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Abstract

Breast Cancer is one of the most common causes of cancer death in women,
representing a very complex disease with varied molecular alterations. To as-
sist breast cancer prognosis, the classification of patients into biological groups
is of great significance for treatment strategies. Recent studies have used an
ensemble of multiple clustering algorithms to elucidate the most characteristic
biological groups of breast cancer. However, the combination of various cluster-
ing methods resulted in a number of patients remaining unclustered. Therefore,
a framework still needs to be developed which can assign as many unclustered
(i.e. biologically diverse) patients to one of the identified groups in order to
improve classification. Therefore, in this paper we develop a novel classification
framework which introduces a new ensemble classification stage after the en-
semble clustering stage to target the unclustered patients. Thus, a step-by-step
pipeline is introduced which couples ensemble clustering with ensemble clas-
sification for the identification of core groups, data distribution in them and
improvement in final classification results by targeting the unclustered data.
The proposed pipeline is employed on a novel real world breast cancer dataset
and subsequently its robustness and stability are examined by testing it on
standard datasets. The results show that by using the presented framework,
an improved classification is obtained. Finally, the results have been verified
using statistical tests, visualisation techniques, cluster quality assessment and
interpretation from clinical experts.
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1. Introduction

Determining the number of groups in a dataset with no class labels is a
very challenging task [1]. One such problem is to assist breast cancer prog-
nosis by determining the most suitable treatment option among a number of
complex treatment choices available [2], [3], [4]. This can be answered only by5

fully understanding the biological characteristics of the disease for each indi-
vidual patient. Therefore, the identification of biological groups is extremely
important to tailor and choose the ideal treatment. To tackle this breast cancer
heterogeneity, computational intelligence methods have been developed to facil-
itate personalised breast cancer treatment and support clinical decision making10

by predicting the patient’s treatment outcome. Thus, recent studies [5], [4], [6]
have utilised clustering algorithms to classify patients into biological groups.

Clustering algorithms [7] are chosen according to the problem, for example,
in breast cancer studies, generally the cluster algorithms considered are centroid
and connectivity based [8], [9]. Previously, Eisen et al. [8] combined hierarchical15

clustering with the visual study of the dendrograms to determine the association
between the gene expressions. Using clustering methods on breast cancer pro-
files, Perou et al. [10] recognised four distinct molecular classes of breast cancer
based upon gene expression data: HER2, basal, luminal and normal. Extend-
ing the work, Sorlie et al. [11] subdivided the Luminal group into three: A, B,20

and C. Being uncertain of Luminal C, in a subsequent work [12] they divided
basal into two and discarded the normal group and Luminal C, thus attaining
an aggregate of five breast cancer groups.

A bigger problem lies in algorithm selection, as different algorithms produce
different results. Thus, employing several algorithms is advantageous to pro-25

vide a level of confidence to the final grouping. Kellam et al. [13] used this idea
and introduced ‘Clusterfusion’, which takes into account the results of all the
different clustering algorithms present in the ensemble. Monti et al. [14] used
consensus clustering in combination with re-sampling techniques to identify bi-
ological groups. Similarly, Chen et al. [15] introduced an ensemble clustering30

method to predict survival rate of cancer patients when working with discrete
features. The algorithm used Partitioning Around Methods recursively to con-
struct a dissimilarity matrix to be used by Hierarchical Clustering Algorithm
to obtain final distribution.

In the past decade, Soria et al. [16], [2], [3] used the clusterfusion approach on35

data from immunohistochemistry on formalin-fixed paraffin embedded patient
tumour samples, an alternative approach to gene expression profiling, for better
identification of breast cancer biological groups. The patients from Nottingham
Tenovus Primary Breast Carcinoma Series were divided among six breast cancer
classes, similar to previous works. In a subsequent work by Green et al. [17], the40

biomarkers panel was reduced from 25 down to a set of ‘ten most important’
biomarkers. Criteria for class membership were defined using the expression of
a reduced set of 10 proteins able to identify key molecular classes. The reduced
set was obtained using the association between these breast cancer classes with
clinicopathological factors and patient outcome. This work also studied the class45

characterisation of breast cancer patients by analysing their biomarker profiles.
It further suggested the division of class 6 (HER2 positive) into two subclasses.
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Using the reduced biomarker panel with the need for refinement of class 6,
Soria and colleagues [3] divided the set of 1,073 Nottingham breast cancer pa-
tients among seven biological classes. However, the methodology left behind a50

number of unclassified patients. Researchers have employed multiple relevant
protein biomarker to large numbers of cases to elucidate breast cancer classes
using ensemble clustering methods [2], [3], [17], [18], [10], but a framework still
needs to be developed which can assign as many unclustered patients to one
of the identified groups in order to improve final classification results. Thus,55

we introduce the idea of using an extra layer of classifiers after the ensemble
clustering layer [19] to improve the final classification.

