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General Abstract 

A single bout of prolonged and/or strenuous exercise can cause a transient change 

in the number and function of circulating cells of the innate and acquired immune 

system, with recovery to pre-exercise levels occurring within 24 hours post-exercise. 

The clinical relevance and utility of in vitro methods has been questioned, and the 

use of in vivo measures has been highlighted as the in vivo response to an antigenic 

challenge involves a multi-cellular response that is believed to be more clinically 

relevant than findings from in vitro work.  

Epstein-Barr Virus (EBV) is a human herpes virus that establishes latent infection 

after primary infection (approximately 90% of the adult population are seropositive 

for latent EBV infection) via colonisation of the lymphoid system and subsequent 

expansion of virally infected B-cells in peripheral blood. The virus can exist in a latent 

state and avoid detection from T-cells, or it can reactivate into the lytic viral lifecycle 

resulting in infection of epithelial cells of the oropharynx and shedding of viral DNA 

into saliva (Knipe & Howley, 2013). Lytic reactivation of EBV is controlled by a 

subset of viral specific cytotoxic T-cells, which may become depressed during 

periods of intensified training or after an acute bout of prolonged strenuous exercise. 

Monitoring the viral status of EBV via measurement of viral DNA in saliva may be a 

useful tool for assessing in vivo immune status in athletes throughout a training cycle 

and also after acute exercise.  

The aim of this thesis was to investigate the timing and magnitude of EBV 

reactivation alongside occurrence of upper respiratory symptoms (URS) and 

changes in mucosal immune markers (secretory immunoglobulin A, s-IgA) over a 

period of exercise training, and also after an acute bout of prolonged exercise.  
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Study 1 (Chapter 3) monitored salivary EBV, incidence of URS, and s-IgA in a group 

of male professional football players (n=15) over the first four months of an English 

competitive season. s-IgA was found to be sensitive to changes in physical load 

(weekly competitive match play), however, the occurrence of just two URS episodes 

over the 4-month monitoring period prevented full statistical analysis of any 

relationship between URS and EBV reactivation and/or s-IgA levels. The presence of 

EBV latent genes in 100% of saliva samples suggests that EBV serostatus can be 

identified from a saliva sample, which may be useful in an applied sport science 

setting when venous blood sampling is not possible.  

Study 2 (Chapter 4) also monitored changes in salivary EBV, s-IgA, and incidence of 

URI, but in a group of male and female non-elite endurance athletes (n=30). There 

was no clear evidence of a relationship between EBV reactivation and URS 

incidence/risk. Baseline s-IgA levels were significantly lower for individuals who 

experienced at least one URS episode, however there was no evidence of a 

significant decline in resting s-IgA in the weeks before or during URS. There was 

also no relationship between training load and EBV reactivation or s-IgA.  Study 2 

also suggests that there is a high variability in individual EBV shedding frequency 

that may limit the ability to use EBV reactivation as a reliable marker of in vivo 

immune monitoring for groups of non-elite endurance athletes.  

Study 3 (Chapter 6) investigated the change in salivary EBV load after an acute bout 

of prolonged cycling (2.5 h) in a group of well-trained male cyclists (n=10). There 

was no clear evidence of an increase in salivary EBV DNA levels from pre to post 

exercise (measured at 1, 24 and 48 h post exercise), which could suggest that this 
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specific exercise bout did not result in significant loss of function in the cytotoxic T-

cells that control actively replicating viral cells in the oropharynx.  

Keywords: Epstein-Barr virus, secretory immunoglobulin A, URTI, endurance 

exercise, football.  
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Chapter 1. Literature Review  

1.1 Exercise and Risk of Upper Respiratory Illness  

Upper respiratory tract infections (URTIs) can occur through bacterial or viral 

infection, however bacterial infection is rare, with viral infection most commonly 

caused by human-rhinovirus (HRV) (Turner, 2007). Viral infection at the mucosa of 

the structures of the upper respiratory tract can include the middle ear, nose, 

paranasal sinuses, pharynx, larynx, and the trachea. Viral infection can spread 

from person-to-person through inhalation of respiratory droplets or by direct 

contact with infected secretions (Makela et al., 1998). The majority of visits to 

general practitioners worldwide are made by patients presenting with symptoms of 

URTI (sore throat, blocked nose, runny nose, headache, joint aches and pains) 

(Eccles, 2005). While the number of reported URTI episodes per year is similar in 

athletes and the general population (Fricker et al., 2000), there is evidence of a 

difference in the seasonal occurrence of URTI. For example, athletes can 

experience a greater rate of URTI during periods of heavy training or competition 

(Cunniffe et al., 2011; Pyne et al., 2001; Svendsen et al., 2015) or during the post-

competition period (Walsh et al., 2011).     

Upper respiratory illness (URI) can also be the result of non-infectious causes, 

with individuals experiencing similar symptoms to an episode of URTI. For 

example, allergies can result in similar symptoms to those of infectious URI 

(Robson-Ansley et al., 2012; Schwellnus et al., 2010). Airway irritation can 

damage the epithelial cells of the upper respiratory tract and also result in non-

infectious URI symptoms. For elite swimmers training predominantly in indoor 

swimming pools, inhaling large volumes of air above the water surface that have 
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become polluted with chlorine is a common cause of airway irritation (Bougault et 

al., 2009; Piacentini et al., 2007). Similarly, endurance runners/cyclists/triathletes 

frequently experience prolonged periods of time with high ventilation rates that can 

also lead to non-infectious URI symptoms, with airway irritation further 

exacerbated when exercising in a cold/dry environment (Bermon, 2007; Cox et al., 

2008). In the illness monitoring study from Spence et al. (2007) 70% of reported 

illness episodes were not the result of infectious origin. This study tested throat 

and nasopharyngeal swabs against a limited panel of known pathogens so it is 

possible that some of those 70% of negative infectious illness episodes were in 

fact caused by an infectious agent. Nevertheless, this highlights the fact that not all 

URI episodes are the result of infection, and therefore the term URTI should only 

be used when infection has indeed been confirmed by laboratory analysis. The 

use of self-report illness questionnaires without clinical diagnosis of URI from a 

medical professional limits researchers to the use of the term upper respiratory 

symptoms (URS) as the cause of symptoms cannot be confirmed as infection or 

illness (i.e. may be the result of airway inflammation or allergy). 

The proposed J-shaped model for risk of upper respiratory tract infection (URTI) 

and level of exercise training (Nieman, 1994) suggests that recreationally active 

individuals (engaging in moderate intensity exercise) are at a lower risk of 

experiencing URTIs in comparison to sedentary individuals. As the level of 

exercise training increases from recreationally active towards that of elite athletes 

engaging in strenuous exercise training and/or prolonged-high intensity exercise, 

so too does the risk of experiencing URTI. This model is based on evidence from 

studies reporting the incidence of URTI in the weeks before and after endurance 

running events, and has been supported more recently by illness surveillance 

studies encompassing varying levels of physical activity (Gleeson et al., 2011; 
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Spence et al., 2007). One of the earliest of these studies, from Peters and 

Bateman (1983), reported that 33% of participants completing the Two Oceans 56 

km race in South Africa experienced URTI symptoms during the 14-day post-race 

period. Whereas the control group (aged matched and shared a home with the 

race competitors) reported half the number of URTIs than the ultramarathon 

runners over the same time period. Similarly, in a seven-day post-race period, 

symptoms of URTI were reported by 12.9% of runners completing the 1987 Los 

Angeles Marathon in comparison to just 2.2% of runners who withdrew from the 

race and did not run for reasons not related to illness (Nieman et al., 1990). After 

analysing the training programmes of the runners who completed the race, 

Nieman et al. (1990) identified training volume (specifically, running less than 32 

km in the week before the race in comparison to running more than 96 km) as a 

stronger risk factor for URTI than other factors that included: illness at home; 

stress levels; and age.   

Adding support to the J-shaped model was the study from Spence et al. (2007) 

that reported a higher incidence of URTI in elite athletes (30%) compared to 

recreational athletes and sedentary controls (10%) over a 5-month period. Unlike 

earlier work carried out with participants at mass participation endurance events, 

Spence et al. (2007) were able to confirm the presence of URTI through laboratory 

analysis of throat and nasopharyngeal swabs collected from participants within 24 

hours of reporting symptoms of URTI. A total of 37 URTI episodes were reported 

across all participants during the study period, with just 30% confirmed as being 

viral, bacterial, chlamydial, or mycoplasmal in nature. It is, however, possible that 

participants had been infected by a pathogen that had not been included in the 

screening panel used by Spence et al. (2007) so there is no guarantee that all of 

the negative samples were indeed negative. By comparison, a smaller scale study 
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from Hanstock et al. (2016) found a relatively higher rate of positive laboratory 

confirmation of respiratory pathogens with HRV being identified in 9/11 (82%) 

episodes of URS. A lack of laboratory diagnosis and subsequent confirmation of 

URTI alongside the self-report and/or physician diagnosis of upper respiratory 

illness (URI) symptoms is a commonly recurring limitation in exercise immunology 

literature. 

In more recent years the publication of research involving elite international 

athletes has provided evidence to suggest that the traditional J-shaped model 

should be extended in to an S-shaped model (Malm, 2006). The modified S-

shaped curve reflects the fewer number of URTIs that are reported by the very 

top-level elite athletes. For example, in a retrospective study of 39 Norwegian elite 

cross-country skiers covering a period of eight years, Svendsen et al. (2016) found 

that skiers who had won an Olympic and/or World Championship medal reported 

significantly fewer URI symptom days per year than the national level skiers (mean 

(range) 14 (6-29) vs 22 (8-43)). Similarly, Hellard et al. (2015) monitored 28 

professional French swimmers over a four year period and found that international 

level swimmers experienced less URI episodes than the national level swimmers 

(odds ratio 1.40) in the same training group. Finally, in a study of a smaller group 

of 11 endurance athletes (cross-country skiing, biathlon, and long-distance 

running) Martensson et al. (2014) reported that the number of training hours per 

year was significantly and negatively correlated to the number of training days lost 

due to presence of URI symptoms. Based on the J-shaped model of training load 

and infection risk, the high volume of training required to compete and be 

successful in endurance sports at an international level should result in top level 

elite athletes experiencing more illness episodes per year than sedentary, 

recreationally active, and national level athletes, which does not appear to be the 
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case. As such, there is some suggestion in the literature that top level elite 

athletes are in some way better adapted to coping with the demands of a high 

training load throughout the year either. This may be due having a more robust 

immune system (Malm, 2006) or, perhaps more likely, due to having a better 

understanding of how to reduce infection risk through behaviour and lifestyle 

(Walsh, 2018). 

At times of the year when elite athletes are competing at major championships, 

there does appear to be an increased risk of URS (Svendsen et al., 2015) with 30-

50% of all illnesses reported to medical staff at both winter and summer 

international events being related to symptoms of URTI (Alonso et al., 2012; 

Engebretsen et al., 2013; Mountjoy et al., 2010; Soligard et al., 2014). However, 

given the increased risk of infection with long-haul travel, disruption to sleep 

routines, and increased psychological stress of competing at a major 

championship (Svendsen et al., 2016; Walsh, 2018) it is possible that the apparent 

increased risk of experiencing URS during a major international championships is 

due in some part to factors other than exercise training and competition (Campbell 

& Turner, 2017).   
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1.2 Exercise and The Cellular Immune System  

The immune system functions to protect the body from pathogens (viruses, 

bacteria and parasites) and maintain body homeostasis. The integrated systems of 

non-specific innate and specific acquired immunity work to recognise, attack, 

destroy and ultimately protect the body against infection. The innate immune 

system is the first line of defence against invading pathogens and does not form 

pathogen-specific actions. By comparison, the acquired immune system is capable 

of targeting specific pathogens and will form immune memory to strengthen for 

future attack against previously encountered pathogens (Walsh et al., 2011). 

Leukocytes of the innate immune system found in circulation include granulocytes 

(neutrophils, basophils and eosinophils), monocytes and dendritic cells. 

Lymphocytes include natural killer cells (NK) (innate), and T-cells and B-cells 

(acquired). T-cells can be further identified as T helper, T cytotoxic, and T memory 

cells. At rest, the number of total leukocytes in circulation is similar between 

athletes and healthy controls. Some endurance athletes can experience lower 

leukocyte counts, but only very few athletes fall below the threshold for clinically 

low cell counts (Horn et al., 2010). Similarly, when in a true rested state (i.e. after 

at least 24 h recovery from an acute bout of exercise) immune cell function in 

athletes is believed to be similar to sedentary individuals (Gleeson, 2007). A single 

bout of prolonged and intense exercise can disturb leukocyte cell number and 

function resulting in a period of immunodepression that is thought to increase the 

risk of infection for several hours post exercise (Pedersen, Rohde & Ostrowski, 

1998). 
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1.2.1 Acute Exercise and Leukocyte Counts  

A single bout of exercise causes a profound increase in circulating leukocyte 

number (leucocytosis), which is mostly due to an increase in the number of 

neutrophils and lymphocytes (Walsh et al., 2011). During exercise, a combination 

of haemodynamic factors (increased cardiac output and blood pressure) and 

release of catecholamines (that bind to β2-adrenergic receptors expressed on the 

surface of leukocytes) lead to the mobilisation of leukocytes from the vascular wall 

to the blood (demargination). 

Neutrophils make up the greatest proportion of total leukocytes in the circulation 

(50-70%) and are highly responsive to acute exercise. During prolonged exercise 

the initial neutrophilia is primarily the result of immediate demargination, with 

elevated cortisol levels also contributing to a later rise in circulating neutrophil 

number via stimulated release of immature neutrophils form bone marrow (Allsop 

et al., 1992). Exercise induced neutrophilia can continue for several hours post-

exercise and is highly dependent upon exercise intensity and duration (Gleeson, 

2007), with neutrophil number returning to pre-exercise levels within 24 hours of 

exercise cessation. In comparison to short intensive exercise (~ 30 minutes), 

prolonged moderate intensity exercise (> 2 hours) causes a greater peak in 

neutrophil number that occurs almost instantly after the cessation of exercise. 

Whereas, short high intensity exercise is followed by a neutrophilia that can take 

up to three hours to reach its peak due to the delayed effects of cortisol (Robson 

et al., 1999).  

The lymphocyte response to acute exercise is characterised by a well-established 

transient biphasic response (Gleeson, Bishop & Walsh, 2013). During and 

immediately after exercise there is an increase in lymphocyte number in blood 
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(lymphocytosis) that is followed by a decrease to below pre-exercise levels 

(lymphocytopenia) as lymphocytes move from the blood to surrounding tissues in 

the early hours of exercise recovery (Simpson et al., 2006), with full recovery to 

baseline levels occurring within 24 hours of exercise cessation. There appears to 

be preferential mobilisation within the lymphocyte pool; NK cells exhibit the 

greatest biphasic response, followed by cytotoxic T-cells (CD8+), B-cells, and 

finally helper T-cells (CD4+) (Shek et al., 1995). Mature CD4+ and CD8+ T-cells 

with history of antigen exposure are also more responsive to exercise induced 

mobilisation (Gleeson, Bishop & Walsh, 2013).  

Monocytes account for a relatively small proportion of total leukocyte number at 5-

15%. The pro-inflammatory subset of monocytes expressing the CD16 cell marker 

will preferentially increase immediately after exercise, and typically return to 

baseline within 1-2 hours (Simpson et al., 2009).    

 

1.2.2 Acute Exercise and Leukocyte Function  

The most abundant leukocyte, neutrophils, perform several functions that are 

affected by exercise. A single bout of acute exercise can stimulate spontaneous 

neutrophil degranulation (measured as the release of elastase per cell) causing 

neutrophils to enter into a refractory period and reducing their ability to respond to 

bacterial stimulation (Bishop et al., 2002). Neutrophil phagocytosis (ingestion of 

microbes) is also negatively affected by acute exercise. The number of neutrophils 

engaging in phagocytosis increases in line with leukocytosis, but the overall 

phagocytic capacity of all neutrophils in circulation is reduced (Chinda et al., 

2003). Finally, the ability of neutrophils to release reactive oxygen species 
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(oxidative/respiratory burst) is affected differently according to exercise intensity 

and duration. Short duration/high intensity exercise has a suppressive effect, while 

longer duration/moderate intensity exercise can in fact enhance oxidative burst 

capacity (Pyne et al., 1994).  

The phagocytic activity of monocytes in circulation has been shown to increase 

following acute prolonged exercise (Hong & Mills, 2008). However, the expression 

of toll like receptors (TLRs) on the surface of monocytes are reduced immediately 

after and for up to 2 hours post-exercise (Lancaster et al., 2005a; Oliveira & 

Gleeson, 2010). TLRs allow monocytes to function as antigen presentation cells 

via recognition of pathogens and subsequent presentation to T lymphocytes, and 

therefore play an important role in the activation of acquired immunity.    

NK cells destroy microbes through exocytosis of perforin and granzymes that 

induce apoptosis (cell death) in the target microbe (Smyth et al., 2005). NK cell 

cytotoxicity exhibits a biphasic response to acute endurance exercise that is a 

reflection of the changes in number of circulating NK cells (Gannon et al., 1995). 

Total NK cell cytotoxicity is initially increased immediately post-exercise, but 

decreases to below baseline levels in the hours during recovery. This should 

however be interpreted with caution as the level of cytotoxicity per cell is relatively 

unchanged from pre to post-exercise, and up to 3.5 hours post and therefore 

changes in total NK cytotoxicity are due to a redistribution of lymphocytes (Nieman 

et al., 1993).   

The acquired immune system comprises of T-cells (T helper, T cytotoxic, T 

memory and T regulatory cells) and B-cells that perform several functions in order 

to destroy invading micro-organisms and prevent colonisation of pathogens. 

Activation of T-cells by antigen presentation cells (dendritic cells, monocytes and 
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macrophages) stimulates the cell-mediated immune response to invading 

pathogens. This process can also be referred to as delayed type hypersensitivity 

(DTH). A primary immune response is initiated when dendritic cells present 

antigens to the cell surface receptors of T-cells by (Mellman & Steinman, 2001). A 

secondary immune response is activated when previously encountered antigens 

are presented by monocytes and macrophages to T memory cells (Gallucci & 

Matzinger, 2001). Toll like receptors (TLRs) on the surface of these antigen 

presentation cells will bind to antigens, which initiates expression of Major 

Histocompatibility Complex (MHC) class I and II molecules which in turn allows the 

dendritic cells, monocytes, and macrophages to function as antigen presentation 

cells to T-cells (Banchereau and Steinman, 1998). All T helper cells can be 

identified by the glycoprotein CD4 (often referred to as CD4+ cells) are can be 

divided into sub-classes of type 1 and type 2 helper cells (Th1 and Th2). Th1 cells 

produce cytokines IL-2 and IFN, which have specific anti-viral actions and can 

stimulate production of more helper and cytotoxic T-cells. Th2 cells are 

responsible for stimulating B-cell antibody production via release of IL-4.  

Cytotoxic T-cells, which express the glycoprotein CD8 and are therefore often 

referred to as CD8+ cells, will release perforin, granzymes and granulysin upon 

recognition of the MHC surface proteins and antigen. Perforin initiates cell lysis of 

the target viral cell, which allows the granzymes entry into the infected cell to begin 

the process of apoptosis (Bennett et al., 1998). This response to antigen 

presentation cells is a key antiviral action of the CD8+ cells as a viral survival in a 

new host relies on the ability to infect host cells. Interaction of the CD4+ and CD8+ 

cells with antigen presentation cells begins the process of CD8+ cell maturation 

and formation of memory T cells (Hicroz et al., 2012). The signalling protein CD40, 

which is released from the infected cell whilst bound to the CD8+ cell, mediates 
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this process to initiate CD8+ T-cell differentiation from a naïve to a mature CD8+ 

T-cell (Bennett et al., 1998). Cytotoxic T-cells will experience clonal expansion 

once the cell becomes fully activated following antigen presentation. IL-2 

production by Th1 cells mediates this process and acts as a growth differentiation 

factor to increase the total number of cytotoxic T-cells for destruction of the 

antigen (Milstein et al., 2011).  

Prolonged and strenuous exercise appears to have no effect on the proportion of 

Th2 cells in circulation but does significantly reduce the proportion of Th1 cells for 

up to two hours post-exercise (Steensberg et al., 2001) and also significantly 

reduces the production of IL-2 (Tvede et al., 1993). This negative effect of acute 

exercise could indicate a depression of cell-mediated immunity in the hours after 

prolonged strenuous exercise which may increase susceptibility to viral infection. 

T-cell proliferation (cell division) has been assessed in vitro using mitogen and 

antigen stimulation. When the redistribution of T-cells post-exercise (initial 

lymphocytosis) has been accounted for (i.e. mathematical adjustments, or use of a 

fixed number of T-cells in culture) there is a significant reduction in proliferation 

that reflects a genuine decrease in T-cell function (Bishop et al., 2005). 

