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Abstract

The identification of the network effect is based on either group size variation, the struc-

ture of the network or the relative position in the network. I provide necessary conditions for

identification of undirected network models based on the number of distinct eigenvalues of the

adjacency matrix. Identification of network effects is possible; although in many empirical situ-

ations existing identification strategies may require the use of many instruments or instruments

that could be strongly correlated with each other. The use of highly correlated instruments

or many instruments may lead to weak identification or many instruments bias. This paper

proposes regularized versions of the two-stage least squares (2SLS) estimators as a solution

to these problems. The proposed estimators are consistent and asymptotically normal. An

empirical application, assessing a local government tax competition model, shows the empirical

relevance of using regularization methods.

Keywords: High-dimensional models, Social network, Identification, Spatial autoregres-
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1 Introduction

This paper investigates the identification and estimation of social interaction models with net-

work structures and the presence of endogenous, contextual, correlated and group fixed effects

(see Manski (1993) or Liu and Lee (2010)for a description of these models). In his seminal

paper on network model estimation, Manski (1993) argues that solving the reflection problem

in identifying and estimating the endogenous interaction effects is of significant interest in so-

cial interaction models. He shows that the separate identification of the network effects, in a

linear-in-means model, is impossible. Following Manski (1993), the literature on identification

of network effects has proposed three main identification strategies. They are based on either

the variation in the size of the group of peers or on the structure through which peers inter-

act. The present paper, after proposing easy-to-check identification conditions based on graph

spectral decomposition1, investigates a robust to weak identification estimation strategy. Weak

identification can occur in limit cases for all the existing identification strategies.

The first method for identification was proposed by Lee (2007). He shows that both the

endogenous and exogenous interaction effects can be identified if there is sufficient variation

in group sizes. However, with large groups, identification can be weak in the sense that the

estimator converges in distribution at low rates (Lee (2007)). The low rate of convergence means

that we need a larger sample to have enough exogenous variation. Indeed as the group size

increase, the marginal effect of an individual on its peer becomes small and more observations

are needed for identification.

In a more general framework, Bramoullé, Djebbari, and Fortin (2009) investigate identi-

fication and estimation of network effect. They use the structure of the network to identify

the network effect. Their identification strategy relies on the use of spatial lags of friends’ (or

friends of friends’) characteristics as instruments. But, if the network is highly transitive (i.e.

if a friend of my friend is also likely to be my friend), the identification is also weak. Weak

identification can also occur if there are too many isolated individuals, the weak identification

correspond to the classical weak instruments as in Staiger and Stock (1997). This paper focuses

its attention on highly transitive networks that could lead to near rank deficiency and thus weak

identification.

More recently, Liu and Lee (2010) have considered the estimation of a social network where

the endogenous effect is given by the aggregate choices of an agent’s friends. They show that

1The main innovation of the paper, compare to Kwok (2019) who has found the same result independently is my

proof strategy.
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different positions of agents in a network captured by the Bonacich (1987) centrality measure

can be used as additional instrumental variables to improve estimation efficiency. The number

of such instruments depends on the number of groups, and can be very large. Liu and Lee

(2010) propose two-stage least squares (2SLS) and generalized method of moments (GMM)

estimators. The proposed estimators have an asymptotic bias due to the presence of many

instruments.

The existing papers in the literature of network model estimation use instrumental vari-

able (IV) methods or quasi-maximum likelihood method to estimate the network effects. The

present paper is interested in the use of IV when identification is weak in the sense of hav-

ing near rank deficiency on the set of instruments. We will show that, in the estimation of

peer effects using IV methods, highly transitive network or large group size imply the use of

highly correlated instruments (where the set of instrumental variables contains the included

and excluded instruments). If the Bonacich (1987) centrality measure are used the number

of instruments increase with the number of groups. In both cases, the structure of the inter-

action generates a weak identification issue. The weak identification problem comes from the

near-perfect collinearity of the first-stage regression.

Before characterizing the discussion on weak identification, this paper proposes simple-to-

check necessary conditions for identification based on the spectral decomposition of the network

adjacency matrix. It shows that the identification of the network effects is possible in many

cases. However, given that all exogenous variations come from the same adjacency matrix,

weak identification may be a concern. It proposes a regularized 2SLS estimators for network

models with spatial autoregressive (SAR) representations. Regularization techniques are used

to mitigate the finite sample bias of the 2SLS estimators stemming from the use of many or

highly correlated instruments. The regularized 2SLS estimators are based on three ways of

computing a regularized inverse of the (possibly infinite dimensional) covariance matrix of the

instruments. The regularization methods come from the literature on inverse problems (see

Kress (1999) and Carrasco, Florens, and Renault (2007)). The first estimator is based on

Tikhonov (ridge) regularization. The Tikhonov (ridge) regularization is known in the machine

learning literature for its ability to address near-perfect collinearity problems. The second es-

timator is based on the iterative Landweber-Fridman method. It has the same regularization

properties as the ridge method, with the advantage of being appropriate for larger-scale prob-

lems. The third estimator is based on the principal components associated with the largest

eigenvalues. The use of the principal components is very popular to estimate models with

factors. In the presence of many instruments, the use of few principal components can help
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reduce the first-stage regression dimension. The regularized estimators presented in the paper

depend on tuning parameters, I also proposed a data-driven method for its selection based the

estimation of an approximation of the mean square error of the estimator.

The regularized 2SLS estimators are consistent and asymptotically normal and unbiased.

The regularized 2SLS estimators achieve the semiparametric efficiency bound. However, the

consistency and asymptotic normality conditions require more regularization than in Carrasco

(2012). A Monte Carlo experiment, in supplement material, shows that the regularized estima-

tors perform well. In general, the quality of the regularized estimators improves as the density

of the network increases.

I demonstrate the empirical relevance of my estimators by estimating a model of tax com-

petition between municipalities in Finland. The size of the tax competition parameter seems

larger than what is suggested by Lyytikäinen (2012). However, the regularized estimators are

not statistically different from zero. This leaves the conclusion unchanged that tax competition

is absent between municipalities in Finland.

The large existing literature on network models focuses on two main issues: identification

and the estimation of the network effects. In his seminal work, Manski (1993) shows that linear-

in-means specifications suffer from the reflection problem, so endogenous and contextual effects

cannot be separately identified. Lee (2007) and Bramoullé, Djebbari, and Fortin (2009) propose

identification strategies for a local-average network model based on differences in group sizes

and structures. Liu and Lee (2010) show that the Bonacich (1987) centrality measure can also

be used as additional instruments to improve identification and estimation efficiency. Lee (2007)

and Bramoullé, Djebbari, and Fortin (2009) use the instrumental variables method to estimate

the parameter of interest. Liu and Lee (2010) propose a generalized method of moments (GMM)

estimation approach, following Kelejian and Prucha (1998, 1999), who propose 2SLS and GMM

approaches for estimating SAR models. The inclusion of the measure of centrality implies the

use of many moment conditions (see Donald and Newey (2001), Hansen, Hausman, and Newey

(2008) and Hasselt (2010) for some recent developments in this area).

In this paper, I assume that there are many instruments at hand (they are generated by

the structure imposed on the data), and therefore use a framework that allows for an infinite

number of instruments. Thus, this paper contributes to the literature on models for which the

number of instruments exceeds the sample size. In a linear model framework without network

effects, Carrasco (2012) proposes an estimation procedure that allows for the use of many

instruments; the number of instruments may be smaller or larger than the sample size, or even

infinite. Moreover, Carrasco and Tchuente (2016) show that these methods can be used to
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improve identification in weak instrumental variables estimation. Closely related papers also

include Kuersteiner (2012), who considers a kernel-weighted GMM estimator; Okui (2011), who

uses shrinkage with many instruments; and Bai and Ng (2010) and Kapetanios and Marcellino

(2010), who also assume that the endogenous regressors depend on a small number of factors

that are exogenous. Using estimated factors as instruments, they assume that the number of

variables from which the factors are estimated can be larger than the sample size. Belloni,

Chen, Chernozhukov, and Hansen (2012) propose an instrumental variables estimator under

the first-stage sparsity assumption. Hansen and Kozbur (2014) propose a ridge-regularized

jackknife instrumental variable estimator in the presence of heteroscedasticity, which does not

require sparsity, and with good sizes.

Another important focus in the instrumental variables estimation literature is on weak

instruments (see, for example, Chao and Swanson (2005) and Newey and Windmeijer (2009)).

In this paper, I assume that the concentration parameter grows at the same rate as the sample

size. However, I allow for the possibility of weak identification resulting from near-perfect

collinearity in the set of instruments. My framework is similar to Caner and Yıldız (2012), with

the difference that the near-singular design does not come for the proliferation of instruments,

but from the structure of the social or spatial interaction.

