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The adiabatic quantum algorithm has drawn intense interest as a potential approach to accelerating opti-
mization tasks using quantum computation. The algorithm is most naturally realised in systems which support
Hamiltonian evolution, rather than discrete gates. We explore an alternative approach in which slowly varying
measurements are used to mimic adiabatic evolution. We show that for certain Hamiltonians, which remain
frustration-free all along the adiabatic path, the necessary measurements can be implemented through the mea-
surement of random terms from the Hamiltonian. This offers a new, and potentially more viable, method of
realising adiabatic evolution in gate-based quantum computer architectures.

In the field of quantum computation, it has long been recog-
nized that there exists deep connections between ground states
of Hamiltonians and problems of fundamental interest to the
study of computational complexity [1, 2]. It is known that the
problem of finding the ground state of a Hamiltonian is hard
even in the case of one-dimensional lattices [3], and that in
general the k-local Hamiltonian problem is QMA-hard (and
hence NP-hard) for any k ≥ 2 [4, 5]. Over the years many
classical and, more recently, quantum algorithms have been
proposed to address this problem [6–12]. While all polyno-
mial time algorithms are destined to fail, under the assump-
tion that P 6=NP, such algorithms often work for Hamiltonians
of practical interest.

One such quantum algorithm is the adiabatic algorithm
[13], which is fundamentally rooted in the adiabatic theorem
[14]. Informally, the adiabatic theorem states that a system
starting in the ground state of some initial Hamiltonian will
stay close to the ground state of the system if the Hamilto-
nian is gradually changed over time, provided that this change
is continuous and sufficiently slow. This means that one can
prepare the ground state of an arbitrary Hamiltonian H f by
first preparing the ground state of some simple Hamiltonian
HI and then subjecting the system to a time varying Hamil-
tonian which slowly interpolates between HI and HF . In
its simplest form, the adiabatic algorithm considers a linear
interpolation between the initial and final Hamiltonians de-
scribed by H (s) = (1− s)HI + sHF for s ∈ [0,1], where s
is some simple function of time. This provides a heuristic ap-
proach for tackling satisfiability problems [13, 15]. In general,
the timescale required for this evolution can be exponentially
long, as it scales with the reciprocal of the gap between the
ground state and first excited state of the instantaneous Hamil-
tonians at each point in time. This reconciles the adiabatic ap-
proach with the fact that QMA is not known to be contained in
BQP, the class of problems efficiently solvable on a quantum
computer. Indeed, it is now known that the adiabatic model is
equivalent to circuit model quantum computation [16].
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Due to its wide applicability as a black-box optimization
technique, the adiabatic algorithm and similar techniques such
as quantum annealing have emerged as one of the key use-
cases for quantum processors [17]. The efficient implementa-
tion of such techniques raises architectural concerns, however.
While adiabatic evolution is in principle possible in many
monolithic quantum processor architectures, the Hamiltonians
possible are often restricted to 2-local interactions according
to some fixed graph [18]. While techniques have been devised
to overcome these limitations, they incur significant overhead
[19–21]. The situation is far worse when one considers the
case of distributed quantum computing architectures, such as
many promising ion-trap and quantum dot proposals [22, 23],
which implement entangling operations between nodes using
discrete operations rather than Hamiltonian dynamics. For
such systems, a direct implementation of adiabatic computa-
tion requires simulating Hamiltonian dynamics with discrete
logic gates, an approach which would incur prohibitive over-
head [24].

A potential solution to this problem is given by a relation-
ship between dynamics driven by measurement and adiabatic
evolution. Such an approach was first explored by Childs et
al in relation to combinatorial search problems [25]. Here
we show that it is possible to implement adiabatic-like evo-
lution using relatively simple measurements provided that the
Hamiltonian remains frustration-free at all points along the
adiabatic path. Our results are based on a connection be-
tween the adiabatic theorem and the quantum Zeno effect [26].
We begin by presenting an alternate proof of a result due to
Somma, Boixo and Knill which gave an adiabatic-like the-
orem for systems measured (or dephased) in the eigenbases
of slowly varying Hamiltonians [27]. We then show that for
frustration-free Hamiltonians, measurement of randomly cho-
sen individual terms of the Hamiltonian suffices to approxi-
mate measurement of the ground state, satisfying our crite-
rion for adiabatic-like evolution. For k-local Hamiltonians,
these measurement have constant complexity, as they corre-
spond to projectors on at most k qubits. This potentially opens
the door to a direct analogue of the adiabatic algorithm well
suited for distributed architectures, such as ion-trap imple-
mentations and similar systems currently under investigation
[28, 29]. Although the Hamiltonian paths we consider are
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always frustration-free, this does not limit their applicability
to solving hard problems. In particular, a recent algorithm
for solving 3-SAT instances more efficiently than classically
possible can be viewed as an instance of measurement-driven
evolution along such a frustration-free path [30, 31].

