
Regression modelling for size-and-shape data based

on a Gaussian model for landmarks

Ian L. Dryden
School of Mathematical Sciences, University of Nottingham

Alfred Kume
School of Mathematics, Statistics and Actuarial Sciences, University of Kent

Phillip J. Paine
School of Mathematics and Statistics,University of Sheffield

and
Andrew T. A. Wood

Research School of Finance, Actuarial Studies and Statistics,
Australian National University

January 17, 2020

Regression modelling for size-and-shape data
based on a Gaussian model for landmarks

Abstract

In this paper we propose a regression model for size-and-shape response data. So
far as we are aware, few such models have been explored in the literature to date.
We assume a Gaussian model for labelled landmarks; these landmarks are used to
represent the random objects under study. The regression structure, assumed in
this paper to be linear in the ambient space, enters through the landmark means.
Two approaches to parameter estimation are considered. The first approach is based
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directly on the marginal likelihood for the landmark-based shapes. In the second
approach we treat the orientations of the landmarks as missing data, and we set up
a model-consistent estimation procedure for the parameters using the EM algorithm.
Both approaches raise challenging computational issues which we explain how to deal
with. The usefulness of this regression modelling framework is demonstrated through
real-data examples.

Keywords: EM algorithm, size-and-shape analysis, offset-normal shape distributions, mean
shape, shape of the mean.
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1 Introduction

Statistical shape analysis has developed rapidly since the 1980s and has had a major impact

in many fields of application, such as medicine and the health sciences, biology and forensic

science. See, for example, the monographs by Dryden and Mardia (2016) and Kendall et

al. (1999). However, despite the many successes of this field, in one important respect

statistical methodology for shape analysis is still rather deficient: few if any suitable re-

gression models have been developed for the situation in which the response variable is a

shape or size-and-shape; in the latter, size information is also retained; see e.g. Dryden

and Mardia (2016, Chapter 5). The aim of this paper is to develop a regression model

for size-and-shape analysis of objects described by labelled landmarks in two and three

dimensions, where the covariates are not required to have any particular structure. More

specifically, the response is assumed to consist of size-and-shape data, i.e. size and shape

information is retained, while location and orientation information is discarded. The new

regression model is specified in §2.2.

In this paper we focus mainly on labelled landmarks inm = 2 orm = 3 dimensions. Two

distinct approaches to shape analysis of random objects described by labelled landmarks

have been developed in the literature. In one approach a statistical model for landmarks

is proposed and then one works with the marginal distribution of the shapes, or size-and-

shapes. The starting point here is the matrix of landmark means, µM , and the focus of

interest is the shape, or size-and-shape, of µM . In the other approach one works directly

with the shape or size-and-shape of the objects of interest, and often the Fréchet mean µF

is the focus of interest. In general, however, µM and µF are not the same, in the sense

that the shape corresponding to the mean µM is not the same as the mean shape µF , with

similar conclusions holding for size-and-shape. See Kent and Mardia (1997, 2001) , Le

(1998) and Le and Kume (2000a, 2000b) for further discussion and results relating to this
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issue.

We focus here on the first approach. Our goal is to develop a regression model for µM

which induces a regression model for size-and-shape response data. The analogous models

for shape data are not covered here as they are more computationally challenging, except

the m = 2 case where the inference involves the closed form expressions of the offset normal

shape distributions; see e.g. Dryden and Mardia (2016, Chapter 11) and Kume and Welling

(2010).

The structure of the paper is as follows. In §2 we discuss a convenient representation

for size-and-shape and present the size-and-shape regression model that we focus on in this

paper, while §3 contains the main results needed for fitting the model, either by marginal

maximum likelihood or using the EM algorithm. In particular, Theorem 2 specifies the

structure of the EM procedure, and we make use of various results which facilitate the

calculation of the E-step. In §4 we explain how to deal with the challenging computational

issues which arise when fitting the model with m = 2 and, especially, m = 3. In §5 we focus

on the simple IID submodel with a scalar covariance matrix and explain the similarities

and differences to the Procrustes approach in this setting. This relatively simple analysis

throws light on why the Procrustes approach is consistent when m = 2, but inconsistent

when m ≥ 3; these theoretical findings are supported by simulation results. Numerical

results for real-data examples are given in §6. In the main body of the paper we focus on the

definition of size-and-shape in which size-and-shape is not reflection invariant. In Appendix

A we present parallel results for the case where size-and-shape is reflection invariant. All

proofs are given in Appendix B. Further results, containing formulae for approximatate

standard errors, are given in the Supplementary Material.
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2 Size-and-Shape Modelling

2.1 Representation of size-and-shape

We are interested in a sample of objects in Rm, where each of these objects is represented

by the Cartesian coordinates of k + 1 labelled landmarks. The configuration matrix for a

typical object may be written as

X̌ =


x̌1,1 x̌1,2 · · · x̌1,m

x̌2,1 x̌2,2 · · · x̌2,m

...
...

. . .
...

x̌k+1,1 x̌k+2,2 · · · x̌k+1,m

 =


x̌>[1]

x̌>[2]
...

x̌[k+1]>

 ,

where x̌[j] is an m-vector containing the coordinates of landmark j. Since we are interested

in the size and shape of the objects, but not their location or orientation, we need to

remove information relating to location and orientation. A convenient way to remove

location information is to Helmertize the landmarks; see e.g. Dryden and Mardia (2016,

p.49). This entails working with the k × m Helmertized configuration matrix X = HX̌

rather than X̌, where H is the k× (k+ 1) Helmert submatrix of the (k+ 1)× (k+ 1) whose

jth row is given by

(−dj,−dj, ...,−dj, jdj, 0, ..., 0), (1)

where dj = {j(j + 1)}− 1
2 . The Helmertized configuration matrix X is called a pre-form.

In order to remove the effects of orientation, we assume k ≥ m and consider the singular

value decomposition of the Helmertized configuration matrix X:

X = U∆R>, R ∈ O(m), U ∈ Vk,m (2)

where O(m) is the space ofm×m orthogonal matrices, V(k,m) = {V ∈ Rk×m : V >V = Im}

is the (k,m)-Stiefel manifold, and ∆ = diag(δ1, . . . , δm) is a diagonal matrix with non-

negative elements satisfying δ1 ≥ · · · ≥ δm ≥ 0. It is easy to see that if we apply a general
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orthogonal transformation to the landmarks, i.e. we post-multiply X by an arbitrary

S ∈ O(m), then the singular value decomposition of the resulting matrix has a different R

in (2), but U and ∆ are unchanged. We conclude from this that the orientation information

in X is contained in R in (2), and the size-and-shape of the configuration X is characterized

by U and ∆. To check that we have retained no more and no less than the size-and-shape

information in X̌, suppose that we add an arbitrary vector t ∈ Rm to each landmark and

pre-multiply each landmark vector by an arbitrary S ∈ O(m). Then X̌ transforms to

X̌∗ =
(
X̌ + 1k+1t

>)ST ,
where 1k+1 is the (k + 1)-vector of ones. From the definition of the Helmert submatrix H

via (1), H1k+1 = 0k, where 0k is the k-vector of zeros. Therefore

HX̌∗ = H
(
X̌ + 1k+1 ⊗ t

)
S>

= XS>

= U∆(SR)>,

so the orientation information R in (2) is replaced by SR but the size-and-shape information

U∆ is unchanged.

