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Abstract

In this thesis we will discuss the process for data preparation of visual or image

data ready for use in Artificial Neural Network systems. The thesis will present

these concepts, their location in the broader field and the arguments as why certain

practices are considered required for these systems; before presenting a number

of novel algorithms that are intended as alternatives with desirable properties.

These novel algorithms will then be testing in a practical domain (simulating the

challenge of face-detection within a scene), followed up by discussions of their suc-

cesses and failures. The findings presented show that some of the novel algorithms

can show statistically significant improvement in accuracy compared to some of

the traditional methods used in the field. This thesis concludes with recommen-

dations in which situations the novel algorithms may (if at all) be suitable for use

in future designs and potential avenues for further research.
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Glossary

Preprocessor

The term preprocessor is used in the specific context of an image pre-

processor as used by an ANN. It can be described as a data preparation

stage, process or algorithm in which image data is normalised, mapped/ fil-

tered, colour corrected, colour space converted and/or resized before being

presented as a sequence of ‘features’ to a subsequent ANN for task specific

processing. The usage of the term also encapsulates the algorithm(s) used

in specific the preprocessor’s construction and the parameters required to

initialise it.

Downsampling

Downsampling is the process by which an image’s dimensionality (i.e. its size

in pixels) is reduced. Traditionally, this is done by a graphical interpolation

method designed to approximate what the image would have been, had the

image been originally produced at the target resolution, given the original

pixels at the current resolution. This will be covered in Section 2.2

System

A generic term for a Preprocessor-Classifier pairing when the specific pre-

processor is not known/identified or that multiple types of preprocessor are

being discussed as a whole.

Input Context

1



2

Used to refer to the additional information or properties that are part of a

feature, but are not explicitly expressing in the numerical representation of

that feature. This is the additional information that is typically discarded

from general discussion, when dealing with ANNs, as it is redundant on

the condition that it is constant. Examples of Input Context may include:

the location of a pixel from an image, the field details from a database

record or the unit/dimension from which the input draws upon. If the Input

Context of an input feature changes, then any predictions/classifications

made by the ANN that are dependent on that input will not be as accurate.

Keeping with the example of pixel location as a type of Input Context, if an

ANN is trained to perform a particular task and its nth input feature has

a non-insignificant effect on at least one output, then changing the location

used by the preprocessor to generate the nth feature would likely lead to

errors in any dependent outputs. Conversely, any feature that is not used in

the determining of any output (all routes leading from the particular input

towards the output are terminated with a zero or near-zero weight) can be

freely manipulated without affecting the quality of output.



Chapter 1

Introduction

This thesis will look into a part of Image Processing using Machine Learning.

Specifically, the image preprocessor used as part of the data preparation stage

for Machine Learning tasks. Though this will be focused on Artificial Neural

Networks as a representative of Machine Learning, some of the concepts and

methods presented here will be applicable and transferable to other sub-fields of

Machine Learning. The fundamental question that lead to this investigation is:

“Why are simple rectilinear down-sampling techniques, such Bilinear

and Bicubic Interpolations, used to prepare data for Machine Learning

tasks, given that their design was for subjectively pleasing visual re-

sampling of images; and can other techniques do better?”

This question has yet to be answered in the literature though recent progress in

the field show that there may be attempts to unknowingly overcome problems

relating to this, which will be discussed later.

The motivation behind this question additionally stems from the prevalent use

of Convolution Neural Networks (CNNs), as is evidenced by their ubiquity in the

literature. CNNs have the advantage of not requiring any image preprocessors

to be as aggressive, allowing more information to be processed, but at the cost

of runtime complexity. This additional cost may be perceived as negligible by

3



CHAPTER 1. INTRODUCTION 4

most when considering modern CPU/GPU/Server processing power available to

perform these computations; but on embedded hardware, where computational

resources are at a premium, the attempt uses a CNN based algorithm may run

up against difficulties.

A technology video published by Canon Inc. 2009 confirms that the company

Canon has been using neural network based technologies in some of their digital

cameras since its release 2009 with the release of the Digic 4 processor. Other

manufacturers, in order to protect patents and competitiveness, provide less in-

formation about the internal workings of there processors. The patents Mashito

(2001); Nikon (2007) show that the Nikon Corp. use a face detection process

that utilises feature extraction of “ end points of eye brows, eyes, nose, and lips,

contour points of the face, a top point of the head, a lower end point of the chin,

and the like” in preparation for an unspecified face recognising process.

The overall aims of this work is to develop a tools for the generation of image

preprocessors which, when applied to feed-forward neural networks, provides an

alternative solution than CNNs with a reduced computation and memory foot-

print. If successful, this could provide benefits in the form of more computational

resources remaining available of other activities a given system, or for a reduced

need in hardware resources (decreasing IC component costs and/or circuit-board

footprint).

The novel contributions put forward by this thesis are, a framework with

which to classify and aid discussion of image preprocessors, a metric which can

approximate the contribution of a neural unit or input feature to an Artificial

Neural Networks function, three novel image preprocessors and the process with

which to generate them, and finally a methodology to systematically compare

these presented preprocessors.

From the work presented in later chapters, three papers were published:

Greenhow and Johnson (2014)
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This paper presented the early work that lead to the foundation of Chapter

6, presenting the Regional Downsampling Algorithm and using the Saliency

Heat Map algorithm, as presented in the early portion of that chapter, up

to Section 6.4.2 (inclusive).

Greenhow and Johnson (2015)

The second paper presented two further selection methods, covered in Sec-

tions 6.4.3 and 6.4.4.

Greenhow and Johnson (2017)

The third paper presented the Subdividing Image preprocessor. This algo-

rithm, introduced in Chapter 7, took what was learned from the Regional

Downsampling Algorithm and its selection methods and applied them to

earlier ideas.

The potential practical applications for the work presented in this thesis can

be numerous in task, but limited to the data preparation for an image classi-

fication task or as a tool in the exploration of an image set. Figure 1 shows

flow diagrams for two simple image classification tasks in which image prepro-

cessors can be useful. The three main industrial fields that are consumers of

image classification technologies are Manufacturing Automation (object tracking,

quality control, human safety), Security (human tracking, weapon identification,

autonomous drones) and Human Interface Design (face detection, eye tracking,

emotion identification).

As a prerequisite to the discussions of the models presented, a coverage of the

background literature will be provided. Chapter 2 will contain a review of the

literature and provide descriptions to the reader of the concepts that are founda-

tional to the models and a look into the issues in the literature that provided the

original line of questioning. Chapter 3 covers the methodological process which

will be used to evaluate the effectiveness of the presented preprocessors in terms of
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Input
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Figure 1: A diagrammatic example of an image processing system, that uses a
search algorithm to simplify the task. In this example, P , P1 and P2 are potential
locations for image preparation to the subsequent search or classification tasks.

accuracy and run-time complexity. Chapter 4 starts the novel contributions of this

thesis with a novel framework in which different methods of constructing image

preprocessors can be grouped and discussed. Chapters 5, 6 and 7 are dedicated to

presenting three novel methods to design and/or construct image preprocessors.

Chapter 8 will present an evaluation of the presented preprocessors in the aggre-

gate (specifics having been covered in the conclusion section of their respective

chapters) and finally Chapter 9 will end with a review of the contributions of this

Thesis.



Chapter 2

Literature Review

This chapter is dedicated to presenting the core concepts required as part of the

work presented in this thesis. This includes (in order of presentation),

• Artificial Neural Networks, discussing in detail Feed-Forward Perceptrons

and Convolutional Neural Networks, due to their regular use in solutions to

image classification problems,

• The traditional forms of image interpolation present in image preprocessors,

their definitions and intended purpose,

• A collections of concepts used in the field of Image Processing to interpret or

guide the development of models that are also applicable to the later works

in this thesis, and

• A section demonstrating three previously developed image processors that

function similar to those proposed in this thesis.

Finally, this chapter will conclude with a discussion on issues present in the lit-

erature that initiated this investigation and a summary of what to take forward

from the literature into the research methodology.

7
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2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a branch of study interested in the sim-

ulation/digital replication of natural neural networks, (i.e. the cellular anatomy

of brains) typically for the purposes of either understanding and modelling the

functioning of the brain or to leverage to pattern recognition capabilities of neu-

ral networks systems for the construction of predictive systems. There are many

variations presented in the literature, and here we will discuss a number of the

models that show relevance to the work presented in this thesis.

Depending on how accurately the implementation intends to mimic the func-

tionality of organic neural networks, they can be split into either Rate-Coding or

Spiking models. In Rate-Coding models, the activity of a single computational

unit is considered to be representative of the aggregate activity of a collection of

equivalent organic neurons. Spiking models on the other hand, intend to repli-

cate the functionality on the level of individual neurons, mimicking actual firing

times and patterns of their biological counterparts. Due to their success in solv-

ing practical problems, Rate-Coding models have become the dominant method

in industry, whilst Spiking models have remaind popular in academia due to their

biological accuracy.

2.1.1 Feed-Forward Perceptrons

The most well-known for of ANNs is the Rate-Coding Feed-Forward Perceptron.

A Perceptron is a neural unit the aggregates activity from its inputs by weighted

summation and then normalises the result to compute its own activity, defined

as:

oj = norm(
∑
i

wijoi), (1)

where ox is the output of unit x, wxy is the weight of the connection between units

x and y, and norm(x) is a normalisation function. In its earlier presentations,
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a binary step function was used for normalisation, but due to the popularity of

Back-Propagation, the Logistic function (sometimes simply known as the Sigmoid

function due to its ubiquity) has become the de facto standard.

The term Feed-Forward refers to the way that the data flows through these

network topologies. The neural units are structured into layers, the first layer

is the Input Layer, containing simpler neural units that take the input data and

convert it to a suitable format (or just an implementation of the identify function

if it is already suitable) and can be used as buffer if the incoming data sources

are not synchronised. The last layer, made up of the perceptron computational

units described earlier, is referred to as the Output Layer, as the activity from

these units is a representation of the output of the ANN as a whole. Between

these are any number (≥ 0) of Hidden Layers using the additional perceptron

units to compute intermediate interpretations of the input data. The size of the

Input Layer is equal to the number of features the ANN is designed to work on,

and the Output Layer is sized to match the intended encoding of the output;

typically one output unit per class/label. The number of units per Hidden Layer

and the quantity of the Hidden Layers is dependent on the task and varies between

implementation and developer.

Back-propagation

Based on the earlier Delta-Rule, back-propagation is a learning algorithm com-

monly used on feed-forward neural networks. Its advantage over the earlier delta-

rule is its ability to train ANNs that have one or more Hidden Layers.

After a prediction has been generated for a given input by the ANN, an error

value, referred to as the units delta, δi, is computed. The delta of an output unit

is the difference between the unit’s activation, oi and the intended result, ti. For

hidden layers, δi is the weighted sum of all connected subsequent deltas. In both

cases, δj is scaled by the derivative of the normalising function (used during the
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feed-forward phase) when applied to the units output, norm′(oj), used to prevent

long term potentiation or depression of the weights. For each connection between

units, wij, the weight is adjusted by the product of, the pre-synaptic activation,

oj, the post-synaptic delta, δi, and the systems learning rate, α; formally:

∆wij = α · δi · oj (2)

δi = norm′(oi) ·


oi − ti if unit i is an output unit
Ni∑
k
δkwik if unit i is a hidden unit

(3)

2.1.2 Convolutional Neural Networks and Receptive Fields

Convolutional Neural Networks (CNNs) are a variation of the feed-forward neural

network model. In the CNN paradigm, neural units are arranged in volumetric

layers, where each layer has height, width and depth. CNNs are constructed from

a number of these volumetric layers, stacked one after another until the final layer

is used to generate classifications or predictions. The most important of these

layer types is the Convolution layer (for which the concept is named), based on

the concepts of Receptive Fields and Convolution.

Receptive Fields are an instance of a partially connected network topology that

can be implemented when the source layer has something analogous to a spatial

distribution. In receptive field topologies, each neuronal unit in the secondary

field is fully connected to only units in the input layer that are within some

spatial bounding sub-volume of maximum depth. This implies that the latter

unit also has a effective spatial location, based on to aggregate of the units it is

connected to. Their typical construction is to have a grid of receptive fields of

equal volume evenly distributed across the width and height of the input space so

that each source is covered by at least one receptive field. See Fig. 2 for a digram

of receptive fields.
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Figure 2: Receptive Fields. A diagrammatic representation of Receptive Fields,
showing the down-sampling effect that they have on the previous layer. This
example shows a 5× 5× 3 input volume and the aggregating relationship to the
output volume using a 3× 3× 2 receptive field.

Each unit in the same width×height layer will be associated with a receptive

field of the same dimensions, but occupies a different spatial location in the source

layer. Each unit in the same column (depth) will have the same coverage (i.e. be

associated with the same receptive field), but will apply a different function to

that region.

Convolution is a process which aggregates a small sub-window of the under-

lying data, using a matrix of values, called the kernel. The size of the kernel

is arbitrary along the width and height axis, and having the same depth as the

source volume. The window is computed for each valid location for the given data

resulting in stack of planar matrices, with each slice based on a different kernel.

In graphics application, another common usage of kernel convolution, every

integral location in which the kernel fits is used as a valid location. If this were

the only case, then both axis of the resultant image would be reduced by k − 1,

where k is the size of the kernel along that axis. To mitigate this, the kernel size
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in both axes are kept odd to provide a definite centre, and edge padding rules are

applied to allow the kernel to approximate the locations at the edge of the source

image.

For CNNs, the reduction in layer size is not considered a problem (it is actually

a minor benefit as the complexity will always reduce in those two dimensions with

each Convolution layer), so the necessity for the kernel to have odd sizes and edge

data fabrication are discarded.

What makes these convolution layers ‘neural’ in functionality, rather than

just kernel convolutions reminiscent of graphics processing, is that the kernels

themselves are the neuronal units, subject to alteration by the learning algorithm.

The values in the kernel are the weights of the neuron, totalling a single neuron

per column depth, applied to multiple locations. In conjunction, the receptive

fields reduce the complexity and maintain useful spatial relations, while the kernel

reduces memory costs.

For completeness, the following is a list of the other commonly used layers in

CNNs. The Input and Full Connected Layers are the volumetric equivalents to the

their Feed-Forward counterparts, and the Pooling and ReLU layers are additional

layers designs common place in CNN implementations.

Input Layer

The input layer (when dealing with images) treated as a volume of size

W × H × R, where W and H are the width and height of the image or

window, respectively; and R is the colour depth of the image.

Pooling

Pooling layers perform a simple down-sampling of the input volume, re-

ducing width and height without affecting depth. The pooling layer di-

vides the input volume into partitions of X × Y × depth, such that both

(width/X) ∈ N+ and (height/Y ) ∈ N+, applying the max function to ag-

gregate; resulting in a volume of size (width/X)× (height/Y )× depth.
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ReLU Layer

The Rectified Linear Unit (ReLU) is used to increase the non-linearity of

the network, without effecting the dimensionality of the volume. It does this

by applying the ramp function, f(x) = max(0, x), to each location in the

input volume.

Fully Connected Layer

The Fully Connected (FC) layer of a CNN is the analogue to a fully con-

nected layer of traditional ANNs and are typically used as a terminal layer

to the network. To remain consistent with the functionality of convolution

layers, FC layers are represented as a volume, but due to the loss of any

useful spatial information related to the source data passing through the

neurons, the layer is represented as a single column, 1× 1×N where N is

the number of neurons.

Topological Issues

An issue with CNN is the vastness of the potential design space. As mentioned

previously there are numerous functionally different layers that can be used, each

requiring different types and quantities of parameters for initialisation, from mul-

tiple domains of varying, potentially infinite, ranges. This makes the construction

of functionally useful CNNs an arduous task for the developer who will be required

to use trial and error approaches to resolve this construction.

A concern of the field (as opposed to a verified issue) is in its potential appli-

cability to industry problems; translating a presented solution from the literature

to a perceptually similar industry problem could require significant modification

for even simple changes to the original problem1.
1Significantly trivial alterations to the problem (such as source image lighting) can easily be

solved with a re-train of the CNN.
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2.1.3 Curse of Dimensionality

The Curse Of Dimensionality is a catch-all term used when discussing problems

that arise when dealing with high-dimensional input data. The two most sig-

nificant issues that fall within this moniker are Hughes Phenomenon (1968) and

combinatorial complexity.

Hughes Phenomenon

The learning algorithms used by ANNs are designed on the assumption that iden-

tifying correlation between values in the source sample and the target class is

sufficient to perform class prediction from unlabelled samples. This assumption is

sufficient as long as the probability of coincidental correlation or partial-correlation

are low in the training set; but runs into difficulty as the complexity (i.e. the di-

mensionality) of the sample increases (Hughes 1968). The chance of the training

data including non-predictive data across the samples that, at least partially, cor-

relate with the labelled classes increases with each additional non-predictive data

point.

Combinatorics

The computational cost of a ANN is proportional to the number of connections

in the network’s topology. In a feed-forward topology, the number of connec-

tions between two layers is the product of the sizes of the two layers. The total

connections in a feed-forward ANN can be described as

C =
L∑
l=2

u(l − 1)× u(l), (4)

where u(x) is the number of neural units in layer x, and L is the total number

of layers. Two related situations can contribute to the increase the sizes of some

of these layers, the dimensionality of the source data and the difficulty of the
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task. The size of the of the input data is a direct contributor to the topological

complexity of an ANN, for each additional dimension in the source data, the total

number of connections is increased by the size of the subsequent layer. The size of

the hidden layers can also be affected by the difficulty of the task; as the difficulty

of the task increases, the need for additional intermediate hidden states to be

modelled also increases, increases the connection count by the sum of the sizes of

the prior and subsequent layer.

Mitigation

The two ‘curses’ discussed here can be mitigated by employing a number of dif-

ferent strategies. To combat Hughes Phenomenon, one can increase the size of

training set; as the size of the training data increases, the probability of a data

point producing a partial-correlation sufficient to appear as predictive to the learn-

ing algorithm decreases. This can present further issues as increasing the size of

a training set can be difficult depending of the type of data.

To handle combinatorial complexity, numerous techniques to prune unneces-

sary dimensions from the source data have been developed. Known as Feature

Selection (Chandrashekar and Sahin 2014), these class of processes are employed

in an attempt to pre-emptively identify input data of low correlation (data irrele-

vant to the given task) and filter it out from the data set presented to the ANN.

When dealing with image data, interpolation algorithms are frequently used as a

method to reduce the input dimensionality of the image as they approximate a

similar image for the task of lower dimension. In the cases of pruning the input

data, the additional computational cost is typically less than the saved computa-

tional cost of processing the full data set; the task may have become learn-able

by the particular implementation; and (assuming it was previously learn-able or

other methods to achieve that were viable) the reduction in predictive accuracy

is negligible.
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If the data can be modelled spatially, and it is reasonable to assume that

the distance between data-points is inversely-proportional to task-centric rela-

tionships, then receptive fields are a viable choice for pruning otherwise fully

connected layers. This process is one of the major improvements provided by

CNN models when dealing with image data.

2.2 Traditional Image Interpolation

To find an ANN system using a preprocessors based on Bilinear or Bicubic inter-

polation for image reducion is not an uncommon thing, though in recent years this

has been replaced by CNNs or frequency transformations(which will be discussed

briefly in section 2.3). The design of these two methods was originally to up-scale

images for graphics applications, with the intent that the resultant image appear

to be a sufficient representation of the original to human perception (in terms

of aliasing and artefacts introduction). Other possible methods, Sinc/Lanczos3,

Spline (Subbotin 2001), also exist which produce a subjectively better resultant

image for human vision at the expense of increased memory and/or processing

time.

When used in an ANN preprocessor, the typical reason is to reduce the com-

plexity of the image; this can either be to combat the curse of dimensionality

(Sec. 2.1.3), or to reduce the processing time required to propagate the image

data through the ANN (Sec. 2.1.3).

2.2.1 Bilinear Interpolation

The Bilinear Interpolation algorithm (Press et al. 1992) is designed to produce

smoothed transitions when rescaling an image. Its primary purpose is for up-

sampling an image, in which the total number of pixels is increased along both

dimensions of the image. The algorithm is based on linear interpolations, or
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(x + 1, y)
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P P = (x + 0.4, y + 0.7)

1)

(x + 0.4, y)

[255, 0, 102]

(x + 0.4, y + 1)

[0, 51.2, 204.2]
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(x + 0.4, y + 0.7)[76.5, 35.84, 173.54]

3)

4)

Figure 3: Bilinear Interpolation. In the above figure the notation (x, y) describes
a 2 dimensional position, whilst the notation [R,G,B] is used to describe the
colour with red, green and blue components, each in the range 0-255, inclusive.
Any sub-pixel point within an image can be assigned a colour with only 3 linear
interpolations. 1) The original 2 × 2 pixels and the target point. 2) The first 2
linear interpolations moving right along the x-axis by 40% of a pixel. 3) The third
interpolation, using the colour determined from the first two and moves down
along the y-axis by 70%. 4) The result of performing a linear interpolation of all
sub-pixel points of the original 4 pixels.
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Lerps, along the two spatial dimensions. For the remained of this section, each

pixel in an image be considered as a point with 2 spatial dimensions, x and , y

and three colour dimensions, r, g and b that correspond the red, green and blue

colour components of a colour.

