Citation for published version

DOI

Link to record in KAR
https://kar.kent.ac.uk/79933/

Document Version
Presentation

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk
If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Can adverse selection increase social welfare?

Pradip Tapadar

University of Kent

February, 2020
Background

Adverse selection:

If insurers cannot charge **risk-differentiated** premiums, then:

- higher risks buy more insurance, lower risks buy less insurance,
- raising the **pooled** price of insurance,
- lowering the demand for insurance,

usually portrayed as a bad outcome, both for insurers and for society.

In practice:

Policymakers often see merit in restricting insurance risk classification

- EU ban on using gender in insurance underwriting.
- Moratoria on the use of genetic test results in underwriting.

Question:

How can we reconcile theory with practice?
Motivation: Two risk-groups $\mu_L = 0.01$ and $\mu_H = 0.04$

Scenario 1: No adverse selection: Risk-differentiated premiums: $\pi_L = 0.01$ and $\pi_H = 0.04$

Low risks →

Utility increase: 66.2×10^{-4}

High risks →

Scenario 2: Some adverse selection: Pooled premiums: $\pi_L = \pi_H = 0.028$

Low risks →

Utility increase: 71.2×10^{-4}

High risks →
Contents

- Introduction
- Insurance demand
- Insurance market
- Social welfare
- Conclusions
Why do people buy insurance?

Assumptions

Consider an individual with

- an initial wealth W,
- exposed to the risk of loss L,
- with probability μ,
- utility of wealth $u(w)$, with $u'(w) > 0$, and
- an opportunity to insure at premium rate π.

Insurance demand
Utility of wealth and insurance purchasing decision

Utility of wealth and insurance purchasing decision

Wealth

Utility

\[u(W) \]
\[u(W - \mu L) \]
\[u(W - \pi_c L) \]

\[(1 - \mu)u(W) + \mu u(W - L) \]

Fair premium

\[\mu L \]

Maximum premium tolerated

\[\pi_c L \]
Insurance demand

Utility of wealth and insurance purchasing decision

Heterogeneity

Simplest model:

If everybody has exactly the same W, L, μ and $u(\cdot)$, then:

- All will buy insurance if $\pi < \pi_c$.
- None will buy insurance if $\pi > \pi_c$.

Reality: Not all will buy insurance even at fair premium.

Heterogeneity:

- Even if individuals are **homogeneous** in terms of underlying risk,
- they can still be **heterogeneous** in terms of **risk-aversion** which is unobservable by insurers.

Source of randomness from insurers’ perspective:

Utility of insurance of an individual chosen at random, $u(W - \pi L)$, is a random variable, U_I.
Standardisation

As certainty equivalent is invariant to positive affine transformations, we assume $u(W) = 1$ and $u(W - L) = 0$ for all individuals.

Insurance purchasing decision:

Given a premium π, an individual will purchase insurance if:

\[
\frac{u(W - \pi L)}{u(W) > (1 - \mu) u(W) + \mu u(W - L) = (1 - \mu)}.
\]

Utility with insurance

Utility without insurance

Demand as a function of premium:

Given a premium π, insurance demand, $d(\pi)$, is:

\[
d(\pi) = P[U_I > 1 - \mu].
\]
Demand for insurance

Small premium assumption

For small premium amounts πL (compared to initial wealth W), the utility functions over $(W - \pi L, W)$ can be approximated by a straight line, i.e.:

$$u(W - \pi L) \approx u(W) - \pi L u'(W) = 1 - \pi L u'(W) = 1 - \pi \gamma,$$

where $\gamma = L u'(W)$ can be interpreted as a risk preferences index.

Insurance purchasing decision:

Under this assumption, an individual will purchase insurance if:

$$u(W - \pi L) > (1 - \mu) \iff 1 - \pi \gamma > 1 - \mu \iff \gamma < \frac{\mu}{\pi}.$$

Demand as a function of premium:

Given a premium π, insurance demand, $d(\pi)$, is:

$$d(\pi) = P[U_I > 1 - \mu] = P[\Gamma < \frac{\mu}{\pi}].$$

Note: Insurers cannot observe individual γ, so Γ is a random variable.
Example: Iso-elastic demand

Constant demand elasticity

If demand for insurance can be modelled as\(^1\):

\[
d(\pi) = \tau \left(\frac{\mu}{\pi} \right)^\lambda,
\]

(subject to a cap of 1)

then elasticity of demand is a constant:

\[
\epsilon(\pi) = -\frac{\partial \log d(\pi)}{\partial \log \pi} = \lambda.
\]

\(^1\)Assumptions:

\[
u(w) = \left[\frac{w - (W - L)}{L} \right]^\gamma,
\]

\[
F_{\Gamma}(\gamma) = P[\Gamma \leq \gamma] = \begin{cases} 0 & \text{if } \gamma < 0 \\ \tau \gamma^\lambda & \text{if } 0 \leq \gamma \leq (1/\tau)^{1/\lambda} \\ 1 & \text{if } \gamma > (1/\tau)^{1/\lambda}. \end{cases}
\]
Example: Iso-elastic demand

Iso-elastic demand for insurance

\[\lambda = 1 \quad \lambda = 2 \]

Fair-premium demand

\[\tau \]

Demand

Premium
Risk-groups

Suppose a population can be divided into 2 risk-groups where:

- risk of losses: $\mu_1 < \mu_2$;
- population proportions: p_1, p_2;
- iso-elastic demand for a given premium, π:
 \[
 d_i(\pi) = \tau_i \left(\frac{\mu_i}{\pi} \right)^{\lambda_i}, \quad i = 1, 2;
 \]
- fair-premium demand: $\tau_i = d_i(\mu_i)$ for $i = 1, 2$;
- premiums offered: π_1, π_2.

