state. Predicates are added, on demand, to explain why a path through
a program cannot reach an error state. In lazy abstraction with interpolants
[25], program state is described with unrestricted formulae, rather than merely
using predicates, and interpolation is applied to relax sequences of formulae
that describe the states down paths which do not error. Interpolation simplify
these formulae but increasing the likelihood of covering, again accelerating path
exploration. In effect, interpolation is the key abstraction mechanism.
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Context As solvers for richer theories have evolved so have interpolation engines
for these theories, with a notable flurry of activity around one decade ago [10, 11,
19, 20, 23, 24, 30]. However, progress on the important theory of bit-vectors (BV)
has been surprisingly slow, the two key works [2, 16] taking opposing approaches.
One takes advantage of existing interpolation engines [16] and the another de-
velops a bespoke interpolation engine around lazy reduction [2], which supports
bit-vector operations by expanding them, on demand, to Presburger arithmetic
[2]. This paper develops the former approach, aiming to use an LIA solver as is.

The central problem in bit-vector interpolation is to construct an interpolant
which is compact (one might even say beautiful [1]). Although a pair of inconsis-
tent BV formulae can always be bit-blasted (unfolded) into a pair of inconsistent
propositional formulae, it is not always obvious how the resulting propositional
interpolant can be folded back into a compact bit-vector (BV) formula to derive
a BV interpolant. Interpolation engines over linear integer arithmetic (LIA) have
thus been repurposed for BV interpolation [16]. First, operations on bit-vectors
are reformulated as LIA formulae. An interpolant over LIA is then reinterpreted
as a candidate interpolant for a pair of BV formulae. Because of wrap-around,
LIA does not necessarily align with BV arithmetic, hence the LIA interpolant
is adopted as a BV interpolant only if it passes a (unsatisfiability) check over
bit-vectors. This checks that the interpolant relaxes the first BV formula of the
pair and yet is still inconsistent with the second. If the candidate fails the check,
then the two BV formulae are bit-blasted to recover a propositional interpolant,
albeit one which looses the high-level structure of bit-vectors, and therefore is
not compact. This approach is promising: it exploits robust off-the-shelf LIA
interpolation [17] yet is compromised by the quality of the interpolants which
follow from bit-blasting.

Contribution This paper plugs this gap, addressing the issue of interpolant qual-
ity by developing a new, principled encoding LIA formulae into BV formulae
which does not enlarge the bit-width of the BV formulae. This ensures that
the interpolant is still drawn from the language used to define BV formulae.
We show that a näıve encoding of an LIA inequality as a BV inequality can
give a formula which has a completely different meaning from LIA inequality:
the BV inequality can have solutions not admitted by the LIA inequality and
vice versa. Moreover, we illustrate how a straightforward encoding of a single
LIA inequality can require many BV inequalities, which compromises the quality
of a BV interpolant. We therefore propose a technique, which we call gapping,
which adds range constraints to LIA inequality which reduces the LIA inequality
into two or three LIA systems the solutions of which are amenable to compact
BV representation. The term gapping reflects a geometric interpretation of this
transformation which introduces a gap4 between the solutions of the two LIA
systems. We demonstrate the value of this approach with a BV interpolation
engine which side-steps bit-blasting (and the complexity of providing bit-level

4 The title of the paper alludes to both this geometric technique, the conceptual gap
in previous work, and collaboration which entailed traveling through London.
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circuits for arithmetic) and show that the approach usually gives a modest slow-
down relative to LIA. We also prove the validity of the BV encoding, and the
correctness of the reductions the encoding relies on, though the proofs themselves
are omitted here for brevity To summarise, the contributions of this paper are
as follows:

– We show how interpolating theorem provers for LIA can be used to interpo-
late BV formulae, without recourse to bit-blasting.

– We develop a rigorous theory which explains gapping and proves that the
resulting BV interpolant has exactly the same set of models as the LIA
interpolant of the two BV formulae.

– We provide evaluation, within the established [6] framework of lazy abstrac-
tion with interpolants [25] which demonstrates the practicality of the ap-
proach for BV interpolation.

Use case Since BV formulae are converted to LIA one might wonder why one
cannot work with LIA throughout and avoid BV interpolation all together. First,
such an approach would not fit with a layered approach to interpolation [17]
where one uses one lightweight theory (eg. uninterpreted functors) and then, if
necessary, a more complicated one (eg. LIA) to construct a BV interpolant. BV
formulae provide a uniform way expressing interpolants, no matter how they are
derived. Second, computing LIA interpolants is complex and it is not surprising
that these engines contain subtle5 bugs. Translating a LIA interpolant back
into a BV formula enables interpolants to be validated using a BV solver [3,
7, 27], using the reference (BV) semantics of a program. Moreover, validation
need make no assumption on the correctness of a translation between theories.
Validation can be performed on-the-fly, as the unwinding tree [25] is constructed,
or by translating the complete, stable unwinding tree into its BV counterpart.
The BV version can then be validated as a form of post-processing, akin to
post-fixpoint validation in abstract interpretation [4, 14].