The first aim of this work is to classify the unclustered data obtained during
ensemble clustering. For this purpose, we construct a novel general pipeline fo-
cusing on the identification of the optimal number of clusters, and then patients60

are distributed among the groups using ensemble clustering. Subsequently, a
consensus voting ensemble classifier layer has been introduced to increase the
number of data in one of the identified groups by targeting the unclustered
patients remaining after the ensemble clustering. We verify the data grouped
after ensemble classification by comparing it with the data clustered after ensem-65

ble clustering, using statistical (Mann-Whitney-Wilcoxon) [20] and visualisation
(boxplots) tests. We also verify the cluster quality using the Davies-Bound in-
dex [21]. The results show that with the addition of ensemble classification, the
pipeline improves the ensemble clustering results.

To classify unlabelled datasets (e.g. Breast Cancer Dataset) a number of70

clustering [8] and ensemble clustering methods [13, 14, 15] have been pro-
posed. Recently, a combination of clustering and classification algorithms have
attracted attention. Chakraborty et al. [22] proposed EC3: Combining Cluster-
ing and Classification, employing clustering to learn supplementary constraints
(e.g., if two objects are clustered together, it is more likely that the same label is75

assigned to both of them) to support classification algorithms in order to classify
data across unlabelled datasets. In another set of works by Zhang et al. [23], the
authors used a combination of clustering and classification for unlabelled data
in network traffic classification. The classification framework proposed in this
paper is built on different settings to the ones aforementioned, and the idea is80

to use clustering algorithms to form core groups and subsequently classify more
data by learning the pattern of these core groups.

The second aim of the work is to address the robustness of the pipeline by
testing it on multiple datasets. Thus, this novel pipeline introduced in this
work is operated on a real world dataset from the Edinburgh Breast Cancer85

Series [6] and validated on Standard Datasets from the Machine Learning UCI
repository [24]. The results present an improved classification for all the datasets
and show the generality of the pipeline for application in non-medical domains.

The structure of the paper is as follows: Section 2 provides background
information on methods used in the work. Section 3 introduces the step-by-step90

methodology (including a process flowchart) for the pipeline. Section 4 explains
the experimental settings and the results for the application on all the datasets.
Section 5 presents the discussion of the results and finally section 6 concludes
the paper with future research.
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2. Background95

This section presents a brief description of the clustering algorithms, classi-
fication algorithms and ensemble methods used in the pipeline.

2.1. K-means (with HCA)

The K-means clustering algorithm is one of the most commonly used cluster-
ing algorithms which works by assigning the data points among k clusters [25].100

The steps followed in the algorithm are: 1) Randomly select k number of clus-
ter centres. 2) Compute the Euclidean distance of each observation from all the
cluster centres. 3) Assign each observation to the cluster with the minimum
distance from the centre. 4) Re-evaluate the cluster centres by considering the
means of the respective data points. 5) Repeat steps two to four until no new105

allocation occurs.
K-means suffers from the disadvantage of relying on the random selection of

cluster centres for each initial run, leading to the formation of dissimilar clus-
ters each time. To tackle this problem multiple solutions have been proposed,
and in this work we employ agglomerative Hierarchical Clustering Algorithm110

(HCA) [26] on the dataset before the K-means algorithm. The tree formed
from the HCA is pruned, and the points are passed as the initial cluster centres
(now fixed centres) to the K-means [2]. The K-means with centres from HCA
is the new Modified K-means (with HCA) algorithm used in this work.

2.2. Partitioning Around Medoids (PAM)115

Partitioning Around Medoids (PAM) is a clustering algorithm which charac-
terises clusters by their medoids (also called the centres) [27]. It works similarly
to the K-means, but in contrast it selects real data points as medoids. The al-
gorithm works in two phases: 1) The build phase, in which a set of ‘k’ medoids
among the ‘n’ observation points is selected. Then each remaining data point is120

assigned to one of the closest medoids based on the Euclidean distance. 2) The
swap phase, in which each non medoid point is replaced with one of the medoid
points and the distance is recalculated. If the new distance is greater in com-
parison with the previous distance, the swap is reversed, otherwise the process
is repeated until all the swaps are performed.125

2.3. Ensemble Clustering

Ensemble clustering methods merge results of multiple clustering algorithms
to form core groups and have been successfully used in the domain of breast
cancer [2], [3], [28], [13]. Several researchers have concentrated on contrasting
and combining results of different clustering algorithms using re-sampling tech-130

niques, combination of outputs, probabilistic methods, pairwise similarity, etc.
[29]. Among these multiple ensemble clustering methods, a Consensus Cluster-
ing approach [30] i.e. Clusterfusion is chosen because it provides robustness,
stability and improved solution by increasing the degree of confidence of the
groups formed [31].135
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Validity Index Rule
Marriot maxk((d[k + 1]− d[k])− (d[k]− d[k − 1]))
Calinski mink((d[k + 1]− d[k])− (d[k]− d[k − 1]))
Scott maxk(d[k]− d[k − 1])
TraceW maxk((d[k + 1]− d[k])− (d[k]− d[k − 1]))