Furthermore, the observed reduction in proliferation per cell is sensitive to 

increases in exercise intensity as highlighted by Niemen et al. (1994) as 45 

minutes of treadmill running at 80% �̇�O2max resulted in a significant decrease in 

mitogen stimulated T-cell proliferation whereas running at 50% �̇�O2max resulted in 

no change from baseline. T-cells migrate towards areas of infection when 

stimulated by the proinflammatory cytokines and chemokines that are produced by 

virally infected cells. Bishop et al. (2009) reported a significant reduction in the 

ability of T helper cells to migrate towards human rhinovirus-infected epithelial 
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cells after two hours of treadmill running. At 1-hour post-exercise, T-cell migration 

remained lowered to roughly 40% of pre-exercise levels. 

B-cells constitute the smallest proportion of all circulating lymphocytes (5-15%). A 

surface immunoglobulin (Ig) on B-cells acts as the receptor for activation by T 

helper cells or direct stimulation from microbes (Janeway et al., 1999).  Activated 

B-cells will proliferate and differentiate into memory cells and plasma cells, with 

the differentiated plasma cells present capable of secreting Igs into circulation 

(LeBien & Tedder, 2008). The three most abundant serum Igs secreted by plasma 

cells include IgG, IgA and IgM (Gleeson, Bishop & Walsh, 2013). The effect of 

acute exercise on serum Igs has received relatively little attention in comparison to 

all other aspects of innate and acquired immunity, and has produced some 

conflicting results. Serum IgG, IgM and IgA concentrations have been found to 

increase after 45 minutes of walking in comparison to a rest condition (Nehlsen-

Cannarella et al., 1991), which conflicted with a previous suggestion that a diurnal 

rhythm for Ig secretion caused the small increase in Ig concentration that was 

observed after an incremental exercise test (Nieman et al., 1989). In vitro IgM 

mitogen-stimulated secretion has been found to decrease after prolonged 

moderate intensity exercise, whereas IgA and IgG remain unchanged (Shek et al., 

1995).  

 

1.2.3 Exercise Training and Cellular Immunity 

An increase in exercise training load can result in depression of both innate and 

acquired immune cell functions. In a study of elite swimmers, neutrophil oxidative 

burst activity (but not resting neutrophil cell count) significantly declined during a 
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12-week period of intensified training, with neutrophil function being at its lowest 

during a peak endurance training phase (Pyne et al., 1995). Studies of elite 

swimmers have also shown a significant decline in resting NK cell number over the 

course of a training season (Gleeson et al., 2005), with NK cell cytotoxicity found 

to significantly decrease after one month of intensified volleyball training (Suzui et 

al., 2004). In the true resting state (i.e. after at least 24-hours of rest) blood 

lymphocyte counts appear to be similar between athletes and non-athletes 

(Nieman, 2000). However, stimulated T-cell proliferation and B-Cell Ig production 

are sensitive to an increase in cycling training load over a period of three weeks 

(Verde et al., 1992). The clinical relevance of this observed decline in cellular 

immune function with intensified training is however unclear, as URTI incidence 

does not necessarily increase around times of lowered cell functions (Gleeson et 

al., 2005; Pyne et al., 1995).     
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1.3 Exercise and The Mucosal Immune System 

The mucosal immune system provides a first line of defence against external 

pathogens (Corthesy & Kraehenbuhl, 1999). The Common Mucosal Immune 

System (CMIS) is an extensive network of structures covering 400 m2 surface area 

that protect the mucosal surfaces in the body (Brandtzaeg et al., 1999). This 

includes the respiratory tracts (including the bronchus associated lymphoid tissue, 

salivary glands and nasal-associated lymphoid tissue), gut-associated lymphoid 

tissue, urogenital tracts, lacrimal glands, and lactating mammary glands (Gleeson 

& Pyne, 2000; Brandtzaeg et al., 1999). The production of Ig, and specifically 

immunoglobulin A (IgA), by mucosal B-cells adjacent to the salivary glands is the 

main effector function of the CMIS. Other Igs found in mucosal secretions include 

IgM and IgG, but these are significantly less dominant in the protection of mucosal 

surfaces (Brandtzaeg et al., 1999).  

Secretory IgA (s-IgA) exists as a dimeric molecule that is comprised of two 

individual monomers of IgA joined together by a small protein structure known as a 

J-chain and surrounded by a covalently bonded secretory component (Bishop and 

Gleeson, 2009). The presence of the J-chain is essential for successful binding of 

IgA to the polymeric Ig receptor (pIgR), which is responsible for endocytosis and 

transcytosis of IgA across mucosal epithelial cells from the basolateral to the 

epical cell membrane (Lamm, 1998). Proteolytic separation of the pIgR-IgA 

complex after transepithelial transport results in the secretory component of pIgR 

remaining covalently bound to IgA (Johansen, Braathen and Brandtzaeg, 2001). 

(Figure 1.1).   

s-IgA forms the first line of defence against microbial pathogens via three 

mechanisms. Firstly, during transepithelial transport the pIgR-IgA complex can 
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prevent replication and assembly of viruses present within epithelial cells (Yan et 

al., 2002). Secondly, through a process known as immune exclusion, IgA can 

prevent adherence of pathogens to the mucosal epithelium (Corthesy, 2009), and 

finally, IgA also binds to antigens that have crossed the mucosal barrier and 

excretes them at the luminal surface (Lamm, 1998).  

Mucosal secretions of the upper respiratory tract also contain small antimicrobial 

peptides and proteins (AMPs) including lysozyme, lactoferrin, and alpha-amylase 

(Bishop & Gleeson, 2009; West et al., 2006). Each of these AMPs exhibit 

antibacterial properties, with the two most abundant being lysozyme and 

lactoferrin, (Singh et al., 2000). Lysozyme is able to hydrolyse polysaccharides in 

bacteria call walls and prevent adherence (Bosch et al., 2002), while lactoferrin 

prevents bacterial cell growth by competing for and binding with free iron in saliva 

(Legrand et al., 2004). Lactoferrin also exhibits antiviral properties, specifically 

targeting adenovirus and respiratory syncitial virus. Alpha-amylase also directly 

inhibits bacterial cell growth and adherence (Humphrey & Williamson, 2001). 

 
 
 
 
 

Figure 1.1 Secretory IgA dimer comprised of two individual IgA monomers 
connected at the J-chain and covalently bound to the secretory component 
(cleaved from pIgR after transepithelial transport). Fab: fragment antibody binding 
portion. Fc: fragment crystallisable portion. (Bishop & Gleeson, 2009). Created 
with BioRender.com. 
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1.3.1 Acute exercise and s-IgA 

Individuals who are deficient in s-IgA are believed to experience URTI episodes 

more frequently (Gleeson & Pyne, 2000) and as such s-IgA is regularly used as 

the marker of choice by researchers wanting to examine the effect of acute 

exercise on mucosal immunity. The intensity and duration of exercise can directly 

influence s-IgA levels in saliva via changes in sympathetic and parasympathetic 

nervous stimulation, with other exercise-related factors such as dehydration also 

capable of influencing total saliva volume and water content of saliva secretions 

(Bishop & Gleeson, 2009; Walsh et al., 2011). The salivary glands are innervated 

by both the sympathetic nervous system (SNS) and parasympathetic nervous 

system (PNS), which can influence the volume and protein content of saliva 

secretion during exercise. An increase in sympathetic nervous stimulation results 

in vasoconstriction of salivary glands, which reduces the watery content and 

volume of saliva, and active transport of proteins into saliva secretions (Proctor & 

Carpenter, 2007). Whereas, an increase in parasympathetic nervous stimulation 

results in a greater volume of saliva (due to vasodilation of salivary glands) and a 

lower protein content (Bishop & Gleeson, 2009). During exercise there is a 

decrease in saliva flow rate that is the result of a withdrawal of parasympathetic 

nerve stimulation and not an increase in sympathetic nerve stimulation (Bosch et 

al., 2002; Bishop and Gleeson, 2009). This response to prolonged exercise may 

cause an artificial increase in s-IgA concentration (due to total saliva volume 

decreasing) and as such the secretion rate of s-IgA should also be considered as 

this measure accounts for changes in saliva flow rate. 

The effect of acute exercise on s-IgA has received considerable attention over the 

last 30 to 40 years. The first research to investigate the changes in s-IgA levels 
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from pre to post exercise was published by Tomasi et al. (1982). In this study of 

national level Nordic cross-country skiers, s-IgA concentration decreased by 20% 

after 2-3 hours of cross-country skiing. Following on from this, several other 

research groups also observed a decrease in s-IgA concentration and/or secretion 

rate after a single bout of prolonged exercise (> 2 h). Mackinnon et al. (1989) 

reported a 63% decrease in s-IgA concentration immediately after two hours of 

cycling at 70-75% �̇�O2max. This was found to be a transient response as s-IgA 

concentration returned to pre-exercise levels by 24 hours post exercise. After 

completion of a standard Olympic distance triathlon race, s-IgA secretion rate was 

found to have decreased significantly in a mixed group of both competitive and 

recreational level triathletes (Steerenberg et al., 1997). Following an ultramarathon 

race of 160 km, s-IgA secretion rate decreased by 50% in the 31 runners that 

completed the race (Nieman et al., 2003). This study provided the first indication 

towards the clinical relevance of s-IgA levels and prolonged exercise as low levels 

of s-IgA secretion rate at the 90 km checkpoint were found to be the best predictor 

(from several other markers of immune status and oxidative stress) of URTI 

occurrence in the two weeks following the race.   

Intermittent high intensity exercise, and shorter bouts of continuous exercise, do 

not seem to have the same negative effect on mucosal immunity as bouts of 

prolonged exercise. For example, s-IgA levels were unchanged following an acute 

bout of high intensity interval training (Walsh et al., 1999) and 30 minutes of 

moderate intensity training (Reid, Drummond & Mackinnon, 2001), and were found 

to increase following a bout of sprint interval training (Davison, 2011).  

The substantial body of work that has investigated the acute effect of exercise on 

s-IgA levels generally concludes that s-IgA levels decrease following prolonged 
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exercise (> 2-3 h) and recover to baseline by 24-hours post exercise, or may 

remain unchanged after shorter bouts of interval training (Walsh et al., 2011). The 

mechanisms responsible for the changes in s-IgA levels after acute exercise seem 

to involve mobilisation of the pIgR receptor for transcytosis of IgA into saliva. 

Animal studies have provided evidence of an adrenaline induced increase to the 

rate of IgA transcytosis via an increased mobilisation of the pIgR receptor 

(Carpenter et al., 2004). In humans, ingestion of caffeine pre-exercise elevated 

plasma adrenaline levels above that of placebo, and resulted in increased levels of 

s-IgA post-exercise (Bishop et al., 2006). The increased SNS activity associated 

with caffeine ingestion and prolonged exercise was believed to exceed a first 

threshold of SNS activation that is required to increase the rate of IgA transport by 

pIgR. Further SNS stimulation above a second threshold during prolonged 

exhaustive exercise with rats was believed to be the cause of a decrease in levels 

of pIgR mRNA that was associated with decreased levels of s-IgA (Kimura et al., 

2008). This highlights the role of exercise intensity and duration on the mucosal 

immune system and may explain why s-IgA levels were unchanged by short 

duration moderate intensity exercise (Reid, Drummond & Mackinnon, 2001), 

increased following sprint interval training (Davison, 2011), and decreased 

following prolonged strenuous endurance exercise bouts (Nieman et al., 2003; 

Steerenberg et al., 1997).  

The use of s-IgA as an isolated marker of immune status in the hours after 

prolonged exercise has been questioned (Campbell & Turner, 2017). 

Inconsistency in the method used to report changes in s-IgA (e.g. concentration, 

secretion rate, ratio with albumin or protein concentration etc) has made it difficult 

to make direct comparisons between studies of acute exercise (Bishop & Gleeson, 

2009) with a view to establishing reference markers for mucosal immune status.  
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Furthermore, without evidence of the incidence of URS in the 7-14 days after a 

bout of prolonged exercise alongside acute changes in s-IgA levels (i.e. decrease 

in s-IgA) in the hours after exercise, it is very difficult to determine the clinical 

relevance of a decrease in s-IgA levels with prolonged exercise. Novel research in 

to the levels of IgA present in tear fluid secretions has recently shown a 

relationship between low levels of tear IgA and increased incidence of URS 

(Hanstock et al., 2016). However, this area of mucosal immunity has not yet been 

fully explored.   

 

1.3.2 Exercise Training and s-IgA 

The mucosal immune system appears to be susceptible to the physical stress of 

long-term training in elite athletes. In a group of elite Australian swimmers, s-IgA 

concentration decreased continuously over a period of 7-months from the pre-

season phase through to the taper phase (Gleeson et al., 1999b). Furthermore, in 

this study low levels of s-IgA were significantly related to the number of illness 

episodes. In team sport athletes, periods of intense conditioning work (when 

match time was reduced due to having no competitive fixtures) were found to have 

a negative effect on s-IgA concentration, with periods of decreased s-IgA 

concentration followed by an increase in URTI incidence in the following 2-3 

weeks (Cunniffe et al., 2011). A significant and negative relationship between 

training load and s-IgA secretion rate has also been identified in a group of GB 

wheelchair rugby player (Leicht et al., 2012). However, for this group of para-

athletes there was no relationship between s-IgA levels and URS.    
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Lowered levels of s-IgA have consistently been shown to be related to the number 

of illness episodes in groups of moderately active adults, recreational runners, and 

elite athletes (Gleeson et al., 2011; Ihalainen et al., 2016; Neville et al., 2008 

Walsh et al., 2011). However, s-IgA is also known to be highly variable within and 

between individuals (Neville et al., 2008), and as such there are currently no 

established clinical reference values for absolute s-IgA concentration or secretion 

rate, and level of risk of imminent URI. There were early suggestions that a s-IgA 

concentration of less 40 mg/L (Gleeson et al., 1999b) or a secretion rate of less 

than 40 µg/min (Fahlman & Engels, 2005) may indicate a critical threshold for 

increased illness risk. A more recent examination of this value as a critical 

threshold could not confirm an increased risk of URI below 40 mg/L (Gleeson et 

al., 2017), however this may have been due to low participant numbers.  

Despite the high variability of s-IgA, longitudinal research examining changes in 

resting levels of s-IgA alongside URI has provided evidence of a direct link 

between URI and mucosal immune depression in athletes. A promising study from 

Neville et al. (2008) proposed a model for monitoring s-IgA on an individual basis 

in order to assess the risk of imminent infection. By calculating healthy baseline s-

IgA levels for each individual professional yachtsman in the study (mean s-IgA 

concentration for all saliva samples when no URI symptoms were present), Neville 

et al. (2008) were able to provide the first indication towards reference values for 

URI risk. A reduction to less than 40% of individual healthy levels resulted in a 

48% increase in risk of experiencing URI within the next three weeks. Other 

retrospective investigations of s-IgA and URI in athletes have not reported relative 

changes in s-IgA levels, possibly due to low sampling frequency and/or shorter 

monitoring periods. For example, Morgans et al. (2014) monitored professional 

players for just 30-days, and Ihalainen et al. (2016) collected saliva samples at just 
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two time points pre and post a 12-week training period. In a study of professional 

rugby players, Cunniffe et al. (2011) did identify a 15% decrease in s-IgA from a 

URI-free state to when URI was present, alongside the observation of lower 

resting s-IgA levels in players who experienced URI in comparison to those that 

remained healthy throughout the 11-month monitoring period. However, neither of 

these findings reached statistical significance. The collection of saliva samples on 

a monthly basis could have resulted in a missed opportunity to collect samples 

during the peaks and troughs of s-IgA around times of URI, and ultimately played 

a major role in limiting the statistical analysis of s-IgA levels and URI. 

Nevertheless, this study provides some indication towards the utility of monitoring 

s-IgA on a relative basis in team sport athletes. More recently, Gleeson et al. 

(2017) reported a trend towards lower levels of absolute s-IgA concentration of 

<40 mg/L and higher risk of upper respiratory symptoms (URS) in elite swimmers 

over a 9-month period. However, these results did not reach significance and as 

such the authors highlighted the need to monitor changes in s-IgA on an individual 

level. 

The mechanisms responsible for the observed decrease in s-IgA levels in elite 

athletes could be due to downregulated production of IgA by the plasma B-cells or 

reduced rate of transcytosis of IgA. The SNS is unlikely to have an influence on 

resting s-IgA levels during intensified training periods as tetraplegic wheelchair 

athletes with a spinal cord injury above the level of SNS output are known to 

experience lowered s-IgA levels (Leicht et al., 2011). The negative effects of 

cortisol on translocation by pIgR have been suggested to be responsible for the 

decreased levels of s-IgA with intensified training. The long-term monitoring study 

from Cunniffe et al. (2011) identified an increase in salivary cortisol levels during a 

heavy month of training that proceeded the decline in s-IgA levels. Animal studies 
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have provided evidence of decreased expression of pIgR mRNA that is associated 

with increased levels of cortisol (Rosato et al., 1995) and as previously discussed 

lowered s-IgA levels after prolonged exhaustive exercise have also been 

associated with reduced expression of pIgR mRNA (Kimura et al., 2008). It is 

therefore possible that repeated bouts of strenuous exercise with insufficient 

recovery result in repeated exposure to elevated cortisol levels that over time can 

cause a depletion to the available pIgR receptor for transcytosis of s-IgA.    

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

1.4 In Vivo Immunity 

The majority of exercise immunology research to date has examined changes in 

antigen/mitogen stimulated in vitro cell function, leucocyte counts, and 

immunoglobulin concentrations. The clinical relevance of these findings and their 

utility in determining immune status and imminent URI risk has been questioned 

(Walsh et al., 2011). The majority of leukocytes within the body are not in the 

circulatory system and therefore the analysis of leucocyte function in artificial 

cultures after isolation from peripheral blood does not truly represent the status of 

leukocytes that remain in the tissue-specific environment (e.g. lymph nodes) of the 

human body post-exercise (Akbar et al., 2013). The importance of using in vivo 

measures has therefore been highlighted because the in vivo response to an 

antigenic challenge involves a multi-cellular response that is believed to be more 

clinically relevant than findings from in vitro work (Albers et al., 2005). 

Furthermore, the use of multiple immune markers that provide information on 

immune function as well as offering clinical relevance has been highlighted (Albers 

et al., 2013). 

 

1.4.1 In Vivo Cutaneous Assessment of Immune Function  

In recent years, in vivo exercise immunology research has involved the 

measurement of T-cell-mediated immunity after exercise via the application of 

antigens to the surface of the skin. This in vivo cutaneous method represents a 

more clinically relevant method for examining T-cell-mediated responses to 

antigenic challenge following exercise. 
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Early work from Bruunsgaard et al. (1997) used a method of delayed type 

hypersensitivity (DTH) to examine the effect of ultra-endurance exercise on in vivo 

cell-mediated immunity. The Merieux CMI Multitest™ used by this research group 

involves the intra-dermal injection of seven antigens (tetanus, diphtheria, 

streptococcus, tuberculin, proteus, candida and trichophyton) and a negative 

control (glycerin/saline diluent) with measurement of the immune response at the 

skin 48-hours after application. A stronger antigen stimulated immune response is 

characterised by a greater diameter of induration at the site of the injection on the 

skin surface. In this study, the exercise group received the antigen challenge 30 

min after completing 3 km of swimming, 130 km of cycling, and 21 km of running, 

which took on average 6.5 hours to complete. Two non-exercising control groups 

(11 trained triathletes and 22 moderately trained males) also received the antigen 

challenge. Both of these control groups displayed a greater cumulative response 

(i.e. greater number of positive test spots at the skin, and greater magnitude of 

induration) to the antigen at the skin surface than the exercise group. Despite not 

conducting baseline measurements of the Merieux CMI Multitest™, these results 

did indicate an exercise induced reduction in in vivo cell-mediated immunity after 

prolonged exercise.  

The same test was later used by Gleeson et al. (2004) to investigate the 

differences in cell-mediated immunity between a group of elite level swimmers and 

moderately active controls over a period of 5 months. In contrast to the previously 

discussed findings, there was no difference in the response to the Merieux CMI 

Multitest™ between the swimmers and the control group at any timepoint. 

Furthermore, the swimmers showed no evidence of a reduced immune response 

to the test at the peak of a high intensity training block in comparison to the end of 

a 5-6-week rest period. Therefore, suggesting that despite evidence of an acute 
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reduction in in vivo cell-mediated immunity immediately after prolonged exercise 

(Bruunsgaard et al., 1997), long periods of heavy training do not negatively affect 

in vivo immunity at rest. 