Road map This paper is structured as follows: Section 2 gives the intuition be-
hind boxing and gapping whereas Section 3 argues for the correctness of the
approach. Section 4 presents the experimental work. Section 5 presents the re-
lated work and section 6 concludes.

2 Boxing and Gapping in Pictures

Given a linear inequality `, we seek to find a bit-vector formula f such thatq
f
y
BV

=
q
`
y
LIA

where
q
f
y
BV

and
q
`
y
LIA

are respectively the sets of solutions
(models) of f and ` in the linear integer arithmetic (LIA) and bit-vector (BV)
semantics. Ideally f should be compact where we measure size by the number
of binary logical connectives in f . This section gives the intuition behind two

5 We refrain from mentioning specific solvers because we do not want to embarrass
any particular research team to whom we are grateful.
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(a) x+ y ≤ 3 (b) x+ y ≤ 3 with box (c) x+ y ≤ 7

(d) x+ y − 4 ≤ 3 (e) x+ y − 4 ≤ 3 with box 1 (f) x+ y − 4 ≤ 3 with box 2

Fig. 1. Gapping and boxing for x+ y ≤ 3 and x+ y ≤ 7

techniques, boxing and gapping, and demonstrate how they are used together to
construct such an f ; the sequel provides a more formal development.

To illustrate boxing and gapping, first consider the set of solutions to the
inequality x + y ≤ 3, when interpreted with both the LIA semantics and BV
semantics. Figure 1(a) gives the LIA solutions in blue and the BV solutions
in red over the non-negative integer grid {(x, y) | 0 ≤ x < 8 ∧ 0 ≤ y < 8}
using a modulo of 8 for bit-vectors. The solution sets differ on, for instance,
(5, 6) since (5 + 6) (mod 8) = 3 ≤ 3 but 5 + 6 = 11 6≤ 3. It does not generally
follow that

q
f
y
LIA
⊆

q
f
y
BV

as Figure 1(d) illustrates for f = x+y−4 ≤ 3. Then

(1, 2) ∈
q
x+ y − 4 ≤ 3

y
LIA

since 1+2−4 = −1 ≤ 3 but (1, 2) 6∈
q
x+ y − 4 ≤ 3

y
BV

since (1 + 2− 4) (mod 8) = 7 6≤ 3.

Enumeration A naive approach to finding a formula f such that
q
f
y
BV

=
q
`
y
LIA

is to enumerate all solutions of
q
`
y
LIA

to then summarise them in a single BV
formula. Figure 1(a) illustrates the 4 + 3 + 2 + 1 = 10 LIA solutions for ` =
(x+ y ≤ 3) which are summarised in the following BV formula:

f1 = (x = 0 ∧ y = 0) ∨ . . . ∨ (x = 0 ∧ y = 3) ∨ . . . ∨ (x = 3 ∧ y = 0)

This formula has 9 binary disjuncts and 10 binary conjuncts, hence 19 logical
connectives in total. A more compact formulation is to cover the blue triangular
region of Figure 1(a) with columns as realised with the following BV formula:

f2 = (x = 0 ∧ y ≤ 3) ∨ . . . ∨ (x = 3 ∧ y ≤ 0)

Only non-negative solutions on the grid are considered so there is no need to
additionally assert 0 ≤ y. This formula has 3 binary disjuncts and 4 binary
conjuncts giving and 7 connectives in total.
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Boxing Observe from Figure 1(a) that the extra solutions of
q
x+ y ≤ 3

y
BV

overq
x+ y ≤ 3

y
LIA

stem from overflow. Overflow can be avoided by constraining BV
solutions with x ≤ 3 and y ≤ 3 which amounts to placing a box (in general a
hyper-rectangle) around the LIA solutions, as illustrated in Figure 1(b). This
tactic, henceforth called boxing, leads to the following formula:

f3 = (x+ y ≤ 3 ∧ x ≤ 3 ∧ y ≤ 3)

which requires 2 binary conjuncts.

Gapping Figure 1(c) illustrates that in general boxing cannot be applied in
isolation because a box around the LIA solutions would not eliminate any extra-
neous BV solutions. Boxing is successful for Figure 1(b) because of the absence
of solutions (a gap) between the LIA solutions inside the box and the BV so-
lutions outside the box. No such gap exists for the box of Figure 1(c). Yet
boxing can still be applied by decomposing the inequality x + y ≤ 7 into two
inequalities both of which are amenable to boxing. The construction is based onq
x+ y ≤ 7

y
LIA

=
q
x+ y ≤ 3

y
LIA
∪

q
4 ≤ x+ y ∧ x+ y ≤ 7

y
LIA

=
q
x+ y ≤ 3

y
LIA
∪q

0 ≤ x+ y − 4 ∧ x+ y − 4 ≤ 3
y
LIA

. Recall that boxing alone allows the LIA so-
lutions of x + y ≤ 3 to be expressed as a BV formula of 2 binary connectives.
Thus consider the compound formula `′ = (0 ≤ x+ y− 4∧ x+ y− 4 ≤ 3) whose
LIA solutions are illustrated in Figure 1(d). Observe that the BV solutions of
`′ can be covered with two rectangles without including the extraneous 6 BV
solutions in top right. Then