In the above, reflection information in the configuration has not been retained because

we are assuming that R in (2) lies in O(m), the space of m ×m orthogonal matrices, in

which case |R| = ±1, rather than assuming that R lies in SO(m), the space of m × m

rotation matrices, in which case |R| = +1. If we wish to retain reflection information as

part of the size-and-shape information, it is necessary to apply the following version of the

singular value decomposition in which we restrict R to lie in SO(m):

X = U∆R>, R ∈ SO(m), U ∈ Vk,m, (3)

and ∆ is a positive-definite diagonal matrix. Note that we can always arrange that R ∈

SO(m), because if |R| = −1, we can change the sign of one of the columns of R, change
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the sign of the corresponding column of U and leave ∆ unchanged, in which case X is

unchanged, the new R has |R| = 1 and the new U still lies in Vk,m.

For the remainder of this paper we shall focus on the version (3) in which R ∈ SO(m),

i.e. we retain the reflection information as part of the size-and-shape. However, only minor

adjustments in the calculations specified below are required to implement the case in which

we use (2) and R ∈ O(m); full details are given in Appendix A.

2.2 A regression model for size-and-shape

Suppose that our observed dataset is of the form

(X1, z1), . . . , (Xn, zn), (4)

where, for each i = 1, . . . , n, each Xi is a k×m Helmertized configuration, or pre-form, and

zi = (zi1, . . . , zip)
> is a vector of covariates associated with configuration Xi. We consider

the underlying linear model

Xi|zi ∼indep Nk×m(µi, Im ⊗ Σ), (5)

where ⊗ denotes the Kronecker product (see e.g. Muirhead, 1982, p. 73), Σ is a general

k × k covariance matrix, assumed non-singular, and

µi =

p∑
j=1

zijBj, i = 1, . . . , n, (6)

where Bj, j = 1, . . . , p, are k ×m parameter matrices.

Remark 2.1. An important point is that, in the EM procedure we propose below in The-

orem 2 for estimating the unknown parameters, we deliberately discard the information

concerning the observed orientations and treat this as missing data.

Remark 2.2. The covariance structure Im ⊗ Σ assumed in (5) deserves some comment. If,

for example, we were to replace the identity Im by a general m×m covariance matrix Ω, say,
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then the covariance structure will depend in an explicit way on the choice of orientation.

However, given that we are basing inference on the marginal distribution of Ui∆i, i =

1, . . . , n, there will be relatively little information in the data with which to estimate Ω,

and consequently we would typically expect there to be identifiability problems. If, on the

other hand, we believe that the observed landmark orientations are potentially important

predictors of size-and-shape, then the orientation information should be explicitly modelled

rather than discarded, a possibility we do not consider here.

Remark 2.3. Although we do not do so here, one could also consider models in which µi is

a nonlinear function of the covariate vector zi and the parameters.

2.3 Standardization of the parameter matrices

One important practical point arises from the fact that we are only interested in the size-

and-shape of the mean configuration µ. If µ has singular value decomposition VΨW>,

then the size-and-shape of µ is determined by V ∈ Vk,m and Ψ = diag{ψ1, . . . , ψm}, while

W ∈ SO(m) just determines the orientation of the mean configuration and does not affect

its size or shape. To avoid redundancy in the specification of the size-and-shape of the

mean configuration µ, we need to remove the dependence of µ on its orientation through

multiplication on the right by a suitable matrix R ∈ SO(m). One way to remove this

dependency is now explained.

Suppose, as will nearly always be the case in the applications we consider, that the

parameter matrix B1 corresponds to the covariate zi1 ≡ 1 for all i = 1, . . . , n. Then we find

a matrix Γ ∈ SO(m) to standardize as follows:

(B1Γ)j` = 0, ` > j; (B1Γ)`` ≥ 0, ` = 1, . . . ,m− 1. (7)

We briefly show how to determine Γ = [γ1, . . . , γm] ∈ SO(m) in non-degenerate cases when
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m = 2 and m = 3. Suppose B1 = [a1, . . . , am]>. When m = 2, define

γ1 = a1/||a1||; γ2 = ±
{
a2 − (a>2 γ1)γ1

}
/||a2 − (a>2 γ1)γ1||, (8)

where the sign of γ2 is chosen to make the determinant of Γ equal to +1. When m = 3,

define γ1 and γ2 as in (8), taking the plus sign in the latter case, and define

γ3 = ±
{
a3 − (a>3 γ1)γ1 − (a>3 γ2)γ2

}
/||a3 − (a>3 γ1)γ1 − (a>3 γ2)γ2||,

where now the sign of γ3 is chosen so that |Γ| = +1. A similar type of Gram-Schmidt

construction for Γ may be used when m > 3.

To use this standardization for a given µi =
∑p

j=1 zijBj, all we need to do is post-

multiply µi by Γ, which means calculating

Bj 7→ BjΓ, j = 1, . . . , p. (9)

We also recommend adopting some form of centering of the covariates zij, 2 ≤ j ≤ p. If zij

is a continuous covariate, we suggest centering by replacing zij by zij − n−1
∑n

k=1 zkj. In

the case of factors, we suggest centering slightly differently, in that we take advantage of

structural zeros, as illustrated in the following example.

Example: one-way ANOVA. It is instructive to see how the standardization for factors may

be implemented in a one-way ANOVA-type model. Suppose that there are p groups, where

group j has nj observations and k×m mean configuration Aj, unstandardized at this point.

Define zi1 ≡ 1 and, prior to centering, define

zij =


+1 if observation i is in group j − 1

−1 if observation i is in group p

0 otherwise,

for j = 2, . . . , p. The centered zij for j = 2, . . . , p are given by

zij = 1− nj−1 − np
nj−1 + np

=
2np

nj−1 + np
or zij = −1− nj−1 − np

nj−1 + np
= − 2nj−1

nj−1 + np
(10)
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or zij = 0, depending on whether observation i is in group j − 1, group p, or one of the

other groups, respectively. For each i = 1, . . . , n, µi, the mean configuration for observation

i, is equal to one of A1, . . . , Ap. Moreover, if µi is given by (6) where zi1 = 1 and the zij for

2 ≤ j ≤ p are defined in (10), each mean configurations will be equal to one of A1, . . . , Ap

if we define

B1 = (n1 + · · ·+ np)
−1

p∑
j=1

njAj,

and for j = 1, . . . , p− 1,

Bj+1 =
(nj + np)

2np
(Aj −B1).

The standardization is then applied to B1, . . . , Bp using (7) and (9). Our rationale is that it

seems preferable to derive the standardization from B1, which makes the same contribution

to all the observations since zi1 ≡ 1, than to arbitrarily select one of the Aj to standardize.