These results also provide some level of theoretical under-
standing of the mechanism behind a measurement-driven ap-
proach to SAT-solving proposed by Benjamin [30] which has
shown promising performance in numerical experiments.

We start by considering the evolution of the state of a quan-
tum system due to the measurement of a sequence of observ-
ables, which we treat as corresponding directly to Hamiltoni-
ans. We then prove that, provided the difference between pairs
of neighbouring Hamiltonians in the sequence has sufficiently
small norm compared to the energy gap between the ground
state and first excited state, a system prepared in the ground
state of the initial Hamiltonian will evolve to the ground state
of the final Hamiltonian with high probability.

Let HI and HF be the initial and final Hamiltonian respec-
tively. Also, let {Hn}0≤n≤N be an ordered set of intermediate
interpolating operators, such that H0 ≡HI and HN ≡HF .
For simplicity, we will assume that every Hn is normalized
such that the eigenvalues lie in the range between 0 and 1, with
the lowest eigenvalue being exactly 0. The assumption on the
range of the eigenvalues can be made without loss of general-
ity, as the Hamiltonians can always be rescaled by multiplying
by a constant and shifted by adding a multiple of the identity.
As such, our restriction to Hamiltonians with eigenvalues in
this range is a purely mathematical convenience, and places
no restriction on the class of physical Hamiltonians to which
this approach applies. We will make no assumption regard-
ing the degeneracy of the ground state space. Taking |ψ0〉 to
be a state in the ground state space of HI , and taking |ψn〉 to
denote the normalized projection of |ψn−1〉 onto the ground
state space of Hn, the evolution of the system then satisfies
the following constraint.

Theorem 1. Given a system initially in state |ψ0〉, the state
|ψN〉 can be obtained with probability p≥ 1−ε by measuring
the operators Hn in sequence for 1≤ n≤ N, provided that

max
1≤n≤N

(
‖ ∆Hn ‖2

∞

g(Hn)
2

)
≤ ε

N
, (1)

where g(Hn) is the gap between the eigenvalues correspond-
ing to the ground state space and first excited state of Hn,
and ∆Hn = Hn−Hn−1. Furthermore, if at each step n the
measurement of Hn is replaced with any procedure that pro-
duces a state ρn, such that the trace distance from |ψn〉〈ψn|
is at most δ

2N , with probability at least 〈ψn|ρn−1|ψn〉, then
the overall procedure yields a state ρN , with trace distance at
most δ

2N from |ψN〉〈ψN |, with probability p′ ≥ 1− ε−δ .

Proof. Taking Pn to be the projector onto the ground state
space of Hn, then the probability of successfully obtaining
|ψn〉 from |ψn−1〉 is given by pn = ‖Pn|ψn−1〉‖2. Then, the
probability of successfully projecting onto |ψN〉 during the fi-
nal measurement is bounded by p ≥ ∏n pn. The reason this

is a bound rather than an exact equality is due to the possi-
bility of reaching the correct final state through a sequence of
measurements fails to project onto the ground state of some
intermediate Hamiltonian.

Now, consider the probability of failure at step n, assuming
that all previous measurements have successfully projected
onto the ground state space of the associated Hamiltonian,

εn = ‖(I−Pn) |ψn−1〉‖2.

This can be turned into an inequality by making use of
Loewner order, noting that (I−Pn)≤ Hn

g(Hn)
I, and hence

εn ≤
∥∥∥∥ Hn

g(Hn)
|ψn−1〉

∥∥∥∥2

=

∥∥∥∥ ∆Hn

g(Hn)
|ψn−1〉

∥∥∥∥2

,

where the equality follows from the fact that Hn−1|ψn−1〉= 0.
This can be used to bound pn. By making use of the definition
of the infinity norm for matrices, we arrive at

pn ≥ 1− ‖ ∆Hn ‖2
∞

g(Hn)
2 .