q
`′

y
LIA

=
q
x+ y − 4 ≤ 3 ∧ (x ≤ 3 ∨ y ≤ 3)

y
BV

which
leads to the complete formula

f3 = (x+ y ≤ 3 ∧ x ≤ 3 ∧ y ≤ 3) ∨ (x+ y − 4 ≤ 3 ∧ (x ≤ 3 ∨ y ≤ 3))

such that
q
f3

y
BV

=
q
x+ y ≤ 7

y
LIA

. This tactic of artificially introducing a gap,
henceforth called gapping, is equally applicable for larger grids too. For instance,
working over a modulo of 32

q
x+ y ≤ 31

y
LIA

=
q
f4

y
BV

where

f4 = (x+ y ≤ 15 ∧ x ≤ 15 ∧ y ≤ 15) ∨ (x+ y − 16 ≤ 15 ∧ (x ≤ 15 ∨ y ≤ 15))

3 Formal correctness of boxing and gapping

In what follows we consider LIA and BV formulae over an ordered set of variables
{x1, . . . , xd} for some d > 1. We consider bit-vectors of fixed width w > 1
and interpret LIA and BV formulae over the product space Md where M =
{0, 1, 2, . . . ,m− 1} and m = 2w as follows:

Definition 1. Let c, c′ ∈ Zd and b, b′ ∈ Z. If ` ≡ (
∑d

i=1 cixi)+b ≤ (
∑d

i=1 c
′
ixi)+

b′ then
q
`
y
LIA

=
{
x ∈Md

∣∣∣∑d
i=1 cixi + b ≤

∑d
i=1 c

′
ixi + b′

}
q
`
y
BV

=
{
x ∈Md

∣∣∣(∑d
i=1 cixi + b) mod m ≤ (

∑d
i=1 c

′
ixi + b′) mod m

}
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Furthermore, the LIA semantics can be lifted from inequalities to LIA formulae
by:

q
f1 ∨ f2

y
LIA

=
q
f1

y
LIA
∪

q
f2

y
LIA

,
q
f1 ∧ f2

y
LIA

=
q
f1

y
LIA
∩

q
f2

y
LIA

and
q
¬f

y
LIA

=

Md \
q
f
y
LIA

. Likewise for BV formulae.
In the sequel, N denotes the set of (strictly) positive integers, R the set of

real numbers, and R≥0 the set of non-negative real numbers. We extend the
floor and ceiling function for the sequences in Rd in a component-wise manner:
bxci = bxic and dxei = dxie. If x ∈ Rd then |x| = d. The partial order ≤ on Rd

is defined by x ≤ y if and only if xi ≤ yi for all i = 1, . . . , d.

3.1 Boxing

Boxing is founded on the following result and its corollary in which sets of
solutions to inequalities which describe hyper-rectangles are pinched, above and
below, by inclusions to systems of inequalities with positive, unary coefficients:

Lemma 1. Let d > 1 and L ∈ N. Then:{
x ∈ Rd

≥0

∣∣∣∑d
i=1 xi ≤ L · (m/2)− 1

}
⊆
⋃

p∈Id((d−1)(L+1))

⋂d
i=1

{
x ∈ Rd

≥0 | xi <
pi·(m/2)

d−1

}
⊆
{
x ∈ Rd

≥0

∣∣∣∑d
i=1 xi < (L+ 1) · (m/2)

}
where Id(n) =

{
(i1, . . . , id) ∈ Nd | i1 + · · ·+ id = n

}
.

Corollary 1. Let d > 1, L ∈ N and c ∈ Nd. Then:{
x ∈ Zd

≥0|
∑d

i=1 cixi ≤ L · (m/2)− 1
}

⊆
⋃

p∈Id((d−1)(L+1))

⋂d
j=1

{
x ∈ Zd

≥0 | xj ≤ d
pj ·(m/2)
ci(d−1) e − 1

}
⊆
{
x ∈ Zd

≥0 |
∑d

i=1 cixi ≤ (L+ 1) · (m/2)− 1
}

The corollary leads to two types of box constraint: one for LIA and the other,
reducing boxing, for BV. Boxing formulae are purely conceptual and are used
to reason about correctness; reduced boxing formulae are deployed within BV
interpolants.

Definition 2. Let c ∈ Nd, b ∈ N and L ∈ N be the unique natural number
such that (L− 1) · (m/2) ≤ b ≤ L · (m/2)− 1. The boxing and reduced boxing of∑d

i=1 cixi ≤ b are formulae defined as follows:

boxLIA(c; b) ≡
∨

p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ d

pj · (m/2)

cj(d− 1)
e − 1

)
(1)

boxBV(c; b) ≡
∨

p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ min

(
dpj · (m/2)

cj(d− 1)
e − 1,m− 1

))
(2)
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Given m and b ∈ N, it is always possible to find a unique L ∈ N which satisfies
Definition 2 by putting L = b 2bm c + 1. Then L − 1 = b 2bm c ≤

2b
m < b 2bm c + 1 = L

hence (L − 1)(m/2) ≤ b < L(m/2) whence (L − 1)(m/2) ≤ b ≤ L(m/2) − 1
because b and L(m/2) are integral.