Table 1: Rules associated with validity indices

2.4. Cluster Validity Indices

Cluster validity indices are metrics used for determining the goodness of
clusters by assessing the quality of clustering results [1]. The validity indices
are either based on compactness of data in a cluster or on the separation of
the clusters from one another. A specific rule is associated with each of the140

indices, as shown in Table 1, which specifies the optimal number of clusters k
by ranking them. Thus, by using these measures in a dataset the most stable
cluster size can be determined. Several validity indices have been proposed in
the literature, but in this work four commonly used validity indices d are used:
Marriot, Calinski, Scott and TraceW [1], [2].145

2.5. Artificial Neural Networks

The Artificial Neural Network (ANN) algorithm [32], [33] employed in this
work is also called shallow Deep Neural Network, with backpropagation learning
method. The input layer receives a set of inputs from the dataset and transfers
the information onto the hidden layer using synapses. Thus, with the help150

of more synapses the information is passed onto the third layer or the output
layer, where a weighted sum is computed and passed to an activation function.
The value received after the activation function is compared to a threshold and
the error is calculated. The error is back-propagated and all the weights are
updated. The network learns in the process of weight update and continues155

until the error is below the ‘error threshold’. The advantages of using ANN
are its flexibility, the capability to model highly complex models and the non-
parametric nature.

2.6. Nearest Neighbour

The Nearest Neighbour algorithm is a memory based non-parametric model160

which is employed to classify the data points to the nearest group [34]. It
starts by computing the distance of a test sample with all the data which have
been classified in their respective groups. The test sample is assigned to the
nearest group based on the distance matrix calculated in the previous step.
The advantages of the Nearest Neighbour over other classification algorithms165

are its efficient memory handling, as it keeps track of all the clustered data, and
its successful use in the domain of breast cancer [34, 35, 36].

2.7. Ensemble Classification

Ensemble Classification is a broad term for the methods combining mul-
tiple classification algorithms to improve predictive performance of the sys-
tem [20, 37]. Previously, several researchers [38, 39, 40, 41] have used classifier
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ensemble to perform classification and discussed its superiority over single clas-
sifiers [42]. Bashir et al. [43] have used ensemble classifier for breast cancer
diagnosis and suggest that ensemble methods mimic human reasoning, as they
consider multiple opinions before making a final decision. Many combination
techniques exist such as boosting, bagging, stacking, etc. [44]. Among a number
of decision level fusion methods present in the literature, unanimous voting was
chosen, as the real world problem in this work needs high confidence, being
the division of Breast Cancer patients into biological classes. The unanimous
decision on a test sample ‘x’ could be mathematically represented as:

class(x) = mode{C1(x), C2(x), ...Cn(x)}, (1)

where n is the number of classifiers in the ensemble and Cn(x) is the final
decision of the n-th classifier in the ensemble.170

3. Methodology for the Pipeline

While combining the clustering algorithm results using ensemble methods,
a number of data are left unclustered. Thus, in this section, we introduce a
new step-by-step framework for the identification of groups and efficient data
distribution within them. Researchers have focused on making ensemble clus-175

tering combination as good as possible, so to leave the smallest number of data
unclustered [2, 29]. Unlike other approaches, the presented pipeline deals di-
rectly with the unclustered data by introducing ensemble classification, in order
to have the maximum amount of data clustered in one of the identified groups.
The idea is to now see this as a classification problem, i.e. using the clustered180

data as the training set to train the classifiers and use the unclustered data as
the test set.

An abstract view for the steps of the novel pipeline is shown in Figure 1.
The first step of the pipeline is data gathering, followed by cleaning in the pre-
processing unit. The processed data are passed to the ‘Coupling ensembles of185

Clustering and classification’ unit which is itself broken down in further sub-
steps, each discussed in the next section. The final clustering in groups is
inspected in the Further analysis step. The units of the pipeline are explained
in the following subsections.

3.1. Data Gathering190

The first step in the pipeline is aggregation of the data. Data can come in
different shapes and formats, but the process and protocols to collect the data
are out of scope of this paper.

Figure 1: Abstract flowchart of the steps in the proposed pipeline

6



3.2. Data Pre-processing

The next step is data pre-processing, i.e. data cleaning, which enhances the195

power of algorithms to identify the patterns inside the datasets. In order to
fully understand the data under inspection descriptive statistics such as mean,
median, range, standard deviation, etc. can be computed. This might also help
to locate inconsistencies among the data. Tuples which have missing values
can be deleted, and the tuples attributes could be made homogeneous, i.e. all200

numeric or text. Other ways for processing could be normalisation of values
using methods such as min-max, z-score, etc. [45]. These steps produce the
final set of data points to be used.

3.3. Coupling ensembles of Clustering and Classification

Coupling ensembles of Clustering and Classification is composed of multiple205

sub-steps, as depicted by a detailed flowchart in Figure 2. In this unit, the first
sub-step is Ensemble Clustering Unit, explained in the following subsection.

