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EQUIVALENCE AFTER EXTENSION AND SCHUR COUPLING

DO NOT COINCIDE, ON ESSENTIALLY INCOMPARABLE

BANACH SPACES

S. TER HORST, M. MESSERSCHMIDT, A.C.M. RAN, AND M. ROELANDS

Abstract. In 1994 H. Bart and V.É. Tsekanovskii posed the question whether
the Banach space operator relations matricial coupling (MC), equivalence after
extension (EAE) and Schur coupling (SC) coincide, leaving only the implica-
tion EAE/MC ⇒ SC open. Despite several affirmative results, in this paper
we show that the answer in general is no. This follows from a complete de-
scription of EAE and SC for the case that the operators act on essentially
incomparable Banach spaces, which also leads to a new characterization of the
notion of essential incomparability. Concretely, the forward shift operators U

on ℓp and V on ℓq, for 1 ≤ p, q ≤ ∞, p 6= q, are EAE but not SC. As a
corollary, SC is not transitive. Under mild assumptions, given U and V that
are Atkinson or generalized invertible and EAE, we give a concrete operator
W that is SC to both U and V , even if U and V are not SC themselves. Some
further affirmative results for the case where the Banach spaces are isomorphic
are also obtained.

1. Introduction

Throughout this paper, let U ∈ B(X ) and V ∈ B(Y) be two (complex) Banach
space operators. Here B(V ,W) stands for the Banach space of bounded linear
operators from the Banach space V into the Banach space W , abbreviated to B(V)
if V = W . The term operator will always mean bounded linear operator, and
invertibility of an operator will imply that the inverse is bounded as well. Further
definitions will be explained in the last three paragraphs of this introduction.

The operator relations equivalent after extension (EAE),matricial coupling (MC)
and Schur coupling (SC) for Banach space operators U and V where first used to
solve certain integral equations [3], and have found many applications since; for
some recent applications, see [10, 19] (on diffraction theory), [8, 9] (on truncated
Toeplitz operators), [11] (on unbounded operator functions) and [12] (on Wiener-
Hopf factorization). The main feature in these applications is that the relations
EAE, MC and SC coincide, and that one can transfer from one to another in a
constructive way. This raised the question, posed in [5], whether EAE, MC and
SC may coincide at the level of Banach space operators. In fact, by that time it
was known that EAE and MC coincide (see [3, 6]) and that they are implied by
SC (see [7, 5]), in short, SC ⇒ EAE ⇔ MC. Hence only the implication EAE/MC
⇒ SC remained open. Some confirmative results were obtained in the early 1990s,
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for matrices [5], for Hilbert space Fredholm operators [6], and for Banach space
Fredholm operators with index 0 [6]. However, the main breakthroughs came in
the last five years, most notably, for Hilbert space operators in [20], initially for
the separable case in [18]. For Banach space operators confirmative answers were
obtained for operators that can be approximated by invertible operators [18] and
inessential (including compact and strictly singular) operators [17].

The importance of the Banach space geometries of X and Y was first observed
in [16]. If U on X and V on Y are EAE and compact, the for several Banach
space properties, X has this property if Y does, and vice versa; see Proposition
5.6 and Corollary 5.7 in [16]. Furthermore, it was shown that if X and Y are
essentially incomparable and U or V compact, then EAE of U and V cannot occur.
In fact, much more is true. If X and Y are essentially incomparable, then U and
V are EAE precisely when they are Fredholm with dimKerU = dimKerV and
dimCokerU = dimCokerV . For SC U and V are also required to have index
0. These claims are part of our main result, Theorem 2.1 below, and lead to the
observation that EAE and SC do no coincide.

It was shown in [4] that EAE and SC coincide precisely when SC is transitive,
which makes SC into an equivalence relation. Thus our main result shows that
SC is not transitive. In Section 4 for X and Y primary and U and V generalized
invertible, or X and Y from a larger class of Banach spaces we call stable under
finite dimensional quotients (see Section 3) and U and V Atkinson, we show that U
and V are both SC to W = U ⊗ IY (and to W = IX ⊗ V ), even if U and V are not
SC, which shows concretely that SC is not transitive. Some of the methods from
Section 4 are employed in the final section to obtain two more cases where EAE
and SC do coincide.