One might expect that the cardinality of Id((d − 1)(L + 1)) becomes large
as d or L grow large. Yet d is the number of variables occurring in the LIA
interpolant, which is typically small. Furthermore, when L is large, the values
of p are also large, so that many terms become equivalent because of the min
operation in equation (2) of Definition 2. Thus the number of terms required to
define boxBV(c; b) does not grow excessively large in practice.

The following proposition asserts that the boxing and reduced boxing formu-
lae share the same solution set when interpreted with, respectively, the LIA and
BV semantics.

Proposition 1.
q
boxLIA(c; b)

y
LIA

=
q
boxBV(c; b)

y
BV

Example 1. To demonstrate this equivalence, consider again x+y ≤ 3 for m = 8.
Then put L = b6/8c+ 1 = 1 and I2((d− 1)(L+ 1)) = I2(2) = {〈1, 1〉}. Observe
boxLIA(〈1, 1〉; 3) = boxBV(〈1, 1〉; 3) since

boxLIA(〈1, 1〉; 3) = (x ≤ d4/1e − 1 = 3) ∧ (y ≤ d4/1e − 1 = 3)

boxBV(〈1, 1〉; 3) = (x ≤ min(3, 7) = 3) ∧ (y ≤ min(3, 7) = 3)

Example 2. Although
q
boxLIA(c; b)

y
LIA

=
q
boxBV(c; b)

y
BV

, it does not necessarily

follow that
q
boxLIA(c; b)

y
LIA

=
q
boxLIA(c; b)

y
BV

. To illustrate, consider x+ y ≤ 7
for d = 2 and m = 4. Thus c = 〈1, 1〉 and b = 7. Then L = b14/4c+ 1 = 4 and
I2((d− 1)(L+ 1)) = I2(5) = {〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉} hence

boxLIA(c; b) = (x ≤ 1 ∧ y ≤ 7) ∨ (x ≤ 3 ∧ y ≤ 5)∨
(x ≤ 5 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

Therefore
q
boxLIA(c; b)

y
LIA

= M2 but (2, 2) 6∈
q
boxLIA(c; b)

y
BV

.

The following lemma shows that the solution sets for boxing grow monoton-
ically as the constant of the inequality is relaxed.

Lemma 2. If b ≤ b′ then
q
boxLIA(c; b)

y
LIA
⊆

q
boxLIA(c; b′)

y
LIA

.

The following results explains how to augment an inequality with a box so
as to align its BV semantics with its LIA semantics.

Theorem 1 (boxing without gapping). Let c ∈ Nd and b ∈ N. If b < m/2
then

q d∑
i=1

cixi ≤ b
y

LIA

=
q
(

d∑
i=1

cixi ≤ b) ∧ boxBV(c; b)
y

BV
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(a) x+ 2y ≤ 5 with boxes (b) x+ 2y ≤ 3 with box (c) 0 ≤ x+ 2y − 4 ≤ 1 with boxes

Fig. 2. Gapping and boxing for x+ 2y ≤ 5

Observe that the result requires b < m/2. In this circumstance L = b2b/mc +
1 = 1 and number of logical connectives in boxBV(c; b) is determined by the
cardinality of the set Id((d− 1)(L+ 1)) = Id(2(d− 1)), which is given below:

d 2(d− 1) Id(2(d− 1)) |Id(2(d− 1))|
2 2 Π(〈1, 1〉) 1
3 4 Π(〈1, 1, 2〉) 3
4 6 Π(〈1, 1, 1, 3〉) ∪Π(〈1, 1, 2, 2〉) 10
5 8 Π(〈1, 1, 1, 1, 4〉) ∪Π(〈1, 1, 1, 2, 3〉) ∪Π(〈1, 1, 2, 2, 2〉) 35

where Π(v) denote the set of permutations of the vector v. For d = 4, boxBV(c; b)
thus requires 10(d− 1) = 30 binary conjunctions and 10− 1 = 9 disjunctions.

3.2 Boxing and Gapping

Example 3. Consider
q
x+ 2y ≤ 5

y
BV

and
q
x+ 2y ≤ 5

y
LIA

for m = 8 as shown
in Figure 2(a). Observe

boxBV(〈1, 2〉; 5) = (x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

which is illustrated by the two grey rectangles. Hence 〈2, 3〉 /∈
q
x+ 2y ≤ 5

y
LIA

but 〈2, 3〉 ∈
q
x+ 2y ≤ 5 ∧ boxBV(〈1, 2〉; 5)

y
BV

therefore using boxing alone is not
sufficient to encode the LIA inequality x+ 2y ≤ 5.

