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ABSTRACT
This paper presents an empirical study to determine whether alterations to graphical
features (colour and size) of automatically generated LineSets improve task perfor-
mance. LineSets are used to visualize sets and networks. The increasingly common
nature of such data suggests that having effective visualizations is important. Un-
like many approaches to set and network visualization, which often use concave or
convex shapes to represent sets alongside graphs, LineSets use lines overlaid on a
graph. LineSets have been shown to be advantageous over shape-based approaches.
However, the graphical properties of LineSets have not been fully explored. Our
results suggest that automatically drawn LineSets can be significantly improved for
certain tasks through the considered use of colour alongside size variations applied
to their graphical elements. In particular, we show that perceptually distinguishable
colours, lines of varying width, and nodes of varying diameter lead to improved task
performance in automatically laid-out LineSets.
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1. Introduction

A large number of techniques have been devised for visualizing data whose items
are grouped into sets and are related to each other in some way (B.Alsallakh et al.
2014). These techniques often use closed curves, or variations thereof, to represent
the groups whereas the network (corresponding to the items and their connections)
is represented by a graph; such techniques include BubbleSets (Collins, Penn, and
Carpendale 2009), KelpFusion (Meulemans et al. 2013), and EulerView (Simonetto,
Auber, and Archambault 2009). An alternative technique, called LineSets, was pro-
posed by Alper et al. (Alper et al. 2011), which instead uses lines to represent sets,
overlaying them on an already drawn graph. LineSets are not alone in representing
sets using lines (Alper et al. 2011; Cheng 2011; Gottfried 2015; Rodgers, Stapleton,
and Chapman 2015), but are the only technique of which the authors are aware that
combine lines and graphs to represent set and network data. This paper sets out to
shed light on how to manipulate selected graphical properties of LineSets which have
been drawn automatically by software, as opposed to having been drawn by hand.
Domains such as social media generate vast amounts of data that needs to be filtered,
queried and presented in dynamic contexts. Thus, studying the effect of graphical fea-
tures in LineSets that have been algorithmically generated is essential if we are to
improve their effectiveness as a visualization technique for these kinds of data.

An example can be seen in Figure 1. It represents four sets, Apple, Dell, Lenovo and



Sony, using four (coloured) set-lines. The nodes passed through by the set-lines are
elements of the respective sets. So, for instance, the set Apple contains two elements
that are also in the set Lenovo. Taking the elements to be people who bought the
respective brands, and the black lines in the underlying node-link diagram to indicate
friendship, we can see also that the two people who bought Apple products are friends.
In summary, set-lines are coloured and represent sets. The set-lines are overlaid on the
underlying network, drawn in black. As LineSets is an overlay technique (the set-lines
are drawn after – overlaid on – the network), it can be applied to many different data
sets.

Lenovo

Sony

Dell

Apple

Figure 1.: Using LineSets to visualize grouped network data.

In contrast to LineSets, many visualizations of sets use closed curves instead of set-
lines. Euler diagrams are an example which exploits overlapping regions, surrounded
by closed curves, to convey information about sets (B.Alsallakh et al. 2014). Given an
Euler diagram, when overlaying a network, the closed curves constrain the location
of the nodes (data items) and can therefore lead to a less than ideal layout of the
network’s edges. By contrast, when using Linesets the network is drawn first, with
the set-lines subsequently drawn over the top of the network. Even though closed
curves can appear to be a natural representation of sets, recent evidence suggests
that using lines can be more effective (Rodgers, Stapleton, and Chapman 2014). In
addition, compared to other techniques that overlay group information on node-link
diagrams, such as GMap and simple node colouring, Jianu et al.’s study found LineSets
to be a promising alternative to GMap diagrams for a range of task types: group-only
tasks, network-only tasks and group-network tasks (Jianu et al. 2014). This evidence,
together with the fact that LineSets do not compromise the layout of the network,
leads us to conjecture that improving the design of LineSets could make them more
effective than techniques based on closed curves when visualizing grouped network
data. So it is important to understand how the choice of their graphical properties
impacts on task performance. The intention of the work in this paper is to improve
the visualization of LineSets so that users can better comprehend the underlying data.

Alper et al.’s LineSets paper, which introduced the technique, focussed on exploring
the potential of LineSets (Alper et al. 2011). They found that LineSets outperformed
BubbleSets (Collins, Penn, and Carpendale 2009) when people performed set member-
ship and intersection tasks. Their studies also evaluated how to best draw the set-lines
in order to connect elements. They established two simple design guides: LineSets
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should be generated with set-lines that (a) are as linear as possible and (b) smooth.
The former guide is related to the position of the set-lines in the plane: specifically
it suggests that the relative position of the points on the set-line in the plane should
be close to linear. The latter guide is loosely related to the graphical property of the
shape of the set-lines: whilst not prescribing a particular shape, this guide indicates
that smoothness should be prioritised over jagged lines with sharp turns, for instance.
Both guides relate to the routing of the set-lines, which is an integral part of the layout
algorithm produced by Alper et al. to automatically draw LineSets.

The shape of the set-lines and position of the points on the line are just two features
of LineSets that can be altered. Bertin, in his Semiology of Graphics, divides graphical
features into elements and their properties, highlighting our perceptual sensitivity to
them (Bertin 1983). In LineSets, the graphical elements are the set-lines and the
nodes and edges of the underlying network. Graphical properties include their size,
colour, shape, and orientation. We exploit Bertin’s seminal insights when identifying
graphical properties that can be manipulated in LineSets in order to, potentially,
impact their effectiveness for users. Since we are concerned with the use of LineSets
as a visualization technique, we will focus on the graphical properties that can be
readily altered in the implemented software developed by Alper et al. (as opposed to
those that are integral parts of the layout algorithm). This will lead to results that
can be readily included in existing software, maximising the impact of the results in
a computer-human interaction context. The specific contributions of this paper are as
follows:

• We apply Bertin’s Semiology of Graphics to LineSets, identifying their graphical
properties to which we are perceptually sensitive. In this context, we identify
existing work that has previously evaluated such properties and highlight its
limitations. In particular, we demonstrate that whilst some graphical properties
have been shown to impact cognition, as measured by user task performance,
no research has been undertaken to evaluate the combined effect of these prop-
erties, their effect when used with real-world data, or their incorporation in an
automated layout setting. This is covered in section 2.

• We performed an empirical study to compare the combined effect on task per-
formance of selected graphical properties, known to individually enhance the
understandability of LineSets, against LineSets as currently produced by Alper
et al.’s software. The study compared automatically generated LineSets, pro-
duced using the default settings in the software, against the same diagrams but
with selected graphical properties altered, namely: the colour of set-lines, the
thickness of set-lines, and the diameter of nodes in the underlying network. The
data used to produce the LineSets diagrams which were stimuli the study is
derived from freely available, real-world data. The study design, execution and
results are covered in sections 3 to 5. In addition, we gathered information on
user preference which is discussed in section 6.

• The results of the empirical study, discussed in section 7, suggest that the Line-
Sets software can be improved by (a) modifying how colours are assigned to set-
lines, (b) prescribing varying set-line thickness to convey cardinality information,
and (c) varying node sizes to indicate degree of connectivity. These improvements
lead to significantly better task performance and respect the dominantly held
user view, established in section 6, that the ‘graphically improved’ LineSet dia-
grams are preferable to those drawn using the default software settings.

The threats to validity are presented in section 8, indicating the extent to which
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are results are valid and we conclude in section 9. As a consequence of our work,
human-computer interaction can be improved since the graphical properties of colour,
set-line thickness and node diameter can readily be altered in automatically produced
LineSets. The resulting visualizations will lead to significantly improved user task
performance and better reflect user preference. All of the diagrams used in the studies,
along with the questions and details of the real-world data from which the LineSets for
our study were derived can be found in the supplementary material associated with
the paper. The anonymized data collected during the study is also included with the
supplementary material.

2. Research Motivation and Questions

The choice of graphical properties can affect the comprehension of LineSets. As noted
in the introduction, Bertin divides graphical features into elements and their proper-
ties. The elements of LineSets are set-lines, nodes and edges. Since we are perceptually
sensitive to the properties of these elements, such as their colour, it is important to un-
derstand their impact on user task performance. Bertin’s retinal variables include size,
colour value, colour hue, texture, shape, and orientation; particular choices of these
correspond to graphical properties, such as the particular size or colour of a graphical
element. These are complemented by planar variables, which correspond to the relative
position of graphical elements. Since LineSets are an overlay technique, the position of
the nodes in the network is predefined and not part of the LineSets layout algorithm
per se. Related work includes studies on the design of scroll bars (Alexander et al.
2009) and sliders (Schoeffmann et al. 2010) which demonstrate that increasing detail
on interfaces can improve usability. A very significant body of work exists on laying
out networks effectively (i.e. choosing positions for the nodes and routes for the edges)
and is not the focus of this paper. In addition, the position of the set-lines (the points
in the plane through which the set-lines pass) is not our concern, since the choice of
route is pre-determined by the software. We are, though, concerned with those retinal
variables which can be readily altered in drawn LineSets. We now consider each of
these in turn.