We now make precise, and discuss, some of the concepts used above, as well as
a few that appear later in the paper. The operators U ∈ B(X ) and V ∈ B(Y) are
called equivalent after extension (EAE) when there exist Banach spaces X0 and Y0

such that U ⊕ IX0
and V ⊕ IY0

are equivalent, that is, when there exist invertible
operators E in B(Y ⊕ Y0,X ⊕ X0) and F in B(X ⊕ X0,Y ⊕ Y0) such that

[
U 0
0 IX0

]
= E

[
V 0
0 IY0

]
F. (1.1)

In case EAE of U and V can be established with X0 = {0} or Y0 = {0}, we say
that U and V are equivalent after one-sided extension (EAOE). That U and V are
EAE coincides with U and V being matricially coupled (MC), which means that

there exists an invertible operator Û ∈ B(X ⊕ Y) with

Û =

[
U ∗
∗ ∗

]
and Û−1 =

[
∗ ∗
∗ V

]
. (1.2)

Moreover, U and V are called Schur coupled (SC) if there exists a 2 × 2 block
operator M = [ A B

C D ] ∈ B(X ⊕ Y,X ⊕ Y) with A and D invertible and

U = A−BD−1C and V = D − CA−1B. (1.3)

Hence U and V are the Schur complements of the block operator matrix M with
respect to D and A, respectively. As remarked above, SC ⇒ EAE ⇔ MC. On the
other hand, EAOE implies SC [4], but the converse does not hold in general [16]
(see also Theorem 2.1 below).
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Recall that a Banach space operator S ∈ B(X ,Y) is called inessential in case
IX − TS is Fredholm for all T ∈ B(Y,X ), or equivalently, IY − ST is Fredholm
for all T ∈ B(Y,X ). We write I(X ,Y) for the set of inessential operators in
B(X ,Y). Then the Banach spaces X and Y are called essentially incomparable
in case I(X ,Y) = B(X ,Y). See Chapter 7 in [1] for further details, examples
and references. We just mention here that c0, ℓp = ℓp(N) and ℓq = ℓq(N), for
1 ≤ p, q ≤ ∞, p 6= q, are pairwise essentially incomparable by the Pitt-Rosenthal
Theorem, and, by the recent Pitt-Rosenthal like theorem of [14], certain discrete
Morrey spaces introduced in [13] are essentially incomparable to ℓp as well. Note
that for S ∈ B(X ,Y) and T ∈ I(Y,X ), the operators I − TS and I − ST are
not only Fredholm, they also have index 0; see the proof of Lemma 3.1 in [17]
for details. In case X = Y we abbreviate I(X ,X ) to I(X ) and then I(X ) is an
ideal in B(X ), in fact, the largest closed ideal in B(X ) for which the Fredholm
operators correspond to the invertible operators in the Calkin algebra B(X )/I(X ).
For X 6= Y the inessential operators are still closed under inversion in the sense
that B(Y,Z) ·I(X ,Y) ⊂ I(X ,Z) and I(X ,Y) ·B(Z,X ) ⊂ I(Z,Y), for any Banach
space Z.

A Banach space operator T ∈ B(V ,W) is called generalized invertible in case T
has a closed complementable range and a complementable kernel. Equivalently, T
admits a decomposition of the form

T =

[
T ′ 0
0 0

]
:

[
V1

V2

]
→

[
W1

W2

]
with T ′ invertible.

Thus V2 = KerT , and, with some abuse of terminology, we will usually refer to
W2 as ‘the’ cokernel of T (CokerT ). Note that T now indeed admits a generalized
inverse, namely

[
T ′−1

0
0 0

]
mapping W = W1 ⊕ W2 into V = V1 ⊕ V2. Now T

is Fredholm in case T is generalized invertible and KerT and CokerT are finite
dimensional and Atkinson in case it is only required that one of KerT and CokerT
is finite dimensional.