The final success probability is then bounded by

p≥ 1−∑
N
n=1

‖∆Hn‖2∞
g(Hn)

2 .

Provided that Eq. 1 holds, we then have p≥ 1−ε as required.
When considering the modified procedure, the modified

probability of success at each step is bounded from below
by p′n ≥ Tr(Pnρn−1). This can be rewritten as p′n = pn +
Tr(Pn(ρn−1− |ψn−1〉〈ψn−1|)). Using the trace distance con-
straint, this implies p′n ≥ 1− ε

N −
δ

N and hence p′ ≥ 1− ε−δ

as required.

While Eq. (1) may appear unusual when compared to adi-
abatic conditions, due to the way in which N appears as a re-
ciprocal it can be transformed into a more conventional form
by making the substitution δNHn = N∆Hn, to obtain

N ≥ ε
−1 max

1≤n≤N

(
‖ δNHn ‖2

∞

g(Hn)
2

)
.

Suppose that for any N each of the measured Hamiltoni-
ans Hn is chosen along a fixed continuous path H (s), for
0 ≤ s ≤ 1, through the space of Hamiltonians, such that they
lie sequentially along this path at equal intervals. In this case,
for large N the finite difference δNHn tends to the deriva-
tive d

dsH (s), and is thus approximately constant for large N,
depending only on the path through the space of Hamiltoni-
ans. Note that N does not have dimensions of time, and so
this equation is not directly comparable to adiabatic theorems.
However, making the substitution T = N/max1≤n≤N δnHn
one obtains a more conventional adiabatic expression (simi-
lar to that in Ref. [32]).

While the result presented above provides a link between
the measurement of interpolating Hamiltonians and the adi-
abatic theorem, this does not imply that measurements are a
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viable alternative to Hamiltonian evolution for implementing
adiabatic quantum computation. After all, the measurement
of a Hamiltonian is a non-trivial task, and implementing it via
controlled unitary evolution and phase estimation [33] may
provide little advantage over directly implementing adiabatic
evolution. In order to increase the utility of this correspon-
dence, we now introduce a method for efficiently projecting
onto the ground state of frustration-free Hamiltonians.

Let H be a frustration-free Hamiltonian which is the sum
of m terms,

H = ∑
m
i=1 ωiHi,

where every term Hi is a tensor product of 2× 2 Hermitian
operators. By frustration-free we mean that the ground state
of H is the ground state of each of the m individual terms. We
assume that ∑

m
i=1 ωi = 1 and the eigenvalues of each term is

between 0 and 1, which can be done without loss of generality
as discussed earlier. For each Hi one can construct a POVM
measurement with measurement operators Ei =

√
I−Hi and

Ẽi =
√

Hi. Specifically, if the eigenvalues are either 0 or 1,
one can construct a projective measurement with projectors
Hi and I−Hi. The lowest energy subspace is obtained when
the measurement result is I−Hi.

Now, consider the following operation M on an arbitrary
quantum state ρ . First, an index 1 ≤ i ≤ m is selected at ran-
dom with probability ωi

1. A POVM measurement is then
performed on ρ with measurement operators Ei and Ẽi. If the
outcome of the measurement corresponds to application of Ẽi
then the procedure is said to fail. Otherwise, the resulting

state of the system is ρ ′i =
EiρE†

i
Tr(EiρE†

i )
. This latter case occurs

with probability p(s|i) = Tr(EiρE†
i ). Disregarding the choice

of i, the output state ρ ′ of a successful application of M will
be a mixed state consisting of a distribution over the various
possibilities for ρ ′i as follows. Let p(s) be the total success
probability. Since every i is chosen with probability p(i) =ωi,
we then have

p(s) = ∑
m
i=1 ωi Tr

(
EiρE†

i

)
= Tr(∑m

i=1 ωi (I−Hi)ρ)

= 1−Tr(H ρ) . (2)

From Bayes’ theorem, the output state ρ ′ is then given by

ρ
′ = ∑

m
i=1

p(i)p(s|i)
p(s) ρ ′i =

1
1−Tr(H ρ) ∑

m
i=1 ωiEiρE†

i .

We now show that successful application of the operation M
to a state ρ , with non-zero overlap with the ground state space,
will increase the projection onto the ground state space.