Note: The framework can be generalised for $n > 2$ risk-groups.
Market equilibrium

For a randomly chosen individual, define:

\[\begin{align*}
Q &= I \text{ [Individual is insured]} ; \\
X &= I \text{ [Individual incurs a loss]} ; \\
\Pi &= \text{Premium offered to the individual.}
\end{align*} \]

Simplifying assumption
The potential loss amount \(L \) is same for all individuals.

Expected premium, claim and market equilibrium

Market equilibrium: \[E[Q\Pi] = E[QX], \quad \text{where,} \]

Expected premium: \[E[Q\Pi] = p_1 d_1(\pi_1) \mu_1 + p_2 d_2(\pi_2) \mu_2, \]

Expected claim: \[E[QX] = p_1 d_1(\pi_1) \mu_1 + p_2 d_2(\pi_2) \mu_2. \]
Risk-classification regimes

Risk-differentiated premiums: $\pi = (\mu_1, \mu_2)$

- Equilibrium is achieved when $\pi_1 = \mu_1$ and $\pi_2 = \mu_2$.
- No losses for insurers.
- No (actuarial/economic) adverse selection.

Pooled premium: $\pi = (\pi_0, \pi_0)$

If risk-classification is banned, insurers charge same premium π_0 to both risk-groups.

- Market equilibrium \Rightarrow No losses for insurers! \Rightarrow No (actuarial) adverse selection.
- Pooled premium is greater than average premium charged under full risk classification \Rightarrow (Economic) adverse selection.
- Aggregate demand (cover) is lower than under full risk classification \Rightarrow (Economic) adverse selection.
Contents

- Introduction
- Insurance demand
- Insurance market
- Social welfare
- Conclusions
Social welfare

Definition (Social welfare)
For any premium regime π, social welfare is the expected utility for an individual selected at random from the population:

$$S(\pi) = E \left[\underbrace{Q U_I}_{\text{Insured population}} + (1 - Q) \left[(1 - X) U_W + X U_{W-L} \right] \right].$$

$$= E \left[Q U_I + (1 - Q) (1 - X) \right], \text{ using } U_W = 1 \text{ and } U_{W-L} = 0.$$

Social welfare under iso-elastic demand
For any premium regime $\pi = (\pi_1, \pi_2)$ satisfying market equilibrium:

$$S(\pi) = \sum_{i=1}^{2} p_i \tau_i \frac{1}{(\lambda_i + 1)} \left(\frac{\mu_i}{\pi_i} \right)^{\lambda_i+1} \pi_i + K,$$

where constant K does not depend on the premium regime under consideration.
Iso-elastic demand with same demand elasticity

- \(\lambda < 1 \iff S(\pi_0) > S(\mu) \implies \text{Risk pooling is } better \text{ than full risk classification.} \\
- \(\lambda > 1 \iff S(\pi_0) < S(\mu) \implies \text{Risk pooling is } worse \text{ than full risk classification.} \\
- \textbf{Empirical evidence suggests } \lambda < 1 \text{ in many insurance markets.}
Iso-elastic demand with different demand elasticities

$S(\pi_0) > S(\mu)$
everywhere to left of boundary curve

$S(\pi_0) < S(\mu)$
everywhere to right of boundary curve

$S(\pi_0) = S(\mu)$

$\alpha_1 = 0.8$

$\alpha_1 = 0.99$
Iso-elastic demand with different demand elasticities

$$S(\pi_0) \geq S(\mu)$$
guaranteed in green shaded area
for all population structures

$$S(\pi_0) = S(\mu)$$

$$\alpha_1 = 0.8$$
$$\alpha_1 = 0.99$$

$$\lambda_1 \leq 1$$ and $$\lambda_1 \leq \lambda_2 \leq \frac{1}{\lambda_1} \Rightarrow S(\pi_0) \geq S(\mu).$$
Iso-elastic demand with different demand elasticities

\[S(\pi_0) \geq S(\mu) \]

if \(\pi_0 > \pi^* \)

\[S(\pi_0) = S(\mu) \]

\(\alpha_1 = 0.8 \)

\(\alpha_1 = 0.99 \)

\[\exists \pi^* \ni \lambda_1 \leq 1 \text{ and } \lambda_2 > \frac{1}{\lambda_1} \text{ and } \pi_0 \geq \pi^* \Rightarrow S(\pi_0) \geq S(\mu). \]
The results can be generalised:

- For any number of risk-groups \(n \geq 2 \).
- For full take-up of insurance by the high risk-group.
- For general insurance demand function using arc elasticity of demand.
Contents

- Introduction
- Insurance demand
- Insurance market
- Social welfare
- Conclusions
Adverse selection need not always be adverse.

Restricting risk classification increases social welfare if:
- \(\lambda \leq 1 \), when demand elasticity is the same for all risk-groups.
- \(\lambda_1 \leq 1 \) and \(\lambda_1 \leq \lambda_2 \leq 1 \), when demand elasticities are different.

Empirical evidence suggests \(\lambda < 1 \) in many insurance markets.
https://blogs.kent.ac.uk/loss-coverage/