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1. Introduction 

The current prevalence of doping in elite sport is unknown. Existing data from the World 

Anti-Doping Agency (WADA) suggests that the number of adverse analytical findings 

(AAF) was 1.43% in 2017 (4,596 AAFs from 322,050 samples1). Moreover, data from 

the recently formed Athletic Integrity Unit (AIU) place the number of anti-doping rule 

violations (ADRV) at 65 ADRVs from 8,489 samples (<1%)2. However, these figures 

appear at odds to research studies using anonymous athlete self-reports that put the 

estimate much higher at between 14.0% and 57.1%,3 with between 3.1% and 26.0% of 

dopers reporting a lifetime prevalence.4 Therefore, there is clear discrepancy between 

the number of anti-doping rule violations (ADRV) and the estimated prevalence of 

doping. This is despite increases in both the financial resources being allocated to the 

fight against doping in sports, and number of samples analysed (7.1% increase in the 

overall number of samples analysed: 300,565 in 2016 to 322,050 in 20175). 

Consequently, questions can be raised about the efficiency of current anti-doping policy 

and testing strategies, and whether other types of data are required. In turn, this 

targeted approach to anti-doping would enhance the ability of anti-doping authorities to 

make more informed decisions on assigning athletes to registered testing pools, and 

target-testing individuals, and ultimately allow a more efficient distribution of anti-doping 

testing resources.  

 

One key piece of information available to anti-doping authorities is the performance of 

the athlete, which is currently seldom used in deciding testing strategy. As the primary 

reason for doping is improvement of athletic performance, it is reasonable to suggest 



that monitoring an individual's competition results on a longitudinal basis may reveal 

suspicious performance improvements. For example, Schumacher & Pottgeisser6 have 

previously demonstrated that yearly world best performances increase with the 

emergence of new potent doping agents, such as anabolic steroids or EPO, and 

decrease as their effects become detectable. These findings raise the possibility of 

monitoring athlete performance in order to inform decisions on anti-doping testing. The 

main objective of such an "athlete performance passport" (APP) would therefore be to 

distinguish between expected changes in sporting performances (for example, due to 

career progression) and disproportionate improvements. The use of performance data 

in anti-doping is likely to be complementary to analysis of physiological biomarkers for 

several reasons. The consequences of doping agents manifest themselves at the time 

of competition, whereas the biomarker itself may only be detectable for a short period of 

time well in advance of the actual event.7 Performance parameters may be affected by 

subversive practices that are used in an attempt to avoid traditional anti-doping 

methods. Finally, athletic performance appears relatively consistent and predictable 

over time8 compared to the potential variability in biomarkers used within current anti-

doping tests.9 In this regard, the identification of unexpected improvements in an 

athlete’s performance could be used as a trigger for their closer scrutiny via a targeted 

anti-doping testing program.10 The feasibility of using performance markers for anti-

doping is clearest in so-called centimeter, grams, second sports in which competition 

settings are relatively standardised and the outcome is a clearly measured parameter. 

Therefore, the athlete’s performance potential is predominantly determined by their 

specific physiological characteristics which are potentially modifiable by doping agents. 



However, a key concern with the use of athlete sporting performance data in this 

context is distinguishing between a physiological increase in performance caused by 

factors including training & tapering, maturation, seasonal and random variation, from 

an "unphysiological" improvement caused by doping.11 Analysis of “big data” contained 

within performance repositories has the potential to increase our understanding of 

athlete performance and how it evolves over an athlete’s career12 in order to establish 

normal or expected rates of progression. Thus, a retrospective trawl of existing data 

repositories might be used to establish typical performance trends within a large cohort 

of athletes, and in turn identify career progression that falls outside these normal or 

expected rates, which may be indicative of doping.7,13   

 

The aim of this case report is to demonstrate the potential for mathematical modelling of 

individual career trajectories (i.e. the relationship between age and performance) to 

identify characteristics of performance evolution, which are able to distinguish athletes 

who have previously been convicted of doping, from others who are presumed clean. In 

this work, we acknowledge that monitoring athlete performance and identifying changes 

obviously does not prove doping, however extreme changes that are in excess of what 

is predicted based upon the population changes, may be sufficient to raise the level of 

suspicion of an athlete. In our analysis, we used a Bayesian spline model14 to flexibly 

model the trajectory of each athlete’s average performance over their career across a 

range of athletics disciplines. In the next section, we present our model along with 

details of how we account for the potential confounding effects of absolute performance 

level, stage of the athlete within their career, and ageing. Applications of the model 



across both track and field disciplines of athletes are presented, and finally we discuss 

the potential ramifications for current anti-doping policy and practice.   