In linear interpolation, two N-dimensional points, A and B, and a fraction of

traversal, R, are used to interpolate a new point, P , that is the fraction R along

the line defined by A and B,

P = A+R(B − A) = B + (1−R)(A−B) (5)

To extend lerping to additional dimensions, for each additional dimension, the

points A andB are computed via the same method along the additional dimension.

In a 2D plane, this requires a total of 3 lerps. The two extra lerps to compute the

values A and B, and the final lerp in the final axis. In a 3D volume, this adds an

additional 4 lerps, following the pattern

L(n) = 2(n−1) (6)

Ltotal =
d∑

n=1
L(n)

= 2d − 1 (7)

where d is the number of spatial dimensions, L(x) is the number of additional

lerps required to extend to xth dimension, and Ltotal is the total number of linear

interpolations required to compute the target value. This is demonstrated in

Figure 3.

The Bilinear algorithm can also be used for down-sampling; a down-sampling

to less than 50% along either axis can result in a poorer quality than would be

expected. This is the result of a sampling issue, as reductions of greater than

50% result in periodic skipping of particular pixels. To mitigate this, a number
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of implementations perform the following multi-step operation: if an axis is to be

scaled by a factor less then 0.5, then that dimension is additionally scaled by a

factor of 0.5 and the scale factor doubled. Whilst the scale factor remains less

than 0.5, this process repeats. As each the length of each axis must be a positive

whole number after each step, consideration of rounding errors must also be taken

into account. This usually takes the form of slight adjustment to the scale factor

after each step and before the recursion check. The blog post “The Perils of

Image.getScaledInstance() Blog” (Campbell 2007), provides an apt description of

this particular problems for Bilinear interpolations and discusses the concept of

the multi-step interpolation in the context of the Java programming language.

2.2.2 Bicubic Interpolation

Catmull-Rom Interpolation (Catmull and Rom 1974), also know as Bicubic Inter-

polation, is commonly used in graphics processing when time is not a critical fac-

tor. A typical re-sampling with bilinear interpolation is based on 4 sample pixels,

where bicubic is interpolated from a source of 16 samples, making for a noticeable

increase in computational complexity. This additional cost is usually considered

acceptable due to the smoother result from this interpolation, as the derivative of

the resulting curves are continuous, unlike Bilinear, which has constant derivative

between samples an discontinuous across sample boundaries.

To compute the Bicubic Interpolation of an image, the kernel

W (x) =



1 x = 0

0 x ∈ Z

1.5|x|3 − 2.5x2 + 1 |x| < 1

|x|3 + 2.5x2 − 4x+ 2 1 < |x| < 2

0 otherwise,

(8)
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Figure 4: Bicubic Interpolation. In the above figure the notation [G] is used
to describe the grey-scale value in the range 0-255 (inclusive). f is the single
dimension cubic function (Eq. 9). 1) The target point to be interpolated, P, and
the surrounding 4× 4 samples. 2) Applying the cubic function to each row, using
t = 0.2 from P’s x-offset. 3) Appying the cubic function to the vertical results,
using t = 0.7 from P’s y-offset. P is computed a value of 178 (≈ 70% black); if
bilinear was used, a value of 157 (≈ 61% black) would have been computed.
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is applied, by convolution, to each dimension of the image in an identical manner

as discussed in the bilinear interpolation explanation. Applying the kernel to the

single dimension convolution, this can be simplified to

f(t, a, b, c, d) = a(−t3 + 2t2 − t) + b(3t3 − 5t2 + 2) + c(−3t3 + 4t2 + t) + d(t3 − t2)
2 ,

(9)

where a, b, c and d are a sequence of sample points and t is the interpolation

distance from point b (t = 0) to c (t = 1). Figure 4 demonstrates the application

of this function.

The optimised version will typically apply the convolution to each dimension

independently, storing the result for the first dimension in an image-like data

structure so that these values do not need to be recomputed during the subsequent

pass for the second dimension.

As the derivative of cubic interpolation produces a continuous curve, significant

changes in value of the source material can result in overshooting in the solution,

usually resulting in clipping but with the potential for under/overflow in a poorly

implemented interpolation. Visually, this appears as a haloing artefact along edges

of high contrast, and in some situations can be beneficial for human perception as

it increases the apparent sharpness along that edge. If not accounted for, this can

cause issues in computational systems that rely on or attempt to identify edges

of objects in images.

2.2.3 Other Interpolators

This section contains a brief overview of some of the less common interpolators

available. This will include a description of how the algorithms work and their

pros and cons.
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Nearest Neighbour

The simplest resizing process, the colour of a pixel returned by the Nearest Neigh-

bour algorithm will be the nearest pixel to the pre-scaled equivalent location. This

can be performed with trivial integer mathematics. This makes the process very

fast, but produces very blocky results when up-sampling and will miss out por-

tions of the image when down-sampling. Up-sampling with nearest neighbour can

be beneficial when carrying out visual examination of the pixels within an image,

as this method does not change or generate any new colourations from the source

image.

Sinc/Lanczos

The Lanczos re-sampling algorithm is used as a popular, almost de-facto, standard

in graphics re-sampling and other interpolation tasks due to its ubiquity and

quality (Turkowski 1990). This algorithm uses a windowed version the normalised

Sinc function, bounded to the region [−a . . .+ a], where a is an integer, typically

2 or 3. The Lanczos re-sampling algorithm has a number of issues similar to those

of Bicubic; As the kernel contains negative lobes, it is possible of large changes

in neighbouring values to produce a haloing effect. Additionally, the calculation

at each point requires (2a + 1)2 pixels, significantly increasing computation time

over the Bicubic and Bilinear algorithms.

Area Averaging

Sometimes known as Weighted Average, each pixel in the returned image has the

(weighted) average colour of each source pixel that has been amalgamated in the

re-sampling. This algorithm was designed to produce smooth images but with

fewer artefacts than Bilinear and Bicubic. In the case of up-sampling, this algo-

rithm will degrade to Nearest-Neighbour at an increased computational cost. If

this algorithm is used to down-sample by factors of 2, the result coincides with
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those produced by Bilinear Interpolation. The algorithm is rarely used in practice

despite the smoother results as similar results can be achieved by super-sampling

(up-sampling to a resolution of 2N ·R and then down-sampling to the target reso-

lution of R) with the considerably cheaper Bilinear and Bicubic implementations.

Basis Spline

Most image interpolation methods can be re-interpreted as optimised implemen-

tations of B(asis)-Splines using specific kernels. These re-interpretations allow for

the identifying of the implied kernel, which can be used to generalise the task

of image interpolation to an implementation of a B-Spline algorithm and then

defining the kernels to produce the desired image interpolation algorithm. This is

beneficial in some cases as this allows for mathematical modelling of the algorithm

and simplification of the algorithm due to the removal of any branching. The cost

of this generalisation is in the computational cost of B-Spline implementations

which generally makes these impractical for production systems where runtime is

an important factor.

Box Spline is one such re-interpretation; The Box kernel will recreate the effect

of Nearest Neighbour when re-sampling the image.

Similar to Box Spline, Triangle Spline is a re-interpretation of Bilinear Inter-

polation as a specific kernel for a general purpose B-Spline algorithm.

2.2.4 Comparisons

This section will provide a brief comparison for the most common graphical image

interpolations as a way of presenting the ‘feel’ of each presented. Figure 5 shows a

visual comparison of the quality of the algorithms and Tables 1 provide a runtime

comparison. In both cases, the 512×512 Lena image is used as the baseline image

and all down-sampling was done by a factor a three. The Lena image is the de-

facto standard used to visually demonstrate compression, of which down-sampling
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is the most basic lossy form. This factor was chosen as some implementations are

known to take advantage of 2n scaling factors and this may bias the timing results.

The execution times presented in Fig. 5 cover a variety of image interpolation

techniques and a variety of implementations. The primary focus for these com-

parison was between the different techniques discussed above, with a secondary

interest in the variance between implementations. The table does not include the

C/C++ languages as their landscape is extremely diverse and there is little con-

sensus on ‘standard’ libraries for image interpolation. Most of the times on this

table present an ordering that is to be expected; Nearest Neighbour < Bilinear <

Bicubic < Lanczos and Box < Triangle. Unexpectedly, MatLab’s Triangle imple-

mentation was faster than the Bilinear implementation, which may be due to the

design focus of MatLab towards mathematical accuracy instead of computational

optimisations. The Java Image Scaling Library (JISL) was notably slower than

the two native Java implementations; the interpolation algorithms in JISL are

all executed directly by the Java Virtual Machine on the CPU, compared to the

native implementations that has the ability to off-loaded the process to the GPU.

To provide a more detailed exploration of some of the interpolation techniques

discussed a brief test was performed. The five interpolation methods ‘Nearest

Neighbour’, ‘Bilinear’, ‘Bicubic’, ‘Lanczos3’ and ‘Area Average’ were tasked with

downsampling the CMU-130 Dataset (Section 3.3.3). The images in the CMU-

130 dataset were gathered from many sources and are highly variable in size and

content. The first downsampling factor of 1/2 was chosen as many of these imple-

mentations are able to take advantage of 2n factors, giving a best-case scenario.

As not all of these implementations can take advantage of this optimisation, the

second factor of 1/3 was selected, forcing these implementations to uses program

paths of higher cost. Each pass was repeated 10 times and the results averaged.

The outcome of this test is presented in Table 2. The results here show the same

tendency in computational as that found above. It is interesting to note that Area
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(a) Lena (Original) (b) Nearest Neighbour

(c) Bilinear (d) Bicubic

(e) Lanczos (f) Triangle

Figure 5: The original Lena image and a selection cropped interpolated images.
Each image is the result of down-sampling the Lena image by the specified method
and then up-sampling by Nearest Neighbour for inspection. The blocky transition
at the edge of the hat is due to the use of Nearest Neighbour and thus makes for
un-fair comparisons cross such hard edges in this situation. Comparisons can
be made about the textured surfaces and smoother edge transitions. Image (a)
shows the roughest interpolation, with moiré patterns resulting from shadows on
the woven surface. This roughness is not seen in the other images, but almost all
visual indication of the hats texture have also been lost. Looking at the creases in
the fabric and at the feather, images (d) and (e) show clearer edges than images
(b) and (f) due to the overshoot present in their respective interpolation methods.
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getScaledInstance() 159ms 5956ms

(Java) (*) (+3646%)

Graphics2D 31ms 429ms 1576ms

(Java) (-93%) (*) (+267%)

Java Image 12630ms 9421ms 5533ms 6988ms

Scaling Library (+81%) (+35%) (-21%) (*)

Python Image 27ms 1249ms 2240ms 3111ms 789ms

Library (Pillow) (-98%) (*) (+79%) (+149%) (-37%)

MatLab 565ms 1428ms 1942ms 2553ms 1108ms 1288ms

R2016a (-60%) (*) (+36%) (+79%) (-22%) (-10%)

Table 1: Computation times to down-sample the ‘Lena’ image by a factor of 3 using each method. Percentage times are

present as quick comparisons to the baseline (*) for each family.
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Table 2: Average execution time of various interpolation techniques against the
CMU-130 data set.

Factor Interpolator Average Execution Time

1/2

Nearest Neighbour 8.04ms
Bilinear 68.12ms
Bicubic 231.99ms

Area Average 219.37ms
Lanczos3 596.79ms

1/3

Nearest Neighbour 5.72ms
Bilinear 32.53ms
Bicubic 105.11ms

Area Average 207.90ms
Lanczos3 516.92ms

Average was faster than Bicubic when tasked to downsample by a factor of 1/2,

but slower with 1/3.

This section has presented a number of the common re-sampling algorithms

used in practise. In the later chapters, some of these will be used as controls

to compare the novel preprocessors presented later. For these controls, Bilinear

and Bicubic interpolation methods were selected for a number of reasons. Both

have reduced computational time whilst producing smooth results, ubiquity across

platforms and languages, minimal production of artefacts, and known use in past

literature. Bilinear was specifically selected as it was the fastest and simplest of

the discussed smoothing interpolators. Bicubic was selected as a second control as

it is popular with a notable portion of the image processing community due to its

basis on the continuous differential kernel. This is not a requirement of the work

in this thesis, but may be of benefit to future researchers wishing to comparing

this work to others.

2.3 Frequency Transformations

Feature extraction from an image can also be performed using frequency trans-

formations. Discrete Fourier-Related transformations, such as Discrete Cosine
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Transformations (DCTs), are used to extract frequency information from the in-

put sequence. Discrete Wavelet Transformations (DWTs) can also be used to

extract frequency information, and also provide positional information of the fre-

quency along the sequence. Both forms are common in lossy image compression

techniques as, generally, the high frequency information can be discarded at min-

imal cost to reproducible quality of the represented image.

When applied to a 2D image for feature extraction (Qazi and Wong 2016;

Ooi et al. 2016; Lukas et al. 2016), these techniques can be used to convert an

input image to a frequency description, allowing for selection/identification of key

frequencies, usage of positional information where available or as an alternate

presentation to further processing systems. Along with CNNs, these techniques

have seen an increase in popularity in the literature recently due to the improved

of computational availability (cost per computation) despite there increased com-

plexity and runtime when compared to the traditional methods discussed above.

2.4 Related concepts

This section discusses a number of concepts that relate to the models presented

later in this thesis. The intermediate stages of the presented models could be

perceived as a statically encoded variation of visual attention. The methods by

which these are produced uses ideas that correspond to the comparable to those

present in Saliency Map. The resultant image preprocessor can be reinterpreted in

terms of Foveation, Superpixels and/or Receptive Fields. As such, a brief overview

of these paradigms are presented here.

2.4.1 Visual Attention

The novel concepts presented in later chapters of this thesis bear a conceptual

resemblance to Visual Attention (VA). Visual attention is a field of study that
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bridges the fields of Cognitive Neurobiology (Crick and Koch 1990; Buia and

Tiesinga 2006) and Computational Intelligence (Itti, Koch and Niebur 1998). For

Cognitive Neurobiology, it is an attempt to model the behaviours of the brain in

its behaviour of providing cognitive processing to a reduced portion of perception,

specifically focusing on visual perception, used by the brain to focus awareness and

reduce cognitive load. In the field of Computational Intelligence, it investigates

the problem of identifying some part of a visual field as more salient, relevant

or important, thus requiring attention (in the form of processing or selection) of

the system. A subtle difference between the models of this thesis and typical

VA methods is that VA will search the visual field and identify sub-regions as

requiring attention for later processing stages, where as the models presented in

this thesis generate a model that applies a defined attention to the visual field

for later processing. A anthropomorphism of the two concepts is that VA is the

attentive choices made by the brain (conscious or unconscious) and the models

presented in this thesis correlate to the fixed attention provided by the fovea and

peripheral vision of the eye.

Saliency Maps

Saliency Maps are a process by which a visual field is explored in a bottom-up

approach for objects or regions that, are distinct from the background, or may

be of value for the task of the subsequent systems. The model by Itti, Koch and

Niebur (1998) is a well known model that based on this idea.

Itti’s model is inspired by the functioning of primate brains due to “a remark-

able ability to interpret complex scenes in real time, despite the limited speed of

the neuronal hardware available for such tasks.” The model takes the presented

image and generates a Gaussian pyramid with scales 2−n, n ∈ [0..8]. The pyra-

mid is then along 13 different feature pathways corresponding to Intensity, Colors

(Red, Green, Yellow and Blue) and Orientations (in 45◦ increments). For each
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pathway, the pyramid has the Center-surround differences computed to produce

the pathways Feature map, then an Across-scale combination and normalisation

is applied to reduce the pyramid to a single Conspicuity map for each pathway.

The Conspicuity maps are combined via Linear combinations to produce a sin-

gle Saliency map and a winner-take-all selection is applied to identify where the

attention is to be applied. If multiple attentive locations are desired per input

image, an blanking circle is applied to the previously selected region of attention

(reducing saliency maps values around that location to zero) and the modified

saliency map is reused in the winner-take-all process. Figure 6 displays the data

flow diagram of the model, as presented in their original paper.

2.4.2 Simulated Foveation

The Fovea centralis (Fig. 7) is a small indentation in the retina at the back of

the eye (Fig. 7). This ‘pit’ is connected to over half of the optic nerve and is

responsible for the focal in human visual perception. Foveation is the term used

to describe the act of applying this effect to imagery. The technique, is used by

artists and designers to encourage focus on particular targets within an image

or video sequence and has been generalised to Depth-of-field techniques where

shapes beyond points can be used as foveation targets. It has also been used as

a method of image or video compression to lower the required data for parts of

the scene inversely proportional to the distance to the focal target(s), (Itti 2004;

Wang, Lu and Bovik 2003; Lee, Pattichis and Bovik 2001; Geisler and Kortum

2001) and is still an active area of research (Li, Liu and Chen 2016; Cheng et al.

2015) for H.265 and similar streaming video compression algorithms.

This concepts can also be applied to AI related image processing tasks, though

has since fallen out of favour, possible due to the surge in popularity of CNNs.

The works by Scassellati (1998, 1999); Shipley and Kellman (2001); Terzopoulos,

Rabie and Grzeszczuk (1997) all show examples of various forms of foveation used
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Attended location

Winner-take-all Inhibition
of return
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Across-scale combinations and normalizations
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Linear filtering

Conspicuity maps
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Figure 6: The General architecture of Itti, Koch and Niebur’s model; as depicted
in their original paper.
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Figure 7: Diagram of the human eye (March i Nogué 2016). It shows the lower
part of the right eye after a central and horizontal section. The fovea centralis
can be located towards the bottom of the image (labelled Fovea).
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to compress the source data as part of data preparation or as a way to target

‘perception’ from the later processing systems.

2.4.3 Superpixels

Superpixel is a term used to describe a segment of an image which only contains

spatially continuous pixels that share similar colour properties. In the article

Achanta et al. (2012), the authors present a comparison between a number of

Superpixel algorithms and their novel design, Simple Linear Iterative Clustering,

SLIC.

In the SLIC model, the generation of superpixel segmentation is performed in

four steps, Setup, Assignment, Update and Post-Processing. In the Setup step,

the superpixels centres are pre-seeded at regular intervals of S =
√
N/k where

N is the number of pixels in the image and k the number of desired superpixels.

The label assigning each pixel to a superpixel is initialised invalid (i.e. -1) and

the distance between the pixel and superpixel centre is set to +∞. During the

Assignment step, the distance between the superpixels centre and each pixel in a

2S square region, centred on the superpixel, and assigns them to the superpixel if

the distance is less than the distance to their previous containing superpixel. The

Update recomputes the cluster centres and the residual error (from the L2 norm).

The Assignment and Update steps are iteratively repeated until the reported

residual error is below some threshold2. The final Post-Processing step reassigns

disjoint pixels to spatially nearby superpixels to enforce connectivity.

AN issue with Superpixel technologies is in the knowledge required by the

developer. Most Superpixel algorithms require the developer to specify a target

number of Superpixels to segment to; along with the issue of ordering the resultant

Superpixels. Subtle changes in an image can alter the colour distribution enough

the signifcantly alter portions of the image segmentation. With this instability
2The authors report that 10 iterations a sufficient for most images.
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and the variability in locality of the resultant Superpixels, it can be hard to assign

where each segmentation feature will be assigned when applying these algorithms

to methodologies like ANNs.

2.5 Related Implementations

These following three models are presented as examples of work closely related to

that discussed in this thesis. All three provide unique solutions to the issues of

data preparation for image based systems.

2.5.1 MIPs based Preprocessor

Lew and Huijsmans (1996) present a face detection model whose preprocessor

does not use traditional down-sampling interpolation techniques. For their design,

they take the face and non-face training sets and calculate then Kullback relative

information of each pixel of the data set to determine the amount of information

each pixel provides to the face detection task. Applying Gibbsian Random Fields

allows them to select the 256 “the most informative pixels” (MIPs) from this set

with regards to the information provided by the other pixels in the subset, as to

make sure large groups of pixels provided a good interpretation of the same piece

of information to the task. This allows for a large decrease in the computational

cost of both the preprocessor and backing system: The preprocessor is a filter,

taking in the image from the sliding window and filtering out only the pixels

previously identified as one of the 256 MIPs.

2.5.2 A Superpixelwise CNN

He et al. propose a novel method to detect the salient object from a scene (2015).

Their method, SuperCNN, uses superpixels to divide up the scene into arbitrar-

ily shaped regions (Superpixels) and a process to standardise the information to
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present to the CNN. The model includes extracting the colour uniqueness infor-

mation from the superpixels and an additional metric of colour distribution to

restore the spatial information required by the CNN.

2.5.3 ANNs and Improved Binary Gravitational Search

Algorithm

In the paper by Pourghahestani and Rashedi (2015), the authors provide a clear

description of a system that performs an object detection task using an ANN and

feature selection. The preprocessor used in the model is divided into 3 steps.

First, the image is processes to compensate for illumination variations due to

environmental lighting conditions; then the watershed algorithm Meyer (1991) is

applied to segment the image into objects within the frame; and lastly, feature

extraction is applied to the segmented objects to determine which features are to

be passed to the ANN.

The paper also describes the iterative process used to determine which of the

features to be extracted for classification. This processes uses KNN classification

and Improved Binary Gravitational Search Algorithm (Rashedi and Nezamabadi-

pour 2014) to iteratively identify potential candidates for classification from a set

of training objects. This process is a clear description of what would be considered

as the Construction Phase of a Bespoke Preprocessor.