2. SC and EAE do not coincide, on essentially incomparable Banach
spaces

In this section we prove the main result of the present paper, which is the follow-
ing theorem, and give an alternative characterization of essential incomparability
in Proposition 2.4.

Theorem 2.1. Let U ∈ B(X ) and Y ∈ B(Y) with X and Y essentially incomparable
Banach spaces. Then

(1) U and V are never EAOE;
(2) U and V are SC if and only if U and V are Fredholm with index 0 and

dimKerU = dimKerV (and thus dimCokerU = dimCokerV );
(3) U and V are EAE if and only if U and V are Fredholm with dimKerU =

dimKerV and dimCokerU = dimCokerV .

In particular, SC and EAE do not coincide.

Proof. Item (1) was proven in [16] for X = ℓp and Y = ℓq, 1 ≤ p 6= q < ∞, but the
proof is easily adapted to the case of essentially incomparable Banach spaces, as
indicated in Remark 1.3 of [17]. The “if” claims in (2) and (3) follow from Theorems
3 and 4 in [7], respectively, and are true without the essential incomparability of X
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and Y. Thus it remains to prove the “only if” claims in (2) and (3), and the final
claim.

Starting with (2), assume U and V are SC, say U and V are as in (1.3) with
[A B
C D ] ∈ B(X ⊕ Y) with A and D invertible. Then U = A(I − A−1BD−1C) and
the operators A−1B : Y → X and D−1C : X → Y are inessential, since X and Y
are essentially incomparable. Therefore, I − A−1BD−1C is Fredholm with index
0, and hence U is Fredholm with index 0. Similarly one obtains that V must be
Fredholm with index 0.

For the remaining implication in (3), assume U and V are EAE, hence MC.

Thus, there exists an invertible operator Û ∈ B(X ⊕ Y) with

Û =

[
U U12

U21 U22

]
:

[
X
Y

]
→

[
X
Y

]
, Û−1 =

[
V11 V12

V21 V

]
:

[
X
Y

]
→

[
X
Y

]
.

In particular, Û and Û−1 are Fredholm with index 0. Since X and Y are essentially
incomparable, U12 and U21 are inessential. Then

[
0 U12

U21 0

]
is also inessential, and

hence [
U 0
0 U22

]
= Û −

[
0 U12

U21 0

]

is Fredholm with index 0 as well. This in turn implies U and U22 are Fredholm and
Ind(U) + Ind(U22) = 0. Similarly, it follows that V is Fredholm.

A slight addition to the previous observations gives an alternative proof of the
‘only if’ part of item (2). Indeed, as shown in [7], see also [18], SC of U and V

coincides with strong MC of U and V , which means that one can find Û as above
with U22 and V11 invertible. However, if Ind(U) 6= 0, then Ind(U11) = −Ind(U) 6= 0,
and thus V11 cannot be invertible. We conclude that in case Ind(U) 6= 0, strong
MC, and hence SC, cannot occur.

To see that EAE and SC do not coincide it suffices to find an example of es-
sentially incomparable Banach spaces on which Fredholm operators of the same
non-zero index exist. This is done in the following example. �

Example 2.2. Take for both U and V the forward shift operator, but U acting
on ℓp and V acting on ℓq for 1 ≤ p, q ≤ ∞, p 6= q. Then U and V are injective
and Fredholm with index 1, hence EAE, but not SC, by Theorem 2.1. We define a

concrete Û as in (1.2) that establishes the MC between U and V . For this purpose,
take U12 = diag (1, 0, 0, . . .) : ℓq → ℓp, U21 = 0 and let U22 be the backward shift
on ℓq. Then

Ũ =

[
U U21

U12 U22

]
is invertible with inverse Ũ−1 =

[
V11 V12

V21 V

]
,

where V11 is the backward shift on ℓp, V12 = 0 and V21 = diag (1, 0, 0, . . .) : ℓp → ℓq.

Note that for our choice of Û , we have Ind(U22) = −1 = −Ind(U). This happens

for each choice of Û that established the MC of U and V , because ℓp and ℓq are
essentially incomparable, and as a result U22 cannot be invertible, and U and V
cannot be strongly MC, and hence not SC, as observed in the above proof.