Firstly, we observe that the use of texture does not readily apply to LineSets: texture
is normally recognised as useful when representing both qualitative and quantitative
differences. Shape, as well as being covered by existing guidance, is (as with the pla-
nar variables) an integral part of Alper et al.’s layout algorithm: the heart of the
layout algorithm is to determine suitable routes for the set-lines to take. Regarding
orientation, it is possible to alter the orientation of the underlying network before
routing the set-lines but, again, given the substantial body of work on effective layout
of networks, orientation is not a major focus for us. So, we are primarily concerned
with the remaining retinal variables: size, colour value, and colour hue. The particular
choice of graphical properties corresponding to these variables can be easily altered
post-layout and, thus, understanding their effect on user task performance (and indeed
user preference) can lead to readily achievable improvement to the layout of LineSets.

Size is recognised as a powerful variable to control when visualizing quantitative dif-
ferences, yet the current implementation of the LineSets software does not exploit it.
In LineSets, the sets have varying cardinalities and the nodes have varying degrees of
connectivity. Thus, both of these graphical features could benefit from controlled ma-
nipulation of their sizes. Colour hue (different hues have different colours) is recognised
as important when visualizing qualitative differences (Card, Mackinlay, and Shneider-
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Figure 2.: Default LineSet.

Figure 3.: LineSets: standard (left),
varying line thickness (middle), vary-
ing node diameters (right).

man 1999; Leborg 2006; Mazza 2009), which is reinforced by the Gestalt principle of
good form (Koffka 1935)1. In LineSets, if set-lines adopt different colour hues this is
a visual indication that they represent different categories. In addition, if two nodes
are passed through by a coloured line, this visually indicates the common property of
both belonging to the respective set. By contrast, colour value (brightness) is seen as
important when representing quantitative data; the way in which the LineSets soft-
ware assigns colours to set-lines, by default, is by varying colour value but not in a
way that reflects quantitative information (such as relative set cardinality).

Figure 2 shows a LineSet diagram as drawn by Alper et al. (Alper et al. 2011)
where the nodes and set-lines are all of an equal thickness. But different graphical
choices can be made which may aid (or hinder) user task performance. For example,
we could instead use set-lines that are assigned uniformly distinct colour hues, see
the top of Figure 3. This graphical choice was found to significantly improve user
task performance, as compared to alternative colour treatments (e.g colour value, as
in Figure 2) (Tranquille et al. 2016). Secondly, the thickness of the set-lines could be
made relative to the number of elements within a set, in that if a set has more members
it will be thicker than the other set-lines; see the middle of Figure 3. Therefore, the
thickest set-line represents the largest set displayed in the diagram. This graphical
choice, varying line thickness, also significantly improves user performance (Tranquille
et al. 2017). Finally, the diameters of the nodes can also vary depending on the number
of edges to which they are connected. The more edges to which a node is connected, the
larger the diameter of the node; see the bottom of Figure 3. Again, this graphical choice
was found to significantly improve user performance (Tranquille et al. 2017). However,
this prior work evaluated the graphical choices of set-line colour, set-line thickness
and node diameter individually. It is possible that the emphasis or variation of one
graphical feature may act as a distractor for other features. For example, exploiting
node size variations to reflect node degrees will mean that nodes of low degree are
small. A consequence of varying node sizes is that small nodes are more likely to be
obfuscated by set-lines, which is more likely when thick lines are present. In addition,

1The principle of good form indicates that people group graphical objects together if they have a common

feature.
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thick lines are more likely to pass through or very close to nodes than thinner lines,
creating more potential for ambiguity to be present, particularly when nodes are large.
It is not yet known whether applying all three treatments in combination, as seen in
Figure 4, yields significant performance benefits over the existing graphical choices
shown in figure 2.

Understanding whether the three treatments are effective in combination and for
real-world data is important. In part, this is because LineSets are intended for visualis-
ing social networks in order to facilitate a user’s ability to interpret and reason about
datasets. The prior results, on the effects of manipulating colour, set-line thickness
and node diameter, were collected using diagrams portraying synthetic data and man-
ually produced layouts. These choices allowed the visual appearance and layouts of
the diagrams to be carefully controlled to suit the hypotheses that were being tested.
Because of this, the degrees of connectivity and set memberships were selected to en-
sure controlled variability to the LineSets used in the tests. By contrast, real-world
data can vary in how many graphical elements are displayed.

As such, real-world data should be used to further evaluate LineSets because real-
world applications would include varying amounts of data rather than strictly con-
trolled amounts. It is certainly possible that combinations of graphical choices may
be ineffective with real-world data if degrees of connectivity or set memberships are
too great. For example, increasing sizes of some graphical elements could, say, occlude
other elements. Furthermore, using manual layouts instead of automated layouts gave
full control of the position of the nodes and the paths of the set-lines. This control is
lost to a great extent when using automated layout tools. As such, it is important to
evaluate an automated layout software environment as predetermined node positions
and set-line paths may render certain graphical choices ineffective.

Google

Apple

Lenovo

Sony

Figure 4.: Treated LineSet.

Consequently, the results in (Tranquille et al. 2016, 2017) should be built upon using
real-world data and automated layouts as well as combining the use of size and colour.
This would allow us to make inferences about the effects of manipulating graphical
properties in LineSets and establish if certain choices are effective in automated lay-
outs. This leads to our overarching question, the novelty and significance of which is
explained above: do graphical manipulations affect the comprehension of automatically
laid out LineSets? By answering this question, we can understand whether different
graphical choices to those made by the current LineSets generation software, improve
or degrade user performance when they are applied to automatically produced layouts.
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To help to answer the overarching question, we specifically consider the following re-
search questions in this paper:

(1) Do the colour, set-line thickness and node diameter treatments combine effec-
tively to support task performance?

(2) Do the three treatments aid task performance when used with real-world data?
(3) Do the three treatments aid task performance when applied to automatically

generated LineSets?

This paper sets out to address these three questions. Based on the previous findings
just discussed, we establish two treatments to evaluate:

(1) Default : set-lines and nodes are all of an equal thickness and diameter, set-
line colours are determined by the original LineSet software (Alper et al. 2011)
(shown in Figure 2).

(2) Treated : the thicknesses of the set-lines vary according to the cardinality of the
represented sets, the diameter of the nodes vary according to the number of edges
connected to them, and each set-line is drawn in a unique colour hue (shown in
Figure 4).

This paper establishes whether there are significant user performance differences
between Default and Treated diagrams when the layout of the graph and set-lines
are determined by automated layout software using real world data. If graphically
treating the set-line colours, set-line thicknesses and node diameters in combination
has a significant effect, we can expect higher rates of accuracy or lower mean task
completion times from users interpreting Treated diagrams. The work in this paper,
therefore, significantly advances the prior work just described by evaluating the three
graphical choices in combination, using real-world data and automatically laid out
LineSets.

3. Methodology

A between-group experiment design was adopted for performance data collection with
one group for each diagram treatment, Default and Treated. The Default group per-
formed tasks using automatically drawn LineSets whereas the Treated group used the
same LineSets but with different set-lines colours, set-line thicknesses and node diame-
ters. We recorded two dependent variables: the time taken to answer each question and
whether each question had been answered correctly. Preference data was also collected
to build an understanding of the perceived differences between the two treatments with
respect to the types of questions asked.

3.1. Tasks for Gathering Performance Data and Hypotheses

In common with our earlier studies of LineSets, the tasks performed by participants
are based on Sahket, Simonetto and Kouborov’s group-level graph visualization tax-
onomy (Sahket et al. (2014)). The taxonomy consists of group only tasks, group-node
tasks, group-link tasks and group-network tasks. Because the experiments were in-
tended to test the effects of graphical alterations, the actual tasks selected reflected
the hypotheses that were being tested and the expected advantages of the graphical
properties under manipulation. These properties include selecting set-line colours to
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improve set distinguishability and visibility, set-line thicknesses to reflect set cardinal-
ity, and node diameters to reflect nodes’ degrees of connectivity. With these consider-
ations, tasks included questions requiring users to

• identify sets or their elements based on intersections, potentially aided by colour,
• identify sets based on their size, potentially aided by set-line thickness, and
• identify nodes based on their degrees of connectivity, potentially aided by node

diameter.