Example 4. Yet the LIA inequality x+ 2y ≤ 5 can be decomposed as follows:

q
x+ 2y ≤ 5

y
LIA

=
q
x+ 2y ≤ 3

y
LIA
∪

q
4 ≤ x+ 2y ≤ 5

y
LIA

=
q
x+ 2y ≤ 3

y
LIA
∪

q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA

Figures 2(b, c) illustrates boxing for x+ 2y ≤ 3 and 0 ≤ x+ 2y − 4 ≤ 1 where:

q
x+ 2y ≤ 3

y
LIA

=
q
x+ 2y ≤ 3 ∧ boxBV(〈1, 2〉; 3)

y
BV

=
q
x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)

y
BV
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Observe from Figure 2(c) that
q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA

=
q
0 ≤ x+ 2y − 4 ≤ 1

y
BV
∩

q
boxBV(〈1, 2〉; 5)

y
BV

and moreover 0 mod 8 = 0 ≤ (x+ 2y − 4) mod 8 for all (x, y) ∈M2 thus
q
0 ≤ x+ 2y − 4 ≤ 1

y
LIA

=
q
x+ 2y − 4 ≤ 1 ∧ boxBV(〈1, 2〉; 5)

y
BV

therefore cumulatively
q
x+ 2y ≤ 5

y
LIA

=
q
ϕ1 ∨ ϕ2

y
BV

where

ϕ1 = [x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)]
ϕ2 = [x+ 2y − 4 ≤ 1 ∧ ((x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1))]

The general rule of the separation of the given inequality and the boxing is
shown in this theorem:

Theorem 2 (boxing with gapping). Let c ∈ Nd and b ∈ N.
q∑d

i=1 cixi ≤ b
y
LIA

=q
φ0 ∨ φ1 ∨ φ2

y
BV

where S = bb/(m/2)c and

φ0 ≡
(∑d

i=1 cixi − (S − 2)(m/2) ≤ m/2− 1
)
∧ boxBV(c; (S − 1)(m/2)− 1)

φ1 ≡
(∑d

i=1 cixi − (S − 1)(m/2) ≤ m/2− 1
)
∧ boxBV(c;S(m/2)− 1)

φ2 ≡
(∑d

i=1 cixi − S(m/2) ≤ b mod (m/2)
)
∧ boxBV(c; b)

Corollary 2 (boxing and gapping with simplification). If bb/(m/2)c = 1

or b mod m = m/2− 1 then
q∑d

i=1 cixi ≤ b
y
LIA

=
q
φ1 ∨ φ2

y
BV

.

Example 5. Let m = 8 and consider again x + 2y ≤ 5 so that c = 〈1, 2〉. Then
S = b5/4c = 1 and, applying corollary 2,

q
x+ 2y ≤ 5

y
LIA

=
q
φ1 ∨ φ2

y
BV

where

φ1 ≡ (x+ 2y − 0 · 4 ≤ 4− 1) ∧ boxBV(c; 1 · 4− 1) = ϕ1

φ2 ≡ (x+ 2y − 1 · 4 ≤ 5 mod 4) ∧ boxBV(c; 5) = ϕ2

aligning with the intuition given in example 4.

Example 6. Figure 3 illustrates Theorem 2 for 7x + 3y ≤ 17 and m = 8. Then
S = b17/(8/2)c = 4 and

q
7x+ 3y ≤ 17

y
LIA

=
q
φ0 ∨ φ1 ∨ φ2

y
BV

where

φ0 = 7x+ 3y− 8 ≤ 3 ∧ boxBV(c; 11)
φ1 = 7x+ 3y− 12 ≤ 3 ∧ boxBV(c; 15)
φ2 = 7x+ 3y− 16 ≤ 1 ∧ boxBV(c; 17)

The boxBV(c; 11),boxBV(c, 15),boxBV(c; 17) formulae are again depicted in grey.
For example,

boxBV(c; 11) = (x ≤ 0 ∧ y ≤ 3) ∨ (x ≤ 1 ∧ y ≤ 2) ∨ (x ≤ 1 ∧ y ≤ 1)

because d = 2, L = 3 and I2((d−1)(L+1)) = {〈1, 3〉, 〈2, 2〉, 〈3, 1〉}. From Figure 3
observe

q
7x+ 3y ≤ 17

y
LIA

=
q
φ0

y
BV
∪

q
φ1

y
BV
∪

q
φ2

y
BV

.

Example 7. Consider again example 5 where S = 1. Then φ0 = false because
boxBV(c; (S − 1)(m/2) − 1) = boxBV(c;−1) = false. This is because L = 0
and Id((d − 1)(L + 1)) = I2(1) = ∅. Theorem 2 then gives

q
x+ 2y ≤ 5

y
LIA

=q
φ1 ∨ φ2

y
BV

which squares with Corollary 2.



10 T. Okudono and A. King

(a) 7x+ 3y ≤ 17 (b) φ0 = 7x+ 3y − 8 ≤ 3 ∧ boxBV(c; 11)

(c) φ1 = 7x+ 3y − 12 ≤ 3 ∧ boxBV(c; 15) (d) φ2 = 7x+ 3y − 16 ≤ 1 ∧ boxBV(c; 17)

Fig. 3. Gapping and boxing for 7x+ 3y ≤ 17 where c = 〈7, 3〉, m = 8 and S = 4

3.3 Boxing, Gapping and Flipping

To handle inequalities which have indeterminates with negative coefficients, box-
ing and gapping are augmented with a third technique, which we have informally
named flipping. Flipping transforms an inequality into a syntactic form which
is amenable to boxing and gapping by reflecting the solutions of the inequal-
ity. To detail the transformation, we assume without loss of generality, that an
inequality takes the syntactic form c+ · x+ + c− · x− ≤ b where c+ > 0 and
c− < 0. Hence x = x+ ◦ x− where ◦ denotes vector concatenation. The act of
flipping reflects the solutions of the inequality simultaneously around the axes
x−1 = 0, . . . , x−e = 0 where x− = 〈x−1 , . . . , x−e 〉 and e is the dimension of x−.
The development starts with the flipping transformation itself:

Definition 3. Given e ∈ {1, . . . , d}, then the (semantic) flipping function Fe :
Md →Md is defined:

Fe(〈x+1 , . . . , x
+
d−e, x

−
1 , . . . , x

−
e 〉) = 〈x+1 , . . . , x

+
d−e,m− 1− x−1 , . . . ,m− 1− x−e 〉.