The paper is organized as follows. Section 2 presents the network model. Section 3 discusses

identification and estimation in network models. It proposes the regularized 2SLS approach

to estimating the model. The selection of the regularization parameter is discussed in Section

4. An empirical application on local government tax competition is proposed in Section 5.

Section 6 concludes. Supplementary material contains series of Monte Carlo evidence on the

performance of the proposed estimators for small samples.

2 The Model

The following social interaction model is considered:

Yr = λWrYr +X1rβ1 +WrX2rβ2 + ιmrγr + ur (1)

with ur = ρMrur + εr and r = 1...r̄, where r̄ is the total number of groups and mr is the

number of individuals in group r.

Yr = (y1r, ..., ymrr)
′ is an mr-dimensional vector that represents the outcomes of interest.

yir is the observation of individual i in group r. The total number of individuals in the sample

is n =
r̄∑
r=1

mr.
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Wr and Mr are mr × mr sociomatrices of known constants, and may or may not be the

same.

λ is a scalar that captures endogenous network effects. I assume that this effect is the same

for all individuals and groups. The outcomes of individuals influence those of their successors

in the network graph (the successors are usually a friends or peers).

In such a linear model, the parameter λ is usually interpreted as the partial effect of a

one-unit change in the explanatory variable on the outcome. The explanatory variable in the

present case is a product of the a sociomatrix Wr and friends’ outcomes Yr. If the sociomatrix

Wr is row-normalized, the endogenous network effect captured by λ represents the expected

change in the outcome of an individual if all his friends’ outcomes were changed by one unit.

This corresponds to the “local average” endogenous effect in the terminology of Liu, Patacchini,

and Zenou (2014). On the other hand, if Wr is not row-normalized, it is impossible to know

which intervention is the source of the exogenous change in WrYr (see Goldsmith-Pinkham and

Imbens (2013) and Angrist (2014) for a discussion on the causal interpretation of the network

effect). The unit variation in WrYr could come from a change in the allocation of friends, from

an intervention on friends’ outcomes or from both. This should be done in a specific manner to

obtain a unit change. Such a situation corresponds to the “local aggregate” endogenous effect

in the terminology of Liu, Patacchini, and Zenou (2014).

My model specification allows for the use of the “local average” and “local aggregate” en-

dogenous effects. Micro-foundations developed in Liu, Patacchini, and Zenou (2014) suggest

that “local average” should be used in situations where the network effect comes from individ-

uals trying to conform to the social norm and the “local aggregate” for a situation where there

is leakage.

X1r and X2r are mr×k1 and mr×k2 matrices, respectively. They represent individuals’ ex-

ogenous characteristics. β1 is the parameter measuring the dependence of individuals’ outcomes

on their own characteristics. The outcomes of individuals may also depend on the character-

istics of their predecessors via the exogenous contextual effect, β2. ιmr is an mr-dimensional

vector of ones and γr represents the unobserved group-specific effect (it is treated as a vector

of unknown parameters that will not be estimated).

Aside from the group fixed effect, ρ captures unobservable correlated effects between indi-

viduals and their connections in the network.

εr is the mr-dimensional disturbance vector, εir are i.i.d. with a mean of 0 and variance of

σ2 for all i and r. I define Xr = (X1r,WrX2r).

For a sample with r̄ groups, the data is stacked up by defining V = (V ′1 , ..., V
′
r̄ )′ for V =
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Y,X, ε or u.

I also define W = D(W1,W2, ...,Wr̄) and M = D(M1,M2, ...,Mr̄), ι = D(ιm1 , ιm2 , ..., ιmr̄),

whereD(A1, .., AK) is a block diagonal matrix in which the diagonal blocks aremk×nk matrices,

denoted as Ak, for k = 1, ...,K.

The full sample model is

Y = λWY +Xβ + ιγ + u (2)

where u = ρMu+ ε.

I define R(ρ) = (I − ρM). The Cochrane-Orcutt-type transformation of the model is

obtained by multiplying equation (2) by R = R(ρ0), where ρ0 is the true value of the parameter

ρ:

RY = λRWY +RXβ +Rιγ +Ru.

This leads to the following equation:

RY = λRWY +RXβ +Rιγ + ε. (3)

When the number of groups is large, there exist an incidental parameter problem (see

Neyman and Scott (1948) and Lancaster (2000) for a discussion of the consequences of this

problem).

To eliminate unobserved group heterogeneity, I define

Jr = Imr − (ιmr ,Mrιmr)[(ιmr ,Mrιmr)
′(ιmr ,Mrιmr)]

−(ιmr ,Mrιmr)
′

whereA− is the generalized inverse of a square matrixA. In general, Jr represents the projection

of an mr-dimensional vector on the space spanned by ιmr and Mrιmr if they are linearly

independent. Otherwise, Jr = Imr −
1

mr
ιmr ι

′
mr , which is the deviation from the group mean

projector.

The matrix J = D(J1, J2, ..., Jr̄) is then pre-multiplied by equation (3) to create a model

without the unobserved group-effect parameters:

JRY = λJRWY + JRXβ + Jε. (4)

This is the structural equation, and we are interested in the estimation of λ, β1, β2 and ρ. The

discussions on the identification and estimation of λ, β1 and β2 in this paper will be carried

out under the assumption of a consistent estimation of ρ.

I define S(λ) = I−λW . I assume that equation (2) is an equilibrium and that S ≡ S(λ0) is

invertible at the true parameter value. The equilibrium vector Y is given by the reduced-form

equation:

Y = S−1(Xβ + ιγ) + S−1R−1ε. (5)
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It follows that WY = WS−1(Xβ + ιγ) +WS−1R−1ε and WY is correlated with ε. Hence,

in general, equation (4) cannot be consistently estimated by ordinary least squares (OLS).

Moreover, this model may not be considered as a self-contained system where the transformed

variable JRY can be expressed as a function of the exogenous variables and disturbances.

Hence, a partial-likelihood-type approach based only on equation (4) may not be feasible.

In this paper, I consider the estimation of the parameters of equation (4) using regularized

2SLS.

3 Identification and Estimation of the Network Mod-

els

This section presents the identification and estimation of the network model parameters using

regularization techniques. It first proposes some new results on the identification of network

effect using the number of distinct eigenvalues of the adjacency matrix. Using some specific

social interaction models, I discuss the weak identification of network effects. I, then, propose a

regularized 2SLS model using three regularized methods (Tikhonov, Landweber-Fridman and

principal component). They are presented in a unified framework covering both a finite or

infinite number of instruments. The focus is on estimating endogenous and contextual effects

under the assumption of a preliminary estimator of the unobservable correlation between in-

dividuals and their connections in the network. I also derive the asymptotic properties of the

models’ estimated parameters.

3.1 Identification and Network Structure

The model presented in Equation(2) proposes an underlying structure assumed to have gener-

ated the data of the population from which our sample is drawn. The estimation strategy that

I propose later aims at making statements about the parameters of this model. To that end,

they shouldn’t exist many parametrization compatible with the observed data. Discussing con-

ditions under which a unique parametric characterisation exist is a considerable problem in the

estimation of network models (see Bramoullé, Djebbari, and Fortin (2009)) and, in econometrics

(see Dufour and Hsiao (2010) for a general discussion on identification).

The discussion on the identification is done under a number of assumptions.
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Assumption 1. The elements of εir are i.i.d. with a mean of 0 and variance of σ2, and a

moment of order higher than the fourth exists.

Assumption 2. The sequences of matrices {W}, {M}, {S−1} and {R−1} are uniformly

bounded (UB), and Sup‖λW‖ < 1.

Uniformly bounded in row (column) sums of the absolute value of a sequence of square

matrices {A} will be abbreviated as UBR (UBC), and uniformly bounded in both row and

column sums in absolute value as UB. A sequence of square matrices {A}, where A = [Aij ], is

said to be UBR (UBC) if the sequence of the row-sum matrix norm of A (column-sum matrix

norm of A) is bounded.

I take ε(ρ0, δ) = JR(Y − Zδ) = f(δ0 − δ) + JRWS−1R−1ε(λ0 − λ) + Jε, with f =

JR[WS−1(Xβ0 + ιγ0), X], where λ0, β0 and γ0 are true values of the parameters δ = (λ, β′)′

and Z = (WY,X).

Under Assumption 2 (i.e. that Sup‖λW‖ < 1), f can be approximated by a linear combi-

nation of (WX,W 2X, ...) , (Wι,W 2ι, ...) and X. This is a typical case where the number of

potential instruments is infinite.

I define Q = J [Q0,MQ0], where Q0 = [WX,W 2X, ...Wι,W 2ι, ...,X] is the infinite dimen-

sional set of instruments.

We can also consider the case where only a finite number of instruments, such as m1 < n,

is used.

For this case, I define

Qm1 = J [Q0m1 ,MQ0m1 ]

where Q0m1 = [WX,W 2X, ...Wm1X,Wι,W 2ι, ...,Wm1ι,X].

As discussed in Liu and Lee (2010), δ is identified if Q′m1
f has full column rank k + 1.