3.3.1. Ensemble Clustering (Clusterfusion) Unit

This section elucidates the construction of groups and initial data distri-
bution from the dataset by consensus among the results of the two clustering210

algorithms. The cluster ensemble methodology looks similar in principle to
equivalent approaches in classification, namely ensemble methods like bagging
and boosting, but it presents additional problems [29]. Firstly, matching clus-
ters between algorithms is not straightforward as different clustering algorithms
may generate different numbers of groups and moreover the optimal number of215

groups may be unknown. Another common problem is that of unclustered data
left while combining the results of the clustering algorithms.

To determine the optimal value of number of clusters ‘k’, we suggest to run
cluster validity indices. Set the minimum and maximum values for k, then at
each iteration run the clustering algorithms and the validity indices, changing220

the input k between the two set values. If the indices suggest different numbers
of clusters, then the minimum sum of ranks can be taken as the optimal value of
k [2]. This information about k is now passed back to cluster the data using the
same two clustering algorithms. To verify the ensemble solution, Swift et al. [46]
suggested the use of the kappa index. The agreement between the equivalent225

clusters returned by the different clustering algorithms is evaluated using the
Cohen’s unweighted and weighted kappa index [47]. The index statistically
evaluates the agreement between the two clustering algorithms which clusters n
data among k groups, and return a value between 0-1 with zero being absolute
disagreement and one being complete agreement. Thus, this process returns the230

most stable cluster size.
The groups obtained by the different clustering algorithms are merged with

the goal of assigning the same set of objects to identical clusters, a process known
as ‘correspondence problem’. The correspondence among the groups is achieved
by aligning the group labels to get maximum agreement and therefore form235

core groups composed of the data with the same group label. These steps of the
ensemble clustering unit are represented by a flowchart in Figure 3. There might
be some data that present mixed classification while dividing the data points
into k common groups. These remaining data are therefore called unclustered
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Figure 2: Flowchart of the sub-steps in ‘Coupling Clustering and Classification to form groups’
step from the abstract pipeline view. ‘Ensemble clustering (Clusterfusion) to form groups’ and
‘Ensemble Classification approach to classify more data’ are further subdivided into smaller
steps explained in Figures 3 and 4 respectively.

(unlabelled). To tackle the unclustered data we introduce the use of Ensemble240

Classification on top of clusterfusion and forward the unclustered data to the
‘Ensemble Classification Unit’.

3.3.2. Ensemble Classification Unit

The ensemble classification unit is introduced to refine the clustering results
by targeting the data that present mixed classification. The reasons behind245

introducing the ensemble classification in the pipeline are to improve solutions,
to reuse knowledge and to select novel models by changing classifiers. Both
the classification algorithms first learn the classification rules from the previ-
ously clustered data (training set), and then use the unclustered one as the test
set with the goal to assign them to one of the previously identified ‘k’ groups.250

Decision-level fusion using unanimous voting is employed to merge the clas-
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Figure 3: Flowchart for Consensus Clustering Unit shows the pictorial representation of the
order of steps to form groups in a dataset and subsequently divide the data in these constitued
groups.

sification results. The reason for using this method is the choice of real world
application to assign breast cancer patients to biological classes, which demands
high confidence in the results. As Unanimous voting considers the consensus
across all the algorithms in the ensemble, it generates the highest confidence in255

results among all the ensemble methods.
Two principles were considered while performing the consensus: i) include

as many classifiers in the ensemble as possible, and ii) assign as many data to
the core groups as possible. Strict application of the principles may result in
few data assignments, leading to conflicts between them. The possible solution260

for this problem can be: i) to use other methods of ensemble classifiers such as
majority voting, weighted voting, stacked generalisation, etc. ii) to use a trade
off between the two principles. However, this problem is currently overlooked
as high output confidence is desired in this work.

After ensemble classification, more data are assigned to one of the groups,265

and the remaining data are still unlabelled or ‘Not classified’. The data clustered
after the clusterfusion step are now combined with the newly clustered data in
the same groups to achieve the final clusters. The newly clustered data needs
further analysis and verification, which are discussed in the following section.
The detailed flowchart for the order of steps in this unit is shown in Figure 4.270
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Figure 4: Flowchart for the order of steps in Consensus Classification Unit to classify more
data in groups constituted in the clusterfusion step.

3.4. Further Analysis of the Groups Formed

To evaluate and validate the characteristics of the data assigned after en-
semble classification, visual tests, statistical tests and cluster quality assessment
need to be performed. The distribution of each attribute in a group after clus-
terfusion was compared to the one after ensemble classification using boxplots275

(a method of visually displaying the distribution of the data using median,
quartiles and outliers [48]) and the Davies-Bound index (internal cluster qual-
ity assessment index). The statistical test used for the comparison is Mann-
Whitney-Wilcoxon, a non-parametric version of the t-test, to check whether the
two distributions come from the same population. The level of significance is280

usually chosen at 0.05 [49].

4. Results

This section show the results for the application of the pipeline on the real
world Breast Cancer Dataset and Standard Benchmark Datasets.