2.6 Issues in the Literature

When building a high-throughput or real-time image processing system that uses

an ANN, it is common place to down-sample the input image as part of the

preprocessing or data preparation stage. As discussed in Sec. 2.1.3, the typical

reasons for these choices are either that it is computationally cheaper to resize
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the image than it is to have the larger ANN input layer (and the resulting Input-

to-Hidden synapses), or that there is an inability to learn/solve the task due to

relevant signals getting lost in the noise of the full image; as seen in the following

extracts:

“The size of the captured image is 640 × 480, but due to the limited

computational power, it is used after resizing to 26 × 20 using the

OpenCV library.” (Shibata and Utsunomiya 2011, p. 1447)

“. . . the DVS128 retina has 16,384 elements, . . . [so] a relevant method

of reducing the data flow must therefore be employed, without losing

information relevant to the line-following task.”

(Davies et al. 2010, p. 8)

“. . . only a coarse elevation map is necessary for autonomous maneu-

vers. This requirement allows us to lower the resolution of the recon-

struction, which drastically reduces the processing time for one depth

map. In practice, we initialize one depth filter for every 8 × 8 pixel

block in the reference frame. We therefore obtain dense depth maps

of size 94× 60, totalling 5820 depth filters for every reference image.”

(Forster et al. 2015, p. 114)

“. . . every two successive images, we densely sample pixels (every 20

pixels in our case) on the image . . . ”

(Garg, Yang and Scherer 2018, p. 3)

In these examples, a considerable amount of information is lost in the process.

In the case of the first two quotes provided, the tasks were performed using sources

of high-contrast images in a search for simpler geometric patterns that is mostly

resilient to even these extreme image reductions. The latter two quotes are in
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reference to algorithms specifically constructed to work with the coarser data

provided by the downsample. In other situations where more complex tasks are

to be performed, it is hard to argue that using image sources in which most of the

data is considered to carry little predictive value or is highly redundant, and can

therefore be discarded with little effect to the ANN’s functionality. Such losses or

inefficiencies may reduce the effectiveness of a system or outright prevent it from

working at a given image resolution. The challenge occurs when the inverse is also

true, as discussed in Section 2.1.3, where the excess of information, useful or not,

can hamper an ANNs ability to learn. This can be exaggerated when the developer

has little (or no) prior knowledge of what areas in the source images will prove

useful to the task as the developer will have to spend significant time in attempts

to gather this knowledge, or brute force without it. Typically practice is to search

multiple resolutions to find a few that provide some early, sufficient solution to

the problem, then progressing to finding sufficiently accurate variations.

A common problem in the literature is a vagueness in how the author(s) came

to using particular resolutions (with regards to traditional down-sampling tech-

niques) or topologies (when discussing CNNs). Additionally it is not unusual for

a lack of detail pertaining to the implementation specifics of any down-sampling

performed to make source imagery compatible with the presented model.

As examples of these issues in regards to traditional down-sample, the two

papers quoted in the previous section (Shibata and Utsunomiya 2011; Davies

et al. 2010) are used as examples. Shibata and Utsunomiya provides a preprocessor

output resolution of 26×20 and Davies et al. settle on 16×16, but neither provide

details of the algorithm used to perform these reductions or how they came to the

choice of the stated resolutions. It can be assumed, in cases like these, that

the likely algorithm was Bilinear Interpolation due to is speed, ubiquity and low

memory footprint compared to the other methods available; and in the case where

Bilinear was not the algorithm used, if Bicubic had been used, Bilinear can be
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used as a sufficient substitute due to the nature of the task3.

As described earlier, the differences in the various interpolation techniques

mostly present themselves in the form of differing responses to edges in the source

image. In the case of down-sampling, the reduction in data mostly cancels out

these variations, but not completely, and sometimes even these subtle changes can

affect the quality of the resulting ANN. The testing domains used in this thesis

will be using the two of these interpolation methods as controls for this reason.

This effect will be seen in these as slight variations in predictive accuracy and

other similar measures. The analyses performed will additionally show that this

difference is significant in occasion.

There is a similar issue present in the CNN literature for the Convolution and

ReLU layers Zbontar and LeCun (2016); Lang, Zhao and Jia (2016); Covell et al.

(2017). Both types of layers will reduce the width and height of the previous

volume and the same question applies to each. Discussed models will include a

detailed description of the layers used and the internal structures of each layer;

but a lack of detail on how a choice was made on the reductions present in the

Convolution and ReLU layers.

The lack of answers to these questions may not constitute throwing out the

works discussed, by their inclusion in the literature would allow for the gauging the

ease of implementation and how well the model could diversify to other problems.

A model whose parameters were able to be generated by a automated system, or

works sufficiently with a very broad range of parameters, would be significantly

easier than a system that required fine tuning by hand to a high degree of precision;

or a model where the parameters are highly dependent on one another or the

results unstable with even slight alterations to initial conditions.
3Bilinear can be used as a rough approximation for Bicubic in most circumstances at an

implementation level. Bicubic is useful at a conceptual level as it is a continuous function, i.e.
differentiable at every location.
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“To detect faces larger than the window size, the input image is re-

peatedly reduced in size (by subsampling) . . . by a factor of 1.2 for

each step in the [image] pyramid.”

(Rowley, Baluja and Kanade 1998, p. 8)

Again looking at traditional down-sampling methods, the authors of this third

quote have a similar task as the authors of the earlier quotations. Rowley, Baluja

and Kanade implement an image pyramid in which the source image decreases

in size with each step of the pyramid. The paper specifies that the image is

subsampled up by a factor of 1.2 for each step, but does not specify if this is

processed from the previous step (compounding edge variations and rounding-

errors) or if it recomputed from the original image by a factor of 1.2(steps).

2.7 Summary

In the case of all prior works, Section 2.6, there is a clear pattern of taking in a

source image that is too large to be directly processed by the primary classifier;

passing through an additional preparatory process that reduces the complexity of

the image in a variety of ways until it is able to be parsed by said classification

system.

There is little work, if any, that looks at the preprocessor as a separate entity

from the primary classifier, but instead there are many works that will take the

classifier from one model and combine it with their own preprocessor specifically

crafted for their novel system.

An aim of this thesis is to provided a baseline with which to describe and define

the many preprocessors displayed throughout the literature. With the effect of

delineating the preprocessor from the classifier, it becomes apparent that the pre-

processors provide data in not just a particular format, but with also with specific

properties. Looking back to SuperCNN (Sec. 2.5.2), the preprocessor described
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takes a simpler algorithm that provides a significantly reduced output than the

original image and extends it provide the location information required for a CNN

to function. Repeating this process with other systems will provide a catalogue of

algorithms, what data they provide and properties the data has. For the case of

single algorithm preprocessors this is already the case; but with multi-algorithm

preprocessors it may be non-obvious which properties have been maintained or

what new properties have been gained due to the particular sequence of functions.

This will be further discussed later in Chapter 4.



Chapter 3

Research Methodology

This chapter will present two testing domains that will be used in later chapters to

evaluate the described preprocessors. The first of these Test Domains will be used

to briefly identify if the preprocessor warrants a full analysis, where as the second

will provide a detailed investigation and relating analysis. Before describing their

details, this chapter will first cover the components that are common to both

domains: Hardware and Platform specifics, Set-up of the testing environment and

Control Groups. This will be followed up by the specifics of the two test domains

used in the later chapters: Object Presence and Face Detection.

3.1 Domain Commonalities

This section covers a few aspects of the two test domains that are consistent

between them. This section will first cover the execution environment in which

the test domains are performed and then follow up with a description of the control

groups used in the two testing domains.

41
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3.1.1 Hardware and Background Processes

Some tests performed in response to the questions presented in this thesis require

the comparison of algorithm run-times. When performing tests of this nature,

extra precautions are required to make sure that the extra activities of the testing

environment, and computer as a whole, have near-equal and near-minimal effect

on the timings of the algorithm(s) being tested. The strategies implemented to

achieve this can be divided into two groups, those that affect the operating system

and those that affect the Java Virtual Machine (JVM).

Physical machine and Operating System

Various strategies where applied to counter the effects of additional processes on-

going on the test machine and to minimise I/O delays affecting any of the tests.

To minimise the effect of external processes, and maximise the throughput of

the testing application, multiple strategies were applied:

• All unnecessary processes (background or foreground) were terminated or

suspended.

• The test application was given maximum priority, giving a preference to

execute threads/sub-processes belonging to it over other processes of other

applications that were required to be left running.

• Tests using different preprocessors would be run independently, but concur-

rently.

These first three strategies were used to minimise the effect of external process

on the test results. Terminating, suspending and reducing the priorities of these

process minimised the amount of available runtime the receive to the benefit of

testing. The use of concurrent execution of tests allowed for any unavoidable

effects to be spread among competing preprocessors, reducing any effect that

these process may add to the statistical analysis of tests.
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On current hardware, reading and writing to permanent storage, such as HDDs

or SSDs, is a much slower task (though lesser for SSDs) then storing data to

temporary RAM (disregarding the effects of Paging). To combat these I/O issues,

all data sets were loaded and prepared before the timed execution of the target

algorithm. Equally, all results generated were stored in memory and only written

to permanent storage after the completion of all timed experiments. Further,

the algorithms used to support the test were chosen such that they use minimal

memory as opposed to fastest run time, reducing the amount of the paging the

OS needed to perform.

The portion of the test application that performed the evaluations of the al-

gorithm(s) was also performed concurrently. This increased testing throughput

as multiple timed trials were executed at any one time; additionally, in the event

of any external issues (as mentioned above) the time delay caused would tend

to towards evenly applied to all of the algorithms being tested. Were possible,

the total number of threads allowed was equal to one less than the number of

cores available. This practise allowed one core to remain un-utilised by the timed

tests, so it could be used by other threads belonging to the support process of the

application or any external OS processes being executed.

Java and JVM Warm-up

The implementations used in this thesis were coded in the Java Programming

Language. Programs written in Java, unlike typical programs, are not compiled

to native machine code for the hardware/Operating System; instead they are

compiled to the platform independent Java Byte Code. When it is desired to

execute the compiled Java program, it is executed in a virtual environment (the

Java Virtual Machine, JVM); providing various advantages and disadvantages

when compared to native execution.



CHAPTER 3. RESEARCH METHODOLOGY 44

In the context of this work, the most notable difference between native pro-

grams and Java applications, is the ability to perform run-time optimisations.

Like many modern compilers, the Java compiler performs various optimisations

to code as it is being compiled, but it can only base these strategies on the static

appearance of the program. As a Java program runs in the virtual environment,

profilers analyse how the program is performing, how often various routines are

invoked, the relationships between function arguments and the return values and

many other such statistics. This type of run-time profiling within a virtual envi-

ronment presents the ability to optimise the currently executing programs, such

as (but not limited to) prioritising optimisations to the routines that are most fre-

quently called, remove conditional checks that never change or replacing/prefixing

functions with faster look-up actions.

The act of run-time optimisation, as is intended, can dramatically improve

the run-time of a Java program; but this benefit becomes a detriment when it

comes to statistical analysis and comparison of various algorithms. During the

runtime of the application, the program will initially execute with the compile-time

optimised version of the program, at some time into the execution of the program,

some portion of the program will reach a sufficient threshold to be optimised by

the JVM. The JVM will then generate a new version of the routine that is intended

to perform the same functionality in a reduced amount of time and then re-route

all new calls to it once completed. If this occurs during a timed test it can result in

a noticeable and sudden drop in computation time on subsequent runs. If two or

more algorithms are being compared sequentially and they share some routine as

part of there implementation, then the run-time optimisations can result in bias

towards the later running algorithm1. As the routine will have had X number of

executions before the second algorithm executes, this increases the likelihood of
1This is assuming they have been run as part of the same execution of the JVM. The current

JVM implementation does not maintain optimisations from one execution of the JVM to the
next.
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the JVM performing the optimisations early on in its timed trial. If the usage of

the target routing remains similar between the two algorithms then the second

algorithm will benefit from the speed increase produced from the optimisation. If

the usage changes significantly, then the optimisation may still occur, but with the

intent of improving the speed for the old usage (as this is the most common usage

according to the profiler), potentially resulting in a decrease in performance.

The two most common strategies to overcome this problem is the either disable

run-time optimisations or to perform JVM “warm-up”. Disabling the run-time

optimisation feature of the JVM is the simplest of the two options, but can mean

the programs will run for extended amount of time than is necessary. For smaller

programs this is a suitable solution, but for programs expected to run on the order

of hours, or even days, this quickly becomes an ineffective solution. The warm-up

strategy is to perform a pre-trial using the exact code that would be run as part

of the timed trial. This allows for the profiler to analyse the various calls and

routines used and optimise them as defined by its various optimisation policies.

This pre-trial is not timed, and any other results from them are discarded. The

duration of the pre-trial is sufficiently long enough such the the JVM will not

perform any further optimisations during the main timed trials, typically due to

optimisation policy exhaustion.

As all the problems tested in this thesis are stochastic in nature, the test typ-

ically last for long periods of time to generate statistically useful results. For

this, the “warm-up” strategy was most feasible solution to the problem of JVM

run-time optimisation. This strategy requires running the code additionally many

times within the same execution before the beginning of any data collection for

statistical analysis. For this to be effective, the warm-up of the algorithms in

question must be representative of their used during timed trials and data collec-

tion.
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3.1.2 Control Groups: Traditional Preprocessors

As discussed in section 2.2, traditional preprocessors use Bilinear or Bicubic in-

terpolations to prepare images when down-sampling is required. For this reason,

two additional control populations, one using images prepared by a Bilinear In-

terpolator and the other using Bicubic, will be form the control group for all

experimentation in this thesis.

3.1.3 Stochasticity

Neural Network implementations are typically stochastic by nature, due to the

random values used to initialise the weights in the network. To compensate for

this, each test will be repeated a number of times with differing initial states

and then averaging across the results. The exact number of repetitions will be

dependant on the test being conducted and stated in their description.

3.1.4 Cohen’s Kappa

Cohen’s kappa coefficient (Cohen 1960, 1968) is a method to quantify the agree-

ment between to classifiers, the ‘Raters’. In the use-case of this thesis, Cohen’s

kappa is be used as alternative to accuracy by measuring the agreement between

the ANNs prediction and the training data’s ground-truth label. The advantage

of using Cohen’s kappa over more traditional metrics such as Accuracy is that its

reported value uses chance as a baseline instead of perfect failure.

Computed as

κ = 1− 1− A
1− pe

, (10)

where A is the traditionally computed accuracy and pe is the probability of agree-

ment. The probability of agreement can be calculated as

pe = 1
N2

∑
c

nc,anc,l, (11)
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where N is the total number of tests evaluated, c is the set of valid classification

outputs, and nc,a and nc,l are the total number of times those classifications were

presented by the ANN and training labels respectively.

Typical values for Cohen’s kappa range from 0 to 1, though negative values can

theoretically tend towards −∞. A value of 1 represents perfect agreement between

the two Raters, and values close to 0 represents that the agreement between the

two is no better than chance. If a value less than 0 is returned, this means there

is a large amount of disagreement between the two Raters and is usually caused

by the accidental inversion of one of the Raters.

3.1.5 Receiver-Operator Characteristic Curve

ANN classification systems are typically set up to return a normalised numeric

value which can be discretised into a binary classification by a threshold value. The

optimal value for this threshold is rarely 0.5. Receiver-Operator Characteristic

curves (ROC curves) allow for optimisation of this threshold value and comparison

between multiple models that implement independent optimal threshold values.

The ROC curve provides a mapping from False Positive Rate (FPR) to True

Positive Rate (TPR) for the given classification method. The optimal value for the

threshold can be identified as the point on the graph closest to the perfect classifier,

0 FPR and 1 TPR. Multiple models can be compared by this method with the

comparison of the area under the ROC curve, AUC. A value of 1 (maximum)

implies that at least one of the threshold values results in a perfect classifier and

a value of 0.5 (minimum) indicates that the classifier is no better than chance.

The area enclosed by the ROC curve and the horizontal axis (the area under

the curve, AUC) "is equal to the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one" (Wikipedia

contributors (2018)). For this reason, it will be used to compare the various

preprocessors.



CHAPTER 3. RESEARCH METHODOLOGY 48

3.2 Test Domain 1: Object Presence Detection

The first of these two test domains is a simple task to predict if a presented scene

contains a predefined object. This is a fairly simple task and is primarily used

to evaluate functionality and give some early insight into the algorithm. This

domain was selected due to its simplicity in implementation and evaluation.

The task was implemented as the detection of an object against a complex

background. For the sake of simplicity at this stage, the object (if present) was

always in one of a set of predefined locations, with some variation in rotation with

respect of the image plane. The object had to be of a non-trivial shape and the

set of background images was constructed to contain both images of high and low

colour contrast with the object.

Due to the design, it would be fairly easy for the neural network to learn

the particular backgrounds and the target object, leading to over-fitting. As the

primary interest in the test is for that of functionality (i.e. Can the ANN learn

using inputs from novel preprocessors?), excessive learning that leads to over-

fitting will not be a considered an issue at this stage.

3.2.1 Implementation Overview

This section will provide details as to the implementation specifics of this testing

domain, covering the specifics of stochasticity, control group parameter selection

and ANN structure.

To cover the issue of stochasticity (Section 3.1.3), each preprocessor test is

repeated 200 times and results averaged. As this test constitutes a trial of the

preprocessors functionality, as opposed to the preprocessor & ANN system quality,

a fixed number of epochs (200) will be used.
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Control Group: Parameter Selection

To find a suitable resolution for the control group, a quick exploration of the space

was performed. In this exploration, a variety of potential downsampling resolu-

tions were tested and ANNs trained with the resulting preprocessors. Figure 8

presents a visualisation of the results. The results show some interesting patterns

that are not too surprising given the task. Resolutions that result in the location

of object being split across multiple pixels significantly hamper the effectiveness

of the ANN. An output image resolution of 6 pixels wide by 5 pixels vertically

was selected for the preprocessors as it represents the resolution with the fewest

resultant pixels that was able to learn the task.

Object Presence: Resolution Sensitivity

 6  7  8  9  10  11  12  13  14  15

Horizontal Resolution

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

V
er

tic
al

 R
es

ol
ut

io
n

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 8: The accuracy (measured using Cohen’s kappa) as a function of down-
sampling resolution.
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Figure 9: A graphic representation of the data flow through a complete system,
from source image to final classification.

Topology and Classification

In the implementations of ANNs the question of topology poses a complex chal-

lenge. The solution to this is either to trial a collection of competing plausible

topologies or to use techniques to generate the topology automatically (Stanley

and Miikkulainen 2002). As part of the goal of this thesis, is the demonstra-

tion of preprocessor algorithms, the veracity of the ANN is not under scrutiny.

Given the simplicity of this task, it was decided a small number of topologies

would be trialled and the first one capable of learning under with the Traditional

Preprocessors would be used.

The result object detection algorithm was implemented as a standard feed-

forward perceptron based neural network with a topology of I → 2 → 1 (where

I represents the number of neurons required to fully represent the data provided

by the accompanied preprocessor). Early in the design of this test, it was decided

to use an ANN that is still capable of solving the given task, but reduced to a

minimal topology to intentionally slow the convergence to a solution; to increase

the number of epochs available to evaluate the implementations. In an earlier

implementation of the test domain, the ANNs were implemented with a topology

of I → 10 → 1; with the accuracy beginning to plateau after epoch 5). Figure
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9 shows a simple representation of this topological design. The output from the

network was a value between 0 and 1 (inclusive). This was applied to a discrim-

ination threshold, τ , to identify whether the value indicates an ‘Object Present’

prediction or a ‘Background’ prediction; allowing for comparison via ROC curves.

Learning was implemented using back-propagation with a learning rate of 0.8.

3.2.2 Data Sets

The data set used in this preliminary experiment consisted of 300 generated im-

ages. Each image was generated from one of 17 possible background images2 and,

where relevant, the object to be found overlaid on the image in either the left or

right half of the image, with a random orientation. The object used was an image

of a stuffed bear3. To generate the 300 test images, the background set of was

expanded to 100 images by selecting one of the 17 background images at random

and producing a duplicate with altered the contrast and/or brightness. For each of

the 100 images, two further duplicates were produced with the target object either

centred in the left or right half of the image. The resultant 300 images were finally

shuffled. The re-use of the background images was done deliberately to minimise

the effect of learning the correct response based solely on the background.

3.2.3 Analysis

For this test domain, no statistical analysis will take place. The purpose of this

test domain is to act as a filter for potentially viable algorithms. If an algorithm

(or its variant) can reach accuracy measure of 0.5 for Cohen’s kappa and have an

average runtime of less then a factor of ten above that of the worst of the control

algorithms, then it will progress on to Test domain 2.
2Images from around the Cornwallis building, University of Kent, Canterbury; See Appendix

A.2
3see Appendix A.1, the bear had a simple colouration, complex shape, and a varying colour

contrast with the used background images
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3.3 Test Domain 2: Baseline Face Detection

To provide a qualitative comparison of the presented image preprocessing algo-

rithms against the traditional methods, a baseline face detection algorithm will be

used. Its design is based on a sliding window over an image pyramid methodology.