Finally, we determine the number of free parameters in the regression model (5) and

(6) when the standardization (7) and (9) is used. The number of free parameters in B1

when standardization (7) is used is km −m(m − 1)/2; the number of free parameters in

each of B2, . . . , Bp is km; and the number of free parameters in Σ is k(k+ 1)/2. Summing,

it is seen that the number of free parameters in the model defined by (5), (6), (7) and (9)

is

kmp+
1

2
k(k + 1)− 1

2
m(m− 1). (11)

3 Marginal likelihood and EM approaches

In §3.1 relevant results from multivariate distribution theory are presented in Lemma 1 and

Theorem 1. In §3.2 the relevant marginal likelihood is specified, while a full specification

of the EM algorithm is presented in Theorem 2 in §3.3, and further points are briefly

discussed in §3.4. Details of how to perform the required computations are given in §4.

Parallel results for the case in which size-and-shape is defined to be invariant with respect
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to reflections are given in Appendix A.

3.1 Distribution theory

Consider a random k × m matrix X whose elements are jointly multivariate Gaussian.

Then we write X ∼ Nk×m(µ,Σ0) where µ = E[X] is the k × m mean matrix of X and

Σ0 = Cov{Vec(X)} is the (km)× (km) covariance matrix of Vec(X), where Vec(X) is the

vector obtained by stacking the columns of X; see e.g. Muirhead (1982, p.74). In what

follows, we use |A| to denote the determinant and tr(A) to denote the trace of a square

matrix A.

When Σ0 = Im ⊗ Σ, where Σ is a k × k covariance matrix assumed to be of full rank,

it is seen using Lemma 2.2.3 of Muirhead (1982) that

φk×m(X;µ,Σ0) =
1

(2π)km/2|Σ|m/2
exp

[
−1

2
tr
{

(X − µ)Σ−1(X − µ)>
}]

, (12)

where φk×m(X;µ,Σ0) is the probability density function of Nk×m(µ,Σ0) with respect to

Lebesgue measure (dX) on Rk×m.

Recall that we define the size-and-shape of the pre-form X to be U∆ where X = U∆R>;

see (2) and (3). Inference will be based on the marginal distribution of U∆ where X ∼

Nk×m(µ, Im ⊗ Σ).

As a first step towards obtaining this marginal distribution we present a result which

is essentially Theorem 3.1 of Diaz-Garcia et al (1997); brief additional details of the proof

are given in Appendix B.

Lemma 1. Suppose X = (xij)i=1,...,k;j=1,...,m = U∆R> where U ∈ Vk,m, ∆ = diag(δ1, . . . , δm)

and R ∈ SO(m). Then Lebesgue measure (dX) on Rk×m decomposes according to

(dX) = D(∆)(d∆)(dU)(dR), (13)
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where (dX) =
∏k

i=1

∏m
j=1 dxij; (d∆) =

∏m
j=1 dδj; (dU) and (dR) are, respectively, the

(unnormalized) invariant measures on Vk,m and SO(m); and

D(∆) = 2−m+1|∆|k−m
m∏
i<j

(δ2
i − δ2

j ). (14)

Using the above lemma we obtain the following result concerning the marginal distri-

bution of U∆ and the conditional distribution of R given U∆; details of the proof are given

in Appendix B.

Theorem 1. Suppose that X ∼ Nk×m(µ, Im ⊗ Σ), where k ≥ m and Σ has full rank k.

Consider the singular value decomposition X = U∆R> given by (3). Then the density

f1(U,∆;µ,Σ) with respect to the measure (d∆)(dU) defined via Lemma 1, is given by

f1(U,∆;µ,Σ) =
D(∆)C(A)

(2π)km/2|Σ|m/2
exp

{
−1

2
tr
(
∆U>Σ−1U∆ + µ>Σ−1µ

)}
, (15)

where D(∆) is defined in (14), A = µ>Σ−1U∆ is an m×m matrix and C(A) is defined by

C(A) =

∫
R∈SO(m)

exp
{

tr
(
RA>

)}
(dR). (16)

Moreover, the conditional distribution of R given U and ∆ has density f2(R|A) with respect

to the unnormalized geometric, or Haar, measure (dR) on SO(m) given by

f2(R|A) = C(A)−1 exp
{

tr
(
RA>

)}
. (17)

Note that (17) is the Fisher matrix distribution, see e.g. Mardia and Jupp (2000), but

defined on the special orthogonal group, SO(m), rather than the orthogonal group, O(m).

3.2 The Marginal Likelihood

In this paper we base inference for µ on the size-and-shape information in the observed

pre-forms X1, . . . , Xn. Therefore we should base inference on Ui and ∆i, i = 1, . . . , n,
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where these matrices are extracted from Xi using either (2) or (3), depending on whether

we want to retain the reflection information as part of the shape. As above, we continue to

focus on (3), in which the orientation information Ri ∈ SO(m) does not include reflection

information. The marginal log-likelihood, `M , based on the sample (Ui,∆i), i = 1, . . . , n,

is given by

`M(B,Σ) =
n∑
i=1

log f1(Ui,∆i;µi,Σ), µi =

p∑
j=1

zijBj, (18)

where the marginal density f1 is defined in (15) and µi is defined in the same way as in

(6). As we shall see, to calculate `M a method for numerical evaluation of the normalizing

constant (16) is needed; we discuss how to do this in §4.

When maximizing the marginal likelihood, it is important to standardize the Bj as

explained in §2.3; see (7).

3.3 The EM Algorithm

An alternative possibility to direct maximization of (18) is to use the EM algorithm for

maximizing log-likelihoods when there is missing data; see Dempster et al. (1977) and

McLachlan & Krishnan (1997). In the setting of the model (5) and (6), we treat the Ri as

missing data. Using (5), and ignoring a constant, the full log-likelihood, `F , is given by

`F (B,Σ) = −nm
2

log |Σ| − 1

2

n∑
i=1

tr
{

(Xi − µi)>Σ−1(Xi − µi)
}
, (19)

where µi is given by the linear model (6), and

B = [B1, . . . , Bp]. (20)

The implementation of the EM algorithm is summarized in the following updating rule

for estimators of B and Σ.
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Let (B(r),Σ(r))r≥0 denote the sequence derived from the EM algorithm for estimating

B and Σ in the log-likelihood (18). For i = 1, . . . , n define

R̄
(r)
i = E[Ri|Ui,∆i;B

(r),Σ(r)], (21)

where Ui, ∆i and Ri are determined using (2) or (3). Write

X̄
(r)
i = Ui∆iR̄

(r)>
i , i = 1, . . . , n, (22)

and define the n × p matrix Z = (zij), the n × p matrix A = (aji) and the n × n matrix

P = (pij) by

Z = [z1, · · · , zn]>, A = Z(Z>Z)−1 and P = Z(Z>Z)−1Z>. (23)

Also, for r ≥ 0, define the k × (mn) matrices Y and Ȳ (r) and the k × (mp) matrix B(r) by

Y = [X1, . . . , Xn] , Ȳ (r) =
[
X̄

(r)
1 , . . . , X̄(r)

n

]
, B(r) = [B

(r)
1 , . . . , B(r)

p ]. (24)

The key result which describes the updating rule in the EM algorithm is now stated.