4.1. Real World Dataset: Edinburgh Breast Cancer Series285

The real world data used was a breast cancer dataset provided by the Ed-
inburgh Research Centre. The Edinburgh Breast Cancer Series consists of 885
patients treated with breast conservation surgery, axillary node sampling or
clearance, and whole breast radiotherapy [6]. Each of the patient’s tumour
samples were tested against ten biomarkers using immunohistochemistry, which290

resulted in a score for each biomarker ranging from 0 to 300. The biomarkers
were: Estrogen Receptor (ER), Progesterone Receptor (PgR), Cytokeratin 7/8
(CK7/8), Cytokeratin 5/6 (CK5/6), EGFR, c-erbB2 (HER2), c-erbB3 (HER3),
c-erbB4 (HER4), p53 and Mucin1 (MUC1) [3], [4].

The next step after selecting the dataset is data processing. In the Edinburgh295

breast cancer dataset, the biomarkers ER, PgR and HER2 had no missing values
for all the patients while other biomarkers had few missing entries. For the
purpose of our pipeline we deleted all the tuples with at least one missing value,
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Figure 5: Boxplots of 478 patients in the Edinburgh Dataset

which reduced the number of patients down to 478. Since all the biomarkers
were scored on a 0 to 300 range, normalisation was not required. The cleaning300

of the cancer dataset was followed by the computation of statistical measures
(namely median, range and outliers) and boxplots. Figure 5 shows the boxplots
of the 478 breast cancer patients where the y-axis represents the values for each
biomarker and the x-axis represents the ten biomarkers.

After the descriptive analysis, the next step is to choose the number of305

groups by employing PAM and K-means clustering algorithms for ‘k’ = 2 to 15.
The cluster results obtained were passed to the cluster validity indices to asses
the quality of the clustering output and hence determine the optimal number
of groups. Each validity index (Marriot, Calinski, Scott and TraceW) was run
separately on each clustering algorithm, with an associated rule to choose the310

best number of clusters, already shown in Table 1. All the Cluster Validity
indices suggested four to be the optimal number except TraceW when run after
K-means, for which the optimal number was three. The results of the validity
indices computation for both the algorithms are shown in Table 2. The minimum
sum of ranks was taken and four was chosen as the optimal number.315

Both the clustering algorithms were again run on the dataset for four groups.
The correspondence between results of the two clustering algorithms were statis-
tically compared using the unweighted and the weighted Cohen’s kappa index.
The weights of the weighted kappa index were computed based on the degree
of disagreement between the groups, i.e. the higher the weight, higher the dis-320

agreement. The unweighted kappa index value was 0.85 and the weighted kappa
index value was 0.93. These two values indicate a very high agreement between
the two clustering algorithms for the four groups formed. The cluster labels
of both the clustering algorithms were aligned in order to have the same data
assigned to the cluster with the same label from the two methods. The distribu-325

Validity Index PAM K-means
Marriot 4 4
Calinski 4 4

Scott 4 4
TraceW 4 3

Table 2: Number of clusters suggested by different validity indices
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Method Cluster Cluster Cluster Cluster Unclustered
1 2 3 4

K-means 168 141 120 49 -
PAM 160 190 81 47 -

Ensemble Clustering 157 141 81 47 52
(Clusterfusion)

Ensemble Classification 13 12 11 2 14
(additionally assigned)

Coupling Cluterfusion with 170 153 92 49 14
ensemble classification

Table 3: Division of patients in clusters

tion of patients among the four classes is shown in the first two rows of Table 3.
Clusters 1, 2, 3 and 4 represent the four identified groups. Clusterfusion grouped
426 patients among the four common clusters and left 52 unclustered (row three
of Table 3).

The next step was to train the two classifiers on the 426 clustered patients,330

run them on the 52 unclustered patients as test set and perform the class level
fusion of results. The first classifier used was five layered ANN network (having
three hidden layers), with a sigmoid activation function to model the weighted
sum. The ANN was tested with multiple models, but it achieved best results for
network having 7-10-7 nodes for the hidden layers, with 200 epochs. The second335

classifier was the Nearest Neighbour with an Euclidean distance function. For
both ANN and Nearest Neighbour, we used a 10 fold cross validation approach.
An additional 38 patients were assigned to the common groups whose distri-
bution is shown in row four of Table 3. Combining clusterfusion and ensemble
classification, a total of 464 patients were clustered in one of the groups and the340

final distribution among the clusters is shown in the last row of Table 3.
The data assigned to groups after ensemble classification were visually ver-

ified using boxplots. Figure 6 compares the boxplots of the biomarkers for
patients clustered in four groups after clusterfusion with the boxplots for the
patients subsequently assigned to the groups among the unclustered ones. The345

boxplots on the left side, i.e. (a),(c),(e) and (g), are of 426 patients after clus-
terfusion in clusters 1, 2, 3 and 4 respectively. Similarly, boxplots on the right
side, i.e. (b),(d),(f) and (h), are of 38 more patients assigned after ensemble
classification in clusters 1, 2, 3 and 4 respectively. Of these 38, 13 were assigned
to cluster 1, 12 to cluster 2, 11 to cluster 3 and two to cluster 4.350