This method was chosen as it allows for a location and scale independence search

whilst keeping resource consumption and implementation difficulty low. This

method only allows for minor orientation independence as an emergent property

of the ANN rather that the face detection methodology itself.

3.3.1 Implementation Overview

Theo topology of the ANNs follow the same structure as those presented for Test

Domain 1 above. Training of the ANNs will be performed continually until over-

fitting occurs. The training phase will complete once all ANNs have reached this

stage. To cover the issue of stochasticity (Section 3.1.3), each preprocessor test is

repeated 200 times and results averaged.

The basic design of the image pyramid is such that the largest image is sized

to 51/16
th the size of the original image to allow for searching of small faces in

the scene. This value was chosen as each resolution step in the image pyramid

is scaled by 2/3
rd the previous resolution, so after 5 passes, the scaled image is

exactly the same size as the original image (81/16 = 5.0625, 27/8, 9/4, 3/2, 1, 2/3,

. . . ) and reducing artefacts produced from rounding errors (The fraction scales

larger than 1 are all based on powers of 2). The pyramid was continued along

this geometric series until either of the resultant width or height was less than

windows size. For each pass, the window starts in the top left corner and steps

right in 20 pixel increments; At the end of each row, the window returns to the

left hand edge and drops down by a step of 20 pixels. The pass is complete when

the window would clip the bottom edge of the image.
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The specific size of the sliding window was set 100 pixels wide by 125 pixels tall,

roughly approximating the proportions of a human face. To further reduce the

generation of erroneous artefacts due to intermediate stages, the window cropping

and scaling are performed on the source image (See Sec. 2.6). This results in the

windows implementation being the inverse of the sequence presented above, with

the window starting at 16/81 its base size and increasing until the resultant window

would exceed either axis of the source image.

Performing the Windowing

A step-wise description of the procedure is as follows:

1. Each face detection system has a sliding window that is initially 16/81 the

base window size of 100× 125.

2. The sliding window is initialised to the top left corner.

(a) For each location of the sliding window, the test image is extracted by

interpolating the contents of the sliding window onto an image 100×125

in size, using the Bilinear interpolation method.

(b) The windows section is then passed to the systems preprocessor and

processed into the feature set.

(c) The feature set is used as the input to the ANN and returns the predic-

tion of whether the window appears to be over a face or the background.

All windows identified as potential faces are recorded to a set of detec-

tions for further analysis. (See the next section for the specifics on the

ANN.)

3. After processing, the sliding window is shifted 20 pixels right (before scaling,

i.e. ≈ 3.95 pixels in the first pass) and the process repeated.
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4. At the end of each line, the sliding window is moved to the left edge and

down by 20 pixels (before scaling).

5. Once the sliding window has traversed the whole image, the size of the

sliding window is increased by 3/2 and moved back to the top left corner.

6. This is repeated until the one of the sliding widows axis is greater or equal

to that of the whole image.

After the face detection process has been applied to an image, it returns a

set of potential face detections. The following section looks at how this is further

processed to determine which are correct detections (True Positive), which are

incorrect detections (False Positive) and which labels have been missed (False

Negative). Correct background detections (True Negatives) are inferred from

these values.

3.3.2 Prediction Merging and Quantifying

The complexity of the prediction set is first reduced by merging detections that

are potentially of the same ‘stimuli’4. Predictions are clustered using the dbscan

(Ester et al. 1996) algorithm, where two predictions are considered part of the

same cluster if the ratio of intersection to union of the two windows is greater

than 0.9. To collapse a cluster of window predictions down to a single prediction,

a new bounding rectangle is computed such that has the following properties equal

to the averaged equivalents of the clustered windows:

• Aspect ratio

• Location of centre
4Here, stimuli is used to describe a generic input that triggered the ANN to give a positive

output. In a correctly trained ANN, this will typically be a faces, with the occasional false
positive stimulus.
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• Area

Two methods were considered for quantitative evaluation in this study. The

first metric, Correct Detection/False Positive (Roth, Yang and Ahuja 2000; Feraud

et al. 2000; Gu and Li 2000; Lew and Huijsmans 1996; Lin, Kung and Lin 1997;

Osuna, Freund and Girosi 1997; Colmenarez and Huang 1997; Yang, Abuja and

Kriegman 2000) was the typical measure used to quantity face detection of this

type in the literature when this was considered a solvable, unsolved problem.

The second method, the Bipartite Graph Metric (Jain and Learned-Miller 2010),

is used in contemporary problems of the field for face detection. The following

sections cover two different approaches to determine the truthfulness of a positive

or negative prediction.

Correct Detection/False Positive

This method uses two values to quantify the quality of the algorithm, percentage

Correct Detection (CD) and number of False Positives (FP). A correct detection is

defined as a positive prediction for a window that contains all the facial features

(eyes, nose and mouth) of at least one face. A false-positive is recorded for a

positive prediction that does not meet the prior prerequisite. Though mostly

negated by the merging performed prior, for the sake of completeness, repeat

detections of an already identified face are not counted towards CD or FP (Rowley,

Baluja and Kanade 1998). If a window with positive prediction actually contains

multiple faces, all are marked as identified. Simply, CD is the quantity of faces

from the data-set that where identified at least once, and FP is the total number

of incorrect identification of faces.

Bipartite Graph Metric

Jain and Learned-Miller (2010) propose a newer quantitative model intended for

uses in face detection algorithms where orientation and pose are also required to
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be accounted for. In this methodology, each prediction (after clustering/merging)

in the set of all predictions is connected to each label by an edge (forming a

Bipartite Graph). Each edge is scored by ratio of intersected to union of the com-

puted/merged bounding rectangle. A perfect prediction of a particular face will

result in the connection between the two being weighted 1, whereas an unrelated

face for a given prediction will be get a weight of 0. The Hungarian Algorithm

is applied to the graph, generating a sub-graph that connects each detection to

at-most one label, each label to at-most one detection, and that the sum of con-

nection weights is maximised.

Quantifying Selection

In review of these two measures, it was decided to apply the modern standard of

the Bipartite Graph Metric for the following reasons:

• Less prone to anomalous results due to duplicate detections - each prediction

can be assigned to, at most, one target face.

• Clarity of association - there is a one-to-one relationship between label and

prediction.

• Acceptance in the field - the use of CD/FP has fallen out of favour by

practitioners in the field.

3.3.3 Datasets

The following data sets where used for the baseline face detection system. (See

Fig.10 for samples.)

CMU-130

This data set was constructed from the union of the CMU frontal face data
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(a) CMU A (b) CMU B (c) Caltech

Figure 10: Three sample images from three data sets. These provide examples
of a single image with multiple faces, an image with a single face proportionally
small to the image, and an image with a face that fills most of the image.

sets5 A, B and C. The data set consists of numerous faces that are looking

towards the camera in an upright manner, formatted in indexed grey-scale

in a loss-less compression format. The data sets are provided with a ground

truth labelling of each face in the scene, identifying the eyes, nose and mouth

(2 corners and centre).

Caltech

The Caltech Faces 1999 (Front) data set6 includes 450 images of faces from

27 distinct people that look towards the camera and are oriented upright.

They are formatted in full RGB with negligible compression artefacts (due to

the JPEG file format). The provided ground truth of this data set provides

a rectangle identifying the location of each face.

3.3.4 Subset construction

As data sets CMU-130 and Caltech were to be used to construct the neural net-

works, they were segregated into the Building7, Validation7 and Test sets. To do

this the images, along with associated ground-truths, of both sets were initially

loaded into memory. The first 10% of faces were separated into the Test sets,
5Data sets A and C were collected by Rowley, Baluja and Kanade (1998), whilst data set B

(also known as the MIT face data set) was compiled by Sung and Poggio (1998)
6Caltech Faces 1999 (Front) was compiled by Weber (1999)
7The Building and Validation sets collectively make up the Training Set
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T(CMU-130) and T(Caltech). The faces from the remaining images are extracted

(cropped and scaled), along with an equal number of background samples8. The

faces and background images are randomly assigned to either the respective Build-

ing set or their Validation set, so that 90% form the Building sets, B(CMU-130)

and B(Caltech), whilst the remainder 10% form the Validation sets, V(CMU-130)

and V(Caltech).

3.3.5 Analysis

During the training phase, average processing time for the preprocessor and corre-

sponding neural-network are gathered. Accuracy results are gathered during the

verification phase as predictions relative to some discriminating threshold, τ . τ is

varied from 0 to 1, to produce a ROC curve (Sec. 3.1.5).

The comparison of the preprocessors (both time and accuracy) will be per-

formed by Friedman tests with a significance threshold of α = 0.05. In the event

of significance, this will be followed up by post-hoc Wilcoxon signed-rank tests

(with Bonferroni correction).

8A background sample is considered to be a section of the image that would fail to register
as a correct detection, as described in section 3.3.2.



Chapter 4

Image Downsampling and

Preprocessors

This chapter introduces the overarching concept of adaptive preprocessors and a

collection of novel terminology used to classify and distinguish different forms of

preprocessors.

In the following chapters, three novel preprocessors will be presented. Two of

these are designed to be constructed in a way significantly different to the majority

of those in the literature. To aid in the identification and discussion of these forms

of preprocessors some new terminology is introduced. The majority of image

preprocessors and one of the novel algorithms presented here are constructed

independent of the learning process of the latter classification system. These

preprocessors come under the class of Bespoke Preprocessors as each instance

of the algorithm is constructed (in terms of algorithm selection and parameter

optimisation) for a specific case. The second class are the Adaptive Preprocessors;

these preprocessors are designed to be automatically adjusted and modified in

conjunction with the learning system, reducing the equivalent construction to

algorithm selection and possible initial parameter biasing. Figure 11 represents

a stylised view of how an ANN based system for image processing along with

59
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Figure 11: A representation of the additional phase for a Bespoke Preprocessor. P′
represents some sample preprocessor(s) used during the construction phase. Eval
represents an evaluation function used to quantify the ANNs behaviour, with
respect to P′. Activities, such as a Trial-And-Error refinement of a preprocessor,
are represented by the Construction Phase. The preprocessor, P, used in the main
learning phase and into production may be constructed given the results of Eval
over the set of {P′}, or the instance from that set that allowed the ANN to score
the most preferential value from the Eval function. Note that in this diagram
an ANN using a supervised learning algorithm has been depicted. This is not a
requirement of, but rather an easily representable and recognisable way to show
where the ANNs traditional learning fits within this life-cycle.
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Bespoke preprocessor may function and the stages it would migrate through during

its life cycle.

Construction Phase

The first stage in a model’s life-cycle where data preparation techniques are

refined for the given model. During this phase, learning models may require

a training process or the process may be iterated multiple times with varying

components as part of the exploration/construction.

Learning Phase

A stage in a learning model’s life-cycle where the primary training occurs. A

common strategy is to generate a pool of candidates and train them against

the Training Set. The best performer is then selected for the Production

Phase.

Production Phase

The final stage in a model’s life-cycle where no or restricted alterations

are applied, and the algorithms can be replaced with hard-coded or static

variants for improved run-times.

The Bespoke Preprocessor is generated as a result of a process that occurs

prior to the traditional Learning Phase, the Construction Phase. An advantage of

Adaptive Preprocessor is the partial development during a shorter Construction

Phase resulting from its ability to iteratively refined itself alongside the ANN

during the Learning Phase. In both cases, evaluation metrics that quantify the

behaviour or quality of the ANN’s predictive ability are a requirement to provide

insight into whether features provided by the preprocessor are useful towards the

predictive or classification accuracy of the ANN.

Bespoke Preprocessor

In the context of this thesis, Bespoke is used to describe a preprocessor that
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is fully constructed prior to the main learning of the ANN. The life-cycle of

bespoke preprocessors generally follow the same path. First the developer

will use priori knowledge to determine a short list (domain) of potential

candidate preprocessor algorithms and, potentially, some restrictions on pa-

rameter ranges. Through an evaluation process either, this short list is then

refined such that one is selected as the final preprocessor to use; or a spe-

cific preprocessor can be constructed from the given evaluation data of the

short list. Figure 11 provides how a Bespoke Preprocessor may be used and

constructed through the life-cycle of a ANN using a Supervised Learning

model. In this figure, the preprocessor P′ represents a particular instance

of one of the preprocessors from the short list and the parameters used in

instantiating it.

Adaptive Preprocessor

The intention of an Adaptive Preprocessor is to simplify the task of con-

structing a preprocessor by providing systems that perform refinement dur-

ing the training of the ANN. This style of development requires three com-

ponents, a domain in which the adaptive preprocessor should be searching

(similar to the short list required by Bespoke Preprocessor generation), a

quality metric by which to compare parts of the current preprocessor (the

equivalent of the Bespoke Preprocessor’s evaluation function), and an ad-

ditional method to present new preprocessors based on those metric results

and the previous generation preprocessor, not dissimilar from the genetic op-

erators of Genetic Algorithms. This allows for less work on the part of the

developer as they only define the short list using the same a priori knowledge

as is used for the bespoke preprocessor, with the option of culling the short

list to speed up the iterative refinement and the attachment of the Adap-

tive Preprocessor to the ANN via the quality metric. Figure 12 provides a

graphical representation of a potential Adaptive Preprocessor Model.
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Figure 12: A representation of the life-cycle of an ANN based system using an
Adaptive Preprocessor. Note the addition evaluation function, Eval, and an Up-
date process added to the Learning Phase process, used to modify the preprocessor
in parallel with traditional ANN learning.

A minor issues that arises from these two definitions is the question of where

is the boundary drawn between the classifier and the preprocessor. In the case

of Bespoke Preprocessors, the delineation is rather clear as the preprocessor is

a static process, prefixed to the learning classifier. In regards to the Adaptive

preprocessor, the delineation is not as clear; at what point in a classifying system

(made from a sequence of, potentially learning, sub-processes) does the ‘classifier’

moniker describe the behaviour better than a learning ‘preprocessor’? Too resolve

this issues, two potential extensions to the definition of preprocessor are presented:

Domain Conversion

The additional sequence of component algorithms (the ‘preprocessor’) pre-

fixed to a sequence of components (the ‘classifier’) that perform non-image
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classification. An trivial example of this may be a feature extraction pro-

cess used to preprocess an image for a decision tree. The decision tree is

the component performing the classification and (though technically capa-

ble of taking in the colour values of a standardised image), it is trivial to

demonstrate that a decision tree processing the raw image would be of poor

quality. In this example the feature extraction algorithm is used to take the

source image from a domain that is inappropriate to one that is sufficient

to the algorithm.

Qualitative Refinement

The sequence of optional components (the ‘preprocessor’) prefixed to the

minimum sequence of components (the ‘classifier’) that perform image clas-

sification to improve accuracy measures, simplify the user/developer’s set-

up requirements (in both time and/or knowledge) or to reduce the training

time; but not required, at least conceptually, to provide the minimum re-

quirements for performing even poor quality classification.

The extensions here are designed fit with the intuitive idea of what a pre-

processor is and allow for a way to cleanly mark where the preprocessor end and

the classifier begins. In the previous chapter, it was stated that normalising the

generated features is part of the duty of the preprocessor. This was done to re-

duce any biasing that may affect evaluation of the various instantiations. Using an

ANN as the learning classifier, it is intended to take input values in the range 0..1,

but is able to function with any finite value and perform the normalising inter-

nally; therefore, by Qualitative Refinement, the boundary between the classifier

and the preprocessor coincides with that used in this thesis.



Chapter 5

Voronoi Saliency Partition

This chapter will discuss the first novel image preprocessor introduced in this

thesis, Voronoi Saliency Partition (VSP). The concept of this preprocessor is to

use a set of convex shapes to define the partitions of the image space into features

to be presented to the ANN as its inputs. These convex shapes are generated by

Voronoi Diagrams from a set of points, iteratively refined by the Update process

(Chapter 4). These points are adjusted in response to an evaluation function that

determines how much of an effect the individual features have on the selection of

a classification or prediction by the ANN. The feature is computed from the pixels

whose centres fall within the bounds of the shapes when the diagram is scaled to

the size of the source image.

The choice of using Voronoi Diagrams as a foundation for this first implemen-

tation comes from a number of its properties:

• If S ⇒ P describes the process of converting set of points, S, to partitioning

of space, P, then the likelihood of finding two sets, S1 and S2 (Assumption:

|S1| = |S2|), such that S1 ⇒ P and S2 ⇒ P decreases with the size of the

sets. This means that for sufficiently large sets, care does not need to be

taken to protect against the exploration of distinct sets of points resulting

in a looping exploration of partitions.

65
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• Both the set of points and the partitions are continuous; a smooth transition

from S1 to S2 will result in a smooth transition from P1 to P2 (where S1 ⇒ P1

and S2 ⇒ P2).

First, this chapter will cover some additional terminology (both explanation

of concepts from other works and variations of other’s work used in this chap-

ter). The design of VSP will be a two stage process, both of which will require

some comparative tests, so the next section will focus on how these tests will

be performed and their quality evaluated. The following section will introduce

the first design process: “identifying a usable down-sampling algorithm based on

Voronoi diagrams”, followed up by a comparison of the presented methods. The

second stage will expand this design by adding one of a number of adaptive up-

date processes that will iteratively refine the sites that define the Voronoi diagram

preprocessor to improve the task-suitability of the preprocessor; the comparison

is then carried out using this expanded preprocessor. This will finally be brought

into overview with a conclusion for the work presented in this chapter.

5.1 Voronoi Diagrams

A Voronoi diagram (VD, also known as a Dirichlet tessellation, a Voronoi-Dirichlet

partition and other variations) is defined as the partitioning of an N-dimensional

space, X, for which a distance function, dist(a, b), can be defined for any two

points a and b within that space(Dirichlet 1850; Voronoi 1908). It is constructed

from a set of points (sites), S = {s1, ..., sn} within that space, S ⊂ X. Each

site, sx ∈ S, determines a partitioning of the space (known as a cell), c(sk), that

contains all the points whose distance from sk is no greater than that of any other

site; formally

c(sk) = {x ∈ X | ∀sj ∈ S : (dist(x, sk) ≤ dist(x, sj))}.
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Figure 13: An example Voronoi Diagram of 50 randomly located sites in a planar
euclidean space. The sites are highlighted in red, with cell boundaries marked in
black.

This results in a partitioning of the space made up entirely of convex polygons (an

example of which is shown in Fig. 13) with each point in the space belonging to one

cell (the internal area of the enclosing cell), two cells (making up the delimiting

edge between them), or more (marking the vertex of multiple cells).

5.2 Saliency: Measuring an Neurons ‘Worth’

Throughout this thesis is the use of a metric called Saliency. This metric is

used to estimate how much predictive value an input or computed feature (from

individual neuronal units) provides to the overall predictive quality of an ANN.

First will be a discussion on its inspiration, Relevance Assessment, originally used

as part of a pruning algorithm for ANN topologies. This will be followed up by

the adjustments and simplifications applied to the model and the reason behind

them. This will be finished of with a look at how the Saliency metric may be used

beyond the original proposed purpose presented in this thesis.
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5.2.1 Foundation: Relevance Assessment

The Saliency metric is derived as a simplification of earlier work, Relevance As-

sessment, intended to identify neural units for removal as part of a pruning al-

gorithm. In the work by Mozer and Smolensky (1989b; 1989a), they describe a

method for assessing the relevance of a unit within a multi-layered feed-forward

neural network. In this model, they conceive each neural unit to have a additional

coefficient, αi, that represents “attentional strength” (1989a, p. 2). Given a typ-

ical computation unit, Eq. 1 (Sec. 2.1.1), the output of the computational unit

can be conceptualised as

oj = norm(
∑
i

wijαioi). (12)

The value of αi “can be thought of as gating the flow of activity from the unit”

(1989a, p. 2), used to enable (αi = 1) or disable (αi = 0) unit i. From this, the

relevance of the unit i, ρi, can be described as

ρi = Eαi=0 − Eαi=1, (13)

where E represents the computed error under the two attentional conditions.

Mozer and Smolensky approximate the value of ρi by “using the derivative

of the error with respect to α” and assume that the resulting equality “holds

approximately for γ=0” (1989a, p. 3).

lim
γ→1

Eαi=γ − Eαi=1

γ − 1 = δ E

δ αi

∣∣∣∣
αi=1

(14)

Eαi=0 − Eαi=1

−1 ≈ δ E

δ αi

∣∣∣∣
αi=1

(15)

ρi ≈ ρ̂i = − δ E
δ αi

∣∣∣∣
αi=1

. (16)

Here, ρ̂ is used to identify the approximated value of ρ.
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Mozer and Smolensky found that their definition varied considerably in time,

so a “exponentially-decaying time average of the derivative”(1989a, p. 4) was used

to produce a smoother resultant curve,

ρ̂i(t) =


0 t = 0

0.8ρ̂i(t− 1) + 0.2 | δ E(t)
δ αi
| t > 0,

(17)

where t here represents time. Mozer and Smolensky’s equation shown here uses

an 80% weighting towards past values for the stability they desired. Such a

high weighting would make such an algorithm slow to react to sudden changes.

For brevity, this exponential decay will be omitted from described values of ρ̂ in

context of Relevance Assessment.

For the purpose of approximating ρi for output units, they recommend that

the error is defined by the linear error function

E =
P∑ N∑

i

|ti − oi| (18)

where P is the set of patterns, ti is the target or training value for unit i for that

pattern, and N is the set of output units.