Theorem 2. Assume that n ≥ p and that Z in (23) has full rank p. Then, given a starting

value B(0) = [B
(0)
1 , . . . , B

(0)
p ] corresponding to r = 0 in (24), the EM updating rule for

calculating the sequence (B(r),Σ(r))r≥0 is given by

B(r+1) = Ȳ (r)(A⊗ Im) (25)

and

Σ(r+1) =
1

mn

{
Y Y > − Ȳ (r)(P ⊗ Im)Ȳ (r)>} , (26)

where Y and Ȳ (r) are defined in (24). Moreover, the updating rules (25) and (26) are

equivalent to

B
(r+1)
j =

n∑
i=1

aijX̄
(r)
i , j = 1, . . . , p, (27)

14



and

Σ(r+1) =
1

mn

{(
n∑
i=1

XiX
>
i

)
−

n∑
i=1

n∑
j=1

pijX̄
(r)
i X̄

(r)>
j

}
, (28)

where the aij and pij are, respectively, the components of the matrices A and P defined in

(23), and the X̄
(r)
i are defined in (22).

Remark 3.1. An important point to note is that the marginal density (15) and the updating

rules in Theorem 2 are invariant with respect to arbitrary transformations of the form

Xi 7→ XiS
>
i , where Si ∈ SO(m), i = 1, . . . , n. This is because, although each X̄i depends

on Ui and ∆i, it does not depend on Ri.

Remark 3.2. In order to remove orientation information, we should standardize the Bj, as

explained in §2.3, at each step (25) or (27).

Remark 3.3. If in equations (27) and (28) the updating quantities satisfyB
(r+1)
j = B

(r)
j = Bj

and Σ(r+1) = Σ(r) = Σ, then the resulting equations imply that the marginal likelihood

function is stationary at Bj and Σ. Such a solution is obtained at the EM convergence

point.

3.4 Relevant theory for EM

The EM algorithm is a method for maximising the marginal likelihood estimator of B and

Σ and, obviously, if the EM and maximum likelihood estimators agree they will have the

same asymptotic behaviour and, in particular, the same asymptotic covariance matrix. See

Sundberg (1974), Dempster et al. (1977), Wu (1983) and McLachlan and Krishnan (1997)

for relevant theoretical results and examples. Specifically, assumptions (5), (6), (7) and (9)

in Wu (1983) hold, and consequently the results in Wu (1983) are applicable here. The key

result concerning convergence is summarized in the opening paragraph of Section 2.1 of

Wu (1983): that the EM algorithm will converge to a point that is not necessarily a global

or even a local maximum of the marginal likelihood L(θ) = f(x|θ); all we can say with
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full confidence is that the EM algorithm terminates at a stationary point of L(θ). In the

numerical calculations performed for this paper, we did not notice a problem of this type

occurring, but Wu’s result mentioned above does indicate that in general some caution is

necessary when using the EM algorithm.

3.5 Standard errors

The common asymptotic covariance matrix can be calculated by finding the Hessian, with

respect to the elements of B and Σ, of minus the marginal log-likelihood given in (18).

Calculation of this Hessian is fairly long though relatively compact formulae are given in

Theorem SM1 in the Supplementary Material. We have not included these formulae in

the main body of the paper as in practice it is easier to calculate second numerical partial

derivatives; the two methods give results which are numerically close but the numerical

partial derivatives version is easier to implement.

4 Procrustes Connections

In this section we investigate the similarities and differences of the EM algorithm described

in Theorem 2 and the Procrustes approach to estimation of mean size-and-shape in the

simplest case of our model: independent and identically distributed with scalar covariance

matrix Σ = σ2Ik. In §5.1 and §5.2 we briefly consider the independent and identically

distributed models and scalar covariance models, respectively, giving the simplified versions

of the updating formulae in each case, as they are of independent interest. Then, in §5.3,

we explain the Procrustes connections in this simplified context. Our analysis makes it

transparent why Procrustes is consistent when m = 2 but not when m ≥ 3.
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4.1 The IID case

In the IID case we have p = 1 and zi1 = 1 for i = 1, . . . , n. Put µ = B1. The updating

formulae (27) and (28) in Theorem 2 in this case simplify to

µ(r+1) =
1

n

n∑
i=1

X̄
(r)
i (29)

and

Σ(r+1) =
1

nm

{(
n∑
i=1

XiX
>
i

)
− nµ(r+1)µ(r+1)>

}
, (30)

where, at each iteration, µ(r) in (29) should be standardized as explained in §2.3.

4.2 The scalar variance case: Σ = σ2Ik

In this case, the updating formula (27) is unchanged, but with Σ(r) = (σ2)(r)Ik in the

calculation of the X̄
(r)
i in (22); while the updating rule (28) simplifies to

(σ2)(r+1) =
1

nmk
tr

(
n∑
i=1

XiX
>
i −

n∑
i=1

n∑
j=1

pijX̄
(r)
i X̄

(r)>
j

)
. (31)

In the independent and identically distributed case with scalar covariance matrix, (31)

simplifies further to

(σ2)(r+1) =
1

nmk

{
tr

(
n∑
i=1

XiX
>
i

)
− ntr

(
µ

(r+1)
i µ

(r+1)>
i

)}
.

In some situations, especially when k is relatively large, we may wish to fit a sparse

regression model, e.g. using some version of the lasso. In such a situation, in order to

simplify the computations, it may be worth considering the case where Σ = σ2Ik, a scalar

multiple of the identity matrix.
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4.3 EM and the Procrustes algorithm

Here, Σ = σ2Ik, and the parameters of interest are only the shape of µ and σ2. One can

easily see that expectations (22) imply that (29) and (30) are reduced to

µ(r+1) =
1

n

n∑
i=1

Ui∆iR̄
(r)>
i =

1

n

n∑
i=1

Ui∆iT
(r)
2i E[R̄|Φ(r)

i ]T
(r)>
1i (32)

and

(σ2)(r+1) =
1

mnk

n∑
i=1

tr
(
∆2
i − µ(r+1)µ(r+1)>) (33)

where

T
(r)
1i Φ

(r)
i T

(r)>
2i =

1

(σ2)(r)
µ(r)>Ui∆i, (34)

and the left-hand side of (34) is the singular value decomposition of the right-hand side of

(34).

Let us now consider the Procrustes estimator of µ. For fixed µ, we find Γi ∈ SO(m),

i = 1, . . . , n, to minimise

n∑
i=1

||XiΓi − µ||2 =
n∑
i=1

tr
{

(XiΓi − µ)> (XiΓi − µ)
}

=
n∑
i=1

[
tr(X>i Xi) + tr(µ>µ)− 2tr(µ>Ui∆iR

>
i Γi)

]
,

where we write Xi = Ui∆iR
>
i using (3). Note that we do not include location in the above

optimization because the Xi have already been Helmertized, so that the effects of location

have already been removed. The above expression is minimized over the Γi for fixed µ when

the tr(µ>Ui∆iR
>
i Γi) are maximized. Using the singular value decomposition for µ>Ui∆i

implied by (34), namely

µ>Ui∆i = T1i

(
σ2Φi

)
T>2i ,

it is seen that the optimum choice for Γi occurs when

T>21R
>
i ΓiT1i = Im,
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which yields

Γi = RiT2iT
>
1i , i = 1, . . . , n.