The Merieux CMI Multitest™ test, which is no longer commercially available, only 

permitted the investigation of the elicitation phase of the immune response (recall 

of existing immune memory) as it stimulated a response to previously encountered 

antigens. More recently, experimental contact sensitisation with the antigen 

diphenylcyclopropenone (DPCP) has been shown to be a robust and relatively 

non-invasive protocol that can be used to examine in vivo immunity after exercise 

(Harper Smith et al., 2011). Furthermore, application of DPCP has also been 

shown to stimulate an antigen specific in vivo T-cell-mediated response that is not 

a reflection of local cutaneous inflammatory processes (Diment et al., 2013). 

Unlike the Merieux CMI Multitest®, this method allows for investigation of both the 

induction (establishment of new immune memory) and elicitation phases of in vivo 

T-cell-mediated immunity via two different protocols.  

The effect of exercise on the induction of antigen-specific immune memory can be 

investigated by applying a known sensitising dose of a never previously 

encountered antigen (DPCP) to the surface of the skin via a patch that remains on 

the skin for 48-hours.  After a period of four weeks (the time period typically 

allowed for the establishment of immune memory), DPCP is applied again in a 

dose series and the strength of the immune response to this specific antigen 

challenge is then quantified through measurement of skin fold thickness (oedema - 

inflammatory swelling) and erythema (redness). In order to investigate the effect of 

exercise on the elicitation phase it is necessary to first expose participants to 

repeated challenges with the same antigen (DPCP) so that a reproducible 
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response plateau may be achieved. The nature of this type of investigation allows 

for a repeated measures research design. Alternatively, the induction phase can 

be investigated using a between-groups research design, which negates the need 

to establish a plateau in immune response and the response to the first antigen 

exposure is examined.   

Harper Smith et al. (2011) first reported the use of experimental contact 

sensitisation to examine the effect of prolonged moderate-intensity exercise on 

both the induction and elicitation phases of in vivo T-cell-mediated immunity. In 

comparison to a rested control condition, both the induction and elicitation phases 

were significantly impaired by two hours of treadmill running at 60% �̇�O2peak. The 

skinfold thickness measured at the skin surface was 53% and 19% lower for the 

exercise condition (compared to the rest condition) in the induction and elicitation 

trials respectively. The induction of new immune memory was therefore suggested 

to be more sensitive to the physical stress of prolonged exercise than the recall of 

existing immune memory. 

Previous in vitro work has shown that both short duration high intensity exercise 

and prolonged duration moderate intensity exercise have a negative effect on 

immunity (Robson et al., 1999). However, in vivo work from Diment et al. (2015) 

reported somewhat conflicting results. As hypothesised, prolonged moderate 

intensity exercise (two hours treadmill running at 60% �̇�O2peak) significantly 

impaired the immune response with skinfold thickness being 67% lower at recall, 

in comparison to the control group. However, 30 minutes running at 80% �̇�O2peak 

had no negative effect on in vivo immune response. Interestingly, circulating 

adrenaline, noradrenaline, and cortisol were all significantly elevated after two 

hours of moderate intensity running and also crucially after 30 minutes of high 
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intensity running. The authors therefore questioned the role of stress hormones in 

this specific in vivo immune challenge as catecholamines and cortisol were 

elevated after 30 minutes of high-intensity running, but there was no evidence of a 

reduction in the in vivo immune response. 

The protective effect of CHO ingestion against the exercise induced perturbations 

to immune cells (Bermon et al., 2017; Gleeson et al., 2006; Walsh et al., 2011) 

was not replicated in a study utilising in vivo techniques (Davison et al., 2016). 

Using a matched groups design, all participants consumed a standardised 

breakfast before completing two hours of moderate intensity treadmill running with 

either CHO or placebo drinks provided before, during and after exercise. The CHO 

group received 40 g CHO before and after exercise, and 60 g per hour whilst 

running. There was no difference in skin fold thickness between placebo and CHO 

groups with both groups exhibiting a significantly smaller immune response 

(~46%) compared to a control condition taken from the previous study by Diment 

et al. (2013). As previously shown in in vitro studies (Gleeson, Bishop & Walsh, 

2013), supplementation with CHO did blunt the typical exercise induced rise in 

cortisol and leukocyte trafficking, but there was no effect of CHO on the in vivo 

cutaneous immune response. These results continue to raise questions over the 

role of cortisol in the mechanisms of in vivo immunity, which adds further strength 

to the notion that in vitro methods of assessing immune function do not capture the 

full integrated immune response to exercise stress.    

Cutaneous assessment of in vivo immunity provides a robust and feasible protocol 

for use in field studies where collection and transport of human tissue samples 

may not be feasible. For example, Oliver et al. (2013) sensitised a group of 22 

mountaineers to DPCP whilst at altitude (3777 m) to examine the effect of hypoxia 
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on immune induction. The effect of altitude exposure on elicitation was examined 

4-weeks later after returning to sea level. At recall, the mountaineers exhibited a 

significant reduction in skinfold thickness response (52%) and erythema (36%) in 

comparison to a control group who received their first sensitisation in a laboratory 

at sea level. The most likely cause of the reduced ability to develop new immune 

memory at altitude was systemic hypoxia as indicated by a moderate correlation 

between arterial oxygen saturation (measured before initial DPCP sensitisation) 

and the size of the immune response measured at recall. These authors’ findings 

support previous in vitro work that has shown a decrease in T-cell-mediated 

immune function at altitude using in vitro methods (Facco et al., 2005; Pyne et al., 

2000) and demonstrate that in vivo methods can be used in field investigations to 

assess cell-mediated immune function.  

The recent in vivo work carried out using experimental contact sensitisation has 

consistently shown that a single bout of prolonged moderate-intensity exercise can 

reduce both the induction and elicitation phases of the T-cell-mediated immune 

response (Harper Smith et al., 2011; Diment et al., 2013; Davison et al., 2016). 

However, the link between measures of in vivo immunity and incidence/risk of 

respiratory infection is yet to be examined.  
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1.5 Epstein-Barr Virus Infection and Reactivation 

Epstein-Barr Virus (EBV) is a human herpes virus that is carried by approximately 

90% of the general adult population (Pottgiesser et al., 2006). Primary infection is 

asymptomatic and occurs via salivary contact most commonly during childhood 

(Rickinson & Moss, 1997). EBV has the potential to develop into infectious 

mononucleosis (when infection occurs after childhood) and also to induce tumours 

and cause diseases such as Hodgkin’s disease and B-cell lymphoproliferative 

disease, but for the majority of the seropositive population EBV rarely results in 

disease after primary infection (Macsween & Crawford, 2003). After initial 

infection, the virus establishes life-long persistence through colonisation of the 

lymphoid system and subsequent expansion of virally infected B-cells in peripheral 

blood (Yao, Rickinson & Epstein, 1985).  

EBV exhibits a dual tropism that allows the virus to infect both B-cells and 

epithelial cells via different glycoproteins (Shannon-Lowe and Rowe, 2014). EBV 

can bind to the surface of B-cells when the viral glycoprotein gp350 binds with the 

B-cell receptor CD21, after which the three-part viral glycoprotein gHgL gp42 will 

interact with the B-cell major histocompatibility complex II (MHC II) allowing EBV 

to enter and infect the B-cell (Speck, Haan and Longnecker, 2000). Infection of 

epithelial cells of the oropharynx occurs after interaction of β1 integrins on the 

surface of epithelial cells and the EBV BMRF-2 cell surface protein, and then 

fusion of the viral envelope via interaction between the two-part viral glycoprotein 

gHgL and the epithelial αvβ6 and αvβ8 integrins (Chesnokova, Nishimura, & Hutt-

Fletcher, 2009). In seropositive individuals, memory B-cells form the reservoir of 

infected cells in the latent lifecycle (non-productive lifecycle) that are required in 

order for EBV to maintain viral persistence. In healthy seropositive individuals the 
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levels of memory B-cells in the blood will remain constant over long periods of time 

(Khan et al., 1996). EBV infected B-cells can switch to the lytic lifecycle 

(productive lifecycle) (i.e. viral reactivation) and infect epithelial cells of the 

oropharynx, which triggers an immune response from a subset of viral specific 

CD8+ T-cells that constitute up to 2% of the total cytotoxic T-cell numbers (Hislop 

et al., 2007). 

When in the latent life cycle, EBV remains dormant in infected B-calls with 

restricted lytic gene expression. The virus is able to evade immune surveillance 

and remain undetected by CD8+ T-cells via expression of latent genes that are 

essential to survival of the virus.  For example, Epstein-Barr viral nuclear antigen 

(EBNA) 1 is a viral protein that interacts with the proteasome within B-cells to 

prevent degradation of viral proteins into peptides that would otherwise elicit a 

CD8+ T-cell response (Janeway et al., 1999) and is also required to maintain the 

EBV genome within a host cell (Knipe & Howley, 2013). Other latent genes 

expressed from the BamHI-A region of the EBV genome do not have a clear role 

in viral persistence during the latent cycle, but are consistently detected in infected 

B-cells of healthy seropositive individuals (Chen et al., 1999).  

After establishing latency, the viral lifecycle of EBV infected B-cells involves highly 

complex molecular pathways that enable the virus to switch from latent to lytic 

gene expression (Hatton et al., 2014; Murata & Tsurumi, 2014). Epithelial cells can 

then become infected with EBV upon reactivation and lytic replication of the latent 

B-cells. The stimulus for the switch from latent to lytic lifecycles in vivo is not 

precisely understood (Odumade, Hogguist, and Balfour, 2011) but is integral to 

viral survival as transmission of new viral cells to a seronegative host via saliva 

can only happen after production of new viral cells in the epithelial cells of the 
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oropharynx (Babcock et al., 1998). As previously discussed, infection of epithelial 

cells of the oropharynx occurs via interaction of different cell surface receptors to 

that of B-cell infection. New viral cells formed inside the memory B-cells contain 

the two-part glycoprotein gHgL that is required to infect epithelial cells, but not the 

three-part glycoprotein gHgL gp42 that is required to infect B-cells. As such, new 

viral cells that have been made inside a memory B-cell are capable of infecting 

epithelial cells of the oropharynx but not new B-cells within the host (Wang and 

Hutt-Fletcher, 1998). The opposite is true of viral cells that are then produced 

inside the infected epithelial cells as these cells express the three-part 

glycoprotein gHgL gp42, but not the two-part glycoprotein, and as such these new 

viral cells are capable of infecting new B-cells (in a new seronegative host or in the 

current host) but not new epithelial cells (Wang and Hutt-Fletcher, 1998).  

Viral reactivation and subsequent infection of epithelial cells will result in shedding 

of new viral cells from the epithelial cells directly into saliva (Hadinoto et al., 2009), 

with EBV reactivation typically being determined via detection of EBV DNA in a 

saliva sample (Knipe & Howley, 2013). One of the first viral genes to be expressed 

after the transition from latent to lytic life cycle is BALF5 (Halder et al., 2009), 

which encodes the viral DNA polymerase (Lin et al., 1991). Analysis of saliva for 

the presence of fragments of the BALF5 gene has commonly been used as a 

means to determine whether or not seropositive individuals are currently 

experiencing non-primary EBV replication (Gleeson et al., 2002; Gleeson et al., 

2017; Reid et al., 2004; Yamouchi et al., 2011).  

EBV reactivation is thought to be linked to both physical and psychological stress. 

Increased levels of adrenaline and noradrenaline have been linked to EBV 

reactivation in astronauts pre and post-spaceflight (Stowe et al., 2000; Stowe, 
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Pierson & Barrett, 2001). The suppressive effect of catecholamines on EBV 

specific CD8+ T-cell function (Dobbs et al., 1993) was the proposed cause of 

increased viral activity in the astronauts. EBV reactivation has also been linked to 

diminished cell mediated immunity in Antarctic expeditioners (Mehta et al., 2000). 

During a period of winter isolation, the frequency of viral shedding in to saliva was 

significantly greater when DTH responses where diminished in comparison to 

when DTH results were classified as normal. Based on this evidence, there may 

be a link between monitoring in vivo immune status via DTH assessments and 

EBV shedding. If so, monitoring EBV reactivation via collection of saliva samples 

may be a useful and practical method for monitoring in vivo immunity in situations 

that impose high levels of physical and/or psychological stress. In the work from 

Mehta et al. (2000), all 16 of the expeditioners that were monitored during this 

study had provided at least one saliva sample that was positive for EBV DNA, but 

did not report any URI symptoms that could be attributed to the decrease in cell 

mediated immunity. Therefore, the clinical significance of viral shedding in 

populations experiencing high levels of psychological and/or physical stress, and 

by extension the ability to predict likelihood of imminent URI, could not be 

elucidated from this work.  

  

1.5.1 Epstein-Barr Virus Reactivation in Sport and Exercise Science 

Over the last two decades research of EBV reactivation within exercising 

populations has grown, possibly due to the ease of investigation (i.e. collection of 

saliva samples) and the ability of the virus to replicate intermittently from within the 

oropharynx (Faulkner et al., 2000). Reactivation of EBV, and subsequent shedding 
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of viral DNA in to saliva, has been linked to the presence of URS in elite athletes 

(Walsh et al., 2011).  

Longitudinal studies of elite athletes have suggested a link between seropositivity 

and an increased incidence of URI in athletes. Gleeson et al. (2002) monitored a 

group of 14 elite Australian swimmers for URS over a 30-day period of intensive 

training, with saliva samples provided every two-to-three days. The authors 

identified a consistent pattern of lowered s-IgA levels and detection of EBV DNA 

that preceded the appearance of URS, making this research group the first to 

provide evidence of a link between viral shedding, s-IgA, and URS in elite athletes. 

However, this should perhaps be interpreted with caution as a relatively low 

number of illness episodes were reported by the seropositive swimmers with EBV 

DNA being detected in 6/9 episodes. More recently, Gleeson et al. (2017) 

identified a trend for a higher detection rate of EBV DNA in saliva alongside lower 

concentrations of s-IgA in illness prone endurance athletes (≥ 3 illness episodes 

over a nine-month monitoring period). However, these results did not reach 

statistical significance, and the study may have been underpowered with just four 

athletes from 16 being identified as illness prone.   

In a study of team sport athletes during a 1-month intensive training camp, 

Yamauchi et al. (2011) collected saliva samples from 32 collegiate rugby players 

on a daily basis and recorded all URS. EBV DNA was detected more frequently in 

players who reported symptoms of sore throat and runny nose than in players who 

reported no symptoms at all (32 vs 20% of all saliva samples provided). Similar to 

Gleeson et al. (2002), this group also found evidence of a link between lowered s-

IgA concentration and detection of EBV DNA in saliva. However, this study was 

also statistically underpowered with just six illness episodes reported during the 
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training camp. Furthermore, in this instance the authors failed to report whether or 

not the players were tested for prior infection with EBV. Despite previous 

suggestions that EBV reactivation may be more common during periods of 

physical and/or psychological stress, these authors found no relationship between 

EBV reactivation and subjective measures of fatigue measured as a rating of 

subjective fatigue on a scale of 1 to 5.   

In contrast to the early work from Gleeson et al. (2002), when a relatively large 

cohort of 239 athletes were monitored over a period of 16-weeks EBV serostatus 

alone was found to have no influence on URI incidence (He et al., 2013). 

Furthermore, Cox et al. (2004) provided evidence to suggest that detection of EBV 

DNA in saliva, and therefore lytic EBV reactivation, is not directly responsible for 

URS in elite athletes. When an antiviral agent (Valtrex™) with specific actions 

against herpes viruses was administered to a group of elite Australian distance 

runners the EBV viral load in saliva was significantly reduced by 82% during the 

antiviral treatment month (in comparison to the baseline, placebo, and wash out 

months). However, there was no reduction in URS during the antiviral treatment 

month. These results suggest that during the treatment month non-primary EBV 

replication was not the infectious agent responsible for URS in this group of 

seropositive elite athletes. Unlike the study from Spence et al. (2007), previous 

longitudinal studies of EBV reactivation and incidence of URS discussed in this 

thesis have not included laboratory analysis of infectious agents. Therefore, any 

suggestion that non-primary EBV infection is directly responsible for URS is highly 

speculative. Alternatively, it is possible that detection of EBV DNA in saliva may 

instead be an in vivo marker of immune suppression with URS being caused by an 

alternative infectious agent that was able to overcome the compromised immune 

system.   
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There is currently limited evidence on the acute time course of EBV reactivation, 

and appearance of EBV DNA in saliva, after a bout of exercise. Recently, Gleeson 

et al. (2017) analysed saliva samples for the presence of EBV DNA that had been 

collected pre, post, and 24-hours post two exercise bouts each lasting 60 minutes. 

The authors did not report any quantitative measures for the amount of EBV DNA 

that was in the saliva samples (i.e. results were "positive" or "negative"), making it 

impossible to consider the changes in viral load from pre-to-post exercise. This 

may have been particularly insightful in this instance as all but one of the 

participants that produced a positive post-exercise saliva sample also produced a 

positive pre-exercise saliva sample. Furthermore, collection of additional saliva 

samples between the immediately-post and 24-h post timepoints may provide 

further insight into any acute changes in viral activity after exercise cessation. 
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1.6 Summary and Aims 

Over the last decade researchers working with professional athletes have 

attempted to examine the relationship between s-IgA levels at rest and the risk of 

imminent URS. Evidence of a link between lowered s-IgA levels and increased risk 

of URS in elite athletes has been reported. However, low sampling frequency, 

short monitoring periods, and/or low subject numbers have limited the 

interpretation of results for s-IgA and URS incidence. The model for monitoring 

individual relative changes in s-IgA levels, as proposed by Neville et al. (2008), 

seems to present a promising method for assessing individual illness risk. 

However, there has since been no further investigation in other sports (e.g. team 

sport athletes or endurance athletes) or with a different level of athlete (e.g. 

recreational active or national level athletes). Therefore, this thesis will aim to 

investigate the use of this model with a group of professional team sport athletes, 

and sub-elite endurance athletes.  

The recent cutaneous in vivo work carried out using experimental contact 

sensitisation has consistently shown that a single bout of prolonged moderate-

intensity exercise can reduce both the induction and elicitation phases of the T-

cell-mediated immune response (Harper Smith et al., 2011; Diment et al., 2013; 

Davison et al., 2016). However, the link between measures of in vivo immunity and 

risk of respiratory infection is yet to be examined. While this method of in vivo 

immune assessment may represent a more clinically relevant model, compared to 

commonly used in vitro methods, it is not without limitations. After the first 

sensitisation to the antigen DPCP, the induction phase of immunity can only be 

assessed once. After which, researchers and sport scientists are limited to 

examining the elicitation phase of their study participants and athletes. A further 
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limitation to the utility of these in vivo techniques lies in the ability to integrate 

cutaneous in vivo assessment in to an illness risk monitoring model with elite 

athletes and professional sports teams. The antigen (DPCP) is applied to the skin 

via a patch that remains on the skin surface for 48-hours, which has obvious 

limitations for use with water sport athletes (e.g. swimmers, triathletes etc) and 

may be perceived as unnecessarily cumbersome by other professional athletes.  

Monitoring EBV reactivation via the collection of saliva samples would be a less 

invasive and less time-consuming method (on the part of the athlete/study 

participant) for monitoring in vivo immune status than the previously discussed 

cutaneous options. The growing evidence base of EBV reactivation in elite 

athletes seems to suggest a link between increased viral shedding, lowered levels 

of s-IgA, and URS. However, low numbers of individual URS episodes and/or 

study participants have limited the ability to make definitive conclusions regarding 

EBV shedding and URS incidence (Gleeson et al., 2017; Yamouchi et al., 2011). 

Furthermore, the ability to combine EBV DNA and s-IgA monitoring as a model to 

assess immune status requires further investigation. Therefore, this thesis will 

further investigate the temporal relationship between s-IgA, EBV reactivation, and 

URS.    

The mucosal immune response to acute exercise has been extensively 

investigated across different exercise modalities and sports settings. There 

appears to be a general consensus that s-IgA levels decrease following a single 

bout of strenuous and prolonged exercise. However, the clinical relevance of 

lowered s-IgA in the hours post exercise is unclear, and the consistency of 

reporting method for s-IgA is lacking. The only previous investigation of acute 

exercise and EBV reactivation was limited to qualitative analysis of EBV DNA 
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detection. Therefore, the final aim of this thesis is to examine EBV reactivation 

following acute exercise using quantitative methods, alongside the mucosal 

immune response and occurrence of URS.  
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Chapter 2. General Methods 

2.1 Ethics approval  

Study 1 was approved by the University of Kent Faculty of Science Research 

Ethics committee, and studies 2 and 3 were approved by the School of Sport and 

Exercise Science Research Ethics Committee. All participants were non-smokers 

and not taking long term medication. Prior to commencing with a study, all 

participants completed the Physical Activity Readiness Questionnaire (PAR-Q). 

Both verbal and written informed consent were provided by all participants.  