For hidden and input units, the relevance is computed during an additional

feed-back phase (in a similar manner to back-propagation) as

ρ̂i =
Ni∑
j

wij ρ̂j, (19)

where Ni is the set of neurons that use unit i as an input and wij is the weight

between them.

The issue with this definition is that the output units relevance is dependent

on the latest input received by the ANN and the approximated relevance varies

considerably with time. Mozer and Smolensky attempted to rectify this issue by
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an “exponentially-decaying time average of the derivative” (1989b, p. 4),

%i(t) = 0.8%i(t− 1) + 0.2ρ̂(t) , (20)

where ρ̂(t) is the approximated relevance from equations (19) or (17) at time t.

This temporal smoothing makes the computed relevance dependent on the order in

which the training set was presented, which can cause or exaggerate issue resulting

from poor choices in the training set.

Other metrics, like ‘Sensitivity Analysis’ (Engelbrecht, Cloete and Zurada

1995), solve the temporal noise problem by parsing the entire data-set, then

computing a metric for each unit. This still leaves the sensitivities generated de-

pendent on the patterns in the data-set; such that a poor choice of test patterns

can still result in useless sensitivities. Other issues may arise due to requirements

of processing time and memory usage for such an algorithm.

5.2.2 Saliency: Definition

For use in the preprocessors presented here, the relationship with the current

output value would need to be removed from the previous equations. For the used

metric to provide valid insight into the ANNs usage of neural units in this context,

the returned value must be related only to the structure of the ANN; it should not

have any relationship to recent executions of the ANN, further enforced by the

fact that evaluation by this metric may occur before any evaluation has occurred.

An attempt to solve these problems resulted in a reworking of the ideas used in

Relevance Assessment, and a small simplification to the implementation. This

new definition is presented as ‘salience’; a measure of the amount of contribution

by each input or neural unit has to the output classification/prediction of an ANN.

As this model is not interested in the contribution of the inputs to the ANN’s
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predictive accuracy, but rather to the ANNs output function, it becomes inde-

pendent from both the task and, by extension, the training set. Following this

pattern, an output unit is described as having a saliency of exactly 1, based on

the argument: ‘if the output was not useful/salient, then the model would not be

attempting to extract that piece/type of information.’ This simplification to the

output salience allows the design to stable and consistent evaluations of an ANN,

avoiding the stability issues experienced by Mozer and Smolensky, allowing for

the removal of the exponentially-decaying time average from the definition.

Additionally, to keep the values constrained, the approximated saliency of a

hidden unit is normalised using the hyperbolic-tangent. This function was chosen

over the typical Logistic function due to the increased demand for granularity

(which may otherwise be lost to precision based rounding errors of floating-point

numbers) of salience measures as they tend towards zero.

ρ̂i =


1 when i is an output,

tanh
(
Ni∑
j
|wij|ρ̂j

)
otherwise.

(21)

A problem to be aware of when using Saliency as a metric, is that the reported

values can be influenced by the input domains. If an input has a wide domain, then

the ANN has to perform the task of scaling and biasing the values in addition to

predicting the classification of the feature set. The inclusion of scaling to the ANNs

task can result in poor Saliency computations as the scaling sub task attempts

to adjust the weight toward extreme values to compensate and the derivatives

typically used in ANNs slow weight migration down. Different normalisation

functions with Saliency-compatiable derivatives may be a solution to this, but

due to the prevalence of continuous normalisation functions with derivatives that

produce bell curves, the simplest solution is the normalise all of the input domains.

Target ranges (for finite domains) of [0..1] or [-1..1] or normal distributions with a

standard deviation of 1 centred on 0 are the preferred input domains when using
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Saliency. For this thesis, all image data is converted from the range [0..255] for

each colour channel and normalised to the range [0..1] by simple division.

5.2.3 Alternate Uses

In this thesis, the primary focus is on the usefulness of an input, and thus the

term Saliency is used to assign that notion to the model (i.e “How salient is that

section of images to the task?”). An alternative uses for the same metric is similar

to relevance assessment: a review of an ANN to determine how influential any

intermediate neural unit is to subsequent units. In these cases, the neural units of

interest have their saliency set as 1 and extra output units to 0. The application of

the saliency function to each neural unit without an assigned saliency backwards

through the network would generate a measure of how much effect the neural

units have on the units of interest.

Systems, such as Google’s DeepDream project (Mordvintsev, Olah and Tyka

2015a,b), were originally developed to identify the usage of individual neural units

within a CNN. In this system, the supplied image would be altered ever so slightly

as to increase the confidence level of a targeted neural unit. Over a number of

iterations the ‘concept’ that the targeted unit encodes for would be come visu-

ally apparent in the generated output. In a similar vein, the Similarity metric

presented may provide useful in identifying the relationship between neural units

encoding simpler concepts and units further along the network encoding for higher

level concepts.

5.3 Research Question

To explore this idea, the following research questions are proposed:

1. Can a Voronoi Diagram be used as a sound basis to partition a 2D space for

the purpose of image preprocessing to usable features for an ANN?
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2. Can such a preprocessor allow the associated ANN to achieve an improved

measure of accuracy at a given task?

3. Do the increased computational overheads in the preprocessor allow for a

greater reduction in computation in the ANN?

To answer these questions, an implementation of the preprocessor will be con-

structed and tested against the test domains presented in chapter 3. To answer

the first question, the preprocessor will be tested against Test Domain 1: Object

Presence Detection, Section 3.2. The traditional preprocessors will also act as a

control group in this testing domain to give early insight onto the likely outcome

of questions 2 and 3. Failure of the preprocessor to compete with the control

group will be viewed as a contradiction to questions 2 and 3, whilst an equiva-

lence or improvement at this stage will require confirmation using Test Domain

2: Baseline Face Detection, 3.3.

5.4 Preprocessor: Cellular Downsampling

With the descriptions of the VSP conceptual model and testing environment pre-

sented, this section will focus on the implementation of the preprocessor portion

of the VSP. This section will discuss three methods that process an image into a

feature set. The following section will then test the three models to identify the

most productive. Subsequent sections will then focus on potential models for the

adaptive portion of the VSP algorithm.

The most obvious method of down-sampling based upon Voronoi Diagrams,

is the generation of a single feature for each cell in the Voronoi Diagram by the

aggregation of pixels within the Cell’s coverage. As the base algorithm will be

independent of the size of the source image, the centre of each pixel will be mapped

to fit within a unit square, onto which the Voronoi diagram will be projected. All

the pixel centres that fall within the area covered by each Cell will be aggregated
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Figure 14: This figure demonstrates the downsampling of an image from the
Training Set. The source image is reduced to a vector of 300 values (100 cells, each
with three colour channels) and the cellular image reproduced from the Voronoi
Diagram used to perform the downsampling.

and the resulting colour assigned to the related site as the reported feature of

the algorithm. Three variations will be tested, each using one of the following

weighted average methods for aggregating pixel colours:

Flat Each pixel will be averaged equally to all other pixels.

Inverse Distance Each pixel will be weighted inversely proportional to the dis-

tance between the mapped pixel centre and the sites location.

Inverse Distance-Squared Each pixel will be weighted inversely proportional

to the square of the distance between the mapped pixel centre and the sites

location.

Figure 14 shows an extracted initial state from one of the testing runs discussed

in the next section. The colour aggregating method used in this figure is Inverse

Distance-Squared.

If the image source is constant and known ahead of time, a large portion of the

computations can be precomputed for each assignation of Voronoi sites to improve

run-time speed at the expense of increased memory cost.
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5.4.1 Initial Site Positions

For the given testing domain, the Control group will down-sampling to a 6 × 5

image. For comparison, the VSP based preprocessors used in the following test

will use 30 sites. For the first test they be positioned randomly within the unit

square. The second test is performed with the 30 sites arranged in a Centroidal

Voronoi Tessellation1 of the unit square. The final test will position the 30 sites

in a rectilinear formation, 6 horizontally and 5 vertically, to match the rectilinear

nature of the traditional preprocessors.

5.5 Testing the Downsample

This section presents the results of performing the ‘Object Presence Detection’

test against the VSP algorithms. The results for the results for the control group

is also presented to show context and provide a target ‘desired’ result. Figure 15

and Table 3 present the accuracy per epoch and average runtime respectively of

each algorithm tested. Each of initialisation methods discussed in section 5.4 were

also tested. In the same section, it was also suggested that the down-sampling

algorithms could be optimised for computational runtime if the image size for the

task was known and constant. As this was the case, a brief second test was also

performed using pre-computed variants of the VSP algorithms. This test only

used the Rectilinear initialisation and was not tested against a control group as

only computation time was of interest. Figure 16 presents the accuracy per epoch

of the precomputed VSP test; and Table 4 presented the runtimes.

Of the 11 tests performed, only three show learning taking place en mass. As

expected, Bilinear and Bicubic quickly converge on a potential solution in about

5-6 epochs. Inverse Distance-Squared initialised by the Rectilinear method show
1A Voronoi Tessellation of a space is considered centroidal when the location of a site also

equals the mean of the cell it defines.
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Figure 15: Figure showing the accuracy per epoch of the various VSP down-
sampling algorithms (Flat [Dotted Lines], Inverse Distance [Dot-Dashed Lines]
and Inverse Distance-Squared [Dashed Lines]), their initialisation method (Recti-
linear, CVT or Random) against the two control preprocessors (Bilinear and Bi-
cubic [Solid Lines]). Standard deviation above and below the mean for each epoch
are presented.
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Table 3: Average computational Runtime (time) for the VSP Down-sampling
Algorithms and Control Group with standard deviation (σ)

Method Rectilinear CVT 30 Random 30
time σ time σ time σ

Bilinear (Control) 1.74ms 0.48ms
Bicubic (Control) 2.29ms 0.74ms
Flat 4.74s 0.38s 4.50s 0.92s 4.52s 1.11s
Inverse Distance 4.95s 0.52s 4.73s 1.02s 4.81s 1.11s
Inverse Distance-Squared 4.77s 0.28s 4.55s 0.96s 4.59s 1.01s

Table 4: Computational Runtime for the precomputed VSP Down-sampling Al-
gorithms

Method Rectilinear
Flat 673.5ms
Inverse Distance 667.2ms
Inverse Distance-Squared 671.9ms

learning having taken place, but not as fast as the two traditional methods; by

epoch 14, its average accuracy is equivalent to the traditional methods at epoch

4. The variance bars and anomalous entries show some individuals of Inverse

Distance-Squared when initialised by CVT or Random could also learn part of the

task (asymptoting to about 60% accuracy by around epoch 7). A few individuals

of Inverse Distance - Rectilinear, Inverse Distance - Random and Flat - Random

can be seen starting to learn from epoch 6. The rate of ascent of these three

implies that they were also only capable of learning part of the task, but the test

did not continue on long enough to provide a definite conclusion.

With a three orders of magnitude increase in computational runtime, the base

versions of the VSP algorithms, as presented, perform very poorly. The precom-

puted versions mitigate slightly, reducing the computational runtime to only a

two order of magnitude increase.

Overall, the Inverse Distance down-sampling algorithm, initialised by the Recti-

linear methods, clearly out performs the other VSP candidate algorithms in terms

of overall accuracy on this task. The large different in computational runtime
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Figure 16: Figure showing the accuracy per epoch of the precomputed variations
of the three presented VSP down-sampling algorithms, all using the Rectilinear
initialisation method.

is a serious issue for this algorithm and can only be mitigated by optimisa-

tions/refinements to the down-sampling or the addition of the update portion

of the VSP algorithm providing significant improvements to accuracy.

5.6 Update: Adaptive Site positioning

Using the Salience metric (defined Sec. 5.2), it is possible to determine which fea-

tures provide low predictive value to the network. As there is a one-to-one rela-

tionship between each of the ANN’s input units and the output features produced

by the preprocessor, this salience of the input unit can also be said to describe the

feature itself. It is easy to argue that sites that generate high saliency features

are situated in valuable locations (with regards to the task at hand), as the high

saliency implies that the learning algorithm has increased the magnitude of those

connections. The converse can also be argued for the sites that have low salience
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scores. Using this knowledge, it is possible to identify inputs that are safe to

alter as a low saliency scores means that any alterations to the Input Context of

the related feature (such as the site’s location) will result in negligible (if any)

change in the output of the ANN; thus any inputs of sufficiently low saliency can

be considered suitable candidates for alteration as part of the update process.

5.6.1 Particle Inspired Update

A challenge with this type of adaptive site updating is not only the identification

of sites that are suitable to move location, but also by how much to move. Using

2D particles simulations to take advantage of the nature of sites (as 2D points

on the unit euclidean plane), it is possible to reconstruct the problem into the

definition of a custom force computation based upon properties of simple 2D

particles (representative of the sites). In practise, the implementation bares a

strong resemblance to the flocking simulations described by Reynolds, (Reynolds

1987), but is conceived as a simulation of high and low energy particles on some

2D field.

The only properties of consequence for this application is a particle’s location

and the saliency of the resultant input feature. The simulation can be performed

at a rate of one ‘tick’, single application of the physics algorithms, per learning

of the ANN such the update function is responsive to changes in the saliency of

sites. Increasing this tick rate to an integral number of ticks per application of

the learning algorithm could also be used as a way to smooth or steady any jitter

in the particle simulation.

Two fuzzy classifications can be defined to easily describe the nature of the

Sites: High Saliency (HS) and Low Saliency (LS) sites. As there names suggest, HS

Sites have saliencies that are close to 1, where as LS Sites have saliencies close to

0. Using these terms, higher order behaviours can be defined that described what

the apparent motion of the particles as produced by some unknown underlying
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mechanics (to be defined later):

1. HS particles should move negligibly, to prevent them from migrating away

from regions of predictive value (with respect to the ANN’s task).

2. LS particles should move towards HS particles so that the resultant cells

focus in on predictive areas.

3. LS particles should migrate away from other LS particles so that their cells

consume as much of the un-predictive parts of the scene with as few cells as

possible.

4. All particles should be prevented from becoming too close (where ‘too close’

is task, image resolution and site density dependent).

From these behaviours, the following three forces where developed:

• Firstly, F1 is a saliency based attractive force, intended to draw particles

towards other particles of higher saliency, satisfying the requirement of the

second behaviour.

F1(i, j) = sj(si − 1)θ, (22)

where sx is the salience measure associated with site x, and 0 ≤ θ ≤ 1 is a

tunable scaling factor used to adjust the speed of motion in the simulation.

• F2 is a saliency based repulsive force that is strongest between sites of low

saliency, satisfying behaviour three.

F2(i, j) = (1− si)(1− sj) (23)

• F3 is a proximity based repulsion, used to prevent sites getting to close

and destabilising any partitions that they generate, as required by the last

behaviour.

F3(i, j) = (dist(i, j) + 1)−υ (24)
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where dist(i, j) returns the euclidean distance between sites i and j and

υ ≥ 1 is a tuning factor.

As none of the forces are based directly on si but its negation, the first be-

haviour is satisfied.

The three forces are combined and scaled to produces a single force applied to

the particle as

F (i, j) = ω
3∑

x=1
Fx(i, j) (25)

where ω is a final tuning parameter used to adjust the maximum force applied to

any particle.

Note that, unlike traditional Newtonian physics, because of the definition of

F1, the force ‘felt’ by one particle in response to the presence of another particle

is not necessarily equal to the force the other particle ‘feels’ from this one.

The change in the position of site i, ∆Pi, is the adjustment of its current

location in response to the forces imposed by the other sites, in the direction of

those sites,

∆Pi =
S∑
j

F (i, j)−−→PjPi where i 6= j. (26)

Here the notation −→AB is used to refer to the unit vector from A to B.

5.6.2 Neighbourhood Watch

During the implementation of the above update algorithm (and a few trial runs

to confirm functionality) it was realised that a single Cell is not uniquely defined

by a single Site, but also by the other Sites with whom the Cell’s primary Site

share edges.

The sites that belong to a Sites Neighbourhood set can be defined as the set

of Sites whose Cells (as a subset of all points in the space) contain more than one

point in common with the Cell of the primary site. The requirement of more than
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one point in common is to prevent Cells that share a single vertex being included

in the Neighbourhood as the excluded Site, in its current location, has no effect

on the definition of the Cell. Subtle motion of the excluded Site towards the Cell’s

associated Site could cause it to become a neighbour depending on the motion of

the other Sites that share the vertex.

neighbour(sk) = {sj : sj ∈ S.
∣∣∣c(sk)

⋃
c(sj)

∣∣∣ > 1}, (27)

where c(x) returns a set of points that represent the corners of the Voronoi cell of

x.

An alternate definition for a Site’s Neighbourhood is as the set of sites directly

connected to the given Site in the Delaunay Triangulation of all the Sites. This

definition is possible as the Delaunay Triangulation2 and Voronoi Diagrams are

dual graphs of each other. Figure 17 shows a sample Site/Cell and it’s associated

neighbourhood.

This concept is useful as it can allow for the identification of the sites that

result in the definition of a cell’s convex hull. i.e. All sites that are not part

of neighbour(sk) could be removed from S and the result of c(sk) would remain

unchanged; corollary, any changes to the sites in neighbour(sk) would result in

changes to c(sk).

The main advantage of this design is the Low Saliency sites can be divided

into two classifications: High Maximum Neighbourhood Saliency (HiMNS) and

Low Maximum Neighbourhood Saliency (LoMNS). Here Maximum Neighbour-

hood Saliency (MNS) refers to the maximum saliency value of the site and all of

its neighbours. The LoMNS sites, given the previous description, must have a

low individual Saliency. The low individual and neighbourhood saliencies imply

that the current location of this site is providing minimal predictive value for the
2The Delaunay Triangulation of a set of points is the “that triangulation of the convex hull of

the points in the diagram in which every circumcircle of a triangle is an empty circle”. Weisstein
(2015)
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Figure 17: The figure shows the same Voronoi Diagram as Fig. 13, but shows the
Voronoi Neighbourhood (green) of a selected cell (blue).

task, and make them good candidates for use to search the space for new potential

regions of useful information from the source image. The term HiMNS is used

explicitly to describe LS sites that are neighbours to a HS. Though HS sites tech-

nically belong to this category, the moniker High Saliency is more than sufficient

and typically more apt. The HiMNS sites aid in the definition of high value cells

and could act as buffers between the stable HS sites and the unstable LoMNS

sites. Moving HiMNS sites towards a HS site performs the equivalent of focusing

in on any object or feature that may be represented in that region of the image.

To implement this, the forces summation function, Eq. 25 was adjusted as

follows:

F (i, j) = ω(1− neighbour(si))
3∑

x=1
Fx(i, j), (28)

where ni is the neighbourhood saliency of site i.

An additional optimisation to computation time is that the force calculations

can be computed only between neighbours. This reduces the computation (on

average) only by a constant factor, but can be quite significant reduction if the

VSP is defined by a large number of sites.
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5.6.3 Powered Neighbourhoods

The final update algorithm is an alternate particle simulation with a simplified

attraction/repulsion forces. The linear interpolation between these two forces,

by the Neighbourhood Saliency is then proportioned by the sites Salience and

inversely by the distance and biased by a proximity force:

Fa(i, j) = sj
θ (29)

Fr(i, j) = (1− sj)θ (30)

Fp(i, j) = (dist(i, j) + 1)−υ (31)

F (i, j) = ω

(
(1− si)

niFa(i, j) + (1− neighbour(si))Fr(i, j)
(dist(i, j) + 1)2 − Fp(i, j)

)
(32)

where θ, υ and ω perform similar functions as tuning parameters to their equiva-

lents in the previous two update algorithms.

This method is designed to also conform to the behaviours described in section

5.6.1.

5.7 Testing Site Update

To examine the addition of the update portion of the VSP algorithm, the previous

‘Object Presence Detection’ was re-run. Based on the performance of the previous

test, the down-sampling portion of VSP, only the precomputed variant of Inverse

Distance-Squared, initialised by the Rectilinear method, will be used in this test.

For each of the three potential update methods a variety of parameters will be

trialled. The domain of these parameters is presented in Table 5.

The update procedure depends upon learning previously done by the ANN. To

prevent issues arising from updating based on the randomised initial state of the

ANNs weights and to allow sufficient time between updates for the ANN to learn
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Table 5: Parameter domains for the Site Update tests.
Method Parameter Domain

Update 1 (Sec. 5.6.1) υ 10
ω 2−1, 2−2 . . . 2−9

Update 2 (Sec. 5.6.2) ω
υ 10

Update 3 (Sec. 5.6.3)
υ 10
θ 0.2, 0.5, 0.7
ω 0.5, 0.7

in response, site updates are not applied until the third epoch and then every odd

epoch thereafter.

5.7.1 Results

To prevent the resultant graphs from becoming unreadable, each of the presented

updated methods (and the control groups) will be presented in separate figures.

Each graph will present the mean accuracy, the positive and negative standard

deviations and anomalous individuals (identified as beyond twice the inter-quartile

range) for each epoch. Figures 18, 19, 20, 21 present the results for Update

Methods 1, 2, 3 and the control group, respectively.