The alternating iterative Procrustes procedure for estimating µ therefore has the following

updating rules:

Γ
(r+1)
i = RiT

(r)
2i T

(r)>
1i , i = 1, . . . , n;

µ(r+1) =
1

n

n∑
i=1

XiΓ
(r)
i =

1

n

n∑
i=1

XiRiT
(r)
2i T

(r)>
1i =

1

n

n∑
i=1

Ui∆iT
(r)
2i T

(r)>
1i . (35)

Note that if we used for this EM implementation the Helmertized landmarks Xi and if

in (32) the expectation E[R|σ2(r)Φ
(r)
i ] is replaced by Im, then XiRiT

(r)
2i T

(r)>
1i will simply be

the pre-form Xi optimally rotated to the current estimate for the mean µ(r).

The diagonal matrix E[R|σ2(r)Φ
(r)
i ] performs some sort of shrinking of the Procrustes

update steps, since Im − E[R|σ2(r)Φ
(r)
i ] is necessarily non-negative definite. Therefore at

convergence, equations (32) and (35) will generate estimates for µ such that the norm of

the Procrustes mean is larger that that of the EM mean. As a result, the corresponding

estimator for σ2 determined by (33) will produce a smaller value if the Procrustes mean is

used for µ(r). Table 1 confirms this numerically for m = 3. In fact this shrinking action

looks different for m = 2 and m ≥ 3 cases. When m = 2, E[R|σ2(r)Φ
(r)
i ] is a scalar multiple

of identity; consider (A3) in Appendix A when the matrix on the far right is diagonal.

Specifically, for m = 2, the shrinking is introducing some constant multiplication for each

term in summation (35). When m ≥ 3, this expectation is not a multiple of identity except

in special cases. From standard large sample results, the maximum likelihood estimator

provides a consistent estimator of µ when the model is correct, so in general we expect

the Procrustes estimator to be different. The only time when they may produce similar

results is when the conditional distributions of the Ri are very highly concentrated about

the identity, in which case the ||Im − E[R|σ2(r)Φ
(r)
i ]|| will be small.

In this section we have not so far mentioned the need to standardize (32) and (35) at
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each iteration. However, this need for standardization is the same in both cases and does

not affect our discussion of the Procrustes connections.

4.4 Simulation results

We now present simulation results in Table 1 in which the Procrustes estimator µ is com-

pared with the EM estimator. In the examples considered, m = 3, k = 3 and Σ = σ2Ik

where σ2 > 0 is a constant.

It is clear from Table 1 that the EM-based estimator, µ̂EM , is generally more accurate

than the Procrustes estimator, µ̂p, in the size-and-shape distance sense. Specifically, Table

1 shows there is a substantial improvement in the former estimators as the sample size n

increases from 20 to 1000 for each fixed σ2, while there is relatively little change in the

Procrustes estimators as n increases, which supports the theoretical statements concerning

consistency made in §5.3. Two further tables for different choices of landmark means are

given in the Supplementary Material where it is seen that the difference in performance

between the Procrustes and EM estimators is typically smaller if the three eigenvalues of

the mean configuration are closer to each other and the value of σ is relatively small.

We also illustrate graphically the difference between the EM and Procrustes means

for a similar model to that used in Table 1. We consider 40 mean configurations which

interpolate in equal steps between µ ∝ diag{60, 50, 1} and µ ∝ diag{60, 50, 45} by only

varying the smallest eigenvalue. We initially rescale each of these 40 means so that their

configuration size is 1, and then generate n = 2500 random samples with Σ = σ2Ik for

σ = 0.1, 0.2, 0.3 and 0.4. The red spheres (the 40 EM means) in Figure 1 mainly block out

the green spheres (the 40 exact means), while the blue spheres (the 40 Procrustes means)

tend to be further away from the green spheres; the larger σ, the further away from the

green spheres the blue spheres tend to be. In Figure 1 a rotation standardization was

carried out such that the first three landmarks lie in a plane, with the first landmark at the

origin, the second landmark varies along a fixed axis in the plane, the third landmark is
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n and σ ρs(µ̂p, µ) ρs(µ̂EM , µ) ρ(µ̂p, µ) ρ(µ̂EM , µ) σp σEM

n= 20 sig= 0.1 0.0832 0.0831 0.0828 0.0827 0.0741 0.0741

n= 50 sig= 0.1 0.0406 0.0406 0.0386 0.0385 0.0782 0.0783

n= 100 sig= 0.1 0.0412 0.0411 0.0412 0.0411 0.076 0.0761

n= 1000 sig= 0.1 0.038 0.0379 0.0322 0.0321 0.0795 0.0796

n= 20 sig= 0.3 0.4802 0.3511 0.3515 0.2804 0.2088 0.2644

n= 50 sig= 0.3 0.2937 0.1399 0.2671 0.1044 0.2302 0.3091

n= 100 sig= 0.3 0.3627 0.2341 0.3021 0.2242 0.2127 0.2706

n= 1000 sig= 0.3 0.3057 0.0834 0.244 0.0831 0.2317 0.3067

n= 20 sig= 0.8 1.6382 1.2549 0.5048 0.461 0.5372 0.689

n= 50 sig= 0.8 1.339 0.5054 0.6736 0.4609 0.5292 0.7526

n= 100 sig= 0.8 1.328 0.2537 0.6605 0.2544 0.5603 0.8042

n= 1000 sig= 0.8 1.3065 0.1498 0.643 0.1493 0.5735 0.8071

Table 1: The mean values after 1000 runs for EM and Procrustes mean quantities. For

each run we simulate data for fixed sample size n and true value of σ as above; ρs and ρ

represent the Riemmanian distances of size-and-shape and shape space respectively; and

the choice of population mean here is µ ∝ diag{60, 10, 1}, scaled so that ||µ|| = 1.

allowed to move freely in the plane, while the fourth landmark is allowed to move freely in

3D space. Further numerical results are presented in part D of the Supplementary Material.

5 Applications of shape regression model

In the regression setting suppose that we have labelled landmark observations X1, . . . , Xn

in the pre-form space and corresponding covariate vectors z1, . . . , zn. In this section we

look at two datasets; the well-known rat growth data dataset where m = 2 (see, for
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Figure 1: A collection of slowly changing 40 mean simplexes represented by green spheres

(mostly covered by the red ones). Each of the means were perturbed by i.i.d. noise and

the corresponding EM means (red) and Procrustes means (blue) are shown. The size and

shape coordinates (shown on the left) are obtained while the first three landmarks are

forced to be on the same plane. The four strands of blue spheres there represent the

choices of σ = 0.1, 0.2, 0.3 and 0.4, with the bias increasing with σ. The shape coordinates

(shown on the right) are obtained by standardising additionally for scale so that the first

two landmarks are matching the two (blue) points defining the left edge of the shaded area.

example, Dryden and Mardia, 2016, p22) and a human movement dataset where m = 3;

this experiment was described by Kume et al. (2007) and Alshabani et al. (2007).