Thus, each task type, described in the following subsections, required attention to be
placed on different components of LineSets to elicit the answer. To this end, we had
three types of task: Set Intersection (SIn), Extreme Set Size (ESS) and Extreme Node
Degree (END), each of which had two variants. These will be explained in sections 3.1.1
to 3.1.3.

In order to pose questions, we needed a context for the data being represented. The
LineSets used in this study illustrated social networks with nodes representing people,
edges representing friendship links between people, and sets representing brands of
products that people have bought. Set names, which label the set-lines, were derived
from a selection of brands. Each question was multiple choice, with participants asked
to select the one correct answer from four possible answers. We note that for END
tasks only, there could be multiple correct answers to the question, but only one of
these was included in the four options. This aspect was made clear to participants in
the training phase of the experiment. The feature arose because END tasks required
the identification of a node with highest or lowest degree and it was not realistic to
have a single such node. In what follows, the figures used to illustrate the example
questions were all drawn using automated layout software, and some of them were
manually altered to reflect the graphical properties we are testing. In all cases, the set
names were manually added, not automatically positioned.

3.1.1. Set Intersection Tasks

The empirical study presented in (Tranquille et al. 2016) found that some tasks were
performed significantly better when different colour hues were applied to the set-
lines, rather than different colour values. Such tasks included computing information
about the cardinality of intersecting sets, as such we call them set intersection (SIn)
tasks. The selected SIn tasks are based on those which yielded significant performance
differences in (Tranquille et al. 2016):

• Count the total number of items that belong to both set x and set y. We call this
task type SIn Elements.

• Count the number of sets that intersect with a given set. We call this task type
SIn Sets (reflecting the wording used in the task, see below).

The questions were worded to the participants in the following way:

• SIn Elements: How many people who bought Lenovo also bought Dell?
• SIn Sets: How many other brands were bought by people who have Lenovo?

With reference to Figure 5, an example SIn Elements task is ‘How many people who
bought Sony also bought Dell?’; the answer is 1.

So, tasks in this category required users to count nodes belonging to multiple sets.
SIn Sets tasks required users to count how many sets intersected with a specified set.
Since both tasks required the identification of multiple sets, performance could be as-
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Figure 5.: Example Set Intersection Task

sisted by the distinguishability and visibility of the set-lines. Bertin’s work on retinal
variables suggests that assigning uniquely distinguishable colour hues, as used in the
Treated group, can improve users’ ability to isolate individual entities (Bertin 1983).
Specifically for LineSets, this is supported by Tranquille et al. (Tranquille et al. 2016)
who suggested that set-lines treated with uniquely distinguishable colour hues signif-
icantly improve user performance. We hypothesize that SIn tasks will be performed
significantly better (i.e. either more accurately or faster) using Treated LineSets than
Default LineSets.

3.1.2. Extreme Set Size Tasks

The empirical study presented in (Tranquille et al. 2017) found that some tasks were
performed significantly better when different thicknesses were applied to the set-lines,
rather than the same line thickness for all the set-lines. Importantly, the variations
in set-line thicknesses reflected the different set cardinalities: one line is thicker than
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another if and only if the set represented by the thicker line contains more elements
than the other set. The associated tasks required identifying either the largest or the
smallest set, so we call them extreme set size (ESS) tasks. Again, we selected ESS
tasks based on those which yielded significant performance differences in (Tranquille
et al. 2017):

• Identify the largest set. We call this task type ESS Max.
• Identify the smallest set. We call this task type ESS Min.

The questions were worded to the participants in the following way:

• ESS Max: Which product was bought the most times?
• ESS Min: Which product was bought the fewest times?

With reference to Figure 6, an example ESS Min task is ‘Which product was bought
the fewest times?’; the answer is Philips.

Sony

Philips

Casio

Nokia

Sony

Philips

Casio

Nokia

Figure 6.: Example Extreme Set Size Task

Since ESS tasks require users to identify the largest or smallest set, the thickness
of the set-line could improve task performance. We appeal to work by Healey which
suggests that people can identify size variations when exposed to an array of items
of different sizes on a display (Healey and Enns 2012). Healey specifically refers to
an experiment asking users to estimate which group of circles, each with their own
unique colour, has the larger average size. Although Healey’s work was in a different
context, it indicates that the varying the size of graphical objects is preattentively
processed. This suggests that, in the case of LineSets, varying size may assist people
with identifying the largest (or smallest) set. Results by Tranquille et al. (Tranquille
et al. 2017) support this insight, also suggesting that varying the thickness of set-
lines significantly improves user performance, specifically for tasks where users have
to identify a set of an extreme size. Therefore, we hypothesize that ESS tasks will be
performed significantly better using Treated LineSets than with Default LineSets.

3.1.3. Extreme Node Degree Tasks

The empirical study presented in (Tranquille et al. 2017) found that some tasks were
performed significantly better when varying node diameters were used in the graph
underling the set-lines. Similarly to set-line thickness, the variations in node diameter
reflected the different degrees of connectivity: one node diameter is larger than another
if and only if the data item represented by the larger node is connected to more data
items than the smaller node. This time, the associated tasks included finding a node
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with largest or smallest degree and counting its incident edges, so we call them extreme
node size (END) tasks. The selected END tasks are based on those which yielded
significant performance differences in (Tranquille et al. 2017):

• Identify a node with the highest degree of connectivity and count its incident
edges. We call this task type END Max.

• Identify a node with the lowest degree of connectivity and count its incident edges.
We call this task type END Min.

The questions were worded to the participants in the following way:

• END Max: How many friends does the person with the most friends have?
• END Min: How many friends does the person with the fewest friends have?

With reference to Figure 7, an example END Max task is ‘ How many friends does
the person with the most friends have?’; the answer is 10.

Google

BenQ

Sony

Philips

Google

BenQ

Sony

Philips

Figure 7.: Example Extreme Node Degree Task

Users are required to identify a node with highest or lowest degree of connectivity
and to count the number of incident edges. Participants in the Treated group had the
option of using the node diameters to identify an appropriate node before counting
the edges. Healey’s work, on preattentive processing of size variations, supports the
hypothesis that varying node sizes could be beneficial for task performance. This is
further supported by Ariely’s research, on representing sets with statistical properties,
which suggests proportional node diameters may allow users to preattentively iden-
tify extreme values (Ariely 2001). Specifically for LineSets, the results in Tranquille
et al. suggested that varying the diameter of the nodes significantly improved user
performance for tasks where users had to find a node of an extreme size (Tranquille
et al. 2017). On this basis, we hypothesize that END tasks will performed significantly
better using Treated LineSets than Default LineSets.

3.1.4. Number of Tasks and their Complexity

Considering the potential generalizability of our results, we opted to include LineSets
with different characteristics whilst being careful to control the associated variability.
This was achieved by introducing two types of complexity through the data being
visualized by the diagrams. The task complexity was determined by the number of
data items (nodes), connections (edges), and sets (set-lines). To this end, diagrams
conformed of two characteristic types:
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(1) Type-I diagrams: these diagrams represented 4 sets and included between 14 and
26 nodes and between 30 and 60 edges.

(2) Type-II diagrams: these diagrams represented 8 sets and included between 34
and 46 nodes and between 70 and 100 edges.

Figures 8 and 9 show examples of type-I diagrams and figures 10 and 11 show type-
II diagrams. The study included 12 Type-I diagrams and 12 Type-II diagrams, giving
24 questions in total. The 12 Type-I diagrams were distributed across to the three
task types (two diagrams for each task variant), as were the 12 Type-II diagrams.

Philips

Apple

Sony

Nokia

Figure 8.: A Type-I Default LineSet.

Philips

Apple

Sony

Nokia

Figure 9.: A Type-I Treated LineSet

3.1.5. Preference Data Collection

For this stage of the study, a Type-II diagram was presented to participants in both
Default and Treated states, as seen in figures 12 and 13 (scaled to 40% of their actual
size). Participants were presented with the following seven questions:

(1) Which diagram do you prefer in terms of your aesthetic preference?
(2) Which product was bought the most times?
(3) Which product was bought the fewest times?
(4) How many friends does the person with the most friends have?
(5) How many friends does the person with the fewest friends have?
(6) How many people who bought Nokia also bought Sony?
(7) How many other brands were bought by people who have Apple?

Participants were asked to answer question 1 and, for the remaining six questions, they
were asked to indicate which of the diagrams they preferred for answering it and to
give a justification for their choice. The expectation was that this would allow us gain
further insight into significant performance differences, or lack thereof. Participants
could jointly rank the two diagrams if they so wished, when they had no preference
between them.
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Figure 10.: A Type-II Default LineSet.