Given an inequality with negative coefficients, we derive a new inequality whose
solutions coincide with the flipped solutions of the given inequality. This trans-
formation is then lifted to formulae as follows:

Definition 4. Given a partition of x into the sub-vectors x+ = 〈x+1 , . . . , x
+
d−e〉

and x− = 〈x−1 , . . . , x−e 〉, then the (syntactic) flipping function Fx− is defined:

Fx−(c+ · x+ + c− · x− ≤ b) = c+ · x+ − c− · x− + (m− 1)(c− · 1) ≤ b
Fx−(f1 ∨ f2) = Fx−(f1) ∨ Fx−(f2)
Fx−(f1 ∧ f2) = Fx−(f1) ∧ Fx−(f2)

Fx−(¬f) = ¬Fx−(f)
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(a)
q
φ
y
LIA

(b)
F〈y〉(φ0) = 7x− 3y + 13 ≤ 3

∧ F〈y〉(boxBV(c; 11))

(c)
F〈y〉(φ1) = 7x− 3y − 9 ≤ 3

∧ F〈y〉(boxBV(c; 15))
(d)

F〈y〉(φ2) = 7x− 3y + 5 ≤ 1
∧ F〈y〉(boxBV(c; 17))

Fig. 4. Flipping φ = 7x− 3y ≤ −4 where m = 8, x = 〈x, y〉, x+ = 〈x〉 and x− = 〈y〉

The overall strategy involves applying boxing and gapping to an inequality de-
rived by the flipping function Fx− . The validity of this strategy is based on the
following proposition:

Proposition 2. If |x−| = e then

–
q
Fx−(f)

y
LIA

= Fe(
q
f
y
LIA

)

–
q
Fx−(f)

y
BV

= Fe(
q
f
y
BV

)

A complete strategy for handling inequalities with negative coefficients is justi-
fied by the following corollary. The strategy entails flipping an LIA inequality,
deriving a BV formula by boxing and gapping, and then flipping the BV formula.

Corollary 3. Suppose c+ > 0, c− < 0 and

q
c+ · x+ − c− · x− ≤ b+ (1−m)(c− · 1)

y
LIA

=
q
φ0 ∨ φ1 ∨ φ2

y
BV

Then
q
c+ · x+ + c− · x− ≤ b

y
LIA

=
q
Fx−(φ0) ∨ Fx−(φ1) ∨ Fx−(φ2)

y
BV

Example 8. Consider φ = 7x − 3y ≤ −4 which is illustrated in Fig. 4(a). Then
x+ = 〈x〉, x− = 〈y〉 and Fx−(φ) = F〈y〉(φ) = 7x + 3y − 21 ≤ −4. Fig. 3(a)
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shows
q
7x+ 3y − 21 ≤ −4

y
LIA

=
q
7x+ 3y ≤ 17

y
LIA

and so building on exam-

ple 6
q
7x+ 3y ≤ 17

y
LIA

=
q
φ0 ∨ φ1 ∨ φ2

y
BV

. By corollary 3 it follows
q
φ
y
LIA

=q
F〈y〉(φ0) ∨ F〈y〉(φ1) ∨ F〈y〉(φ2)

y
BV

where F〈y〉(φ0), F〈y〉(φ1) and F〈y〉(φ2) are
given in Fig. 4(b), (c) and (d) respectively. Finally, to illustrate the handling
of boxing, recall boxBV(c; 11) from example 6 and

boxBV(c; 11) = (x ≤ 0 ∧ y ≤ 3)
∨ (x ≤ 1 ∧ y ≤ 2)
∨ (x ≤ 1 ∧ y ≤ 1)

F〈y〉(boxBV(c; 11)) = (x ≤ 0 ∧ (−y + 7 ≤ 3))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 2))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 1))

Finally observe

q
x ≤ 0 ∧ (−y + 7 ≤ 3)

y
LIA

= {(0, y) ∈M2 | 4 ≤ y ≤ 7}q
x ≤ 1 ∧ (−y + 7 ≤ 2)

y
LIA

= {(x, y) ∈M2 | 0 ≤ x ≤ 1 ∧ 5 ≤ y ≤ 7}

and that the disjunct (x ≤ 1 ∧ (−y + 7 ≤ 1)) is actually redundant.