It can be observed that the boxplots of the patients after clusterfusion are
very similar to the ones after ensemble classification for corresponding groups
implying differences between the medians may not be significant. Few biomark-
ers differ, as in cluster 1 after clusterfusion, the medians of ER and PgR are in
the range of 100 to 150 and 250 to 300 respectively, while after ensemble classi-355

fication the median is around 50 for ER and 150 for PgR. Cluster 2 shows the
variation only for one biomarker, ER, with its median in the range of 200 to 250

12



(a) cluster 1 (b) cluster 1

(c) cluster 2 (d) cluster 2

(e) cluster 3 (f) cluster 3

(g) cluster 4 (h) cluster 4

Figure 6: Boxplots of biomarkers. (a), (c), (e), (g): for patients in clusters derived after
clusterfusion. (b), (d), (f), (h): for additional patients classified after ensemble classification.

for patients after clusterfusion and being in the range 50 to 100 after ensemble
classification. Cluster 3 also shows a difference for only one biomarker, CK7/8,
with the median being in the range of 150 to 200 for patients after clusterfusion360

and in the range of 250 to 300 for patients after ensemble classification. The
differences among biomarkers in cluster 4 are among ER, PgR and MUC1: the
medians after clusterfusion are almost 0 for ER and PgR and just more than 200
for MUC1, while for patients clustered after ensemble classification the value of
the median for ER is almost 100, between 250-300 for PgR, and that of MUC1 is365

below 50. For other biomarkers in all the classes, the medians are almost equal.
The reported differences in the values of the biomarkers could be the reason
that patients grouped after ensemble classification were originally unclustered
after clusterfusion.

We now check whether the aforementioned differences are statistically sig-370

nificant, for which we compare the distributions of markers in the newly formed
groups with the groups from clusterfusion, using the Mann-Whitney-Wilcoxon
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Biomarker Cluster 1 Cluster 2 Cluster 3 Cluster 4
ER 0.004 2.34x10−7 0.125 8.02x10−6

PgR 5.69x10−9 0.003 0.001 6.89x10−5

CK7/8 0.061 0.072 0.005 0.681
CK5/6 0.158 0.539 0.214 0.84
EGFR 0.937 0.988 0.0004 0.467
HER2* 1 1 1 1
HER3 0.587 0.074 0.356 0.879
HER4 0.25 0.962 0.751 0.202

p53 0.438 0.766 0.0325 0.39
MUC1 0.637 0.055 0.082 0.024

*The reason for the p-value for HER2 to be equal to 1 is because the HER2 H-score for
all patients in the data was either 0 (negative) or 300 (positive), and it did not follow
exactly a continuous range of values as for the other biomarkers.

Table 4: The p-value comparison for patients after clusterfusion with ensemble classification

test. Table 4 shows the p-values comparison of 426 patients after clusterfusion
with 38 after ensemble classification for all the clusters and markers. The level
of significance was set at 0.05. In both clusters 1 and 2, it can be seen that ER375

and PgR have statistically different distributions. In cluster 3, significant differ-
ences are observed for PgR, CK7/8, EGFR and p53. In cluster 4, the biomarkers
ER, PgR and MUC1 are significantly different, similar to the boxplots obser-
vation. Based on the boxplots and statistical results, the new patients added
after ensemble classification could be assigned to one of the groups.380

To understand the significance of adding the ensemble classification layer
on top of the clusterfusion layer, the Davies Bound (DB) [21] internal cluster
validity index is used, which is one of the most stable and commonly used
indexes in literature. The DB index computes the ratio of intra- and inter-
cluster distance of the points (i.e. patients), therefore, the lower this value the385

better the clustering. Since additional patients are added to the clusters, the
value of DB will slightly increase. As the value of the DB index increases, the
quality of the final classification decreases and thus the lower the increase, the
better the classification. Therefore, to study the quality of clusters, the DB
index values of each subgroup of patients assigned after ensemble classification390

were compared to the values of the DB index obtained if they had been assigned
to each of the other clusters.

The DB index value of the overall classification after clusterfusion is 1.3732.
Table 5 shows the DB index value of each subgroup of patients assigned to each
cluster. Each column represents the cluster predicted for a set of patients after395

ensemble classification, i.e. third row of Table 3. Each row contains the DB
index of the assigned cluster. It can be observed from the table that for Clusters
1, 2, and 3, ensemble classification assigns patients to the best possible group,
while for cluster 4, the two additional patients were assigned to the second
best group. Overall, the DB index supports the distribution of patients after400

ensemble classification. It was also observed that at least one of the clustering
algorithms did assign the elements to the same class as obtained after ensemble
classification. Therefore, the use of the DB index supports this, and the clusters
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Assigned 13 patients 12 patients 11 patients 2 patients
Cluster from Cluster 1 from Cluster 2 from Cluster 3 from Cluster 4

Cluster 1 1.3840 1.4004 1.3933 1.3736
Cluster 2 1.4339 1.3877 1.4297 1.3835
Cluster 3 1.4138 1.3991 1.3915 1.3893
Cluster 4 1.4016 1.4442 1.3941 1.3749

Table 5: DB index value of each subgroup of patients assigned after ensemble classification,
compared by assigning to all the other remaining clusters.

in which the patients are added after ensemble classification is the best possible.