5.1 Regression in m = 2 Case: Rat Skulls Data

This data set is introduced by Bookstein (1991) and is studied by several other authors in

different contexts. For example, Le and Kume (2000b) consider fitting geodesics curves to

the corresponding shapes while size is ignored; Kent et al. (2001) consider fitting growth

curves for these data in the Procrustes tangent space while size is used as a covariate;

Kenobi et al. (2010) consider fitting shape curves defined as projections from the size-

and-shape space. We apply our landmark regression model to the size-and-shape response

data; size-and-shape is most appropriate to this data as changes in size cannot be treated
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separately from the shape. A related model but only using shapes is considered in Kume

and Welling(2010).

After removing entries with missing data there are 18 individual rat skulls whose 8

biological landmarks are observed at 8 ages. We have observations at days 7, 14, 21, 30,

40, 60, 90 and 150. Due to the uneven spacing between the days at which the landmarks

were recorded we take the logarithm of the observation days.

5.1.1 Model

Let Xi,r ∈ R7×2 be the Helmertised configuration for the individual rat r = 1, . . . , 18 at

times i = 1, . . . , 8. The design matrix Z = (zij) for the polynomial model of order p is

given by

Z = (zij = tj−1
i : i = 1, . . . , 8; j = 1, . . . , p) (36)

t1 = log(7), t2 = log(14), t3 = log(21), t4 = log(30),

t5 = log(40), t6 = log(60), t7 = log(90), t8 = log(150);

and so for the quadratic model, p = 3, Z has three columns while the linear model is its

submodel that includes only the first two columns of Z. The regression model is

Xi,r|zi ∼ N7×2

(
µi, σ

2I2 ⊗ I7

)
, i = 1, . . . , 8; r = 1, . . . , 18,

where zi = (1, ti, . . . , t
p−1
i ). We also generalise the covariance from σ2I2⊗I7 to σ2I2⊗Σ as in

(5), with Σ a general 7×7 covariance matrix. The mean function is the linear combination

µi =

p∑
j=1

zijBj, i = 1, . . . , 8,

where the Bj are 7 × 2 matrices of parameters and the covariance matrix is a scalar, σ2

times the identity matrix. We fit the linear mean model, p = 2, the quadratic mean model,

p = 3 and the cubic mean model p = 4specified by the design matrix (36).
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5.1.2 Results

We fit the constant, linear and quadratic models using both the EM algorithm and Newton-

Raphson to maximise the marginal likelihood. In Table 2 we display the log-likelihood

values at the maximum likelihood estimators. For both estimation procedures it is clear

that with 14 degrees of freedom we reject the null hypotheses of the constant mean model,

linear mean model and quadratic mean model in favour of the cubic mean model with

a separable covariance structure. Figure 2 visually confirms that the cubic mean model

is appropriate for this dataset. More specifically, the mean paths represented by black

lines and evaluated for the cubic mean model are seen to be in closer agreement with the

data than the corresponding paths from the alternative models considered. This difference

is more pronounced for the top part of the skull. The sample paths generated for the

fitted model vary less for generalized covariance model (see the grey region for the lower

landmarks), indicating that that the more general covariance structure does a better job

of capturing the landmark dynamics.

σ2I2 ⊗ I7 DF I2 ⊗ Σ DF

Constant Model - 10307.42 13 -4358.03 30

Linear Model -7170.76 27 -3875.20 54

Quadratic Model -6807.33 41 -3812.36 68

Cubic Model -6710.52 55 -3765.37 82

Table 2: This table displays the value of the maximised log-likelihood from the EM al-

gorithm in column ‘EM’ for linear, quadratic and cubic models for the rat skull data for

both types of covariance structures. Column ‘DF’ gives the corresponding model degrees

of freedom.
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Figure 2: The fitted cubic mean model for isotropic covariance (left) and the fitted cubic

mean model with a general covariance (right) are represented by the solid (black) lines

and observations are in blue. Simulated data consisting of 500 sample paths from the

respective models are shown in grey. The size-and-shapes are standardized using Bookstein

coordinates, i.e. one landmark is fixed to zero while another one is allowed to vary only

along one side of the horizontal axis. The mean paths for the corresponding linear and

quadratic mean models are shown in blue and green respectively.
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5.2 Regression in m = 3 Case: Human Movement Data

The data set considered here contains the records of 14 individuals performing a pointing

action using the index finger to a particular target point and then back to the original

position. In fact we have only four landmark locations observed during the pointing action

and back. These landmarks observed in 1440 equally spaced time intervals are the shoulder,

elbow, index finger and the lower back. The shape of the corresponding tetrahedra is

changing over time. During these 1440 time observation points there is some inconsistency

across the subjects as to when and how long the pointing action took place. In order to

simplify the analysis we have chosen to manually assign the start and the finishing times of

the action and consider for each individual only 200 intermediate observations. As a result

we have for 14 subjects the size-and-shape observations in 200 equally spaced intervals.

We study the landmarks for a particular individual and it can be seen by plotting the

observations that each landmark follows a nearly closed curved trajectory.

5.2.1 Model

Let Xi ∈ R3×3 be the Helmertized configuration for i = 1, . . . , 200 and zi,j is a vector of

covariates associated with the configuration Xi and model j, j = 1, 2, 3. The covariates are

described for each proposed model below. Let

Xi|zi,j ∼ N3×3

(
µi,j, σ

2I3 ⊗ I3

)
, i = 1, . . . , 200

and j = 1, 2, 3 represent three nested models. Define the mean function in each case for

i = 1, . . . , 200 by

µi,1 = B1 + tiB2, (37)

µi,2 = B1 + tiB2 + t2iB3, (38)

µi,3 = B1 + tiB2 + t2iB3 + t3iB4. (39)

26



The unknown parameter matrices Br are real 3× 3 matrices for r = 1, . . . , 4, but with B1

standardized so that the 3 elements in the upper triangle are zero. The 3 × 3 covariance

matrix Σ is a function of 6 unknown parameters. Numerical studies not reported here

suggest assuming that the variance is a scalar multiple of the identity is too restrictive.

Finally, t200 is the time of the final observation in the pointing loop. From here we are

going to refer to the three models as the linear (37), quadratic (38) and cubic (39) models.

EM DF

Constant Model -134363.4 6

Linear Model -128991.9 15

Quadratic Model -119266.1 24

Cubic Model -118972.5 33

Table 3: This table displays the value of the maximised marginal log-likelihood using the

EM algorithm. The models fitted are the constant mean, linear mean, quadratic mean and

cubic mean models for the human movement data.

5.2.2 Results

We fit the three models (linear, quadratic and cubic) using the EM algorithm. The max-

imised log-likelihood values are displayed in Table 3. Application of the standard large-

sample log-likelihood ratio test indicates that, we should reject the simpler constant, linear

and quadratic models in favour of the cubic model. Figure 3 shows the fitted values of

the individual trajectories of the original data superimposed on the trajectory of the cubic

model after a convenient standardization is imposed. Specifically, location is standardized

by fixing landmark 1 to the origin of coordinates; and rotation standardization is carried

out on the remaining 3 landmarks by using a Gram-Schmidt construction similar to that
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adopted in Section 2.3, such that landmark two is allowed to vary along one side of the

x-axis, and landmark three is varying in the x,y plane, which is highlighted in Figure 3.