Apple
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Google
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Figure 11.: A Type-II Treated LineSet

3.1.6. Summary

To reiterate, our study used three task types – SIn, ESS, and END – each with two
variations. By appealing to prior work, as well as insight into preattentive properties
of graphical entities, we hypothesize that all three task types will be preformed signif-
icantly more accurately or, if no significant difference in accuracy exists, significantly
more quickly by participants using Treated LineSets as compared to Default Line-
Sets. In addition, we also hypothesize that overall, irrespective of task type, Treated
LineSets will support significantly better task performance. To aid generalizability,
two levels of complexity were used for the tasks, reflecting the number of sets, data
items and connections between the data items. Preference data was also collected and
the design of this part of the study was geared towards revealing insights about any
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Figure 12.: Default diagram used to collect preference data

Casio
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Figure 13.: Treated diagram used to collect preference data

significant performance differences.

3.2. SNAP Data Sets for Visualization

The information presented in the LineSets used in this experiment was derived from
the SNAP Data Twitter social circles (Leskovec and Krevl 2014); SNAP contains over
970 data sets. Some networks contained over 68000 nodes and 1680000 edges, as well
as many sets, which makes them too complex to visualize in a controlled empirical
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study. It was necessary to filter the data in order to create data sets that gave rise to
LineSets that were either Type-I or Type-II. While this filtering process reduces our
data set to a fragment of the original social network, the remaining data points and
sets are real world data. As we explain below, we choose a number of strategies for
reducing the data to manageable size and for facilitating our tasks, such as the removal
of sets with the same number of data items. In real-life, there is a high possibility that
a data set will contain two sets with the same cardinality but we need to ensure that
tasks such as those that involve identifying minimal and maximal sets have an unique
answer. In a real world scenario, researchers may pre-process data in similar ways
before investigating it. Our goal, therefore, was to simplify the SNAP data sets whilst
limiting the loss of complexity and authenticity. As such, we removed sets, nodes, and
edges from SNAP data sets to ensure that the resulting simplified data sets had the
following characteristics:

• No two sets contained exactly the same data items. Such data sets would give
rise to LineSets with concurrent set-lines and, thus, at least one set-line would
be obfuscated. When such sets were identified, all but one of the identical sets
were removed, thus avoiding complete concurrency between set-lines.

• No two sets contained exactly the same number of data items. Obviously this is
a stronger condition than that just given and it allowed us to ensure that each
set-line had a different thickness to the other set-lines in the Treated LineSets. As
with identical sets, we removed all but one of the sets with an identical number
of items.

• Every node was in at least one set. This ensured that every node was passed
through by at least one set-line. Thus, removing such nodes did not alter the
complexity of the visualized sets, but did reduce the complexity of the network.

• No node had zero degree. This ensured that every node was connected to at least
one other node in the network; removing nodes with no incident edges did not
substantially alter the complexity of the network.

• There were no duplicate edges. This ensured that any pair of nodes were con-
nected by at most one edge. Duplicate edges, if visibly shown in graph underling
the set-lines, would increase the complexity of the diagrams and potentially clut-
ter the user’s view. However, as is typical, we used a straight line embedding for
the edges, so duplicate edges would not be visible anyway. The inclusion of du-
plicate edges would therefore render the visualization inaccurate, compared to
the data being visualized, justifying their removal.

After this process, there were insufficient data sets that conformed to type-I and
type-II – we wanted 12 of each. Many of the data sets were still too complex, so we
randomly removed sets, node and edges, whilst ensuring that the above properties
were maintained (if necessary, removing further items) to simplify the data further.
At any stage, data sets that could never conform to type-I or type-II diagrams were
discarded, for instance if they had too few edges. The final 24 data sets were selected
randomly from the resulting simplified data sets, 12 each of type-I and type-II.

3.3. Creating Diagrams for the Study: Conventions and Characteristics

It was important that the diagrams across the treatment groups only differed by the
independent variables that were being tested. To this end, we adhered to a series of
drawing conventions and characteristics would prevent unwanted variations between
groups. In particular, diagrams for each group were semantically identical and varied
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syntactically only by the graphical features being manipulated for the study.

3.3.1. Drawing Default LineSets

Initially, we created 24 Default LineSets from the 24 simplified SNAP data sets using
the LineSets software (Alper et al. 2011). We chose to use the default settings as
these have been provided by the software designers, informed by usability studies.
This software overlays lines on an already drawn graph and, so, the networks had to
be drawn first. Edge lists, derived from real data following the process described in
section 3.2, were imported into GraphViz (Gansner and North 2000) in order to create
a node graph in SVG format along with a text file containing coordinates of each node
in each diagram. The coordinates of each node were then exported to an XML file
format which could be read by the automated LineSet layout software (Alper et al.
2011) specifying where to plot the points along each set-line. Set memberships for each
node were specified in the XML file so that the set-lines could be generated. Where a
node belonged to two or more sets, an instance of the node had to be created for each
set to which it belonged so that the lines crossed at that point. As the LineSet software
does not facilitate file exports, screenshots of the generated set-lines were imported
into Inkscape (Gould et al. 2003). This allowed the set-lines to be manually traced
over using the Bezier curves tool, which was a necessary step in order to generate the
Treated LineSets and high-resolution images. The set-lines, with 4 pixels thickness,
were then overlaid on top of the graph generated in step 1; we emphasize that this
process preserved the paths followed by the set-lines as produced by the LineSets
software. In each diagram, the LineSets software allocated each set-line a colour, which
was also preserved when we re-drew the set-lines. The colour palletes used by the two
types of Default diagrams can be seen in Figures 14 and 15. In all cases, the diagrams
were drawn in an area no larger than 1280 × 720 pixels.

Figure 14.: Palette for Default
Type-I diagrams.

Figure 15.: Palette for Default Type-II dia-
grams.

Figure 16.: Palette for Treated
Type-I diagrams.

Figure 17.: Palette for Treated Type-II dia-
grams.

For the 24 Default diagrams, small adjustments were made to the graphs produced
by GraphVis at this stage. In particular, the nodes were too small and the edges too
thin to be readily visualized. So the Default group used nodes with a diameter of 16
pixels. The graph edges were drawn with 2 pixel thickness. Set-labels (i.e. names) were
manually added adhering to the following characteristics:

(1) set-labels were written in sans-serif font at 14 pixels size with a 1 pixel stroke,
(2) set-labels were written in lower-case with an initial capital letter,
(3) set-labels were written at one end of the corresponding line whilst being spread

out as much as possible and not obscuring any surrounding elements. Where this
was not possible, the set-label was placed as close to the end of the corresponding
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line as was practically possible, and
(4) the set-labels were assigned the same colour as the corresponding set-line.

3.3.2. Drawing Treated LineSets

To create Treated diagrams from the Default diagrams, we had to alter the set-line
colours, the set-line thickness and the node diameters. Set-line colours for the Treated
diagrams were derived from ColorBrewer (Brewer et al. 2013) as these colours were
found to be an effective colour scheme (Tranquille et al. 2016). The colours used for
each diagram type are shown in Figures 16 and 17. The colours were randomly assigned
to the set-lines, thus allocating a colour to each set.

The set-line thicknesses were determined following a previously used specifica-
tion (Tranquille et al. 2017), as illustrated in Table 1 (here with the set-line drawn
in red). The thinnest set-line was 3.43 pixels and the thickest was 25 pixels, giving
an effective difference of thickness ratio of approximately 1:7.2 between adjacent-sized
sets in Type-I diagrams and of 1:3.08 between adjacent-sized sets in Type-II diagrams.
Node diameters were also determined following a previously used specification (Tran-
quille et al. 2017), as shown in Figure 18. The smallest node size was 12 pixels and
nodes increased in diameter by 2 pixels for each edge that was connected.

Type-I Type-II

Table 1.: The thickness of each set-line from thinnest to thickest for both Type-I and
Type-II diagrams.

Figure 18.: Nodes sorted by size.

3.4. Collecting Performance and Preference Data

A software tool developed for the purpose of conducting empirical studies (Blake et al.
2012, 2014a,b) was used to collect performance data, specifically time and accuracy
data. Initially, the software collected demographic information about the participants,
as well as an experimental reference which recorded the group to which the participant
belonged, and a participant reference which allowed us to mark the data collected with
the respective participant. Demographic data included the participant’s gender, age,
and whether they have any sight-based disabilities.

The software’s design allowed us to display diagrams and their corresponding ques-
tions to participants whilst also capturing the answers submitted for each question
and the time taken to complete each question. The time taken to complete a ques-
tion was determined from the instant a question was presented until the instant a
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participant had submitted the answer by clicking ‘Submit’. Figure 19 shows how the
diagram, question and available answers were presented on screen. A pause screen was
presented to the participant prior to starting the next question . The ‘continue’ but-
ton allowed them to choose when they wanted to proceed to the next question. This
ensured that they were ready to start the next question when it was displayed. Each
question was subject to a two minute time limit in order to ensure that the experiment
sessions finished within a reasonable time. If the time limit was reached, no answer
was submitted and the software moved to the pause screen, allowing them to control
when they started the next question. For each participant, the software randomised
the order in which the questions were presented, to reduce the impact of any learning
effects as compared to using a fixed predetermined question order.