Clinical Assessment405

We can be confident in assigning the patients after ensemble classification
to the biological classes identified after clusterfusion. The final clusters (after
combining clusterfusion and ensemble classification) represent the four biological
groups reported in Figure 7, shown using a tree format. According to available
pathological information ER and PgR levels define Luminal groups. The two410

groups are characterised by positive levels for ER values but different PgR levels,
i.e. positive and negative respectively. Thus, Clusters 1 and 2 represent Lumi-
nal A and Luminal B biological groups respectively. Regarding those patients
assigned to groups after ensemble classification, although values may differ in
some biomarkers, the patterns of the defining biomarkers need to be consistent.415

In Clusters 1 and 2 patients after ensemble classification follow the same trend,
i.e. ER positive/PgR positive and ER positive/PgR negative respectively.

Cluster 3 represents Basal class with p53 altered, characterised by high levels
of p53 and low levels of ER. Patients in cluster 3 after ensemble classification
have high levels of p53 and low levels of ER similar to the patients after clus-420

terfusion. Cluster 4 characterise HER2+ tumours, having high values of HER2
biomarkers. The patients after clusterfusion have low levels of biomarker ER,
called HER2/ER- group. However, the patients assigned to cluster 4 after en-
semble classification have high levels of ER (called HER2/ER+), which could
be the reason for them being unclustered. Since the number of patients after425

ensemble classification are very small i.e. 2, thus they are labelled together
under one biological class called HER2+.

4.2. Benchmark Datasets

Five UCI benchmark datasets [24] including two standard medical datasets
were used to evaluate the framework i.e. external validation. These five datasets430

were selected as they contain different number of classes with a broad range of
features, shown in Table 6. The pipeline was run on all the datasets by removing
the ground truth from them. After distributing the data among the groups a
comparison with the ground truth of each dataset was conducted.

Table 7 shows the results of the pipeline on the UCI datasets. The first row435

contains the number of data clustered in the groups after ensemble clustering
represented by ‘Number of data clustered after Ensemble Clustering’. The sec-
ond row contains the number of data correctly grouped after ensemble clustering
by comparing with the ground truth represented by ‘Number of data correctly
clustered after Ensemble Clustering’. The third row contains the number of440

15



Figure 7: Breast Cancer Groups with representative characteristics

Iris Wine Ecoli Dermatology WBC*
Number of Classes 3 3 8 6 2

Number of Features 4 13 7 33 9
Total Number of Data 150 178 336 366 683

*Wisconsin Breast Cancer

Table 6: Descriptive features such as number of classes, number of features and total data in
the benchmark datasets

data clustered in the groups after ensemble classification and the fourth row the
number of data correctly grouped after ensemble classification represented by
‘Number of data clustered after Ensemble Classification’ and ‘Number of data
correctly clustered after Ensemble Classification’, respectively. ‘Total data cor-
rectly clustered’ contains the sum of number of data correctly clustered after445

ensemble clustering and ensemble classification. The last two rows contain the
percentage of data correctly clustered after ensemble clustering and the percent-
age of total data accurately clustered respectively. The increase in percentage
shows the improvement in results upon adding ensemble classification stage, as
discussed in the next section.450

5. Discussion

While exploring the literature for the division of patients in biological classes
using ensemble clustering, the need for improving the clustering results was
identified. For example, Soria et al. [2] used clusterfusion on a breast cancer
dataset but could only classify 62% of the patients into one of the groups. Kellam455

et al. [13] also used clusterfusion (on a different domain though) and could
only classify 55% of the patients. Thus, in this work we introduce the use of
ensemble classification to improve the distribution by targeting the unclustered
data and present an improved pipeline for the identification of groups and data
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Iris Wine Ecoli Dermatology WBC*
Number of data clustered after 134 170 334 351 681

Ensemble Clustering
Number of data correctly clustered 133 161 289 335 655

after Ensemble Clustering
Number of data clustered 16 8 2 15 2

after Ensemble Classification
Number of data correctly clustered 11 7 2 15 2

after Ensemble Classification
Total Data correctly clustered 144 168 291 350 657

after combining Ensemble Clustering
and Ensemble Classification
Percentage of Data correctly 88.67% 90.5% 86% 91.5% 95.9%

clustered after Ensemble Clustering
Percentage of Total Data 96% 94.4% 86.6% 95.6% 96.2%
correctly clustered after

combining Ensemble Clustering
and Ensemble Classification

*Wisconsin Breast Cancer

Table 7: A comparison of distribution of data among the groups for the benchmark datasets.

distribution in them for an unlabelled dataset. K-means (with HCA) and PAM460

clustering algorithms have been used for clusterfusion as they are two of the most
commonly used clustering algorithms with good performance [50]. Subsequently,
an ensemble classification was used to distribute more patients, which were
previously unclustered. Two classifiers (ANN and the Nearest Neighbour) have
been utilised for the ensemble classification phase [51], as together they have465

consistently resulted in good performance throughout the literature [52] and
cover advantageous properties required for good ensemble classification such as
non-linearity, non-parametric, memory based learning, etc. The application of
the pipeline on the Edinburgh Series identified four possible biological classes
and distributed the patients among them. Using ensemble clustering 89% of470

the patients were assigned to one of the groups, but after adding ensemble
classification the classification jumped to 97%.