Remark 2.3. More generally, by Theorem 3.3 in [18], any two strongly regular
operators U and V such that the kernels and cokernels are pairwise isomorphic are
SC. However, if such operators U and V are not Fredholm and acting on essentially
incomparable Banach spaces, then this situation cannot occur, since it would lead
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to two infinite dimensional closed and complementable subspaces of essentially in-
comparable Banach spaces that are isomorphic, hence to a closed range operator
of infinite rank, a contradiction.

That on essentially incomparable Banach spaces only Fredholm (with index 0)
operators can be EAE (SC) in fact gives a new characterization of essential incom-
parability.

Proposition 2.4. For Banach spaces X and Y the following are equivalent:

(1) X and Y are essentially incomparable;
(2) all SC operators U on X and V on Y are Fredholm (with index 0);
(3) all EAE operators U on X and V on Y are Fredholm.

The parenthesised phrase can be removed without loosing the validity of the state-
ment.

Proof. The implications (1) ⇒ (2, including parenthesised phrase) and (1) ⇒ (3)
follow from Theorem 2.1. We prove (3) ⇒ (2, without parenthesised phrase) and
(2, without parenthesised phrase) ⇒ (1), which completes the proof.

Assume (3) and let U and V be SC. Then U and V are EAE, hence Fredholm
by (3).

Now assume (2). Also assume X and Y are not essentially incomparable. Then
there exist operators B ∈ B(Y,X ) and C ∈ B(X ,Y) such that IX − CB is not
Fredholm. Now take M = [A B

C D ] with A = IX and D = IY . Then the Schur com-
plement U := IX −CB of M is not Fredholm, and so is the other Schur complement
V := IY − BC. Hence U and V are SC, but not Fredholm, in contradiction with
(2). Therefore X and Y are essentially incomparable. �

3. Stability under finite dimensional quotients

Recall that a Banach space Z is called prime if Z is isomorphic to all its infinite
dimensional complemented subspaces, and primary if Z ≃ Z1 ⊕Z2 implies Z ≃ Z1

or Z ≃ Z1. All prime Banach spaces are primary, ℓp, 1 ≤ p ≤ ∞, and c0 are prime,
and hence primary, Lp, 1 ≤ p < ∞, and C[0, 1] are primary; cf., [2]. In this section
we study the following class of Banach spaces, which includes all primary Banach
spaces.

Definition 3.1. A Banach space Z is said to be stable under finite dimensional
quotients if Z is isomorphic to any subspace with a finite dimensional complement.

Not all Banach spaces are stable under finite dimensional quotients, an example
of one that is not is given in [15]. On the other hand, there are Banach spaces that
are stable under finite dimensional quotients, but not primary. Concretely, ℓp and
ℓq are prime, but ℓp ⊕ ℓq is not primary in case p 6= q. That ℓp ⊕ ℓq is stable under
finite dimensional quotients follows from the next proposition.

Proposition 3.2. Assume Z1 and Z2 are stable under finite dimensional quotients.
Then so is Z1 ⊕Z2.

Before proving the proposition, we derive a few elementary lemmas.

Lemma 3.3. Let Z be stable under finite dimensional quotients and F finite di-
mensional. Then Z ≃ Z ⊕ F .
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Proof. Clearly Z must be infinite dimensional. Let F0 be a finite dimensional
subspace of Z, with complement Z0, that is isomorphic to F . Then Z ≃ Z0,
because F0 is is finite dimensional, and hence

Z ≃ Z0 ⊕F0 ≃ Z ⊕ F . �

The following lemma may be well known, but we did not find it in the literature.
Note that the conclusion does not hold without the finite dimensionality of Z, just
take Z = ℓ2 and V and W finite dimensional of different dimensions.

Lemma 3.4. Let V ,W ,Z be Banach spaces with Z ⊕V ≃ Z ⊕W and dimZ < ∞.
Then V ≃ W.

Proof. Decompose an isomorphism T from Z⊕V to Z⊕W in block operator form

T =

[
T11 T12

T21 T22

]
:

[
Z
V

]
→

[
Z
W

]
.