Figure 19.: Example of how questions were presented to users.

4. Study Phases and Execution

This section outlines the various phases we undertook to collect and analyse the data
we captured.

4.1. Training Phases

In order to collect performance data, the participants first had to undertake two phases
of training, one focusing on how to interpret LineSets and the other on how to use the
data collection software. These two phases were the first of a four phase experiment.

The first phase of training introduced the participants to the concept of LineSets,
the treatment that they would be exposed to, and the types of questions that they
would be answering in the experiment. Hard-print copies of twelve example diagrams,
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distinct from those used for performance and preference data collection, were shown
to the participant, two for each task type and its variants. For each task type variant,
the facilitator first explained how to answer the question with one of the diagrams.
The participant was then shown the other diagram and asked to answer a question by
themselves. They were given the time to study the diagrams carefully and thoroughly
as well as being given the opportunity to ask questions if any aspect of the diagram
or question was unclear. If they answered a question incorrectly, the facilitator would
explain to the participant where they went wrong. If the facilitator was satisfied that
the participant understood how to correctly derive the answer, the participant could
proceed.

The second training phase introduced the data collection software in order to allow
participants to familiarise themselves with the interface. A total of six questions, one
of each task type variant, was asked. No time limit was imposed on the questions in
this phase. Upon completion of the final training question, participants could proceed
to the first of two data collection phases if they wished to do so.

4.2. Data Collection Phases

Performance data was collected in the third phase of the experiment process. Answers
for each of the 24 questions were recorded by the data collection software as well as the
time taken to complete the task. In this phase, the software incorporated a two minute
time limit for each question to ensure that the study did not proceed indefinitely. Upon
the completion of the final question, participants were asked to rate how difficult they
found the questions. A series of seven intervals, ranging from very difficult to very
easy, was used to indicate the participants’ answers.

Preference data was collected in the fourth and final phase of the experiment pro-
cess. Participants were presented with printed copies of LineSets drawn to reflect the
treatments of the experiment and asked to rank them against the series of questions,
as given in section 3.1.5. Participants could jointly rank the two diagrams if they so
wished. The diagrams were affixed at eye level to a wall directly in front of the partic-
ipant and their answers were recorded. The end of the experiment session was marked
when the participant answered the last question.

4.3. Study Execution

We conducted a pre-pilot study before the pilot study to ensure that the design was
not too difficult or time consuming to complete. The pre-pilot involved members of
the omitted for anonymity in the review process who are expert users. When
satisfied with our initial design, we then carried out a pilot test with participants who
were representative of those we would recruit for the main study. Six participants were
initially recruited for this phase of the process. Data collected from the pilot study
found unexpected results for three questions. A low accuracy rate for question 17
exposed a mistake in the way this question had been encoded in the research software.
This was subsequently revised. Although question 18, ‘How many friends do the people
with the most friends have?’, did not accrue a low rate of accuracy, the diagrams did
however display the node in question with the wrong size applied to it. The node was
consequently changed to reflect the correct size for the number of edges connected to
it. Question 24, ‘How many people who bough Nokia also bought Apple?’, displayed
diagrams that showed two sets with an Apple label. This was rectified to only show
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the correct set as Apple and the other was renamed. When we were satisfied with our
experimental design, we proceeded to recruit 60 participants for the main study.

All participants were provided with a consent form and debrief sheet which provided
them with all of the necessary details about the session in which they took part and
how they would be able to access the results when they were made available. To
ensure all participants were equally treated during the sessions, a script covering the
introduction, training, data collection and debrief phases was generated and followed
throughout each session. The material helped ensure that participants were informed
consistently of the syntax and semantics of LineSet diagrams, the purpose of the study,
their role during the study and their responsibilities after the experiment.

All participants were randomly allocated to one of the treatment groups; these
groups were of equal size. All participants were students from the omitted for
anonymity in the peer review process consisting of both undergraduates and
postgraduates. The experiment took place within a usability laboratory between the
hours of 9am and 6pm on weekdays. Participants were free from noise and distraction
in this environment. The same equipment and room layout was used throughout the
study in order to ensure that sessions were carried out under the same conditions. We
limited each session to one participant at a time in order to avoid possible distractions,
the only other person present was the study facilitator. The sessions lasted approx-
imately 30 to 60 minutes and all participants were compensated with a £6 canteen
voucher. Participants were also asked not to discuss the details of the study with those
yet to participate.

5. Results: Performance Data

In this section, the collected performance data and preferential data gathered during
the study is analysed. Data were collected from 60 participants (48 M, 11 F, one
participant chose not to disclose their gender). Their average age was 23 (age range 18
to 36) and no participants identified as suffering from colour blindness. Accuracy was
considered to be more important than time in terms of a performance indicator. This
is because the time to complete a task is redundant if the answer is ultimately wrong.
Leading on from this, we only analyse time data for responses where a correct answer
was provided. As is typical, differences were considered to be significant if p 6 0.05.

Prior to the main analysis, a preliminary analysis was performed to identify any
outliers in the data. Participant 23, who was in the Treated group, had a noticeably
lower level of accuracy than the other participants with just 7 correct answers, whereas
the lowest number of correct answers accrued by any other participant was 13. The
accuracy rate of participant 23 was 25%, and we therefore posit that this person was
merely guessing the answer to each question. We must be mindful of the impact of the
outlier on the statistical analysis. Thus, after performing our statistical analysis, we
will determine whether any result is altered by the removal of participant 23’s data. If
the original result changes (e.g. a significant result becomes not significant) then this
will call into question the robustness of our original result.

5.1. Overall Analysis

A total of 1, 054 correct answers were accumulated across both treatment groups of
which the Default treatment accrued 511 (71.0%) and Treated group accrued 543
(75.4%); there were 369 incorrect responses and a total of 17 timeouts (questions that
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were not answered within the two minute limit) with the Default group accruing 15
of them, leaving 2 accrued by the Treated group. These accuracy rates indicate that
there was not a ceiling or floor effect. This suggests that the tasks were not trivial
(the accuracy rate is not close to 100%) and not overly hard (the accuracy rate was
not close to 25% which would be expected if participants were guessing the answers).
These data thus suggest that the tasks required some cognitive effort to perform, as is
required for a study such as this. Conducting a Kruskal-Wallis test showed that there
were no significant differences in overall accuracy (p = 0.057) between the Default and
Treated groups. The significance of the overall accuracy result changed as a result of
the outlier being removed (p = 0.010), which suggests that the Treated group may, in
fact, have performed significantly more accurately.

Of the 1, 054 correct answers that were recorded, the overall mean task completion
time was 24.66 seconds with a standard deviation of 18.11. The overall mean times for
the Default group and Treated group were 31.20 seconds (s.d. 20.88) and 18.50 seconds
(s.d. 12.19) respectively. The time data had to be checked for normality prior to any
ANOVA analysis. As expected with time data, they were significantly different from
normal. A base 10 log transformation was subsequently applied, resulting in data that
were not significantly different from normal (p = 0.202; skewness 0.11), which rendered
the data suitable for analysis. In order to determine whether significant differences in
task completion time existed between the two groups, we proceeded to perform an
ANOVA test. The results gave p = 0.000, indicating that a significant difference existed
between the two treatment group’s mean times. The significance of this result did not
change when the outlier was removed (p = 0.000), so the result can be considered
robust.

In summary, the time analysis supports our hypothesis that Treated LineSets sup-
port significantly better task performance than Default LineSets: users perform tasks
significantly more quickly using Treated LineSets, irrespective of the task type; see
Table 2. A notable effect size is seen with the time data: participants in the Default
group took, on average, 12.7 seconds longer to answer the questions correctly in com-
parison to the Treated group, an increase of approximately 69%. Regarding overall
accuracy, if we accept that the outlier impacted robustness and, in fact, there is a
significant difference then we would expect at least four more correct answers per 100
questions from participants using Treated LineSets than when using Default LineSets.
In conclusion, this study suggests that LineSets facilitate significantly improved task
performance when treated with uniformly distinct set-line colours, set-lines of varying
thickness and nodes of varying diameter.