This rank condition requires that f has full rank k + 1. Note that this assumes that Qm1 is

full column rank (meaning no perfect collinearity between instruments). If instruments are

near-perfectly or perfectly collinear, f having full rank k + 1 does not ensure identification.

If Wr does not have equal degrees in all its nodes, is different from Mr and Wr is not row-

normalized, the centrality score of each individual in his group helps to identify δ. This is

possible even if β0 = 0. However, if Wr has constant row sums, then f = JR[WS−1Xβ0, X]

and the identification is impossible for β0 = 0. Under Assumptions 1 and 2, δ is identified.

The identification in the general case with an infinite number of instruments is possible if

the matrix with an infinite number of rows, Q′f , has full column rank. The identification is

based on the moment condition E(Q′ε(ρ0, δ)) = 0 (i.e. Q′f(δ0 − δ) = 0).
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For any sample of size n, rank(Q) ≤ n. If we assume that rank(QQ′) = n, then the full

column rank condition only requires that f has full rank k + 1, this is the same identification

conditions as in the finite dimensional case.

The identification of the model parameters relies on the structure of the network through

the adjacency matrix W . The adjacency matrix is an n × n matrix. Let τ1 ≥ τ2 ≥ ... ≥ τn

be its n eigenvalues. An eigenvalue could have multiplicity one or k depending on the number

of corresponding eigenvectors. Let define %w, to be the number of distinct eigenvalues of the

adjacency matrix. The results propose in proposition 1 to 3 apply to symmetric spatial and

adjacency matrix W . Undirected networks’ adjacency matrices is an example of a network

structure represented by a symmetric adjacency matrix.

Proposition 1 Consider a network model represented by Equation 2 with ρ = 0. If %w = 2,

then the network effects are not identified.

Proposition 1 implies that the identification of the network effect can be reduced to a spectral

analysis of the adjacency matrix. It provides an easy-to-verify condition for the identification

of the network effects under the assumption of network exogeneity. Indeed, if %w = 2, using

the Cayley-Hamilton theorem, I can show that there exist µ0 and µ1 non-null scalars such that

W 2 = µ0I + µ1W . Then, using proposition 1 from Bramoullé, Djebbari, and Fortin (2009) the

network effects are not identified. The result in Proposition 1 was found simultaneously and

independently by Kwok (2019) using a different proof strategy. The used of the network adja-

cency matrix’ spectral decomposition in a regression context has also been recently discussed

by Jochmans and Weidner (2016).

Proposition 2 Consider a network model represented by Equation 2 with ρ0 = 0 and ε(δ) =

J(Y −Zδ) = f(δ0−δ)+JWS−1ε(λ0−λ)+Jε, with f = J [WS−1(Xβ0 +ιγ0), X], where λ0 and

β0 6= 0 are true values of the parameters and δ = (λ, β′)′ and Assumptions 1 and 2 hold. Let %w

be the number of distinct eigenvalues of the adjacency matrix W. If [WX,W 2X, ...,W %w−1X,X]

is full rank column, the network effects are identified.

Proposition 2 gives a relationship between the identification of network effect and the spec-

tral decomposition of the adjacency matrix. If %w = 2 using the definition of X and applying the

Cayley-Hamilton theorem leads to the conclusion that [WX,X] is not full rank column. Thus,

JWX cannot be excluded from the structural equation and, therefore, can not serve as an in-

strumental variable for JWY . However, if the number of distinct eigenvalues is strictly greater

than 2, identification may be possible. For instance if %w = 3, ρ0 = 0 and [WX,W 2X,X] is
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full rank column then the network effect are identified. Indeed, JWX and JW 2X serve as

excluded instruments for JWY .

The full rank condition can be generalized to a necessary and sufficient condition, under

restrictive assumptions on the set in which the true model’s parameters belong. This possibility

is discussed in the proof of Proposition 2 in the appendix.

I now consider the case where there is spatial serial correlation. The following proposition

generalizes Proposition 1 and 2.

Proposition 3 Consider a network model represented by Equation 2, β0 6= 0 and Assumptions

1 and 2 hold. Let %w be the number of distinct eigenvalues of the adjacency matrix W . If

Q%w = [Q0%w ,MQ0%w ] where Q0%w = [WX,W 2X, ...W %w−1X,Wι,W 2ι, ...,W %w−1ι,X] is full

rank column, the network effects are identified.

A special case of a model with spatial serial correlation is one in which W = M . In such a

situation, proposition 3 becomes similar to Proposition 2. Otherwise, the identification of the

network effects could be achieved via the effect of unobserved shock on peers of peers via M .

Having spatial correlation provides a second source of exogenous variation.

The identification of the network effects seems to rest upon the possibility of having a full

rank column matrix Q%w = J [WX,W 2X, ...,W %w−1X,X]. The rank property of Q%w can be

measured by condition number of the matrix Q%wQ
′
%w . The condition number is the ratio

between the largest and the smallest eigenvalue of a symmetric matrix (see Öztürk and Akd-

eniz (2000) for the relation between ill-conditioned and multicollinearity). Large values of the

condition number correspond to situations of near-rank deficiency and near-non-identification

of the model’s network effects. I consider a model with near rank deficient Q%w matrix as

being weakly identified following the terminology of Dufour and Hsiao (2010). The following

subsection provides a discussion of the empirical contexts in which existing network effects

identification strategies may become weak.

3.2 Weak Identification in Network Models

Since Manski (1993), the identification problem in network models has been a major concern for

econometricians. After finding that separately identifying endogenous and exogenous interac-

tion effects in a linear-in-mean model is not possible, many subsequent studies have investigated

network structures in which identification is possible. The identification of the network effect

is achieved through group size variation or by exploiting the structure of the network. It is

notable that in all cases, additional information is required to overcome the reflection problem.
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Lee (2007) uses variations in group sizes to identify both the endogenous and exogenous

interaction effects. His identification relies on having sufficient variation in group size. For

example, if we assume that the we have two groups form m1 and m2 individual and we consider

the adjacency matrix formed as follows Wii = 0 and Wij =
1

mk − 1
as long as i and j belong in

to the same group k. W can be represented as a block diagonal matrix. Its distinct eigenvalues

are τ3 = − 1

m1 − 1
, τ2 = − 1

m2 − 1
and τ1 = 1. If the group sizes are equal, we have exactly two

distinct eigenvalues. And, the network effect cannot be identified. Different group sizes lead to

more than two distinct eigenvalues. The spectral decomposition of the adjacency matrix leads

to the same conclusion as in the comments from Bramoullé, Djebbari, and Fortin (2009) on

Lee’s identification with two groups of different same sizes. I can show that with group large

group size there is almost near-perfect collinearity between WX,W 2X, ...,W %w−1X and, X.

Or in other words, with large groups, the identification can be weak.

More precisely, let us consider the model presented in Section 2. To focus the discussion on

the possibility of weak identification, I will consider the version of the social interaction model

without spatial serial correlation.

For an individual in group r, the model above gives

yir = λ

 1

mr − 1

mr∑
j 6=i

yjr

+ x1irβ1 +

 1

mr − 1

mr∑
j 6=i

x2jr

β2 + γr + εir. (6)

The reduced form after a within transformation is given by:

yir − ȳr = (x1ir − x̄1r)
(mr − 1)β1

mr − 1 + λ
− (x2ir − x̄2r)

β2

mr − 1 + λ
+

mr − 1

mr − 1 + λ
(εir − ε̄r) (7)

where ȳr, x̄1r, x̄2r, and ε̄r are the group average of the variables excluding individual i (see

equation 12 in Bramoullé, Djebbari, and Fortin (2009), and equation 2.5 in Lee (2007)). To

simplify the discussion, without loose of generality, let us assume that x1ir = x2ir. Thus,

yir − ȳr = (x1ir − x̄1r)
(mr − 1)β1 − β2

mr − 1 + λ
+

mr − 1

mr − 1 + λ
(εir − ε̄r) (8)

Each reduced form equation gives value for
(mr − 1)β1 − β2

mr − 1 + λ
. Identification of the parame-

ters in this model comes from the variations in
(mr − 1)β1 − β2

mr − 1 + λ
. Indeed, Bramoullé, Djebbari,

and Fortin (2009) show that we need at least three different group sizes to be able to identify

β1, β2 and, ν. The parameters are obtained after solving a system of linear equations. There

is a need for at least three distinct equations for a unique solution.

When the group size becomes large,
(mr − 1)β1 − β2

mr − 1 + λ
converges to a constant, which means

no or very small variation as m becomes large in the coefficient of the reduced form of all
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groups. An explanation is that with a large group, the marginal contribution of an additional

member of the group is relatively small, which means that the amount of exogenous variation

useful for identification vanishes as the group’s size increases. This situation is a case of weak

identification of the network effects.