 

Methodology 

Following Institutional ethical approval (Prop_72_2017_18) athletes’ data to be included 

within the model was obtained from the IAAF results database (www.iaaf.org/results). 

Specifically, the results of male and female shot put competitions from 2001 to 2018, 

inclusive, were collected; totaling 1,115 athletes and 56,000 competition results. 

Sampled data included the athlete name, IAAF ID number, date of birth, sex, country of 

birth, event, performance result, date of performance, and finishing position. Doping 

violations for athletes were obtained from a global database (www.tilastopaja.eu), which 

is used by a number of sport governing bodies/organizations to track the historic athlete 

doping violations and performance progression.  

 

Modelling variability in athlete performance 

The development of a model for career-long athletic performance trajectories is a key 

challenge to the use of performance data to identify potential instances of doping. Some 

issues with this modelling were recently highlighted by Bermon, Metelkina & Rendas,15 

who demonstrated the problems associated with modelling athlete career trajectories 

caused by differences in individual career length, non-uniformity of distribution of 

performance events across a calendar year, and the asymmetry of variability in athlete 

performance (extremely bad performances can result in large deviations from the 

median, while exceptionally good performances may have smaller departure from the 



median). In addition, individual career trajectories show a clear underlying pattern of 

performance with an initial period of improvement followed by a slow decline due to 

ageing related factors. 

 

The difference in length of careers and non-uniformity of competition performances was 

addressed by modelling the relationship between age and career performance using a 

statistical smoothing method. We did not find that the performances were asymmetric 

for many athletes in our data set and this effect was not modelled. Our approach first 

removes the effect of ageing related factors by estimating an average career trajectory 

using a 5th order polynomial curve applied to the performance of all clean athletes. This 

allows to define standardised performance as the difference between each athlete’s 

actual performances and the average career trajectory curve evaluate at the 

corresponding age. We find that plotting the standardized performances over time for 

each athlete shows a clearer pattern of the evolution of performance and its volatility. 

For this reason, we model standardized performances rather than actual performances. 

 

A standardised performance of zero indicates that an athlete performs at the same level 

as the average result from the age-matched population, with values above zero 

representing performances better than the population, and values below zero 

representing performances that are worse than the population at that age. After 

adjusting for age-related effects, it would be convenient to use the mean and variance 

of standardised performance to characterize a range of likely values for each athlete. 

This could be used to find deviations from the allowable range of standardized 



performance in a similar way to the Adaptive Model underlying the Athlete Biological 

Passport (ABP). However, we find that trends remain in each individual’s standardised 

performance trajectory for both athletes with ADRV and presumed clean athletes. This 

suggests separately modelling the relationship between age and the standardised 

performance for each individual using a curving-fitting or smoothing technique. We 

chose to use a Bayesian spline model. This approach has a number of attractive 

features. Firstly, it allows us to find ages at which the slope of the standardized 

performance trajectory changes (which will be called change-points). These points 

indicate times where performance characteristics are changing, which will, in some 

cases, be indicative of doping. Secondly, a Bayesian approach allows us to estimate the 

trend without choosing a number of change-points. This contrasts with other approach 

which either based on testing for change-points (such as Lombard’s test) or model 

selection procedures. The Bayesian approach also allows us to quantify uncertainty in 

our estimation of the trend and use this is to quantify uncertainty in predictions about 

future performance. This is similar to the ABP which also uses a Bayesian method. The 

ABP assumes that the mean and variance of each blood measurement is constant over 

time whereas our spline model assumes that the mean standardized performance is 

changing over time with performance improving or declining linearly between change-

points. The change-points indicate where the rate of improvement or decline in 

standardised performance occur that is in excess of their age-matched counterparts at a 

similar point in their career. The Bayesian model was fitted using Markov chain Monte 

Carlo methods. The mathematical basis of the Bayesian Spline model is provided in the 

accompanying supplementary appendix. 



