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Abstract.
Two recent and promising additions to the internet protocols are TCP-BBR and
QUIC. BBR defines a congestion policy that promises a better control in TCP
bottlenecks on long haul transfers and can also be used in the QUIC protocol.
TCP-BBR is implemented in the Linux kernels above 4.9. It has been shown,
however, to demand careful fine tuning in the interaction, for example, with the
Linux Fair Queue. QUIC, on the other hand, replaces HTTP and TLS with a
protocol on the top of UDP and thin layer to serve HTTP. It has been reported to
account today for 7% of Google’s traffic. It has not been used in server-to-server
transfers even if its creators see that as a real possibility.
Our work evaluates the applicability and tuning of TCP-BBR and QUIC for
data science transfers. We describe the deployment and performance evaluation
of TCP-BBR and comparison with CUBIC and H-TCP in transfers through the
TEIN link to Singaren (Singapore). Also described is the deployment and initial
evaluation of a QUIC server.
We argue that QUIC might be a perfect match in security and connectivity to
base services that are today performed by the Xroot redirectors.

1 Introduction

For many years the Internet was running on 5 protocols: IP for routing, TCP to reliably
transfer packets, SSL to authenticate and DNS to map names to addresses. UDP was the
forgotten protocol. And that was good enough in the 1980s and 1990s when bandwidths
were limited to kilobits and megabits per second.

The introduction of gigabit pipes brought the weight of TCP to the forefront. A naive
deployment of a CentOS 7 Linux test bed on a 100 Gbps using the best available Mellanox
switches will not give more than 20 Gbps speed. Extreme tuning and special drivers with a
kernel-by-pass will lead the venerable and light weight iperf3 to around 90 Gbps. Conclusion:

∗e-mail: rlopes@cern.ch
∗∗e-mail: v.franqueira@derby.ac.uk
∗∗∗e-mail: duncan.rand@jisc.ac.uk

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08026 (2019) https://doi.org/10.1051/epjconf/201921408026
CHEP 2018



tuning TCP is hard. And security in TCP is an afterthought. Security was not considered in
the scope of experiments leading to this paper1.

In this paper, we examine some pitfalls in the design of TCP that make achieving maxi-
mum usage of the available bandwidth hard and security a demanding task. We survey recent
additions in congestion control that look into improving TCP performance, and specifically
deploy and test TCP-BBR. We examine UDP limits and investigate the QUIC protocol. QUIC
has been presented by its creators as a tunnelling protocol aiming at reducing the latency
present in TCP, while providing security by design. We conjecture whether QUIC might be
an ideal protocol for science data transfers and, more specifically, for the WLCG.

2 The TCP protocol congestion control

The TCP protocol has built-in design choices that constrain any work to improve its perfor-
mance [1]:

• TCP has a mandatory slow start in the form of a 3-way handshake;

• Another 3-way handshake is added if safety is brought in through TLS.

• Limitations to performance are also present in its ACK pacing congestion control.

• TCP’s big quality in the form of guarantees of packet delivery impose limitations in the of
head-of-line blocking.

• TCP is unsafe by design.

• TCP is ungraceful in the presence of link errors leading to slow recovery and unfairness in
apportion of blame among streams sharing a same connection.

In this section we study how recent congestion control algorithms try to improve the ACK
pacing limitations of TCP. QUIC, examined in section 3, is investigated to try to understand
and overcome some of the other problems identified in the TCP protocol.

2.1 TCP limitations and congestion control

TCP has been described as an ACK pacing protocol, term borrowed from Geoff Huston [2],
also described in the TCP-BBR seminal paper by Cardwell et al. [3] (also in [4]).

The TCP congestion control uses a congestion window variable (cwnd) to limit the
amount of data it can send before receiving any ACK reply. The value of cwnd start at a
maximum segment size value is increased more or less faster depending on the algorithm
used. The value of cwnd can be increased until a rwnd value defined by the receiver or until
congestion is detected either by receipt of a duplicate ACK or a timeout. How the cwnd is
decreased from that point is also determined by the congestion control.

Recent developments in congestion control for TCP have concentrated in decreasing the
time to achieve maximum usage of the link available and keeping that maximum usage stable.
Those targets conflict with the fact that if a sender exceeds in packet sending, packets will be
dropped and TCP will have to retransmit, and even stop transmission to flush buffers. The
demands on the protocol become starker when we take into account that TCP has to act in
the present based on old history.