The adjacency matrix associated with Lee’s model is a block diagonal matrix. The distinct

eigenvalues are given by τr = − 1

mr − 1
r = 1, ..., r̄ and τr̄+1 = 1. As the group sizes increase,

the difference between the eigenvalue τr decreases. Indeed, the number of distinct eigenvalues

becomes nearly-equal to two:
τr
τr1
→ 1 for r 6= r1 ; and the groups sizes increase. Thus, the

model’s parameters are weakly identified.

If the groups are large, based on Proposition 1; X, WX and W 2X will be nearly linearly

dependent, leading to weak identification.

Bramoullé, Djebbari, and Fortin (2009) use the structure of the network to identify the

network effect. Their work proposes a general framework that incorporates Lee’s and Manski’s

setups as special cases. The identification strategy proposed in their work relies on the use of

spatial lags of friends’ (i.e. friends of friends’) characteristics as instruments. The variables

WX,W 2X, andW 3X... are used as instruments forWY . The condition for identification is that

I,W and W 2 (or, as noted in Proposition 1 and 4 of Bramoullé, Djebbari, and Fortin (2009),

I,W,W 2 and W 3 in the presence of correlated effects) are linearly independent. Variation in

group size ensures that I,W and W 2 are linearly independent.

Following Bramoullé, Djebbari, and Fortin (2009) we define the transitivity of a network as

the ratio between the number of friends and the number of potential friends. If the network is

highly transitive (i.e. a friend of my friend is likely to be my friend too; W ∼W 2), identification

is also weak. The extreme case of a fully-connected graph has exactly two distinct eigenvalues.

An application of Proposition 1 implies that the network effects are not identified. In practice,

the near violation of the full rank condition of Proposition 2 is a potential source of weak

identification. In practice, using WX,W 2X and W 3X... as instruments can lead to near-

perfect collinearity, which implies weak identification (Gibbons and Overman (2012)). Because

it leads to near-perfect collinearity occurring in the first-stage regression of the endogenous

network effect. The use of regularization methods, such as ridge regression, has been shown

to solve these problems. It should be noted that robust to weak-instrument inference method

such as AR test may not be appropriate for this type of weak identification.

Liu and Lee (2010) also consider the estimation of a social interaction model. As in

Bramoullé, Djebbari, and Fortin (2009), they exploit the structure of the network to iden-

tify the network effect. In addition to WX,W 2X and W 3X..., the Bonacich centrality across
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nodes in a network is used as an instrumental variable to identify network effects and improve

estimation efficiency. The use of the Bonacich centrality measure usually leads to the use of

many instruments. The 2SLS estimates obtained with these instruments are biased because

of the large number of instruments used. Liu and Lee (2010) propose a bias-corrected 2SLS

method to account for this.

In this paper, I use regularization techniques. These high-dimensional estimation techniques

enable the use of all instruments and deliver efficiency with better finite sample properties (see

Carrasco (2012) and Carrasco and Tchuente (2015)). In this case, asymptotic efficiency can

be obtained by using many (or all potential) instruments. I use both the Bonacich centrality

measure and WX,W 2X and W 3X... as instrumental variables and apply a high-dimensional

technique to mitigate the problem of near-perfect collinearity resulting from network structure

or/and the bias of many instruments.

3.3 Estimation Using Regularization Methods

The parameters of interest can be estimated using instrumental variables. We can use a finite

number of instruments or all potential instruments. As the number of instruments increases,

estimation becomes asymptotically more efficient. However, a large number of instruments

relative to the sample size creates the many instruments problem (see, for example, Bekker

(1994), Donald and Newey (2001) and Han and Phillips (2006)). The parameter of interest can

also be weakly identified when a fixed number of instruments is used but the structure of the

interaction does not provide sufficient exogenous variation.

The 2SLS estimator with a fixed number of instrumental variables will be consistent and

asymptotically normal, but may be less efficient than using many instruments. In order to use

all potential instruments (Q), I use regularization tools. In addition to addressing the many

instruments bias in Carrasco (2012), my objective is to use regularization to address the weak

identification problem.

Let ε(ρ0, δ) = JR(Y − Zδ), with δ = (λ, β′)′ and Z = (WY,X). The estimation is based

on moments corresponding to the orthogonality condition of Q and Jε given by

E(Q′ε(ρ0, δ)) = 0 (9)

with the set of instrumental variables given byQ = J [Q0,MQ0] withQ0 = [WX,W 2X, ...Wι,W 2ι, ...,X].

They can be normalized or standardized. My identification results are conditional on ρ0. I

should first have a preliminary estimator ρ̃ of ρ. I take R̃ = I − ρ̃M to be an estimator of R.
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The regularized estimators use in this paper require the definition of some mathematical

objects. My notation follows existing notation in the literature on regularization methods. The

set of all potential instrumental variables (Q) is a countable infinite set. π is a positive measure

on N, and l2(π) is the Hilbert space of square-summable sequences with respect to π in the real

space. I define the covariance operator K of the instruments as

K : l2(π) → l2(π)

(Kg)j =
∑
k∈N

E(QjiQkigkπk)

where Qji is the jth column and ith line of Q. Under the assumption that |QjiQki| for all j, k and

i are uniformly bounded, K is a compact operator (see Carrasco, Florens, and Renault (2007)

for a definition). Indeed, under Assumption 2, the operator K is a Hilbert-Schmidt operator; I

assume that it has non-zero eigenvalues. I assume that the element of X are uniformly bounded.

I consider νj ; j = 1, 2, ... to be the eigenvalues (in decreasing order) of K, and φj ; j =

1, 2, ... to be the orthogonal eigenvector of K. K can be estimated by Kn, defined as:

Kn : l2(π) → l2(π)

(Kng)j =
∑
k∈N

1

n

n∑
i=1

QjiQkigkπk.

In the SAR model, the number of potential moment conditions can be infinite as in equation

(9). Therefore, the inverse of Kn needs to be regularized because it is nearly singular. By

definition (see Kress (1999), p. 269), a regularized inverse of an operator K is

Rα : l2(π) → l2(π)

such that lim
α→0

RαKϕ = ϕ, ∀ϕ ∈ l2(π).

I consider three different types of regularization schemes: Tikhonov (T), Landweber-Fridman

(LF) and principal component (PC). They are defined as follows:

• Tikhonov (T)

Tikhonov regularization is also known as ridge regularization:

(Kα)−1r = (K2 + αI)−1Kr

or

(Kα)−1r =
∞∑
j=1

νj
ν2
j + α

〈
r, φj

〉
φj

where α > 0 and I is the identity operator.
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• Landweber-Fridman (LF)

Let 0 < c < 1/‖K‖2, where ‖K‖ is the largest eigenvalue of K (which can be estimated

by the largest eigenvalue of Kn). Then,

(Kα)−1r =

∞∑
j=1

[1− (1− cν2
j )

1
α ]

νj

〈
r, φj

〉
φj

where
1

α
is some positive integer.

• Principal component (PC)

This method consists of using the first eigenfunctions:

(Kα)−1r =

1/α∑
j=1

1

νj

〈
r, φj

〉
φj

where
1

α
is some positive integer. In general,

〈
., .
〉

represents the scalar product in l2(π)

and in Rn (depending on the context).

The use of PC in the first stage is equivalent to projecting on the first principal compo-

nents of the set of instrumental variables.

In the case of a finite number of moments, Pm1 = Qm1(Q′m1
Qm1)−Q′m1

is the projection

matrix on the space of instruments. The matrix Q′m1
Qm1 may become nearly singular when

m1 gets large. Moreover, when m1 > n, Q′m1
Qm1 is singular. To address these cases, I consider

a regularized version of the inverse of the matrix Q′m1
Qm1 .

I use ψj to represent the eigenvectors of the n × n matrix Qm1Q
′
m1
/n associated with

eigenvalues, νj . For any vector e, the regularized version of Pm1 , Pαm1
is:

Pαm1
e =

1

n

n∑
j=1

q(α, ν2
j )
〈
e, ψj

〉
ψj

where for T, q(α, ν2
j ) =

ν2
j

ν2
j + α

; for LF, q(α, ν2
j ) = [1 − (1 − cν2

j )1/α]; and for PC, q(α, ν2
j ) =

I(j ≤ 1/α).

The network models suggest the use of an infinite number of instruments or more that the

number of individual, without a strong reason to discard some, which is the reason we are not

using instrument selection methods.

Following Carrasco and Florens (2000), I define the counterpart of Pα for an infinite number

of instruments as
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Pα = G(Kα
n )−1G∗

where G : l2(π) → Rn with

Gg =
(
〈Q1, g〉′ , 〈Q2, g〉′ , ..., 〈Qn, g〉′

)′
and G∗ : Rn → l2(π) with

G∗v =
1

n

n∑
i=1

Qivi

such that Kn = G∗G and GG∗ is an n × n matrix with a typical element

〈
Qi, Qj

〉
n

. Let φj ,

ν1 ≥ ν2 ≥ ... > 0, j = 1, 2, ... be the orthonormalized eigenvectors and eigenvalues of Kn, and

ψj be the eigenfunctions of GG∗.