1 We note that these techniques work independent of how this probability
is chosen albeit with modified convergence rates, and choosing i accord-
ing to another distribution (such as uniform sampling) may lead to faster
convergence.

Lemma 1. Let H be a frustration-free Hamiltonian, as de-
scribed above. Let Pgs be the projector onto the ground state
space of H . Let ρ be an arbitrary density matrix and let ρ ′

be the resulting density matrix after a successful application
of the operation M as defined above to ρ . Then,

Tr
(
Pgsρ

′)= Tr(Pgsρ)

1−Tr(H ρ)
, (3)

and the probability that M is successful is 1−Tr(H ρ).

Proof. We begin by noting that

Tr
(
Pgsρ

′)= 1
1−Tr(H ρ)

Tr
(

Pgs ∑
m
i=1 ωiEiρE†

i

)
.

Using the cyclic property of trace, this can be rewritten as

Tr
(
Pgsρ

′)= 1
1−Tr(H ρ)

∑
m
i=1 ωi Tr

(
EiPgsE

†
i ρ

)
. (4)

The measurement operators can then be absorbed into Pgs.
Evaluating the summation then yields Eq. 3 as required. The
probability of success for applying M was previously calcu-
lated in Eq. 2.

We now consider what happens when M is applied not once,
but some number of times k.

Theorem 2. Let H be a frustration-free Hamiltonian. Let
Pgs be the projector onto the ground state space of H . Let
ρ be a density matrix with non-zero overlap with the ground
state space of H and let ρ(k) be the resulting density matrix
after a successful application of the operation M as defined
above to ρ sequentially k times. Then,

Tr
(

Pgsρ
(k)
)
≥
(

1+(1−g(H ))k
(

1
Tr(Pgsρ)

−1
))−1

Furthermore, Pgsρ
(k)Pgs ∝ PgsρPgs and the probability that all

k applications of M are successful is at least Tr(Pgsρ).

Proof. We will consider the ratio

R` =
Tr
((

I−Pgs
)

ρ(`)
)

Tr
(
Pgsρ(`)

) = Tr
(

Pgsρ
(`)
)−1
−1. (5)

By definition ρ(`) = M
(

ρ(`−1)
)

for all ` > 1, and hence from
Lemma 1 it follows that

R` =
(

1−Tr
(
H ρ

(`−1)
))

Tr
(

Pgsρ
(`−1)

)−1
−1.

Since Tr
(
H ρ(`−1)

)
≥ g(H )

(
1−Tr

(
Pgsρ

(`−1)
))

this
gives rise to the bound

R` ≤ (1−g(H ))

(
Tr
(

Pgsρ
(`−1)

)−1
−1
)
.
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Using Eq. 5 we then arrive at the recurrence inequality

R` ≤ (1−g(H ))R`−1.

Hence Rk ≤ (1−g(H ))k R0. From Eq. 5 we can then replace
Rk and R0 to obtain

Tr
(

Pgsρ
(k)
)
≥

(
1+(1−g(H ))k

(
1

Tr
(
Pgsρ

) −1

))−1

as required.
Turning to the projection of ρ(k) onto the ground state

space, from the definition of M we have

ρ
(k) =

∑i1...ik Eik . . .Ei1ρE†
i1
. . .E†

ik

∑ j1... jk Tr
(

E jk . . .E j1ρE†
j1
. . .E†

jk

)
and hence

Pgsρ
(k)Pgs ∝ ∑i1...ik PgsEik . . .Ei1ρE†

i1
. . .E†

ik
Pgs

= ∑i1...ik Eik . . .Ei1PgsρPgsE
†
i1
. . .E†

ik

= PgsρPgs.

The success probability for applying M any number of
times can be lower bounded by noting that M does not al-
ter states in the ground state space of H . Hence the trace
of the projection of ρ onto this subspace provides a lower
bound.

Theorem 2 implies that applying M sufficiently many times
satisfies the requirements of Theorem 1 for a procedure ap-
proximately projecting onto the ground state space of a Hamil-
tonian. This can be made quantitative by noting that if
k = α/g(H ) then (1−g(H ))k ≤ e−α . When used in the
context of Theorem 1 it will necessarily be the case that((

Tr
(
Pgsρ

))−1−1
)
� 1. In such cases it should suffice to

choose α ∝ logN to provide the necessary accuracy. Taken
together these two results can be seen as a direct analogue to
adiabatic quantum computation: The system is taken to ini-
tially start in the ground state of a particular Hamiltonian and
is driven to the ground state of a final Hamiltonian, following a
path which takes the system through the ground states of inter-
polating Hamiltonians. Here however, rather than continuous
evolution under the interpolating Hamiltonians, measurement
of individual terms of each interpolating Hamiltonian in turn
are used to keep the system close to the instantaneous ground
state.