Then T is Fredholm of index 0. Thus, so is the finite rank perturbation
[

0 0
0 T22

]
= T −

[
T11 T12

T21 0

]
.

Hence T22 ∈ B(V ,W) is a Fredholm operator of index 0. Adding a finite rank
operator that maps the kernel of T22 onto its cokernel we obtain an isomorphism
between V and W . �

Proof of Proposition 3.2. Assume Z1 ⊕Z2 = V ⊕F with F finite dimensional.
For j = 1, 2 let Fj = PZj

F . Then dimFj < ∞, hence Fj has a complement Vj

in Zj . Since Zj is stable under finite dimensional quotients, Zj ≃ Vj . We have
F ⊂ F1 ⊕F2, with all three spaces finite dimensional. Hence F1 ⊕F2 = F ⊕ G for
some G. Therefore, we have

F ⊕ V = Z1 ⊕Z2 = F1 ⊕ V1 ⊕F2 ⊕ V2 ≃ F1 ⊕F2 ⊕ V1 ⊕ V2 = F ⊕ G ⊕ V1 ⊕ V2

= F ⊕ G ⊕ Z1 ⊕Z2 ≃ F ⊕ (G ⊕ Z1)⊕Z2 ≃ F ⊕Z1 ⊕Z2,

where we used Lemma 3.3 in the last step. Since F is finite dimensional, by Lemma
3.4, we have Z1 ⊕ Z2 ≃ V . Hence Z1 ⊕ Z2 is stable under finite dimensional
quotients. �

4. SC is not transitive

By [4, Page 215] SC is transitive, and with that an equivalence relation, if and
only if it coincides with EAE, which is an equivalence relation. Hence Theorem 2.1
yields the following corollary.

Corollary 4.1. SC is not transitive, hence not an equivalence relation.

However, the proof in [4] provides no insight into the lack of transitivity of SC.
The following proposition gives two cases where EAE operators U and V are both
SC to a third operator W , even if U and V are not SC themselves. In particular,
for the operators U and V of Example 2.2, which are not SC, we obtain an operator
W that is SC to both U and V , giving a concrete example that shows SC is not
transitive.

Proposition 4.2. Let U on X and V on Y be EAE. Then there exists an operator
W on X ⊕ Y such that both U and V are SC with W , concretely, for W one can
take either one of U ⊕ IY or IX ⊕ V , in the following two cases:
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(1) U and V Atkinson and X and Y stable under finite dimensional quotients;
(2) U and V generalized invertible and X and Y primary.

Proof. Take W = U ⊕ IY , the case where W = IX ⊕ V is proved analogously.
Clearly U and W are EAOE, hence SC. In both case (1) and case (2) it remains
to show V and W are SC. In both cases U and V are generalized invertible, and
admit decompositions of the form

U =

[
U ′ 0
0 0

]
:

[
X1

X2

]
→

[
X ′

1

X ′
2

]
, V =

[
V ′ 0
0 0

]
:

[
Y1

Y2

]
→

[
Y ′
1

Y ′
2

]
,

with U ′ and V ′ invertible. Then U being Atkinson means that X2 or X ′
2 is finite

dimensional, and similar for V . Since U and V are EAE we have isomorphisms

T2 : X2 → Y2 and T ′
2
: X ′

2
→ Y ′

2
(see [18, Proposition 3.2]). (4.1)

Note that

U ′ : X1 → X ′
1

and V ′ : Y1 → Y ′
1

are also isomorphisms. In both cases (1) and (2) one of the following two situations
always occurs:

(a) Y2 ≃ X2 ≃ X ′
2
≃ Y ′

2
or (b) X ′

1
≃ X1 ≃ X and Y ′

1
≃ Y1 ≃ Y. (4.2)

Indeed, if U is Atkinson and X stable under finite dimensional quotients, then the
kernel X2 or cokernel X ′

2
of U is finite dimensional, leading to X ≃ X1 or X ≃ X ′

1
,

and we already have X1 ≃ X ′
1 via U ′. Likewise we obtain Y ′

1 ≃ Y1 ≃ Y in case V
is Atkinson and Y stable under finite dimensional quotients.