 

2.2 Saliva analytical methods  

2.2.1 Saliva collection  

Saliva was collected using the unstimulated, passive drool method. Participants 

first rinsed their mouth with plain water then sat quietly for at least 10 minutes. 

Participants sat with their head tilted forward and passively dribbled in to pre-

weighed sterile pots for two to three minutes. The exact time was recorded for 

calculation of saliva flow rate. All three studies required transport of saliva samples 

to the laboratory under ice (frozen samples for studies 2 and 3, fresh samples for 

study 1 that were transported to the laboratory under ice and processed for 

storage within 60 min). All saliva samples were weighed and then centrifuged at 

13,400 xg for 5 min and the supernatant was stored as aliquots at -80c for later 

analysis. Assuming a saliva density of 1 g/ml (Cole and Eastoe, 1988) saliva flow 

rate was calculated by dividing sample mass by the collection time.  
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2.2.2 Epstein-Barr virus DNA 

DNA extractions were carried out using a commercially available genomic DNA 

extraction kit (Quick-DNA mini prep, Zymo Research, Irvine, California, U.S.A). 

The presence of EBV DNA in saliva could then be determined via quantitative 

(real-time) polymerase chain reaction (qPCR). In all three studies the extracted 

saliva samples were analysed for the presence of BALF5 DNA fragments, which 

will be referred to as EBV DNA for the duration of this thesis. For study 1, the 

extracted saliva samples were also analysed for the presence of BamHI DNA 

fragments. In this case the results specifically name BamHI DNA.  

Forward and reverse primers for the BALF5 gene were designed using the Roche 

Universal Probe Library (UPL) (https://www.roche-applied-

science.com/sis/rtpcr/upl/ezhome.html) and ordered from Eurogentec (Liège, 

Belgium). The primers produce an amplicon that is 60 nt in length (GGAG CTGG 

ACAT GCTC TACG CCTT CTTC CAGC TCAT CAGA GACC TCAG CGTG GAGT 

TTGT). Probe 11 (cat. no. 04685105001) from the UPL (Roche, Basel, 

Switzerland) was used for BALF5 qPCR.   

7.5 µL of qPCR mix containing 0.2 µl of both forward and reverse primers with a 

concentration of 400 nM, 0.2 µl fluorescent probe with a concentration of 200 nM, 

5.0 µl PCR master mix (FastStart Essential DNA Probes Master (cat. no. 

06402682001; Roche, Basel, Switzerland), and 1.9 µl PCR grade (DNase and 

RNase free) water was added to each well of a 96-well PCR plate. 2.5 µL of 

extracted saliva samples were then added to wells in the plate. All analyses were 

undertaken in duplicate. If the difference in duplicate Ct values was greater than 

one cycle for any sample, that sample was re-analysed in duplicate.  
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A standard curve was constructed using a positive control stored as a working 

stock solution of 1 ng/µl that had been prepared in house (Chidley, 2018 

https://kar.kent.ac.uk/69956/). Ten-fold serial dilutions were performed from the 

top standard with PCR grade water. For the negative control, PCR grade water 

was used in place of samples/standards.  

A LightCycler 96 (Roche, Basel, Switzerland) instrument was used for 

amplification and detection under thermal cycling conditions of: one pre incubation 

cycle of 10 min at 95 ◦C; 45 amplification cycles of 10 s at 95◦c (denaturation), 30 s 

at 60◦c (annealing), and 1 s at 72◦c (extension); and finally, one cooling cycle of 30 

s at 40◦c. Fluorescence from the probe is measured at the end of each 

amplification cycle (during extension). The end point fluorescence measured after 

45 amplification cycles allows for calculation by the LightCycler 96 software of the 

quantification cycle (Cq) and concentration of EBV DNA for each individual well. 

Samples could be classified as positive if the auto-calculated Cq value for both 

duplicates did not exceed the threshold Cq value that had been calculated across 

all wells on each plate (determined as ten multiplied by the SD of the baseline 

fluorescence calculated from cycles 3 - 10).  

The qPCR process for detection and quantification of EBV DNA in saliva used 

throughout this thesis previously been shown to be a reliable and valid method 

(Chidley, 2018 https://kar.kent.ac.uk/69956/). Intra-assay CV for all BALF5 plates 

was 5.4 ± 2.7 %.  
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2.2.3 Human Genome 

The presence of human DNA in saliva for studies 2 and 3 was determined using a 

commercially available qPCR kit (cat. no. g-DNA-q; Primerdesign Ltd, Camberley, 

UK.) According to the manufacturer’s instructions, 7.5 µL of qPCR mix containing 

gDNA primer/probe mix, master mix, and PCR grade (DNase and RNase free) 

water was added to each well of a 96-well PCR plate. 2.5 µL of extracted saliva 

samples were then added to the plate in duplicate. The LightCycler 96 was used 

for amplification and detection under thermal cycling conditions of: one pre 

incubation cycle of 2 min at 95 ◦c; 40 amplification cycles of 10 s at 95◦c and 60 s 

at 60◦c (fluorescence from the probe measured at the end of each extension 

cycle); and finally, one cooling cycle of 30 s at 40◦c. A standard curve was 

constructed using four-fold serial dilutions of a provided top standard with a 

concentration of 5 ng/µl. PCR grade water was used in place of 

samples/standards as a negative control.  

 

2.2.4 Secretory Immunoglobulin A  

All saliva samples from studies 1, 2 and 3 were analysed for s-IgA concentration 

using an in-house enzyme-linked immunosorbent assay (ELISA) method that was 

based on the protocol from Leight et al. (2011). Flat bottomed 96-well microtiter 

plates (Nunc-Immunoplate, Thermo Fisher Scientific, Denmark) were first coated 

with capture antibody (mouse anti-human IgA; Sigma, code I6635) that had been 

diluted in coating buffer (0.05 M carbonate/bicarbonate, pH 9.6) with 1:1740 

dilution factor to obtain a concentration of 5 µg/ml (100 µl per well). After an 

overnight incubation at 4◦C plates were washed four times (200 µl per well: 
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phosphate-buffered saline (PBS), 0.3 M NaCl, 0.1% Tween 20) then blocked with 

a blocking protein (100 µl per well: 2% BSA, bovine serum albumin, Fraction V, 

Sigma-Aldrich, St. Louis, Missouri, U.S.A.) in PBS for 60 minutes at room 

temperature. All defrosted samples were centrifuged for two minutes at 1,700 × g 

then diluted (1:750) with PBS. A standard curve was constructed via two-fold serial 

dilution with PBS of a top standard concentration 1 µg/ml of IgA from human 

colostrum (Sigma-Aldrich, St. Louis, MO, U.S.A.). Seven standards were produced 

with the eighth as PBS (i.e. 0 µg/ml). Plates were washed four times before adding 

50 µl of each sample and standard in duplicate to the plate. Plates were then 

sealed and incubated overnight at 4◦C. Plates were washed again four times 

before adding 50 µl per well of detection antibody (Polyclonal Rabbit Anti-Human 

IgA/HRP, Dako, Glostrup, Denmark) diluted 1:2000 in PBS. Following a 90-minute 

room temperature incubation plates were washed for a final four times before 

adding 50 µl per well of OPD substrate (Dako, Glostrup, Denmark) to each well. 

Plates were covered to protect from light and incubated for 7.5 minutes. The 

colour change reaction was stopped by adding 75 µl per well of 1 M sulphuric acid 

followed immediately by reading the absorbance of each well using an automated 

plate reader with a 490 and 630 nm filter (ELx808 Absorbance Reader, BioTek, 

Winooski, VT, U.S.A.). The background absorbance readings at 630 nm were 

subtracted from the absorbance readings at 490 nm, and mean of duplicate wells 

was calculated. A graph of target standard concentrations plotted against 

measured standard absorbances was then plotted in Microsoft Excel, and a 

polynomial standard curve was fitted to allow for calculation of the s-IgA 

concentration of the samples. These calculated concentrations were then 

multiplied by 750 to account for the saliva sample dilution factor.  s-IgA secretion 

rate could then be calculated by multiplying saliva flow rate by s-IgA concentration. 
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The intra-assay CV of this method based on analyses of all plates was 2.9 ± 1.6 

%. 

 

2.3 Blood collection and analysis of EBV serostatus 

EBV serostatus of all participants in studies 2 and 3 was determined from blood 

samples that were provided at the start of the study period. Finger-tip capillary 

blood was collected in to K2EDTA microcuvettes (Microvette®CB 300 K2E, 

Germany) and then centrifuged at 1500 xg for 2 min at 5◦c. The supernatant was 

stored at -80◦c for later detection of viral capsid antigen IgG antibodies with 

commercially available ELISA kits (Epstein Barr Virus (VCA) IgG ELISA; cat. no. 

EIA-3475; DRG Instruments GmbH, Marburg, Germany). All samples were 

analysed in duplicate using a plate reader (ELx808 Absorbance Reader, BioTek, 

Winooski, VT, U.S.A.). According to the manufacturer’s instructions, samples were 

considered seropositive for previous EBV infection if the mean absorbance value 

of duplicate wells was more than 10% above the cut-off control for each individual 

plate.  

 

2.4 Monitoring upper respiratory symptoms  

2.4.1 Recording symptoms  

For studies 2 and 3, a modified version of the Jackson upper respiratory illness 

questionnaire (appendix A) as described by (Gleeson et al., 2011) was used by 

participants to record URS on a daily basis. All participants were fully educated 
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with respect to the symptoms listed on the questionnaire. For study 1, the same 

questionnaire was provided to participants on the same day of each week 

(Monday morning), and participants were asked to recall URS from the previous 

seven days.  

The self-report questionnaire asked participants to record the presence and 

severity for several symptoms of URTI. The symptoms included: fever, persistent 

muscle soreness, sore throat, catarrh in the throat, runny nose, cough, repetitive 

sneezing, joint aches and pains, weakness/fatigue, and headache, as well as a 

loss of sleep or inability to train. The severity of each URTI symptom that was 

present was recorded as either light, moderate, or severe with a score of 1, 2, or 3 

applied to each rating to allow for quantification of illness symptoms. The sum of 

all severity scores was calculated on a daily basis.  

 

2.4.2 Criteria for illness episodes  

The criteria for an individual URS episode was defined as a total symptom score of 

≥12 over at least a three-day period with at least one week between that and 

another three-day period with a total symptom score of ≥12 (Gleeson et al., 2011). 

If symptoms (3-day ≥ 12) were recorded by an individual less than 1 week apart, 

they were classified as the same episode.   

 

2.5 General statistical analysis  

All statistical analyses were carried out using SPSS (IBM SPSS Statistics for 

Windows, version 24.0, Armonk, NY:IBM Corp). Data shown in tables, figures, and 
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the text are mean ± standard deviation (SD) unless otherwise stated, with the level 

of significance set at P < 0.05. All data were checked for normal distribution with 

the Shapiro-Wilk test. Any data found to be not normally distributed were 

normalised with log transformation before carrying out further statistical analysis.    

For studies 1, 2 and 3, individual EBV DNA shedding frequency was calculated as 

the percentage of positive samples for each individual participant.  

For studies 1 and 2, individual healthy baseline scores for s-IgA concentration and 

secretion rate were calculated according to the methods of Neville et al. (2008). 

Any saliva samples provided 14 days pre or post day one of an illness episode 

were not included in the healthy baseline calculation. Individual relative s-IgA 

values were then calculated for each saliva sample as the percentage of individual 

healthy baseline scores. Reliability of s-IgA concentration and secretion rate was 

calculated within and between participants with the coefficient of variation (CV).      
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Chapter 3. Study 1 – Epstein-Barr virus and mucosal immune markers in 

professional English football players 

Abstract 

Introduction: Team sport athletes appear to be more susceptible than normal to 

upper respiratory symptoms (URS) during periods of intensified training and match 

play. Reactivation of Epstein-Barr Virus (EBV) and detection of lytic DNA 

fragments (within a region of the BALF5 gene) in saliva has been linked to 

episodes of URS in elite athletes. Furthermore, a decrease in individual relative 

concentration of salivary immunoglobulin A (s-IgA) has been shown to be 

associated with an increased risk of upper respiratory illness (URI) in professional 

athletes. Aim: To investigate 1) the utility of monitoring changes in relative s-IgA 

levels as a tool for evaluating risk of URS in professional team sport athletes 2) 

reactivation of EBV alongside changes in s-IgA levels, and incidence of URS. 

Methods: Over a period of 16-weeks, 15 male football players from a professional 

English Football League 1 club provided unstimulated saliva samples and 

recorded URI symptoms on a self-report questionnaire. Saliva samples were 

analysed for s-IgA (ELISA) and EBV DNA (qPCR). Individual healthy baseline s-

IgA was calculated as the average across all weeks when no illness symptoms 

were present. Data are expressed as mean ± (SD). Results: Whole squad median 

(IQR) baseline s-IgA concentration was 107 (76 - 150) mg/L and secretion rate 

was 51 (30-78) mg/min. Whole squad s-IgA concentration and secretion rate 

significantly decreased during a period of intensified competitive match play from 

week 8 to week 12 compared to week 1 (P < 0.05). Two individual URS episodes 

occurred during week 10, both when s-IgA was lower than 40% individual healthy 

baseline, with symptoms lasting 4–7 days. For the two players experiencing URS 

and six additional healthy players, latent EBV DNA was detected in 100% of saliva 

samples that underwent qPCR analysis (n = 70). Overall mean shedding 

frequency of lytic EBV DNA was 40%, with individual shedding frequency ranging 

from 11-78%. Conclusion: The low number of URS episodes has limited the 

ability to fully investigate any temporal relationship between reactivation of EBV, 

changes to s-IgA levels, and appearance of URS. Analysis of saliva for presence 

of latent EBV DNA, specifically BamHI DNA fragments, can be used to determine 

EBV serostatus in the absence of serum samples.   
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3.1 Introduction 

For team sport athletes, upper respiratory illness (URI) can negatively affect 

performance either directly via players being unavailable for selection on match 

days, or indirectly via a loss of training days (Cunniffe et al., 2010; Raysmith & 

Drew, 2016). Increased incidence of URI in professional athletes has been shown 

to be associated with decreased resting saliva secretory immunoglobulin A (s-IgA) 

concentration (Gleeson et al., 1999b; Neville et al., 2008) and secretion rate 

(Fahlman and Engels, 2005).  

Due to the high inter-individual variability of s-IgA there are currently no 

established clinical reference values for absolute s-IgA concentration or secretion 

rate, and the level of risk of imminent URI. A model for monitoring changes in s-

IgA levels on an individual basis has been provided by Neville et al. (2008) with 

the risk of URI increasing by 50% when s-IgA levels fall below 40% of the 

calculated individual healthy baseline. However, other longitudinal investigations 

involving team sport athletes have not reported relative changes in s-IgA levels. 

This is possibly due to low sampling frequency, such as the study of professional 

rugby union players from Cunniffe et al. (2011) where saliva samples were 

collected once a month over nine months of a competitive rugby season, or 

shorter monitoring periods such as Morgans et al. (2014) where saliva samples 

were collected from English Premier League football players over a 32-day period.  

Reactivation of Epstein-Barr virus (EBV) has also been linked to upper respiratory 

symptoms (URS) in elite athletes (Gleeson et al., 2002). After initial primary 

infection EBV exhibits a latent lifecycle phase (non-productive) by remaining 

dormant in infected B-cells and a lytic lifecycle phase (productive) when the 
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dormant B-cells reactivate and infect epithelial cells of the oropharynx 

(Chesnokova, Nishimura, & Hutt-Fletcher, 2009).  

Analysis of saliva for the presence of EBV DNA from the BALF5 gene (early lytic 

gene) has typically been used as the marker to determine current EBV status 

(Gleeson et al., 2017; Reid et al., 2004; Yamouchi et al., 2011). When in the latent 

life cycle, EBV is able to evade immune surveillance and remain undetected by 

CD8+ T-cells via expression of latent genes that are essential to survival of the 

virus.  For example, Epstein-Barr viral nuclear antigen (EBNA) 1 is a viral protein 

that interacts with the proteasome within B-lymphocytes to prevent degradation of 

viral proteins into peptides that would otherwise elicit a CD8+ T-cell response 

(Janeway et al., 1999) and is also required to maintain the EBV genome within a 

host cell (Knipe & Howley, 2013). Other latent genes expressed from the BamHI-A 

region of the EBV genome do not have a clear role in viral persistence during the 

latent cycle, but are consistently detected in infected B-cells of healthy 

seropositive individuals (Chen et al., 1999). EBV Serostatus is typically determined 

via measurement of viral capsid antigen IgG antibodies in serum (Gartner et al., 

2003). In an applied sport science setting, collection of blood samples for analysis 

of EBV serostatus may not always be possible. Given the consistent shedding of 

BamHI fragments into saliva, analysis of saliva samples for the presence of this 

specific latent gene may have potential as a surrogate marker for serostatus.  

The aims of this study were to investigate 1) the utility of monitoring changes in 

relative s-IgA levels as a tool for evaluating risk of URS in professional team sport 

athletes 2) the temporal relationship between changes to s-IgA levels, detection of 

lytic EBV DNA (BALF5), and incidence of URS, and 3) the shedding frequency of 
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latent BamHI DNA fragments in saliva, and ability to use detection of BamHI 

fragments as a salivary marker for EBV serostatus.  

 

3.2 Methods 

3.2.1 Participants  

22 male football players from a professional English Football League 1 club 

volunteered to participate in the study. Players were excluded from the final 

analyses if they were unable to provide a saliva sample on more than 25% of the 

sampling time points (two players) or if they did not provide a sample on more than 

two consecutive sampling time points (five players) during the study period. 15 

players were included in the final analyses (age 27 ± 4 years; 2 goal keepers, 3 

defenders, 8 midfielders, and 2 strikers). Players were retrospectively classified as 

URS if they experienced at least one URS episode over the 16-week period, or as 

HEALTHY if they remained free from URS.  

3.2.2 Study Design 

Over a 16-week period (August to November 2016) players provided saliva 

samples and completed self-report illness questionnaires on a weekly basis.  

3.2.3 Saliva collection  

Timed, unstimulated saliva samples were collected the morning after a full rest day 

(at least 36 h post-match) and before training between 8:00 and 9:00 am on the 

same morning of each week at the football club’s training facility.  



51 
 

3.2.4 Saliva analysis  

All saliva samples were analysed for s-IgA concentration and secretion rate 

according to the methods outlined in chapter 2.  

For the URS players (n=2), DNA extractions were carried out on all saliva samples 

that were collected during the illness episode, as well as the four saliva samples 

collected before the appearance of symptoms and also the three samples 

collected after the cessation of symptoms. An additional six players’ saliva 

samples that were time-matched to the URS players’ illness episodes, as well as 

pre-season samples for all eight participants, also underwent the DNA extraction 

process. All extracted saliva samples were analysed for presence of BALF5 DNA 

according to the methods outlined in chapter 2.      

The presence of BamHI fragments in saliva was determined via qPCR. Forward 

and reverse primers for the BamHI gene were designed using the Roche Universal 

Probe Library (UPL) (https://www.roche-applied-

science.com/sis/rtpcr/upl/ezhome.html) and ordered from Eurogentec (Liège, 

Belgium). The primers produce an amplicon that is 74 nt in length 

(GCTAGGCCACCTTCTCAGTCCAGCGCGTTTACGTAAGCCAGACAGCAGCCA

ATTGTCAGTTCTAGGGAGGGGGA). Probe 66 (cat. no. 04688651001) from the 

UPL (Roche, Basel, Switzerland) was used for BamHI qPCR.   

7.5 µL of qPCR mix containing 0.2 µl of both forward and reverse primers with a 

concentration of 400 nM, 0.2 µl fluorescent probe with a concentration of 200 nM, 

5.0 µl PCR master mix (FastStart Essential DNA Probes Master (cat. no. 

06402682001; Roche, Basel, Switzerland), and 1.9 µl PCR grade (DNase and 

RNase free) water was added to each well of a 96-well PCR plate. 2.5 µL of 
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extracted saliva samples were then added to the plate in duplicate. No standard 

curve was included in this assay; therefore, the results are limited to identification 

of positive or negative for detection of BamHI fragments. The LightCycler 96 was 

used for amplification and detection under thermal cycling conditions of: one pre 

incubation cycle of 10 min at 95 ◦c; 45 amplification cycles of 10 s at 95◦c, 30 s at 

60◦c, and 1 s at 72◦c; and finally, one cooling cycle of 30 s at 40◦c. Fluorescence 

from the probe was measured at the end of each cycle with the end point 

fluorescence for each well used by the LightCycler 96 software to calculate Ct 

values and DNA concentration.  

3.2.5 URS reports and criteria for URS  

Players retrospectively recorded illness symptoms on the same morning of each 

week using the questionnaire detailed in chapter 2. For study weeks when players 

were unable to provide a saliva sample their illness symptoms for that week were 

still recorded.  