The resulting speeding in a transfer is strongly influenced by the bandwidth available,
end-to-end latency and efficiency of protocol and the receiver running it. TCP tries to min-
imise packet loss and re-ordering, and maximise usage of bandwidth [5]. In order to achieve

1 At the time of writing Jisc has test beds in Slough and London to test transfers in realm of hundred of gigabits
per second.

2

EPJ Web of Conferences 214, 08026 (2019) https://doi.org/10.1051/epjconf/201921408026
CHEP 2018



tuning TCP is hard. And security in TCP is an afterthought. Security was not considered in
the scope of experiments leading to this paper1.

In this paper, we examine some pitfalls in the design of TCP that make achieving maxi-
mum usage of the available bandwidth hard and security a demanding task. We survey recent
additions in congestion control that look into improving TCP performance, and specifically
deploy and test TCP-BBR. We examine UDP limits and investigate the QUIC protocol. QUIC
has been presented by its creators as a tunnelling protocol aiming at reducing the latency
present in TCP, while providing security by design. We conjecture whether QUIC might be
an ideal protocol for science data transfers and, more specifically, for the WLCG.

2 The TCP protocol congestion control

The TCP protocol has built-in design choices that constrain any work to improve its perfor-
mance [1]:

• TCP has a mandatory slow start in the form of a 3-way handshake;

• Another 3-way handshake is added if safety is brought in through TLS.

• Limitations to performance are also present in its ACK pacing congestion control.

• TCP’s big quality in the form of guarantees of packet delivery impose limitations in the of
head-of-line blocking.

• TCP is unsafe by design.

• TCP is ungraceful in the presence of link errors leading to slow recovery and unfairness in
apportion of blame among streams sharing a same connection.

In this section we study how recent congestion control algorithms try to improve the ACK
pacing limitations of TCP. QUIC, examined in section 3, is investigated to try to understand
and overcome some of the other problems identified in the TCP protocol.

2.1 TCP limitations and congestion control

TCP has been described as an ACK pacing protocol, term borrowed from Geoff Huston [2],
also described in the TCP-BBR seminal paper by Cardwell et al. [3] (also in [4]).

The TCP congestion control uses a congestion window variable (cwnd) to limit the
amount of data it can send before receiving any ACK reply. The value of cwnd start at a
maximum segment size value is increased more or less faster depending on the algorithm
used. The value of cwnd can be increased until a rwnd value defined by the receiver or until
congestion is detected either by receipt of a duplicate ACK or a timeout. How the cwnd is
decreased from that point is also determined by the congestion control.

Recent developments in congestion control for TCP have concentrated in decreasing the
time to achieve maximum usage of the link available and keeping that maximum usage stable.
Those targets conflict with the fact that if a sender exceeds in packet sending, packets will be
dropped and TCP will have to retransmit, and even stop transmission to flush buffers. The
demands on the protocol become starker when we take into account that TCP has to act in
the present based on old history.

The resulting speeding in a transfer is strongly influenced by the bandwidth available,
end-to-end latency and efficiency of protocol and the receiver running it. TCP tries to min-
imise packet loss and re-ordering, and maximise usage of bandwidth [5]. In order to achieve

1 At the time of writing Jisc has test beds in Slough and London to test transfers in realm of hundred of gigabits
per second.

that, a TCP sender uses the ACK sequences it receives to build a model of the round trip time,
efficiency of its receiver and buffer length available in this receiver. The processing of ACK
packets is the only signal that TCP has to decide whether it can increase the rate of sending
or it must suspend it to let the receiver recover.

The search for more efficient usage of bandwidth with reduced latency has lead to a flurry
of research in congestion control. Dordal [6] describes 12 recent additions to the family of
congestion control algorithms available, and BBR is not even described among them.

A standard CentOS install, running on kernel 3, ships with three congestion algorithms:
Reno, H-TCP, and CUBIC. If a more recent kernel is installed, 4.10 through 4.19, BBR
becomes available.

The first of these congestion control algorithms was Reno [6]. It doubles the packet
sending rate until it finds packet loss. Then, it decreases the sending rate by 50% over the
following round trip time (RTT). It has been shown Reno achieving at most 3 Mbps on a 10
Gbps bandwidth in the presence of a 100ms RTT and 1% loss.

The algorithm H-TCP has its first description in [7]. It targets a faster growth of the
cwnd. Growth is determined by the time elapsed since the last loss, typically by starting
an acceleration of cwnd growth after some fixed time threshold since the last loss. H-TCP
behaves as starting from point zero after each loss and, consequently, will not immediately
enter its top speed mode, even when the cwnd is large, which makes it resemble and behave
fairly to TCP Reno.