For Update Algorithm 1, Fig. 18, soon after the update process begin to apply

changes to the underlying sites, the accuracy drops off rapidly (the first updated

occurs between epochs 3 and 4), only to stabilise around 33% (no better than

chance).The drop-off itself was to be expected from the design, but the magnitude

is far greater than expected and the inability to recover is disappointing. The

apparent determining factor in the rate of drop-off is the update algorithms speed

factor, ω. As ω tends towards 0, (the maximum effect of the update process on

the location of the sites) the learning portion of the ANN is able to learn to solve

the task. Figure 22 shows an initial and final VSP preprocessor and was chosen

to provide an insight into the forms of failure for this algorithm. The specific

instance is for Update Algorithm 3, but all failures of the Update process tended
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Figure 18: VSP using Update Algorithm 1

towards similar results.

Update Algorithm 2, Fig. 19, thought still worse than the controls, faired

better then the previous algorithm. The lower asymptote demonstrates that this

method allows for a lower maximum accuracy. The increased standard deviation

coupled with the reduced performance from the two largest values for ω bring

scepticism to the notion of stability for this update method.

Update Algorithm 3, Fig. 20, at first glance appears to have performed worse

than algorithm 1. In the previous two algorithms, it has been shown that large

values for ω can make the algorithms unstable. Due to the interplay with a second

parameter, θ, and the long runtime required to perform the test only two values for

ω were tested. Further evaluations with smaller values for ω were not under-taken

for the reasons that follow.

The speed factor ω dictates how significant a change the the update algorithms

can apply to the current state of sites. When the value of ω approaches 0, the
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update algorithms are having negligable effect on the sites locations. Given this

and the relationship between the rate of drop in accuracy and the ω implies

that the rectilinear layout is the primary contributor to the predictive value of

the preprocessor in the early stages of learning, not the VSP algorithm. As the

Voronoi Diagram underlying the VSP departs from the preferred rectilinear grid,

the ability of the ANN drop. Faster departures result in greater drop in predictive

quality per epoch.

5.8 Conclusion

This section will first present a general discussion and overview of the results and

other outputs of the VSP preprocessors on Test Domain 1. This will be followed

up with the research questions (Section 5.3) presented earlier in this chapter and

their responses.

As pointed out in the previous section, as the value ω tends towards 0, the

negative effect of the VSP algorithm decreases. This is a result that any effect

the update algorithms have is proportional to the value of ω. When testing the

computational time of the downsample, this was found to be 3 orers of magnitude

slower than the traditional methods. Pre-computing large portions of the pre-

processor (trading computational time for memory capacity), this improved the

runtime, but only to 2 orders of magnitude slower than the traditional methods.

The gathered results show that the VSP algorithms introduced in this chapter

are unsuited to the task presented. It is believed that the rectilinear nature of

the traditional methods Bilinear and Bicubic provide a more robust preprocessor

than was previously expected. In response to this, it is recommended to the reader

that, unless significant advancements and alterations are made, that the presented

VSP algorithms are to be considered undeserving of future investigation.

Can a Voronoi Diagram be used as a sound basis to partition a 2D
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space for the purpose of image preprocessing to usable features for an

ANN?

The VSP preprocessor was successfully used as a preprocessor for an ANN.

The algorithm was able to present useful features to ANN, which in turn was able

to learn to solve the required task. The flexibility of the sites to produce convex

feature partitions could be useful in some niche circumstances. As the Update

process was unsuccessful, the generation of these sites would be a manual task at

current. Coupled with the three orders of magnitude decrease in computational

speed, make the algorithm usable as opposed to useful.

Can such a preprocessor allow the associated ANN to achieve an im-

proved measure of accuracy at a given task?

The presented algorithms fail to produce improved or comparable results to

the traditional methods.

Do the increased computational overheads in the preprocessor allow

for a greater reduction in computation in the ANN?

The presented algorithms fail to reduce overall computational time when com-

pared to the traditional methods.
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Figure 19: VSP using Update Algorithm 2
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Figure 20: VSP using Update Algorithm 3
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Figure 21: Control Group: Traditional Methods

Figure 22: An ANN system (using Update Algorithm 3) early in its training (left)
and at completion (right). In this sample, The system failed to stabilise until all
the Voronoi sites clustered around point (0,0).



Chapter 6

Regional Downsampling

Algorithms

The concept of Regional Downsampling Algorithms (RDAs) was formed in re-

sponse to the failings of VSP. As was noted in the previous chapter, the model

underlying VSP requires significant computation in comparison to the simpler

methods of Bilinear and Bicubic interpolation and performed worse than the con-

trol groups. In review of the design, the reduced decrease in accuracy from the

rectilinear VSP instances presented an idea, maybe the rectilinear resampling of

an image was better for a computational algorithm than had been previously ex-

pected. From this, the RDA model was designed to leverage the advantages of

the rectilinear regularity of down-sampling and the many years of refinement that

have been applied to the standard implementations.

First, the additional term Region will be defined in the context of an RDA;

followed by how an RDA, using a collection of unique regions, can be used as an

image preprocessor and how the collection of Regions can be obtained.

91
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6.1 Terminology: Region

The term Region is used to describe an axis-aligned rectangular subsection of a

source image, used as single pixel sampling window as part of RDA algorithms.

The Region is described by two 2-dimensional values. The size value is used to

describe the number regions required to cover the entire source in terms of tiled

columns and rows; hence inferring the size of each region. The second provides

the offset from the top-left corner of this regional grid to the individual region.

This reduces the complexity of implementation as

• Each Region can be uniquely defined, and each definition refers to a single

Region.

• All values of each Region instance can be stored as integral types, negating

Precision-Errors from floating-point numbers.

• Bounds checking can be simply to checking if 0 ≤ posx < resx (similarly for

the y axis), as opposed to bounds checking with floating-point checks with

more tedious implementation specific edge-casing.

• Base-line implementations can, at the point of down-sampling, resize source

Image to the specified resolution and then sample the pixel at the given

location for the Region’s top-left corner.

Fig.23 provides a simple visual representation of how Regions are defined,

presenting a variety of Regions with different values for all four parameters. For

the sake of the reader, these Regions do not overlap, though there is no constraint

that mandates this for groups of Regions. The notation used to in describing a

Region will always use (Px, Py) 2-tuple to refer to it’s location and Rx × Ry to

refer to its resolution.

The term Region Set is used as shorthand for ‘a stable ordered set of regions’. If

the collection of regions contained duplicates, this would be providing redundant
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Figure 23: An example layout of 7 regions at a variety of resolutions (bottom left
corner of each region) and different positions (top left corner). In this example
none of the regions overlap and all the space is covered by a region for clarity and
simplicity; these are not restriction imposed by regions themselves.

information or add undesirable bias to the duplicated region. Additionally, as the

intended use for the related algorithms is as input sources for ANN, the order of

features presented must remain stable. (i.e. Using hashes is a common practise in

the implementation sets as these structures are efficient at identifying duplicates

but are liable to re-order the presentation of their content in the event of any

changes in contents. For this reason, solely using hash based sets implementations

is insufficient.)

6.2 RDA as a Preprocessor

A RDA is a novel image preprocessing algorithm, designed to reduce the dimen-

sionality of an image using a sequence of regions (as defined above). The specific

mechanism of obtaining the sequence of regions is dependent on the selection

method, which will be discussed in the following section. The feature set output

by the algorithm is equivalent to a sequence of pixels, equal in length to the num-

ber of regions. In a base-line implementation of a RDA, for each region, R, the
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Figure 24: Representation of the implementation of a preprocessor using an in-
ternal RDA. This diagram also displays the internal component topology and
data flow through the RDA. Each Bilinear block computes the equivalent output
of the Bilinear Interpolation algorithm for it the single pixel represented by the
associated Region.

image is resized to Rh ×Rv by simple rectilinear interpolation method1 and then

filtered to return just the pixel at coordinate (Rx, Ry) for use as the feature value

for the region. Figure 24 shows the generic structure of a RDA and how it would

be incorporated into a preprocessor.

6.2.1 Comparison to CNNs

Section 2.1.2 provided an overview of Convolutional Neural Networks (CNNs), how

they function and their advantages and disadvantages as shown by the literature.

The design of the Convolution layer (specifically the receptive fields) of a CNN

share a similarity with the Regions of RDAs. The contrast between them is in

what part is “learned” by the system and which part defined by the developer. In

a CNN, the area of a receptive field is specified and construction and the kernel

applied to each receptive field is refined over many training sessions. Conversely,

the area a region refers to is extracted from the accumulation of many training

sessions (Bespoke) or refined over many training sessions (Adaptive), whilst the

down-sampling function (equivalent to the kernel) is defined by the developer.
1Bilinear interpolation is used in these implementations due to the reduced processing time

and comparable quality to other interpolation methods at low resolutions.
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6.3 Research Question

To explore RDAs, the following research questions are proposed:

1. Do the Region Selection Methods presented allow for the construction of

viable RDA Preprocessors (preprocessors that allow an ANN to learn its

intended task)?

2. Can such a preprocessor allow the associated ANN to achieve an improved

measure of accuracy at a given task?

3. Do the increased computational overheads in the preprocessor allow for a

greater reduction in computation in the ANN?

To answer these questions, a similar work flow from that used in chapter 5 will

be used. First the preprocessor, constructed from each selection algorithm, will

be tested against Test Domain 1: Object Presence Detection, Section 3.2. Upon

demonstrating the ability to learn the first task, the tests will progress to Test

Domain 2: Baseline Face Detection, 3.3.

6.4 Region Selection

Region Selection is the process by which the Region set, used by a RDA imple-

mentation, is generated. This section will present three different algorithms for

the generation of these Region sets. Their use constitutes the production of a

Bespoke Preprocessor. The three algorithms function similarly, only differing in

how restrictive the original selection pool is. Each algorithm is expected to pro-

duces RDAs with Region sets of differing sizes. Assuming multiple algorithms are

successful, this allows for an evaluation of the trade off in computation time costs

and accuracy improvements per region.
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6.4.1 Setup: Saliency Computation

As stated above, the three following algorithms share a lot of their functionality.

The setup to all three is one of these similarities. All three algorithms require

knowledge of the Saliency of various potential Regions for selection. Saliency

Computation (Alg. 1) is used as a brute-force implementation that tests all po-

tential Regions, in a given range of resolutions, and provides that information to

the three selection algorithms.

Algorithm 1 Saliency Computation: This function pre-computes the per pixel
salience over a range of resolutions or a given training regime.
Require: resmin & resmax, the range (inclusive) of the resolutions to test.
Require: train(p, n), a function that will perform a very short training regime on

a given ANN, n, with the provided preprocessor, p, and return the accuracy
against a test set.

1: function salComp(resmin, resmax, train)
2: resrange ← resmax − resmin + 1
3: sal ← Uninitialised 2D Array, sized resrange × resrange
4: for resh = resmin to resmax do
5: for resv = resmin to resmax do
6: ρ ← Uninitialised 1D Array, sized repetitions
7: pp ← Bilinear Preprocessor (resh, resv)
8: for x = 0 to (repetitions− 1) do
9: n ← Randomly Initialised ANN

10: acc ← train(pp, n)
11: flatNetSal ← Saliency (n)
12: matNetSal ← Uninitialised 2D Array, sized resh × resv
13: for i = 0 to (resh − 1) do
14: for j = 0 to (resv − 1) do
15: matNetSal [i, j] ← flatNetSal [i+ j · resh]
16: ρ [x] ← {acc : acc;mat : matNetSal}
17: sal [resh, resv] ← average (ρ)
18: return sal . A 2D array of {accuracy; 2D salience matrices}
19: function Saliency(n)
20: . Implementation of the Saliency metric for ANN n (Sec. 5.2).
21: . Returns an array of saliencies, equal in length to the input layer of n.



CHAPTER 6. REGIONAL DOWNSAMPLING ALGORITHMS 97

6.4.2 Saliency Heat Map Selection

Saliency Heat Map Selection (SHM Selection) starts by takes the image matri-

ces provided by the Saliency Computation stage and resizes them via nearest-

neighbour interpolation, such that their dimensions are 2× resmax × resmin. The

resultant matrices are then averaged together, weighted by their accuracies, gen-

erating a single Saliency Heat Map. Fig. 25 shows an example of a heat map

generated by the SHM algorithm. The heat map is resized to each allowed reso-

lution, where each pixel in the heat map represents an estimated saliency of the

potential region that would have the same coverage as that pixel. From these,

each pixel is sampled, and the single pixel over all the resolutions with the highest

estimated saliency is chosen. A Region is generated to cover the same region (us-

ing the pixels location and the resolution of the matrix from which it is draw) and

added to the Region set. The equivalent area of the heat map is then clear out

to prevent re-selection. This process is repeated multiple times, until there are no

remaining potential Regions with estimated saliencies above a specified threshold.

For the implementation used in the later tests, a selection threshold of 0.65 was

found to be sufficient by informal experimentation.

Algorithm 4 show this is pseudo-code, using Algo. 2 and 3.

6.4.3 Restricted Saliency Heat Map Selection

A criticism with SHM selection comes from fact that the heat map is generated by

a weighted average of matrices, with the weight based on the accuracy of the ANN

against a test set, and the space of potential Regions being that of all Regions

within the allowed resolution range. This means that if a potential resolution

results in a untrained ANN (one that has a accuracy no better than chance), then

candidate Regions will still be put forward for selection and can be successful

depending on the flattened heat map.

This new method works in the same manner as SHM Selection, but applies



CHAPTER 6. REGIONAL DOWNSAMPLING ALGORITHMS 98

Algorithm 2 Saliency to SHM: This support function is used to simplify the
returned value from Alg. 1 to a single matrix. This is obtained by first computing
the weighted average of all the matrices, weighted by their associated accuracies.
The flattened result is up-sampled by Nearest-Neighbour the be resmax · resmin · 2
in both dimensions and is finally normalised to the range 0 . . . 1 before being
returned. The provided pseudo-code implementation combines the up-sampling
and weighted average stages to reduce the memory footprint.
Require: sal, the result of the saliency computation.
Require: resmin & resmax, the range (inclusive) of the resolutions used.
1: function matsToSHM(sal, resmin, resmax)
2: resrange ← resmax − resmin + 1
3: ressize ← resmax · resmin · 2
4: SHM ← 2D Array of numbers, sized ressize × ressize
5: for each (x, y) ∈ SHM do
6: sum ← 0
7: weight ← 0
8: for each (i, j) ∈ sal do
9: . A combined Nearest-Neighbour resize and weighted averaging
10: xnn ← x(i+ resmin)/ressize
11: ynn ← y(j + resmin)/ressize
12: sum ← sum+ sal[i, j]mat[xnn, ynn] · sal[i, j]acc
13: weight ← weight+ sal[i, j]acc
14: SHM [x][y] ← sum/weight

15: . Normalise the SHM before returning
16: return (SHM −min(SHM))/(max(SHM)−min(SHM))

Algorithm 3 Saliency Estimation: This support function takes the flattened
SHM and returns the estimated salience of a given region.
Require: x, y, the location of the prospective region (Px, Py).
Require: h, v, the resolution of the prospective region (Rx, Ry).
Require: sal, the result of the saliency computation.
1: function estimateSaliency(x, y, h, v, SHM)
2: resampled← Downsample SHM to the size h×v by Bilinear Interpolation
3: return resampled[x, y]
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Algorithm 4 SHM Selection: Performs a region selection based on the computed
salience of multiple resolutions using an heat-map approach.
Require: sal, the result of the saliency computation.
Require: threshold, the selection threshold.
Require: resmin & resmax, the range (inclusive) of the resolutions used.
1: function shmSelection(sal, threshold, resmin, resmax)
2: SHM ← matsToSHM(sal, resmin, resmax)
3: potentialRegions ← Empty collection
4: for each (h, v) ∈ (resmin, resmin) . . . (resmax, resmax) do
5: for each (x, y) ∈ (0, 0) . . . (h, v) do
6: s ← estimateSalience(x, y, h, v, SHM)
7: if s ≥ threshold then
8: Push potentialRegions ⇐ {x : x; y : y;h : h; v : v; salience : s}
9: . Properties x, y, h and v encode Px, Py, Rx and Ry of a region
10: selectedRegions ← Empty collection
11: while potentialRegions is not empty do
12: best ← remove potential region with highest salience property
13: Mask out area of SHM covered by best region
14: . Resize best using Nearest-Neighbour
15: for each pr ∈ potentialRegions do
16: s ← estimateSalience(prx, pry, prh, prv, SHM)
17: if s ≥ threshold then
18: prsalience ← s
19: else
20: Remove pr from potentialRegions

21: return selectedRegions
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(a) Caltech (b) CMU

Figure 25: The SHM generated for the baseline face finding task (Section 3.3).
Both images have been normalised, with the Caltech image (25a) originally rang-
ing 0.55 to 0.67 and the CMU image (25b) ranging 0.59 to 0.69. For the Caltech
data set, the algorithm has focused on the perimeter of the face, cheeks, forehead
and an anomalous region in the top right corner. Against the CMU data set the
algorithm has highlighted the forehead, eyes, noes and jawline.

the new additional criteria to pixel selection. Prior to selecting pixels by highest

predicted saliency, the pixels are pre-filtered so that only pixels from resolutions

that had positive accuracy scores from the Validation tests (i.e. the ANNs that

were used to generate the saliencies managed to learn the task at hand, even to a

minor degree) can be chosen. The modifications can be seen by the additions of

lines 5 and 6 in Algo. 5.

6.4.4 Pruned-Bilinear Selection

This final selection method is a further restriction on SHM. Pruned-Bilinear is

named for the fact that the resultant Region set only contain Regions taken from

the same resolution. The resolution sampled is the single resolution with the

highest computed accuracy. Once selected, the preprocessor can be implemented

as a single call the to Bilinear Interpolation algorithm, and the returned image

sampled for the specified pixels from the Regions location.

Due to this extreme restriction, a large portion of the selection algorithm and
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Algorithm 5 Restricted-SHM Selection: Performs a region selection based on the
computed salience of multiple resolutions using an heat-map approach, restricted
to resolutions that have been shown to allow for above random accuracy of trained
ANNs.
Require: sal, the result of the saliency computation.
Require: threshold, the selection threshold.
Require: resmin & resmax, the range (inclusive) of the resolutions used.
1: function RshmSelection(sal, threshold, resmin, resmax)
2: SHM ← matsToSHM(sal, resmin, resmax)
3: potentialRegions ← Empty collection
4: for each (h, v) ∈ (resmin, resmin) . . . (resmax, resmax) do
5: if sal[h− resmin, v − resmin]acc ≤ 0 then
6: skip resolution (h, v)
7: for each (x, y) ∈ (0, 0) . . . (h, v) do
8: s ← estimateSalience(x, y, h, v, SHM)
9: if s ≥ threshold then
10: Push potentialRegions ⇐ {x : x; y : y;h : h; v : v; salience : s}
11: . Properties x, y, h and v encode Px, Py, Rx and Ry of a region
12: selectedRegions ← Empty collection
13: while potentialRegions is not empty do
14: best ← remove potential region with highest salience property
15: Mask out area of SHM covered by best region
16: . Resize best using Nearest-Neighbour
17: for each pr ∈ potentialRegions do
18: s ← estimateSalience(prx, pry, prh, prv, SHM)
19: if s ≥ threshold then
20: prsalience ← s
21: else
22: Remove pr from potentialRegions

23: return selectedRegions
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be simplified, see Algo. 6 for a pseudo-code implementation.

Algorithm 6 Pruned-Bilinear Selection: Performs a region selection based on the
computed salience of multiple resolutions, restricted to all the single resolution
with the highest above-random accuracy for trained ANNs
Require: sal, the result of the saliency computation.
Require: threshold, the selection threshold.
Require: resmin & resmax, the range (inclusive) of the resolutions used.
1: function prunedBilinearSelection(sal, threshold, resmin, resmax)
2: (i, j) ← Such that sal[i, j]acc is maximal
3: mat ← (sal[i, j]mat − resmin)/(resmax − resmin) . Normalise
4: selectedRegions ← Empty collection
5: for each (x, y) ∈ mat do
6: if mat[x, y] ≥ threshold then
7: Push selectedRegions ⇐ {x : x; y : y;h : i+ resmin; v : j + resmin}
8: return selectedRegions

The type of results provided by Pruned-Bilinear Selection show similarity to

the results from the MIPs method presented by Lew and Huijsmans (1996) (see

section 2.5.1 for an overview of their model) with a variation on the pixel/region

quality metric (Kullback relative information as opposed to Salience) and se-

lection qualification (Markov random field approximation verses Pruned-Bilinear

selection).

6.5 Optimising for Runtime

The direct usage of the Region Set as returned by the selection method for the

RDA would perform poorly (in terms of computation time) compared to Bilinear

Interpolation preprocessor. This is due, primarily, to the set-up and tear-down

costs associated with the internal calls to the underlying Bilinear Interpolator for

each Region. This costs can be minimised by grouping compatible Regions and

using only a single call to the Bilinear algorithm and filtering out the desired

pixels to be presented as the intended features.
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Figure 26: A diagram of an RDA constructed using the Region Set optimiser for
reduced computational overheads.

A simple variant of this is used in the implementation of RDAs used in this

thesis. In this version, all Regions of the same resolution are grouped together

and a filter. A more intelligent version would take into consideration the distance

between regions of the same resolution to identify clusters of regions, with the

goal of minimising the computation of redundant pixels. A preliminary investi-

gation into this idea was performed, but due to a limitation of time, a successful

segmenting method was not found.