 

Results - Application of the model 

 

In order to demonstrate our Bayesian approach, we concentrated on male athletes with   

more than 19 performances. There 405 athletes of which 12 had ADRVs. For simplicity, 

we will refer to these as doped and clean athletes. The idea of modelling standardised 

performance plays a key role in our analysis. Figure 1 presents the performance results 

of two representative doped, and one clean athlete competing in men’s shot put events. 

The top panels present the distances each athlete throws during each competition 

throughout their career. The bottom panel illustrates the standardised performance for 

each athlete. That is, how their performance deviates from their age-matched peers 

across the population of all clean shot put athletes. The standardised performance for 

the two doped athletes demonstrates a changing career trajectory, along with increases 

in their performance compared to the expected performance at the times when doping 

violations were detected. Conversely the clean athletes demonstrate a more consistent 

trajectory, whether that be gradually increasing or decreasing over their career. This 

suggests that it is therefore possible to analyse the trajectory of these standardised 

performances over an athlete’s career and statistically identify where changes occur, 

and the direction of the change. For example, large, rapid increases in an athlete’s 

standardised performance would indicate that their performance (in relation to that of 

their age and career matched peers) may likely be symptomatic of unnatural 

enhancements.  

 



***INSERT FIGURE 1 HERE*** 

 

Figure 2 shows the standardised performances trajectories for all athletes in our sample 

with the mean standardised performance trajectory (shown as a red line). This shows 

that the standardisation has been successful. The mean standardized performance 

trajectory is close to zero at most ages with a fairly consistent spread of values over the 

entire age range. 

 

***INSERT FIGURE 2 HERE*** 

 

Below we present the analysis of representative doped and clean athletes using three 

plots in order to summarize the results, shown in Figure 3. Column A plots the 

standardised performance of each athlete as dots, an estimate of the standardised 

performance trajectory as a solid line with a 95% credible interval shown as a shaded 

region. The 95% credibility interval indicates a range of values with a 95% probability of 

containing the true value of the standardised performance trajectory and measures our 

estimation uncertainty of the trajectory. Column B shows the posterior probability of a 

change-point at each performance result. For example, the probability of a change-point 

for Athlete 1 is above 0.1 for a period in this athlete’s early 30s. This suggests that there 

is high probability of a change-point for this Athlete 1 in this period (since the total 

probability around that age is close to 1). Athlete 3 shows no evidence of a change-

point since all values are close to zero. Whereas, Athlete 4 shows evidence of a 

change-point around 20 and further change-points in their mid- to late-20s. Column C 



shows an estimate of the change in standarised performance trajectory as a solid line, 

with a 95% credible interval shown as a shaded region. This is useful for the 

understanding the strength of statistical evidence that the slope of standardised 

performance trajectory is positive or negative at a particular age (where the shaded 

region is completely above 0 or below 0 respectively). The plots are concentrated on the 

time periods when an athlete has observed performances. 

 

From the subset of 33 athletes, there were 9 athletes with no evidence of a change 

point (6 clean, 3 doped). For the doped athletes, there is often a change-point preceding 

an ADRV (10 of 12 doped athletes). Thus, analysis of the change-point alone may not 

effectively discriminate between the two groups. However, the change-points indicate 

ages at which the rate of improvement/decline in standardised performance occur, not 

the direction of change. Intuitively, we might expect doping to be associated with 

increases in the rate of improvement and so taking account of the rate of change in 

standardised performance for each athlete as a function of time is also an important 

consideration. For doped athletes with change-points preceding their ADRV, there is 

also often a rapid increase in their performance trajectory, or a sustained period of 

increase in their standardised performance (e.g. Athlete 1) with the 95% credible 

interval having positive values. A doped athlete can sometimes show no change point 

(e.g. Athlete 2) but have increases in standardised performance towards the ADRV 

date. For non-doped athletes, most have declining standardised performance or small 

changes (e.g. Athlete 3). However, it is possible to observe two athletes demonstrating 



rapid variation/ erratic performance (e.g. Athlete 4), or a profile similar to that of doped 

athletes (Athlete 5), which might be classed as “suspicious” changes in performance. 