5.2. Analysis by Task Type Variants

The analysis conducted for each task type follows the same structure as the overall
analysis and is summarised in Table 2. We found that four out of our six task-level
hypotheses are supported: for SIn Elements, ESS Max, ESS Min, and END Max. In
these four cases, the effect sizes for time were substantial with increases ranging from
44% to 193%. For SIn Sets there was no significant difference in either accuracy or
time performance. An interesting feature of our data is that the SIn Sets tasks had a
low accuracy rate of 45.8% for both groups. This unusual observation will therefore
be further discussed in section 7 to understand why this phenomena manifested. For
END Min tasks, Default LineSets were, unexpectedly, significantly more accurate.
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Table 2.: Summary of the task-level accuracy (A) and time (T) results.

Question Type
With Outlier No Outlier Results with Outlier

Default Treated F-Statistic p-value F-Statistic p-value Best Performance Effect Size

Overall (A) 511
720 = 71.0% 543

720 = 75.4% 0.057 0.010 – –

Overall (T) 31.20 (20.88) 18.50 (12.19) F1,948 = 55.42 0.000 F1,942 = 54.74 0.000 Treated 12.7 (69%)

SIn Elements (A) 80
120 = 66.7% 89

120 = 74.2% 0.204 0.160 – –

SIn Elements (T) 34.71 (22.55) 24.03 (10.83) F1,103 = 25.91 0.000 F1,102 = 26.00) 0.000 Treated 10.7 (44%)

SIn Sets (A) 55
120 = 45.8% 55

120 = 45.8% 1.000 0.808 – –

SIn Sets (T) 30.80 (12.57) 30.72 (19.63) F1,50 = 0.02 0.893 F1,50 = 0.02 0.893 – –

ESS Max (A) 101
120 = 84.2% 116

120 = 96.8% 0.001 0.000 Treated 13
100

ESS Max (T) 38.88 (26.59) 13.29 (10.00) F1,151 = 209.33 0.000 F1,150 = 203.39 0.000 Treated 25.6 (193%)

ESS Min (A) 89
120 = 74.2% 100

120 = 83.3% 0.083 0.033 – –

ESS Min (T) 33.40 (23.74) 11.80 (6.56) F1,123 = 118.81 0.000 F1,123 = 118.03) 0.000 Treated 21.6 (183%)

END Max (A) 67
120 = 55.8% 73

120 = 60.9% 0.433 0.403 – –

END Max (T) 34.19 (16.82) 22.52 (10.73) F1,76 = 4.38 0.039 F1,77 = 4.72 0.033 Treated 11.7 (52%)

END Min (A) 119
120 = 99.2% 110

120 = 91.7% 0.006 0.050 Default 8
100

END Min (T) 19.19 (9.01) 16.83 (6.99) F1,164 = 1.42 0.238 F1,164 = 1.42 0.238 – –

5.3. Results By Complexity Level

Table 3 further breaks down the analysis by the two task complexity levels. For low-
level complexity, Type I, we can see that Treated performed significantly faster, but
never more (or less) significantly accurately than Default, except for END Min tasks.
In this case, Default was significantly more accurate than Treated. However, when the
outlier is removed from the analysis, the significant difference is eliminated, with the
p-value increasing to 0.076. This leads us to suggest that the result – of Default being
more accurate than Treated for END Min tasks at the low complexity level – is not
robust.

For the high complexity tasks, Treated was always significantly better (more accu-
rate or faster) or not significantly worse (less accurate or slower) than Default. For
ESS Min tasks we found no significant difference at the high complexity level, but this
alters when the outlier is removed: the p-value reduces to 0.026. Therefore it is likely
that, in fact, Treated is significantly more accurate than Default for these tasks.

5.4. Summary of Results

Of our seven initial hypotheses – that overall and for the six task type variants, Treated
LineSets would support better performance than Default LineSets – five were sup-
ported by the analysis in table 2 with END Min being the exception. The result
summarised here:

Overall, participants performed significantly significantly faster using LineSets with
set-lines of varying colours and thicknesses, and nodes with varying diameter. For
high complexity tasks, there was also a significant accuracy benefit to using Treated
LineSets. These results suggests that manipulating the graphical properties of set-line
colour, line thickness and node size is beneficial for general task performance. The
effect size was large for time, with the Default group taking approximately 69% longer
overall than the Treated group overall. The effect size was notably higher for high
complexity tasks (82%) than for low complexity tasks (65%).

For tasks that required counting elements common to two sets (SIn Elements), partic-
ipants performed significantly faster using LineSets with set-lines of varying colours
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Table 3.: Summary of the task-level accuracy (A) and time (T) results per level of
complexity.
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and thicknesses and nodes with varying diameter. This time benefit was also seen at
both complexity levels, where Treated outperformed Default. At high complexity, there
was also a significant accuracy benefit to using Treated LineSets. With regard to the
effect size for time, the Default group took approximately 44% longer overall than the
Treated group. The effect size was notably higher for high complexity tasks (67%)
than for low complexity tasks (45%).

For tasks that required counting the number of sets that shared elements with a given set
(SIn Sets), no significant differences were observed overall. However, Treated Linesets
gave rise to significant time benefits for low complexity tasks. At the high complexity
level, a significant accuracy benefit was found when using Treated LineSets. This sug-
gests that, whilst the graphical manipulations are, unexpectedly, not beneficial overall
for these tasks, they do not hinder task performance when counting common elements
in sets. In addition, there is evidence to support the hypothesis that Treated LineSets
are more effective for SIn Sets tasks, due to the low complexity time result and the
high level complexity accuracy result.

For tasks that required the identification of the largest set (ESS Max), participants
performed significantly more accurately and significantly faster using LineSets with
set-lines of varying colours and thicknesses and nodes with varying diameter. The
time results are reinforced at both task complexity levels and the accuracy results are
also supported at the high task complexity level. The overall accuracy effect size was
13 (i.e. 13 more correct answers would be expected from the Treated group per 100
questions). In the case of time, the overall effect size was very notable, with the Default
group taking approximately 193% longer overall than the Treated group. Examining
the two complexity levels, the time effect size is unsurprisingly lower, at 171%, for low
complexity tasks and much higher at 227% for high complexity tasks.

For tasks that required the identification of the smallest set (ESS Min), participants
performed significantly faster using LineSets with set-lines of varying colours and thick-
nesses and nodes with varying diameter. Time benefits are also seen at both task com-
plexity levels. The overall effect size time was again notable, with the Default group
taking approximately 183% longer overall (146% for low complexity and 232% for high
complexity) than the Treated group.

For tasks that required counting number of edges connected to the node with highest
degree (END Max), participants performed significantly faster using LineSets with set-
lines of varying colours and thicknesses and nodes with varying diameter. They also
performed significantly faster using Treated LineSets for the low complexity tasks but
there was no significant difference for the high complexity tasks. With regard to the
overall effect size for time, the Default group took approximately 52% longer than the
Treated group overall (61% at the low complexity level).

For tasks that required counting number of edges connected to the node with smallest
degree (END Min), an overall significant difference in accuracy only was observed. We
found that Default LineSets were significantly more accurate both overall and for low
complexity END Min tasks, with the latter becoming insignificant after removal of the
outlier. This suggests that whilst the graphical manipulations are, unexpectedly, not
beneficial for these tasks, there is evidence to suggest that they hinder task perfor-
mance when counting edges connected to a node of low degree. The accuracy effect
sizes both indicate, overall and at low complexity, that we would expect 8 more correct
answers per 100 tasks using Default LineSets.

The strong take-away message is that Treated LineSets typically performed better
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than Default LineSets. This indicates that varying colour hues, varying set-line thick-
ness and varying node diameter can all be manipulated to LineSets’ advantage when
diagrams are generated automatically. Therefore our results lead to the recommenda-
tion that the LineSets software is extended to incorporate the use of varying colours,
line thicknesses and node sizes.

6. Results: Preference Data

Recall that participants were asked which of the two diagrams in figures 12 and 13,
reflecting the two treatments, was aesthetically preferable. They were also asked to
indicate their preferred diagram in respect of six questions corresponding to the six
different types of tasks they undertook in the performance phase of the study; details
were given in section 3.1.5. The data were subsequently analysed by performing a series
of Kruskal-Wallis test in order to rank the treatments for each of the seven preference
tasks. For all seven tests the p-value was 0.000, with Treated being highest ranked
(most preferred). These results show a clear significant preference for treated LineSets
both overall, in terms of aesthetics, and as the preferred option for answering the six
questions corresponding to the study tasks.

Of course, we must be mindful of the fact that we conducted a between group study,
and participants had just been exposed to exactly one of the two treatments. With
any between group study design, a preference phase such as this could be impacted by
the treatment by the treatment to which the participant had been exposed. Given the
overwhelming preference for the Treated diagrams, overall, it is not clear that there was
any significant influence arising from treatment exposure in the performance phase.
The bar chart in Figure 20 shows the breakdown of preference data across treatment
groups. Bar charts for the remaining six preference questions also show the breakdown
across groups.