In order to take advantage of this to prepare a ground state
of a particular Hamiltonian HN , we require a path from some
initial Hamiltonian H0 with an easy to prepare initial state to
HN , such that every intermediate Hamiltonian Hn is frustra-
tion free. An example of such a path was uncovered in [31] for
a specific class of Hamiltonians. However, it is natural to ask
whether such paths can be expected for arbitrary HN . We now
show how to construct such a path for any frustration free HN ,
such that H0 has as a ground state which is a product state.

Let HN = 1
m ∑i ωiHN,i be a frustration free Hamiltonian act-

ing on an n qubit system, and let |ϕN〉 denote its ground state
(and a ground state of all HN,i). Without loss of generality it
can be assumed that the lowest energy for each HN,i is zero.
We can expand |ϕN〉 as a sum over computational basis states
as

|ϕF〉= ∑
s∈{0,1}n

αs|s1s2...sn〉 ,

where si denotes the ith bit of s. We now define a one-qubit
operator

Q(θ) = Ry(−θ)|+〉〈0|+Ry(θ)|+〉〈1|.

This operator is invertible for 0 < θ ≤ π/4, and we will
take E(θ) = Q−1(θ)⊗n. Since Q−1(θ → 0) ∝ |−〉〈−| and
Q−1(π/4) = I2, we obtain E(θ → 0)|ϕF〉 ∝ |−〉⊗n and
E(π/4)|ϕF〉 = |ϕF〉. Take H(θ) = 1

m ∑i Hi(θ) with Hi(θ) =

Q−1(θ)⊗kHN,iQ(θ)⊗k, where k is the locality of HN,i and each
Q(θ) and Q−1(θ) acts only on a subsystem on which HN,i
acts non-trivially. It is straightforward to see that |ϕ(θ)〉 ∝

E(θ)|ϕF〉 is necessarily a ground state of H(θ) and each
Hi(θ) individually, since 〈ϕ(θ)|Hi(θ)|ϕ(θ)〉 = 0 and each
Hi(θ) is necessarily positive semi-definite. Hence H(θ) is
frustration-free for 0 < θ ≤ π/4.

We now show that as θ → 0, the ground state of H(θ) be-
comes a product state. To do this, we consider the action of
the operator Q(θ → 0) on Pauli matrices:

lim
θ→0

Q(θ)†IQ(θ) ∝ I +X ,

lim
θ→0

Q(θ)†XQ(θ) ∝ I +X ,

lim
θ→0

Q(θ)†ZQ(θ)→ 0,

lim
θ→0

Q(θ)†Y Q(θ)→ 0. (6)

Thus, the only terms that survive in H(θ) as θ → 0 amount
to tensor products of the identity and the projector |+〉〈+|.
Hence, the product state |−〉⊗n is in the ground state space
of H(θ → 0). Thus for any frustration free Hamiltonian, there
exists a continuous path of frustration free Hamiltonians inter-
polating between a Hamiltonian with a simple product ground
state and itself, and our results can be applied.

The results presented here hold even for Hamiltonians with
degenerate ground states and thus are broadly applicable. The
combination of these results provides a means for implement-
ing adiabatic-like dynamics using measurements of only mod-
est complexity, at least for frustration-free Hamiltonians. This
suggests that such evolution can be realised without need for
Trotterisation of Hamiltonian dynamics, and provides a poten-
tially more viable approach in quantum computers based on
discrete gates, especially in the context of distributed archi-
tectures. The measurement-driven approach also has a natural
advantage over adiabatic evolution, since the measurement re-
sults can be used to monitor whether the system has entered
an excited state. This allows the evolution to be run more
quickly than would otherwise be possible, since the algorithm
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can be restarted in the case that an excitation is detected. The
restriction to frustration-free Hamiltonians is used to ensure
that the ground state is simultaneously an eigenstate of each
possible measurement. Recent results have shown that such
paths are extremely useful in the context of solving 3SAT in-
stances [31]. However, removing this restriction represents an
interesting avenue for future research.
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