6.6 Inter-comparisons of RDAs

When producing RDAs via selection, it may be beneficial to compare how similar

two different RDAs are, such as for identifying similar families of RDAs for further

study. Two metrics are provided here, RDA Similarity and RDA Likeness.

6.6.1 Similarity

A simple description, anthropomorphising the presence of a Region as providing

‘attention’ to the section of the source image at a specific granularity, then Sim-

ilarity and Likeness can be described as heuristic measures of convergence in the

attention of the two preprocessors being compared. Likeness approximates for

space in which the attention is provided, while Similarity approximates for both
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space and granularity of this attention.

To compute the Similarity of two RDAs, the ratio of intersection area to union

area is computed for each of the grouping of regions of the same resolution against

the equivalent collection of regions for the opposed RDAs. Resolutions that do

not have an equivalent collection in the opposing RDA can be ignored as the

intersection between them will equal 0. The resultant Similarity is the average of

these ratios.

Algorithm 7 Computes the Similarity between two RDAs, A and B. In this
function, rh, rv, rx and ry refer to the horizontal resolution, vertical resolution,
X-offset and Y-offset properties of the Region r.
Require: A, the set of regions from the first RDA,
Require: B, the set of regions from the second RDA.
1: function similarity(A, B)
2: groupA ← group(A, λr : (rh, rv)) . Group all regions by their resolutions
3: groupB ← group(B, λr : (rh, rv))
4: sim ← 0
5: for each res ∈ keys(groupA) do
6: if res ∈ keys(groupB) then
7: regsA ← groupA(res)
8: regsB ← groupB(res)
9: locsA ← map(regsA, λr : (rx, ry))
10: locsB ← map(regsA, λr : (rx, ry))
11: I ← count(intersectlocsA, locsB)
12: U ← count(regsA) + count(regsB)− I
13: sim ← sim+ (I/U)

return sim

6.6.2 Likeness

Likeness applies the ratio of intersection to union between the union of all regions

within each RDA. This can easily be approximated to N decimal places using a 1-

bit square matrix of order R×10N where R is the maximum resolution used in the

generation of either RDA. A value of 0 will be returned if the two preprocessors

are distinct, and a value of 1 if the two are equal OR one is completely contained
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by the other.

Similarity is most suitable when comparing highly dense2 RDAs generated by

the same (or possible highly similar) RDA Selection methods. Likeness, on the

other hand, is appropriate for comparisons between sparse2 RDAs and can also

be useful in comparisons across RDA selection methods; in this case care needs to

be taken as a likeness between two RDAs produced by the same seection method

cannot be considered comparable to a likeness between two RDAs of differing

origins.

6.7 Situating

The use of the Selection Method makes the RDA model a member of the Bespoke

preprocessors group. A pre-trial is performed to determine the state of the region

set, as generated by the Selection method. The RDA is then used for training of

the ANN, during which time the region set remains unchanged.

6.8 Results

6.8.1 Test Domain 1

When applied to the challenge presented in Test Domain 1, it can be seen from

table 6 that the three variants RDA perform noticeably better than the tradi-

tional Bilinear and Bicubic preprocessors in terms of both Cohen’s kappa and

computation time. This sufficiently demonstrates that the algorithms functions

as intended and can now progress to Test Domain 2 for statistical analysis.
2Density is used with respect to the variety of unique resolutions in use by the RDAs
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Algorithm 8 Computes the Likeness between two RDAs, A and B. This version
uses the assumption that a Region is always 1 × 1 at the given resolution. In
this function, regh, regv, regx and regy refer to the horizontal resolution, vertical
resolution, X-offset and Y-offset properties of the Region reg.
Require: A, the set of regions from the first RDA,
Require: B, the set of regions from the second RDA,
Require: detail, the level of detail for this approximation. A value of Rmax · 10N

gives a precision of ≈ N decimal places.
1: function likeness(A, B, detail)
2: mat ← 1-bit details× details matrix with all entries zeroed.
3: union ← 0
4: intersect ← 0
5: for each reg ∈ A do
6: xmin ← bregx × (details/regh)c
7: xmax ← b(regx + 1)× (details/regh)c
8: for x = xmin → xmax do
9: ymin ← bregy × (details/regv)c
10: ymax ← b(regy + 1)× (details/regv)c
11: for y = ymin → ymax do
12: mat[x, y] ← 1
13: union ← union+ 1
14: for each reg ∈ B do
15: xmin ← bregx × (details/regh)c
16: xmax ← b(regx + 1)× (details/regh)c
17: for x = xmin → xmax do
18: ymin ← bregy × (details/regv)c
19: ymax ← b(regy + 1)× (details/regv)c
20: for y = ymin → ymax do
21: if mat[x, y] = 1 then
22: intersect ← intersect+ 1
23: else
24: union ← union+ 1

return intersect/union
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Table 6: Aggregate results for Test Domain 1.
Preprocessor Features Cohen’s kappa Computation Time

Average Standard
Deviation

Average Standard
Deviation

Bilinear (6× 5) 90 0.967 0.0122 2.2ms 1.31ms
Bicubic (6× 5) 90 0.959 0.0178 2.7ms 1.55ms
RDA + SHM 9 0.970 0.0069 2.1ms 1.28ms

RDA +
Restricted-SHM

9 0.951 0.0117 2.4ms 1.42ms

RDA + Pruned
Bilinear

6 0.970 0.0070 1.6ms 0.94ms

Table 7: Aggregate results for the tests against the Caltech Data Set.
Preprocessor Features AUC Computation Time

Average Standard
Deviation

Average Standard
Deviation

Bilinear (24× 22) 1584 0.943 0.0857 48.3ms 8.01ms
Bicubic (24× 22) 1584 0.966 0.0654 60.0ms 8.74ms
RDA + SHM 36 0.977 0.0057 133.9ms 34.69ms

RDA +
Restricted-SHM

39 0.981 0.0024 153.7ms 43.18ms

RDA + Pruned
Bilinear

42 0.980 0.0113 27.8ms 5.32ms

6.8.2 Test Domain 2

Tables 7 and 9 show the results for the Face detection task against the Caltech

and CMU-130 data sets, respectively.

Caltech Dataset

Using the Caltech data-set, there was a statistically significant difference in predic-

tive accuracy depending on the preprocessor used, χ2(4) = 49.739, p = 4× 10−10.

Post hoc analysis using Wilcoxon signed-rank tests were performed, with Bonfer-

roni correction applied.



Table 8: Post hoc Wilcoxon Signed-Rank tests for RDA Accuracy on the Caltech Data set
Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Bicubic

- - - - -

Bicubic SHM Bilinear Restricted-SHM SHM

z 0.850 4.124 3.830 2.309 2.713

Asymp. Sig.

(2-tailed)

0.39513 0.00004 (sig) 0.00013 (sig) 0.02096 0.00666

Bicubic Bicubic SHM SHM Bilinear

- - - - -

Bilinear Restricted-SHM Bilinear Restricted-SHM Restricted-SHM

z 3.071 1.687 3.201 6.130 3.420

Asymp. Sig.

(2-tailed)

0.00213 (sig) 0.09151 0.00137 (sig) 8.8× 10−10 (sig) 0.00063 (sig)
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Table 9: Aggregate results for the tests against the CMU Data Set.
Preprocessor Features AUC Computation Time

Average Standard
Deviation

Average Standard
Deviation

Bilinear (25× 19) 1425 0.571 0.1414 47.3ms 9.86ms
Bicubic (25× 19) 1425 0.469 0.1668 58.2ms 10.67ms
RDA + SHM 48 0.623 0.0769 174.4ms 71.79ms

RDA +
Restricted-SHM

48 0.595 0.1119 173.4ms 72.84ms

RDA + Pruned
Bilinear

21 0.596 0.0178 18.3ms 6.47ms

Table 8 suggests that the following hierarchy describes the expected accuracy

of the preprocessors: Pruned-Bilinear (98.1%) ≈ Restricted-SHM (98.1%) > SHM

(97.7%) > Bilinear (94.4%), with Bicubic (96.6%) difficult to place, possibly due

to the larger variance.

For the comparison of computation times, the results are much clearer than

anticipated, there was a statistically significant difference depending on the pre-

processor used, χ2(4) = 67406.6, p = 0. Table 10 show the post hoc analysis (as

before) for the computation times.

The clarity of these significance tests give the hierarchical ordering (with

overall average times) of: Pruned-Bilinear (27.8ms) < Bilinear (48.3ms) < Bi-

cubic (60.0ms) < SHM (133.9ms) < Restricted-SHM (153.7ms).

CMU Dataset

Using the CMU data-set, there was a statistically significant difference in predic-

tive accuracy depending on the preprocessor used, χ2(4) = 40.757, p = 3 × 10−8.

Post hoc analysis using Wilcoxon signed-rank tests were performed, with Bonfer-

roni correction applied.

Table 8 suggests that the following hierarchy describes the expected accuracy

of the preprocessors: SHM (62.3%) > Pruned-Bilinear (59.6%) ≈ Restricted-SHM



Table 10: Post hoc Wilcoxon Signed-Rank tests for RDA Overall Computation Time on the Caltech Data set
Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Bicubic

- - - - -

Bicubic SHM Bilinear Restricted-SHM SHM

z 122.5 122.5 122.5 122.5 122.4

Asymp. Sig.

(2-tailed)

0 (sig) 0 (sig) 0 (sig) 0 (sig) 0 (sig)

Bicubic Bicubic SHM SHM Bilinear

- - - - -

Bilinear Restricted-SHM Bilinear Restricted-SHM Restricted-SHM

z 122.4 122.4 122.5 122.2 122.5

Asymp. Sig.

(2-tailed)

0 (sig) 0 (sig) 0 (sig) 0 (sig) 0 (sig)



Table 11: Post hoc Wilcoxon Signed-Rank tests for RDA Accuracy on the CMU Data set
Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Bicubic

- - - - -

Bicubic SHM Bilinear Restricted-SHM SHM

z 5.349 6.943 2.346 4.917 5.612

Asymp. Sig.

(2-tailed)

0 (sig) 0 (sig) 0.018 0 (sig) 0 (sig)

Bicubic Bicubic SHM SHM Bilinear

- - - - -

Bilinear Restricted-SHM Bilinear Restricted-SHM Restricted-SHM

z 3.359 4.391 2.729 3.412 1.340

Asymp. Sig.

(2-tailed)

0.001 (sig) 0 (sig) 0.006 0.001 (sig) 0.180
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(59.5%) > Bicubic (46.9%), with Bilinear (57.1%) comparable to the top three.

Like those against the Caltech dataset, the comparison of computation times

are much clearer than anticipated. There was a statistically significant difference

depending on the preprocessor used, χ2(4) = 54869.4, p = 0. Table 10 show the

post hoc analysis (as before) for the computation times.

The clarity of these significance tests give the hierarchical ordering (with

overall average times) of: Pruned-Bilinear (18.3ms) < Bilinear (47.3ms) < Bi-

cubic (58.2ms) < SHM (174.4ms) < Restricted-SHM (173.4ms).

6.9 Conclusion

This section will first present a general discussion and overview of the results

and other outputs of the RDA preprocessors on Test Domains 1 & 2. This will

be followed up with the research questions (Section 6.3) presented earlier in this

chapter and their responses.

Test Domain 1 shows that the features provided by the preprocessors are suf-

ficient enough to allow for learning. The traditional methods were able to reach

an AUC of approximately 96% and three RDA variants were in the range 95%

to 97%. All the systems tested are also comparable in computational time. Due

to the minimal complexity of this test domain, it is suspected that most of this

computational time is due to the ANN and preprocessors overheads. Test Domain

2 increased complexity with provide clearer answers in this case.

In Test Domain 2, against both data sets, RDA with Pruned Bilinear out

performed the other methods presented. It is suspected that reduced features

provided by the preprocessor is the most likely cause of the noticeable increase in

performance and the low deviations in both cases, due to the reduced amount of

noise the ANN has to contend with during training.

Looking at the Region Sets generated by SHM and Restricted-SHM and in



Table 12: Post hoc Wilcoxon Signed-Rank tests for RDA Overall Computation Time on the CMU Data set
Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Pruned-Bilinear Bicubic

- - - - -

Bicubic SHM Bilinear Restricted-SHM SHM

z 122.5 122.5 122.5 122.5 122.5

Asymp. Sig.

(2-tailed)

0 (sig) 0 (sig) 0 (sig) 0 (sig) 0 (sig)

Bicubic Bicubic SHM SHM Bilinear a

- - - - -

Bilinear Restricted-SHM Bilinear Restricted-SHM Restricted-SHM

z 122.4 122.5 122.5 122.2 122.5

Asymp. Sig.

(2-tailed)

0 (sig) 0 (sig) 0 (sig) 0 (sig) 0 (sig)
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Table 13: The Likeness measure between each Region Set
Likeness Pruned Bilinear Restricted-SHM SHM
SHM 0.366 0.698 -
Restricted-SHM 0.358 - 0.698
Pruned Bilinear - 0.358 0.366

Table 14: The Similarity measure between each Region Set
Similarity Pruned Bilinear Restricted-SHM SHM
SHM 0.000 0.610 -
Restricted-SHM 0.000 - 0.610
Pruned Bilinear - 0.000 0.000

response to the Caltech data set (Figure 27) shows some subjective similarity.

The two metrics Likeness and Similarity (See section 6.6) are used to quantify

this perceived similarity and are reported in tables 13 and 14. The Region Set

returned by the Pruned Bilinear selection method contained a resolution that

was not utilised by SHM and Restricted-SHM method. The high Likeness and

Similarity between SHM and Restricted-SHM and low Likeness of each to Pruned

Bilinear seem to suggest that difference observed in AUC can be attributed to

those selection methods pruning features from potential pool that are of a larger

benefit than is currently quantified.

Do the Region Selection Methods presented allow for the construction

of viable RDA Preprocessors (preprocessors that allow an ANN to

learn its intended task)?

Test Domain 1 shows that the three models presented here are able to provide

features of sufficient quality that a suitable trained ANN will perform better than

random.

Can such a preprocessor allow the associated ANN to achieve an im-

proved measure of accuracy at a given task?
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(a) Restricted SHM (b) SHM

(c) Pruned Bilinear

Figure 27: The Region sets produced by (a) SHM, (b) Restricted-SHM and (c)
Pruned-Bilinear. All regions at the same resolution share the same colour.
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Test Domain 2 showed the three RDA preprocessors presented here produce

significantly improved ANN system when compared to Bicubic preprocessor based

systems and are comparable to those produced by Bilinear preprocessors.

Do the increased computational overheads in the preprocessor allow

for a greater reduction in computation in the ANN?

Test Domain 2 showed the RDA generated by the Pruned-Bilinear selection

method performed significantly faster then both traditional preprocessors against

both dataset.



Chapter 7

Subdividing Preprocessor

The Subdividing Preprocessor is a novel variant on the Regional Downsampling

Algorithm. Instead of requiring an additional Region Construction stage like

Regioned Downsample Preprocessor, this algorithm performs its alterations whilst

the neural network is learning. The method behind the Subdividing preprocessor

is to start with a near-sufficient bilinear interpolation preprocessor, and gradually

(whilst training the ANN) improve the regions when certain criteria are met.

The motivation behind this addition is a further attempt to provide a useful

Adaptive Preprocessor. Unlike VSP, this algorithm is designed to leverage the

benefits of rectilinear downsampling as discussed at the beginning of chapter 6.

The underlying concept is to reallocate preprocessor outputs encapsulating

features of negligible use to the ANN, and replace them with data of higher pre-

dictive value. The method presented here is to base this on the assumption that

if the feature has a low saliency then it has little value to the ANN. It is expected

that if a feature of low saliency were to be replaced with a constant low value,

(with doing so effectively negating the input context of the feature,) the ANN

would function as effectively as before. This concept can be extended such that

the same preprocessor output can be attached to a new feature produced by the

preprocessor, with a newly associated Input Context. The weights attached to

117
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this feature would still be low enough that any data it does output would have

little effect on the predictions of the ANN at first, but as future training pro-

gresses, correlations between the feature and the ANN’s behaviour would increase

the magnitude of the weights (assuming the new data feature is itself predictive).

7.1 Subdividing as an Adaptive Preprocessor

The start of an Adaptive Preprocessor is to perform a simpler process, similar

to those of the construction phase of the Bespoke Preprocessors, but to a lower

requirement for confidence/accuracy. This can then be used to determine the

domain to search by the iterative process, Update, that operates along side the

ANN’s Learning. An Evaluation function is applied to the ANN to generate a

quantified representation of the ANN’s behaviour or conceptual usefulness of the

features generated by the preprocessor, independent of the current quality of the

ANN. Figure 12 shows how the traditional ANN learning feedback loop is altered

to support the additional of the Update process and its associated Evaluation

Function.

7.2 Research Question

To explore the Subdividing extension of the RDA algorithm, the follwing questions

are proposed:

1. Does the Subdividing Preprocessor function as a viable Adaptive Preproces-

sors? (i.e. Does the preprocessor allow an ANN to learn its intended task

whilst adjusting to the needs of the ANN?)

2. Can such a preprocessor allow the associated ANN to achieve an improved

measure of accuracy at a given task?
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3. Do the increased computational overheads in the preprocessor allow for a

greater reduction in computation in the ANN?

As the generation of features from a source image is based on the same multi-

resolution process that underlay the RDA algorithm, the implementation tests

(Test Domain 1) will be skipped. Evaluation of this algorithm will start with

Test Domain 2: Baseline Face Detection, 3.3, in the attempt to answer the above

questions.

7.3 Region Selection and Subdivision

As part of a single subdividing event, a single region is divided into nine smaller

regions (laid out in an equally spaced 3 × 3 grid within the region’s coverage).

Subdividing a region into nine smaller regions would increase the dimensionality

of the returned value from this algorithm, so to counter this, the ‘least useful’

regions are recycled to keep the dimensionality constant. As mentioned in footnote

1 (Sec. 6.2), this algorithm is backed by Bilinear interpolation; the value of a pixel

produced by Bilinear interpolation is slightly biased towards source pixels towards

the centre of the processing area. To account for this, the algorithm uses a 3× 3

sub-grid when subdividing.

As subdividing changes the functionality of the preprocessor, some training

must occur before the ANN training is considered complete to provide ample

time for the ANN to adjust to the changes that have taken place. For this reason

a subdividing event was only checked for every third epoch, excluding the first

three and last three epochs.

When to subdivide

The subdividing algorithm requires additional parameters compared to the tra-

ditional methods; these are resmax, Tupper and Tlower. These three parameters
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are used to determine the suitability to subdivide. resmax represents a maximum

resolution (both horizontally and vertically) that a subdividing process may zoom

into. Any region that has an equivalent resolution greater than or equal to resmax
may not be subdivided further. The Tupper and Tlower pair define the bounds on

saliency at which subdividing can occur; formally,

iff width(Rmax) ≤ resmax ∧

height(Rmax) ≤ resmax ∧

sal(Rmax) ≥ Tupper ∧

max(sal(Rmin)) ≤ sal(Rmax) · Tlower,

(33)

where sal(X) returns the salience of region X, Rmax is the single region with the

highest saliency and Rmin
n is the set of eight regions with minimal salience (where

n = 0 . . . 7).

First, all regions that have a resolution less than resmax in both the horizontal

and vertical directions have their saliency computed (Sec. 5.2). If at least one

region has a saliency above Tupper and at least eight have saliencies below Tlower,

then the region with the highest saliency, Rmax, is a valid target for subdivision,

recycling the eight regions with the lowest saliencies, Rmin
n , in the process. Re-

gions that take part in a subdividing event cannot be considered for subsequent

subdividing events until training of the ANN has occurred at least once. The

determination of the values used for these is covered in section 7.5.

How to subdivide

Prior to the subdividing event, the region Rmax has values (Rmax
x , Rmax

y ), Rmax
h ×

Rmax
v (similarly for each of the minimally salient regions). For all nine regions, the

values of Rh and Rv are set to 3 ·Rmax
h and 3 ·Rmax

v respectively. Temporary values

X and Y are set to 3 ·Rmax
x and 3 ·Rmax

y . The new coordinate (X, Y ) represents

the top left corner of the 3 × 3 sub-grid. The region Rmax has it’s coordinates
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set to (X + 1, Y + 1) such that it remains in the centre of the sub-grid. The

remaining eight regions fill the remaining eight places around region Rmax. This

implementation places the regions Rmin in ascending order of salience clockwise

around region Rmax starting at coordinate (X, Y ).

An optional step can be used to speed up learning for the ANN by manually

adjusting the weights connected to the regions altered in a subdividing event. For

each neuron/unit in the hidden layer, identify the weight that is connected to the

input of Rmax and divide this value by 9. The weights that connect the hidden

neuron/unit to the Rmin regions are also set to this value. This was not applied

to our implementation.

Subdivide Example

This example will look at a Subdividing Preprocessor that is initialised to a size

of 4 regions wide, by 3 regions high. Tupper will be set to 0.9, Tlower will be set to

0.2 and resmax will be set sufficiently high that it isn’t reached in this example.