3.2.6 Match load 

The number of times that a player was named as a starter or as a substitute, and 

the number of minutes played in first team matches were recorded for each player 

for all matches played over the 16-week period. Players were retrospectively 

allocated in to one of two groups of "regular starters" (players who started >50% of 

games during the monitoring period and played >45 mins in each of the games 

that they started) or "non-starters" (players named as substitutes for >50% of 

games during the monitoring period and played <45 mins of those matches, or not 

named at all in the first team squad for >50% of matches). 
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3.2.6 Statistical Analysis 

Normally distributed data are expressed as mean ( SD) with non-normally 

distributed data expressed as the median and interquartile range (IQR). The level 

of significance is set at P < 0.05.  

Healthy baseline s-IgA values for concentration and secretion rate were calculated 

for each player according to the methods outlined in chapter 2.  

A one-way repeated measures ANOVA was used to analyse whole squad weekly 

absolute and relative s-IgA concentration and secretion rate. Additionally, a two-

way repeated measures ANOVA was used to examine differences in s-IgA levels 

between the starters and non-starters. Any data found to be non-normally 

distributed were log transformed (whole squad s-IgA absolute concentration, and 

whole squad absolute and relative secretion rate) and checked again for normal 

distribution before running an ANOVA.  

An independent samples t-test was used to analyse the difference in healthy 

baseline s-IgA concentration and secretion rate values between regular starters 

and non-starters.  

 

3.3 Results 

3.3.1 URS 

Two players experienced one episode of URS over the 16-week monitoring period, 

with symptoms lasting for 4 days (Player ID 5) and 7 days (Player ID 8). For both 

of these players, the illness episode occurred during week 10 when both relative s-
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IgA concentration (Fig. 3.1A) and secretion rate (Fig. 3.1B) were <40% of the 

calculated individual healthy baseline. A further seven players experienced one 

study week when their relative s-IgA concentration and secretion rate scores were 

less than 40% of the calculated healthy baseline but did not report any illness 

symptoms. Therefore, 9 players presented with a decrease in relative s-IgA to 

<40% of baseline and 22% (2/9) experienced a URS. For comparison 0% (0/6) of 

the players who maintained relative s-IgA >40% of baseline experienced a URS.  

3.3.2 Secretory Immunoglobulin A 

For the 15 players that were included in this study, a total of 222 saliva samples 

were collected and analysed for s-IgA concentration and secretion rate over the 

16-week study period. A total of 18 out of a possible 240 (7.5 %) saliva samples 

were not collected due to players being unavailable at the time of collection. Illness 

questionnaires were completed by all players on all study weeks.  

For s-IgA concentration, the whole squad median and IQR across all 16 study 

weeks was 107 (76 - 150) mg/ml, with a mean within CV of 52%. The between 

participants CV was 61%. Both absolute and individual relative s-IgA concentration 

were significantly lower in all weeks from and including weeks 8 to 12 in 

comparison to week 1 (Fig. 3.2A, P < 0.05).  

For s-IgA secretion rate, the whole squad median and IQR across all 16 study 

weeks was 51 (30 - 78) mg/min, with a mean within CV of 58%. The between 

participants CV was 72%. Both absolute and individual relative s-IgA secretion 

rate were significantly lower in all weeks from and including weeks 9 to 12 in 

comparison to week 1 (P < 0.05).  
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3.3.3 EBV DNA 

A total of 70 saliva samples were analysed for the presence of BamHI and BALF5 

DNA fragments. 100% of saliva samples were positive for presence of BamHI 

DNA, with 40% being positive for BALF5 DNA (28/70). The whole group mean (± 

SD) for individual shedding frequency of BALF5 DNA for all eight players was 40 

(± 24%). Individual shedding frequency values ranged from the lowest at 11% (1/9 

positive samples) to the highest at 78% (7/9 positive samples).  

For the two URS players, BALF5 DNA was detected in the weeks before and after 

URI but not when symptoms were present (table 3.1).  

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Relative s-IgA concentration (A) and secretion rate (B) for the three 
weeks pre-URS, during URS, and three weeks post URS for players 5 (solid line) 
and 8 (dashed line).  
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3.3.4 Match Load 

26 competitive matches were played during the 16-week monitoring period. The 

number of matches played in the seven days preceding each sampling time point 

are shown in figure 3.2A. Nine players were classified as regular starters (1 goal 

keeper, 3 defenders, 4 midfielders, and 1 striker) and six players were classified 

as non-starters (1 goal keeper, 4 midfielders, and 1 striker). There was no 

difference between regular starters (n=9) and non-starters (n=6) for s-IgA 

concentration or secretion rate across the 16-week study period (P > 0.05) 

(absolute s-IgA concentration shown in Fig. 3.2 A and B). There was also no 

difference between starters and non-starters for healthy baseline s-IgA 

concentration (122 ± 8 vs 128 ± 20 mg/L, P = 0.548) (Fig. 3.4A) or secretion rate 

(62 ± 9 vs 52 ± 9 mg/min, P = 0.325) (Fig. 3.4B). 

 

Figure 3.4 Healthy baseline salivary IgA concentration (A) and secretion rate (B) 
for starters (n=9) and non-starters (n=6) throughout the 16-week monitoring 

period. Values are mean ( SD). 
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Figure 3.2 (A) Whole squad s-IgA concentration expressed as a percentage of 
individual healthy baseline values. *P < 0.05 vs. week 1. White bars indicate home 
matches. Grey bars indicate away matches. (n=15).  (B) S-IgA concentration 

(mg/L) for starters (n=9) vs non-starters (n=6). Values are mean ( SD). 
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Figure 3.3 Individual shedding frequency for BALF5 DNA fragments. Black bars 
indicate players who experienced URS. Players 1 and 2 were “non-starters”. 
Dashed line indicates mean shedding frequency (40%).       

 

Table 3.1 Detection of BALF5 DNA in saliva provided during study weeks 6-13 for 
the two players experiencing URS. 
 

 

 

3.4 Discussion  

The primary aim of this study was to investigate the utility of monitoring changes in 

relative s-IgA levels as a tool for evaluating risk of URS in professional team sport 

athletes. The main findings show that s-IgA concentration and secretion rate 

significantly decrease during periods of increased match frequency when the 

number of recovery days between matches decreases, and will recover towards 
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healthy baseline values when the number of recovery days between matches 

increases. However, the low number of URS episodes experienced by the football 

players in this study (n = 2) made it impossible to carry out any statistical analysis 

to fully examine the relationship between relative s-IgA levels and risk of imminent 

URS. By extension, any relationship between EBV reactivation, s-IgA levels and 

URS (the secondary aim of this study) could not be further investigated due to the 

low number of URS episodes.  

The third aim of this study was to investigate the shedding frequency of latent EBV 

genes into saliva. Fragments of the BamHI gene were found in 100% of saliva 

samples that were analysed for the EBV section of this study. Therefore, 

suggesting that detection of this specific gene can be used as a surrogate salivary 

marker for identifying serostatus when a blood serum sample cannot be collected.      

There is good agreement in the literature that periods of intensified training can 

result in decreased levels of s-IgA at rest (Walsh et al., 2011). For team sport 

athletes specifically, a congested fixture schedule or heavy periods of training can 

lead to a reduction in whole squad resting s-IgA levels, which is thought to be 

linked to increased levels of cortisol during intensified training (Cunniffe et al., 

2011; Fahlman & Engels, 2005; Morgans et al 2012; Yamauchi et al., 2011). In the 

present study, s-IgA concentration and secretion rate were significantly reduced 

during weeks 8-12 when the team played nine matches over a period of 35 days. 

In a previous investigation from Morgans et al. (2012), a group of English Premier 

League football players were monitored over a period of 32 days, which included 

seven competitive matches. During the most congested period, when the number 

of recovery days between matches was reduced, the Premier league players 
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experienced a similar decrease in mucosal immunity to the League One players in 

the present study.  

The low number of URS episodes experienced by the players in this study (n=2) 

meant that it was not possible to fully examine the relationship between relative 

changes in s-IgA levels and risk of experiencing URS using statistical tests. The 

two illness episodes did occur when relative s-IgA concentration and secretion rate 

fell below 40% of each player's individual healthy baseline, which is in agreement 

with the model of illness risk and relative s-IgA levels that was reported by Neville 

et al. (2008). However, seven other players in this study also experienced one 

week when their s-IgA concentration and secretion rate were less than 40% of 

their individual healthy baseline, with several additional weeks when their s-IgA 

levels were below 70% of baseline. This demonstrates the multifactorial nature of 

URS risk as mucosal immune status is just one factor that can influence risk of 

experiencing URS (Campbell & Turner, 2018). It is possible that the other seven 

players with reduced mucosal immunity did not come in to close contact with 

external infectious agents during those weeks, and as a result did not become ill 

with URS when their s-IgA levels were at the lowest. It is important to note that the 

two players who did experience URS during the monitoring period lived with young 

children. Exposure to infectious pathogens via young children in the home may be 

a key factor to consider when assessing an individual athlete’s level of risk for 

URS alongside markers of mucosal immunity. For future studies, a longer 

monitoring period covering all of the winter months, and the full competitive 

football season, may capture more illness episodes and subsequently allow for full 

statistical analysis of relative s-IgA, incidence of URS, and other possible risk 

factors for URS such as living with young children.   
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The low number of URS episodes experienced by players has also limited the 

ability to further examine a relationship between detection of EBV DNA in saliva, s-

IgA levels, and URS as previously reported by Yamouchi et al. (2011). The role of 

non-primary EBV reactivation as the direct cause of URS has been questioned 

(Cox et al., 2004), with some suggestion that monitoring EBV reactivation could 

instead function as an in vivo marker of immunodepression in professional 

athletes. The results presented here for the two individual URS episodes do 

indicate viral shedding and lowered s-IgA that precede the onset of URS, with the 

absence of EBV DNA detection during illness. However, given the high variability 

of individual shedding frequency between the six healthy players and the two 

players who experienced URS (ranging from 11 to 78%), it is difficult to evaluate 

the role of EBV reactivation as an in vivo marker of T-cell mediated immune 

function. Therefore, positive EBV saliva samples should be interpreted with 

caution as viral DNA detection does not necessarily infer a state of 

immunodepression and an increased risk of imminent infection.  

The physical load of training and match play was not measured in this study, 

which is an obvious limitation. Players could therefore only be identified as either 

regular first team starting players or regular substitutes based on the number of 

minutes played in first team matches. There was no difference in s-IgA 

concentration or secretion between the two groups of players at any timepoint 

throughout the monitoring period, and there was also no difference in mean 

healthy baseline values between starters and non-starters. These findings, despite 

a lack of GPS, HR and/or RPE data, could suggest that changes in s-IgA levels 

are responsive to more than just fluctuations in the physical load of competitive 

match play. All players in the first team squad experienced a reduction in relative 

s-IgA concentration and secretion rate during weeks 8-12 when the fixture 
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schedule was most congested. Furthermore, the significant decline in s-IgA levels 

seen in week 8 was preceded by two consecutive away fixtures. Interestingly, after 

a period of two home games in week 12 the non-starters experience a greater rise 

in s-IgA concentration from week 12 to 13 in comparison to the regular starters, 

although this did not reach significance. Travelling for away fixtures could have a 

negative effect on the mucosal immune system via a disruption to nutrition 

routines and a reduction in sleep quality (as well as the psychological stress of 

pressure to win that is present with all matches) that is likely to be consistent 

across all players within a squad irrespective of their physical stress from training 

and matches. Sleep, in particular, has been shown to be disturbed following 

evening matches with a significant decrease in objectively measured sleep quality 

in professional rugby players (Eagles et al., 2014) and subjectively reported sleep 

duration in professional football players (Fullagar et al., 2016). Psychological 

stress is known to be a significant factor in the regulation of s-IgA levels due to the 

secretion of s-IgA being under control of the sympathetic and parasympathetic 

nervous system (Engeland et al., 2016). Measurement of these additional sources 

of stress and immune suppression could be included in future investigations in 

order to further understand the impact of each individual risk factor on overall 

immune health and URI risk. The inclusion of a non-playing control group (e.g. 

support staff and coaches at the football club) that would be exposed to the same 

psychologically stressful environment, disruptions to sleep and nutrition routines, 

as well as the same changes in season and climate, and exposure to infections 

during work hours would be useful additions to future studies.           

s-IgA is known to be highly variable within and between individuals. The within-

player variability for absolute s-IgA concentration reported here is similar to other 

investigations including professional athletes (Gleeson et al., 1999; Neville et al., 
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2008). Other authors have indeed discussed the importance of monitoring 

changes in s-IgA levels on an individual basis as a result of finding such high 

variability within individual study participants (Neville et al., 2008; Cunniffe et al., 

2011; Gleeson et al., 2017). High sampling frequency is key to individual 

monitoring when variation is high. A strength of this study is the protocol of weekly 

sampling that was used throughout the 16-week monitoring period, and also the 

exclusion of any players missing two consecutive weeks of samples or more than 

25% of sampling time points. Furthermore, s-IgA production follows a circadian 

rhythm of peak production in the morning that declines throughout the day (Li & 

Gleeson, 2004). Our ability to collect samples at the same time of day each week, 

and after at least 36 hours of match recovery, therefore also helped to reduce a 

potential source of additional variation in the saliva samples. This is not always 

possible to control in studies involving professional athletes.    

The present study reported s-IgA levels as both concentration and secretion rate, 

whereas previous longitudinal work has commonly been limited to reports of just s-

IgA concentration (Cunniffe et al., 2011; Neville et al., 2008; Morgans et al., 2012). 

In an acute exercise setting, a reduction in saliva flow rate due to a removal of  

parasympathetic sympathetic activation during exercise can indirectly effect s-IgA 

concentration (Proctor & Carpenter, 2007). For this reason, calculation of s-IgA 

secretion rate has been used to determine the actual availability of s-IgA in saliva 

secretions during and immediately after exercise. While dehydration should be 

less of a confounding factor in longitudinal research (saliva samples are collected 

after at least 24 hours of rest), it is still possible that players were dehydrated and 

without analysis of urine or plasma osmolality it is impossible to say for certain that 

all players were fully re-hydrated at the point that samples were collected. As there 

was a similar response to both concentration and secretion rate of s-IgA at the 
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whole group level, the results of this study possibly suggest that either measure of 

s-IgA levels can be used in longitudinal research to monitor changes on an 

individual level (provided regular samples are collected, and individuals have had 

at least 24 hours recovery).       

In summary, the results of this investigation show that s-IgA is responsive to 

intensified periods of match play. As such, monitoring s-IgA on an individual basis 

can be used as a non-invasive and objective tool to monitor the mucosal immune 

status of professional team sport athletes, provided that samples are collected on 

a regular basis and with necessary controls in place to reduce the high level of 

variation that is known to occur when measuring levels of s-IgA. Inclusion of 

additional measures to monitor other potential immune modulating factors such as 

physical load from training and matches, sleep quality, nutrition, and psychological 

stress may add to our understanding of the physical and psychological stressors 

that influence risk of upper respiratory illness. Analysis of saliva samples for the 

presence of EBV BamHI can be used to determine EBV serostatus from a saliva 

sample. However, identification of current viral status with qualitative measures 

should be interpreted with caution and requires further investigation with higher 

numbers of participants and URS episodes.    
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Chapter 4. Study 2 - Epstein-Barr Virus Reactivation, Salivary 

Immunoglobulin A, and Upper Respiratory Symptoms in Sub-Elite 

Endurance Training Adults   

Abstract 

Introduction: Reactivation of Epstein-Barr virus (EBV) has been linked to immune 

depression, and incidence of upper respiratory symptoms (URS) in elite 

endurance athletes. Conflicting evidence as to the exact role that EBV reactivation 

plays in the occurrence of URS does exist. However, evidence of lowered s-IgA 

levels and detection of EBV DNA in saliva that precede URS has raised the 

possibility of combining the two salivary immune markers in a risk monitoring 

model for URS in athletes. Aim: To examine the relationship between detection of 

EBV DNA in saliva, changes in s-IgA levels, and incidence of URS in a group of 

sub-elite endurance training adults. Methods: Over a 6-month monitoring period 

30 participants (19 male, 11 female) provided weekly saliva samples, recorded 

URS using a self-report questionnaire, and recorded all training sessions. 

Participants were retrospectively assigned to either URS (experienced at least one 

URS episode during study period) or HEALTHY (no URS episodes) groups. Saliva 

was analysed for s-IgA (ELISA) and EBV DNA (qPCR). The mean training hours 

per week was calculated. Results: All 30 participants were seropositive for 

previous EBV infection. 17 participants experienced at least one URS episode, 

with a total of 27 individual URI episodes reported. Individual EBV DNA shedding 

frequency was not significantly different between URS and HEALTHY groups (32 

± 22 vs 53 ± 35 %, P > 0.05), and was not correlated to s-IgA baseline levels or 

URS incidence (P > 0.05). Mean healthy baseline scores for s-IgA concentration 

and secretion rate were significantly higher in the HEALTHY group (P < 0.05). 

Mean weekly training load had no effect on baseline s-IgA scores, EBV DNA 

shedding frequency, or URI incidence (P > 0.05).  Conclusion: Individual 

shedding frequency of EBV DNA is highly variable between individuals and does 

not appear to be linked to incidence of URS in sub-elite endurance training adults.  
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4.1 Introduction 

The general adult population experience one to three individual episodes of upper 

respiratory tract infection (URTI) per year (Bayer et al., 2014; Fendrick et al., 

2003), with illness incidence peaking during winter months in the Northern 

Hemisphere (Heikkinen & Jarvinen, 2003). Research into the occurrence of upper 

respiratory symptoms (URS) in elite athletes has shown a similar frequency, but 

the timing of these URS episodes seems to be related to periods of intensive 

training and/or competition in cross-country skiers (Svendsen et al., 2016) and 

swimmers (Hellard et al., 2015). URS can result in a loss of training days and a 

performance decrement (Cunniffe et al., 2011; Reid et al., 2004; Svendsen et al., 

2016), therefore the ability to monitor athletes’ immune status in order to assess 

the risk of imminent URS may be of interest to sport scientists and coaches.  

Increased risk of URS in professional athletes has been shown to be associated 

with decreased levels of secretory immunoglobulin A (s-IgA) in saliva (Gleeson et 

al 1999; Neville et al 2008). However, due to the high inter-individual variability of 

s-IgA there are currently no established clinical reference values or critical 

thresholds for s-IgA concentration or secretion rate, and level of risk of imminent 

URS. Previous longitudinal investigations into s-IgA levels and upper respiratory 

illness (URI) in athletes have been limited by low sampling frequency (Cunniffe et 

al., 2011; Leicht et al., 2012), shorter monitoring periods (Morgans et al., 2014), 

and/or low incidence of URI (Gleeson et al., 2017). 

Neville et al. (2008) were able to overcome these common limitations via the 

collection of saliva samples on a weekly basis over a period of 12 months. These 

authors proposed a model for monitoring URI risk that requires the calculation of a 

healthy baseline level for s-IgA concentration for each individual athlete, and 
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subsequent monitoring of percentage changes in s-IgA concentration on a weekly 

basis. A fall in individual s-IgA levels to less than 40% of the calculated bassline 

was associated with a 50% chance of experiencing URI over the following two 

weeks. This method of monitoring s-IgA levels has not been further investigated in 

endurance sports.  

Reactivation of Epstein-Barr virus (EBV) has also been linked to immune 

depression (Mehta et al., 2000) and proposed as a possible cause of URS in elite 

athletes (Gleeson et al., 2002). Conflicting evidence as to the exact role that EBV 

reactivation plays in the occurrence of URS does exist, as Cox et al. (2004) found 

no evidence of EBV reactivation being associated with occurrence of URI 

episodes in a group of elite runners. However, evidence of lowered s-IgA levels 

and detection of EBV DNA in saliva that precede URS (Gleeson et al., 2002; 

Yamauchi et al., 2011) has raised the possibility of combining the two salivary 

immune markers in a risk monitoring model for URS in athletes.   

Therefore, the primary aim of this study was to examine changes in s-IgA levels, 

detection of EBV DNA in saliva, and incidence of URS over a 6-month training 

period. The secondary aim was to further investigate relative changes in s-IgA 

levels alongside URS in a group of endurance training adults. It was hypothesised 

that URS incidence would be greater in this study than in study 1, and that the 

frequency of EBV reactivation would increase immediately before URS.    
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4.2 Methods  

4.2.1 Participants  

Of the forty-seven participants who volunteered to take part in this study, 17 were 

lost to follow-up (six participants provided less than 10 saliva samples, and 11 

participants did not return any saliva samples). The remaining thirty adults (19 

male, 11 female adults: age 41.3  14.0 years) that had been engaging in 

endurance training for at least three years (23 runners, 3 cyclists, 4 triathletes) 

returned their completed illness logs and frozen saliva samples. Participants were 

retrospectively identified as URS if they reported at least one illness episode, or as 

HEALTHY if they remained free from URS throughout the monitoring period. All 

participants provided written informed consent and were free to withdraw at any 

time. Ethical approval was provided by the University of Kent School of Sport and 

Exercise Sciences Research Ethics Committee.   