The rankings were supported by written answers where participants explained their
choices. Firstly we focus on comments concerning overall aesthetic preference. Here 53
participants (of these, 28 were in the Treated group) preferred the treated diagram
(Figure 13), with the remaining 7 (of these, 5 were in the Default group) preferring
the default diagram (Figure 12); the data are illustrated in Figure 20. One theme
that emerged was that the treated diagram helped participants see the differences
between the sets more easily because of the uniquely distinguishable colours and the
varying sizes of the set-lines and nodes. This sentiment was expressed by about 45% of
participants. Some participants (10%) commented only on the colours of the treated
set-lines being helpful in distinguishing the sets. Other comments were less specific,
with 15% of participants noting that the treated diagram was easier to interpret at a
glance or clearer, with two participants stating that the treated diagram was easier to
read.

In cases where participants preferred the default diagram, 5% commented that it
was clearer because the varying thickness of the set-lines makes the treated diagram
harder to interpret. One participant commented that the default diagram was not
impeded by the varying set-line thickness seen in the treated diagram, which they felt
made the set intersections difficult to interpret. Lastly, 5% of participants found the
consistent use of size in the default diagram was visually neater.

These comments on the default diagram, combined with those for the treated dia-
gram, may suggest that varying set-line thickness is not always seen as beneficial or
aesthetically pleasing, by participants. We observe that, whilst participants were asked
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Figure 20.: Overall preferences.

Figure 21.: SIn Elements
preferences.

Figure 22.: SIn Sets pref-
erences.

Figure 23.: ESS Max pref-
erences.

Figure 24.: ESS Min pref-
erences.

Figure 25.: END Max
preferences.

Figure 26.: END Min
preferences.

for comments on aesthetic preference, many of the response themes above relate to us-
ing the diagrams for information extraction. We posit that this could be because they
were asked about aesthetic preference after undertaking the performance phase of the
study. Different preferences or comments might have been obtained if the participants
were about aesthetic preference before collecting performance data.

The next preference task was related to an SIn Elements question, where 45 partic-
ipants (17 in the Treated group) expressed a preference for using the treated diagram,
with the remaining 15 participants (2 in the Default group) preferring the default
diagram; the data are illustrated in Figure 21. Nearly half of the participants com-
mented that the reason for preferring the treated diagram was because the colours
helped to distinguish the sets more easily; interestingly, one participant preferred the
default diagram for the same reason. Varying set-line thickness in the treated diagram
was noted by 15% of participants to help them to differentiate the sets more easily.
Contrastingly, 12% preferred the default diagram because they believed it was easier
to see the set intersections with consistent set-line thicknesses and a further 3% felt
that the consistent set-line thickness helped them to see differences between the sets.

For the SIn Sets question, 44 participants (17 in the Treated group) expressed a
preference for using the treated diagram, with the remaining 16 participants (3 in the
Default group) preferring the default diagram: the data are illustrated in Figure 22.
The participants’ reasons followed similar themes to those for SIn Elements. Com-
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ments, by 53% of participants, stated a preference for the treated diagram due to its
use of colour and set-line thickness, which they believed helped them to distinguish the
sets more easily. Two participants stated that they found the treated colour scheme
easier to follow. Participants also preferred the treated diagram because they said it
was clearer (8% of participants) or because the varying thicknesses of the set-lines
helped them to see the differences between the sets more easily (8% of participants).
A further 15% found that the thickness of the set-lines grabbed their attention. Also
relating to set-line thickness, 12% felt that thickness was an indication of the answer,
therefore removing the need to count nodes along the set-line. Other participants found
that it was easier to just see the answer rather than count the nodes, the sets were
more distinguishable, there was no need to count the nodes, the colours made it easier
to distinguish between the sets and it was easier to find the answer (1 participant each
respectively).

The default diagram was preferred for a number of reasons: 11% of participants
found that it was easier to see the intersections between the sets with the consistent
set-line thickness; two participants believed that the default diagram was clearer and
a further two thought that the consistent thickness showed the differences between the
sets more easily. Interestingly, 5% of participants said that the default colour scheme
made it easier to distinguish the sets. One participant said that the default diagram
was clearer and another said that there was no benefit to using the treated diagrams
for these questions as the set-line thickness and node diameters were not useful for
finding the answer. One participant said that they felt the answer stood out more in
the default diagram and another participant’ gave this preference because they found
counting [sets] was easier than estimating.

The next preference task was related to an ESS Max question, where 58 participants
(29 in the Treated group) expressed a preference for using the treated diagram, with the
remaining 2 participants (1 in the Default group) preferring the default diagram; the
data are illustrated in Figure 23. There was a key theme in the comments associated
with this task: 50% of participants found the colours and thicknesses used in the
treated diagram helped them distinguish between the sets more easily. Focusing on the
thickness of the set-lines, 15% commented that the thickness grabbed their attention
and a further 12% found that thickness to give them an indication of the answer. A
further 8% of participants found the treated diagram to be clearer. Two participants
commented that the treated diagram was easier to interpret at a glance. Lastly, the
following comments were written by one participant in each case: it was easier see
and estimate the answer, it was simply easier to find the answer, the set-lines in the
treated diagram were more distinguishable, the colours made it easier to distinguish
between sets and, finally, that this treatment negated the need to count the nodes
on the set-lines. Where participants preferred the default diagram, two reasons were
included: the answer stood out to them more and they found it easier to count the
nodes along the set-lines.

For the ESS Min question, 58 participants (30 in the Treated group) expressed a
preference for using the treated diagram, with the remaining 2 participants (2 in the
Default group) preferring the default diagram; the data are illustrated in Figure 24.
73% of participants preferred the colours and thicknesses of the treated diagrams
because it helped them distinguish between the sets more easily. Only one participant
found the treated colour scheme to be the only factor in them preferring treated
diagrams for this question or found the treated diagrams to be easier to interpret at a
glance. 13% of participants found the set-line thickness to be the most useful aspect of
the treated diagram. A further 7% of participants simply found the data to be more
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clear in the treated diagrams. Only two participants preferred the default diagram for
the ESS Min task, saying that it was easier to count the points of intersection with
the consistent thicknesses.

For the END Max question, 55 participants (30 in the Treated group) preferred
using the treated diagram, with the remaining 5 participants (5 in the Default group)
preferring the default diagram; the data are illustrated in Figure 25. Regarding pref-
erence for the treated diagram, 48% of participants commented that the diameters of
the nodes grabbed their attention, so they did not need to spend time scanning the
diagram for the answer. A further 32% preferred the treated diagram because they
could more easily compare the differences in the nodes. One participant felt that they
did not need to count the edges with the treated diagram, and another three found
them easier to interpret at a glance which is why they preferred them for this rea-
son. Focusing on preference for the default diagram, 5% of all participants said they
preferred it because the felt it was easier to just count the edges or because the (non-
varying thickness of) the set-lines did not obscure the nodes. One participant said that
they preferred the default diagram because there was less interference with the other
items in the diagram.

The final preference question concerned an END Min question. Here, 51 partici-
pants (30 in the Treated group) preferred using the treated diagram for the END Max
question, with the remaining 9 participants (9 in the Default group) preferring the
default diagram; the data are illustrated in Figure 26. It was observed, by 40% of par-
ticipants, that the diameters of the nodes in treated diagrams grabbed their attention.
Like END Max tasks, 28% of participants said the treated diagram allowed them to
more easily compare the sizes of the nodes. Other participants preferred the treated
diagram because it was clearer (3%), easier to interpret at a glance (8%), that they
perceived the diagram to be bigger (3%), or found the colours useful to distinguish the
sets (8%). Concerning preference for the default diagram, 3% of participants said it
was because they found the presentation more clear, could see the differences between
the sets more easily or because the set-lines did not obscure the nodes. Interestingly,
one participant found it was easier to count the edges in the default diagram, and
another found that there was not enough difference between the sizes of the nodes
in the Treated diagram to allow them to effectively answer the question. A further
participant preferred the default diagram because it was more aesthetically pleasing.

7. Discussion

Our understanding of graphical manipulations in LineSets led to the hypothesis that
treating the set-lines with uniquely distinguishable colour hues, varying line thicknesses
and nodes with varying diameters helps users interpret information more quickly and
accurately. For most task types this was supported. When it was not, there was no
significant difference between the two treatment groups. We start by recalling that
the graphical choices were implemented because it was felt that they could facilitate
different types of tasks. We will consider the three categories of task in turn.