  

***INSERT FIGURE 3 HERE*** 

 

***INSERT FIGURE 4 HERE*** 

 

To better understand the overall effect of doping, we compared the standardised 

performance trajectories of the 37 Scandinavian athletes in our sample and the athletes 

with positive ADRVs. Scandinavian athletes were selected as a comparator sub-group 

due to the low reported prevalence of ADRVs across sports.16 The results are plotted in 

Figure 4 with a red line showing the average career trajectory. There is a clear pattern 

of athletes with positive ADRVs showing overall better performance than the 

Scandinavian athletes after the age of 30. In fact, the slope of the standardized 

performance shows a clearer difference. Figure 5 shows the proportion of athletes in the 

two groups for whom the slope of the estimated standardised performance is positive 

(i.e. there standardised performance is improving). Clearly, the proportion of 

Scandinavian athletes is decreasing with ages, whereas the proportion of ADRV 

athletes is increasing. This suggests that ADRV athletes have different features of their 

standardized performance trajectories. 

 

***INSERT FIGURE 5 HERE*** 

Discussion 



The development and implementation of the athlete biological passport into the anti-

doping practice has acted as a useful deterrent.17 However, as outlined above, the 

proportion of adverse analytic findings from anti-doping tests is well below the estimated 

prevalence of doping with sport. Anti-doping authorities such as WADA and the AIU 

have therefore both suggested that there is a need for a more intelligence-led approach 

to anti-doping in order to more effectively target test athletes.18 The AIU go further to 

suggest that they aim to be able to risk stratify athletes into high and low risk groups 

based upon factors such as their athlete biological passport profile and their 

performance data.18 The ABP has clear relevance for identification of athletes requiring 

a great deal of scrutiny and target testing via flagging individuals who have suspicious 

biomarkers to warrant further investigation, but are not extreme enough for them to 

transgress an ABP metric. However, the limited time course of a particular drug within 

an athlete’s body system, or window of opportunity to catch inflated blood values may 

be fairly limited for this approach,19 even with intensified targeted testing.  

 

By contrast, the performance potential of an athlete tends to be much less volatile. The 

within-athlete variability of performance for elite athletes over a season in so-called 

Centimeter-Gram-Second (CGS) sports appears to be relatively small, with for example, 

the coefficient of variation ranging from 1.1 to 1.4% (90% CI: 1.0–1.6%) in athletic 

disciplines.8 This is because absolute performance level and rate of performance gain 

are “limited” by known and measurable physiology. Therefore, as demonstrated above, 

major improvements in performance in relation to that of an athlete’s age-matched 

peers should raise the level of suspicion. For example, athlete 1 (see figure 1) 



consistently throws between 19.5 and 21.0 meters throughout most their career (aged 

between 23 and 34 years), however, towards the end of their career they suddenly start 

throwing between 21.5 and 22.7 meters (aged 35 years). In practice, this scenario 

demonstrates an athlete who is barely able to qualify for major competitions, all of a 

sudden features results that afford a podium finish at World level. Moreover, as this 

occurs well into the athlete’s career when a clear performance trajectory has been 

established, that level of suspicion is raised further, especially as it coincides with an 

expected age-related reduction in performance. The athlete in question was 

subsequently subject to an ARDV for THG. Contrast this profile with the athlete’s peer 

shown by athlete 3 who demonstrates an age-related decline in performance, even 

though they progress their career around the average for the population (standardised 

performance and career trajectory are closely distributed around 0). Just as a sudden 

increase in performance might be a flag of doping, so might sudden decreases, or rapid 

fluctuations in performance, thus generating an erratic performance profile (e.g. athletes 

4 & 5). If the athlete is not able to sustain their doping regime over a prolonged period of 

time, they may consider attempting to enhance their performance for major 

competitions, or selection events. Therefore, their performance would be enhanced 

when doping, but they are not able to maintain the same level of performance 

indefinitely and regress to their true performance once the doping regimen is finished. In 

order to avoid an erratic performance profile, the athlete may choose to restrict their 

competition schedule to include only the major events. However, very rare 

performances at the elite level may also be suspicious.  