Figure 3 compares the fitted values obtained from the quadratic and cubic mean models,

and especially the latter, does a reasonably good job of representing the original data since

the observed data paths are closed curves in size-and-shape space.

Figure 3: The fitted polynomial mean paths (qubic-left and quadratic-right) in green,

observations are in red; the rotation standartisation is obtained by fixing landmark 1 to

the origin, landmark 2 is allowed to vary only along a chosen axis and landmark 3 is varying

only in the standardizing plane (the shaded region), landmark 4 is allowed to freely vary

in 3-d space. Simulated data from the fitted models are shown in black.

5.3 A Goodness of fit analysis

For the dataset considered in Section 5.1 and the dataset considered in Section 5.2, we se-

lected a fitted model in each case using maximum likelihood. In order to test the goodness-

of-fit for each model we considered two approaches. First, we implemented a parametric

bootstrap method (see Appendix B for practical details and theoretical justification). In

each case, we simulated 1000 random paths and for each of them we found the corre-
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sponding MLE estimates. The 1000 optimal likelihood values at such estimates were then

compared to those of the fitted parameters to the real data. For the 3-d real data example,

we observed that 46.2% of the values were above the observed MLE value, corresponding

to a two-sided p-value of 92.4%. This suggests a good fit; and for the 2-d data example the

corresponding two-sided p-value is about 5.8%.

The second approach was to graphically assess the goodness of fit by generating some

random data from the models and then by visually inspecting the sample variation from

the fitted models with that of the data. In particular, for both models of Figure 2, the grey

cloud of the paths represent the 500 simulated paths from the fitted models. In Figure

2, the plot on the left corresponds to an isotropic covariance matrix while the plot on the

right corresponds to a general covariance matrix. The observed data do not seem out of

line with the general sample variation from the fitted model. A similar graphical display

is also present in Figure 3 for the 3-d data example.

6 Concluding remarks

The development of regression models in the analysis of shape and size-and-shape data is

an important problem in object data analysis. In the paper we have developed the fol-

lowing approach: use labelled landmarks to describe the size-and-shape of an object; start

with a Gaussian model for landmarks; project the size-and-shape configurations (see §2 for

definitions) onto the relevant size-and-shape space; determine the induced regression model

on the size-and-shape space and use this to perform estimation and inference. The last

step is technically quite challenging but useful progress can be made under the assumption

of Gaussian landmarks; see Theorem 1. As an alternative to direct maximisation of the

marginal likelihood, we develop an EM approach in which all information in each config-

uration which is not relevant to size-and-shape is discarded and treated as missing data.

The resulting EM procedure is described in Theorem 2. From a practical point of view we
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prefer to use the EM procedure rather than direct maximization of the marginal likelihood.

This regression model, fitted using the EM algorithm, has been used in various numerical

studies. In §4 we study the Procrustes approach (see Dryden and Mardia, 2016, p.72) and

use a simple case of our model to provide new insights into why the Procrustes approach

typically fails when variability in the configurations increases. Moreover, it is shown in

§5, through the analysis of a rat skull dataset and a human movement data set, that our

approach provides a valuable and tractable methodology for regression modelling of real

size-and-shape data in what is a challenging and highly nonlinear setting.
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Appendix A: Numerical computation of C and its
derivatives

We now discuss how to perform the most challenging computational steps when deter-

mining the maximum likelihood estimators of B1, . . . , Bp and Σ and the observed informa-

tion matrix: namely, the evaluation of C(A) defined in (16) and its first partial derivatives

with respect to elements of A. In this section we consider R ∈ SO(m) when m = 2 and

m = 3, corresponding to objects in 2 and 3 dimensions. Similar but slightly more compli-

cated formulae are given in Section SM1 of the Supplementary Material for the case where

R ∈ O(m).

A.1: Calculations when m = 2

When m = 2, using a standard parametrisation of SO(2), namely

R =

 cos(θ) − sin(θ)

sin(θ) cos(θ)


we have

tr
(
RA>

)
= (a11 + a22) cos(θ) + (a12 − a21) sin(θ).

Therefore in this case (17) is a von Mises distribution on the circle, see e.g. Mardia and

Jupp (2000), and hence the normalising constant and its first partial derivatives can be

expressed in terms of the modified Bessel function of the first kind, Iν ; see e.g. Abramowitz

and Stegun (1972). Specifically,

C(A) =

∫ 2π

θ=0

exp {(a11 + a22) cos(θ) + (a12 − a21) sin(θ)} dθ = 2πI0(ρ), (A1)

where ρ = {(a11 + a22)2 + (a12 − a21)2}1/2
and I0 is the modified Bessel function of the first

kind of degree zero.

To perform the updates (25)-(28) it is necessary to calculate, at iteration r, X̄i =

Ui∆iR̄
(r)>
i , i = 1, . . . , n, using (21) to calculate R̄

(r)
i .
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The required result in the case m = 2 is summarized in the following lemma.

Lemma A.1 Suppose m = 2 and define the 2× 2 matrix

M = (mij)
2
i,j=1 = µ>Σ−1U∆. (A2)

Then

R̄ = Eµ,Σ[R|U,∆] =

∫
R∈SO(2)

Rf2(R|U,∆;µ,Σ)(dR) = A(ρ)

 cosα − sinα

sinα cosα

 , (A3)

where cosα = (m11 +m22)/ρ, sinα = (m12 −m21)/ρ,

ρ =
√

(m11 +m22)2 + (m12 −m21)2

and A(ρ) = I1(ρ)/I0(ρ).

To calculate a particular R̄
(r)
i , substitute µ = µi =

∑n
i=1 zijB

(r)
j , Σ = Σ(r), U = Ui and

∆ = ∆i in (A2) and then use (A3).

A.2: Calculations when m = 3.

The case m = 3 is more challenging though numerical procedures for doing the computa-

tions approximately are available. We make use of the relationship between the normalizing

constant C(A) in (16) and the normalizing constant of the Bingham distribution on the

sphere; see Prentice (1984) and Wood (1993). Define the Bingham normalization constant

on the unit sphere Sq = {x ∈ Rq : x>x = 1} by

Cq(Λ) =

∫
x∈Sq−1

exp{x>Λx}[dx], (A4)

where [dx] denotes unnormalized geometric measure on the unit sphere Sq−1. The relevant

cases here are q = 4 and q = 6. The case q = 4 gives the normalising constant itself. Given

a 4× 4 matrix Ξ = diag{ξ1, ξ2, ξ3, ξ4}, we define the 6× 6 matrices

Ξj = diag{ξ1, ξ2, ξ3, ξ4, ξj, ξj}, j = 1, 2, 3, 4. (A5)
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We note the following useful fact: since the density function f2(R|A) of the Fisher matrix

distribution in (17) is natural exponential family, it follows that the first partial derivatives

of log C(A) with respect to components of A are given by the first moments of R. Moreover,

using a result of Kume and Wood (2007), these derivatives can be expressed in terms of

Bingham normalising constants of higher dimension. Before moving on, we briefly discuss

how to calculate these normalizing constants numerically.