3.4 Boxing, Gapping, Flipping and Demoding

Griggio [16] gives a procedure for encoding machine arithmetic in LIA, illus-
trating that the resulting LIA interpolants can include inequalities such as
−x2+x3−256b−x2/256c ≤ 255 [16, Example 5]. Relaxing inequalities to include
ceiling (or floor) functions can reduce the size of interpolants whilst simplifying
their derivation [17]. These more general forms of interpolant include inequal-
ities of the form c · x + n′bc′ · x/nc ≤ b [9] or c · x + n′dc′ · x/ne ≤ b [17],
though for our purposes it is sufficient to consider c · x + n′2nbc′ · x/2nc ≤ b or
c ·x+n′2ndc′ ·x/2ne ≤ b, where the divisors are powers of 2, stemming from the
way they model wrap-around in machine arithmetic. To extend boxing to these
generalised interpolants we extend the LIA and BV semantics two new types of
atomic constraint (though the definitions are almost vacuous):

Definition 5. If ` ≡ c · x + n′bc′ · x/2nc ≤ b then
q
`
y
LIA

=
{
x ∈Md|c · x + n′bc′ · x/2nc ≤ b

}
q
`
y
BV

=
{
x ∈Md|(c · x + n′bc′ · x/2nc) mod m ≤ b mod m

}
The following proposition shows generalised LIA interpolants are not an obstacle
to boxing. These inequalities are handled through a transformation scheme which
exploits the property that if n ≤ w then (c · x mod 2n) mod m = c · x mod 2n.
We informally call this transformation tactic demoding, because like gapping
and flipping, it is designed to increase the general applicability of boxing.

Proposition 3. Suppose 0 ≤ n ≤ w and
q
(c + n′c′) · x− n′y ≤ b

y
LIA

=
q
φ
y
BV

.
If y does not occur in x then

q
c · x + n′2nbc′ · x/2nc ≤ b

y
LIA

=
q
φ[y 7→ c′ · x mod 2n]

y
BV
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Inequalities such as c · x + n′2ndc′ · x/2ne ≤ b can be handled similarly. For
completeness, we note that expansion can be applied for non-powers of 2:

Proposition 4. Suppose n > 0. Then

q
c · x + n′bc′ · x/nc ≤ b

y
LIA

=
q u∨
i=`

(c · x ≤ b− n′i ∧ ni ≤ c′ · x ≤ ni− 1)
y

LIA

where ` = min{bc′ · x/nc | x ∈Md} and u = max{bc′ · x/nc | x ∈Md}.

4 Experiments

To evaluate the performance of boxing we implemented a model checker based
on the lazy abstraction (IMPACT) [25] algorithm. The model checker is imple-
mented in Python 3.7.2 and uses MathSAT5 [9] for satisfiability checking and
interpolation over LIA. The model checker parses a subset of the C language, but
is rich enough to handle 312 benchmarks drawn from [2, 12]. The model checker
was instantiated in one of three ways to use: (1) LIA interpolation [17]; (2) BV
interpolation by covering the solutions of an LIA interpolate with columns (recall
f2 of section 2); and (3) BV interpolation by covering the solutions of an LIA in-
terpolate using boxing, gapping and flipping. Experiments were performed using
an Amazon Web Service EC2 c3.xlarge cloud architecture of 14 EC2 Computing
Units [31] each equipped with 4 cores and 7.5 GB of RAM. The timeout for each
run of IMPACT was set to 600 seconds.

All arithmetic is idealised in configuration (1) taking no account of integer
overflow and underflow. This is not, in general, safe. In configurations (2) and
(3) the model checker interprets machine arithmetic and bit operations using
the LIA encoding of BV operations outlined in [16, Fig 1]. This is safe but
complicates the LIA formulae, often substantially. One would expect this to
enlarge the interpolants, even before boxing and gapping are deployed. We would
also expect (1) to be substantially faster than (2) and (3). Due to differences
in the semantics of arithmetic, we might also see differences in the number of
programs proved to be safe or found to be unsafe. The experiments quantify
these predictions. To discuss the experiments, (2) will be referred to as the
naive encoding, even though it improves on complete enumeration (recall f1 of
section 2).

4.1 Overall Result

Table 4.1 summarises the outcomes of running IMPACT on all 312 programs,
using the three different instances of interpolation, categorised as to whether
the run proved safety (safe rows) or found a counterexample (unsafe rows).
The Solved column of the left-hand table gives the total of the programs there
were either shown to be safe or unsafe within 600 seconds. Time is the mean
execution of a run (for all those programs which did not timeout). Size is mean
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Table 1. Comparison of the theories: performance and correctness

Theory Safety Solved Time (seconds) Size (inequalities)

LIA
safe 165 15.1 440

unsafe 41 9.0 392
(total) 206 13.9 431

BV
(naive)

safe 87 30.1 32583
unsafe 57 24.2 49138
(total) 144 27.8 39136

BV
(boxing)

safe 99 20.0 6938
unsafe 66 20.1 15246
(total) 165 20.0 10261

LIA
safe unsafe

BV
safe 90 1

unsafe 17 34

total number of atomic constraints in all interpolants encountered over a run
(for those programs which did not timeout). We observe that more programs
can be analysed to completion with LIA than with BV, as one would expect,
but that BV (boxing) improves on BV (naive), the speedup being significant
when proving safety.