CUBIC, described in [8], tries to improve efficiency when the product of bandwidth times
delay is large, which the standard in intercontinental WLCG transfers, as in Europe to USA
or Europe to Eastern Asia. CUBIC uses a cubic function to try to achieve fast windown ex-
pansion. It then slows the windpow increase when the cwnd approaches the previous network
ceiling.

The algorithms up to CUBIC tend to increase more or less quickly the cwnd value until
they find packet loss, and then decrease until achieving buffer drained state. The congestion
control policy defined by BBR takes the different approach of controlling the sending rate by
measuring the RTT. At any state, if the RTT is equal to the RTT in the previous state, BBR
assumes that there is available bandwidth to increase cwnd. If the probed RTT increases, BBR
assumes that it is reaching the onset of queueing. It does not use packet loss as a deterministic
indication of saturation.

2.2 TCP-BBR, CUBIC and H-TCP on intercontinental data transfer tests

We have been conducting tests trying to improve the utilization of the TEIN link for transfers
between London and Singapore. We have run tests on a local test bed to probe TCP for the
capacity to fill an available link of 100 Gbps. Tuning of the TCP stack and use of kernel-by-
pass from Mellanox got us above the 90 Gbps rate, but not to 95 Gbps.

We have also used a setup with two servers at Brunel University London and Singaren,
Singapore. The servers at Brunel run on Ubuntu and CentOS 7, with kernel 4.15 and 4.17
respectively. The server at Singaren runs on CentOS 7 with a kernel 3.10. A plot of rates
obtained between the Ubuntu server with iperf3 is shown in Figure 1. The parallel plots show
results respectivelly for 1 and 32 parallel streams. Tests conducted with a CentOS 7, kernel
4.14, server at Brunel did not differ significantly.

For the sake of comparison, the same tests were repeated between Brunel Ubuntu server
and a ESnet DTN at CERN. Plots are shown in Figure 2. TCP-BBR shows overall a better
performance. TCP-BBR, however, can be too efficient: concurrent transfers with TCP-BBR
and CUBIC have shown that the former can take over the link and crowd out the former,
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Figure 1. Brunel-Singaren upload and download iperf3 tests

.

which is also described by Huston in [2]. That, therefore raises doubts about TCP-BBR
quality of service.

3 The QUIC protocol

Intercontinental data transfers typically face a round trip of 90 ms when connecting Europe
to US or more than 180 ms to connect London to Australia via TEIN. Unless we could use
neutrino beams, that situation cannot improve much due the limitations in light speed. In such
conditions a 6-way handshake that must be performed for each connection establishment or
after loss resumption is always going to be a serious obstacle to ramp up to top speed. The
difficulties pile up when one has to add long timeouts for loss detection and the weight of
encryption added to a design that did not contemplate security in first place.

The group that initially created the QUIC protocol [9, 10] presents as their initial intent
to have a protocol that offered low latency and security from its design. The first document
published introduces a protocol with a 1-RTT connection establishment and 0-RTT on re-
sumption. Efficient loss detection and true concurrent streams contribute to reduce latency.
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Figure 2. Brunel-ESnet upload and download iperf3 tests

In addition, encryption of all metadata and transfers offer the safety that might attract com-
munities that are frequently skeptical of using the WLCG transfer and storage services.

3.1 QUIC requirements

QUIC’s most importiant feature is that, in opposition to TCP, it was designed as a secure by
default protocol. This is reflected in the connection handshake whose design also contributes
to a lower latency on connection. In this section, we discuss some of design decissions that
make QUIC distinctive and that might make an essentially faster and safer option for data
science projects and the WLCG in particular.

HTTPS establishes an initial connection through a 3-way TCP handshake followed by a
TLS handshake. That means two layers involved in a connection that will demand at least
3 round trips, which might mean close to a third or even half of a second just in connection
establishment or in resumption after error. More time is wasted when the case is considered
of two WLCG sites transferring two sets of 5 GB data from Chicago to London: in the
absence of errors, over a 100 Gbps link, one third of the time demanded may be spent in

5

EPJ Web of Conferences 214, 08026 (2019) https://doi.org/10.1051/epjconf/201921408026
CHEP 2018



the connection round trips. This can also be easily tested with a transfer from London to
CERN of a 300 Mbytes file over davs or https, when one third of time will be spent in the
handshaking and connection establishment. Protocols like root, or gsiftp will demand more,
with srm being the slowest of them all, both in connection establishment and transfer.

QUIC establishes a first connection between a new client and a server using a 1-RTT
connection. Future connections, as in the case above, may be started on a 0-RTT.