Two useful options for numerical calculation of the Bingham normalizing constant in

general dimensions are the saddlepoint approximations of Kume and Wood (2005) and the

Holonomic Gradient method of Sei and Kume (2015). Here, we focus on the former as it

is faster and easier to implement, though it is typically less accurate.

We now present a result which expresses the first moments of components of R in terms

of Bingham normalizing constants.

Proposition A.1. Suppose that the 3 × 3 matrix A = µ>Σ−1U∆ in (17) has singular

value decomposition

A = T1ΦT>2 , (A6)

where Φ = diag{φ1, φ2, φ3}. Define Ξ = diag{ξ1, ξ2, ξ3, ξ4} where

ξ4 = φ1 + φ2 + φ3 and ξi = 2φi − ξ4, i = 1, 2, 3. (A7)

Then

R̄ = E[R|A] =

∫
R∈SO(3)

Rf2(R|A)(dR) = T1ΩT>2 , (A8)

where f2 is the conditional density defined in (17), Ω = diag{ω1, ω2, ω3} and, in terms of

(A4) and (A5),

ωj = 1− C6(Ξk) + C6(Ξ`)

πC4(Ξ)
, j, k, ` ∈ {1, 2, 3}, j 6= k 6= ` 6= j. (A9)

It may appear at first glance that the right hand side of (A8) could depend on the

particular version of the singular value decomposition used, i.e. on whether or not we
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insist that T1 and T2 are both in SO(3). Reassuringly, it turns out that this is not the case:

the result is invariant with respect to whether we use (2) or (3).

Appendix B: A parametric bootstrap test of
goodness-of-fit

Let yi ∈ M denote a response vector associated with sample unit i, 1 ≤ i ≤ n, where

M denotes a manifold embedded in Rd, i.e. M ⊆ Rd. Let xi ∈ Rp denotes a covariate

vector associated with yi. Consider the parametric model with joint density g where

g(y1, . . . , yn|x1, . . . , xn; θ) =
n∏
i=1

f(yi|xi, θ), (B1)

where θ ∈ Θ ⊆ Rq is a parameter vector. Define

`i(θ) = log f(yi|xi, θ) and ¯̀(θ) =
1

n

n∑
i=1

`i(θ), (B2)

and define the maximum likelihood estimator

θ̂ = argminθ∈Θ
¯̀(θ). (B3)

The proposed test statistic is

T = ¯̀(θ̂). (B4)

Under mild regularity conditions, stated below, the following result holds: if the parametric

model is correct and θ̂ is a consistent estimator of θ0, the statistic T is asymptotically

normally distributed after suitable centering and rescaling. A brief sketch of the proof of

this result is given at the end of the section.

Rather than use the asymptotic distribution directly, which entails fundamentally straight-

forward but cumbersome calculations to estimate the asymptotic variance of T , we prefer

to obtain a p-value using a parametric bootstrap, where the parametric bootstrap samples
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are generated from the fitted model with joint density g(y1, . . . , yn|x1, . . . , xn; θ̂). More-

over, bootstrap theory indicates that there are potential practical benefits in using the

bootstrap rather than the asymptotic distribution directly; see Hall (1992). Regarding

notation, we write the responses for bootstrap sample b as y
(b)
1 , . . . , y

(b)
n , 1 ≤ b ≤ B, where

y
(b)
i ∼ f(yi|xi, θ̂), and define

¯̀(b)(θ) =
1

n

n∑
i=1

log f(y
(b)
i |xi, θ), (B5)

with the associated maximum likelihood estimator

θ̂(b) = argminθ∈Θ
¯̀(b)(θ), (B6)

and define

T (b) = ¯̀(b)(θ̂(b)). (B7)

We consider the following bootstrap goodness-of-fit test.

Algorithm: Parametric Bootstrap Test of Goodness-of-Fit

Step 1: Calculate T in (B4) using the definitions in (B1)-(B3).

Step 2: For each b, 1 ≤ b ≤ B, simulate the bootstrap samples y
(b)
i , 1 ≤ i ≤ n, and

calculate T (1), . . . , T (B) as defined in (B7), using (B5) and (B6).

Step 3: Calculate the (two-sided) bootstrap p-value by

p = 2 min(p∗, 1− p∗) and p∗ =
1

B

B∑
b=1

I(T (b) > T ).

Finally, we consider the asymptotic distribution of T . Assume

(i) θ̂ →p θ0, where for each n, θ̂ is defined in (B3);
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(ii) Suppose `i(θ0), 1 ≤ i ≤ n, satisfies a central limit theorem in the sense that

1√
n

n∑
i=1

[`i(θ0)− E0 {`i(θ0)}]→ N(0, σ2),

where σ2 > 0 is the limiting variance, assumed to exist; and

(iii) For some open neighbourhood N ⊂ M of θ0 ∈ M (open in the topology of M

rather than in the topology of the ambient space), and some fixed family of matrices

{K(θ) : θ ∈ N} which are positive definite and continuous over θ ∈ N , we have, for

any given ε > 0

lim
n→∞

P0

[
sup
θ∈N

∣∣∣∣∣∣∣∣∇∇> ¯̀(θ)−K(θ)

∣∣∣∣∣∣∣∣ > ε

]
= 0,

where ||.|| is the Frobenious matrix norm, and P0 denotes probability calculated the

population distribution corresponding to θ = θ0.

Conditions (i) and (iii) can be checked in particular cases using results in van der Vaart

(2000), for example, whereas (ii) involves checking classical conditions (see e.g. Chung,

2001).

We now sketch a proof of the asymptotic normality of T under conditions (i)-(iii) above.

Condition (iii) permits a second-order Taylor expansion

T ≡ ¯̀(θ̂) = ¯̀(θ0) + (θ̂ − θ0)>∇¯̀(θ0) +
1

2
(θ̂ − θ0)>∇∇> ¯̀(θ0)(θ̂ − θ0) + op(n

−1)

= E0[¯̀(θ0)] +
[
¯̀(θ0)− E

{
¯̀(θ0)

}]
− 1

2
(θ̂ − θ0)>∇∇> ¯̀(θ0)(θ̂ − θ0) + op(n

−1). (B8)

Note that the first term on the RHS of (B8) is a constant, the second term will be Op(n
−1/2)

but after multiplication by n1/2 it will be asymptotically Gaussian N(0, σ2), whereas the

third term is Op(n
−1), but after multiplication by n it is asymptotically χ2

q where q is the

dimension of θ.

With some further calculations along the lines of Hall (1992) and Hall and Wilson (1991),

it may be shown that as n → ∞, and assuming B → ∞, the bootstrap p-value is asymp-

totically uniform on [0, 1] with distributional error of size Op(n
−1), if the parametric model

36



is correct. Note that the error is Op(n
−1) rather than Op(n

−2) due to the fact that T is not

a pivotal statistic, even asymptotically.
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