Gφj =
√
νjψj andG∗ψj =

√
νjφj . Note that in this case for e ∈ Rn, Pαe =

∞∑
j=1

q(α, ν2
j )
〈
e, ψj

〉
ψj .

We can also note that:

v′Pαw = v′G(Kα
n )−1G∗w

=

〈
(Kα

n )−1/2
n∑
i=1

Qi (.) vi, (K
α
n )−1/2 1

n

n∑
i=1

Qi (.)wi

〉
. (10)

Our objective is to estimate the parameters of the model.

I consider Sn(k) =
1

n

n∑
i=1

(Y̌i − Žiδ)Qik with Y̌ = R̃Y and Ž = R̃Z.

And I denote (Kα
n )−1 as the regularized inverse of Kn and (Kα

n )−1/2 = ((Kα
n )−1)1/2.

The regularized 2SLS estimator of δ is defined as:

δ̂R2sls = argmin
〈
(Kα

n )−1/2Sn(.), (Kα
n )−1/2Sn(.)

〉
. (11)

Solving the minimization problem, we have

δ̂R2sls = (Z ′R̃′PαR̃Z)−1Z ′R̃′PαR̃Y. (12)

Equation (12) defines the regularized 2SLS. The regularized 2SLS for SAR models is closely

related to the regularized 2SLS of Carrasco (2012) and the 2SLS of Liu and Lee (2010). It

extends Carrasco (2012) by considering SAR models and differs from Liu and Lee (2010) in

that the projection matrix P is replaced by its regularized counterpart Pα.

The 2SLS estimators proposed in this paper are for cases with spatial serial correlation and

homoscedastic errors. Extending the regularization approach to deal with heteroscedasticity

is left for future research. Indeed, in a companion paper, I propose regularized GMM estima-

tors allowing the joint estimation of all parameters of the model, and the variance-covariance

estimator of the estimate is obtained using an approach similar to West and Newey (1987).
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3.4 Consistency and Asymptotic Distributions of the Regular-

ized 2SLS

The following proposition shows the consistency and asymptotic normality of the regularized

2SLS estimators. The following extra assumptions are needed.

Assumption 3. H = lim
n→∞

1

n
f ′f is a finite nonsingular matrix.

Assumption 4. (i) The elements of X are uniformly bounded, X has full rank k, E(ε|X) =

0, and lim
n→∞

1

n
X ′X exists and is nonsingular.

(ii) There is a ω ≥ 1/2 such that

∞∑
j=1

〈
E(Z(., xi)fa(xi)), φj

〉2

ν2ω+1
j

<∞.

Assumption 4 (ii) ensures that regularization allows us to obtain a good asymptotic approx-

imation of the best instrument, f .

Proposition 4 Under Assumptions 1-4 , ρ̃ − ρ0 = Op(1/
√
n) and α → 0. Then, the T, LF

and PC estimators satisfy:

1. Consistency: δ̂R2sls → δ0 in probability as n and α
√
n go to infinity.

2. Asymptotic normality:
√
n(δ̂R2sls − δ0)

d→ N
(
0, σ2

εH
−1
)

as n and α2√n go to infinity.

The convergence rate of the regularized 2SLS estimators for SAR is different from those

obtained without spatial correlation. For consistency in the SAR model, α
√
n must go to

infinity. The Carrasco (2012) regularized 2SLS estimator is consistent with a convergence rate

of nα
1
2 . Asymptotic normality is obtained if α2√n goes to infinity, which is also different from

the Carrasco (2012) asymptotic normality condition for 2SLS. The regularization parameter α

is allowed to go to zero slower than in Carrasco (2012) for consistency. Compared to Carrasco

(2012), more regularization is needed in order to achieve appropriate asymptotic behavior.

The reinforcement of these conditions is certainly due to regularization taking into account the

spatial representation of the data.

If the regularization parameter is constant, the asymptotic variance will be bigger. However,

asymptotically, the use of regularization should not be needed. It is therefore reasonable to

have α→ 0.

In Liu and Lee (2010), the 2SLS estimator is biased due to the increasing number of instru-

mental variables. Interestingly, the regularized 2SLS estimator for SAR models is well-centered
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under the assumption that α
√
n goes to infinity.

The bias of the 2SLS estimator in Liu and Lee (2010) is of the form

√
nb2sls = σ2tr(PαRWS−1R−1)(Z ′RPαRZ)−1e1.

Using Lemma 1 and 2 in the Appendix, I show that the 2SLS bias is of order
√
nb2sls =

Op(
1

α
√
n

), which goes to zero as α
√
n goes to infinity. The ability to choose the regulariza-

tion parameter means that we are able to control the size of α
√
n. Therefore, selecting the

appropriate regularization parameter is crucial.

The regularization methods presented involve the use of eigenvalues and eigenvectors. The

eigenvalues obtained can vary greatly because of the difference in the variance of instrumen-

tal variables in the model. For example, W 2X and Wι could have different variances. To

account for this difference, I use normalized instruments in the Monte Carlo simulation. We

can also standardize the instruments, which means that regularization methods will be able to

account for the difference in location and scale of the instruments. In addition, the regularized

estimator presented in this section depend on the regularization parameter, α. The choice of

this parameter is very important for the estimators’ behavior in small samples. In Section 4, I

discuss the selection of the regularization parameter.

4 Selection of the Regularization Parameter

This section discusses the selection of the regularized parameter for network models. I first

derive an approximation of the mean-squared error (MSE) using Nagar-type expansion. I

estimate the dominant term of the MSE, and select the regularization parameter that minimizes

this term.

4.1 Approximation of the MSE

The following proposition provides an approximation of the MSE:

Proposition 5 If Assumptions 1 to 4 hold, ρ̃ − ρ0 = Op(1/
√
n) and nα → ∞ for LF-, PC-

and T-regularized 2SLS estimators, then

n(δ̂R2sls − δ0)(δ̂R2sls − δ0)′ = Q(α) + R̂(α),

E(Q(α)|X) = σ2
εH
−1 + S(α), (13)
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and

r(α)/tr(S(α)) = op(1),

with r(α) = E(R̂(α)|X) and

S(α) = σ2
εH
−1

f ′ (1− Pα)2 f

n
+ σ2

ε

1

n

∑
j

qj

2

e1ι
′D′Dιe′1

H−1.

For LF and PC, S(α) = Op

(
1

nα2
+ αω

)
and for T, S(α) = Op

(
1

nα2
+ αmin(ω,2)

)
, with

D = JRWS−1R−1 and e1 is the first unit (column) vector.

For the selection of α, the relevant dominant term S(α) will be minimized to achieve the

smallest MSE. S(α) accounts for a trade-off between the bias and variance. When α goes to

zero, the bias term increases while the variance term decreases. The approximation of the

regularized 2SLS estimator is similar to Carrasco-regularized 2SLS. However, the expression of

the MSE is more complicated because of the spatial correlation.

4.2 Estimation of the MSE

The aim of this subsection is to find the regularized parameter that minimizes the conditional

MSE of γ̄′δ̂2sls for some arbitrary k + 1× 1 vector, γ̄. This conditional MSE is:

MSE = E[γ̄′(δ̂2sls − δ0)(δ̂2sls − δ0)′γ̄|X]

∼ γ̄′S(α)γ̄

≡ Sγ̄(α).

Sγ̄(α) involves the function f , which is unknown. We therefore need to replace Sγ̄ with an

estimate.

Stacking the observations, the reduced form equation can be rewritten as

RZ = f + v.

This expression involves n×(k+1) matrices. We can reduce the dimension by post-multiplying

by H−1γ̄:

RZH−1γ̄ = fH−1γ̄ + vH−1γ̄ ⇔ RZγ̄ = fγ̄ + vγ̄ (14)

where vγ̄i = v′iH
−1γ̄ is a scalar.

I use δ̃ to denote a preliminary estimator of δ, obtained from a finite number of instruments.

I use ρ̃ to denote a preliminary estimator of ρ, obtained by the method of moments as follows:

ρ̃ = arming̃(ρ)′g̃(ρ)
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where g̃(ρ) = [M1ε̃(ρ),M2ε̃(ρ),M3ε̃(ρ)]′ε̃(ρ),

M1 = JWJ − tr(JWJ)I/tr(J),

M2 = JMJ − tr(JMJ)I/tr(J),

M3 = JMWJ − tr(JMWJ)I/tr(J),

and

ε̃(ρ) = JR(ρ)(Y − Z ′δ̃).

δ̃ = [Z ′Q1(Q′1Q1)−1Q′1Z]−1Z ′Q1(Q′1Q1)−1Q′1Y , where Q1 is a single instrument. The residual

is ε̂(ρ) = JR(ρ̃)(Y − Z ′δ̃).