 



It is interesting to note that the same patterns of performance evolution for doped and 

clean athletes are also evident in other strength- and power-based athletics disciplines, 

such as sprinting and jumping. However, in long duration athletics events (e.g. middle & 

long distance running), or sports with high levels of technological, tactical, and 

environmental influences on performance, there is likely to be an increase the variability 

of performance results. Such confounding factors would bring a level of unwanted 

uncertainty into the model prediction, and thus need to be accommodated for by the 

setting prior distributions in future iterations.  

 

None of the above proves doping in previously unsanctioned athletes, although it may 

be sufficient to raise the level of suspicion of an athlete. What is crucial to this approach 

is the magnitude, direction, and rate of change in performance in relation to what that 

athlete has previously been capable of, and that of their age-matched peers. In this 

way, the anti-doping authorities are able to classify an athlete as high risk or low risk for 

doping. Combining this information as part of a wider risk prediction model is also likely 

to further strengthen anti-doping efforts. For example, Marclay, Mangin, Margot & 

Saugy20 suggest integrating not just analytical chemistry and longitudinal biomarker 

data, but also information obtained from athlete whereabouts, social media presence, 

competition level, potential financial rewards, social networks, as well as competitive 

performance data, into a probability risk type model. The athletes with higher probability 

of doping risk would therefore be allocated to registered testing pools for closer scrutiny 

via targeted anti-doping efforts. Moreover, athletes being aware that their performance 



is under scrutiny in order to identify unnatural advancements may also serve as a useful 

deterrent for doping in the first instance.   

 

2. Conclusions 

Given the current political and financial climate, there is a need to streamline and refine 

anti-doping practice with fewer but more targeted testing being conducted. The 

combination of existing biological data with novel markers, such as athlete performance, 

has the potential to result in a more intelligence-led and cost-effective anti-doping 

system. The statistical approach documented in this manuscript demonstrates the 

potential for analysis of athlete performance data to discriminate between athletes who 

have been sanctioned for doping, those who are clean, and those who are deemed a 

suspicious. Therefore, the future development of an athlete performance passport using 

methods such as those outlined in our manuscript, might be used by anti-doping 

authorities to discriminate between individuals who are at low or high risk of doping. 

Further, combining performance data with information provided by the athlete biological 

passport can provide both a powerful tool in the armory of anti-doping authorities, and a 

powerful deterrent for athletes considering doping.  
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Figure Legends: 

 

Figure 1: Standardised performance plots of three representative shot put athletes. 

Two athletes have previously been sanctioned for doping, and one is presumed clean. 

The top panels illustrate the absolute performance of each athletes, the bottom panel 

presents their standardised performance. Solid lines represent the line of best fit 

through the standardised performance residuals. Vertical dashed line represents point 

of sanction. Standardised performance plots distributed around 0 suggest the career 

evolution of an athlete is close to that expected from the population average. Larger 

values suggest that performance is greater, with negative values suggesting the 

performance is lower, than their age matched peers.   

 

 



 

Figure 2: Standardised Performance Trajectories for all athletes in the study. The red 

line indicates the average Standardised Performance Trajectory. 



 

 

Figure 3: Standardised Performance Trajectories for five representative male shot put 

athletes from doped and clean populations. Column A = Standardised Performance. 

Column B = Change point analysis. Column C = Standardised career trajectory. Vertical 

line indicates timing of ADRV test in doped athletes.   



 

Figure 4: Standardised Performance Trajectories for Scandinavian athletes and 

athletes with ADRV’s. The red line indicates the average Standardised Performance 

Trajectory for each group. 

 

 

 



 

Figure 5: Proportion of Scandinavian athletes (dashed line) and athletes with ADRV’s 

(solid line) with a positive slope of their standardized performance trajectory at different 

ages. 

 

 