A QUIC client initiates a connection to a server by sending a hello message that will
force a reject. The reject, however, will carry information that can be cached by the client to
authenticate, to encrypt future transfers, and to use a 0-RTT handshake for future transfers
with the same server.

QUIC exchanges are almost all encrypted and authenticated. Only early handshake and
reset packets are not encrypted. The unencrypted parts of a QUIC packet are essentially
those elements that are necessary for routing or description of the packet, like connection
identification and length of packet. However, protection against tampering is achieved by
adding the unencrypted parts of the handshake to derivation of the connection’s keys, as
shown in [10, 11].

HTTP/2 gains efficiency over previous HTTP versions by using several HTTP requests on
the same TCP connection. That itself can be a gain for the multi stream transfers frequently
used in the data science. TCP, however, is a serial protocol that guarantees ordered delivery
of the transferred packets. As a result, data loss in one transfer will block all multiplexed
streams of that same connections.

QUIC introduces true concurrency when different HTTP streams are mapped to different
transport streams, even when they are sharing the same connection and, as in the case of
HTTP/2, avoiding additional handshakes. This reduces a TCP problem identified as head-of-
line blocking, as shown in [12].

TCP efficiency can be hindered by retransmission ambiguity. TCP sequence numbers are
used to add reliability and to define the order in which bytes are delivered. In the case of
retransmitted packets, sequence numbers are repeated for both data and ACK transmission.
TCP must then use lengthy timeouts that add to latency and bandwidth under utilization.
QUIC packets, on the other hand, each carry its own unique number, and that includes distinct
numbers for retransmission packets.

QUIC acknowledgment encodes the delay between the respective packet being received
and ACK being sent, and enables a precise evaluation of the round trip time that can be used
in the congestion control. Also, thanks to larger ACK blocks, QUIC can keep more bytes in
transit in the presence of loss and re-ordering.

The protocol does not rely on any specific congestion control policy. Google has reported
deploying gQUIC using CUBIC [12], but there are also reports of tests with BBR [3].

QUIC connections are uniquely identified by a Connection ID, which is independent of IP
address and connection port. A client can migrate across different networks and still maintain
its connection to a server. This feature raises interesting possibilities. Researchers using their
laptops in a CMS Anywhere-Any-Data-Any-Time project can dream of migrating across WiFi
connection without losing their transfer or proxy session. And data transfers may find more
graceful failover options than what is presently offered by the Xroot re-directors.

3.2 Early evaluation and test bed

Microsoft has recently announced a forthcoming QUIC implementation for Windows and
Azure. Cloudflare, see [11], has a service that can be used to test iQUIC implementations,
and there are a dozen of open source implementations of the iQUIC standard, documented in
[11].
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Microsoft has recently announced a forthcoming QUIC implementation for Windows and
Azure. Cloudflare, see [11], has a service that can be used to test iQUIC implementations,
and there are a dozen of open source implementations of the iQUIC standard, documented in
[11].

Google seems to have the only large scale deployment of QUIC. The company reported
in 2017 on an experiment that showed a reduction of 8% in latencies for users connecting
to Google services using QUIC [10]. Also, the company claims [12] a reduction in video
rebuffer ranging from 15% for mobile users to 18% for desktop users.

It is early days to fully evaluate large scale deployments of iQUIC. The standard is still
changing, running at time of writing in draft 14, while TCP is reaping the benefits of long
time improvements and research in the Linux kernel. Recently, a kernel-by-pass has been
made available in the Linux stack [13] and similar efforts have been open-sourced by the
BBC [14] and Intel [15].

We are building a test bed in a Jisc data center in London that makes available two servers
running iQUIC, the IETF standardized QUIC, for tests: edtn-slough-10g.ja.net. Running a
kernel 4.19, it makes available iperf3, iperf, and iQUIC services that can be used to compare
iQUIC and TCP.

4 Conclusion

The final target of our research is to achieve better usage of available bandwidth mainly in
the presence of large RTT and packet loss.

We have worked so far on the study of the limitations of TCP on transfers over multiple
hundred gigabits per second. We have studied, and presented some initial results in section
2.2, comparing the performance of TCP-BBR against CUBIC and H-TCP.

We are in the process of deploying a test bed for experimental evaluation of protocols,
which includes services based on QUIC.

This paper shows an initial evaluation of the use of the TCP-BBR congestion control
algorithm to try to conquer better available bandwidth even in the presence of long RTT and
errors. Our next target would be to further compare TCP-BBR and QUIC deployments.
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