Let us denote σ̂2
ε = ε̂(ρ)′ε̂(ρ)/n, v̂γ̄ = (I−P α̃)R(ρ̃)ZH̃−1γ̄, where H̃ is a consistent estimate

of H and α̃ is a preliminary value for α, ṽγ̄ = (I − P α̃)R(ρ̃)ZH̃−1γ̄ and σ̂2
vγ̄ = ṽ′γ̄ ṽγ̄/n.

I consider the following goodness-of-fit criteria:

Mallows Cp (Mallows (1973))

$̂m(α) =
v̂′γ̄ v̂γ̄

n
+ 2σ̂2

vγ̄

tr(Pα)

n
.

Generalized cross-validation (Craven and Wahba (1979))

$̂cv(α) =
1

n

v̂′γ̄ v̂γ̄(
1− tr(Pα)

n

)2 .

Leave-one-out cross-validation (Stone (1974))

$̂lcv(α) =
1

n

n∑
i=1

(R̃Z γ̄i − f̂αγ̄−i)
2,

where R̃Z γ̄ = WH̃−1γ̄, R̃Z γ̄i is the ith element of R̃Z γ̄ and f̂αγ̄−i = Pα−iR̃Z γ̄−i . The n× (n− 1)

matrix Pα−i is such that the Pα−i = G(Kα
n−i)G

∗
−i are obtained by suppressing the ith observation

from the sample. R̃Z γ̄−i is the (n−1)×1 vector constructed by suppressing the ith observation

of R̃Z γ̄ .

Using (13), Sγ̄(α) can be rewritten as

Sγ̄(α) = σ2
ε

f ′γ̄ (I − Pα)2 fγ̄

n
+ σ2

ε

1

n

∑
j

qj

2

e1γ̄ι
′D′Dιe′1γ̄

 .
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Using Li (1986)’s results on Cp or cross-validation procedures, note that $̂(α) approximates

to

$(α) =
f ′γ̄ (I − Pα)2 fγ̄

n
+ σ2

vγ̄

tr
(
(Pα)2

)
n

.

Therefore, Sγ(α) is estimated using the following equation:

Ŝγ̄(α) = σ̂2
ε

[
$̂(α)− σ̂2

vγ̄

tr
(
(Pα)2

)
n

+ σ̂2
ε

1

n
(tr(Pα))2 e1γ̄ι

′D̃′D̃ιe′1γ̄

]
where D̃ is a consistent estimator of D. The optimal regularization parameter is obtained by

minimising Ŝγ̄(α) with respect to α. My selection procedure is very similar to Carrasco (2012),

and its optimality can be established using the results of Li (1986) and Li (1987).

The regularized 2SLS process and the selection of the regularization parameters are based

on a preliminary estimator of ρ. This means that if ρ is not correctly estimated, the estimation

of δ could be biased in an unpredictable direction. Also, the use of a cross-validation-type

method to choose the regularization parameter usually influences the quality of inference. This

is similar to the inference problem in non-parametric estimation (see Newey, Hsieh, and Robins

(1998) and Guerre and Lavergne (2005)). This paper focuses on the point estimation of the

parameter; post-regularization inference is left for future research.

5 Empirical Application: Local Tax Competition in

Finland

The large theoretical literature on local government tax competition can be divided in two

groups: efficient local taxation (Tiebout (1956)) and tax competition models departing from

Tiebout’s model (Lyytikäinen (2012)). The departure from Tiebout’s model leads to three

types of fiscal consequences: benefit spillovers, distorting taxes on a mobile tax base, political

economy considerations and information asymmetries (Lyytikäinen (2012)). While the causes

of local government tax interaction are certainly present in most legislation, the empirical

literature has long been divided on how to identify a causal local tax competition (interaction)

effect.

The identification problem here is a special case of Manski’s reflection problem. In the case

of municipalities in the same legislation, the network matrix can be represented by the spatial

matrix of neighbors. This neighborhood structure of the municipality can be considered as
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exogenous with respect to tax level. I propose a model to test the hypothesis of tax competition

between municipalities:

Titr = λWrTitr + β0Xitr + β1WrXitr + αr + εitr

The identification and estimation of the tax competition parameter (λ) is achieved, in a

large part of the empirical literature, via two strategies. The first strategy uses spatial lags

as instruments (friends of friends’ characteristics) in an instrumental variables approach, while

the second uses maximum likelihood estimation, where identification is achieved via model

specification. As pointed out by Gibbons and Overman (2012), the causality of the parameters

obtained in these cases is not easy to defend. The validity of the exclusion restriction is not

obvious and the correct specification of the model is not fully testable. As an alternative,

Gibbons and Overman (2012) propose using differencing coupled with instrumental variables

coming from exogenous policy variations.

Lyytikäinen (2012) estimates a tax competition parameter among Finnish local govern-

ments. He uses changes in statutory lower limits to property tax rates as a source of exogenous

variation to estimate the tax competition parameter (λ) on first difference model. He estimates

the following model:

Ti2000−Ti1999 = λ
∑
j 6=i

wij(Tj2000−Tj1999)+β0(Xi2000−Xi1999)+β1

∑
j 6=i

wij(Xj2000−Xj1999)+vi.

where wij = 1/ni with ni the number of neighbor of the individual i.

The second column in Table 1 replicates the estimate using the instrument from Lyytikäinen

(2012). He assumes that β1 = 0 and use only one excluded instrument. Other estimations are

carried out using spatial lag of the second-, third- and fourth-order and regularized estimators.

The instrument used in Table 3 of Lyytikäinen (2012) is one of the instruments used with

the spatial lag of other exogenous variables. I have augmented his model to account for an

exogenous network model.

The results in Table 1 suggest that the use of many instruments, by adding more spatial

lags, affects the results of the 2SLS estimator. Indeed, the condition number of the matrix of

instrument increases as a result of the introduction of these new instrumental variables. The

use of regularization seems to reduce the bias of the estimation. The simulation results indicate

that T-2SLS and L-2SLS are the best methods in terms of bias correction. The point estimates

obtained by both estimation methods are very similar, which suggests a bias correction relative

to the 2SLS. As the number of instruments increases, the standard errors decrease for the

2SLS as well as for the regularized 2SLS. However, the standard errors are still very large,
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Table 1: Estimates of the Tax Competition Parameter for Municipal Property Tax(n = 411)

Estimators/IVs Lyytikäinen (2012) Spatial lags 2 Spatial lags 2 and 3 Spatial lags 2, 3 and 4

2SLS 0.06 (0.07) 0.26(0.28) -0.02 (0.22) -0.03(0.17)

T-2SLS 0.01(0.004) 0.19(0.30) 0.18(0.31) 0.18(0.26)

L-2SLS 0.01(0.0005) 0.20(0.22) 0.18(0.33) 0.18(0.31)

PC-2SLS 0.01(0.004) 0.26(0.28) -0.02(0.22) -0.03(0.17)

Cond. number (
ν1

νmin
) 2123.97 2001 17800 1.3983e+05

Standard errors are in parenthesis. The change in general property taxation between 1999 and 2000 is the dependent variable. The independent variables are

changes in neighboring municipalities’ tax rates, the municipality’s own imposed increase, non-zero own imposed increase and changes in municipal

attributes, such as grants from the central government, disposable income per capita, the unemployment rate and age structure (see Table 3 of Lyytikäinen

(2012)) for more details). Tables of estimates of other coefficients are in the supplementary material. The last line of the table shows the condition numbers

of QQ
′

matrices for different instrument sets. The values are relatively large, suggesting a near-perfect collinearity problem in small samples.

which means that the tax competition effect may not be statistically significantly different

from zero. Note that inference using the standard errors of regularized estimators does not

account for regularization and should be interpreted with caution, given the relatively small

sample (n = 411 municipalities).2

This empirical example shows how regularized estimators can be used to improve the es-

timation of network models. The size of the tax competition parameter appears to be larger

than is suggested by Lyytikäinen (2012). The estimators are not statistically different from

zero. However, the regularized estimators (T-2SLS and L-2SLS) appear to be more stable as

the number of instruments increases, which suggests that the weak identification problem may

have been solved. The intensity of the network effect varies for the regularized PC-2SLS, a

potential reason for the this is the absence of factor structure in the set of instruments combine

with a near-singularity of the instruments set.

6 Conclusion

This paper uses regularization methods to estimate network models. It proposes easy-to-check

identification conditions based on the network adjacency matrix number of distinct eigenval-

ues. Regularization is proposed as a solution to the weak identification problem in network

models. Identification of the network effect can be achieved by using individuals’ Bonacich

2The regularization parameter, selected in this empirical example, is based on MSE minimization, thus is not

optimal for testing. Given that I have not proposed a theory for test and I am in a large sample, I use cautiously the

normal asymptotic distribution. In a companion paper on regularized GMM estimator for SAR models, a test theory

is developed.
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(1987) centrality as instrumental variables. However, the number of instruments increases with

the number of groups, leading to the many instruments problem. Identification can also be

achieved using the friend-of-a-friend’s exogenous characteristics. However, if the network is

very dense or group size is very large, the identification is weakened.