The right-hand table compares a terminating run of LIA to a terminat-
ing run of BV (boxing). For 17 of these 142 runs, LIA (incorrectly) verified
the program to be safe whereas BV found a counter-example. Unexpectantly
for trex03 true-unreach-call.i.annot.c from [12], LIA found a counter-
example but BV verified safety. This program contains three integers, x1, x2
and x3, which can become negative in the idealised arithmetic employed in LIA,
triggering an assertion. But x1, x2 and x3 are actually unsigned.

4.2 Runtime for Naive encoding and Boxing

The scatter plot of Figure 5 compares the runtime of the naive encoding against
that of boxing and its allied techniques of gapping and flipping. The scatter plot
excludes timeouts and depicts 151 pairs of runs. Almost all points are under the
dotted line, indicating the boxing significantly improves performance. The line
graph plots the ratio of the execution times, from which we observe that boxing
does not accelerate the verification for almost half of the runs, but does speed it
up between 2- and 256-fold for the other half.

4.3 Interpolant Size for Naive encoding and Boxing

The line graph on Figure 6 compares the relative size of interpolants for boxing
versus the naive encoding. Size is the sum of the sizes of all the interpolants
generated during a run, where the size of an interpolant is itself defined as the
number of atomic constraints that occur within it. We observe that for most
problems the size ratio is around one, but a second peak occurs at 1/32, giving
an overall size reduction. The scatter plot explores how interpolant size correlates
with runtime, showing how the relative size of interpolants varies with relative
runtimes. We observe that reducing the size of interpolants improves runtime,
and that two peaks of the line graph manifesting themselves as two clusters of
points in the scatter plot.
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Fig. 6. Size of interpolants in boxing versus naive and its impact on performance

5 Related work

The problem of reasoning about machine arithmetic and wrapping arises not only
in model checking, but abstract interpretation too, where solvers are augmented
with support for relaxing abstractions by join rather than interpolation.

Despite the long-standing work [3, 7, 27] in deciding BV theories, there has
been scant work on BV interpolation. Although not focussing on BV interpola-
tion, an early work on deriving work-level interpolants [23] uses bit-vectors to
interpolate equality logic. This logic supports equations of the form x = y and
x = c where x and y are variables and c is drawn from a finite set of symbols C.
Bit-vectors with width dlog2(|C|)e are used to bit-blast equations [29] so that
formulae are encoded entirely propositionally. Then a propositional resolution
proof of the inconsistence of two formulae is lifted to the work-level.

Seminal work by Griggio [16] advocated encoding BV formulae in theories of
increasing complexity. The pair of BV formulae are encoded in a theory whose
interpolation engine is used to find an interpolant in that theory. The interpolant
is then reinterpreted as a BV formula and tested to see if it is still an interpolant
the pair of BV formulae. The approach resorts to bit-blasting if no simpler the-
ory can find an interpolant, at the cost of losing world-level information. By way
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of contrast, Backeman et al. [2] propose a calculus over a core language, which
supports interpolation and is rich enough to describe BV formulae, even making
use of Groebner bases to express polynomial equality relationships. Since inter-
polation is performed within their core language, they do not aim to derive a
BV interpolant, and therefore their work is orthogonal to ours. Yet if Backe-
man’s procedure returns an interpolant in their core language and it could be
interpreted as an LIA formula, which would seem likely for many cases, then our
work could convert the LIA formula back to BV.

Further afield, polynomial algorithms for interpolation have developed for
systems of linear congruence equations [19, section 4], conjunctions of linear
Diophantine equations and disequations [19, section 6], and systems of mixed
integer linear equations [19, section 7]. This comprehensive study stops short of
using LIA to interpolate BV formula, mentioning the problem as future work.

Abstract domains have been proposed for tracking linear modulo relation-
ships where the module is a power of 2 [13, 22, 28]. These domains, which are es-
sentially specialist solvers, express more than linear equalities [21], while enabling
the domain operations to be realised using machine arithmetic. Surprisingly, sys-
tems of linear inequalities can be reinterpreted to model machine arithmetic by
just changing the concretisation function [32] and the handling of guards [32].

6 Concluding Discussion

To repurpose efficient LIA interpolation engines to BV, we have shown how to
systematically construct a BV formula so its solutions are exactly those of an
LIA interpolant. Since an LIA interpolant summarises the reason for a conflict
between two LIA formula, we seek to retain its compact structure by introduc-
ing no more than simple boxes around the LIA solutions which block extraneous
BV solutions. When this encoding tactic, called boxing, is not applicable, gap-
ping is used to decompose an LIA inequality into two or more inequalities which
are amenable to boxing. We show how the size of the resulting BV interpolants
are smaller than BV interpolants constructed by merely partitioning the LIA
solutions into columns, and demonstrate how boxing and gapping improves the
runtime of an interpolation-based model-checker. We instantiate a model-checker
with LIA and BV to compare their performance, and conclude that with this
encoding BV interpolation is feasible. Because of wrap-around, BV is substan-
tially more complicated than LIA for interpolation, yet BV is no more than
twice as slow as LIA for over half the benchmarks. Furthermore, the resulting
BV interpolants can be validated, independent of LIA, just using a BV solver.
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