Additionally, Soria and colleagues in two consequent works ([2] and [3])
proved the existence of three major biological classes: Luminal, Basal and
HER2. Therefore, by comparing the classification results of Edinburgh dataset475

with the available pathological information (and based on the characteristics),
we have obtained similar biological groups as in the literature. The patients
were distributed among four biological groups using the pipeline, as cluster 1
can be labelled as Luminal A, cluster 2 as Luminal B, cluster 3 as Basal, cluster
4 as HER2+ and the remaining patients as Mixed Class (Figure 7).480

To measure the effectiveness, robustness and generalisation of the proposed
framework, it was also run on standard datasets by removing their ground truth.
A significant improvement in the classification results was also observed in all
the standard datasets. Experimental results show that the proposed framework
effectively finds groups in the datasets, distributes the data points in them and485

finally validates the results with the ground truth. Although the pipeline does
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not achieve the highest accuracy on standard datasets in comparison to other
supervised classification algorithm accuracies in literature, these differences are
small and acceptable. Moreover, these differences occur as the pipeline takes the
unlabelled data as input while the supervised algorithms learn the classification490

rules on the ground truth in the training set. Thus, a trade-off can be considered
to identify groups in the datasets with no class labels and to get most of the
data correctly clustered.

As discussed, one limitation of the proposed pipeline could be overfitting.
We tried to address this issue by testing the framework and running experiments495

on standard datasets with ground truth. Another limitation could be its specific
settings for the Edinburgh dataset, and the pipeline settings need to be adjusted
for other datasets. Finally, the third limitation of the work might be the use
of ensemble method as it is more restrictive and less flexible, thus reducing the
number of data assigned to the groups. To address this limitation, we tested500

our pipeline on the unclustered data left behind by Soria et al. [3], who have
made use of clusterfusion and fuzzy rule based algorithms to identify and assign
data in groups on a breast cancer dataset collected at the Nottingham City
Hospital [53]. They divided 1,035 breast cancer patients out of 1,073 among
seven biological classes. Using our pipeline, 18 more patients were assigned to505

one of the biological groups [19], verified by clinical experts.

6. Conclusions

In the domain of breast cancer, the identification of biological diversity is
extremely important for clinical experts to determine the best treatment out-
come. Previously, ensemble clustering algorithms have been used to elucidate510

core biological classes in a breast cancer dataset. However, this methodology
results in a number of unclustered patients, i.e. low classification in biological
groups. Thus, in this paper we introduced the use of ensemble classification
and presented a novel pipeline for improved data distribution in the identified
groups. An ensemble of multiple clustering algorithms has been used for the515

extraction of characteristic biological classes from a breast cancer dataset and
initial distribution of patients in them. The final data distribution in groups
was achieved by combining the patients distributed after ensemble clustering
with the patients distributed after ensemble classification.

The application of this pipeline on a real world breast cancer dataset is520

presented. The kappa index of agreement between the outcomes of the two
clustering algorithms was high, indicating a good agreement between the two
techniques. Initially, after Ensemble Clustering, 426 data out of 478 were clus-
tered among one of the four groups. After adding the ensemble classification
unit to the methodology, a total of 464 patients were clustered. Mann-Whitney-525

Wilcoxson test and boxplots suggested the data grouped after ensemble clas-
sification were very similar to the data grouped after clusterfusion. We have
subsequently used the DB index to test the quality of the clusters, to verify
that after ensemble classification patients were added to the most appropriate
cluster. The characteristics of the obtained biological groups were similar to the530

corresponding ones in the literature.
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We have also presented the application of this novel pipeline on several
standard datasets. The distribution of the data in the groups was verified with
already present ground truth for them. Although the final accuracy was equiv-
alent to what is achieved by other classifiers in the literature on the supervised535

algorithms, these difference are acceptable. The results on the standard dataset
show the effectiveness of the pipeline, particularly for those datasets without
labels.

This work expands the initial idea of employing the ensemble classification
method in a breast cancer identification pipeline [19], and its focus is not on the540

number of clusters formed but on the overall methodology to refine clustering
results. The biggest advantage of the proposed pipeline lies in its adaptability,
which enables to customise each component according to need, and at each stage.
Although in this paper we have used specific clustering algorithms, classification
algorithms, ensemble methods and cluster validity indices, all of them could be545

replaced by similar ones. The results also prove the superiority of using an
ensemble approach as the groups obtained are more robust. The ensemble not
only provides robustness to the groups, but to the methodology as well.

In the future, we plan to use other class level fusion methods to assess the
results and increase the number of classifiers in the ensemble. We also plan to550

apply the methodology on different datasets (not limited to medical purposes)
and test its proficiency. The proposed pipeline has shown promising results in
refining and improving the number of data clustered, but further validation will
be sought.
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