4.2.2 Study Design 

Over a 6-month monitoring period that included autumn and winter months, 

participants provided weekly saliva samples, reported URS using a self-report 

questionnaire, and recorded the duration of all training sessions in a hand written 

diary. Participants were fully familiarised with the protocol for providing a rested 

saliva sample, and recording URS using the self-report illness questionnaire.   

4.2.4 EBV serology 

EBV serostatus of all participants was determined according to the method 

detailed in chapter 2.  
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4.2.5 Saliva collection  

Timed, unstimulated saliva samples were collected upon waking after at least 24 h 

of no exercise training. Samples were stored in participants’ home freezers and 

transported to the laboratory under ice at the end of the monitoring period.  

4.2.6 Saliva analysis 

For participants in the URS group, DNA extractions were carried out on all saliva 

samples that were provided when URS were present, as well as three saliva 

samples that were provided before the appearance of symptoms and also two 

samples provided after the cessation of symptoms. Participants from the 

HEALTHY group were matched as closely as possible to those in the URS group 

(according to gender, age, and training mode). DNA extractions were then also 

carried out on saliva samples from the HEALTHY group that were time matched to 

periods of illness from the URS group. The presence of EBV DNA and human 

DNA in saliva was determined via quantitative polymerase chain reaction (qPCR) 

according to the method outlined in chapter 2.  

All saliva samples provided by participants in URS and HEALTHY groups were 

analysed for s-IgA concentration and secretion rate according to the method 

outlined in chapter 2.  

4.2.7 Training Load 

Participants recorded the duration for each training session throughout the 

monitoring period. The mean number of hours per week for endurance training 

sessions was calculated and participants were retrospectively assigned to groups 

of moderate (6-10 h/wk) or high (>11 h/wk) weekly training load for further 

statistical analysis.   
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4.2.8 Statistical Analysis 

Normally distributed data are expressed as mean ( SD) with non-normally 

distributed data expressed as the median and interquartile range (IQR). The level 

of significance is set at P < 0.05.  

Un-paired samples t-test was used to assess differences in healthy baseline 

values for s-IgA concentration and secretion rate between the URS and HEALTHY 

groups. Repeated measures ANOVA was used to compare changes in relative s-

IgA concentration and secretion rate before, during, and after URS episodes. Non-

normally distributed data were log transformed to meet the requirements of 

ANOVA. 

EBV DNA shedding frequency was calculated for each individual participant as the 

percentage of saliva samples that were positive for EBV DNA. The mean 

concentration of EBV DNA across all saliva samples provided by each individual 

participant was calculated. A Pearson correlation was carried out between EBV 

shedding frequency and s-IgA baseline scores, and also EBV shedding frequency 

and URS incidence. Un-paired samples t-test was used to assess the difference 

between URS and HEALTHY groups for individual shedding frequency, and also 

mean EBV DNA concentration.    

Repeated measures ANOVA was used to compare the changes in concentration 

of EBV DNA in saliva provided three weeks before URS, during URS, and two 

weeks after URS episodes.  

After grouping participants according to mean weekly training hours, un-paired 

samples t-tests were used to assess differences in healthy baseline values for s-

IgA concentration and secretion rate, number of URs episodes, individual EBV 
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shedding frequency, and mean EBV DNA concentration between the groups of 

moderate and high training load.  

All statistical analyses were carried out using SPSS (IBM SPSS Statistics for 

Windows, version 24.0, Armonk, NY:IBM Corp). 

 

4.3 Results  

100% of participants were seropositive EBV at the onset of the study.  

4.3.1 URS    

17 participants experienced at least one episode of URS during the monitoring 

period, with a total of 27 individual URS episodes reported. 13 participants did not 

experience any symptoms of URS during the 6-month monitoring period. Illness 

incidence on average was 1 ± 1 episode per participant with symptoms lasting for 

6 ± 3 days.  

4.3.2 EBV DNA 

DNA was extracted from a total of 306 saliva samples, with EBV DNA detected in 

124 samples (41%). Of the total 30 participants, all but one participant (in the URs 

group) (96%) had at least one sample that was positive for EBV DNA. One 

participant (HEALTHY group) had 100% of samples (8/8) positive for EBV DNA. 

All 306 saliva samples were positive for human DNA, which served as an 

endogenous control for the extraction process.  

Of the total 306 saliva samples that underwent the DNA extraction and qPCR 

process, 204 were provided by 15 of the 17 participants in the URS group. Two 
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participants’ samples were too small in volume for DNA extraction (at least 200 µl 

required), which reduced the total number of illness episodes for analysis of EBV 

DNA to 25 individual episodes. There was no correlation between shedding 

frequency and URI incidence (P > 0.05). 

For the URS group, 70/204 extracted saliva samples were positive for the 

presence of EBV DNA (34%). The mean (± SD) for the individual shedding 

frequencies of the URS group was 32 ± 22%. One participant was experiencing 

symptoms at the start of the monitoring period, which reduced the number of URS 

episodes with pre-URS data for inclusion in ANOVA analysis to 24 individual URS 

episodes. EBV DNA was detected in saliva collected the week before and the 

week of URI for 46% and 33% of the 24 individual illness episodes (Figure 4.1).   

For the HEALTHY group, 54/102 saliva samples analysed by qPCR were positive 

for EBV DNA (53%) (Figure 4.1). All participants in this group had at least one 

positive sample. Mean (SD) individual shedding frequency was 53 ± 35%. 

There was no significant difference between URS and HEALTHY groups for 

individual EBV shedding frequency (P = 0.14) and mean EBV DNA concentration 

(P = 0.44).  

The concentration of EBV DNA in saliva samples provided before, during and after 

URS episodes was highest at 3 and 2-weeks pre-URS, but there was no 

significant difference in EBV DNA concentration before, during, or after URI (P < 

0.05) (figure 4.2).  
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Figure 4.1 Percentage of total number of saliva samples containing EBV DNA for 
the three samples provided pre-URS, one during URS, and two-post URS (n = 24 
URI episodes). Dashed black line indicates mean individual shedding frequency 
for HEALTHY group (53%).  

 

 

 

 

 

 
 

Figure 4.2 EBV DNA concentration for the four samples provided pre-URS, one 
during URS, and two post-URS. White bars represent URS group (n=24 
episodes). Black bars represent the time matched period for the HEALTHY group 
(n=13 matched periods). Values are mean ± SEM (SEM used to improve clarity of 
the figure).  
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4.3.3 Secretory Immunoglobulin A 

A total of 663 saliva samples were analysed for s-IgA. Median (IQR) s-IgA 

concentration for all participants was 363 (270-431) mg/L with a mean CV of 35%, 

and a between-subject CV of 49%. Mean s-IgA secretion rate was 119 ± 67 

mg/min with a mean CV of 48%, and a between CV of 74%.  

Participants in the HEALTHY group had significantly higher healthy baseline s-IgA 

concentration median (IQR) (410 (340-443) vs 297 (179-393) mg/L) and secretion 

rate (111 (94-178) vs 96 (57-123) mg/min) in comparison to the URS group (P < 

0.05, Figure 4.3 A and B). When expressed as a percentage of healthy baseline 

levels, s-IgA concentration and secretion rate were significantly elevated for the 

two weeks after a URS episode in comparison to when URS was present (P < 

0.05). There was no significant change in s-IgA levels in the weeks before URS (P 

> 0.05) (figure 4.4 A and B). There was no correlation between individual EBV 

shedding frequency and baseline s-IgA concentration or secretion rate (P > 0.05).  

 

 

 

 

 

 

Figure 4.3 Mean healthy baseline s-IgA concentration (A) and secretion rate (B) 
for the URS group (black bars, n=17) and HEALTHY group (white bars, n=13). 
Values are mean (± SD). *Significantly greater than URI group (P < 0.05). 
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4.3.4 Training Load 

16 participants were identified as engaging in a moderate volume of endurance 

training (8 ± 1 hours per week) and 14 were identified as high (13 ± 1 hours per 

week). For the moderate and high training load groups there was no difference in  

healthy baseline s-IgA concentration (344 (216-426) vs 370 (291-428) mg/L, P > 

0.05) or secretion rate (103 (73-134) vs 110 (107-201) mg/L, P > 0.05), number of 

URS episodes (1 ± 1 vs 1 ± 1, P > 0.05), or individual EBV shedding frequency (35 

± 29 vs 50 ± 31 %, P = 0.09) between the two groups.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Relative s-IgA concentration (A) and secretion rate (B) for the four 
weeks pre-URS, during URS, and two weeks post-URS (n=26). Values are mean 
(± SD). *Significantly different to URS (P < 0.05).  
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4.4 Discussion  

The results of this study suggest that EBV reactivation, and subsequent shedding 

of viral DNA into saliva, is highly variable between individuals and is not related to 

incidence of URS. This is not in agreement with the study hypothesis of increased 

frequency of EBV reactivation immediately before URS. Furthermore, for the 

present group of sub-elite endurance training adults, there is no clear relationship 

between changes in s-IgA levels and detection of EBV DNA, or incidence of URS.  

Previous studies of elite athletes have suggested a positive relationship between 

the frequency of EBV positive saliva samples and URS incidence (Gleeson et al., 

2002; Gleeson et al., 2017). Interestingly, for the present group of sub-elite 

endurance training adults, the mean viral shedding frequency was 21% higher 

(although not significantly higher, P = 0.14) for the group that did not report any 

URS over the 6-month monitoring period. Furthermore, EBV DNA was only 

detected in saliva during the seven days before URS or during URS for 30% and 

45% of illness episodes respectively, which is lower than the overall mean 

shedding frequency for the HEALTHY group (53%). Therefore, there is no clear 

evidence from this study to suggest that increased frequency of viral shedding in 

sub-elite athletes is linked to URS.  

Reactivation of EBV infected memory B-cells from the latent to the lytic life cycle 

results in infection of epithelial cells of the oropharynx, release of new viral cells 

directly into saliva, and a specific CD8+ T-cell response that is instigated by the 

expression of lytic genes occurring as the infected B-cells replicate (Rickinson & 

Moss, 1997). The inability of the immune system to control the actively replicating 

infected epithelial cells, identified by an increase in the amount of EBV DNA 

present in saliva, may be an in vivo marker of immunodepression. Previous 
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studies utilising in vitro methods have demonstrated a reduction in cell-mediated 

immunity after periods of intensified training. For example, an increase in weekly 

training load for 1-3 weeks has been shown to result in lowered levels of 

circulating type 1 T-cells in cyclists at rest (Lancaster et al., 2004), and reduced T-

cell proliferation after acute exercise in runners (Verde et al., 1992). Therefore, it is 

plausible that heavier training loads may be associated with increased EBV 

shedding frequency and/or a higher concentration of viral DNA measured in saliva, 

as a reflection of the exercise-induced depression in T-cell function. In the present 

study, EBV shedding frequency was 15% higher in HIGH training load group, but 

this difference did not reach statistical significance (P = 0.09). There was also no 

difference in illness incidence or resting s-IgA levels between the two training load 

groups. No assessments of T-cell number or function were carried out alongside 

collection of saliva samples so it is not possible to examine any possible 

relationship between in vivo immune markers (EBV shedding frequency), cell 

mediated immune status, and training load in this study. The method for 

quantification of weekly training load used in the present study is also a limitation 

as it does not account for training intensity. Inclusion of a metric for training 

intensity such as recording session rating of perceived exertion (RPE) or pre-study 

identification of heart rate (HR) training zones for use with training intensity models 

such as the training impulse (TRIMP) method (Foster et al., 2001) may provide a 

more robust method for quantification of training load, and subsequent statistical 

analysis, in future studies.   

The results of this study suggest that shedding frequency is highly variable 

between individuals with individual shedding frequency ranging from 0-100% 

across all participants, with at least one positive sample being provided by 96% of 

all participants. By comparison, in previous studies, 58-100% of seropositive study 
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participants provided at least one EBV positive saliva sample during a period of 

immune monitoring (Cox et al., 2004; Gleeson et al., 2002; Mehta et al., 2000; 

Payne et al., 1999). For this group of sub-elite athletes, 41% of all saliva samples 

were positive for EBV DNA. This is also higher than previous studies of elite 

athletes with viral shedding frequencies across all saliva samples reported in the 

range of 17-27% (Mehta et al., 2000; Pierson et al., 2005; Reid et al., 2004; 

Yamauchi et al., 2011). The majority of previous EBV research involving 

exercising populations has identified viral status (i.e. latent or lytic life cycle) by 

stating whether or not EBV DNA was detected in saliva. This form of qualitative 

data does not allow for further investigation into changes in viral load that may 

reflect the effectiveness of the specific cell-mediated response in controlling viral 

replication in the oropharynx. In the present study, quantitative measures were 

used to attempt to investigate changes in the concentration of EBV DNA in relation 

to URS incidence. EBV DNA concentration does appear to be elevated at three- 

and two-weeks before the appearance of symptoms. However, it is important to 

note that mean viral DNA concentration across all qPCR analysed saliva samples 

was not different between the URS and HEALTHY groups, which does not support 

previous suggestions of a positive relationship between EBV reactivation and URS 

(Gleeson et al., 2002). The low incidence of EBV positive saliva samples provided 

in the weeks before and during URS, has limited the ability to carry out statistical 

analysis on changes in viral load, but the low number of Pre-URS positive samples 

may in itself may indicate the absence of a meaningful relationship between EBV 

reactivation and URS. The high variability in shedding frequency that is consistent 

across the literature indicates the need to include quantitative measures of viral 

load to aid the future investigation into EBV reactivation and URS in elite athletes.  
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Healthy baseline values for s-IgA concentration and secretion rate were 30-40% 

lower for people who experienced at least one URS episode during the 6-month 

monitoring period. However, when s-IgA concentration and secretion rate were 

expressed as a percentage of calculated individual healthy baseline levels, the 

relative s-IgA values did not significantly decrease in the one-to-two weeks 

immediately before or during URS. This is not consistent with previous studies that 

have showed a strong relationship between decreasing levels of s-IgA and 

increased risk of imminent URI in athletes (Neville et al., 2008). Furthermore, this 

does not support previous findings of a relationship between lowered s-IgA and 

detection of EBV DNA that precedes URS as neither of these salivary markers 

showed agreement with previous findings (Gleeson et al., 2002; Yamouchi et al., 

2011). Despite no evidence of lowered s-IgA preceding URS, there was a 

characteristic increase in s-IgA after illness that demonstrates a mucosal immune 

response to infection.   

The healthy baseline values for s-IgA concentration and secretion rate for the URS 

and HEALTHY groups in the present study were noticeably higher than those 

previously reported for elite athletes (Cunniffe et al., 2011; Fahlman & Engles, 

2005; Gleeson et al., 2002; Neville et al., 2008) and also the professional football 

players in Study 1 (with the latter analysed in the same lab with the same assay 

and equipment). However, the high within- and between-subject variability for 

resting s-IgA was in agreement with previous studies of elite athletes. This 

difference in resting s-IgA levels may in part be due to the difference in weekly 

training load between elite athletes and the present group of sub-elite endurance 

training adults (Svendsen et al., 2016) as completing 20-25 hours per week of 

swimming training has been shown to reduce s-IgA levels in apparently healthy 

elite athletes (Gleeson et al., 1999b). Similar to the findings of the present study, 
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previous research has also found no relationship between s-IgA levels and training 

load in non-elite endurance training individuals (Ihalainen et al., 2016), and when 

mean weekly training load was similar to the present study (7-10 hours and >11 

hours per week identified as moderate and high) (Gleeson et al., 2011b). In a 

study of elite athletes Gleeson et al. (2017) identified a s-IgA concentration value 

of 60 mg/L as a threshold above which the risk of URS was considered to be low. 

This threshold value for elite athletes is five times smaller than the healthy 

baseline score for participants in the URS group. This possibly suggests that 

groups of sub-elite endurance training adults with lower training loads (compared 

to elite athletes) do not reach the same critical threshold for s-IgA level and risk of 

imminent URS, which in-turn possibly indicates that EBV reactivation is not a 

reliable tool to assess immune status in sub-elite endurance athletes. In order to 

fully investigate the utility of EBV reactivation as an in vivo tool to assess URS risk, 

future investigations of elite athletes should aim to include fully quantitative PCR 

alongside s-IgA analysis with sampling frequency kept as high as practically 

possible in order to investigate day-to-day fluctuations in viral load.   

In summary, there is no evidence of a relationship between EBV DNA detection 

and URS incidence in this group of sub-elite endurance training adults. However, 

inclusion of quantitative changes in viral load in future work aiming to investigate 

the relationship between viral replication and URS in elite athletes may be useful. 

Baseline levels of s-IgA were lower for participants who experienced episodes of 

URS during the 6-month monitoring period, but there was no evidence of lowered 

s-IgA in the two weeks before URS or during URS.   
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Chapter 5. Summary of longitudinal monitoring of EBV reactivation, URS, 

and s-IgA in athletes  

5.1 Introduction 

Previous longitudinal studies of elite athletes have suggested a relationship 

between detection of EBV DNA, lowered s-IgA levels, and onset of upper 

respiratory symptoms (URS) (Gleeson et al., 2002; Yamouchi et al., 2011). 

However, the role of EBV as the causative agent in the appearance of URS has 

been questioned (Cox et al., 2004). The overall aim of studies 1 and 2 was to 

investigate the use of monitoring EBV reactivation as an in vivo marker of immune 

status and risk of imminent URS by examining the temporal relationship between 

EBV DNA detection and URS incidence alongside other mucosal immune markers 

that have previously been shown to be linked with URI (Neville et al., 2008). The 

data from these two longitudinal monitoring studies has been combined for further 

analysis into the occurrence of viral shedding and URS this chapter.  

 

5.2 Methods 

5.2.1 Participants 

This chapter has pooled together the longitudinal data for EBV reactivation and 

URS incidence for a total of 36 participants across studies 1 and 2. This includes 

eight of the football players from study 1 (DNA extractions were only carried out on 

8/16 players’ saliva samples) and 28 of the sub-elite endurance athletes of study 2 



82 
 

(two participants’ samples were too small in volume for the DNA extraction 

process).  

Further analysis of s-IgA levels incorporates all participants from studies 1 and 2; 

16 football players and 30 sub-elite endurance athletes (total n=46).   

Participants were assigned to the URS group if they experienced at least one URS 

episode, or to the HEALTHY group if they remained free from URS throughout the 

monitoring period. 

All participants were seropositive for previous infection with EBV.  

5.2.2 Saliva analysis 

All saliva samples included in the analyses for EBV DNA and s-IgA from studies 1 

and 2 were included in the analysis for this chapter.  

5.2.3 Statistical analysis 

An un-paired t-test was used to examine differences between the URS and 

HEALTHY groups for individual shedding frequency, and EBV DNA concentration.    

An un-paired t-test was used to examine the difference in healthy baseline s-IgA 

concentration and secretion rate (i.e. mean s-IgA levels of all weeks when no URS 

were present) between the whole group of football players of study 1 and the 

whole group of sub-elite endurance athletes of study 2. The same analysis was 

carried out to compare baseline s-IgA levels for the two individual HEALTHY 

groups from studies 1 and 2. A comparison of the URI groups from each study 

could not carried out due to having just two URI participants for study 1. 
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5.3 Results 

5.3.1 Upper respiratory symptoms  

When grouped together, 17/36 (47%) participants experienced at least one 

episode of URS and 19/36 (53%) remained healthy over a monitoring period of 4-6 

months. The 17 participants in the URS group experienced a total of 26 individual 

illness episodes.  

5.3.2 EBV DNA 

A total of 376 saliva samples from studies 1 and 2 underwent the DNA extraction 

process, with an average of 10 (±3) samples provided per participant.  

The overall mean individual shedding frequency of the HEALTHY group was 

similar to the URS group (49 vs 32%, P = 0.15) (table 5.1). Similarly, mean 

concentration of viral DNA across all saliva samples was similar between the 

HEALTHY and URS groups (1.60 vs 1.16 ng/µl x10-7, P = 0.60) (table 5.1).  

EBV DNA was detected in saliva in the week before URS were first reported for 

12/26 episodes (46%), and when URS were present for 9/26 episodes (35%) 

(table 5.2).  

Table 5.1 Individual shedding frequency and concentration (mean ± SD) of EBV 
DNA in saliva samples provided by participants in the URS and HEALTHY groups 
of studies 1 and 2. 