7.1. Set Intersection Tasks

Set-line colours were chosen to help users differentiate between sets (SIn tasks). Both
these tasks required nodes to be identified that were passed through by two (or more)
lines. For SIn Elements tasks, users had to count nodes that were passed through by two
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particular lines. For SIn Sets tasks, users had to count set-lines that shared a node with
a specified set-line. For SIn Sets tasks, low levels of accuracy were seen in particular for
two questions (numbers 17 and 22), where only 19 and 4 correct answers were collected
respectively, each out of 60 responses. Qualitative data collected through the preference
questionnaires suggested that participants sometimes found that the diagrams were
difficult to interpret as set-lines brushed nodes that were not part of that set. This
may therefore explain the very low levels of accuracy that were observed. Indeed, this
issue is exacerbated in Treated LineSets as the nodes are larger, therefore sometimes
making it difficult to determine whether a node belongs to a set. It is possible that the
accuracy advantage of making the set-lines distinguishable through the use of colour
is eliminated because of the increased difficultly of determining on which set-lines
nodes lie when the set-lines have varying thicknesses (but we are mindful that for SIn
Elements tasks, Treated LineSets still had a significant time advantage).

7.2. Extreme Set Size Tasks

Set-line thicknesses were chosen to help users compare set sizes (ESS tasks). When
interpreting Treated LineSets, for ESS tasks, we have turned what would be counting
tasks with the Default treatment into target detection tasks. These differ in that the
former requires users to count individual elements to elicit the answer whereas the
latter requires the user to identify a target element with a unique visual feature (Ariely
2001; Healey and Enns 2012); i.e., the user needs to identify the thickest or thinnest
set-line. Treated diagrams were found to be significantly more accurate than Default
for both ESS tasks. Preattentive properties are those visual stimuli that the eye and
the brain process in less than 250 milliseconds, and size is one such property (Healey
and Enns 2012): in our case, the visual targets can be found preattentively when
their dimension is varied. Therefore, these results may have been observed because
the differences between the set-line thicknesses were sufficiently salient that the user
was able to make a more accurate estimate, more quickly, of size differences in a
significantly quicker time instead of counting the elements along the set-lines. That is,
by making it possible to find visual targets preattantively, we have increased accuracy
and reduced time performance.

7.3. Extreme Node Degree Tasks

Node diameters were chosen to help users compare nodes’ degrees of connectivity
(END tasks). Just as with ESS tasks, END tasks can, in part, be considered target
detection tasks in which the user needs to find the largest or smallest node. However,
in this case even the Treated LineSets still required participants to count graphical
elements – they had to establish how many edges were incident to the target node.
Moreover, it could be considered that nodes with extreme degree still had some degree
of saliency, and could possibly be idenfitied pre-attentively as well; at the very least, it
would be clear that many nodes could be discounted as not necessary for completing
the task due to their non-extreme degree. Thus, in both cases, we could consider
the tasks to require both pre-attentive processing and counting in order to provide
a solution. The results for these tasks were varied. We found no overall significant
difference in accuracy between treatments for END Max tasks, but users performed
significantly faster with Treated LineSets. For END Min tasks we found, surprisingly,
that the Default treatment gave users a significant advantage in accuracy (but not
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time), with or without the presence of the outlier. Users in both groups had to count
to find the right answer, and counting is a potentially error prone task which we do not
believe is likely to be affected by varying node size, other than by the potential for very
small nodes to make the task more difficult. The smallest node diameter in a Treated
LineSet was 12 pixels, compared to 16 pixels for the Default. Equally, the significant
time performance benefit of Treated LineSets for the END Max task may suggest that
large nodes are particularly salient, making them faster to identify than in the Default
case. This would also help to explain the lack of significant time performance benefit
for the ESS min tasks, since small nodes are likely to be less salient.

8. Threats to validity

We identified the following threats to the validity of our study.
Carry-over effect occurs when the exposure to one treatment affects the results

obtained for another. We therefore used a between-group design in order to mitigate
these effects. Moreover, only participants who had not already taken part in a study
relating to this research (i.e. (Tranquille et al. 2016, 2017)) were invited to take part.

Learning effect was considered to be a threat if participants did not receive sufficient
and appropriate training prior to the data collection phase. All participants were
trained using both paper-based material and the software tool. Additional material
was added to the training script for participants in the Treated group so that they were
informed about the semantics associated with the graphical properties to which they
were exposed. Participants of the Default group were informed of the semantics of the
Treated graphical properties in phase 4 prior to preference data collection (the only
time they were exposed to this treatment). It was necessary to expose participants
the software tool during their training in order to ensure that they were familiar
with the environment prior to data collection. Questions similar to the performance
and preferential data collection phases were shown to participants during training to
ensure that they fully understood each type of question. Although each participant
group was shown diagrams that were topologically identical, they were exposed to the
treatment that corresponded to their group. Questions order was considered a threat
as a predetermined order to the questions could potentially afford a learning effect
and therefore bias the results. In order to reduce this, the research software presented
the questions to the participants in a random order.

The style of the question used in the study indicates, in part, the extent to which
the results generalize. We included a two variants of each task type from each category
to ensure that the type of questions were balanced within each category, as specified in
section 3.1. This ensured we were able to measure the effectiveness of both treatments
when finding the highest extreme value and the lowest extreme value, or counting
intersections between two or more sets, which could have had different levels of impact.

Fatigue was considered to be a threat as participants were required to repeatedly
answer questions for a considerable amount of time. We therefore designed the study
to last approximately 1 hour. This was deemed sufficient to train participants and
capture meaningful performance and preferential data without causing undue fatigue.
Participants were also given the possibility of resting between phases as well as between
individual questions, as specified in section 3.4

Motivation could be a threat if participants did not freely volunteer to take part
in the experiment. Consequently all participants were recruited on a completely self-
selecting basis. All participants were compensated with a £6 canteen voucher for their
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time and participation. They were also given the possibility of consulting the results
when published. Participants were advised that they could abandon the session at any
time if they so wished.

It was also felt important that the participants undertook the study same envi-
ronment, reducing variability, so the study took place in a dedicated laboratory that
was free from noise and distraction. The participants were exposed to the same hard-
ware, software and room configuration. They also took part one at a time in order to
eliminate the behavioural influences of having multiple participants at one time.

It was considered a threat if participants were not familiar with the context of the
information conveyed by the diagrams. In addition to the effort required to learn how
to interpret the LineSets, cognitive effort would be required understand the context
of the information being presented. We therefore chose an information context that
participants would be familiar with, as explained in section 3.1.

It was considered to be a substantial threat if any participants had pre-exposure
to the information conveyed in the diagrams when answering the questions. Therefore
it was important that all diagrams and questions were unique and not derived from
information available outside of the study. Similarly, it was considered to be a threat
if any participants discussed details of the study with those yet to participate: such a
discussion could afford them an advantage over the other participants and therefore
bias the results. To manage this, participants were asked not to discuss the study with
those yet to participate as explained in section 4.3. Materials used in the study were
only accessible during the experiment sessions.

Thus, our results should be taken to be valid within the constraints imposed on the
study design and related considerations.

9. Conclusion

Using Bertin’s perceptual theories relating to graphical choices, we identified both
colour and size as retinal variables can be controlled in LineSets to improve user task
performance. In particular, we found that controlling these variables in combination
was effective for a range of task types requiring participants to be sensitive to inter-
sections between sets, set cardinalities, and degrees of connectivity in the underlying
network. The result leads us to suggest that the default colours used in LineSets should
adopt different hues, not different values as is currently the default case. In addition,
the thicknesses of the set-lines should be varied so that they reflect set cardinalities
and, likewise, the diameters of the nodes should reflect degrees of connectivity. Since
these results were obtained using SNAP data and automatically generated LineSets,
we have confidence that the results are valid in real-world setting where automated lay-
outs are necessary. Hence, we show that varying visual properties that were previously
single valued improve the effectiveness of LineSets.

Future work could consider how to best layout the underlying network in the con-
text of LineSets. At present, LineSets overlay set-lines on a pre-drawn network that
is produced without regard to the grouping of the nodes into sets. This gives primary
spatial rights (Collins, Penn, and Carpendale 2009) to the network and could compro-
mise the layout of the set-lines. By considering, for example, the thickness of the lines
to pass through each node, more space could be made available around nodes so that
thick set-lines are less likely occlude nodes. In addition, the nodes could be placed to
allow effective routing of the set-lines, following Alper et al’s guide of making them
close to linear. We conjecture that linear set-lines are less likely to cause occlusion,
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which was alluded to as being problematic in the comments made in the preference
phase of our study. More generally, our studies show that varying these visual proper-
ties can help users understand data, and implies that for other visualization methods
(for instance, node-link diagrams or Euler diagrams), varying visual properties that
are currently single valued (such as line thickness or circle diameter) may be a fruitful
avenue of further research.
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