After a few rounds of training the saliency of the ANN is computed and used to

determine the saliency of the preprocessed image. This is show in the left grid

of figure 28. In this case, the subdividing conditions have been met, with region

6 having a saliency greater than 90%, and regions 0, 1, 4, 5, 8, 9, 10, 11 each

have a saliency less than 20% of region 6. The space that was previously covered

by region 6 is now divided up into 9 smaller spaces. Region 6 is reassigned to

the centre of these new spaces, and the 8 regions with the lowest saliencies are

assigned to each of the 8 remaining spaces.

7.4 Situating

Like RDAs, this model is backed by a set of Regions. The variation in obtaining

the regions moves this model from the Bespoke group to the Adaptive group. The
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Figure 28: A visual representation of the subdividing event example.

initial regions are laid out as if representative of the output pixels of a traditional

interpolation method and then iteratively refined according to the saliency of each

region during the training of the ANN.

7.5 Parameter Selection

As part of the testing environments set-up, parameters need to be selected for the

Traditional and Subdividing Preprocessors. To make for fair comparison between

the various methods, optimal parameters are desired.

For the widthtrad and heighttrad parameters of the traditional methods, the

single resolution that has the highest Cohen’s kappa against the validation set

is selected. This value is determined as a side-effect during the construction of

the RDP (See sec. 6.4.1). The subdividing algorithm requires five parameters,

widthsubdivde, heightsubdivde, resmax, Tupper and Tlower. Two trials of the Subdi-

viding algorithm where performed, the first having the initial width and height

equal to the traditional, the second group initialised with a reduced pool to reduce

the number of output features (therefore a decrease in ANN complexity) and to
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Figure 29: The results from a brute-force parameter optimisation for the Sub-
dividing Algorithm. Initially a linear best-fit was performed showing a slight
positive correlation for Tupper and a strong negative correlation for Tlower. This
was later replaced with a cubic best-fit (shown) to determine some finer grain
details in the results. The graphs for both data sets appear highly similar, allow-
ing for the attribution of the data-set independent parameters Tupper = 0.95 and
Tlower = 0.15.
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increase the difficulty of the task;

widthsubdivde = b3 · widthtrad4 c and

heightsubdivde = b3 · heighttrad4 c
(34)

were used, resulting in approximately half the output features of the traditional

methods. resmax was set to RESmax to allow for a fair comparison between the

novel algorithms in the future. The two threshold values, Tlower and Tupper were

determined by a brute-force approach. For each point on a grid 0 . . . 1× 0 . . . 1, at

intervals of 0.01, a 20 epoch training run of a ANN with Subdividing Preprocessor

was performed using the location on the grid as the parameters for Tupper and

Tlower. This was repeated a total of 100 times, with the average accuracy against

the training set being records. To select the final parameters, the data was parsed

using gnuplot and a cubic best-fit performed (See Fig.29). From this the values

Tupper = 0.95 and Tlower = 0.15 were selected.

7.6 Results

The underlying preprocessor for Subdividing is identical to that of RDA; for this

reason, Test Domain 1 is skipped. This section will present the result for Test

Domain 2.

Results from the comparison trials are presented in tables 15 and 18 in the

same format as those of the previous chapter (Section 6.8). Fig. 30 presents an

example preprocessor from each of the four Subdividing trials, with sub-figures

30a and 30d show-casing the preprocessors selecting for the curvature of the head.

Tables 15 and 18 show the results for the Face detection task against the

Caltech and CMU-130 data sets, respectively.
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Table 15: Aggregate results for the tests against the Caltech Data Set.
Preprocessor Features AUC Computation Time

Average Standard
Deviation

Average Standard
Deviation

Bilinear (24× 22) 1584 0.906 0.0613 63.4ms 4.83ms
Bicubic (24× 22) 1584 0.897 0.0807 137.9ms 12.05ms

Subdividing
(24× 22)

1584 0.893 0.0324 7711ms 4024ms

Subdividing
(18× 16)

864(55%) 0.920 0.0116 6825ms 1477ms

7.6.1 Caltech Dataset

Using the Caltech data-set, there was a statistically significant difference in pre-

dictive accuracy depending on the preprocessor used, χ2(4) = 29.124, p = 2×10−6.

Post hoc analysis using Wilcoxon signed-rank tests were performed, with Bonfer-

roni correction applied.

Table 16 shows that reduced feature count Subdividing (18 × 16) (92.0%)

method is comparable to the traditional Bilinear (90.6%) method; both of which

show significant accuracy improvement over the matched feature count Subdivid-

ing method (89.3%). The Wilcoxon analysis was unable to identify any signifi-

cance between Bicubic (89.7%) and the other methods, possibly due to the larger

variance (σ = 0.0807).

For the comparison of computation times, the results are much clearer than

anticipated, there was a statistically significant difference depending on the pre-

processor used, χ2(4) = 67406.6, p = 0. Table 17 show the post hoc analysis (as

before) for the computation times.

The clarity of these significance tests give the hierarchical ordering (with over-

all average times) of: Bilinear (63.4ms) < Bicubic (137.9ms) < Subdividing (Re-

duced Features) (6825.3ms) < Subdividing (Matched Features) (7711.1ms).
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Table 16: Post hoc Wilcoxon Signed-Rank tests for Subdividing Accuracy on the
Caltech Data set

Bilinear Bilinear Bilinear
- - -

Bicubic Subdividing
(24× 22)

Subdividing
(18× 16)

z 0.556 3.187 1.636
Asymp. Sig.

(2-tailed)
0.57851 0.0014 (sig)1 0.10191

Bicubic Bicubic Subdividing
(24× 22)

- - -
Subdividing

(24× 22)
Subdividing

(18× 16)
Subdividing

(18× 16)
z 2.250 1.985 6.074

Asymp. Sig.
(2-tailed)

0.0244 0.04711 0 (sig)

Table 17: Post hoc Wilcoxon Signed-Rank tests for Subdividing Overall Compu-
tation Time on the Caltech Data set

Bilinear Bilinear Bilinear
- - -

Bicubic Subdividing
(24× 22)

Subdividing
(18× 16)

z 57.787 75.002 75.002
Asymp. Sig.

(2-tailed)
0 (sig) 0 (sig) 0 (sig)

Bicubic Bicubic Subdividing
(24× 22)

- - -
Subdividing

(24× 22)
Subdividing

(18× 16)
Subdividing

(18× 16)
z 75.002 75.002 54.420

Asymp. Sig.
(2-tailed)

0 (sig) 0 0 (sig)
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Table 18: Aggregate results for the tests against the CMU Data Set.
Preprocessor Features AUC Computation Time

Average Standard
Deviation

Average Standard
Deviation

Bilinear (25× 19) 1425 0.781 0.0946 47.3ms 9.86ms
Bicubic (25× 19) 1425 0.749 0.1079 58.2ms 10.67ms

Subdividing
(25× 19)

1425 0.934 0.0244 10591ms 3112ms

Subdividing
(18× 14)

756(53%) 0.948 0.0124 6094ms 1124ms

7.6.2 CMU Dataset

Using the CMU data-set, there was a statistically significant difference in predic-

tive accuracy depending on the preprocessor used, χ2(4) = 235.787, p = 7×10−51.

Post hoc analysis using Wilcoxon signed-rank tests were performed, with Bonfer-

roni correction applied.

Table 19 suggests that the following hierarchy describes the expected accuracy

of the preprocessors: Subdividing (18 × 14) (94.4%) > Subdividing (25 × 19)

(93.4%) > Bilinear (78.1%) > Bicubic (74.9%)

Like those against the Caltech dataset, the comparison of computation times

are much clearer than anticipated. There was a statistically significant difference

depending on the preprocessor used, χ2(4) = 53487.4, p = 0. Table 20 show the

post hoc analysis (as before) for the computation times.

The clarity of these significance tests give the hierarchical ordering (with

overall average times) of: Bilinear (47.3ms) < Bicubic (58.2ms) < Subdivid-

ing (18× 14) (10591ms) < Subdividing (25× 19) (61828ms).
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Table 19: Post hoc Wilcoxon Signed-Rank tests for Subdividing Accuracy on the
CMU Data set

Bilinear Bilinear Bilinear
- - -

Bicubic Subdividing
(25× 19)

Subdividing
(18× 14)

z 3.233 8.725 8.725
Asymp. Sig.

(2-tailed)
0.001 (sig) 0 (sig) 0 (sig)

Bicubic Bilinear Subdividing
(25× 19)

- - -
Subdividing

(25× 19)
Subdividing

(18× 14)
Subdividing

(18× 14)
z 8.463 8.463 5.376

Asymp. Sig.
(2-tailed)

0 (sig) 0 (sig) 0 (sig)

Table 20: Post hoc Wilcoxon Signed-Rank tests for Subdividing Overall Compu-
tation Time on the CMU Data set

Bilinear Bilinear Bilinear
- - -

Bicubic Subdividing
(25× 19)

Subdividing
(18× 14)

z 122.392 122.476 122.476
Asymp. Sig.

(2-tailed)
0 (sig) 0 (sig) 0 (sig)

Bicubic Bilinear Subdividing
(25× 19)

- - -
Subdividing

(25× 19)
Subdividing

(18× 14)
Subdividing

(18× 14)
z 122.476 122.476 122.418

Asymp. Sig.
(2-tailed)

0 (sig) 0 (sig) 0 (sig)
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7.7 Conclusion

This section will first present a general discussion and overview of the results

and other outputs of the Subdividing preprocessors on Test Domain 2. This will

be followed up with the research questions (Section 7.2) presented earlier in this

chapter and their responses.

Against Test Domain 2, for both datasets, the reduced feature count variant

of Subdividing out performed the variant with a feature count matching the tradi-

tional methods. In the case of the CMU dataset, both variants were shown to have

significantly improved accuracy compared to the traditional methods with the re-

duced variant being further able to improve performance. Against the Caltech

dataset, the reduced feature variant was only able to show significant improve-

ment to Bilinear. This may be due to a large variance in the Bicubic results.

Repeating this study with a larger sampling from this dataset may clarify these

results. The improvement identified in the reduce feature variant of Subdividing

is suspected to be the result of the ANN being able to identify patterns in the

feature set faster from data due to the reduced noise.

Computational time was not a a primary goal for this implementation of Sub-

dividing; as such, it is not a surprise to find that it is significantly slower than the

traditional methods.

The conclusion to draw from these to insights is that the Subdividing algorithm

presented here is only justifiable solution in limited cases. Until improvement in

computational run time are applied to the algorithm, its use should be limited

to situations where an ANN is unable to learn due too excessive noise obscuring

relevant patterns in the input images and runtime complexity is not a significant

issue.

This technique could be used as a tool to identify where the predictive value in

the data set could be used in the discovery or construction of future preprocessors.

As a demonstration, figure 31 show a sample of three region sets produced as a
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Table 21: Distance metrics (Sec. 6.6) of the three random selected region sets
generated as part of the Baseline Face Detection test against the CMU-130 data
set. See figure 31 for their visual appearance.

Likeness (a) (b) (c)
(a) - 0.470 0.492
(b) 0.470 - 0.503
(c) 0.492 0.503 -

Similarity (a) (b) (c)
(a) - 0.468 0.470
(b) 0.468 - 0.502
(c) 0.470 0.502 -

result of testing the Subdividing algorithm (with matching region counts to the

traditional methods) against Test Domain 2 using CMU-130 data set. A quick

viewing of the samples show an expected bias towards the boundary of the cranium

and background, with some focus towards the eyes and bridge of the nose. The

samples also show some interest towards the top right corner of the scene and this

may be evidence to an undesired coincidentally correlating patterns in that region.

(See Section 2.1.3 for a discussion on Hughes Phenomenon.) When compared by

the Similarity and Likeness metrics (Table 21) presented in section 6.6, the samples

shows a strong similarity in the selection of regions. This leads to the implication

that the these regions are strongly linked to the given task and other preprocessors

that focus on these areas may also prove beneficial. As this opinion is based on

a sample of just three convergent preprocessors from a small pool of subdividing

preprocessors generated as a side effect to an alternative task, this statement can

only be considered as an intriguing observation, but demonstrates the potential

extrapolations that could be made.

Does the Subdividing Preprocessor function as a viable Adaptive Pre-

processors? (i.e. Does the preprocessor allow an ANN to learn its

intended task whilst adjusting to the needs of the ANN?)

In all tested situations, the ANN when supported by a Subdividing pre-

processor was able to learn the task presented. In each case, its was show to
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have significantly improved or equivalent AUC compared to the traditional meth-

ods presented, and in all cases the Standard Deviation was lower when compared

to the traditional preprocessors.

Can such a preprocessor allow the associated ANN to achieve an im-

proved measure of accuracy at a given task?

The analysis presented here show that Subdividing can provide significant

increases to accuracy, but the improvements may be task dependent.

Do the increased computational overheads in the preprocessor allow

for a greater reduction in computation in the ANN?

The timing results present show that this is not the case.
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(a) Caltech (reduced feature count) (b) Caltech (matching feature count)

(c) CMU-130 (reduced feature count) (d) CMU-130 (matching feature
count)

Figure 30: A sample of preprocessors from each of the Subdividing trials. Figures
(a) and (d) where selected as representative of the typical density (though layout
is highly variable). Figure (b) is an example of a Preprocessor-ANN system that
failed to learn the task to a high degree of accuracy, and thus little has occurred in
the way of subdividing events. Figure (c) is an example of the ANN over-fitting,
affecting the preprocessor produced. Each colour represents a unique resolution
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(a) (b)

(c)

Figure 31: A random sample of three resultant Region Sets from the produced
against the CMU-130 data set.



Chapter 8

Evaluation and Discussion

This chapter is provided to give an overview of the novel preprocessors presented

in this thesis, and response to the results gathered as part of the studies discussed.

For the reader’s benefit, tables 22 and 23 have been provided that display the com-

plete results of the Test Domain 2 as performed on both classes of preprocessor.

As the comparisons between the novel preprocessors and the traditional methods

have already been covered in earlier chapters, this will be passed over for dis-

cussion in this chapter. As such, this chapter will be focused on the comparison

between RDA and Subdividing. The tests presented here were performed many

weeks apart. Due to this, different processes were occurring on the machines dur-

ing the execution of the Test Domains (as can be seen in the slight change in

the traditional preprocessors runtime), making direct numerical comparison dif-

ficult. To counter this, comparisons will be made by the relationship between

the algorithm in question and the traditional methods processed within the same

execution.

For Test Domain 2 using the Caltech dataset, Subdividing has shown to have

statistically significant increase in AUC for some cases (when it has a reduced

feature set compared to the Bilinear traditional methods, an absolute increase in

AUC of between 0.014), but the results were unable to reject the null-hypothesis

134
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when comparing against Bicubic or using an equivalent feature count. The pre-

sented RDA methods show statistically significant improvements compared to Bi-

linear (an absolute increase of between 0.034 to 0.038). Focusing on the accuracy

measures for this task, RDA shows a greater improvement than the Subdividing

algorithms. Given the analysis in section 6.8.2, the recommendation of using RDA

with Restricted-SHM (if computation time is not a concern), or RDA with Pruned

Bilinear (when reduction in computational runtime is required) are justifiable.

Test Domain 2 using the CMU dataset provides a different conclusion. In

this case, both Subdividing implementations provided significant improvement to

accuracy (an absolute increase in AUC of between 0.153 to 0.199). If accuracy

is the only concern, then Subdividing using a reduced feature set is a justified

recommendation due to its statistical significance (Section 7.6.2). If run-time

constraints apply to the task, then the recommendation of RDA using Pruned

Bilinear is the most justified due to its comparable accuracy (no statistically

significant improvement over the traditional methods) and statistically significant

reduction in computational time as detailed in section 6.8.2.
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Table 22: An aggregate of the results for both the RDA and Subdividing tests
against the Caltech Data Set.

Preprocessor Features AUC Computation Time
Average Standard

Deviation
Average Standard

Deviation
RDA Results

Bilinear (24× 22) 1584 0.943 0.0857 48.3ms 8.01ms
Bicubic (24× 22) 1584 0.966 0.0654 60.0ms 8.74ms
RDA + SHM 36 0.977 0.0057 133.9ms 34.69ms

RDA +
Restricted-SHM

39 0.981 0.0024 153.7ms 43.18ms

RDA + Pruned
Bilinear

42 0.980 0.0113 27.8ms 5.32ms

Subdividing Results
Bilinear (24× 22) 1584 0.906 0.0613 63.4ms 4.83ms
Bicubic (24× 22) 1584 0.897 0.0807 137.9ms 12.05ms

Subdividing
(24× 22)

1584 0.893 0.0324 7711ms 4024ms

Subdividing
(18× 16)

864(55%) 0.920 0.0116 6825ms 1477ms
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Table 23: An aggregate of the results for both the RDA and Subdividing tests
against the CMU-130 Data Set.

Preprocessor Features AUC Computation Time
Average Standard

Deviation
Average Standard

Deviation
RDA Results

Bilinear (25× 19) 1425 0.571 0.1414 47.3ms 9.86ms
Bicubic (25× 19) 1425 0.469 0.1668 58.2ms 10.67ms
RDA + SHM 48 0.623 0.0769 174.4ms 71.79ms

RDA +
Restricted-SHM

48 0.595 0.1119 173.4ms 72.84ms

RDA + Pruned
Bilinear

21 0.596 0.0178 18.3ms 6.47ms

Subdividing Results
Bilinear (25× 19) 1425 0.781 0.0946 47.3ms 9.86ms
Bicubic (25× 19) 1425 0.749 0.1079 58.2ms 10.67ms

Subdividing
(25× 19)

1425 0.934 0.0244 10591ms 3112ms

Subdividing
(18× 14)

756(53%) 0.948 0.0124 6094ms 1124ms



Chapter 9

Conclusion and Further Work

At the start of this thesis, it was claimed that the following contributions would

be made:

1. A framework with which to classify and aid discussion of image preproces-

sors,

2. A metric which can approximate the predictive accuracy of a neural unit or

input feature to an ANN,

3. Three novel image preprocessors and their implementation procedures, and

4. A methodology to systematically compare these presented preprocessors.

It is believed that these contributions have been in the following chapters/

sections of this thesis:

1. Chapter 4 provides a framework to classify an image preprocessor as Bespoke

or Adaptive based on the way in which concrete implementations (including

parameters) are applied to the task.

2. Section 5.2 presents the Saliency metric for the use of qualitatively measuring

an input feature’s predictive value for an unknown task, and as a by-product

can provide similar measure for all intermediate nodes in the ANN.
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3. Chapters 5, 6 and 7 present three models for image preprocessor design, not

previously presented in the literature, each with variations in implementa-

tion.

4. Section 3.3 introduced a Baseline Face Detection task as a variant of the

work by Jain and Learned-Miller (2010).

Of the three novel preprocessors contributions, two (RDA and Subdividing)

were found to have statistically significant improvements in accuracy for some

domains. The third (VSP) has been found to have statistically poorer performance

than the traditional methods with recommendations to disregard it as an avenue

for further research.

9.1 Future/Further work

This final section presents a number of comments regarding to the limitations

of this work. This includes the identification of: results that, in aggregate, hint

at potential for improvements within a particular algorithm even when the indi-

vidual results demonstrate poor performance, potential avenues of investigation

for runtime optimisation and where the results obtained fall short of finding the

extent at which an algorithm can perform.

Though RDA + Pruned Bilinear appears to have performed well in this study

(Sec. 6.9), the results from RDA + SHM and RDA + Restricted-SHM hints at

potential for improvement, whether it is to be realised through minor modification

to the selection method itself or just refinement of the threshold parameters.

Future studies that attempt to resolve this query are a potential avenue of research.

In this work, the RDA and Subdividing algorithms were only analysed with

respect to a single applicable problem domain, face detection. This was due to the

unexpected and significant time costs in the generation and testing of both the

algorithms presented in this work and the testing environment. Further studies of
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these algorithms to determine and/or demonstrate the generality and suitability

of these to different tasks; along with the generation of newer Bespoke or Adaptive

Preprocessors could prove beneficial.

Optimisation of the RDA algorithm runtime complexity has not been a focus

of this research. In this research a naïve optimisation process was used and is a

prime location for improvement. An increasingly complex optimiser could weigh

the costs of a smaller number of bilinear interpolation components (reducing over-

heads), or more numerous smaller bilinear interpolation components, in attempts

to minimise the runtime costs involved with preprocessing.

In these tests, there was no investigation into how aggressive the reduction

in Subdividing Features could be pushed before there was a significant reduction

in the preprocessors and associated ANNs accuracy. It is also expected that

further investigations into this lower bound would also provide large savings in

computational run time.

The Subdividing algorithms current implementation uses Bilinear interpolation

to process each region that it encapsulates. Due to this, the runtime of a Subdi-

viding Preprocessor is expected to be slower than that of the traditional methods.

Expanding out the functioning of the interpolations may reduce overheads caused

by duplicate computations and may allow for pre-computation of some necessary

values. This is expected to reduce some runtime cost and transfer others from

runtime to learning/training time.
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Appendix A

VSP Image Sources

The complete set of images used in the Presence Tests as described in section 3.2.

Both the background and object images are stored in PNG format with 24-bit

RGB colour encoding.

A.1 Stuffed Bear

The stuffed bear image used for the object presence testing domain as described

in section 3.2. This image was selected due to the consistent colouration, complex

shape and both high and low contrasts with some of the background images.
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A.2 Backgrounds (17 images)

Images from around the Cornwallis building, University of Kent; used as back-

grounds for generating the test and training set images for VSP (Sec. 3.2).
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