 

  Shedding frequency 
(%) 

EBV DNA concentration 

  (ng/µl x10-7) 

All participants (n=36) 42 (29) 1.37 (0.44) 
   

HEALTHY (n=19) 49 (32) 1.60 (0.81) 
   

URI (n=17) 35 (24)  1.16 (0.54) 
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Table 5.2 Percentage of total number of saliva samples that were positive for EBV 
DNA provided three weeks before URS, during URS, and two weeks after URS for 
participants in the URS groups of studies 1 and 2 (n=26 URS episodes). 

 

 

 

5.3.3 s-IgA 

Healthy baseline levels of s-IgA concentration and secretion rate were significantly 

lower for the whole group of professional football players of study 1 in comparison 

to the whole group of sub-elite endurance athletes of study 2 (P < 0.05, table 5.3). 

Similarly, the baseline levels for s-IgA concentration and secretion rate for the 

HEALTHY group from study 1 were also lower than the HEATHY group from study 

2 (P < 0.05, table 5.3). 

 

Table 5.3 Baseline s-IgA concentration and secretion rate (median (IQR) and 
mean (± SD). Individual baseline scores for players 5 & 8 are reported as Study 1 
URS data. * Indicates significantly different to Study 1 HEALTHY. # indicates 
significantly different to study 1 ALL.  

 

 -3 -2 -1 URS +1 +2 

Positive samples 
(%) 

38 35 46 35 38 38 

 URS HEALTHY ALL 

Study 1    

s-IgA Concentration  
(mg/L) 

158 & 138 113 (98 - 126) 107 (76 - 150) 

s-IgA Secretion rate  
(mg/min) 

117 & 55 64 (39 - 67) 51 (30 - 78) 

 (n=2) (n=13) (n=15) 

Study 2    

s-IgA Concentration  
(mg/L) 

297 (179-393) 410 (340-443)* 363 (270-431)# 

s-IgA Secretion rate  
(mg/min) 

96 (57-123) 111 (94-178)* 119 (± 67)# 

 (n=19) (n=11) (n=30) 
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5.4 Discussion 

The EBV and URS data from studies 1 and 2 presented in this chapter does not 

support previous suggestions of a meaningful relationship between detection of 

EBV DNA in saliva and incidence of URS in elite athletes (Gleeson et al., 2002; 

Yamouchi et al., 2011). The significant difference in s-IgA healthy baseline levels 

between the group of professional football players and sub-elite endurance 

athletes supports the J-shaped model for URI risk (Nieman, 1994).   

Combination of the data from studies 1 and 2 has helped to overcome the 

statistical underpowering caused by a low URS incidence in study 1. For this 

combined data, EBV DNA was detected in saliva collected during the week before 

URS for 46% of individual URS episodes. This detection rate is lower than the rate 

of EBV shedding pre-URS reported in previous work from Gleeson et al. (2002), 

where the authors suggested a positive relationship between EBV shedding and 

URS occurrence. However, the work from Gleeson et al. (2002) does not include a 

large HEALTHY group for comparison, and is relatively underpowered with a total 

of 6/9 individual URS episodes being associated with EBV DNA detection (in 

comparison to the present analysis that includes 26 individual episodes of URS). It 

is important to note that the detection rate for EBV DNA in the weeks before and 

during URS (46% and 35%) does not exceed the whole group mean individual 

shedding frequency for the HEALTHY group (49%). Reactivation of EBV from the 

latent to lytic life cycle is essential for viral survival as the virus must be actively 

replicating in epithelial cells of the oropharynx in order to infect naïve B-cells in the 

already infected host as well as disseminate to a new seronegative host (Gandhi 

et al., 2015). Therefore, detection of EBV DNA in saliva collected at rest may not 

necessarily be an in vivo sign of immunosuppression and increased risk of 
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imminent URS if indeed viral reactivation is a natural process with memory B-cells 

intermittently reactivating and infecting epithelial cells that will subsequently shed 

viral DNA into saliva. If, however, EBV reactivation is an in vivo sign of 

immunosuppression it may be plausible to expect a high detection rate of EBV 

DNA in saliva for groups of illness prone athletes, which was not the case in a 

previous study of athletes experiencing recurrent URTI where just 22% of athletes 

provided a positive saliva sample (Reid et al., 2004). The results of the first two 

studies of this thesis therefore suggest that “one off” saliva samples analysed for 

presence of EBV DNA should be interpreted with caution. The detection rate of 

EBV DNA in saliva is similar between periods of URS and symptom-free periods, 

therefore suggesting that a positive saliva sample does not indicate an increased 

risk of imminent URS or a state of immunodepression.  

The use of fully quantitative qPCR has permitted calculation of viral DNA 

concentration. While EBV shedding per se may not be an in vivo marker of 

immunosuppression, the amount of DNA that is present in saliva could provide an 

indication as to the degree of viral reactivation and/or the ability of CD8+ cells to 

control the replicating viral cells in the oropharynx. However, the pooled data 

shows no significant difference in EBV DNA concentration between the HEALTHY 

and URS groups and therefore no support to previous suggestions that EBV 

reactivation is linked to URS incidence. Future studies of EBV reactivation may 

want to include fully quantitative qPCR in order to examine any relationship 

between exercise training load and EBV reactivation. The specific CD8+ T-cells 

that are responsible for controlling lytic activity may at times experience depressed 

cell function (particularly during periods of heavy training) resulting in a loss of 

control over actively replicating viral cells and a subsequent increase in the 

concentration of EBV DNA in saliva.  
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The healthy baseline s-IgA levels for the whole group of professional football 

players of study 1 were found to be significantly lower than the whole group of 

sub-elite participants of study. Taking the results of s-IgA baseline comparisons in 

isolation, this would appear to reflect the J-shaped model for illness risk 

(previously discussed in chapter 1; Nieman, 1994) as the higher-level athletes had 

lower resting levels of a key mucosal immune marker that would suggest a higher 

risk of URI (Neville et al., 2008). The group of elite athletes studied in this thesis 

did however experience fewer URS episodes, but they were monitored over a 

shorter period of four months in comparison to the six-month monitoring period for 

the sub-elite athletes. It is possible that more URS episodes may well have 

occurred in the winter months that followed the cessation of monitoring (January 

and February). The notable difference in s-IgA levels between the groups of 

professional football players and sub-elite endurance athletes highlights a key 

point for consideration in immune monitoring. If indeed a relationship between s-

IgA and EBV reactivation does exist (as proposed by Gleeson eta l., 2002 and 

Yamouchi et al. 2011), it should perhaps be further investigated in large groups of 

elite athletes that are experiencing similarly high training loads and therefore 

experiencing greater changes in levels of mucosal immune markers. Furthermore, 

the large difference in healthy resting values between elite and sub-elite athletes 

highlights the need to clearly define the training status of research participants in 

future immune monitoring studies. 

In summary, the detection rate of EBV DNA in saliva does not appear to differ 

between periods of URS (week before and when URS are present) and URS-free 

periods. Therefore, monitoring saliva samples for evidence of EBV reactivation 

may not be a reliable method for assessing immune status in elite or sub-elite 

athletes.  
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Chapter 6. Study 3 – Lytic reactivation of Epstein-Barr Virus does not occur 

after a single bout of prolonged cycling in well trained males 

Abstract 

Introduction: Prolonged exercise can cause a transient immune depression for 

up to 24 hours post exercise. However, it is currently unknown what effect this has 

on the control and subsequent reactivation of Epstein-Barr Virus (EBV) in the 

hours following a single bout of endurance exercise. Aim: To investigate the acute 

effect of prolonged cycling on EBV reactivation and other immune markers in 

blood and saliva up to 44 h post exercise. Methods: In a randomised crossover 

design ten club level male cyclists (mean ± SD: aged 31 ± 8 yrs; VO2max 57.3 ± 

10.0 ml/kg/min) completed 2.5 h of cycling at 20% (20% of the difference 

between power at lactate threshold and power at maximal aerobic power added to 

power output at lactate threshold) and 2.5 h seated rest after an overnight fast. 

Unstimulated saliva samples were provided upon waking on the morning of each 

trial as well as the two following mornings. Unstimulated saliva and venous blood 

samples were collected immediately pre, post, and 1 h post exercise/rest. Saliva 

was analysed for s-IgA concentration and secretion rate (ELISA) and EBV DNA 

concentration (qPCR). Venous blood samples were analysed for EBV serostatus 

(ELISA) and cell counts for total leukocytes, neutrophils and lymphocytes.  

Results: 100% of participants were EBV seropositive. EBV DNA was detected in 

saliva of seven participants for at least one time point during the study period. 

Over the course of the exercise trial, 40% (4/10) of participants provided EBV 

positive saliva samples at both pre and post-exercise time points. There was no 

significant change in viral load during the exercise (P > 0.05) and rest trials (P > 

0.05). Blood neutrophil count significantly increased pre-to-post-exercise (2.6 ± 0.5 

to 7.5 ± 3.6 x 109 cells/L, P<0.05) and remained elevated at 1 h post (7.7 ± 3.0 x 

109 cells/L, P<0.05). There were no significant main effects for time, trial, and time 

x trial interaction for s-IgA concentration (P > 0.05) or secretion rate (P > 0.05). 

Conclusion: Detection of EBV DNA in saliva did not change after acute exercise 

and therefore may not be a useful in vivo marker for monitoring short term 

changes in immune function post-exercise. Quantitative analysis of EBV DNA in 

saliva should be included in future investigations. 
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6.1 Introduction  

Previous studies that have utilised in vitro immune markers before and after a 

single bout of acute prolonged exercise have provided evidence of suppressed T-

cell mediated immunity (Lancaster et al., 2005) and highlighted the reduction in 

anti-viral immune defences post-exercise (Peake et al., 2017; Walsh et al., 2011), 

which seem to increase the risk of experiencing URS (Nieman, 1994; Pederson, 

Rhode & Ostrowski, 1998). However, the clinical relevance and utility of in vitro 

methods has been questioned (Walsh et al., 2011) and Albers et al. (2005) 

highlighted the importance of using in vivo measures to assess immune status as 

this represents the whole integrated immune response to exercise rather than 

function of isolated components (i.e. leukocytes).  

In vivo methods, such as the measurement of cutaneous responses to application 

of a novel antigen (diphenylcyclopropenone, DPCP), represent a more clinically 

relevant method for examining T-cell-mediated responses to antigenic challenge 

following exercise. Previous research has consistently shown that prolonged, 

moderate intensity exercise reduces the induction and elicitation of in vivo 

immunity via T-cell-mediated responses that are independent of the stress 

hormone response to prolonged exercise (Davison et al., 2016; Diment et al., 

2015; Harper Smith et al., 2011). This particular method of examining immune 

status in vivo is a robust technique that does not require invasive procedures such 

as venous blood sampling. However, this method is not always practical in a 

research or an applied environment. Researchers are limited to a between-subject 

study design when investigating the induction of a new immune response because 

naïve participants can only experience the first sensitisation once. Within-subject 

designs are possible, but researchers must first sensitise all participants over a 
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period of 4-8 weeks and the subsequent investigation is limited to the elicitation of 

existing immunity, which has been shown to be less sensitive to physical exercise 

stress (Harper Smith et al. (2011). In an applied sport science setting, contact 

hypersensitivity may not be practical as the reaction at the skin surface to the 

antigen (DPCP) can cause discomfort (swelling and possible blistering), and 

measurements of oedema and erythema require individuals to return to the 

laboratory at 24 and 48 hours after DPCP application. An in vivo immune marker 

that allows for a more feasible within-subject design is desirable to allow 

intervention studies such as nutritional or training interventions to be undertaken.   

Monitoring the reactivation of Epstein-Barr virus (EBV), measured via collection of 

saliva samples, may provide a less invasive and time consuming (on the part of 

the participant) option for investigating in vivo immune function following exercise. 

There is currently limited evidence on the acute time course of EBV reactivation 

and appearance of EBV DNA in saliva after acute exercise as the only previous 

study to examine acute exercise and EBV reactivation (Gleeson et al., 2017) 

collected saliva samples at just the immediately post and 24-hour post-exercise 

timepoints (i.e. no samples were collected in the hours between exercise 

cessation and 24 hours post). Furthermore, the study from Gleeson et al. (2017) 

was limited to reporting qualitative results of EBV DNA detection, which does not 

allow for investigation into any possible changes in viral load after acute exercise. 

The clinical relevance of detecting EBV DNA in saliva at rest and after exercise is 

not fully understood. This has implications for future research on the influence of 

acute or short-term nutritional interventions and manipulations on immune status 

and URI in athletes. Therefore, the aim of this study was to investigate the acute 

changes in EBV shedding after a single bout of prolonged exercise. It was 
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hypothesised that the concentration of EBV DNA in saliva samples collected the 

morning after exercise would be higher than pre-exercise levels.   

 

6.2 Methods  

6.2.1 Participants  

Ten male cyclists volunteered to participate in this study (aged 31 ± 8 years, body 

mass 73.4 ± 9.3 kg, maximal oxygen uptake, �̇�O2max, 57.3 ± 10.0 ml/kg/min; mean 

 SD). All participants were healthy, non-smoking, and had at least three years 

experience of endurance cycling. All participants were free from upper respiratory 

illness symptoms for at least 14 days before performing any of the preliminary or 

experimental trials. 

6.2.2 Preliminary testing  

All participants first performed preliminary testing in order to determine cycling 

power output (W) at lactate threshold and at maximal oxygen uptake (�̇�O2max) on 

an electronically braked cycle ergometer (Excalibur Sport, Lode, Groningen, the 

Netherlands). In order to determine lactate threshold, participants performed a 

sub-maximal continuous incremental cycling test starting at 100-150 W with 25-30 

W increments (depending on fitness) every four minutes for 6-7 stages. During the 

fourth minute of each stage, finger-tip blood samples were taken for determination 

of blood lactate concentration (Biosen C-Line, EKF Diagnostic, London, UK). A 

rating of perceived exertion (RPE) was recorded at the end of every 4-minute 

stage (Borg, 1982). Heart rate (HR) (Polar Electro, Kempele, Finland), and breath-

by-breath gas exchange (MetaLyser 3BR2, Cortex Biophysik, GmbH, Leipzig, 
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Germany) were recorded continuously throughout the test. The gas analysis 

system was calibrated prior to use according to the manufacturer's guidelines 

using a three-litre syringe (Hans Rudolf Inc, Kansas, USA) and a calibration gas of 

known composition.   

After at least 15 minutes of recovery, �̇�O2max and maximal aerobic power (MAP) 

were determined via a maximal incremental cycling test starting at 100 W with a 

ramp rate of 30 W/min. The test was terminated when participants could no longer 

hold the required power output for more than 10 s or when participants reached 

volitional exhaustion. Verbal encouragement was provided throughout the test for 

all participants. HR and �̇�O2 were again measured throughout the test. �̇�O2max and 

MAP were taken as the highest 30 s average during the test. The work rate 

required to elicit 20%  was calculated by adding the power output at lactate 

threshold to 20% of the difference between power at lactate threshold and MAP. 

This method ensures the same relative exercise intensity (and hence physiological 

stress) between participants during the prolonged cycling trials (Lansley et al., 

2011).  

6.2.3 Familiarisation and Experimental trials 

Approximately seven days before the first experimental trial, all participants first 

completed a full familiarisation trial of 2.5 hours cycling at 20% Δ. For cycling trials, 

HR was monitored throughout, and �̇�O2 and RPE were monitored every 30 

minutes. Power output was adjusted when necessary so that participants were 

cycling at the required work rate. Following familiarisation, the starting power 

output of the main exercise trial was adjusted where necessary so that participants 

would be able to complete 2.5 h of cycling in the experimental trial. 
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Experimental trials of 2.5 h of cycling at 20% Δ and 2.5 h seated rest were then 

completed in a randomised crossover design. All trials were performed in a fasted 

state starting between 7:00 and 8:00 am, and were separated by at least five days. 

Participants were allowed to drink water freely throughout all trials. Participants 

were asked to abstain from strenuous exercise for 24 h pre and 48 h post 

familiarisation and experimental trials, and also to complete a food diary for the 24 

h preceding the familiarisation trial and then to replicate this as closely as possible 

before the two main experimental trials.  

6.2.4 Blood sampling and analytical methods 

Whole blood samples were collected from the antecubital vein into one K3EDTA 

coated vacutainer and one serum vacutainer (Becton Dickinson, UK) pre, post, 

and 1 h post-trial. Blood collected into K3EDTA vacutainers was used to obtain 

differential leukocyte counts including neutrophil, lymphocyte, monocyte, 

eosinophil, and basophil counts (Hemocue® WBC DIff system, Hemocue, 

Angleholm, Sweden). EBV serostatus of each participant was determined 

according to the methods outlined in chapter 2 from blood samples collected into 

serum vacutainers at the start of the study.  

6.2.5 Saliva collection and analytical methods  

Timed, unstimulated saliva samples were provided upon waking on the morning of 

each trial (0 h), and then at pre, post, 1 h post exercise/rest, and upon waking for 

the two mornings following each trial (~20 h and 44 h post).  

All saliva samples collected during the experimental trials were analysed for s-IgA 

concentration and secretion rate, EBV DNA concentration, and presence of human 

DNA as described in Chapter 2.  



94 
 

6.2.6 Illness reports and criteria for URS 

Participants recorded any URS experienced from 14 days before the first day of 

preliminary testing up to seven days after the second experimental trial using a 

self-report questionnaire as described in chapter 2.  

6.2.7 Statistical analysis 

Data are expressed as mean  SD, unless otherwise stated, with the level of 

significance set at P < 0.05. All statistical analyses were carried out using SPSS 

(IBM SPSS Statistics for Windows, version 24.0, Armonk, NY:IBM Corp). 

Repeated measures of blood leukocyte, neutrophil, and lymphocyte counts, and 

also s-IgA concentration and secretion rate were compared within and between 

trials using 2-way repeated measures ANOVA. Post hoc paired t-tests with 

Bonferroni correction applied were used, where necessary, to follow up any main 

effects identified in the ANOVAs. Non-normally distributed data were normalised 

using log transformation and displayed as the median (IQR). Wilcoxon signed-rank 

tests were used to analyse changes in EBV DNA concentration.  

 

6.3 Results 

All ten participants completed the full 2.5-hour exercise trial. Physiological 

responses and RPE scores are shown in table 6.1.  

6.3.1 WBC Counts  

There were significant main effects for ANOVA comparisons for time, trial, and 

time x trial interaction for leukocyte count and neutrophil count (P < 0.05) (Table 

6.2). For the exercise trial, post-hoc analysis revealed a significant increase in 
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leukocyte count and neutrophil count immediately post (P < 0.01) and 1 h post-

exercise (P < 0.01) in comparison to pre-exercise. There was no effect for time or 

trial for lymphocyte count (P > 0.05).  

Table 6.1 Physiological responses and RPE scores during exercise trial. Values 
are mean (± SD). (n=10). 
 

 
 

Table 6.2 Differential leukocyte counts. Values are mean ( SD). (n=10).   

 

6.3.2 Salivary Immunoglobulin A 

There were no significant main effects for ANOVA comparisons for time, trial, and 

time x trial interaction for s-IgA concentration (P > 0.05) or secretion rate (P > 

0.05) (Figure 6.1).   

  0.5 h 1 h 1.5 h 2 h 2.5 h 

HR 
(bpm) 

131 ± 5 134 ± 6 134 ± 5 136 ± 4 141 ± 5 

VO2 
(L/min) 

2.5 ± 0.3 2.6 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 2.7 ± 0.2 

RPE 11 ± 1 11 ± 1 12 ± 1 13 ± 1 13 ± 1 

 Pre Post 1 h Post 

Leukocyte count (x109L) 
   

   Exercise  4.8 (1.1) 10.3 (4.4)* 10.2 (3.6)* 

   Rest 3.9 (0.6) 4.5 (1.2) 4.7 (1.2) 

Neutrophil count (x109L) 
   

   Exercise  2.6 (0.5) 7.5 (3.6)* 7.7 (3.1)* 

   Rest 1.9 (0.2) 2.3 (0.6 2.3 (0.5) 

Lymphocyte count (x109L)    

   Exercise  1.9 (0.6) 2.3 (0.9) 1.8 (0.7 

   Rest 1.7 (0.4) 1.9 (0.6) 2.1 (0.7) 

*Significantly different to Pre-exercise, P < 0.05. 
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Figure 6.1 Salivary IgA concentration (A) and secretion rate (B) for the 
experimental trials. Values are mean (± SD), (n=10). 

 

6.3.3 Epstein-Barr Virus  

10/10 participants were seropositive for previous infection with EBV. Over the two 

experimental trials, seven participants had at least one saliva sample that was 

positive for EBV DNA (table 5.3). Individual viral shedding frequency ranged from 

0-90%. 100% of saliva samples were positive for human DNA.  