The proposed regularized 2SLS estimators based on three regularization methods help ad-

dress the weak identification and many moments problems. These estimators are consistent

and asymptotically normal. The regularized 2SLS estimators achieve the asymptotic efficiency

bound. I derive an optimal data-driven selection method for the regularization parameter. An

application to the estimation of tax competition in Finnish municipalities shows the empirical

relevance of my methods.

A Monte Carlo experiment, in supplementary material, shows that the regularized estimator

performs well. The regularized 2SLS procedures substantially reduce the bias from the 2SLS

estimators, specifically in a large sample. Moreover, the regularized estimator becomes more

precise and less biased with increases in the network density and in the number of groups.

These results show that regularization is a valuable solution to the potential weak identification

problem existing in the estimation of network models.

7 Acknowledgments

I would like to thank the editors and two anonymous referees for helpful suggestions and com-

ments that have led to substantial improvement of the paper. Comments from Marine Carrasco,

Eric Renault, James G. MacKinnon, Silvia Goncalves, Russell Davidson, Yann Bramoullé,
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A Appendix: Summary of notation

To simplify notation, I use the following:

P = Pα , qj = q(ν2
j , α)
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tr(A) is the trace of matrix A

ej is the jth unit (column) vector j = 1, ..., n

ef =
1

n
f ′(I − P )f

e2f =
1

n
f ′(I − P )2f ,

∆f = tr(ef ) and ∆2f = tr(e2f )

B Appendix: Lemmas

Lemma 0: (Lemma 4 and Lemma 5 of Carrasco (2012))

(i) tr(P ) =
∑
j

qj = O(1/α) and tr(P 2) =
∑
j

q2
j = o((

∑
j

qj)
2), Lemma 4 (i) of Carrasco

(2012),

(ii) ∆2f =

 Op(α
ω) for LF and SC

Op(α
min(ω,2)) for T

and f ′(I −P )ε/
√
n = Op(

√
∆2f ), Lemma 5 (i) and (ii)

of Carrasco (2012),

(iii) u′Pε = Op(1/α), Lemma 5 (iii) of Carrasco (2012),

(iv) E[u′Pεε′Pu|X] = (
∑
j

qj)
2σuεσ

′
uε + (

∑
j

q2
j )(σuεσ

′
uε + σ2

εΣu), Lemma 5 (iv) of Carrasco

(2012),

(v) E[f ′(I − P )εε′Pu/n|X] = Op(∆2f/
√
αn), Lemma 5 (viii) of Carrasco (2012).

Lemma 1:

(i) tr(P ) =
∑
j

qj = O(1/α) and tr(P 2) =
∑
j

q2
j = o((

∑
j

qj)
2).

(ii) Suppose that {A} is a sequence of n× n UB matrices. For B = PA, tr(B) = o((
∑
j

qj)
2),

tr(B2) = o((
∑
j

qj)
2), and

∑
i

B2
ii = o((

∑
j

qj)
2), where Bii are diagonal elements of B.

Proof of Lemma 1:

(i) Proof is in Carrasco (2012) Lemma 4 (i).

(ii) By eigenvalue decomposition, AA′ = Π∆Π′, where Π is an orthonormal matrix and ∆ is the

eigenvalue matrix. It follows that PAA′P ≤ νmaxP
2 with νmax being the largest eigenvalue.

It follows that tr(PAA′P ) ≤ νmaxtr(P
2) = op((

∑
j

qj)
2). By the Cauchy-Schwarz inequality,

tr(B) ≤ [tr(P 2)]1/2[tr(PAA′P )]1/2 = op((
∑
j

qj)
2). Also by the Cauchy-Schwarz inequality,

tr(B) ≤ tr(BB′) = tr(PAA′P ) = o((
∑
j

qj)
2).
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Lemma 2: Let C and D be two UB n× n matrix sequences.

(i) C ′PD = Op(n/α)

(ii) ε′C ′PDε = Op(1/α
2) and C ′PDε = Op(

√
n/α)

Proof of Lemma 2:

(i) By the Cauchy-Schwarz inequality, |e′iC ′PαDej | ≤
√
e′iC

′Cei

√
e′jD

′P 2Dej = O(n/α),

which implies that C ′PD = O(n/α).

(ii) E|ε′C ′PDε| ≤
√
E(ε′C ′P 2Cε)

√
E(ε′D′P 2Dε) = σ2

√
tr(C ′P 2C)

√
tr(D′P 2D) = O(

1

α2
).

By the Markov inequality, ε′C ′PDε = Op(
1

α2
).

By the Cauchy-Schwarz inequality, |e′jC ′PDε| ≤
√
e′jC

′Cej
√
ε′D′P 2Dε = Op(

√
n/α), thus

C ′PDε = Op(
√
n/α).

Lemma 3: Suppose ρ̃ is a consistent estimator of ρ0 and R̃ = R(ρ̃).

Then,
1

n
Z ′R̃′PR̃Z =

1

n
Z ′R′PRZ +Op[(ρ̃− ρ0)/α] and

1

n
Z ′R̃′PR̃R−1ε =

1

n
Z ′RPε+Op[(ρ̃− ρ0)/(α

√
n(1 + α

√
n))].

Proof of Lemma 3:

R̃ = R− (ρ̃− ρ0)M . Thus,

Z ′R̃′PR̃Z/n = Z ′R′PRZ/n

− (ρ̃− ρ0)Z ′M ′PRZ/n− (ρ̃− ρ0)Z ′R′PMZ/n

+ (ρ̃− ρ0)2Z ′M ′PMZ/n

Let us show that Z ′R′PMZ/n = Op(1/α) and Z ′M ′PMZ/n = Op(1/α).

Note that Z = [WS−1(Xβ0 + ιγ0), X] +WS−1R−1εe′1.

Under Assumption 3,

Z ′R′PMZ/n = O(1/α)+Op(1/
√
nα)+Op(1/nα

2) = Op(1/α) and Z ′M ′PMZ/n = Op(1/α)

by Lemma 2 (i).

Z ′R̃′PR̃ε/n = Z ′RPε/n

− (ρ̃− ρ0)Z ′M ′Pε/n− (ρ̃− ρ0)Z ′R′PMR−1ε/n

+ (ρ̃− ρ0)2Z ′M ′PMR−1ε/n

Using the same argument as in the previous case under Assumption 3,

Z ′R′PMR−1ε/n = Op(1/
√
nα+1/nα2) = Op[1/α

√
n(1+1/α

√
n)] , Z ′M ′Pε/n = Op[1/α

√
n(1+
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1/α
√
n)] and Z ′M ′Pε/n = Op[1/α

√
n(1 + 1/α

√
n)] by Lemma 2 (ii).

Lemma 4: If Assumptions 1-4 are satisfied and α→ 0, then

(i)Z ′RPRZ/n = H + op(1) if α
√
n→∞, and

(ii)Z ′RPε/
√
n = f ′ε/

√
n+ op(1) if α2√n→∞.

Proof of Lemma 4:

Let v = JRWS−1R−1ε and JRZ = f + ve′1

(i)
1

n
Z ′RPRZ =

1

n
f ′f − 1

n
f ′(I − P )f +

1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf

Let ef =
1

n
f ′(I − P )f , e2f =

1

n
f ′(I − P )2f , ∆f = tr(ef ) and ∆2f = tr(e2f ). By the

Cauchy-Schwarz inequality,
1

n
|e′if ′(I − P )fej | ≤

1

n

√
e′if
′fei

√
e′jf
′(I − P )2fej = O(

√
∆2f ).

From Carrasco (2012) Lemma 5 (i), ∆2f =

 Op(α
ω) for LF and SC

Op(α
min(ω,2)) for T

. Thus, ∆2f = op(1).

By Lemma 2 (ii),
1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf = Op(

1

nα2
+

1

α
√
n

) = op(1).

(ii) Z ′RPε/
√
n = f ′ε/

√
n− f ′(I − P )ε/

√
n+ e1v

′Pε/
√
n

By Lemma 5 (ii) of Carrasco (2012), f ′(I − P )ε/
√
n = Op(

√
∆2f ) and by Lemma 2 (ii),

e1v
′Pε/

√
n = Op(1/α

2√n).

C Appendix: Proofs of propositions

Proof of Proposition 1:

The Cayley-Hamilton theorem in linear algebra state that each square matrix is solution to

it characteristic polynomial. The adjacency matrix of the network in our case is given by

W , which is an n × n matrix. If it has two distinct eigenvalues, therefore, the characteristic

polynomial, p(τ) = det(τIn −W ), is a degree two polynomial. Thus, there exist a0, a1 and, a2

with a2 6= 0 such that a0In+a1W +a2W
2 = 0. In, W and W 2 are linearly dependant and from

Proposition 1 of Bramoullé, Djebbari, and Fortin (2009) the network effects are not identified.