Now assume we are in case (2). Since X is primary, X is isomorphic to X1 or
X2 and X is isomorphic to X ′

1
or X ′

2
. If either X ≃ X1 or X ≃ X ′

1
, then we have

X ′
1
≃ X1 ≃ X , as explained above. Thus we have the first set of isomorphisms in

(b) or X2 ≃ X ≃ X ′
2. However, we already have X2 ≃ Y2 and X ′

2 ≃ Y ′
2, hence

we have either (a) or the first set of isomorphisms in (b). Reasoning in a similar
fashion, using that Y is primary, we note that we have either (a) or the second set
of isomorphisms in (b). Thus we are always is one of the situations (a) and (b).

We now show that in both cases (a) and (b) V and W = U ⊕ IY are SC. In case
(a) U and V are not only EAE, they are also SC, by [18, Theorem 3.3]. Hence (1.3)
holds for some block operator M = [ A B

C D ] ∈ B(X ⊕ Y) with A and D invertible.
Now simply extend M to

M̃ =

[
Ã B̃

C̃ D̃

]
=




A 0 B
0 IY 0
C 0 D


 .

Clearly Ã and D̃ are invertible, and we have

V = D − CA−1B = D̃ − C̃Ã−1B̃,

W =

[
A−BD−1C 0

0 IY

]
= Ã− B̃D̃−1C̃.

Hence V and W are SC.
Finally, assume we are in case (b). Then there exist isomorphisms

S : X → X1 and R : Y → Y1. (4.3)
7



Consequently, U ′ and IX are equivalent and V ′ and IY are equivalent, by the
following identities

IX = (S−1U ′−1)U ′S and V ′ = (V ′R)IYR
−1.

Therefore, we have



V ′ 0 0
0 0 0
0 0 IX


 =




0 0 V ′R
0 T ′

2
0

S−1U ′−1 0 0






U ′ 0 0
0 0 0
0 0 IY






0 0 S
0 T−1

2
0

R−1 0 0




with the left and right factors on the right hand side invertible. This shows that V
and W are EAOE, which implies V and W are SC. �

The next corollary follows immediately from Theorem 2.1 and Proposition 4.2.

Corollary 4.3. Let the Banach spaces X and Y be essentially incomparable and
stable under finite dimensional quotients. Then all operators U ∈ B(X ) and V ∈
B(Y) that are EAE are both SC with U ⊕ IY , as well as with IX ⊕ V .

5. Some cases where SC and EAE do coincide

Using similar arguments as in the previous section we can prove two new cases
where SC and EAE do coincide.

Proposition 5.1. Let U ∈ B(X ) and V ∈ B(Y) with X ≃ Y. Assume either (1)
or (2) in Proposition 4.2 holds, in particular, U and V are generalized invertible.
Then the following are equivalent:

(1) U and V are SC;
(2) U and V are EAE;
(3) KerU ≃ KerV and CokerU ≃ CokerV .

Proof. Since U and V are generalized invertible, the equivalence of (2) and (3)
follows from Proposition 3.2 in [18]. The implication (1) ⇒ (2) holds without
additional assumptions on U and V . Thus it remains to prove (2) ⇒ (1). As
observed in the proof of Proposition 4.2, we are either in case (a) or in case (b) of
(4.2), and in case (a) U and V are SC, even without X ≃ Y. Hence, we may assume
that (b) in (4.2) holds. Besides the isomorphisms S and R in (4.3) and T2 and T ′

2

in (4.1), since U and V are EAE, we now also have an isomorphism Q : X → Y.
Then[

U ′ 0
0 0

]
=

[
U ′SQ−1R−1 0

0 T ′−1

2

] [
V ′ 0
0 0

] [
V ′−1RQS−1 0

0 T2

]
= EV F,

Thus E = EV F holds with E =
[
U ′SQ−1R−1

0

0 T
′−1

2

]
and F =

[
V ′−1RQS−1

0

0 T2

]
,

which are invertible. In other words, U and V are equivalent, hence EAOE, and
thus SC. �

There are other cases with X ≃ Y where EAE and SC coincide, but we intend
to return to this topic in a separate paper.
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