Over the course of the exercise trial, four participants provided EBV positive saliva 

samples at both pre- and post-exercise time points (table 6.3). Two participants 
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switched from negative EBV samples pre-exercise, to positive in the post-exercise 

time period up to 44 h post. Four participants remained negative for EBV DNA 

throughout the exercise trial. There was no significant change in EBV DNA 

concentration during the exercise (P = 0.46) and rest trials (P = 0.50) (figure 6.2A). 

Similarly, EBV DNA secretion rate also showed no significant change during the 

exercise (P = 0.48) and rest trials (P = 0.75) (figure 5.2B).  

 

 

 

 

 

 

 

 

 

 
Table 5.3 EBV serostatus at the start of the study, and detection of EBV DNA in 
saliva throughout the experimental trials.  
 
 
 
 
Figure 5.2 EBV DNA concentration (A) and secretion rate (B) throughout 

familiarisation, exercise and rest trials (n=10). Values are mean ( SEM) (SEM 
used to improve clarity of the figure).   
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Table 6.3 EBV serostatus at the start of the study, and detection of EBV DNA in saliva throughout the experimental trials. “No data” 
indicates timepoints when a saliva sample was not collected.  

 

 

 

 

ID 
EBV 
Serostatus 

EBV DNA detected in saliva - Exercise trial EBV DNA detected in saliva - Rest trial 

Waking  Pre Post 1 h Post 
20 h 
Post 

44 h 
Post 

Waking  Pre Post 1 h Post 
20 h 
Post 

44 h 
Post 

1 Positive - - - - - Positive Positive Positive - - - - 

2 Positive Positive Positive Positive Positive - Positive Positive Positive Positive  Positive Positive 

3 Positive No data - - - Positive - - - - - - - 

4 Positive - - - - - - - - - - - - 

5 Positive - - - - - - - - - - - - 

6 Positive - - - - - - - - - - - - 

7 Positive Positive - - - Positive - Positive - - - - - 

8 Positive - - No data - - - - - Positive Positive - - 

9 Positive Positive Positive Positive Positive Positive Positive No data Positive Positive Positive - Positive 

10 Positive Positive Positive Positive Positive Positive - - Positive - - - - 



6.3.4 Upper respiratory symptoms 

All participants were free from URS during the 14 days before the familiarisation 

trial through to the seven days after the second experimental trial.  

 

6.4 Discussion  

The objective of this study was to investigate the acute change in shedding of EBV 

DNA into saliva after a single bout of intense and prolonged cycling. Despite 

evidence of a significant stress response to the exercise bout (leukocyte 

trafficking) there was no evidence of an increase in viral shedding or acute 

reactivation of EBV after prolonged cycling exercise in healthy trained cyclists, 

which is not in agreement with the study hypothesis. Previous studies utilising in 

vitro techniques have identified a transient change to the number and function of 

circulating cells of the innate and acquired immune system, with recovery to pre-

exercise levels occurring within 24 hours post-exercise (Peake et al., 2017; Walsh 

et al., 2011). 

The process of EBV lytic reactivation in vitro has been well documented (Tsurumi, 

Fujita & Kudoh, 2005) and the biological reason for lytic gene expression is known 

to be essential for viral survival through infection of naïve B-cells in the already 

infected host as well as dissemination to a new seronegative host (Gandhi et al., 

2015). However, the stimulus for the switch from latent to lytic gene expression in 

the EBV infected memory B-cells in vitro is not precisely understood (Odumade, 

Hogquist & Balfour, 2011). Previous longitudinal research of EBV reactivation has 

suggested that lytic reactivation may be due to physiological and/or psychological 

stress (Mehta et al., 2000). There is evidence of elevated levels of urinary stress 
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hormones (cortisol, adrenaline and noradrenaline) being associated with EBV 

reactivation in astronauts after spaceflight (Stowe et al., 2000; Stowe, Pierson & 

Barrett, 2001) with the suggestion that the psychological and physiological stress 

of spaceflight and isolation caused a down regulation in cellular immunity that lead 

to the observed viral reactivation. However, these findings were based on a 

relatively small number of sampling time points and no association with plasma 

stress hormone levels was observed. Furthermore, the detection of EBV DNA in 

saliva samples collected over a relatively long period of time with such infrequent 

sampling time points may be due to the natural variation that occurs within 

individuals over a period of several months (Hadinoto et al., 2009). In the present 

study, the acute physical stress of 2.5 hours fasted cycling resulted in two (20%) 

participants showing evidence of lytic reactivation from pre-to-post-exercise with a 

single positive saliva sample provided at 20 h (ID 3) and 44 h (ID 1) post-exercise. 

Four (40%) participants remained negative, and four (40%) participants provided 

positive saliva samples at both pre and post-exercise time points. Reactivation of 

latent B-cells in this particular in vivo model per se may not be a sign of 

immunodepression (i.e. participants 1 and 3), if indeed the switch from the latent to 

lytic life cycle is a continual viral process that is essential for viral survival. Instead, 

the inability of EBV specific CD8+ T-cells to control the actively replicating infected 

epithelial cells in the oropharynx after prolonged exercise may be an indicator of 

depressed cell mediated immunity in vivo. However, levels of EBV DNA 

concentration and secretion rate did not significantly change from pre-to-post-

exercise in the four participants that were shedding viral DNA through the exercise 

trial period.  

Viral shedding has previously been shown to be relatively stable (i.e. shedding or 

not shedding) over a short period of time (several hours and days) in healthy 
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seropositive individuals at rest (Hadinoto et al., 2009). The results of the present 

study seem to reflect this conclusion as 80% of participants were either shedding 

or not shedding over the period of several days. It is not possible to determine 

whether or not an individual is shedding at any given time without analysis of a 

saliva sample. This ultimately presents a barrier to the use of EBV reactivation as 

an outcome measure in future studies as researchers will not know whether their 

study participants are shedding or not shedding until the point of saliva analysis. In 

this study, the relatively low number of participants actively shedding viral DNA 

and the overall high variability in individual shedding frequency has limited the 

statistical comparisons that can be performed on this data and questions the use 

of EBV reactivation as an outcome measure in future studies of acute exercise.  

If EBV reactivation is indeed stimulated by a stress hormone induced reduction in 

T-cell function, as suggested by Stowe et al. (2000) and also by Stowe, Pierson & 

Barrett (2001), examination of EBV reactivation after more strenuous exercise 

bouts (repeated bouts, intensified training periods etc) may provide insight into 

acute exercise and lytic reactivation. Indeed, the stress hormone response to 

repeated bouts of exercise performed on the same day has been shown to be 

elevated after the second exercise bout (Ronsen et al., 2001) and T-cell function is 

known to decrease after an intensified training period (Hoffman-Goetz et al., 1990; 

Lancaster et al., 2004). Previous exercise immunology research using in vitro 

methods has identified the production of exercise-induced stress hormones 

(specifically cortisol) as the key mechanism responsible for reduced production of 

cytokines and decreased concentration of lymphocytes in peripheral circulation 

(Lancaster et al., 2005). However, conversely, when using the DPCP model of 

CHS to assess post-exercise immune function there was no evidence of stress 

hormones being linked to in vivo immune responses to exercise (Davison et al., 
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2016; Diment et al., 2015; Harper Smith et al., 2011). A limitation of the present 

study is the lack of measurements of stress hormones and catecholamines, and in 

vitro measures of immune cell function (e.g. T-cell cytokine production) carried out 

alongside the in vivo assessments (Albers et al., 2013). The significant 

neutrophilia that was observed post and one-hour post-exercise has been well 

documented as a sign of immune stress caused by exercise-induced elevations in 

plasma cortisol (Walsh et al., 2011), but this does not necessarily infer that T-cell 

function would also be significantly reduced. Additionally, leukocyte numbers and 

functions can continue to fluctuate between 1-hour and 24-hours post exercise 

(Gleeson, Bishop & Walsh, 2013; Walsh et al., 2011). Therefore, the inclusion of 

additional post exercise sampling time points (not limited to post and 1-hour post) 

would also be beneficial to future investigations. 

Only one study has previously examined EBV reactivation in an acute exercise 

setting. Gleeson et al. (2017) analysed saliva samples collected immediately pre 

and post, and 24-hours post two separate bouts of exercise each lasting 60 

minutes (one continuous at 65% �̇�O2max, and one high intensity interval bout). In 

this instance, results were limited to classifying samples as either positive or 

negative for the presence of EBV DNA, which limited the analysis to identification 

of acute reactivation (i.e. switch from latent to lytic gene expression, or increase in 

viral load). Across the two exercise bouts, there were 11 cases of participants 

being positive for EBV DNA at both the immediately pre- and post-exercise 

timepoints. The inclusion of quantitative measures of viral load may have 

permitted investigation of changes in T-cell function in vivo, particularly as some of 

the participants in this particular study had been identified as illness prone and 

may therefore have been more susceptible to exercise-induced 

immunodepression. Fully quantitative qPCR methods are essential to the future 
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investigation of EBV reactivation and/or T-cell control of viral cells that are already 

shedding DNA into saliva at the onset of an acute exercise challenge.  

There was no evidence of the transient depression of s-IgA concentration or 

secretion rate that typically occurs after a single bout of prolonged and strenuous 

exercise (Gleeson & Pyne, 2000; Walsh et al., 2011). All participants were healthy 

and free from URS for a period of 5-6 weeks (14 days before familiarisation trial 

through to 7 days after the second experimental trial), therefore it is unsurprising 

that none of the sampling timepoints that occurred upon waking (0, 20, 44 h) 

showed evidence of depressed s-IgA levels close to the threshold of 40 mg/L that 

has previously been suggested as a critical threshold for URI risk (Gleeson et al., 

1999a; Gleeson et al., 2017). The fact that s-IgA levels were not depressed in the 

hour immediately after exercise may be due to the intensity (and/or duration) of the 

exercise bout. Despite being prolonged and fasted, the exercise bout being fixed 

at an intensity of 20%Δ was challenging (as shown by lymphocyte trafficking) but 

not sufficient to induce a significant decline in markers of mucosal immunity. 

Previous longitudinal research has suggested a link between lowered levels of s-

IgA, shedding of EBV DNA, and occurrence of URS (Gleeson et al., 2002). In 

order for this relationship to be examined in an acute exercise setting the exercise 

bout may need to be at a higher intensity, or involve repeated bouts. As previously 

discussed, repeated exercise bouts can amplify the post-exercise decrease in 

immune function (Lancaster et al., 2004). However, it is important to note that the 

shape of the response of change in EBV DNA concentration from pre to post-

exercise seems to reflect the response of s-IgA over the same time period. The 

absence of an inverse relationship between s-IgA and EBV DNA possibly 

suggests that s-IgA does not interfere with transport of new viral cells into saliva. 

Hadinoto et al. (2009) previously demonstrated that shedding of new viral cells into 
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saliva is due to activity of the EBV infected epithelial cells of the oropharynx, and 

that saliva is rapidly replenished with viral cells after rinsing of the mouth and 

swallowing.  

A single bout of prolonged exercise can result in depressed leukocyte function in 

vitro (Walsh et al., 2011) and a reduced immune response to antigen challenge in 

vivo (Harper-Smith et al., 2011). The high variability of viral shedding frequency 

observed in the present study has been a major limiting factor in the ability to fully 

assess the change in levels of EBV DNA concentration and/or secretion rate after 

the acute exercise bout. It is important to note that all ten participants were free 

from URS for two weeks before and seven days after each trial, indicating that 

such a large range in shedding frequency can occur within healthy individuals. It is 

possible that EBV reactivation is too variable between individuals, and ultimately 

too unreliable, to be used as a tool to assess post-exercise immune function in 

vivo. Future investigations should aim to include measures of in vitro T-cell 

function and levels of stress hormones to aid the understanding of the possible 

cause of lytic reactivation and/or inability of CD8+ T-cells to control virus output by 

the infected epithelial cells of the oropharynx. More strenuous exercise 

bouts/repeated bouts may elicit a greater physiological stress, which may induce 

greater immunodepression for examination of EBV reactivation.  
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Chapter 7. General Discussion   

7.1 Discussion 

The main findings from the two longitudinal studies in this thesis suggest that 

reactivation of EBV, identified through either qualitative (positive detection of EBV 

DNA in saliva) or quantitative methods (concentration or secretion rate of EBV 

DNA in saliva), is not related to URS incidence or other mucosal immune markers 

of URS risk (s-IgA) as detection of EBV DNA in saliva is equally likely between 

periods of no URS and imminent/present URS. There is no clear evidence of acute 

reactivation following prolonged exercise (study 3) from the latent to lytic viral life 

cycle. Furthermore, the high variability in individual shedding frequency seen 

across all three experimental studies may indicate that EBV reactivation is too 

unreliable to be used as a marker of in vivo immune status in a longitudinal setting 

and/or an outcome measure in an acute exercise setting.  

For the level of athlete used in study 2 (sub-elite endurance athletes), monitoring 

saliva for evidence of EBV reactivation alongside changes in s-IgA levels does not 

appear to be a useful model for assessing immune status and risk of imminent 

URS. In this instance, there was no evidence of increased detection rate of EBV 

DNA in saliva for the weeks before or during URS, no significant decrease in s-IgA 

concentration or secretion rate in the weeks leading up to URS, and training load 

was not associated with either lower resting s-IgA levels nor increased shedding of 

EBV DNA. However, in study 1, when elite athletes were monitored (professional 

football players) there was evidence of a relationship between s-IgA levels and 

competitive match load, as well as a decrease in s-IgA levels that preceded URS. 

Unfortunately, low incidence of URI (n=2) limited full analysis of s-IgA, EBV DNA 
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detection, and URS risk. For future studies of elite athletes, identification of EBV 

serostatus appears to be possible through analysis of saliva samples for the 

presence of latent EBV DNA (specifically BamHI fragments), which negates the 

need to collect a blood sample.  

Unique to the results of this thesis, 100% of participants that completed all 3 

studies (n=44) were seropositive. Previous studies of athletic populations have 

reported seropositivity in the region of 75-85% (Cox et al., 2004; Gleeson et al., 

2002; He et al., 2013), although higher values are not unheard of as more recently 

a study of endurance athletes from Gleeson et al. (2017) reported whole group 

seropositivity of 94% (15/16 athletes).           

Previous investigations into the use of in vivo markers of immune status in an 

acute exercise setting have demonstrated the utility and robust nature of the 

cutaneous application of a novel antigen and subsequent measurement of the 

immune response at the skin surface (typically DPCP) (Davison et al., 2016; 

Diment et al., 2015; Harper-Smith et al., 2011). Given the greater clinical 

relevance of in vivo markers in comparison to the well-researched in vitro markers 

(Albers et al., 2005; Albers et al., 2013; Walsh et al., 2011), further research into 

EBV reactivation as a potential tool for monitoring immune status at rest may be of 

interest to researchers and elite sport coaches/practitioners alike due to the 

relative ease of saliva collection as opposed to the methods associated with DPCP 

measurements (e.g. discomfort due to skin swelling).  
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7.2 Practical applications 

Until further research involving large groups of elite level athletes has been carried 

out, monitoring of EBV reactivation in an applied sport science setting should 

interpret “one off” saliva samples with caution. The pooled data presented in 

chapter 5 demonstrates the equal likelihood of providing a positive sample in the 

weeks before URS compared to periods of no imminent URS.  

As shown in this thesis, elite and sub-elite athletes appear to have very different 

healthy baseline levels for s-IgA. It is therefore important to identify the training 

level of an individual in an applied sport science setting before interpreting the 

level of risk of URS and/or mucosal immune status from a saliva sample (or a 

series of saliva samples). Furthermore, future immune monitoring research should 

clearly state the training level of study participants and consider the upper and 

lower thresholds for inclusion/exclusion criteria so that study results can be 

appropriately interpreted according to the training level of the study participants.   

 

7.3 Limitations of the thesis 

The main limitations across this thesis are incidence of URS and participant 

numbers. These two limitations are commonly recurring factors within sport and 

exercise immunology research. Ultimately, rate of URS incidence is an 

uncontrollable factor and was a strong limitation to study 1. Recruitment of 

participants to studies 2 and 3 proved to be a challenge, which limited the 

participant numbers in this case. The addition of non-exercising control groups to 

studies 1 and 2 may have provided a useful comparison when examining the role 
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of training load. Finally, the use of self-report questionnaires for collection of illness 

data is not a fully reliable and robust method for determining whether or not URS 

are of infectious origin. Laboratory confirmation of infection would have been 

closer to a gold-standard method, but this method was not available for this thesis.  

 

7.4 Future directions 

For studies 2 and 3, all saliva samples were analysed for the presence of human 

DNA as an internal extraction control for the qPCR assay. This was an essential 

step in the methods as any samples that were identified as being negative for 

human DNA could be re-examined by returning to the original saliva sample to 

repeat the DNA extraction process. However, this thesis did not include a method 

that would account for the purity of the DNA present in the extracted samples. This 

may be important when conducting qPCR on samples that contain relatively small 

amounts of the template DNA (i.e. BALF5 gene) in the original sample as the 

purity of the template DNA that is obtained from the DNA extraction process is 

known to influence the efficacy of the subsequent qPCR reaction (Chidley, 2018). 

The results of study 1 demonstrate that DNA from the BamHI gene is continuously 

detected in saliva even when the lytic gene (BALF5) was not detected. Therefore, 

the BamHI gene could be used as an EBV specific DNA extraction control in future 

studies of EBV reactivation. Normalising the results of BALF5 DNA concentration 

and/or secretion rate against the values for BamHI may provide an alternative 

method for assessing the change in viral load within an individual’s saliva samples, 

as the purity of the extracted saliva samples has been accounted for with this EBV 

specific control step. In this thesis, the qPCR assay for BamHI did not include a 
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standard curve as at that time we had not produced the necessary positive control 

required for a standard curve for this specific gene, and therefore the amount of 

latent DNA in the saliva samples could not be quantified. If future investigations 

were to include a standard curve, the concentration of BamHI DNA in saliva could 

possibly be used to normalise the concentration of BALF5 DNA in an attempt to 

account for DNA purity in the extracted samples.    

As discussed in Chapter 6 (Study 3), the acute response of EBV reactivation as 

either lytic reactivation and/or loss of T-cell control over viral cells that are actively 

replicating at the onset of exercise may need to be investigated in an exercise 

scenario that involves repeated bouts/intensified periods of exercise in order to 

induce a greater degree of immunodepression. Inclusion of in vitro measures of T-

cell function may provide further insight into any relationship between changes in T 

cell function from pre-to-post-exercise and changes in EBV shedding for people 

who are actively shedding viral DNA into saliva at the onset of exercise (i.e. in the 

lytic life cycle).   

Given the notable difference in s-IgA levels between the participants of study 2 

and study 1, it would appear that salivary markers of immune status exhibit a 

different profile in the weeks before URS according to the competitive level/training 

status of the individual. The findings from this thesis should therefore not be taken 

as conclusive evidence that EBV reactivation is not linked to URS incidence, and 

is not a useful in vivo marker of immune status, for groups of elite athletes. More 

work with large sample sizes of elite populations is required to fully understand 

any links between EBV lytic DNA shedding and URS incidence in those 

populations. This particular area of research into immune monitoring may indeed 

be welcomed by professional athletes and coaches due to the non-invasive and 
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relatively convenient nature of saliva collection in comparison to venous blood 

sampling and cutaneous in vivo techniques.      

 

7.5 Conclusion 

In healthy elite and sub-elite athletes, the detection of EBV DNA in saliva could 

simply reflect the natural process of latent B-cell reactivation and infection of 

epithelial cells in the oropharynx. Therefore, detection of EBV DNA in saliva may 

not necessarily be an in vivo sign of immunodepression and increased risk of 

imminent URS. 
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Appendix A 

Have you taken any over-the-counter medication this week to alleviate respiratory illness or gastrointestinal discomfort symptoms? Yes o      No o   
If yes, name of medication…………………………………………………………………… 
Have you been to see you doctor about your illness symptoms this week?    Yes o No o 
If yes, have you taken any prescribed medication this week?  Yes o  No o     If yes, name of medication …………………………………………………………………. 
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Symptoms 

Fever 

              Persistent muscle soreness or tenderness   
(more than 8 hours)               
Sore, painful throat 

              Catarrh in the throat 

              Runny nose 

              Cough 

              Repetitive sneezing 

              Joint aches and pains 

              Weakness/fatigue 

              Headache 

              Loss of sleep 

              Inability to train/compete 
Light (L) = normal training maintained,  

Moderate (M) = training reduced,  
Severe (S) = training discontinued 

              

The following questions relate to any 
symptoms of illness experienced today. If a 
symptom is present, please place a tick in 
the box and rate as: Light (L), Moderate (M), 

or Severe (S). If a symptom is not present, 
please leave blank. 