Proof of Proposition 2:

Under Assumption 2 (i.e. that Sup‖λW‖ < 1), f can be approximated by a linear combination

of (JWX, JW 2X, ..., JW %w−1X) and JX. Indeed, using Caley-Hamilton theorem and the

fact that the characteristic polynomial has %w distinct eigenvalues, For any natural number

q > %w, W q can be written as a linear combination of In,W, ...,W
%w−1. Thus, WS−1 can be

written a linear combination of In,W, ...,W
%w−1. Therefore, f can be approximated by a linear

combination of (JWX, JW 2X, ..., JW %w−1X) and JX.

28



Let assume that [WX,W 2X, ...,W %w−1X,X] is full rank column.

Let Q = J [WX,W 2X, ...,W %w−1X,X] be the set of instrumental variables. The identification

of the network effects is based on the moment conditions E(Q′ε(ρ0, δ)) = 0 (i.e. Q′f(δ0−δ) = 0).

The parameters are point identified if the solution to this equation is unique. A necessary and

sufficient condition is that Q and f are full rank column. [WX,W 2X, ...,W %w−1X,X] is full

rank column if and only if Q is full rank column. Moreover, if [WX,W 2X, ...,W %w−1X,X] is

full rank column the f is of rank 1 + k.

Let assume that [WX,W 2X, ...,W %w−1X,X] is not full rank column. Consider

B = {b ∈ Rk×%w , Xb0 +WXb2 + ...+W %w−1Xb%w−1 = 0}

It can be observed that f = [JWS−1(Xβ0), JX] is equivalent to f = J [

%w−1∑
k=1

ςkW
kXβ0, X].

Consider

A = {a = (a0, a1) ∈ Rk × R, Xa0 + a1

%w−1∑
k=1

ςkW
kXβ0 = 0}

f is not full rank if and only if A 6= {0}.

In other word, f is not full rank column if and only if there exist b ∈ B such that b0 = a0,

bk = a1ςkβ0 with β0, ςk known constant for all k = 1, ..., %w − 1 and b 6= 0. The condition for

f not being full rank column of very restrictive. However, if we assume that there exist such a

sub set in A, then f is not full rank.

Note that in general, it is possible to have JWS−1(Xβ0 + ιγ0) linearly independent from

JX without [WX,W 2X, ...,W %w−1X,X] being full rank column. This happen if β0, λ and γ0

are not in the space parameter compatible with the null space of [WX,W 2X, ...,W %w−1X,X].

The condition [WX,W 2X, ...,W %w−1X,X] is full rank column is therefore a necessary but

not, in general, a sufficient condition for identification. But if we restrict the true value of the

parameter to be in the compatible set as in Bramoullé, Djebbari, and Fortin (2009) Result 1

(2) Page 54 the condition is necessary and sufficient.

Proof of Proposition 3:

The proof of proposition 3 is similar to that of proposition 2 with [WX,W 2X, ...,W %w−1X,X]

replaced by Q0%w = [WX,W 2X, ...W %w−1X,Wι,W 2ι, ...,W %w−1ι,X]. The identification result

in this case are conditional on a consistent preliminary estimation of ρ as in Liu and Lee (2010).

Proof of Proposition 4:

The regularized 2SLS estimator satisfies δ̂R2sls − δ0 = (Z ′R̃′PR̃Z)−1Z ′R̃′PR̃R−1ε.

Z ′R̃′PR̃Z/n = Op(1) +On(1/α
√
n) by Lemmas 3 and 4.

R̃′PR̃R−1ε/n = Op(1/
√
n) +Op[(1/(nα(1 + α

√
n)) by Lemmas 3 and 4.
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Then, δ̂R2sls − δ0 = op(1) as α
√
n → ∞ and α → 0. This proves the consistency of the

regularized 2SLS for SAR with many instruments:

√
n(δ̂R2sls − δ0) = (Z ′R̃′PR̃Z/n)−1[Z ′R̃′PR̃R−1ε/

√
n].

Using Lemmas 3 and 4, as well as the Slutzky theorem:

√
n(δ̂R2sls − δ0)

d→ N
(
0, σ2

εH
−1
)

if α2√n→∞ and α→ 0.

Proof of Proposition 5

Let us consider the MSE of the estimated parameters:

n(δ̂R2sls − δ0)(δ̂R2sls − δ0) = Ĥ−1ĥĥ′Ĥ−1

with Ĥ =
Z ′R̃′PR̃Z

n
and ĥ =

Z ′R̃′PR̃Y√
n

. Our objective is to approximate the MSE. To achieve

this, I use a Nagar-type approximation in order to concentrate on the largest part of the MSE.

By Lemma 3,

Ĥ = Z ′RPRZ/n

− (ρ̃− ρ0)Z ′M ′PRZ/n− (ρ̃− ρ0)Z ′R′PMZ/n

+ (ρ̃− ρ0)2Z ′M ′PMZ/n.

And Ĥ = Z ′RPRZ/n+Op((ρ̃− ρ0)/α). By Lemma 4, we have that

Ĥ =
1

n
f ′f − 1

n
f ′(I − P )f +

1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf +Op((ρ̃− ρ0)/α).

Let us define TH = TH1 + TH2 + TH3 , with TH1 = − 1

n
f ′(I − P )f , TH2 =

1

n
e1v
′Pve′1 and

TH3 =
1

n
f ′Pve′1 +

1

n
e1v
′Pf +Op((ρ̃− ρ0)/α), such that

Ĥ =
1

n
f ′f + TH1 + TH2 + TH3

= H + TH1 + TH2 + TH3 + op(1)

= H + TH + op(1).

Following similar arguments, we have

ĥ = f ′ε/
√
n− f ′(I − P )ε/

√
n+ e1v

′Pε/
√
n+Op[(ρ̃− ρ0)/(α(1 + α

√
n))].
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Let us also define T h = T h1 + T h2 with

T h1 = −f ′(I − P )ε/
√
n and T h2 = e1v

′Pε/
√
n+Op[(ρ̃− ρ0)/(α(1 + α

√
n))].

We therefore have

ĥ = f ′ε/
√
n+ T h1 + T h2

= h+ T h1 + T h2 + op(1)

= h+ T h + op(1).

Using a Nagar-type expansion on Ĥ−1,

n(δ̂R2sls−δ0)(δ̂R2sls−δ0) = H−1[I − THH−1][hh′ + hT h + T hh′ + T hT h
′
][I −H−1TH ]H−1+op(1).

Let us define A(α) = [I−THH−1]=(α)[I−H−1TH ] with =(α) = [hh′+hT h+T hh′+T hT h
′
].

Therefore, A(α) = =(α) + THH−1=(α)H−1TH − THH−1=(α)−=(α)H−1TH .

E[=(α)|X] = σ2[H − 2ef +
1

n
f ′Pve′1 +

1

n
e1v
′Pf + e2f ]

− E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X]

+ E[
1

n
e1v
′Pεε′Pve′1|X].

E(THH−1=(α)|X) = −σ2ef + op(1) and E(=(α)H−1TH |X) = −σ2ef + op(1).

E(THH−1=(α)H−1TH |X) = σ2HOp([
1

nα2
+

1

α
√
n

+ ∆f ]2)

= Op([
1

nα2
+

1

α
√
n

+ ∆f ]2).

We have

E(A(α)|X) = σ2H + σ2e2f + E[
1

n
e1v
′Pεε′Pve′1|X]

− E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X]

+
1

n
f ′Pve′1 +

1

n
e1v
′Pf +Op([

1

nα2
+

1

α
√
n

+ ∆f ]2).

From Lemma 5 (viii) of Carrasco (2012), we have

E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X] = Op(

√
∆2f/

√
αn)

and
1

n
e1v
′(P − P 2)f = Op(

√
∆2f/

√
αn).

From Lemma 5 (iii) of Carrasco (2012),
1

n
f ′Pve′1 +

1

n
e1v
′Pf = Op(

1

nα
).
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And, from Lemma 5 (iv) of Carrasco (2012),

E[
1

n
e1v
′Pεε′Pve′1/n|X] =

1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1 + op((
∑
j

qj)
2/n)

with D = JRWS−1R−1.

We can conclude that

n(δ̂R2sls − δ0)(δ̂R2sls − δ0) = Q(α) + R̂(α)

with E[Q(α)|X] = H−1σ2 +H−1

σ2e2f +
1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1

H−1 and

r(α) = E(R̂(α)|X) = op((
∑
j

qj)
2/n) +Op([

1

nα2
+

1

α
√
n

+ ∆f ]2 +
1

nα
+

∆2f√
αn

).

S(α) = H−1

σ2e2f +
1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1

H−1.

Note that r(α)/tr(S(α)) = op(1); my argument is similar to that used in Carrasco (2012).

This means that S(α) is the dominant part of the MSE of the estimation of the model using

regularized 2SLS.
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